seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
39956836499
# -*- coding: utf-8 -*- """ Created on Wed Oct 19 14:11:57 2022 @author: Saskia Hustinx """ import re import gpt_2_simple as gpt2 import tensorflow as tf import json import tweepy import random import time ### NLP SECTION ### def words_in_string(word_list, a_string): return set(word_list).intersection(a_string.split()) def generate_tweets(num): texts = gpt2.generate(sess, run_name='run2', temperature=0.9, length=50, nsamples=num, return_as_list=True) res = [] for text in texts: match = re.findall('<|startoftext|>(.*?[\.\?!])', text) if len(match) == 3 and len(match[2]) > 40: if not words_in_string(filter_list, match[2]): res.append(match[2]) return res ### TWITTER ### # Parse the credentials for the twitter bot with open("cred.json", "r") as json_file: twitter_creds = json.load(json_file) # Set the credentials based on the credentials file API_KEY = twitter_creds['api-key'] API_SECRET = twitter_creds['api-secret'] BEARER_TOKEN = twitter_creds['bearer-token'] ACCESS_KEY = twitter_creds['access-token'] ACCESS_SECRET = twitter_creds['access-secret'] def api(): auth = tweepy.OAuthHandler(API_KEY, API_SECRET) auth.set_access_token(ACCESS_KEY, ACCESS_SECRET) return tweepy.API(auth) def fetch_dms(): # fetching the direct messages direct_messages = api.get_direct_messages() print(len(direct_messages)) print(direct_messages) return direct_messages def respond_dm(dms): recipients = [] for dm in dms: if dm.message_create['sender_id'] != '1577695345865367553' and dm.message_create['sender_id'] not in recipients: recipients.append(dm.message_create['sender_id']) res_tweets = [] while len(res_tweets) < len(recipients): res_tweets = generate_tweets(len(recipients) + 10) for recipient in recipients: api.send_direct_message(recipient_id = recipient, text = str("My message for you is: \n \n"+ random.choice(res_tweets) + " ✨")) time.sleep(5) # main api = api() dms = fetch_dms() if len(dms) > 0: tf.config.set_visible_devices([], 'GPU') sess = gpt2.start_tf_sess() gpt2.load_gpt2(sess, run_name='run2') # delete the outgoing dms dms = fetch_dms() for dm in dms: if dm.message_create['sender_id'] == '1577695345865367553': api.delete_direct_message(dm.id) dms.remove(dm) filter_list = ['victim', 'abuse', 'sex', 'planetary'] respond_dm(dms) # delete reponded dms for dm in dms: api.delete_direct_message(dm.id)
sHustinx/nlp-fortune-cookie-bot
respond-dms.py
respond-dms.py
py
2,664
python
en
code
0
github-code
6
21098037404
# -*- coding: utf-8 -*- from flask import Blueprint, g, request, redirect, url_for, current_app import os from invenio.ext.template.context_processor import \ register_template_context_processor, template_args from invenio.base.decorators import templated from invenio.modules.formatter import format_record from invenio.modules.search.models import Collection from invenio.modules.search.forms import EasySearchForm from invenio.modules.search.views.search import collection blueprint = Blueprint('main', __name__, url_prefix="", template_folder='templates', static_url_path='', # static url path has to be empty # if url_prefix is empty static_folder='static') @blueprint.route('/', methods=['GET', 'POST']) @templated('index.html') def index(): """ Renders homepage. """ # legacy app support c = request.values.get('c') if c == current_app.config['CFG_SITE_NAME']: return redirect(url_for('.index', ln=g.ln)) elif c is not None: return redirect(url_for('.collection', name=c, ln=g.ln)) collection = Collection.query.get_or_404(1) from invenio.b2share.modules.b2deposit.latest_deposits import get_latest_deposits latest_deposits = get_latest_deposits() func = current_app.config.get("CFG_SITE_FUNCTION") or "" @register_template_context_processor def index_context(): return dict( of=request.values.get('of', collection.formatoptions[0]['code']), easy_search_form=EasySearchForm(csrf_enabled=False), format_record=format_record, ) return dict(collection=collection,latest_deposits=latest_deposits, pagetitle="EUDAT B2SHARE",site_function=func) # list all domain logos in this module's static assets folder domain_logos = [ img for img in os.listdir(os.path.join(blueprint.static_folder, 'img')) if img.startswith('domain-') ] @template_args(collection) def domain_collection_helpers(): """Add helpers to the '/collection' templates""" def get_domain_icon(collection_name): """Return the url to the given domain collection logo if it exists""" if not collection_name or not isinstance(collection_name, basestring): return; logo_file_prefix = 'domain-' + collection_name.lower() matching_logo = [ logo for logo in domain_logos if logo.startswith(logo_file_prefix)] if len(matching_logo) == 1: return url_for('static', filename=os.path.join('img', matching_logo[0])) elif len(matching_logo) > 0: raise Exception('multiple logos matching domain collection ' + collection_name) return { 'get_domain_icon': get_domain_icon }
cjhak/b2share
invenio/b2share/modules/main/views.py
views.py
py
2,867
python
en
code
null
github-code
6
39735748017
class BankAccount: # Class attributes number = 1 all_accounts = [] # Constructor def __init__(self, int_rate=0.05, balance=0, acc_id=number): self.int_rate = int_rate self.balance = balance self.id = acc_id BankAccount.all_accounts.append(self) BankAccount.number += 1 # Deposit method to add to the instance/variable balance def deposit(self, amount): self.balance += amount return self # Withdraw Mthod to take money out with the condition its there # otherwise a fee is charged def withdraw(self, amount): if self.balance - amount >= 0: self.balance -= amount return self else: print(f"Insufficient funds: Charging a $5 fee") self.balance -= 5 return self def display_account_info(self): print(f"Balance: {self.balance}") return self def yield_interest(self): if self.balance >= 0: self.balance = self.balance + (self.balance * self.int_rate) return self @classmethod def get_account_info(cls): for inst in cls.all_accounts: inst.display_account_info() class User: # Class attributes users_accounts = {} # Constructor def __init__(self, name, email, account_name, deposit=0): self.name = name self.email = email self.account = BankAccount(int_rate=0.02, balance=deposit) User.users_accounts.update({f"{account_name}": self.account}) def make_deposit(self, account_name, amount): self.users_accounts[account_name].deposit(amount) def make_withdraw(self, account_name, amount): self.users_accounts[account_name].withdraw(amount) def display_user_balance(self, account_name): self.users_accounts[account_name].display_account_info() def transfer_money(self, account_name, amount, other_user, ou_account_name): self.users_accounts[account_name].withdraw(amount) other_user.make_deposit(f"{ou_account_name}", amount) @classmethod def add_account(cls, account_name, deposit=0): User.users_accounts.update({f"{account_name}": BankAccount(int_rate=0.02, balance=deposit)}) SomeGuy = User("Jeffry","[email protected]","Account1") Person2 = User("Jane", "[email protected]", "Monniiesss", 150) SomeGuy.display_user_balance("Account1") print("---------Depositing--------") SomeGuy.make_deposit("Account1", 300) print("---------Finished--------") SomeGuy.display_user_balance("Account1") print("---------Withdrawing--------") SomeGuy.make_withdraw("Account1", 30) SomeGuy.display_user_balance("Account1") print("---------Before Transfer--------") SomeGuy.display_user_balance("Account1") Person2.display_user_balance("Monniiesss") SomeGuy.transfer_money("Account1", 100, Person2, "Monniiesss") print("---------After Transfer--------") SomeGuy.display_user_balance("Account1") Person2.display_user_balance("Monniiesss")
r-lutrick/Coding-Dojo
Python/Fundamentals/OOP/Users_with_Bank_Accounts/users_with_bank_accounts.py
users_with_bank_accounts.py
py
3,006
python
en
code
1
github-code
6
33626981361
from flask import Flask, request import requests import tkinter as tk from tkinter import simpledialog import pdfrw import json from flask_cors import CORS import io import base64 app = Flask(__name__) CORS(app) @app.route("/") def hello_world(): ROOT = tk.Tk() ROOT.withdraw() # the input dialog # USER_INP = simpledialog.askstring(title="Wallet Info", # prompt="Please Enter your Wallet ID:") APIKEY = '43044ac0170dc40fa60cfd249ef3307b64edbab8' BASE = 'https://rest.cryptoapis.io/v2' BLOCKCHAIN = 'bitcoin' NETWORK = 'mainnet' WALLETID = request.args.get('walletId') print(WALLETID) #used if we are looking for data on a particular transaction # myTestNetWallet - 62a8e61a25a05500079dda90 # random MainnetWallet - 3R2UHDGKLQkPmAjBGbdzpET95xYV59hkyw #TID = '4b66461bf88b61e1e4326356534c135129defb504c7acb2fd6c92697d79eb250' #blockchain-data/bitcoin/testnet/addresses/mzYijhgmzZrmuB7wBDazRKirnChKyow4M3? #get Bitcoin amount from wallet with requests.Session() as session: h = {'Content-Type': 'application/json', 'X-API-KEY': APIKEY} r = session.get(f'https://rest.cryptoapis.io/v2/wallet-as-a-service/wallets/{WALLETID}/bitcoin/testnet',headers=h) r.raise_for_status() qdata = r.json() bitCoinAmount = qdata['data']['item']['confirmedBalance']['amount'] #get Ethereum amount from wallet with requests.Session() as session: h1 = {'Content-Type': 'application/json', 'X-API-KEY': APIKEY} r1 = session.get(f'https://rest.cryptoapis.io/v2/wallet-as-a-service/wallets/{WALLETID}/ethereum/ropsten',headers=h1) r1.raise_for_status() qdata1 = r1.json() ethereumAmount = qdata1['data']['item']['confirmedBalance']['amount'] # #test for a wallet on the chain # #blockchain-data/bitcoin/testnet/addresses/mzYijhgmzZrmuB7wBDazRKirnChKyow4M3? # with requests.Session() as session: # h = {'Content-Type': 'application/json', # 'X-API-KEY': APIKEY} # r = session.get(f'https://rest.cryptoapis.io/v2/blockchain-data/bitcoin/testnet/addresses/{WALLETID}', headers=h) # r.raise_for_status() # print(json.dumps(r.json(), indent=4, sort_keys=True)) import os #directory = os.getcwd() #print(os.path.abspath("AtomicTest.pdf")) #pdf_template = "/Users/adityabora/Desktop/AtomicTest.pdf" pdf_template = "./PortfolioAnalysisV2.pdf" pdf_output = "output7.pdf" #template_pdf = pdfrw.PdfReader(pdf_template) # create a pdfrw object from our template.pdf print(os.path.exists(pdf_template)) template_pdf = pdfrw.PdfReader(pdf_template) ANNOT_KEY = '/Annots' ANNOT_FIELD_KEY = '/T' ANNOT_VAL_KEY = '/V' ANNOT_RECT_KEY = '/Rect' SUBTYPE_KEY = '/Subtype' WIDGET_SUBTYPE_KEY = '/Widget' for page in template_pdf.pages: annotations = page[ANNOT_KEY] for annotation in annotations: if annotation[SUBTYPE_KEY] == WIDGET_SUBTYPE_KEY: if annotation[ANNOT_FIELD_KEY]: key = annotation[ANNOT_FIELD_KEY][1:-1] print(key) from datetime import date data_dict = { 'Risk': '3.8', 'BitcoinAmount': bitCoinAmount, 'EthAmount': ethereumAmount, 'USDCAmount': '30', 'RiskGPA': '3.7' } def fill_pdf(input_pdf_path, data_dict): template_pdf = pdfrw.PdfReader(input_pdf_path) for page in template_pdf.pages: annotations = page[ANNOT_KEY] for annotation in annotations: if annotation[SUBTYPE_KEY] == WIDGET_SUBTYPE_KEY: if annotation[ANNOT_FIELD_KEY]: key = annotation[ANNOT_FIELD_KEY][1:-1] if key in data_dict.keys(): if type(data_dict[key]) == bool: if data_dict[key] == True: annotation.update(pdfrw.PdfDict( AS=pdfrw.PdfName('Yes'))) else: annotation.update( pdfrw.PdfDict(V='{}'.format(data_dict[key])) ) annotation.update(pdfrw.PdfDict(AP='')) # pdfrw.PdfWriter().write(output_pdf_path, template_pdf) buf = io.BytesIO() pdfrw.PdfWriter().write(buf, template_pdf) buf.seek(0) return base64.encodebytes(buf.read()).decode() data = fill_pdf(pdf_template, data_dict) template_pdf.Root.AcroForm.update(pdfrw.PdfDict(NeedAppearances=pdfrw.PdfObject('true'))) # NEW return data
MHSiles/yoloco-be
other/main-2.py
main-2.py
py
4,824
python
en
code
0
github-code
6
16907993758
import numpy as np from .sigmoid import sigmoid def predict(Theta1, Theta2, X): '''隐藏层''' m = X.shape[0] num_labels = Theta2.shape[0] a1 = np.vstack((np.ones(m), X.T)).T a2 = sigmoid(np.dot(a1, Theta1.T)) a2 = np.vstack((np.ones(m), a2.T)).T a3 = sigmoid(np.dot(a2, Theta2.T)) return np.argmax(a3, axis=1)
2332256766/python_test
MachineL_The_4_week_practise/predict.py
predict.py
py
348
python
en
code
0
github-code
6
73268001788
# Uncomment the next two lines to enable the admin: from django.conf.urls import patterns, include, url from productes import views urlpatterns = patterns('', url(r'^$', views.llistarProductes, name='llistarProductes'), url(r'^llistarCategories/$', views.llistarCategories, name='llistarCategories'), url(r'^llistarCategoriesAjax/$', views.llistarCategoriesAjax, name='llistarCategoriesAjax'), url(r'^llistarProductes/$', views.llistarProductes, name='llistarProductes'), url(r'^afegirProducte/(?P<categoria>\w+)/$', views.afegirProducte, name='afegirProducte'), url(r'^afegirProducte/$', views.afegirProducte, name='afegirProducte'), url(r'^afegirCategoria/$', views.afegirCategoria, name='afegirCategoria'), url(r'^editarProducte/(?P<idProducte>\d+)/$', views.editarProducte, name='editarProducte'), url(r'^dadesProducte/(?P<idProducte>\d+)/$', views.dadesProducte, name='dadesProducte'), )
kimpa2007/restoGestio
tpv/productes/urls.py
urls.py
py
938
python
en
code
0
github-code
6
2088985509
#!/usr/bin/env python """@namespace IMP.pmi.tools Miscellaneous utilities. """ from __future__ import print_function, division import IMP import IMP.algebra import IMP.isd import IMP.pmi import IMP.pmi.topology try: from collections.abc import MutableSet # needs Python 3.3 or later except ImportError: from collections import MutableSet import itertools import math import sys import ast try: from time import process_time # needs python 3.3 or later except ImportError: from time import clock as process_time import RMF import IMP.rmf from collections import defaultdict, OrderedDict import warnings import numpy def _get_system_for_hier(hier): """Given a hierarchy, return the System that created it, or None""" # If we are given the raw particle, get the corresponding Hierarchy # decorator if available if hier and not hasattr(hier, 'get_parent'): if IMP.atom.Hierarchy.get_is_setup(hier): hier = IMP.atom.Hierarchy(hier) else: return None while hier: # See if we labeled the Python object directly with the System if hasattr(hier, '_pmi2_system'): h = hier._pmi2_system() if h: return h # Otherwise (maybe we got a new Python wrapper around the same C++ # object), try all extant systems for s in IMP.pmi.topology.System._all_systems: if s.hier == hier: return s # Try the next level up in the hierarchy hier = hier.get_parent() def _all_protocol_outputs(hier): """Iterate over all (ProtocolOutput, State) pairs for the given hierarchy""" system = _get_system_for_hier(hier) if system: for state in system.states: for p in state._protocol_output: yield p def _add_pmi_provenance(p): """Tag the given particle as being created by the current version of PMI.""" IMP.core.add_imp_provenance(p) IMP.core.add_software_provenance( p, name="IMP PMI module", version=IMP.pmi.get_module_version(), location="https://integrativemodeling.org") IMP.core.add_script_provenance(p) def _get_restraint_set_keys(): if not hasattr(_get_restraint_set_keys, 'pmi_rs_key'): _get_restraint_set_keys.pmi_rs_key = IMP.ModelKey("PMI restraints") _get_restraint_set_keys.rmf_rs_key = IMP.ModelKey("RMF restraints") return (_get_restraint_set_keys.pmi_rs_key, _get_restraint_set_keys.rmf_rs_key) def _add_restraint_sets(model, mk, mk_rmf): rs = IMP.RestraintSet(model, "All PMI restraints") rs_rmf = IMP.RestraintSet(model, "All PMI RMF restraints") model.add_data(mk, rs) model.add_data(mk_rmf, rs_rmf) return rs, rs_rmf def add_restraint_to_model(model, restraint, add_to_rmf=False): """Add a PMI restraint to the model. Since Model.add_restraint() no longer exists (in modern IMP restraints should be added to a ScoringFunction instead) store them instead in a RestraintSet, and keep a reference to it in the Model. If `add_to_rmf` is True, also add the restraint to a separate list of restraints that will be written out to RMF files (by default, most PMI restraints are not).""" mk, mk_rmf = _get_restraint_set_keys() if model.get_has_data(mk): rs = IMP.RestraintSet.get_from(model.get_data(mk)) rs_rmf = IMP.RestraintSet.get_from(model.get_data(mk_rmf)) else: rs, rs_rmf = _add_restraint_sets(model, mk, mk_rmf) rs.add_restraint(restraint) if add_to_rmf: rs_rmf.add_restraint(restraint) def get_restraint_set(model, rmf=False): """Get a RestraintSet containing all PMI restraints added to the model. If `rmf` is True, return only the subset of these restraints that should be written out to RMF files.""" mk, mk_rmf = _get_restraint_set_keys() if not model.get_has_data(mk): warnings.warn("no restraints added to model yet", IMP.pmi.ParameterWarning) _add_restraint_sets(model, mk, mk_rmf) if rmf: return IMP.RestraintSet.get_from(model.get_data(mk_rmf)) else: return IMP.RestraintSet.get_from(model.get_data(mk)) class Stopwatch(object): """Collect timing information. Add an instance of this class to outputobjects to get timing information in a stat file.""" def __init__(self, isdelta=True): """Constructor. @param isdelta if True (the default) then report the time since the last use of this class; if False, report cumulative time.""" self.starttime = process_time() self.label = "None" self.isdelta = isdelta def set_label(self, labelstr): self.label = labelstr def get_output(self): output = {} if self.isdelta: newtime = process_time() output["Stopwatch_" + self.label + "_delta_seconds"] \ = str(newtime - self.starttime) self.starttime = newtime else: output["Stopwatch_" + self.label + "_elapsed_seconds"] \ = str(process_time() - self.starttime) return output class SetupNuisance(object): def __init__(self, m, initialvalue, minvalue, maxvalue, isoptimized=True, name=None): p = IMP.Particle(m) if name: p.set_name(name) nuisance = IMP.isd.Scale.setup_particle(p, initialvalue) if minvalue: nuisance.set_lower(minvalue) if maxvalue: nuisance.set_upper(maxvalue) # m.add_score_state(IMP.core.SingletonConstraint(IMP.isd.NuisanceRangeModifier(),None,nuisance)) nuisance.set_is_optimized(nuisance.get_nuisance_key(), isoptimized) self.nuisance = nuisance def get_particle(self): return self.nuisance class SetupWeight(object): def __init__(self, m, isoptimized=True, nweights_or_weights=None): pw = IMP.Particle(m) if isinstance(nweights_or_weights, int): self.weight = IMP.isd.Weight.setup_particle( pw, nweights_or_weights ) else: try: nweights_or_weights = list(nweights_or_weights) self.weight = IMP.isd.Weight.setup_particle( pw, nweights_or_weights ) except (TypeError, IMP.UsageException): self.weight = IMP.isd.Weight.setup_particle(pw) self.weight.set_weights_are_optimized(isoptimized) def get_particle(self): return self.weight class SetupSurface(object): def __init__(self, m, center, normal, isoptimized=True): p = IMP.Particle(m) self.surface = IMP.core.Surface.setup_particle(p, center, normal) self.surface.set_coordinates_are_optimized(isoptimized) self.surface.set_normal_is_optimized(isoptimized) def get_particle(self): return self.surface def get_cross_link_data(directory, filename, dist, omega, sigma, don=None, doff=None, prior=0, type_of_profile="gofr"): (distmin, distmax, ndist) = dist (omegamin, omegamax, nomega) = omega (sigmamin, sigmamax, nsigma) = sigma filen = IMP.isd.get_data_path("CrossLinkPMFs.dict") with open(filen) as xlpot: dictionary = ast.literal_eval(xlpot.readline()) xpot = dictionary[directory][filename]["distance"] pot = dictionary[directory][filename][type_of_profile] dist_grid = get_grid(distmin, distmax, ndist, False) omega_grid = get_log_grid(omegamin, omegamax, nomega) sigma_grid = get_log_grid(sigmamin, sigmamax, nsigma) if don is not None and doff is not None: xlmsdata = IMP.isd.CrossLinkData( dist_grid, omega_grid, sigma_grid, xpot, pot, don, doff, prior) else: xlmsdata = IMP.isd.CrossLinkData( dist_grid, omega_grid, sigma_grid, xpot, pot) return xlmsdata def get_grid(gmin, gmax, ngrid, boundaries): grid = [] dx = (gmax - gmin) / float(ngrid) for i in range(0, ngrid + 1): if not boundaries and i == 0: continue if not boundaries and i == ngrid: continue grid.append(gmin + float(i) * dx) return grid def get_log_grid(gmin, gmax, ngrid): grid = [] for i in range(0, ngrid + 1): grid.append(gmin * math.exp(float(i) / ngrid * math.log(gmax / gmin))) return grid def cross_link_db_filter_parser(inputstring): ''' example '"{ID_Score}" > 28 AND "{Sample}" == "%10_1%" OR ":Sample}" == "%10_2%" OR ":Sample}" == "%10_3%" OR ":Sample}" == "%8_1%" OR ":Sample}" == "%8_2%"' ''' import pyparsing as pp operator = pp.Regex(">=|<=|!=|>|<|==|in").setName("operator") value = pp.QuotedString( '"') | pp.Regex( r"[+-]?\d+(:?\.\d*)?(:?[eE][+-]?\d+)?") identifier = pp.Word(pp.alphas, pp.alphanums + "_") comparison_term = identifier | value condition = pp.Group(comparison_term + operator + comparison_term) expr = pp.operatorPrecedence(condition, [ ("OR", 2, pp.opAssoc.LEFT, ), ("AND", 2, pp.opAssoc.LEFT, ), ]) parsedstring = str(expr.parseString(inputstring)) \ .replace("[", "(") \ .replace("]", ")") \ .replace(",", " ") \ .replace("'", " ") \ .replace("%", "'") \ .replace("{", "float(entry['") \ .replace("}", "'])") \ .replace(":", "str(entry['") \ .replace("}", "'])") \ .replace("AND", "and") \ .replace("OR", "or") return parsedstring def open_file_or_inline_text(filename): try: fl = open(filename, "r") except IOError: fl = filename.split("\n") return fl def get_ids_from_fasta_file(fastafile): ids = [] with open(fastafile) as ff: for line in ff: if line[0] == ">": ids.append(line[1:-1]) return ids def get_closest_residue_position(hier, resindex, terminus="N"): ''' this function works with plain hierarchies, as read from the pdb, no multi-scale hierarchies ''' p = [] niter = 0 while len(p) == 0: niter += 1 sel = IMP.atom.Selection(hier, residue_index=resindex, atom_type=IMP.atom.AT_CA) if terminus == "N": resindex += 1 if terminus == "C": resindex -= 1 if niter >= 10000: print("get_closest_residue_position: exiting while loop " "without result") break p = sel.get_selected_particles() if len(p) == 1: return IMP.core.XYZ(p[0]).get_coordinates() elif len(p) == 0: print("get_closest_residue_position: got NO residues for hierarchy " "%s and residue %i" % (hier, resindex)) raise Exception( "get_closest_residue_position: got NO residues for hierarchy " "%s and residue %i" % (hier, resindex)) else: raise ValueError( "got multiple residues for hierarchy %s and residue %i; the list " "of particles is %s" % (hier, resindex, str([pp.get_name() for pp in p]))) def get_residue_gaps_in_hierarchy(hierarchy, start, end): ''' Return the residue index gaps and contiguous segments in the hierarchy. @param hierarchy hierarchy to examine @param start first residue index @param end last residue index @return A list of lists of the form [[1,100,"cont"],[101,120,"gap"],[121,200,"cont"]] ''' gaps = [] for n, rindex in enumerate(range(start, end + 1)): sel = IMP.atom.Selection(hierarchy, residue_index=rindex, atom_type=IMP.atom.AT_CA) if len(sel.get_selected_particles()) == 0: if n == 0: # set the initial condition rindexgap = start rindexcont = start - 1 if rindexgap == rindex - 1: # residue is contiguous with the previously discovered gap gaps[-1][1] += 1 else: # residue is not contiguous with the previously discovered gap # hence create a new gap tuple gaps.append([rindex, rindex, "gap"]) # update the index of the last residue gap rindexgap = rindex else: if n == 0: # set the initial condition rindexgap = start - 1 rindexcont = start if rindexcont == rindex - 1: # residue is contiguous with the previously discovered # continuous part gaps[-1][1] += 1 else: # residue is not contiguous with the previously discovered # continuous part, hence create a new cont tuple gaps.append([rindex, rindex, "cont"]) # update the index of the last residue gap rindexcont = rindex return gaps class map(object): def __init__(self): self.map = {} def set_map_element(self, xvalue, yvalue): self.map[xvalue] = yvalue def get_map_element(self, invalue): if isinstance(invalue, float): n = 0 mindist = 1 for x in self.map: dist = (invalue - x) * (invalue - x) if n == 0: mindist = dist minx = x if dist < mindist: mindist = dist minx = x n += 1 return self.map[minx] elif isinstance(invalue, str): return self.map[invalue] else: raise TypeError("wrong type for map") def select_by_tuple_2(hier, tuple_selection, resolution): """New tuple format: molname OR (start,stop,molname,copynum,statenum) Copy and state are optional. Can also use 'None' for them which will get all. You can also pass -1 for stop which will go to the end. Returns the particles """ kwds = {} # going to accumulate keywords kwds['resolution'] = resolution if isinstance(tuple_selection, str): kwds['molecule'] = tuple_selection elif isinstance(tuple_selection, tuple): rbegin = tuple_selection[0] rend = tuple_selection[1] kwds['molecule'] = tuple_selection[2] try: copynum = tuple_selection[3] if copynum is not None: kwds['copy_index'] = copynum except: # noqa: E722 pass try: statenum = tuple_selection[4] if statenum is not None: kwds['state_index'] = statenum except: # noqa: E722 pass if rend == -1: if rbegin > 1: s = IMP.atom.Selection(hier, **kwds) s -= IMP.atom.Selection(hier, residue_indexes=range(1, rbegin), **kwds) return s.get_selected_particles() else: kwds['residue_indexes'] = range(rbegin, rend+1) s = IMP.atom.Selection(hier, **kwds) return s.get_selected_particles() def get_db_from_csv(csvfilename, encoding=None): if sys.version_info[0] == 2: def open_with_encoding(fname, encoding): return open(fname) else: open_with_encoding = open import csv outputlist = [] with open_with_encoding(csvfilename, encoding=encoding) as fh: csvr = csv.DictReader(fh) for ls in csvr: outputlist.append(ls) return outputlist def get_prot_name_from_particle(p, list_of_names): '''Return the component name provided a particle and a list of names''' root = p protname = root.get_name() is_a_bead = False while protname not in list_of_names: root0 = root.get_parent() if root0 == IMP.atom.Hierarchy(): return (None, None) protname = root0.get_name() # check if that is a bead # this piece of code might be dangerous if # the hierarchy was called Bead :) if "Beads" in protname: is_a_bead = True root = root0 return (protname, is_a_bead) def get_residue_indexes(hier): ''' Retrieve the residue indexes for the given particle. The particle must be an instance of Fragment,Residue, Atom or Molecule or else returns an empty list ''' resind = [] if IMP.atom.Fragment.get_is_setup(hier): resind = IMP.atom.Fragment(hier).get_residue_indexes() elif IMP.atom.Residue.get_is_setup(hier): resind = [IMP.atom.Residue(hier).get_index()] elif IMP.atom.Atom.get_is_setup(hier): a = IMP.atom.Atom(hier) resind = [IMP.atom.Residue(a.get_parent()).get_index()] elif IMP.atom.Molecule.get_is_setup(hier): resind_tmp = IMP.pmi.tools.OrderedSet() for lv in IMP.atom.get_leaves(hier): if IMP.atom.Fragment.get_is_setup(lv) or \ IMP.atom.Residue.get_is_setup(lv) or \ IMP.atom.Atom.get_is_setup(lv): for ind in get_residue_indexes(lv): resind_tmp.add(ind) resind = list(resind_tmp) else: resind = [] return resind def sort_by_residues(particles): particles_residues = [(p, list(IMP.pmi.tools.get_residue_indexes(p))) for p in particles] sorted_particles_residues = sorted( particles_residues, key=lambda tup: tup[1]) particles = [p[0] for p in sorted_particles_residues] return particles # # Parallel Computation # def scatter_and_gather(data): """Synchronize data over a parallel run""" from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() number_of_processes = comm.size comm.Barrier() if rank != 0: comm.send(data, dest=0, tag=11) elif rank == 0: for i in range(1, number_of_processes): data_tmp = comm.recv(source=i, tag=11) if isinstance(data, list): data += data_tmp elif isinstance(data, dict): data.update(data_tmp) else: raise TypeError("data not supported, use list or dictionaries") for i in range(1, number_of_processes): comm.send(data, dest=i, tag=11) if rank != 0: data = comm.recv(source=0, tag=11) return data # # Lists and iterators # def sublist_iterator(ls, lmin=1, lmax=None): ''' Yield all sublists of length >= lmin and <= lmax ''' if lmax is None: lmax = len(ls) n = len(ls) for i in range(n): for j in range(i + lmin, min(n + 1, i + 1 + lmax)): yield ls[i:j] def flatten_list(ls): return [item for sublist in ls for item in sublist] def list_chunks_iterator(list, length): """ Yield successive length-sized chunks from a list. """ for i in range(0, len(list), length): yield list[i:i + length] def chunk_list_into_segments(seq, num): seq = list(seq) avg = len(seq) / float(num) out = [] last = 0.0 while last < len(seq): out.append(seq[int(last):int(last + avg)]) last += avg return out class Segments(object): ''' This class stores integers in ordered compact lists eg: [[1,2,3],[6,7,8]] the methods help splitting and merging the internal lists Example: s=Segments([1,2,3]) is [[1,2,3]] s.add(4) is [[1,2,3,4]] (add right) s.add(3) is [[1,2,3,4]] (item already existing) s.add(7) is [[1,2,3,4],[7]] (new list) s.add([8,9]) is [[1,2,3,4],[7,8,9]] (add item right) s.add([5,6]) is [[1,2,3,4,5,6,7,8,9]] (merge) s.remove(3) is [[1,2],[4,5,6,7,8,9]] (split) etc. ''' def __init__(self, index): '''index can be a integer or a list of integers ''' if isinstance(index, int): self.segs = [[index]] elif isinstance(index, list): self.segs = [[index[0]]] for i in index[1:]: self.add(i) else: raise TypeError("index must be an int or list of ints") def add(self, index): '''index can be a integer or a list of integers ''' if isinstance(index, (int, numpy.int32, numpy.int64)): mergeleft = None mergeright = None for n, s in enumerate(self.segs): if index in s: return 0 else: if s[0]-index == 1: mergeleft = n if index-s[-1] == 1: mergeright = n if mergeright is None and mergeleft is None: self.segs.append([index]) if mergeright is not None and mergeleft is None: self.segs[mergeright].append(index) if mergeleft is not None and mergeright is None: self.segs[mergeleft] = [index]+self.segs[mergeleft] if mergeleft is not None and mergeright is not None: self.segs[mergeright] = \ self.segs[mergeright]+[index]+self.segs[mergeleft] del self.segs[mergeleft] for n in range(len(self.segs)): self.segs[n].sort() self.segs.sort(key=lambda tup: tup[0]) elif isinstance(index, list): for i in index: self.add(i) else: raise TypeError("index must be an int or list of ints") def remove(self, index): '''index can be a integer''' for n, s in enumerate(self.segs): if index in s: if s[0] == index: self.segs[n] = s[1:] elif s[-1] == index: self.segs[n] = s[:-1] else: i = self.segs[n].index(index) self.segs[n] = s[:i] self.segs.append(s[i+1:]) for n in range(len(self.segs)): self.segs[n].sort() if len(self.segs[n]) == 0: del self.segs[n] self.segs.sort(key=lambda tup: tup[0]) def get_flatten(self): ''' Returns a flatten list ''' return [item for sublist in self.segs for item in sublist] def __repr__(self): ret_tmp = "[" for seg in self.segs: ret_tmp += str(seg[0])+"-"+str(seg[-1])+"," ret = ret_tmp[:-1]+"]" return ret # # Tools to simulate data # def normal_density_function(expected_value, sigma, x): return ( 1 / math.sqrt(2 * math.pi) / sigma * math.exp(-(x - expected_value) ** 2 / 2 / sigma / sigma) ) def log_normal_density_function(expected_value, sigma, x): return ( 1 / math.sqrt(2 * math.pi) / sigma / x * math.exp(-(math.log(x / expected_value) ** 2 / 2 / sigma / sigma)) ) def print_multicolumn(list_of_strings, ncolumns=2, truncate=40): ls = list_of_strings cols = ncolumns # add empty entries after ls for i in range(len(ls) % cols): ls.append(" ") split = [ls[i:i + len(ls) // cols] for i in range(0, len(ls), len(ls) // cols)] for row in zip(*split): print("".join(str.ljust(i, truncate) for i in row)) class ColorChange(object): '''Change color code to hexadecimal to rgb''' def __init__(self): self._NUMERALS = '0123456789abcdefABCDEF' self._HEXDEC = dict((v, int(v, 16)) for v in (x+y for x in self._NUMERALS for y in self._NUMERALS)) self.LOWERCASE, self.UPPERCASE = 'x', 'X' def rgb(self, triplet): return (float(self._HEXDEC[triplet[0:2]]), float(self._HEXDEC[triplet[2:4]]), float(self._HEXDEC[triplet[4:6]])) def triplet(self, rgb, lettercase=None): if lettercase is None: lettercase = self.LOWERCASE return format(rgb[0] << 16 | rgb[1] << 8 | rgb[2], '06'+lettercase) # -------------- Collections --------------- # class OrderedSet(MutableSet): def __init__(self, iterable=None): self.end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.map = {} # key --> [key, prev, next] if iterable is not None: self |= iterable def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): if key not in self.map: end = self.end curr = end[1] curr[2] = end[1] = self.map[key] = [key, curr, end] def discard(self, key): if key in self.map: key, prev, next = self.map.pop(key) prev[2] = next next[1] = prev def __iter__(self): end = self.end curr = end[2] while curr is not end: yield curr[0] curr = curr[2] def __reversed__(self): end = self.end curr = end[1] while curr is not end: yield curr[0] curr = curr[1] def pop(self, last=True): if not self: raise KeyError('set is empty') if last: key = self.end[1][0] else: key = self.end[2][0] self.discard(key) return key def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) return set(self) == set(other) class OrderedDefaultDict(OrderedDict): """Store objects in order they were added, but with default type. Source: http://stackoverflow.com/a/4127426/2608793 """ def __init__(self, *args, **kwargs): if not args: self.default_factory = None else: if not (args[0] is None or callable(args[0])): raise TypeError('first argument must be callable or None') self.default_factory = args[0] args = args[1:] super(OrderedDefaultDict, self).__init__(*args, **kwargs) def __missing__(self, key): if self.default_factory is None: raise KeyError(key) self[key] = default = self.default_factory() return default def __reduce__(self): # optional, for pickle support args = (self.default_factory,) if self.default_factory else () if sys.version_info[0] >= 3: return self.__class__, args, None, None, self.items() else: return self.__class__, args, None, None, self.iteritems() # -------------- PMI2 Tools --------------- # def set_coordinates_from_rmf(hier, rmf_fn, frame_num=0): """Extract frame from RMF file and fill coordinates. Must be identical topology. @param hier The (System) hierarchy to fill (e.g. after you've built it) @param rmf_fn The file to extract from @param frame_num The frame number to extract """ rh = RMF.open_rmf_file_read_only(rmf_fn) IMP.rmf.link_hierarchies(rh, [hier]) IMP.rmf.load_frame(rh, RMF.FrameID(frame_num)) del rh def input_adaptor(stuff, pmi_resolution=0, flatten=False, selection_tuple=None, warn_about_slices=True): """Adapt things for PMI (degrees of freedom, restraints, ...) Returns list of list of hierarchies, separated into Molecules if possible. The input can be a list, or a list of lists (iterable of ^1 or iterable of ^2) (iterable of ^2) Hierarchy -> returns input as list of list of hierarchies, only one entry, not grouped by molecules. (iterable of ^2) PMI::System/State/Molecule/TempResidue -> returns residue hierarchies, grouped in molecules, at requested resolution @param stuff Can be one of the following inputs: IMP Hierarchy, PMI System/State/Molecule/TempResidue, or a list/set (of list/set) of them. Must be uniform input, however. No mixing object types. @param pmi_resolution For selecting, only does it if you pass PMI objects. Set it to "all" if you want all resolutions! @param flatten Set to True if you just want all hierarchies in one list. @param warn_about_slices Print a warning if you are requesting only part of a bead. Sometimes you just don't care! @note since this relies on IMP::atom::Selection, this will not return any objects if they weren't built! But there should be no problem if you request unbuilt residues - they should be ignored. """ if stuff is None: return stuff if hasattr(stuff, '__iter__'): if len(stuff) == 0: return stuff thelist = list(stuff) # iter of iter of should be ok if all(hasattr(el, '__iter__') for el in thelist): thelist = [i for sublist in thelist for i in sublist] elif any(hasattr(el, '__iter__') for el in thelist): raise Exception('input_adaptor: input_object must be a list ' 'or a list of lists') stuff = thelist else: stuff = [stuff] # check that it is a hierarchy homogeneously: try: is_hierarchy = all(IMP.atom.Hierarchy.get_is_setup(s) for s in stuff) except (NotImplementedError, TypeError): is_hierarchy = False # get the other types homogeneously is_system = all(isinstance(s, IMP.pmi.topology.System) for s in stuff) is_state = all(isinstance(s, IMP.pmi.topology.State) for s in stuff) is_molecule = all(isinstance(s, IMP.pmi.topology.Molecule) for s in stuff) is_temp_residue = all(isinstance(s, IMP.pmi.topology.TempResidue) for s in stuff) # now that things are ok, do selection if requested hier_list = [] pmi_input = False if is_system or is_state or is_molecule or is_temp_residue: # if PMI, perform selection using gathered indexes pmi_input = True # key is Molecule object, value are residues indexes_per_mol = OrderedDefaultDict(list) if is_system: for system in stuff: for state in system.get_states(): mdict = state.get_molecules() for molname in mdict: for copy in mdict[molname]: indexes_per_mol[copy] += \ [r.get_index() for r in copy.get_residues()] elif is_state: for state in stuff: mdict = state.get_molecules() for molname in mdict: for copy in mdict[molname]: indexes_per_mol[copy] += [r.get_index() for r in copy.get_residues()] elif is_molecule: for molecule in stuff: indexes_per_mol[molecule] += [r.get_index() for r in molecule.get_residues()] else: # is_temp_residue for tempres in stuff: indexes_per_mol[tempres.get_molecule()].append( tempres.get_index()) for mol in indexes_per_mol: if pmi_resolution == 'all': # because you select from the molecule, # this will start the search from the base resolution ps = select_at_all_resolutions( mol.get_hierarchy(), residue_indexes=indexes_per_mol[mol]) else: sel = IMP.atom.Selection(mol.get_hierarchy(), resolution=pmi_resolution, residue_indexes=indexes_per_mol[mol]) ps = sel.get_selected_particles() # check that you don't have any incomplete fragments! if warn_about_slices: rset = set(indexes_per_mol[mol]) for p in ps: if IMP.atom.Fragment.get_is_setup(p): fset = set(IMP.atom.Fragment(p).get_residue_indexes()) if not fset <= rset: minset = min(fset) maxset = max(fset) found = fset & rset minf = min(found) maxf = max(found) resbreak = maxf if minf == minset else minset-1 warnings.warn( 'You are trying to select only part of the ' 'bead %s:%i-%i. The residues you requested ' 'are %i-%i. You can fix this by: ' '1) requesting the whole bead/none of it; or' '2) break the bead up by passing ' 'bead_extra_breaks=[\'%i\'] in ' 'molecule.add_representation()' % (mol.get_name(), minset, maxset, minf, maxf, resbreak), IMP.pmi.ParameterWarning) hier_list.append([IMP.atom.Hierarchy(p) for p in ps]) elif is_hierarchy: # check ps = [] if pmi_resolution == 'all': for h in stuff: ps += select_at_all_resolutions(h) else: for h in stuff: ps += IMP.atom.Selection( h, resolution=pmi_resolution).get_selected_particles() hier_list = [IMP.atom.Hierarchy(p) for p in ps] if not flatten: hier_list = [hier_list] else: raise Exception('input_adaptor: you passed something of wrong type ' 'or a list with mixed types') if flatten and pmi_input: return [h for sublist in hier_list for h in sublist] else: return hier_list def get_sorted_segments(mol): """Returns sequence-sorted segments array, each containing the first particle the last particle and the first residue index.""" from operator import itemgetter hiers = IMP.pmi.tools.input_adaptor(mol) if len(hiers) > 1: raise ValueError("only pass stuff from one Molecule, please") hiers = hiers[0] segs = [] for h in hiers: try: start = IMP.atom.Hierarchy(h).get_children()[0] except IndexError: start = IMP.atom.Hierarchy(h) try: end = IMP.atom.Hierarchy(h).get_children()[-1] except IndexError: end = IMP.atom.Hierarchy(h) startres = IMP.pmi.tools.get_residue_indexes(start)[0] segs.append((start, end, startres)) return sorted(segs, key=itemgetter(2)) def display_bonds(mol): """Decorate the sequence-consecutive particles from a PMI2 molecule with a bond, so that they appear connected in the rmf file""" SortedSegments = get_sorted_segments(mol) for x in range(len(SortedSegments) - 1): last = SortedSegments[x][1] first = SortedSegments[x + 1][0] p1 = last.get_particle() p2 = first.get_particle() if not IMP.atom.Bonded.get_is_setup(p1): IMP.atom.Bonded.setup_particle(p1) if not IMP.atom.Bonded.get_is_setup(p2): IMP.atom.Bonded.setup_particle(p2) if not IMP.atom.get_bond(IMP.atom.Bonded(p1), IMP.atom.Bonded(p2)): IMP.atom.create_bond( IMP.atom.Bonded(p1), IMP.atom.Bonded(p2), 1) def get_all_leaves(list_of_hs): """ Just get the leaves from a list of hierarchies """ lvs = list(itertools.chain.from_iterable( IMP.atom.get_leaves(item) for item in list_of_hs)) return lvs def select_at_all_resolutions(hier=None, hiers=None, **kwargs): """Perform selection using the usual keywords but return ALL resolutions (BEADS and GAUSSIANS). Returns in flat list! """ if hiers is None: hiers = [] if hier is not None: hiers.append(hier) if len(hiers) == 0: warnings.warn("You passed nothing to select_at_all_resolutions()", IMP.pmi.ParameterWarning) return [] ret = OrderedSet() for hsel in hiers: try: htest = IMP.atom.Hierarchy.get_is_setup(hsel) except: # noqa: E722 raise Exception('select_at_all_resolutions: you have to pass ' 'an IMP Hierarchy') if not htest: raise Exception('select_at_all_resolutions: you have to pass ' 'an IMP Hierarchy') if 'resolution' in kwargs or 'representation_type' in kwargs: raise Exception("don't pass resolution or representation_type " "to this function") selB = IMP.atom.Selection(hsel, resolution=IMP.atom.ALL_RESOLUTIONS, representation_type=IMP.atom.BALLS, **kwargs) selD = IMP.atom.Selection(hsel, resolution=IMP.atom.ALL_RESOLUTIONS, representation_type=IMP.atom.DENSITIES, **kwargs) ret |= OrderedSet(selB.get_selected_particles()) ret |= OrderedSet(selD.get_selected_particles()) return list(ret) def get_particles_within_zone(hier, target_ps, sel_zone, entire_residues, exclude_backbone): """Utility to retrieve particles from a hierarchy within a zone around a set of ps. @param hier The hierarchy in which to look for neighbors @param target_ps The particles for zoning @param sel_zone The maximum distance @param entire_residues If True, will grab entire residues @param exclude_backbone If True, will only return sidechain particles """ test_sel = IMP.atom.Selection(hier) backbone_types = ['C', 'N', 'CB', 'O'] if exclude_backbone: test_sel -= IMP.atom.Selection( hier, atom_types=[IMP.atom.AtomType(n) for n in backbone_types]) test_ps = test_sel.get_selected_particles() nn = IMP.algebra.NearestNeighbor3D([IMP.core.XYZ(p).get_coordinates() for p in test_ps]) zone = set() for target in target_ps: zone |= set(nn.get_in_ball(IMP.core.XYZ(target).get_coordinates(), sel_zone)) zone_ps = [test_ps[z] for z in zone] if entire_residues: final_ps = set() for z in zone_ps: final_ps |= set(IMP.atom.Hierarchy(z).get_parent().get_children()) zone_ps = [h.get_particle() for h in final_ps] return zone_ps def get_rbs_and_beads(hiers): """Returns unique objects in original order""" rbs = set() beads = [] rbs_ordered = [] if not hasattr(hiers, '__iter__'): hiers = [hiers] for p in get_all_leaves(hiers): if IMP.core.RigidMember.get_is_setup(p): rb = IMP.core.RigidMember(p).get_rigid_body() if rb not in rbs: rbs.add(rb) rbs_ordered.append(rb) elif IMP.core.NonRigidMember.get_is_setup(p): rb = IMP.core.NonRigidMember(p).get_rigid_body() if rb not in rbs: rbs.add(rb) rbs_ordered.append(rb) beads.append(p) else: beads.append(p) return rbs_ordered, beads def get_molecules(input_objects): "This function returns the parent molecule hierarchies of given objects" stuff = input_adaptor(input_objects, pmi_resolution='all', flatten=True) molecules = set() for h in stuff: is_root = False is_molecule = False while not (is_molecule or is_root): root = IMP.atom.get_root(h) if root == h: is_root = True is_molecule = IMP.atom.Molecule.get_is_setup(h) if is_molecule: molecules.add(IMP.atom.Molecule(h)) h = h.get_parent() return list(molecules) def get_molecules_dictionary(input_objects): moldict = defaultdict(list) for mol in IMP.pmi.tools.get_molecules(input_objects): name = mol.get_name() moldict[name].append(mol) for mol in moldict: moldict[mol].sort(key=lambda x: IMP.atom.Copy(x).get_copy_index()) return moldict def get_molecules_dictionary_by_copy(input_objects): moldict = defaultdict(dict) for mol in IMP.pmi.tools.get_molecules(input_objects): name = mol.get_name() c = IMP.atom.Copy(mol).get_copy_index() moldict[name][c] = mol return moldict def get_selections_dictionary(input_objects): moldict = IMP.pmi.tools.get_molecules_dictionary(input_objects) seldict = defaultdict(list) for name, mols in moldict.items(): for m in mols: seldict[name].append(IMP.atom.Selection(m)) return seldict def get_densities(input_objects): """Given a list of PMI objects, returns all density hierarchies within these objects. The output of this function can be inputted into things such as EM restraints. This function is intended to gather density particles appended to molecules (and not other hierarchies which might have been appended to the root node directly). """ # Note that Densities can only be selected at the Root or Molecule # level and not at the Leaves level. # we'll first get all molecule hierarchies corresponding to the leaves. molecules = get_molecules(input_objects) densities = [] for i in molecules: densities += IMP.atom.Selection( i, representation_type=IMP.atom.DENSITIES).get_selected_particles() return densities def shuffle_configuration(objects, max_translation=300., max_rotation=2.0 * math.pi, avoidcollision_rb=True, avoidcollision_fb=False, cutoff=10.0, niterations=100, bounding_box=None, excluded_rigid_bodies=[], hierarchies_excluded_from_collision=[], hierarchies_included_in_collision=[], verbose=False, return_debug=False): """Shuffle particles. Used to restart the optimization. The configuration of the system is initialized by placing each rigid body and each bead randomly in a box. If `bounding_box` is specified, the particles are placed inside this box; otherwise, each particle is displaced by up to max_translation angstroms, and randomly rotated. Effort is made to place particles far enough from each other to prevent any steric clashes. @param objects Can be one of the following inputs: IMP Hierarchy, PMI System/State/Molecule/TempResidue, or a list/set of them @param max_translation Max translation (rbs and flexible beads) @param max_rotation Max rotation (rbs only) @param avoidcollision_rb check if the particle/rigid body was placed close to another particle; uses the optional arguments cutoff and niterations @param avoidcollision_fb Advanced. Generally you want this False because it's hard to shuffle beads. @param cutoff Distance less than this is a collision @param niterations How many times to try avoiding collision @param bounding_box Only shuffle particles within this box. Defined by ((x1,y1,z1),(x2,y2,z2)). @param excluded_rigid_bodies Don't shuffle these rigid body objects @param hierarchies_excluded_from_collision Don't count collision with these bodies @param hierarchies_included_in_collision Hierarchies that are not shuffled, but should be included in collision calculation (for fixed regions) @param verbose Give more output @note Best to only call this function after you've set up degrees of freedom For debugging purposes, returns: <shuffled indexes>, <collision avoided indexes> """ # checking input hierarchies = IMP.pmi.tools.input_adaptor(objects, pmi_resolution='all', flatten=True) rigid_bodies, flexible_beads = get_rbs_and_beads(hierarchies) if len(rigid_bodies) > 0: mdl = rigid_bodies[0].get_model() elif len(flexible_beads) > 0: mdl = flexible_beads[0].get_model() else: raise Exception("Could not find any particles in the hierarchy") if len(rigid_bodies) == 0: print("shuffle_configuration: rigid bodies were not initialized") # gather all particles gcpf = IMP.core.GridClosePairsFinder() gcpf.set_distance(cutoff) # Add particles from excluded hierarchies to excluded list collision_excluded_hierarchies = IMP.pmi.tools.input_adaptor( hierarchies_excluded_from_collision, pmi_resolution='all', flatten=True) collision_included_hierarchies = IMP.pmi.tools.input_adaptor( hierarchies_included_in_collision, pmi_resolution='all', flatten=True) collision_excluded_idxs = set( leaf.get_particle().get_index() for h in collision_excluded_hierarchies for leaf in IMP.core.get_leaves(h)) collision_included_idxs = set( leaf.get_particle().get_index() for h in collision_included_hierarchies for leaf in IMP.core.get_leaves(h)) # Excluded collision with Gaussians all_idxs = [] # expand to representations? for p in IMP.pmi.tools.get_all_leaves(hierarchies): if IMP.core.XYZ.get_is_setup(p): all_idxs.append(p.get_particle_index()) if IMP.core.Gaussian.get_is_setup(p): collision_excluded_idxs.add(p.get_particle_index()) if bounding_box is not None: ((x1, y1, z1), (x2, y2, z2)) = bounding_box ub = IMP.algebra.Vector3D(x1, y1, z1) lb = IMP.algebra.Vector3D(x2, y2, z2) bb = IMP.algebra.BoundingBox3D(ub, lb) all_idxs = set(all_idxs) | collision_included_idxs all_idxs = all_idxs - collision_excluded_idxs debug = [] print('shuffling', len(rigid_bodies), 'rigid bodies') for rb in rigid_bodies: if rb not in excluded_rigid_bodies: # gather particles to avoid with this transform if avoidcollision_rb: rb_idxs = set(rb.get_member_particle_indexes()) - \ collision_excluded_idxs other_idxs = all_idxs - rb_idxs debug.append([rb, other_idxs if avoidcollision_rb else set()]) # iterate, trying to avoid collisions niter = 0 while niter < niterations: rbxyz = (rb.get_x(), rb.get_y(), rb.get_z()) # local transform if bounding_box: translation = IMP.algebra.get_random_vector_in(bb) # First move to origin transformation_orig = IMP.algebra.Transformation3D( IMP.algebra.get_identity_rotation_3d(), -IMP.core.XYZ(rb).get_coordinates()) IMP.core.transform(rb, transformation_orig) rotation = IMP.algebra.get_random_rotation_3d() transformation = IMP.algebra.Transformation3D(rotation, translation) else: transformation = \ IMP.algebra.get_random_local_transformation( rbxyz, max_translation, max_rotation) IMP.core.transform(rb, transformation) # check collisions if avoidcollision_rb and other_idxs: mdl.update() npairs = len(gcpf.get_close_pairs(mdl, list(other_idxs), list(rb_idxs))) if npairs == 0: break else: niter += 1 if verbose: print("shuffle_configuration: rigid body placed " "close to other %d particles, trying " "again..." % npairs) print("shuffle_configuration: rigid body name: " + rb.get_name()) if niter == niterations: raise ValueError( "tried the maximum number of iterations to " "avoid collisions, increase the distance " "cutoff") else: break print('shuffling', len(flexible_beads), 'flexible beads') for fb in flexible_beads: # gather particles to avoid if avoidcollision_fb: fb_idxs = set(IMP.get_indexes([fb])) other_idxs = all_idxs - fb_idxs if not other_idxs: continue # iterate, trying to avoid collisions niter = 0 while niter < niterations: if bounding_box: translation = IMP.algebra.get_random_vector_in(bb) transformation = IMP.algebra.Transformation3D(translation) else: fbxyz = IMP.core.XYZ(fb).get_coordinates() transformation = IMP.algebra.get_random_local_transformation( fbxyz, max_translation, max_rotation) # For gaussians, treat this fb as an rb if IMP.core.NonRigidMember.get_is_setup(fb): memb = IMP.core.NonRigidMember(fb) xyz = memb.get_internal_coordinates() if bounding_box: # 'translation' is the new desired position in global # coordinates; we need to convert that to internal # coordinates first using the rigid body's ref frame rf = memb.get_rigid_body().get_reference_frame() glob_to_int = rf.get_transformation_from() memb.set_internal_coordinates( glob_to_int.get_transformed(translation)) else: xyz_transformed = transformation.get_transformed(xyz) memb.set_internal_coordinates(xyz_transformed) if niter == 0: debug.append( [xyz, other_idxs if avoidcollision_fb else set()]) else: d = IMP.core.XYZ(fb) if bounding_box: # Translate to origin first if IMP.core.RigidBody.get_is_setup(fb.get_particle()): IMP.core.transform( IMP.core.RigidBody(fb.get_particle()), -d.get_coordinates()) else: IMP.core.transform(d, -d.get_coordinates()) d = IMP.core.XYZ(fb) if niter == 0: debug.append( [d, other_idxs if avoidcollision_fb else set()]) if IMP.core.RigidBody.get_is_setup(fb.get_particle()): IMP.core.transform( IMP.core.RigidBody(fb.get_particle()), transformation) else: IMP.core.transform(d, transformation) if avoidcollision_fb: mdl.update() npairs = len(gcpf.get_close_pairs(mdl, list(other_idxs), list(fb_idxs))) if npairs == 0: break else: niter += 1 print("shuffle_configuration: floppy body placed close " "to other %d particles, trying again..." % npairs) if niter == niterations: raise ValueError( "tried the maximum number of iterations to avoid " "collisions, increase the distance cutoff") else: break if return_debug: return debug class ColorHierarchy(object): def __init__(self, hier): import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt self.mpl = mpl self.plt = plt hier.ColorHierarchy = self self.hier = hier mols = IMP.pmi.tools.get_molecules(IMP.atom.get_leaves(self.hier)) self.mols = [IMP.pmi.topology.PMIMoleculeHierarchy(mol) for mol in mols] self.method = self.nochange self.scheme = None self.first = None self.last = None def nochange(self): pass def get_color(self, fl): return IMP.display.Color(*self.scheme(fl)[0:3]) def get_log_scale(self, fl): import math eps = 1.0 return math.log(fl+eps) def color_by_resid(self): self.method = self.color_by_resid self.scheme = self.mpl.cm.rainbow for mol in self.mols: self.first = 1 self.last = len(IMP.pmi.topology.PMIMoleculeHierarchy( mol).get_residue_indexes()) for p in IMP.atom.get_leaves(mol): if IMP.atom.Residue.get_is_setup(p): ri = IMP.atom.Residue(p).get_index() c = self.get_color(float(ri)/self.last) IMP.display.Colored(p).set_color(c) if IMP.atom.Fragment.get_is_setup(p): ris = IMP.atom.Fragment(p).get_residue_indexes() avr = sum(ris)/len(ris) c = self.get_color(float(avr)/self.last) IMP.display.Colored(p).set_color(c) def color_by_uncertainty(self): self.method = self.color_by_uncertainty self.scheme = self.mpl.cm.jet ps = IMP.atom.get_leaves(self.hier) unc_dict = {} for p in ps: if IMP.pmi.Uncertainty.get_is_setup(p): u = IMP.pmi.Uncertainty(p).get_uncertainty() unc_dict[p] = u self.first = self.get_log_scale(1.0) self.last = self.get_log_scale(100.0) for p in unc_dict: value = self.get_log_scale(unc_dict[p]) if value >= self.last: value = self.last if value <= self.first: value = self.first c = self.get_color((value-self.first) / (self.last-self.first)) IMP.display.Colored(p).set_color(c) def get_color_bar(self, filename): import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.clf() fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15]) cmap = self.scheme norm = mpl.colors.Normalize(vmin=0.0, vmax=1.0) if self.method == self.color_by_uncertainty: angticks = [1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 100.0] vvalues = [] marks = [] for at in angticks: vvalue = (self.get_log_scale(at)-self.first) \ / (self.last-self.first) if vvalue <= 1.0 and vvalue >= 0.0: vvalues.append(vvalue) marks.append(str(at)) cb1 = mpl.colorbar.ColorbarBase( ax1, cmap=cmap, norm=norm, ticks=vvalues, orientation='horizontal') print(self.first, self.last, marks, vvalues) cb1.ax.set_xticklabels(marks) cb1.set_label('Angstorm') plt.savefig(filename, dpi=150, transparent=True) plt.show() def color2rgb(colorname): """Given a Chimera color name or hex color value, return RGB""" d = {'aquamarine': (0.4980392156862745, 1.0, 0.8313725490196079), 'black': (0.0, 0.0, 0.0), 'blue': (0.0, 0.0, 1.0), 'brown': (0.6470588235, 0.16470588235294117, 0.16470588235294117), 'chartreuse': (0.4980392156862745, 1.0, 0.0), 'coral': (1.0, 0.4980392156862745, 0.3137254901960784), 'cornflower blue': (0.39215686, 0.58431372549, 0.9294117647058824), 'cyan': (0.0, 1.0, 1.0), 'dark cyan': (0.0, 0.5450980392156862, 0.5450980392156862), 'dark gray': (0.6627450980, 0.6627450980392157, 0.6627450980392157), 'dark green': (0.0, 0.39215686274509803, 0.0), 'dark khaki': (0.74117647, 0.7176470588235294, 0.4196078431372549), 'dark magenta': (0.5450980392156862, 0.0, 0.5450980392156862), 'dark olive green': (0.333333333, 0.419607843, 0.1843137254901961), 'dark red': (0.5450980392156862, 0.0, 0.0), 'dark slate blue': (0.28235294, 0.239215686, 0.5450980392156862), 'dark slate gray': (0.1843137, 0.30980392, 0.30980392156862746), 'deep pink': (1.0, 0.0784313725490196, 0.5764705882352941), 'deep sky blue': (0.0, 0.7490196078431373, 1.0), 'dim gray': (0.41176470, 0.4117647058823529, 0.4117647058823529), 'dodger blue': (0.11764705882352941, 0.5647058823529412, 1.0), 'firebrick': (0.6980392, 0.13333333333333333, 0.13333333333333333), 'forest green': (0.13333333, 0.5450980392156862, 0.13333333333333333), 'gold': (1.0, 0.8431372549019608, 0.0), 'goldenrod': (0.85490196, 0.6470588235294118, 0.12549019607843137), 'gray': (0.7450980392156863, 0.7450980392156863, 0.7450980392156863), 'green': (0.0, 1.0, 0.0), 'hot pink': (1.0, 0.4117647058823529, 0.7058823529411765), 'khaki': (0.9411764705882353, 0.9019607843137255, 0.5490196078431373), 'light blue': (0.67843137, 0.8470588235294118, 0.9019607843137255), 'light gray': (0.82745098, 0.8274509803921568, 0.8274509803921568), 'light green': (0.56470588, 0.9333333333333333, 0.5647058823529412), 'light sea green': (0.125490, 0.6980392156862745, 0.6666666666666666), 'lime green': (0.1960784, 0.803921568627451, 0.19607843137254902), 'magenta': (1.0, 0.0, 1.0), 'medium blue': (0.1960784, 0.19607843137254902, 0.803921568627451), 'medium purple': (0.57647, 0.4392156862745098, 0.8588235294117647), 'navy blue': (0.0, 0.0, 0.5019607843137255), 'olive drab': (0.4196078, 0.5568627450980392, 0.13725490196078433), 'orange red': (1.0, 0.27058823529411763, 0.0), 'orange': (1.0, 0.4980392156862745, 0.0), 'orchid': (0.85490196, 0.4392156862745098, 0.8392156862745098), 'pink': (1.0, 0.7529411764705882, 0.796078431372549), 'plum': (0.8666666666666667, 0.6274509803921569, 0.8666666666666667), 'purple': (0.62745098, 0.12549019607843137, 0.9411764705882353), 'red': (1.0, 0.0, 0.0), 'rosy brown': (0.7372549, 0.5607843137254902, 0.5607843137254902), 'salmon': (0.980392, 0.5019607843137255, 0.4470588235294118), 'sandy brown': (0.956862745, 0.6431372549019608, 0.3764705882352941), 'sea green': (0.18039, 0.5450980392156862, 0.3411764705882353), 'sienna': (0.6274509, 0.3215686274509804, 0.17647058823529413), 'sky blue': (0.52941176, 0.807843137254902, 0.9215686274509803), 'slate gray': (0.439215686, 0.50196078, 0.5647058823529412), 'spring green': (0.0, 1.0, 0.4980392156862745), 'steel blue': (0.2745098, 0.50980392, 0.70588235), 'tan': (0.8235294117647058, 0.7058823529411765, 0.5490196078431373), 'turquoise': (0.25098039, 0.87843137, 0.81568627), 'violet red': (0.81568627, 0.125490196, 0.56470588235), 'white': (1.0, 1.0, 1.0), 'yellow': (1.0, 1.0, 0.0)} if colorname.startswith('#'): return tuple(int(colorname[i:i+2], 16) / 255. for i in (1, 3, 5)) else: return d[colorname]
salilab/pmi
pyext/src/tools.py
tools.py
py
60,875
python
en
code
12
github-code
6
43970042116
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ AUTHOR Pedro Cerqueira github: @pedrorvc DESCRIPTION This script serves to create xml files contaning the information necessary for the execution of BRIG (Blast Ring Image Generator), reducing the time performing the tedious task of setting up all the information on the GUI and provides a quick way to produce an image. The arguments for this script provide some (but not all) of the available options in BRIG, which were the ones I used to change the most. USAGE: brigaid.py -q reference_sequence.fna -rfd path/to/reference/dir -od path/to/output/dir -of path/to/output/dir/output_file -oi path/to/output/BRIG/output_image -t Image_title -a annotation_file.gbk --genes genes_of_interest.txt --contig-order contig_order.tsv """ import argparse import csv import os import xml.etree.ElementTree as ET from collections import OrderedDict from xml.dom import minidom from Bio import SeqIO from matplotlib import cm def listdir_fullpath(path): """ Gets the full path of the files from a directory Args: path (str): full path to a directory Returns: list containing the full path of every file contained in the input directory """ return [os.path.join(path, f) for f in os.listdir(path)] def ring_attributes(colour, name, position): """ Creates ring attributes. Args: colour (str): color of the ring. name (str): name of the ring. position (str): position of the ring. Returns: ring_attrs (dict): attributes of any regular ring of the BRIG xml. """ ring_attrs = {"colour" : colour, "name": name, "position" : position, "upperInt" : "90", "lowerInt" : "70", "legend" : "yes", "size" : "30", "labels" : "no", "blastType" : "blastn"} return ring_attrs def annotation_ring_attributes(position): """ Creates annotation ring attributes. Args: position (str): position of the ring. Returns: annotation_ring_attrs (dict): attributes of the annotation ring of the BRIG xml. """ annotation_ring_attrs = {"colour" : '172,14,225', "name": 'null', "position" : position, "upperInt" : "70", "lowerInt" : "50", "legend" : "yes", "size" : "30", "labels" : "no", "blastType" : "blastn"} return annotation_ring_attrs def create_feature_attrs(label, colour, decoration, start, stop): """ Create attributes for the Feature SubElements of the annotation ring. Args: label (str): name of the gene/CDS to annotate colour (str): colour of the decoration for the annotation decoration (str): shape of the gene/CDS to annotate, for example, 'clockwise-arrow' start (str): start of the gene/CDS to annotate stop (str): stop of the gene/CDS to annotate Results: feature_element_attrs (dict): attributes of the feature element. feature_range_element_attrs (dict): attributes of the feature range element """ feature_element_attrs = {'label' : label, 'colour' : colour, 'decoration' : decoration} feature_range_element_attrs = {'start' : start, 'stop' : stop} return feature_element_attrs, feature_range_element_attrs def create_annotation_ring_tsv(annotation_ring, annotation_file): """ Uses a tsv file to annotate the reference genome. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. annotation_file (str): Full path to the file containing annotations for the reference genome. """ with open(annotation_file) as tsvfile: reader = csv.DictReader(tsvfile, dialect='excel-tab') # Obtain the annotations from the file contents for row in reader: start = row['#START'] stop = row['STOP'] label = row['Label'] colour = row['Colour'] decoration = row['Decoration'] # Create xml attributes feature_element_attrs, feature_range_element_attrs = create_feature_attrs(label, colour, decoration, start, stop) # Create xml elements feature_element = ET.SubElement(annotation_ring, 'feature', attrib=feature_element_attrs) feature_range_element = ET.SubElement(feature_element, 'featureRange', attrib=feature_range_element_attrs) def annotation_ring_feature_elements_gbk_concat(annotation_ring, record, genome_size=False): """ Creates the annotation ring feature elements, using a concatenated Genbank annotation file. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. record (SeqRecord): Object of BioPython containing the information of the input Genbank. genome_size (bool): Size of genome. Integer when a Genbank divided by contigs is provided. Boolean (False) when a concatenated Genbank is provided. """ #if type(genome_size) == int: # Obtain the features of the Genbank file records for fea in record.features: # Get the start and end position of the genome # Also get the strand if fea.type == 'CDS': start = str(fea.location.start.position) end = str(fea.location.end.position) strand = fea.location.strand # Get the label of the gene or product if 'gene' in fea.qualifiers: label = str(fea.qualifiers['gene'][0]) elif 'product' in fea.qualifiers: product = fea.qualifiers['product'][0] label = str(product) else: continue # Define the decoration of the annotation based on the strand if strand == -1: decoration = 'counterclockwise-arrow' elif strand == 1: decoration = 'clockwise-arrow' # Create xml attributes feature_element_attrs, feature_range_element_attrs = create_feature_attrs(label, "black", decoration, start, end) # Create xml elements feature_element = ET.SubElement(annotation_ring, 'feature', attrib=feature_element_attrs) feature_range_element = ET.SubElement(feature_element, 'featureRange', attrib=feature_range_element_attrs) # If a genome size is provided, get the size of the records if type(genome_size) == int: if fea.type == 'source': size = fea.location.end.position try: size genome_size += size return genome_size except NameError: pass def annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, record, genes, genome_size=False): """ Creates the annotation ring feature elements, using a concatenated Genbank annotation file and specific gene annotations. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. record (SeqRecord): Object of BioPython containing the information of the input Genbank. genome_size (bool): Size of genome. Integer when a Genbank divided by contigs is provided. Boolean (False) when a concatenated Genbank is provided. """ for f in record.features: if f.type == 'CDS': # Find the 'gene' tag and determine if the gene belongs to the specified genes to be annotated if 'gene' in f.qualifiers and f.qualifiers['gene'][0] in genes: label = f.qualifiers['gene'][0] elif 'product' in f.qualifiers and f.qualifiers['product'][0] in genes: product = f.qualifiers['product'][0] label = product else: continue # Determine the start, stop and strand of the gene start = str(f.location.start.position + genome_size) end = str(f.location.end.position + genome_size) strand = f.location.strand # Define the decoration of the annotation based on the strand if strand == -1: decoration = 'counterclockwise-arrow' elif strand == 1: decoration = 'clockwise-arrow' # Create xml attributes feature_element_attrs, feature_range_element_attrs = create_feature_attrs(label, "black", decoration, start, end) # Create xml elements feature_element = ET.SubElement(annotation_ring, 'feature', attrib=feature_element_attrs) feature_range_element = ET.SubElement(feature_element, 'featureRange', attrib=feature_range_element_attrs) # If a genome size is provided, get the size of the records if type(genome_size) == int: if f.type == "source": size = f.location.end.position try: size genome_size += size return genome_size except NameError: pass def create_annotation_ring_gbk_concat(annotation_ring, annotation_file, genes_of_interest, records): """ Create annotation ring using a concatenated Genbank annotation file. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. annotation_file (str): Full path to the file containing annotations for the reference genome. genes_of_interest (str): Full path to the file containing the genes to search for in the Genbank file. records (SeqRecord): Object of BioPython containing the information of the input Genbank. """ if genes_of_interest != []: # Get the genes to serach in the Genbank file with open(genes_of_interest, "r") as f: genes = f.readlines() genes = [gene.rstrip() for gene in genes] # Create feature elements of the annotation ring for seq_record in records: annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, seq_record, genes) else: for seq_record in records: annotation_ring_feature_elements_gbk_concat(annotation_ring, seq_record) def create_annotation_ring_gbk_contigs(annotation_ring, annotation_file, records, genes_of_interest, contig_order): """ Create annotation ring using a Genbank annotation file divided by contigs. Args: annotation_ring: ElementTree SubElement object containing the 'ring' tag and its attributes. annotation_file (str): Full path to the file containing annotations for the reference genome. genes_of_interest (str): Full path to the file containing the genes to search for in the Genbank file. records (SeqRecord): Object of BioPython containing the information of the input Genbank. contig_order (str): Full path to the file containing the order of the contigs. """ if contig_order != []: with open(contig_order) as tsvfile: reader = csv.DictReader(tsvfile, dialect='excel-tab') # Create an OrderedDict with the contents of the file # The keys are the order are a number representing the order of the contig # The values are the names of the contigs content_dict = OrderedDict() for r in reader: content_dict[r["order"]] = r["contig"] # Create an OrderedDict with the content of each contig # The keys are the names of the contigs # The values are SeqRecord objects from BipPython seq_records_dict = OrderedDict() for record in records: seq_records_dict[record.id] = record if genes_of_interest != []: with open(genes_of_interest, "r") as f: genes = f.readlines() genes = [gene.rstrip() for gene in genes] genome_size = 0 for i in range(1, len(records)+1): ord_record = seq_records_dict[content_dict[str(i)]] gsize = annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, ord_record, genes, genome_size) genome_size = gsize else: genome_size = 0 for i in range(1, len(records)+1): ord_record = seq_records_dict[content_dict[str(i)]] gsize = annotation_ring_feature_elements_gbk_concat(annotation_ring, ord_record, genome_size) genome_size = gsize else: if genes_of_interest != []: with open(genes_of_interest, "r") as f: genes = f.readlines() genes = [gene.rstrip() for gene in genes] for seq_record in records: annotation_ring_feature_elements_genes_of_interest_gbk_concat(annotation_ring, seq_record, genes) else: for seq_record in records: annotation_ring_feature_elements_gbk_concat(annotation_ring, seq_record) def write_xml(root_elem, output_file): """ Writes a xml file. Args: root_elem is a ElementTree Element object containing all the information required for the output file. output_file (str): full path to the output file """ xml_file = ET.tostring(root_elem, encoding='utf8').decode('utf8') pretty_xml_file = minidom.parseString(xml_file).toprettyxml(indent=' ') output_file = output_file + ".xml" with open(output_file, "w") as f: f.write(pretty_xml_file) ####### Create xml elemnts # Create root element def create_root_element(blast_options, legend_position, query_file, output_folder, image_output_file, title, image_format): """ Creates the root element of the xml file and its attributes. Args: blast_options (str): additional options for blast, for example, -evalue or num_threads legend_position (str): position of the legend on the image query_file (str): full path to the query file output_folder (str): full path to the output folder image_output_file (str): full path to the image output file title (str): title of the output image image_format (str): format of the image output file Returns: root: ElementTree Element object containing the BRIG tag and its attributes """ root_attrs = {"blastOptions" : blast_options, "legendPosition" : legend_position, "queryFile" : query_file, "outputFolder" : output_folder, "blastPlus" : "yes", "outputFile" : os.path.join(output_folder, image_output_file), "title" : title, "imageFormat" : image_format, "queryFastaFile" : query_file, "cgXML" : os.path.join(output_folder + "/scratch", os.path.basename(query_file) + ".xml")} root = ET.Element('BRIG', attrib=root_attrs) return root #### Create root children # Create cgview_settings element def create_cgview_settings_element(root, height, width): """ Creates the cgview_settings element of the xml file and its attributes. Args: root: ElementTree Element object containing the BRIG tag and its attributes. height (str): height of the output image in pixels width (str): width of the output image in pixels Returns: cgview_settings: ElementTree SubElement object containing the cgview settings tag and its attributes """ cgview_settings_attrs = {"arrowheadLength" : "medium", "backboneColor" : "black", "backboneRadius" : "600", "backboneThickness" : "medium", "backgroundColor" : "white", "borderColor" : "black", "featureSlotSpacing" : "medium", "featureThickness" : "30", "giveFeaturePositions" : "false", "globalLabel" : "true", "height" : height, "isLinear" : "false", "labelFont" : "SansSerif,plain,25", "labelLineLength" : "medium", "labelLineThickness" : "medium", "labelPlacementQuality" : "best", "labelsToKeep" : "1000", "longTickColor" : "black", "minimumFeatureLength" : "medium", "moveInnerLabelsToOuter" :"true", "origin" : "12", "rulerFont" : "SansSerif,plain,35", "rulerFontColor" : "black", "rulerPadding" : "40", "rulerUnits" : "bases", "shortTickColor" : "black", "shortTickThickness" : "medium", "showBorder" : "false", "showShading" : "true", "showWarning" : "false", "tickDensity" : "0.2333", "tickThickness" : "medium", "titleFont" : "SansSerif,plain,45", "titleFontColor" : "black", "useColoredLabelBackgrounds" : "false", "useInnerLabels" : "true", "warningFont" : "Default,plain,35", "warningFontColor" : "black", "width" : width, "zeroTickColor" : "black", "tickLength" : "medium"} cgview_settings = ET.SubElement(root, 'cgview_settings', attrib=cgview_settings_attrs) return cgview_settings # Create brig_settings element def create_brig_settings_element(root, java_memory): """ Creates the brig_settings element of the xml file and its attributes. Args: root: ElementTree Element object containing the BRIG tag and its attributes. java_memory (str): amount of memory (in bytes) java is allowed to use for BRIG Returns: brig_settings: ElementTree SubElement object containing the brig settings tag and its attributes """ brig_settings_attrs = {"Ring1" : "172,14,225", "Ring2" : "222,149,220", "Ring3" : "161,221,231", "Ring4" : "49,34,221", "Ring5" : "116,152,226", "Ring6" : "224,206,38", "Ring7" : "40,191,140", "Ring8" : "158,223,139", "Ring9" : "226,38,122", "Ring10" :"211,41,77", "defaultUpper" : "70", "defaultLower" : "50", "defaultMinimum" : "50", "genbankFiles" : "gbk,gb,genbank", "fastaFiles" : "fna,faa,fas,fasta,fa", "emblFiles" : "embl", "blastLocation" : "", "divider" : "3", "multiplier" : "3", "memory" : java_memory, "defaultSpacer" : "0"} brig_settings = ET.SubElement(root, "brig_settings", attrib=brig_settings_attrs) return brig_settings ## Create special element def create_special_element(root): """Creates the 'special' element of the xml file and its attributes Args: root: ElementTree Element object containing the BRIG tag and its attributes. Returns: gc_content_special: ElementTree SubElement object containing the 'special' tag and its attributes gc_skew_special: ElementTree SubElement object containing the 'special' tag and its attributes """ gc_content_special = ET.SubElement(root, 'special', attrib={'value' : 'GC Content'}) gc_skew_special = ET.SubElement(root, 'special', attrib={'value' : 'GC Skew'}) return gc_content_special, gc_skew_special # Create reference dir element def create_reference_directory_element(root, reference_directory): """ Creates the 'reference directory' element of the xml file and its attributes. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. reference_directory (str): full path to the reference directory that contains the fasta files used to build the rings. Returns: ref_file: ElementTree SubElement object containing the 'refFile' tag and its attributes """ ref_dir = ET.SubElement(root, "refDir", attrib={"location" : reference_directory}) # Obtain the full path for all the files in the directory ref_dir_list = listdir_fullpath(reference_directory) for f in ref_dir_list: ref_file = ET.SubElement(ref_dir, "refFile", attrib={"location" : f}) return ref_file # Create the ring where the annotations are defined def create_annotation_ring(root, reference_directory, annotation_file, genes_of_interest, contig_order): """ Creates the ring that will contain the annotations for the reference genome. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. reference_directory (str): full path to the reference directory that contains the fasta files used to build the rings. annotation_file (str): Full path to the file containing annotations for the reference genome. genes_of_interest (str): Full path to the file containing a list of specific genes. contig_order (str): Full path to the tab-delimited file containing the order of the contigs. """ # Determine the position of the annotation ring, which will be the position after the last reference genome ring_position = len(os.listdir(reference_directory)) + 2 # Create the annotation ring element annotation_ring = ET.SubElement(root, 'ring', attrib=annotation_ring_attributes(str(ring_position))) # Check for tab-delimited annotation file input if list(SeqIO.parse(annotation_file, "genbank")) == []: create_annotation_ring_tsv(annotation_ring, annotation_file) else: # Get the records of the Genbank file records = [r for r in SeqIO.parse(annotation_file, "genbank")] ### Check if a contig order file has been provided if len(records) > 1: # If more than 1 record exists, then the Genbank file is divided by contigs create_annotation_ring_gbk_contigs(annotation_ring, annotation_file, records, genes_of_interest, contig_order) else: create_annotation_ring_gbk_concat(annotation_ring, annotation_file, genes_of_interest, records) ## Create remaining rings def create_ring_element(root, reference_directory, colormap): """ Creates the ring elements of the xml file, containing the position and color of the rings. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. reference_directory (str): full path to the reference directory that contains the fasta files used to build the rings. colormap (str): name of the colormap (available in matplotlib) to use for the color of the rings Returns: ring_number_element: ElementTree SubElement object containing the 'ring' tag and its attributes ring_sequence_element: ElementTree SubElement object containing the 'sequence' tag and its attributes """ ref_dir_list = listdir_fullpath(reference_directory) # Gets the colormap from matplotlib with as many colors as the number of files cmap = cm.get_cmap(colormap, len(ref_dir_list)) list_colormap = cmap.colors.tolist() # Remove the fourth element (transparency) because it is not necessary colors_to_use = [] for l in list_colormap: convert = [round(x * 255) for x in l] convert.pop() colors_to_use.append(convert) #reversed_colors_to_use = colors_to_use[::-1] # Check if the user provided an order for the rings has_digit = [os.path.basename(x).split("_")[0].isdigit() for x in ref_dir_list] if True in has_digit: # Obtain the ring positions ring_positions = [os.path.basename(x).split("_")[0] for x in ref_dir_list] # Reverse sort the positions of the rings, because they will be created # in a descending order of their positions ring_positions.sort(reverse=True) ref_dir_list.sort(reverse=True) for ring in range(len(ref_dir_list)): # The ring positions start at 2 due to the special rings (GC Content and GC Skew) ring_position = int(ring_positions[ring]) + 1 # Select a color for the ring ring_color = ",".join([str(e) for e in colors_to_use[ring]]) # Define the name of the ring ring_name = os.path.basename(ref_dir_list[ring]).split("_")[1] # Create the xml elements ring_number_element = ET.SubElement(root, 'ring', ring_attributes(ring_color, ring_name, str(ring_position))) ring_sequence_element = ET.SubElement(ring_number_element, "sequence", attrib={"location" : ref_dir_list[ring]}) else: # Sort files by lowercase ref_dir_list.sort(key=lambda y: y.lower()) # The number of rings starts at 2 due to the GC Content and GC Skew ring_number = len(ref_dir_list) + 1 for ring in range(len(ref_dir_list)): # Select a color for the ring ring_color = ",".join([str(e) for e in colors_to_use[ring]]) # Define the name of the ring ring_name = os.path.basename(ref_dir_list[ring]).split("_")[0] # Create the xml elements ring_number_element = ET.SubElement(root, 'ring', ring_attributes(ring_color, ring_name, str(ring_number))) ring_sequence_element = ET.SubElement(ring_number_element, "sequence", attrib={"location" : ref_dir_list[ring]}) ring_number -= 1 return ring_number_element, ring_sequence_element ## Create special rings def create_special_ring_element(root): """ Create the 'special' ring element and its attributes. Args: root: ElementTree Element object containing the 'BRIG' tag and its attributes. Returns: gc_content_location: ElementTree SubElement object containing the 'sequence' tag and its attributes gc_skew_location: ElementTree SubElement object containing the 'sequence' tag and its attributes """ # Create ring attributes gc_content_ring_attrs = ring_attributes('225,0,0', "GC Content", "0") gc_skew_ring_attrs = ring_attributes('225,0,0', "GC Skew", "1") # Add ring element to root gc_skew_ring = ET.SubElement(root, 'ring', attrib=gc_skew_ring_attrs) gc_content_ring = ET.SubElement(root, 'ring', attrib=gc_content_ring_attrs) # Add sequence element to ring gc_content_location = ET.SubElement(gc_content_ring, 'sequence', attrib={'location' : 'GC Content'}) gc_skew_location = ET.SubElement(gc_skew_ring, 'sequence', attrib={'location' : 'GC Skew'}) return gc_content_location, gc_skew_location def main(query_file, reference_directory, output_folder, output_xml, image_output_file, title, annotation_file, genes_of_interest, contig_order, blast_options, legend_position, image_format, height, width, java_memory, colormap): root = create_root_element(blast_options, legend_position, query_file, output_folder, image_output_file, title, image_format) cgview_settings = create_cgview_settings_element(root, height, width) brig_settings = create_brig_settings_element(root, java_memory) special = create_special_element(root) refdir = create_reference_directory_element(root, reference_directory) if annotation_file: create_annotation_ring(root, reference_directory, annotation_file, genes_of_interest, contig_order) rings = create_ring_element(root, reference_directory, colormap) special_ring = create_special_ring_element(root) write_xml(root, output_xml) print("\n File written to {}".format(output_xml)) def parse_arguments(): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-q', '--query', type=str, required=True, dest='query_file', help='Path to the query/reference FASTA file.') parser.add_argument('-rfd', '--ref_dir', type=str, required=True, dest='reference_directory', help='Path to the directory where the FASTA files to compare against the reference are located.') parser.add_argument('-od', '--out_dir', type=str, required=True, dest='output_folder', help='Path to the output directory for the results of BRIG.') parser.add_argument('-of', '--out_xml', type=str, required=True, dest='output_file', help='Path to the output of this script.') parser.add_argument('-oi', '--out_img', type=str, required=True, dest='image_output_file', help='Path to the output file of the resulting image of BRIG.') parser.add_argument('-t', '--title', type=str, required=True, dest='title', help='Title of the resulting image from BRIG.') parser.add_argument('-a', '--annotation', type=str, required=False, dest='annotation_file', default=False, help='File containing annotations for the reference genome. ' 'The annoation file can be a tab-delimited file (.tsv) or a Genbank format file (.gbk, .gb)') parser.add_argument('--genes', type=str, required=False, dest='genes_of_interest', default=[], help='File containing a list of specific genes (one gene per line) to search when a Genbank annotation file is provided. ') parser.add_argument('--contig_order', type=str, required=False, dest='contig_order', default=[], help='Tab-delimited file containing the order of the contigs when a Genbank (divided by contigs) annotation file is provided. ' 'Example: order contig ' '1 Contig8') parser.add_argument('-b', '--blast_options', type=str, required=False, dest="blast_options", default="-evalue 0.001 -num_threads 6", help='Options for running BLAST.') parser.add_argument('-l', '--legend_pos', type=str, required=False, dest="legend_position", default="middle-right", help='Positon of the legend on the resulting image.' 'The options available are upper, center or lower, ' 'paired with left, center or right') parser.add_argument('-if', '--image_format', type=str, required=False, dest="image_format", default="jpg", help='Format of the resulting image file.' 'The available options are: jpg, png, svg or svgz.') parser.add_argument('-ht', '--height', type=str, required=False, dest="height", default="3000", help='Height (in pixels) of the resulting image.') parser.add_argument('-wd', '--width', type=str, required=False, dest="width", default="3000", help='Width (in pixels) of the resulting image.') parser.add_argument('-jm', '--java_memory', type=str, required=False, dest="java_memory", default="1500", help='Amount of memory (in bytes) that Java is allowed to use for BRIG.') parser.add_argument('-cm', '--colormap', type=str, required=False, dest="colormap", default="viridis", help='Colormap from matplotlib to use for the color of the rings. ' 'The available options are: viridis, plasma, inferno, magma and cividis.' 'More options for colormaps at: ' 'https://matplotlib.org/users/colormaps.html') args = parser.parse_args() return [args.query_file, args.reference_directory, args.output_folder, args.output_file, args.image_output_file, args.title, args.annotation_file, args.genes_of_interest, args.contig_order, args.blast_options, args.legend_position, args.image_format, args.height, args.width, args.java_memory, args.colormap] if __name__ == '__main__': args = parse_arguments() main(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7], args[8], args[9], args[10], args[11], args[12], args[13], args[14], args[15])
TAMU-CPT/galaxy-tools
tools/genome_viz/brigaid.py
brigaid.py
py
36,126
python
en
code
5
github-code
6
28895134213
apuntador = None class Nodo(object): def __init__(self, data): self.data = data self.next = None def push(self): global apuntador apuntador.next = self apuntador = self print("Se ha ingresado: "+self.data) opcion = 0 raiz = Nodo("raiz") apuntador = raiz miNodo = None while (opcion != 5): opcion = int(input("\n\nOpcion a realizar: \n\t1)Ingresar elemento\n\t2)Eliminar elemento\n\t3)Mostrar\n\t5)Salir \t")) if opcion == 1: miNodo = Nodo(input("Ingresa elemento: ")) miNodo.push() else: if opcion == 2: print("Aun no se hace.") else: if opcion == 3: print("Aun no se hace.") else: if opcion != 5: print("Ingrese opcion valida") print("Adios.")
RamirezNOD/EstructurasNOD
Practica17-ListasPush.py
Practica17-ListasPush.py
py
896
python
es
code
0
github-code
6
5592159173
from .http import * from .abc import User, Channel from .channels import DMChannel import asyncio as aio class Client: """ Base class for interacting with discord """ def __init__(self, token: str): self.http = HTTPClient(token) self.event_loop = aio.new_event_loop() aio.set_event_loop(self.event_loop) self.events = { "ready":None, "tick":None } def event(self, _coro): """ Override event ===== event_name: can be 'ready' to initiate on login """ self.events[_coro.__name__] = _coro return _coro async def login(self) -> User: """ Get the bot's userdata """ response = await self.http.connect(Route("GET", "users/@me")) if self.events["ready"]: await self.events["ready"]() user = User() await user.from_dictionary(response) return user async def run(self): await self.login() while True: await aio.sleep(0.05) await self.events["tick"]() async def send_typing(self, channel:Channel): response = await self.http.connect(Route("POST", f"channels/{channel.id}/typing")) return response async def get_user(self, id:int) -> User: """ Get userdata from ID """ response = await self.http.connect(Route("GET", f"users/{id}")) user = User() await user.from_dictionary(response) return user async def get_channel(self, id: int, dm:bool=False): """ Get a channel """ url = f"channels/@me/{id}" if dm else f"channels/{id}" response = await self.http.connect(Route("GET", url)) channel = Channel() if not dm else DMChannel() await channel.from_dictionary(response) channel.bot_caller = self return channel async def close_connection(self): await self.http.close_session()
ledanne/descapede
diswrap/client.py
client.py
py
2,060
python
en
code
1
github-code
6
27627859074
#!/usr/bin/python3 def add_tuple(tuple_a=(), tuple_b=()): # use slice to get the first two element a = tuple_a[:2] b = tuple_b[:2] # fill the missing element with 0 while len(a) < 2: a += (0,) while len(b) < 2: b += (0,) # get the sum of the tuple sum_tuple = (a[0] + b[0], a[1] + b[1]) return sum_tuple
Hovixen/alx-higher_level_programming
0x03-python-data_structures/7-add_tuple.py
7-add_tuple.py
py
357
python
en
code
0
github-code
6
39400883437
import boto3 import pickle from typing import Any, Tuple import logging from re import sub import pandas as pd import numpy as np from sklearn.metrics import average_precision_score from sklearn.model_selection import StratifiedShuffleSplit import xgboost as xgb # ----- Class for uploading and downloading Python objects to and from S3 ---- # class S3Pickle: """ A class for uploading and downloading Python objects to and from S3. """ def __init__(self, s3_client=None): """ Constructor for S3Pickle class. Parameters ---------- s3_client : _type_, optional A boto3 S3 client. The default is None. """ if s3_client is None: self.s3_client = boto3.client('s3') else: self.s3_client = s3_client def upload_pickle(self, obj: Any, bucket_name: str, key_name: str) -> None: """ Upload a Python object to S3 as a pickle byte string. Parameters ---------- obj : Any A Python object. bucket_name : str S3 bucket name. key_name : str S3 key name. """ # Serialize the object to a pickle byte string pickle_byte_string = pickle.dumps(obj) # Upload the pickle byte string to S3 self.s3_client.put_object(Body=pickle_byte_string, Bucket=bucket_name, Key=key_name) return None def download_pickle(self, bucket_name: str, key_name: str) -> Any: """ Download a Python object from S3 as a pickle byte string. Parameters ---------- bucket_name : str S3 bucket name. key_name : str S3 key name. """ # Download the pickle byte string from S3 response = self.s3_client.get_object(Bucket=bucket_name, Key=key_name) pickle_byte_string = response['Body'].read() # Deserialize the pickle byte string to a Python object obj = pickle.loads(pickle_byte_string) return obj # ----------------------------------- Data ----------------------------------- # def load_data(data_s3_url: str, logger: logging.Logger = None) -> Tuple[pd.DataFrame, np.ndarray]: """ Load data from S3 bucket and return X and y. Parameters ---------- data_s3_url : str S3 url of data. logger : logging.Logger Logger object. Returns ------- Tuple[pd.DataFrame, np.ndarray] Feature matrix and target array. """ data = pd.read_csv( data_s3_url, index_col=0 ) # Drop ID column and 'churn category' column (not useful for prediction) data.drop(['Customer ID', 'Churn Category'], axis=1, inplace=True) # Change column names to lower case and relace white spaces with underscore data.columns = [sub('\s', '_', col.lower()) for col in data.columns] X, y = data.drop(['churn_value'], axis=1), data.churn_value.values if logger is not None: logger.info('Data Loaded') logger.info(f'The shape of training set: {(X.shape, y.shape)}') return X, y # ----------------------- Custom metric for evaluation ----------------------- # def weighted_ap_score(predt: np.ndarray, data: np.ndarray) -> Tuple[str, float]: y_true = data y_score = predt weighted_ap_score = average_precision_score(y_true=y_true, y_score=y_score, average='weighted', pos_label=1) return 'avgAP', weighted_ap_score # ------------------------ Stratified train/test split ----------------------- # def stratified_split(X_train: pd.DataFrame, y_train: np.ndarray) -> Tuple[pd.DataFrame, np.ndarray, pd.DataFrame, np.ndarray]: """ Split the training set into train and validation sets, stratifying on the target variable. Parameters ---------- X_train : pd.DataFrame Training features. y_train : np.ndarray Training target. Returns ------- Tuple[pd.DataFrame, np.ndarray, pd.DataFrame, np.ndarray] X_train, y_train, X_val, y_val. """ ssf = StratifiedShuffleSplit(n_splits=1, test_size=0.2) for train_index, val_index in ssf.split(X_train, y_train): X_train, X_val = X_train.iloc[train_index], X_train.iloc[val_index] y_train, y_val = y_train[train_index], y_train[val_index] return X_train, y_train, X_val, y_val
YangWu1227/python-for-machine-learning
tree_based/projects/telco_churn_sagemaker/src/custom_utils.py
custom_utils.py
py
4,461
python
en
code
0
github-code
6
33627877063
#Exercice 2 Mascaro Matteo import math limit = 100 limit = str(limit) print('Welcome palindromiques numbers put any multipliation with 2 numbers in each side :') print("Rentrez la multiplication ex : (91 * 99) ") A = input("Rentrez la valeur A = ") B = input("Rentrez la valeur B = ") """ print(A) J'arrive pas à faire une boucle erreur ( à voir plus tard) print(B) """ var = int(A) * int(B) print(var) var = str(var) if(var == var[::-1]): print("L'entrée est un palindrome") else: print("L'entrée n'est pas un palindrome")
m4skro/programmation-securisee
TP1/Palindromiques.py
Palindromiques.py
py
542
python
fr
code
null
github-code
6
70126940349
def build_profile(first_name: str, last_name: str, **user_info: str) -> dict: """Build a dictionary containing everything we know about a user""" user_info["first_name"] = first_name user_info["last_name"] = last_name return user_info user_profile = build_profile( "albert", "einstein", location="princeton", field="physics" ) print(user_profile)
paulr909/python-snippets
python-various/functions/build_dict_with_function.py
build_dict_with_function.py
py
369
python
en
code
0
github-code
6
28427006920
list1 = [1, 3, 5, 7, 100] # 通过循环用下标遍历列表元素 for a in range(len(list1)): # range() 方法 print(a, list1[a], " ", end='') print() # 通过for循环遍历列表元素 for elem in list1: print(elem, " ", end="") print() # 通过enumerate函数处理列表之后再遍历可以同时获得元素索引和值 for index, elem in enumerate(list1): # enumerate()同时列出数据和数据下标, print(index, elem) list1.append(200) list1.insert(1, '400a') list1.extend([1000, 2000]) list1.remove(3) if 1234 in list1: list1.remove(1234) for index, elem in enumerate(list1): # enumerate()同时列出数据和数据下标, print(index, elem) for a in range(3,8): # range() 方法 print(a, " ", end='') print(len(list1))
sunhuimoon/Python100Days
day07/day0704.py
day0704.py
py
776
python
zh
code
0
github-code
6
21929473251
import re from sys import argv #Steven A #THE "CORRECT" REGEX: #([^,]*),"(.*)",([^,]*),\[(.*)\],\[(.*)\],"(.*)",\[(.*)\],\[(.*)\],\[(.*)\],"(.*)" #id ,"name",release_year,[developers],[publishers],"image",[src],[genres],[consoles],"description" #this program merges entries based of GID #please do not use this to overwrite the original csv before checking to make sure your changes are what you wanted #this program writes all at once at the very end #priority is given to input1 input1 = argv[1] input2 = argv[2] output = argv[3] FileInput1 = open(input1, 'r', encoding = "utf_16"); FileInput2 = open(input2, 'r', encoding = "utf_16"); if not FileInput1: print("error file 1 not read") if not FileInput2: print("error file 2 not read") outputLines = [] List1 = FileInput1.readlines() List2 = FileInput2.readlines() outputLines.append(List1[0]) FileData = {} for line in List2[1:]:#file2 data goes into FileData[GID] match = re.match(r'([^,]*),"(.*)",([^,]*),\[(.*)\],\[(.*)\],"(.*)",\[(.*)\],\[(.*)\],\[(.*)\],"(.*)"',line) FileData[match.group(1)]=match print(match.group(2))#print the name print("") for line in List1[1:]: match = re.match(r'([^,]*),"(.*)",([^,]*),\[(.*)\],\[(.*)\],"(.*)",\[(.*)\],\[(.*)\],\[(.*)\],"(.*)"',line) if match: GID=match.group(1) name=match.group(2) year = match.group(3) devs = match.group(4) pubs = match.group(5) img = match.group(6) src = match.group(7) genres=match.group(8).replace("'","") console=match.group(9) desc=match.group(10) print(name) print("is updated?",(GID in FileData)) if GID in FileData: if img=="n/a": img = FileData[GID].group(6)#take the image from the other csv if FileData[GID].group(7)!="n/a": src += ","+FileData[GID].group(7) src.replace("n/a,","").replace("n/a","")#remove old "empty" marker if FileData[GID].group(8)!="n/a": if FileData[GID].group(8) not in genres:#the genres may not be unique, so check first genres+=","+FileData[GID].group(8) genres.replace("n/a,","").replace("n/a","")#remove old "empty" marker if desc =="n/a": desc = FileData[GID].group(10) outputLines.append(GID+','+'"'+name+'"'+','+year+','+'['+devs+']'+','+'['+pubs+']'+','+'"'+img+'"'+','+'['+src+']'+','+'['+genres+']'+','+'['+console+']'+','+'"'+desc+'"'+'\n') else: print("Error in match\n",line) break; FileInput1.close() FileInput2.close() FileOutput = open(output, 'w', encoding = "utf_16"); FileOutput.writelines(outputLines)
schoolfromage/RetroSounding
backend/scrapers/csv_limited_merger.py
csv_limited_merger.py
py
2,464
python
en
code
1
github-code
6
32108920209
import json from typing import List import mlflow import pandas from pandas import DataFrame class SpambugInference(mlflow.pyfunc.PythonModel): """ Inference code copied from MLFlow bugs.py """ def __init__(self, extraction_pipeline, clf, le): self.extraction_pipeline = extraction_pipeline self.clf = clf self.le = le def predict(self, context, bugs: List[str]): """ Args: context ([type]): MLflow context where the model artifact is stored. model_input ([type]): the input data to fit into the model. """ bugs = [json.loads(s) for s in bugs] probs = self.classify(bugs, True) indexes = probs.argmax(axis=-1) suggestions = self.le.inverse_transform(indexes) return {"probs": probs, "indexes": indexes, "suggestions": suggestions} def classify( self, items, probabilities=False ): assert items is not None assert ( self.extraction_pipeline is not None and self.clf is not None ), "The module needs to be initialized first" if not isinstance(items, list): items = [items] assert isinstance(items[0], (dict, tuple)) X = self.extraction_pipeline.transform(lambda: items) if probabilities: classes = self.clf.predict_proba(X) else: classes = self.clf.predict(X) classes = self.overwrite_classes(items, classes, probabilities) return classes def overwrite_classes(self, bugs, classes, probabilities): for i, bug in enumerate(bugs): if "@mozilla" in bug["creator"]: if probabilities: classes[i] = [1.0, 0.0] else: classes[i] = 0 return classes
mozilla/mlops-platform-spike-library
bugbug/mlflow/bugbug/trackers/spambug_inference.py
spambug_inference.py
py
1,839
python
en
code
0
github-code
6
35383876896
import json from random import randint import discord from discord.ext import tasks, commands def getData(): with open("data.json", "r") as levelsFile: return json.loads(levelsFile.read()) def setData(_dict): with open("data.json", "w") as levelsFile: levelsFile.write(json.dumps(_dict)) levelxp = [0, 300, 900, 2700, 6500, 14000, 23000, 34000, 48000, 64000, 85000, 100000, 120000, 140000, 165000, 195000, 225000, 265000, 305000, 355000] class DND(commands.Cog): def __init__(self, bot): self.bot = bot self.ac = randint(1, 20) self.base = { "xp": 0, "level": 0, "health": 20, "class": "", "inventory": [], "stats": { "str": {"base": 0, "mod": 0}, "dex": {"base": 0, "mod": 0}, "con": {"base": 0, "mod": 0}, "int": {"base": 0, "mod": 0}, "wis": {"base": 0, "mod": 0}, "cha": {"base": 0, "mod": 0} } } self.hell_ac.start() def cog_unload(self): self.hell_ac.cancel() @commands.Cog.listener() async def on_message(self, message): if not message.author.bot: try: data = getData() try: level = data[message.author.name]["level"] data[message.author.name]["xp"] += (randint(1, 10)) except: data[message.author.name] = self.base level = data[message.author.name]["level"] data[message.author.name]["xp"] += randint(1, 10) bonus = 2 if level < 5 else (3 if level < 9 else (4 if level < 13 else (5 if level < 17 else 6))) if message.channel.name == "hell": roll = randint(1, 20) + bonus if roll <= self.ac: await message.delete() await message.channel.send("(%s > %s+%s) **%s** tried to send a message, but failed the roll!" % (self.ac, roll - bonus, bonus, message.author.name)) else: await message.delete() await message.channel.send("(%s < %s+%s) **%s**: %s" % (self.ac, roll - bonus, bonus, message.author.name, message.content)) else: try: words = data["banned words"] except: data["banned words"] = [] words = data["banned words"] for word in words: if word in message.content.lower() and not (message.content.startswith("2m.unban") or message.content.startswith("2m.ban")): data[message.author.name]["health"] -= 1 await message.channel.send("Uh oh! You fucking idiot. You just said '%s'.\n\nDie." % word) if data[message.author.name]["xp"] >= levelxp[level]: data[message.author.name]["level"] += 1 await message.channel.send("**%s** levelled up to level %s!" % (message.author.name, data[message.author.name]["level"])) if data[message.author.name]["health"] <= 0: data[message.author.name] = self.base await message.channel.send("Oop, **%s** is dead. Now you gotta reroll stats!" % message.author.name) setData(data) except: pass @tasks.loop(minutes=5) async def hell_ac(self): hell = discord.utils.get(self.bot.get_guild(677689511525875715).channels, name="hell") if randint(1, 100) <= 33: ac = randint(1, 20) self.ac = ac await hell.send("__**Hell's AC is now %s!**__" % ac) @commands.command(brief="Roll up your stats.") async def rollstats(self, ctx, *, order): data = getData() try: if not (0 in (data[ctx.author.name]["stats"][key]["base"] for key in data[ctx.author.name]["stats"])): return await ctx.send("You've already rolled your stats! Theres no going back now.") except: data[ctx.author.name] = self.base order = order.split(" ") for item in order: if item not in ["str", "dex", "con", "int", "wis", "cha"]: return await ctx.send("Please use the correct stat names!\nThey are:\n%s" % ("\n".join(["str", "dex", "con", "int", "wis", "cha"]))) final = [] allrolls = [] for i in range(6): allrolls.append([randint(1, 6) for x in range(4)]) for arr in range(len(allrolls)): del allrolls[arr][allrolls[arr].index(min(allrolls[arr]))] allrolls[arr] = sum(allrolls[arr]) allrolls.sort(reverse=True) for i in range(6): num = allrolls[i] tempnum = allrolls[i] if tempnum % 2 == 1: tempnum -= 1 bonuses = { 0: -5, 2: -4, 4: -3, 6: -2, 8: -1, 10: 0, 12: 1, 14: 2, 16: 3, 18: 4, 20: 5, 22: 6, 24: 7, 26: 8, 28: 9, 30: 10 } final.append("%s -> %s (%s)" % (order[i], num, bonuses[tempnum] if num < 10 else ("+%s" % bonuses[tempnum]))) data[ctx.author.name]["stats"][order[i]] = {"base": num, "mod": bonuses[tempnum]} await ctx.send("\n".join(final)) setData(data) @commands.command(brief="Get the AC of hell.") async def getac(self, ctx): await ctx.send("Hell's AC is currently **%s**!" % self.ac) @commands.command(brief="Get information on a level.") async def levelinfo(self, ctx, level: int): if not level > 20: await ctx.send("__**Level %s Information**__\nNeeded XP: %s\nProficiency Bonus: %s" % (level, levelxp[level - 1], "+2" if level < 5 else ("+3" if level < 9 else ("+4" if level < 13 else ("+5" if level < 17 else "+6"))))) else: await ctx.send("That level is too high! Level 20 is the maximum.") print("%s GOT LEVEL INFORMATION. (%s)" % (ctx.author.name, level)) @commands.command(brief="Get your current level and XP.") async def stats(self, ctx): data = getData() level = data[ctx.author.name]["level"] bonus = 2 if level < 5 else (3 if level < 9 else (4 if level < 13 else (5 if level < 17 else 6))) await ctx.send( "__**%s's Information**__\nHealth: %s\nLevel: %s\nXP: %s\nProficiency Bonus: +%s\n\n%s" % (ctx.author.name, data[ctx.author.name]["health"], data[ctx.author.name]["level"], data[ctx.author.name]["xp"], bonus, "\n".join( ["%s: %s (%s)" % (key, data[ctx.author.name]["stats"][key]["base"], data[ctx.author.name]["stats"][key]["mod"]) for key in data[ctx.author.name]["stats"]]))) print("%s GOT THEIR LEVEL INFORMATION." % ctx.author.name) def setup(bot): bot.add_cog(DND(bot))
JONKKKK/Codes
2MS2A/dnd.py
dnd.py
py
7,250
python
en
code
0
github-code
6
69952730427
#!/usr/bin/env python3 import rospy from sebot_service.srv import GetImage, SetGoal class Sebot: def __init__(self): rospy.init_node('sebot_server') self.image_msg = None self.img_srv = rospy.Service("get_image", GetImage, self.get_image) while not rospy.is_shutdown(): print(self.image_msg) def get_image(self, req): self.image_msg = req.image print(req.image) return True s = Sebot()
JiHwonChoi/TEAM_B
sebot_service/src/sebot_server.py
sebot_server.py
py
465
python
en
code
3
github-code
6
28156207354
import torch from projects.thre3ingan.singans.networks import Thre3dGenerator from torch.backends import cudnn cudnn.benchmark = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def test_thre3d_generator() -> None: batch_size = 1 random_input = torch.randn(batch_size, 128, 64, 64, 64).to(device) network = Thre3dGenerator().to(device) print(network) output = network(random_input) assert output.shape == (batch_size, 8, 64, 64, 64)
akanimax/3inGAN
projects/thre3ingan/singans/tests/test_networks.py
test_networks.py
py
491
python
en
code
3
github-code
6
27259802510
"""We are the captains of our ships, and we stay 'till the end. We see our stories through. """ """513. Find Bottom Left Tree Value [Two Passes] """ from collections import deque class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None class Solution: def height(self, root): if not root: return 0 return 1 + max(self.height(root.left), self.height(root.right)) def findBottomLeftValue(self, root): final_row = self.height(root) queue = deque() queue.append((root, 1)) while queue: node, level = queue.popleft() if level == final_row: return node.val if node.left: queue.append((node.left, level+1)) if node.right: queue.append((node.right, level+1))
asperaa/back_to_grind
Trees/bottom_left_tree.py
bottom_left_tree.py
py
890
python
en
code
1
github-code
6
7983714433
import random random.seed(2023) # Dividir los datos de test en oraciones en español e inglés data_es = [] data_en = [] with open('Bicleaner AI/Full/Paracrawl.AIFull.shortPhrases.threshold05_shuffled.txt', 'r', encoding='utf-8') as file: for line in file: columns = line.strip().split('\t') if len(columns) == 3: en = columns[1] es = columns[2] data_es.append(es) data_en.append(en) with open('Data test/Full/prueba.short05.test.en', 'w', encoding='utf-8') as file: for s in data_en: file.writelines(s + "\n") with open('Data test/Full/prueba.short05.test.es', 'w', encoding='utf-8') as file: for s in data_es: file.writelines(s + "\n") # Generar datos de test a partir de la semilla """ with open('first_tus/XLEnt.en-es.en', 'r', encoding='utf-8') as file: data_en = file.readlines() with open('first_tus/XLEnt.en-es.es', 'r', encoding='utf-8') as file: data_es = file.readlines() index = random.sample(range(len(data_en)), 100000) choosen_lines = [data_en[i] for i in index] choosen_lines_es = [data_es[i] for i in index] random.shuffle(data_es) choosen_lines = data_en[:100000] choosen_lines_es = data_es[:100000] with open('first_tus/XLEnt100k.en-es.en', 'w', encoding='utf-8') as file: file.writelines(choosen_lines) with open('first_tus/XLEnt100k.en-es.es', 'w', encoding='utf-8') as file: file.writelines(choosen_lines_es) """
jairosg/TFM
scripts/genTest.py
genTest.py
py
1,515
python
en
code
0
github-code
6
1008711212
'''Problem 22: Names scores''' import time t1 = time.time() #first get "alphabetical value" of each letter ALPHA = 'abcdefghijklmnopqrstuvwxyz'.upper() ALPHA = {c:i+1 for i,c in enumerate(ALPHA)} def alphaValue(name): '''adds up alpha values for letters''' sum1= 0 for letter in name: sum1 += ALPHA[letter] return sum1 f = open('names.txt','r') #open the names file text = f.read() #read it into text form names = list(eval(text)) #turn into a list #print(names[:10]) names.sort() #sort the list #print(names[:10]) def nameValue(): sum2 = 0 for name in names: sum2 += alphaValue(name)*(names.index(name)+1) print(sum2) nameValue() #print(alphaValue('COLIN'), names.index('COLIN')) f.close() t2 = time.time() print(t2 - t1) '''Correct answer: 871198282 0.3169882297515869 seconds'''
hackingmath/Project-Euler
euler22.py
euler22.py
py
913
python
en
code
0
github-code
6
6153769301
from django.shortcuts import render from . models import Department, Employee, User, Phone, Book, Store from django.http import HttpResponse # Create your views here. def index(request): # without relationship: user = User.objects.get(pk=1) phone = Phone.objects.get(user_id=user) # with relationship: # related to the model Phone # user = User.objects.get(pk=1).phone # using related_name = "number" # returning object user_phone = User.objects.get(pk=1).number # returning string user_phone_str = User.objects.get(pk=1).number.phone_no print("--------------------------------------") print(user_phone) # reverse geting user from phone user = Phone.objects.get(id=1).user_id return HttpResponse(user) def foreign_key(request): # using REVERSE !!!IMPORTANT!!! user = Employee.objects.get(name="Simpson").department_name user = Employee.objects.get(name="Simpson").department_name.name # print(user) # print(type(user)) first_deparment = Department.objects.get(pk=1) #hr second_deparment = Department.objects.get(pk=2) #accouts third_deparment = Department.objects.get(pk=5) #purchase deparments = Employee.objects.filter(department_name=third_deparment) # related name !!! IMPORTANT!!! -- another way employee_set.all() -- doesnt work employees_from_dep = first_deparment.employeees_rel.all() employees_from_dep = first_deparment.employeees_rel.all().filter() #print(employees_from_dep) # related name !!! IMPORTANT!!! # after rel name __double underscore through which i can manipulate others model fields dep_all_empl = Department.objects.all().filter(employeees_rel__name__startswith="John") #if there is NO related name it will work next line will work with name of model #dep_all_empl = Department.objects.all().filter(employee__name__startswith="John") # reverse !!!!!!! VERY IMPORTANT !!!!!! employees_in_HR = Employee.objects.filter(department_name__name='Accounts') print(employees_in_HR) return HttpResponse(employees_in_HR) # select_related # https://docs.djangoproject.com/en/3.0/ref/models/querysets/#select-related def sel_related(request): # fetching all employees and printing their names #INNER join employees = Employee.objects.all().select_related('department_name') #employees = Employee.objects.all() for i in employees: print(i.name, i.department_name.name) return render(request, 'core/stuff.html') # for debuger def users(request): qs = User.objects.all() return render(request, 'core/users.html',{ "users": qs, }) def prefetched(request): books = Book.objects.all() books = Book.objects.all().prefetch_related('store_set') #looking for all STORES and check THIS BOOK in it for i in books: print(i.store_set.all()) return render(request, 'core/users.html')
oruchkin/biteofpithon
django relationships/relation/core/views.py
views.py
py
3,072
python
en
code
0
github-code
6
31127201950
# to run, execute this command in the command line: # python create_plots.py pagecounts-20160802-150000.txt pagecounts-20160803-150000.txt import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt filename1 = sys.argv[1] filename2 = sys.argv[2] data1 = pd.read_table(filename1, sep=' ', header=None, index_col=1, names=['lang', 'page', 'views', 'bytes']) data1_sort = data1.sort_values(by=['views'], ascending=False) # print(data1_sort) data2 = pd.read_table(filename2, sep=' ', header=None, index_col=1, names=['lang', 'page', 'views', 'bytes']) data2_sort = data2.sort_values(by=['views'], ascending=False) data1_sort['views2'] = data2_sort['views'] # print (data1_sort) # print (data2_sort) plt.figure(figsize=(10, 5)) # change the size to something sensible plt.subplot(1, 2, 1) # subplots in 1 row, 2 columns, select the first plt.plot(data1_sort['views'].values) plt.title('Popularity Distribution') plt.xlabel('Rank') plt.ylabel('Views') plt.subplot(1, 2, 2) # ... and then select the second plt.scatter(data1_sort['views'].values, data1_sort['views2'].values) plt.title('Daily Correlation') plt.xlabel('Day 1 views') plt.ylabel('Day 2 views') plt.xscale('log') plt.yscale('log') # plt.show() plt.savefig('wikipedia_Tom.png')
tomliangg/Plotting_Wikipedia_Page_Views
create_plots.py
create_plots.py
py
1,324
python
en
code
0
github-code
6
28114724866
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 数据 sizes = ["0.5x0.5", "2x2", "5x5", "7x7"] postgres = [2, 10, 94, 153] accumulo = [8, 15, 22, 41] # 绘图 plt.plot(sizes, postgres, label="PostgreSQL") plt.plot(sizes, accumulo, label="Accumulo") plt.xlabel("Extent(km²)") plt.ylabel("Read Time(s)") plt.legend() # 显示图形 plt.show()
KiktMa/gdal_tiff
shange/paintsd.py
paintsd.py
py
386
python
en
code
0
github-code
6
3981685761
from django.test import TestCase from django import forms from parameterized import parameterized from MDM.forms import ItemGroupForm from MDM.bootstrap import INPUT class ItemGroupFormTest(TestCase): @parameterized.expand([ ('description', 'Descrição do Grupo de Item'), ]) def test_form_labels(self, field, label): form = ItemGroupForm() self.assertEqual(form.fields[field].label, label) @parameterized.expand([ ('description', forms.TextInput), ]) def test_form_widgets(self, field, widget): form = ItemGroupForm() self.assertIsInstance(form.fields[field].widget, widget) def test_form_valid_data(self): form = ItemGroupForm(data={ 'description': 'Grupo de Itens', }) self.assertTrue(form.is_valid()) def test_form_invalid_data(self): form = ItemGroupForm(data={ 'description': '', }) self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) @parameterized.expand([ ('description', INPUT['class']), ]) def test_form_widgets_attrs(self, field, attrs): form = ItemGroupForm() self.assertEqual(form.fields[field].widget.attrs['class'], attrs)
tiagomend/flow_erp
MDM/tests/test_item_group_form.py
test_item_group_form.py
py
1,264
python
en
code
0
github-code
6
27742958751
""" POO * Elaborar un Programa el cual calcule el costo de produccion, nesecitaras conocer: - Costo de la materia prima. - Costo de la mano de obra. - Cantidad de unidades producidas. * Mostrar el: - Costo de produccion total. - Precio de produccion por unidad. - El precio del producto al mercado(El doble del precio de produccion). - Ganancia Generada por unidad. """ class produccion(): def __init__(self, _cmp, _cmo, _cup): self.cmp = _cmp self.cmo = _cmo self.cup = _cup self.cpt = (_cmp + _cmo) self.ppu = self.cpt / _cup self.ppm = self.ppu * 2 self.gpu = self.ppu def mostrar(self): print('Costo de la materia prima:', self.cmp) print('Costo de la mano de obra:', self.cmo) print('Cantidad de unidades producidas:', self.cup) print('Costo de produccion total:', self.cpt) print('Precio de produccion por unidad:', self.ppu) print('El precio del producto al mercado:', self.ppm) print('Ganancia Generada por unidad:', self.gpu) cmp = float(input('Escribe el costo de la materia prima: ')) cmo = float(input('Escribe el costo de la mano de obra: ')) cup = float(input('Escribe la cantidad de unidades producidas: ')) pp = produccion(cmp, cmo, cup) pp.mostrar()
proyecto3erpacial/proyecto3erpacial
eje4.py
eje4.py
py
1,340
python
es
code
0
github-code
6
70111562109
import requests def run(): api_key = 'f258ca5a16d84339a5f6cdb4c7700756' query_map = {} url = 'http://api.weatherbit.io/v2.0/current' query_map['lat'] = 39.757 query_map['lon'] = -75.742 query_map['key'] = api_key query_map['lang'] = 'en' response = requests.get(url,params=query_map).json() return [(float(response['data'][0]['temp']) * 9/5) + 32,response['data'][0]['weather']['description']] run()
cthacker-udel/Raspberry-Pi-Scripts
py/getcurrweather.py
getcurrweather.py
py
441
python
en
code
7
github-code
6
38386704949
import connections import time import ubinascii import struct import math def byte_to_info(uuid): gas_res_d = 0 name = uuid[0:3] name_text = ''.join(chr(t) for t in name) if name_text == "PyN": sensor_id = uuid[7] mac = ubinascii.hexlify(uuid[10:16]) press = ubinascii.hexlify(uuid[8:10]) press_d = int(press, 16) gas_res = ubinascii.hexlify(uuid[3:7]) gas_res_d = int(gas_res, 16) return (name_text,gas_res_d, press_d) def air_quality_score(hum, gas_res): gas_reference = 250000 hum_reference = 40 gas_lower_limit = 5000 gas_upper_limit = 50000 if (hum >= 38 and hum <= 42): hum_score = 0.25*100 else: if (hum < 38): hum_score = 0.25/hum_reference*hum*100 else: hum_score = ((-0.25/(100-hum_reference)*hum)+0.416666)*100 if (gas_reference > gas_upper_limit): gas_reference = gas_upper_limit if (gas_reference < gas_lower_limit): gas_reference = gas_lower_limit gas_score = (0.75/(gas_upper_limit-gas_lower_limit)*gas_reference -(gas_lower_limit*(0.75/(gas_upper_limit-gas_lower_limit))))*100 air_quality_score = hum_score + gas_score return(air_quality_score)
MatiasRaya/IoT-PS
Proyecto/EXPOTRONICA/PYTRACK/airq.py
airq.py
py
1,275
python
en
code
1
github-code
6
38997636297
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from getpass import getpass from utility_classes import ( check_version, get_coin_selection, get_user_choice, get_user_number, UATOM, UKUJI, ULUNA, UOSMO, UserConfig, UUSD, Wallets, Wallet, WETH, ) from utility_constants import ( GAS_ADJUSTMENT_INCREMENT, GAS_ADJUSTMENT_SWAPS, FULL_COIN_LOOKUP, MAX_GAS_ADJUSTMENT, USER_ACTION_CONTINUE, USER_ACTION_QUIT ) def get_user_singlechoice(question:str, user_wallets:dict): """ Get a single user selection from a list. This is a custom function because the options are specific to this list. """ label_widths = [] label_widths.append(len('Number')) label_widths.append(len('Wallet name')) label_widths.append(len('LUNC')) label_widths.append(len('USTC')) for wallet_name in user_wallets: if len(wallet_name) > label_widths[1]: label_widths[1] = len(wallet_name) if ULUNA in user_wallets[wallet_name].balances: uluna_val = user_wallets[wallet_name].formatUluna(user_wallets[wallet_name].balances[ULUNA], ULUNA) else: uluna_val = '' if UUSD in user_wallets[wallet_name].balances: ustc_val = user_wallets[wallet_name].formatUluna(user_wallets[wallet_name].balances[UUSD], UUSD) else: ustc_val = '' if len(str(uluna_val)) > label_widths[2]: label_widths[2] = len(str(uluna_val)) if len(str(ustc_val)) > label_widths[3]: label_widths[3] = len(str(ustc_val)) padding_str = ' ' * 100 header_string = ' Number |' if label_widths[1] > len('Wallet name'): header_string += ' Wallet name' + padding_str[0:label_widths[1] - len('Wallet name')] + ' ' else: header_string += ' Wallet name ' if label_widths[2] > len('LUNC'): header_string += '| LUNC' + padding_str[0:label_widths[2] - len('LUNC')] + ' ' else: header_string += '| LUNC ' if label_widths[3] > len('USTC'): header_string += '| USTC' + padding_str[0:label_widths[3] - len('USTC')] + ' ' else: header_string += '| USTC ' horizontal_spacer = '-' * len(header_string) wallets_to_use = {} user_wallet = {} while True: count = 0 wallet_numbers = {} print (horizontal_spacer) print (header_string) print (horizontal_spacer) for wallet_name in user_wallets: wallet:Wallet = user_wallets[wallet_name] count += 1 wallet_numbers[count] = wallet if wallet_name in wallets_to_use: glyph = '✅' else: glyph = ' ' count_str = f' {count}' + padding_str[0:6 - (len(str(count)) + 2)] wallet_name_str = wallet_name + padding_str[0:label_widths[1] - len(wallet_name)] if ULUNA in wallet.balances: lunc_str = wallet.formatUluna(wallet.balances[ULUNA], ULUNA, False) else: lunc_str = '' lunc_str = lunc_str + padding_str[0:label_widths[2] - len(lunc_str)] if UUSD in wallet.balances: ustc_str = wallet.formatUluna(wallet.balances[UUSD], UUSD, False) else: ustc_str = ' ' print (f"{count_str}{glyph} | {wallet_name_str} | {lunc_str} | {ustc_str}") print (horizontal_spacer + '\n') answer = input(question).lower() if answer.isdigit() and int(answer) in wallet_numbers: wallets_to_use = {} key = wallet_numbers[int(answer)].name if key not in wallets_to_use: wallets_to_use[key] = wallet_numbers[int(answer)] else: wallets_to_use.pop(key) if answer == USER_ACTION_CONTINUE: if len(wallets_to_use) > 0: break else: print ('\nPlease select a wallet first.\n') if answer == USER_ACTION_QUIT: break # Get the first (and only) validator from the list for item in wallets_to_use: user_wallet = wallets_to_use[item] break return user_wallet, answer def main(): # Check if there is a new version we should be using check_version() # Get the password that decrypts the user wallets decrypt_password:str = getpass() # the secret password that encrypts the seed phrase if decrypt_password == '': print (' 🛑 Exiting...\n') exit() # Get the user config file contents user_config:str = UserConfig().contents() if user_config == '': print (' 🛑 The user_config.yml file could not be opened - please run configure_user_wallets.py before running this script.') exit() print ('Decrypting and validating wallets - please wait...\n') # Create the wallet object based on the user config file wallet_obj = Wallets().create(user_config, decrypt_password) decrypt_password = None # Get all the wallets user_wallets = wallet_obj.getWallets(True) # Get the balances on each wallet (for display purposes) for wallet_name in user_wallets: wallet:Wallet = user_wallets[wallet_name] wallet.getBalances() if len(user_wallets) > 0: print (f'You can make swaps on the following wallets:') wallet, answer = get_user_singlechoice("Select a wallet number 1 - " + str(len(user_wallets)) + ", 'X' to continue, or 'Q' to quit: ", user_wallets) if answer == USER_ACTION_QUIT: print (' 🛑 Exiting...\n') exit() else: print (" 🛑 This password couldn't decrypt any wallets. Make sure it is correct, or rebuild the wallet list by running the configure_user_wallet.py script again.\n") exit() # List all the coins in this wallet, with the amounts available: print ('\nWhat coin do you want to swap FROM?') coin_from, answer, null_value = get_coin_selection("Select a coin number 1 - " + str(len(wallet.balances)) + ", 'X' to continue, or 'Q' to quit: ", wallet.balances) if answer == USER_ACTION_QUIT: print (' 🛑 Exiting...\n') exit() available_balance:float = wallet.formatUluna(wallet.balances[coin_from], coin_from) print (f'This coin has a maximum of {available_balance} {FULL_COIN_LOOKUP[coin_from]} available.') swap_uluna = get_user_number("How much do you want to swap? (Or type 'Q' to quit) ", {'max_number': float(available_balance), 'min_number': 0, 'percentages_allowed': True, 'convert_percentages': True, 'keep_minimum': False, 'target_denom': coin_from}) if swap_uluna == USER_ACTION_QUIT: print (' 🛑 Exiting...\n') exit() print ('\nWhat coin do you want to swap TO?') coin_to, answer, estimated_amount = get_coin_selection("Select a coin number 1 - " + str(len(wallet.balances)) + ", 'X' to continue, or 'Q' to quit: ", wallet.balances, False, {'denom':coin_from, 'amount':swap_uluna}, wallet) if answer == USER_ACTION_QUIT: print (' 🛑 Exiting...\n') exit() estimated_amount = str(("%.6f" % (estimated_amount)).rstrip('0').rstrip('.')) print (f'You will be swapping {wallet.formatUluna(swap_uluna, coin_from, False)} {FULL_COIN_LOOKUP[coin_from]} for approximately {estimated_amount} {FULL_COIN_LOOKUP[coin_to]}') complete_transaction = get_user_choice('Do you want to continue? (y/n) ', []) if complete_transaction == False: print (' 🛑 Exiting...\n') exit() # Create the swap object swaps_tx = wallet.swap().create(wallet.getPrefix(wallet.address)) # Assign the details: swaps_tx.swap_amount = int(swap_uluna) swaps_tx.swap_denom = coin_from swaps_tx.swap_request_denom = coin_to swaps_tx.sender_address = wallet.address swaps_tx.sender_prefix = wallet.getPrefix(wallet.address) # Bump up the gas adjustment - it needs to be higher for swaps it turns out swaps_tx.terra.gas_adjustment = float(GAS_ADJUSTMENT_SWAPS) # Set the contract based on what we've picked # As long as the swap_denom and swap_request_denom values are set, the correct contract should be picked use_market_swap = swaps_tx.setContract() #if swaps_tx.swap_request_denom == UKUJI: # swaps_tx.max_spread = 0.005 # print ('swap amount:', swaps_tx.swap_amount) # print ('swap denom:', swaps_tx.swap_denom) # print ('request denom:', swaps_tx.swap_request_denom) # print ('sender address:', swaps_tx.sender_address) # print ('sender prefix:', swaps_tx.sender_prefix) # print ('use market swap?', use_market_swap) # print ('max spread:', swaps_tx.max_spread) #if swaps_tx.swap_request_denom == UOSMO and swaps_tx.sender_prefix != 'terra': if swaps_tx.swap_request_denom in [UOSMO, UATOM, UKUJI, WETH] or swaps_tx.swap_denom in [UOSMO, UATOM, UKUJI, WETH]: # This is an off-chain swap. Something like LUNC->OSMO result = swaps_tx.offChainSimulate() if result == True: print (swaps_tx.readableFee()) user_choice = get_user_choice('Do you want to continue? (y/n) ', []) if user_choice == False: exit() result = swaps_tx.offChainSwap() else: if use_market_swap == True: result = swaps_tx.marketSimulate() if result == True: print (swaps_tx.readableFee()) user_choice = get_user_choice('Do you want to continue? (y/n) ', []) if user_choice == False: exit() result = swaps_tx.marketSwap() else: result = swaps_tx.simulate() if result == True: print (swaps_tx.readableFee()) user_choice = get_user_choice('Do you want to continue? (y/n) ', []) if user_choice == False: exit() result = swaps_tx.swap() #print ('about to broadcast... exiting') #exit() if result == True: swaps_tx.broadcast() # if swaps_tx.broadcast_result.code == 11: # while True: # print (' 🛎️ Increasing the gas adjustment fee and trying again') # swaps_tx.terra.gas_adjustment += GAS_ADJUSTMENT_INCREMENT # print (f' 🛎️ Gas adjustment value is now {swaps_tx.terra.gas_adjustment}') # if use_market_swap == True: # swaps_tx.marketSimulate() # print (swaps_tx.readableFee()) # swaps_tx.marketSwap() # else: # swaps_tx.simulate() # print (swaps_tx.readableFee()) # swaps_tx.swap() # swaps_tx.broadcast() # if swaps_tx.broadcast_result.code != 11: # break # if swaps_tx.terra.gas_adjustment >= MAX_GAS_ADJUSTMENT: # break if swaps_tx.broadcast_result is not None and swaps_tx.broadcast_result.code == 32: while True: print (' 🛎️ Boosting sequence number and trying again...') swaps_tx.sequence = swaps_tx.sequence + 1 swaps_tx.simulate() print (swaps_tx.readableFee()) swaps_tx.swap() swaps_tx.broadcast() if swaps_tx is None: break # Code 32 = account sequence mismatch if swaps_tx.broadcast_result.code != 32: break if swaps_tx.broadcast_result is None or swaps_tx.broadcast_result.is_tx_error(): if swaps_tx.broadcast_result is None: print (' 🛎️ The swap transaction failed, no broadcast object was returned.') else: print (' 🛎️ The swap transaction failed, an error occurred:') if swaps_tx.broadcast_result.raw_log is not None: print (f' 🛎️ {swaps_tx.broadcast_result.raw_log}') else: print ('No broadcast log was available.') else: print (f' ✅ Swapped amount: {wallet.formatUluna(swaps_tx.swap_amount, swaps_tx.swap_denom)} {FULL_COIN_LOOKUP[swaps_tx.swap_denom]}') print (f' ✅ Tx Hash: {swaps_tx.broadcast_result.txhash}') else: print (' 🛎️ The swap transaction could not be completed') print (' 💯 Done!\n') if __name__ == "__main__": """ This is executed when run from the command line """ main()
geoffmunn/utility-scripts
swap.py
swap.py
py
12,915
python
en
code
1
github-code
6
18964566006
#coding: utf-8 #Crispiniano #Unidade 6: Quanto Tempo def quanto_tempo(horario1,horario2): h1 = int(horario1[0] + horario1[1]) m1 = int(horario1[3] + horario1[4]) minutos_totais_1 = h1 * 60 + m1 h2 = int(horario2[0] + horario2[1]) m2 = int(horario2[3] + horario2[4]) minutos_totais_2 = h2 * 60 + m2 diferenca = minutos_totais_2 - minutos_totais_1 h3 = diferenca // 60 m3 = diferenca % 60 saida = '%i hora(s) e %i minuto(s)' % (h3, m3) return saida assert quanto_tempo("07:15", "09:18") == "2 hora(s) e 3 minuto(s)"
almirgon/LabP1
Unidade-6/tempo.py
tempo.py
py
532
python
pt
code
0
github-code
6
42433734628
import pytest import random from torchrl.envs import make_gym_env, TransitionMonitor @pytest.mark.parametrize('spec_id', [ 'Acrobot-v1', 'CartPole-v1', 'MountainCar-v0', 'MountainCarContinuous-v0', 'Pendulum-v0', ]) def test_transition_monitor(spec_id: str): env = TransitionMonitor(make_gym_env(spec_id)) for _ in range(3): env.reset() info = env.info assert not env.is_done assert len(env.transitions) == 0 assert info.get('len') == 0 assert info.get('return') == 0.0 flushed_transitions = [] while not env.is_done: env.step(env.action_space.sample()) if random.random() < 0.2: # Flush with probability 0.2 flushed_transitions += env.flush() flushed_transitions += env.flush() info = env.info assert info.get('return') is not None assert info.get('len') > 0 assert info.get('len') == len(flushed_transitions) assert len(env.transitions) == 0 env.close()
activatedgeek/torchrl
torchrl/envs/test_wrappers.py
test_wrappers.py
py
968
python
en
code
110
github-code
6
811926906
'''Find Leaves of Binary Tree - https://leetcode.com/problems/find-leaves-of-binary-tree/ Given the root of a binary tree, collect a tree's nodes as if you were doing this: Collect all the leaf nodes. Remove all the leaf nodes. Repeat until the tree is empty. Example 1: Input: root = [1,2,3,4,5] Output: [[4,5,3],[2],[1]] Explanation: [[3,5,4],[2],[1]] and [[3,4,5],[2],[1]] are also considered correct answers since per each level it does not matter the order on which elements are returned.''' # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def findLeaves(self, root: Optional[TreeNode]) -> List[List[int]]: output = [] def getLeaves(root): if not root.left and not root.right: output[-1].append(root.val) root = None return root if root.left: root.left = getLeaves(root.left) if root.right: root.right = getLeaves(root.right) return root while root: output.append([]) root = getLeaves(root) return output
Saima-Chaity/Leetcode
Tree/Find Leaves of Binary Tree.py
Find Leaves of Binary Tree.py
py
1,265
python
en
code
0
github-code
6
70384349309
import numpy as np import scipy import cv2 import matplotlib.pyplot as plt from matplotlib.colors import LightSource def rotate_and_crop(arr, ang): """Array arr to be rotated by ang degrees and cropped afterwards""" arr_rot = scipy.ndimage.rotate(arr, ang, reshape=True, order=0) shift_up = np.ceil(np.arcsin(abs(ang) / 360 * 2 * np.pi) * arr.shape[1]) shift_right = np.ceil(np.arcsin(abs(ang) / 360 * 2 * np.pi) * arr.shape[0]) arr_crop = arr_rot[ int(shift_up) : arr_rot.shape[0] - int(shift_up), int(shift_right) : arr_rot.shape[1] - int(shift_right), ] return arr_crop def contourf_to_array(cs, nbpixels_x, nbpixels_y, scale_x, scale_y): """Draws filled contours from contourf or tricontourf cs on output array of size (nbpixels_x, nbpixels_y)""" image = np.zeros((nbpixels_x, nbpixels_y)) - 5 for i, collection in enumerate(cs.collections): z = cs.levels[i] # get contour levels from cs for path in collection.get_paths(): verts = ( path.to_polygons() ) # get vertices of current contour level (is a list of arrays) for v in verts: # rescale vertices to image size v[:, 0] = ( (v[:, 0] - np.min(scale_x)) / (np.max(scale_x) - np.min(scale_x)) * nbpixels_y ) v[:, 1] = ( (v[:, 1] - np.min(scale_y)) / (np.max(scale_y) - np.min(scale_y)) * nbpixels_x ) poly = np.array( [v], dtype=np.int32 ) # dtype integer is necessary for the next instruction cv2.fillPoly(image, poly, z) return image def contourf_to_array_3d(cs, nbpixels_x, nbpixels_y, scale_x, scale_y, levels): res = np.zeros((nbpixels_x, nbpixels_y, cs.shape[-1])) - 5 for i in range(res.shape[-1]): cf = plt.contourf(scale_x, scale_y, cs[:, :, i], levels=levels) res[:, :, i] = np.flip( contourf_to_array(cf, nbpixels_x, nbpixels_y, scale_x, scale_y), axis=0 ) res[:, :, i][np.where(res[:, :, i] < -4)] = np.nan plt.close("all") return res def create_bounds(): bounds_k = { 'x': { 'min': 137089.2373932857299224, 'max': 168249.9520578108495101, }, 'y': { 'min': 589482.3877100050449371, 'max': 610702.8749795859912410, }, } bounds_g = { 'x': { 'min': 129971.5049754020292312, 'max': 170784.9834783510013949, }, 'y': { 'min': 584191.5390384565107524, 'max': 611985.5710535547696054, }, } for key, value in bounds_k.items(): bounds_k[key]['delta'] = ((bounds_k[key]['max'] - bounds_k[key]['min']) / (8.94 / 10.22) - (bounds_k[key]['max'] - bounds_k[key]['min'])) / 2 bounds_g[key]['delta'] = ((bounds_g[key]['max'] - bounds_g[key]['min']) / (8.94 / 10.22) - (bounds_g[key]['max'] - bounds_g[key]['min'])) / 2 bounds_k[key]['min'] -= bounds_k[key]['delta'] bounds_k[key]['max'] += bounds_k[key]['delta'] bounds_g[key]['min'] -= bounds_g[key]['delta'] bounds_g[key]['max'] += bounds_g[key]['delta'] return bounds_k, bounds_g def get_bathymetry_extent(ds, bounds): print(np.where(ds.x.values >= bounds['x']['min'])[0].min()) x_index_min = np.where(ds.x.values >= bounds['x']['min'])[0].min() - 1 x_index_max = np.where(ds.x.values >= bounds['x']['max'])[0].min() y_index_min = np.where(ds.y.values >= bounds['y']['min'])[0].max() + 1 y_index_max = np.where(ds.y.values >= bounds['y']['max'])[0].max() extent = (x_index_min, x_index_max, y_index_min, y_index_max) return extent def prep_bathymetry_data(ds, extent): x_b, y_b = np.array(ds.x[extent[0]:extent[1]]), np.array(ds.y[extent[3]:extent[2]]) bodem = np.array(ds[0, extent[3]:extent[2], extent[0]:extent[1]]) bodem[np.where(bodem == -9999)] = -43.8 return x_b, y_b, bodem def get_conc_extent(ds, x_b, y_b): x_min = np.where(x_b >= ds.x.values.min())[0].min() - 1 x_max = np.where(x_b <= ds.x.values.max())[0].max() + 1 y_min = np.where(y_b >= ds.y.values.min())[0].max() + 1 y_max = np.where(y_b <= ds.y.values.max())[0].min() - 1 extent = (x_min, x_max, y_min, y_max) return extent def rescale_and_fit_ds(ds, ds_bounds, rescale_size1, rescale_size2, axis=0): """ Rescales dataset ds to fit over the satellite image with size rescale_size2 It also fits the dataset values such that the x and y bounds of the dataset are placed on the right positions over the satellite image Input: ds - dataset to rescale and fit ds_bounds - indices of the bounds of the bathymetry, corresponding to the ds bounds rescale_size1 - shape of the bathymetry rescale_size2 - shape of the satellite image axis - axis of ds over which we want to rescale and fit Output: ds_rescaled - dataset with known values on the right positions over the satellite and nan's everywhere else """ xmin, ymin = ds_bounds[0] xmax, ymax = ds_bounds[1] ds_sub = np.zeros(rescale_size1) ds_sub[:] = np.nan for i in range(ds.shape[axis]): ds_inter = cv2.resize(ds[i, :, :], dsize=(xmax - xmin, ymin - ymax), interpolation=cv2.INTER_CUBIC) ds_sub[ymax:ymin, xmin:xmax] = ds_inter ds_sub2 = np.expand_dims(cv2.resize(ds_sub, dsize=(rescale_size2[1], rescale_size2[0]), interpolation=cv2.INTER_CUBIC), axis=axis) if i == 0: ds_rescaled = ds_sub2 else: ds_rescaled = np.concatenate([ds_rescaled, ds_sub2], axis=axis) return ds_rescaled def create_shaded_image(sat, bodem, shape): ls = LightSource(azdeg=315, altdeg=45) # Create shade using lightsource rgb = ls.hillshade(bodem, vert_exag=5, dx=20, dy=20) # Scale satellite image to bathymetry shapes sat_scaled = cv2.resize(sat, dsize=(bodem.shape[1], bodem.shape[0]), interpolation=cv2.INTER_CUBIC).astype('float64') # Add shade to scaled image img_shade = ls.shade_rgb(sat_scaled, bodem, vert_exag=5, blend_mode='soft') img_shade = cv2.resize(img_shade, dsize=shape, interpolation=cv2.INTER_CUBIC).astype('float64') return img_shade
openearth/vcl
vcl/data.py
data.py
py
6,478
python
en
code
2
github-code
6
29476131174
#! /usr/bin/env python # -*- coding: utf-8 -*- """Fine tune CTC network (CSJ corpus, for dialog).""" import os import sys import time import tensorflow as tf from setproctitle import setproctitle import yaml import shutil import tensorflow.contrib.slim as slim sys.path.append('../') sys.path.append('../../') sys.path.append('../../../') from data.read_dataset_ctc import DataSet from data.read_dataset_ctc_dialog import DataSet as DataSetDialog from models.ctc.load_model import load from evaluation.eval_ctc import do_eval_per, do_eval_cer from evaluation.eval_ctc_dialog import do_eval_fmeasure from utils.data.sparsetensor import list2sparsetensor, sparsetensor2list from utils.util import mkdir, join from utils.parameter import count_total_parameters from utils.loss import save_loss from utils.labels.phone import num2phone from utils.labels.character import num2char def do_fine_tune(network, optimizer, learning_rate, batch_size, epoch_num, label_type, num_stack, num_skip, social_signal_type, trained_model_path, restore_epoch=None): """Run training. Args: network: network to train optimizer: adam or adadelta or rmsprop learning_rate: initial learning rate batch_size: size of mini batch epoch_num: epoch num to train label_type: phone or character num_stack: int, the number of frames to stack num_skip: int, the number of frames to skip social_signal_type: insert or insert2 or insert3 or remove trained_model_path: path to the pre-trained model restore_epoch: epoch of the model to restore """ # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(): # Read dataset train_data = DataSetDialog(data_type='train', label_type=label_type, social_signal_type=social_signal_type, num_stack=num_stack, num_skip=num_skip, is_sorted=True) dev_data = DataSetDialog(data_type='dev', label_type=label_type, social_signal_type=social_signal_type, num_stack=num_stack, num_skip=num_skip, is_sorted=False) test_data = DataSetDialog(data_type='test', label_type=label_type, social_signal_type=social_signal_type, num_stack=num_stack, num_skip=num_skip, is_sorted=False) # TODO:作る # eval1_data = DataSet(data_type='eval1', label_type=label_type, # social_signal_type=social_signal_type, # num_stack=num_stack, num_skip=num_skip, # is_sorted=False) # eval2_data = DataSet(data_type='eval2', label_type=label_type, # social_signal_type=social_signal_type, # num_stack=num_stack, num_skip=num_skip, # is_sorted=False) # eval3_data = DataSet(data_type='eval3', label_type=label_type, # social_signal_type=social_signal_type, # num_stack=num_stack, num_skip=num_skip, # is_sorted=False) # Add to the graph each operation loss_op = network.loss() train_op = network.train(optimizer=optimizer, learning_rate_init=learning_rate, is_scheduled=False) decode_op = network.decoder(decode_type='beam_search', beam_width=20) per_op = network.ler(decode_op) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(network.summaries_train) summary_dev = tf.summary.merge(network.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total parameters parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M parameters" % (len(parameters_dict.keys()), "{:,}".format(total_parameters / 1000000))) csv_steps = [] csv_train_loss = [] csv_dev_loss = [] # Create a session for running operation on the graph with tf.Session() as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter( network.model_dir, sess.graph) # Initialize parameters sess.run(init_op) # Restore pre-trained model's parameters ckpt = tf.train.get_checkpoint_state(trained_model_path) if ckpt: # Use last saved model model_path = ckpt.model_checkpoint_path if restore_epoch is not None: model_path = model_path.split('/')[:-1] model_path = '/'.join(model_path) + \ '/model.ckpt-' + str(restore_epoch) else: raise ValueError('There are not any checkpoints.') exclude = ['output/Variable', 'output/Variable_1'] variables_to_restore = slim.get_variables_to_restore( exclude=exclude) restorer = tf.train.Saver(variables_to_restore) restorer.restore(sess, model_path) print("Model restored: " + model_path) # Train model iter_per_epoch = int(train_data.data_num / batch_size) if (train_data.data_num / batch_size) != int(train_data.data_num / batch_size): iter_per_epoch += 1 max_steps = iter_per_epoch * epoch_num start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() fmean_best = 0 for step in range(max_steps): # Create feed dictionary for next mini batch (train) inputs, labels, seq_len, _ = train_data.next_batch( batch_size=batch_size) indices, values, dense_shape = list2sparsetensor(labels) feed_dict_train = { network.inputs_pl: inputs, network.label_indices_pl: indices, network.label_values_pl: values, network.label_shape_pl: dense_shape, network.seq_len_pl: seq_len, network.keep_prob_input_pl: network.dropout_ratio_input, network.keep_prob_hidden_pl: network.dropout_ratio_hidden, network.lr_pl: learning_rate } # Create feed dictionary for next mini batch (dev) inputs, labels, seq_len, _ = dev_data.next_batch( batch_size=batch_size) indices, values, dense_shape = list2sparsetensor(labels) feed_dict_dev = { network.inputs_pl: inputs, network.label_indices_pl: indices, network.label_values_pl: values, network.label_shape_pl: dense_shape, network.seq_len_pl: seq_len, network.keep_prob_input_pl: network.dropout_ratio_input, network.keep_prob_hidden_pl: network.dropout_ratio_hidden } # Update parameters & compute loss _, loss_train = sess.run( [train_op, loss_op], feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_train_loss.append(loss_train) csv_dev_loss.append(loss_dev) if (step + 1) % 10 == 0: # Change feed dict for evaluation feed_dict_train[network.keep_prob_input_pl] = 1.0 feed_dict_train[network.keep_prob_hidden_pl] = 1.0 feed_dict_dev[network.keep_prob_input_pl] = 1.0 feed_dict_dev[network.keep_prob_hidden_pl] = 1.0 # Compute accuracy & \update event file ler_train, summary_str_train = sess.run([per_op, summary_train], feed_dict=feed_dict_train) ler_dev, summary_str_dev, labels_st = sess.run([per_op, summary_dev, decode_op], feed_dict=feed_dict_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() # Decode # try: # labels_pred = sparsetensor2list(labels_st, batch_size) # except: # labels_pred = [[0] * batch_size] duration_step = time.time() - start_time_step print('Step %d: loss = %.3f (%.3f) / ler = %.4f (%.4f) (%.3f min)' % (step + 1, loss_train, loss_dev, ler_train, ler_dev, duration_step / 60)) # if label_type == 'character': # if social_signal_type == 'remove': # map_file_path = '../evaluation/mapping_files/ctc/char2num_remove.txt' # else: # map_file_path = '../evaluation/mapping_files/ctc/char2num_' + \ # social_signal_type + '.txt' # print('True: %s' % num2char(labels[-1], map_file_path)) # print('Pred: %s' % num2char( # labels_pred[-1], map_file_path)) # elif label_type == 'phone': # if social_signal_type == 'remove': # map_file_path = '../evaluation/mapping_files/ctc/phone2num_remove.txt' # else: # map_file_path = '../evaluation/mapping_files/ctc/phone2num_' + \ # social_signal_type + '.txt' # print('True: %s' % num2phone( # labels[-1], map_file_path)) # print('Pred: %s' % num2phone( # labels_pred[-1], map_file_path)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if (step + 1) % iter_per_epoch == 0 or (step + 1) == max_steps: duration_epoch = time.time() - start_time_epoch epoch = (step + 1) // iter_per_epoch print('-----EPOCH:%d (%.3f min)-----' % (epoch, duration_epoch / 60)) # Save model (check point) checkpoint_file = os.path.join( network.model_dir, 'model.ckpt') save_path = saver.save( sess, checkpoint_file, global_step=epoch) print("Model saved in file: %s" % save_path) start_time_eval = time.time() if label_type == 'character': print('■Dev Evaluation:■') fmean_epoch = do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=dev_data, label_type=label_type, social_signal_type=social_signal_type) # error_epoch = do_eval_cer(session=sess, # decode_op=decode_op, # network=network, # dataset=dev_data, # eval_batch_size=batch_size) if fmean_epoch > fmean_best: fmean_best = fmean_epoch print('■■■ ↑Best Score (F-measure)↑ ■■■') do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=test_data, label_type=label_type, social_signal_type=social_signal_type) # print('■eval1 Evaluation:■') # do_eval_cer(session=sess, decode_op=decode_op, # network=network, dataset=eval1_data, # eval_batch_size=batch_size) # print('■eval2 Evaluation:■') # do_eval_cer(session=sess, decode_op=decode_op, # network=network, dataset=eval2_data, # eval_batch_size=batch_size) # print('■eval3 Evaluation:■') # do_eval_cer(session=sess, decode_op=decode_op, # network=network, dataset=eval3_data, # eval_batch_size=batch_size) else: print('■Dev Evaluation:■') fmean_epoch = do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=dev_data, label_type=label_type, social_signal_type=social_signal_type) # error_epoch = do_eval_per(session=sess, # per_op=per_op, # network=network, # dataset=dev_data, # eval_batch_size=batch_size) if fmean_epoch < fmean_best: fmean_best = fmean_epoch print('■■■ ↑Best Score (F-measure)↑ ■■■') do_eval_fmeasure(session=sess, decode_op=decode_op, network=network, dataset=test_data, label_type=label_type, social_signal_type=social_signal_type) # print('■eval1 Evaluation:■') # do_eval_per(session=sess, per_op=per_op, # network=network, dataset=eval1_data, # eval_batch_size=batch_size) # print('■eval2 Evaluation:■') # do_eval_per(session=sess, per_op=per_op, # network=network, dataset=eval2_data, # eval_batch_size=batch_size) # print('■eval3 Evaluation:■') # do_eval_per(session=sess, per_op=per_op, # network=network, dataset=eval3_data, # eval_batch_size=batch_size) duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) start_time_epoch = time.time() start_time_step = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Save train & dev loss save_loss(csv_steps, csv_train_loss, csv_dev_loss, save_path=network.model_dir) # Training was finished correctly with open(os.path.join(network.model_dir, 'complete.txt'), 'w') as f: f.write('') def main(config_path, trained_model_path): restore_epoch = None # if None, restore the final epoch # Read a config file (.yml) with open(config_path, "r") as f: config = yaml.load(f) corpus = config['corpus'] feature = config['feature'] param = config['param'] if corpus['label_type'] == 'phone': if corpus['social_signal_type'] in ['insert', 'insert3']: output_size = 41 elif corpus['social_signal_type'] == 'insert2': output_size = 44 elif corpus['social_signal_type'] == 'remove': output_size = 38 elif corpus['label_type'] == 'character': if corpus['social_signal_type'] in ['insert', 'insert3']: output_size = 150 elif corpus['social_signal_type'] == 'insert2': output_size = 153 elif corpus['social_signal_type'] == 'remove': output_size = 147 # Load model CTCModel = load(model_type=config['model_name']) network = CTCModel(batch_size=param['batch_size'], input_size=feature['input_size'] * feature['num_stack'], num_cell=param['num_cell'], num_layer=param['num_layer'], output_size=output_size, clip_gradients=param['clip_grad'], clip_activation=param['clip_activation'], dropout_ratio_input=param['dropout_input'], dropout_ratio_hidden=param['dropout_hidden'], num_proj=param['num_proj'], weight_decay=param['weight_decay']) network.model_name = config['model_name'].upper() network.model_name += '_' + str(param['num_cell']) network.model_name += '_' + str(param['num_layer']) network.model_name += '_' + param['optimizer'] network.model_name += '_lr' + str(param['learning_rate']) if feature['num_stack'] != 1: network.model_name += '_stack' + str(feature['num_stack']) network.model_name += '_transfer_' + corpus['transfer_data_size'] # Set save path network.model_dir = mkdir('/n/sd8/inaguma/result/csj/dialog/') network.model_dir = join(network.model_dir, 'ctc') network.model_dir = join(network.model_dir, corpus['label_type']) network.model_dir = join(network.model_dir, corpus['social_signal_type']) network.model_dir = join(network.model_dir, network.model_name) # Reset model directory if not os.path.isfile(os.path.join(network.model_dir, 'complete.txt')): tf.gfile.DeleteRecursively(network.model_dir) tf.gfile.MakeDirs(network.model_dir) else: raise ValueError('File exists.') # Set process name setproctitle('ctc_csj_dialog_' + corpus['label_type'] + '_' + param['optimizer'] + '_' + corpus['social_signal_type'] + '_transfer_' + corpus['transfer_data_size']) # Save config file shutil.copyfile(config_path, os.path.join(network.model_dir, 'config.yml')) sys.stdout = open(os.path.join(network.model_dir, 'train.log'), 'w') print(network.model_name) do_fine_tune(network=network, optimizer=param['optimizer'], learning_rate=param['learning_rate'], batch_size=param['batch_size'], epoch_num=param['num_epoch'], label_type=corpus['label_type'], num_stack=feature['num_stack'], num_skip=feature['num_skip'], social_signal_type=corpus['social_signal_type'], trained_model_path=trained_model_path, restore_epoch=restore_epoch) sys.stdout = sys.__stdout__ if __name__ == '__main__': args = sys.argv if len(args) != 3: ValueError( 'Usage: python fine_tune_ctc.py path_to_config path_to_trained_model') main(config_path=args[1], trained_model_path=args[2])
hirofumi0810/tensorflow_end2end_speech_recognition
examples/csj/fine_tuning/finetune_ctc_dialog.py
finetune_ctc_dialog.py
py
20,860
python
en
code
312
github-code
6
34294677016
from django.contrib import admin from django.urls import path from final import views urlpatterns = [ path("", views.index, name="root"), path("about/", views.about, name="about"), path("signup/", views.signup, name="signup"), path("login/", views.loginUser, name="login"), path("contact/", views.contact, name="contact"), path("logout/", views.logoutUser, name="logout"), path("services/", views.services, name="services") ]
supratim531/useless-django-app
final/urls.py
urls.py
py
455
python
en
code
0
github-code
6
18467755288
import random import pandas as pd #This is where the wagon class will be. class Wagon(): #One weird variable here may be wagonStructure. This variable is a boolean variable which will if set to #true means the wagon can move. If it is set to false the wagon cannot move. def __init__(self, ration, health, weather, month): self.ration = ration self.health = health self.weather = weather self.month = month self.moving = False self.wagonStructure = True self.oxen = 0 self.food = 0 self.cloth = 0 self.wheel = 0 self.axle = 0 self.tongue = 0 self.bullets = 0 self.speed = 0 self.distance = 2000 #This method is what will determine the weather type. I really think, that I should have had some trail class #and off of that had a wagon and human class subordinate to that class. def weatherType(self): weatherType = random.randint(1,3) if weatherType == 1: self.weather = "Sunny" elif weatherType == 2: self.weather = "Cloudy" elif weatherType == 3: self.weather = "Rainy" #This method will keep track of the speed and subtract that number from the distance each day. def move(self): if self.wagonStructure == True: self.speed = 2.5 * self.oxen self.distance -= self.speed self.moving = True if self.distance == 0: print("You have reached Oregon!") #This will affect the amount of food eating by the ration level. I decided to place this method here #and not in the human class becuase one cannot change the individual ration levels-as of now. Thus, #since ration and food are properties of wagon I figured it would be easier to keep them here. def eat(self): if self.ration == "Meager": self.food -= .25 elif self.ration == "Normal": self.food -= .5 elif self.ration == "Tons": self.food -= 1 #This method will determine the overall health for the wagon. def healthLevel(self, leader, personOne, personTwo, personThree, personFour): if leader.life > 20 and personOne.life > 20 and personTwo.life > 20 and personThree.life > 20 and personFour.life > 20: self.health = "Good" elif leader.life > 10 and personOne.life > 10 and personTwo.life > 10 and personThree.life > 10 and personFour.life > 10: self.health = "Average" elif leader.life > 5 and personOne.life > 5 and personTwo.life > 5 and personThree.life > 5 and personFour.life > 5: self.health = "Poor" #This method was probably the most annoying thing to write! It essentially changes the date for the player. #it takes in the starting date that the player entered and then increases that date by one. Not a hard thing to do #but actually doing this took a lot of time to find something that was simple to use and which I understood. def changeDate(self): startdate = self.month self.month = pd.to_datetime(startdate) + pd.DateOffset(days=1) #This method will determine if a wheel breaks and then asks the player if they want to fix it. def wagonWheel(self): wheelBreak = random.randint(1,100) if wheelBreak > 85: print("A wagon wheel has broken!") self.wagonStructure == False print("Wheel: " + str(self.wheel)) fix = input("Do you want to fix it? (y/n): ") if fix == "y" and self.wheel > 0: print("You fixed the wagon wheel!") self.wheel -= 1 self.wagonStructure == True #This method will determine if an axle breaks and then asks the player if they want to fix it. def wagonAxle(self): wheelaxle = random.randint(1,100) if wheelaxle > 90: print("A wagon axle has broken!") print("You will not be able to move until it is fixed!") self.wagonStructure == False print("Axles: " + str(self.axle)) fix = input("Do you want to fix it? (y/n): ") if fix == "y" and self.axle > 0: print("You fixed the wagon axle!") self.axle -= 1 self.wagonStructure == True #This method will determine if a tongue breaks and then asks the player if they want to fix it. def wagonTongue(self): wheelTongue = random.randint(1,100) if wheelTongue > 95: print("A wagon tongue has broken!") print("You will not be able to move until it is fixed!") self.wagonStructure == False print("Tongues: " + str(self.tongue)) fix = input("Do you want to fix it? (y/n): ") if fix == "y" and self.tongue > 0: print("You fixed the wagon axle!") self.tongue -= 1 self.wagonStructure == True #This method is kind of pointless. Not sure what I would do with clothing. Other than the fact that it #Gets worn out on the journey. def clothingWorn(self): self.cloth -= .1 if self.cloth < .5: print("You are low on clothes!") #print("Better get new ones soon or you will die!")
ravenusmc/trail
wagon.py
wagon.py
py
4,906
python
en
code
0
github-code
6
8516167540
import numpy as np import matplotlib.pyplot as plt import h5py path_Lf3D = "/mn/stornext/d19/RoCS/alma/emissa_sim/linfor3D/outhdf/" f = {"500nm" : h5py.File(path_Lf3D + "d3t57g44c_v000G_n019_it000_05000_mu1_00_linfor_3D_2.hdf", "r"), "1mm" : h5py.File(path_Lf3D + "d3t57g44c_v000G_n019_it000_01mm_mu1_00_linfor_3D_2.hdf", "r"), "3mm" : h5py.File(path_Lf3D + "d3t57g44c_v000G_n019_it000_03mm_mu1_00_linfor_3D_2.hdf", "r")} F = h5py.File("/mn/stornext/d19/RoCS/svenwe/jonast/data/art/input/tst/d3t57g44_v000G_n019_art_it000_mode1.h5", "r") fig,ax = plt.subplots(figsize=(8,6)) for i,key in enumerate(f.keys()): z_CF = np.array(f[key]["contfctz"])*1e-8 k = np.argmax(z_CF) z_CF = z_CF[:k+1] CF = np.mean(np.array(f[key]["contfunc"][:k+1,:,:]), axis=(1,2)) ax.plot(z_CF, CF/np.max(CF)) ax.fill_between(z_CF, np.zeros(len(CF)), CF/np.max(CF), alpha=0.5, label=r"$\lambda = $ {:} {:}".format(key[:-2], key[-2:])) ax.set_axisbelow(True) ax.grid() #ax.axvline(x= ax.legend() ax.set_xlabel("z [Mm]") ax.set_ylabel("norm. cont. func.") figname="mean_CF.pdf" plt.savefig("figures/"+figname, bbox_inches="tight")
jonasrth/MSc-plots
mean_CF.py
mean_CF.py
py
1,183
python
en
code
0
github-code
6
17559223931
import unittest from sudoku import Sudoku class TestUtilities(unittest.TestCase): def setUp(self): """ Init a completed sudoku for testing """ self.grid = [[1, 3, 9, 5, 7, 6, 8, 4, 2], [2, 5, 8, 4, 9, 3, 1, 6, 7], [7, 4, 6, 2, 8, 1, 9, 5, 3], [9, 6, 3, 1, 4, 5, 2, 7, 8], [4, 2, 7, 8, 6, 9, 3, 1, 5], [8, 1, 5, 7, 3, 2, 6, 9, 4], [6, 7, 4, 3, 1, 8, 5, 2, 9], [5, 8, 1, 9, 2, 4, 7, 3, 6], [3, 9, 2, 6, 5, 7, 4, 8, 1]] self.sudoku = Sudoku() def test_check_row_gui(self): row = 0 self.assertTrue(self.sudoku.utils.check_row_gui(row, self.grid)) def test_check_row_gui_false(self): row = 0 self.grid[0][3] = 20 self.assertFalse(self.sudoku.utils.check_row_gui(row, self.grid)) def test_check_column_gui(self): column = 0 self.assertTrue(self.sudoku.utils.check_column_gui(column, self.grid)) def test_check_column_gui_false(self): column = 0 self.grid[2][0] = 13 self.assertFalse(self.sudoku.utils.check_column_gui(column, self.grid)) def test_check_3x3_grid_gui(self): locations = [(0, 0), (0, 3), (0, 6), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (6, 6)] for loc in locations: self.assertTrue( self.sudoku.utils.check_3x3_grid_gui(self.grid, loc)) def test_valid_num(self): self.grid[5][3] = 0 loc = self.sudoku.utils.find_empty_cell(self.grid) self.assertTrue(self.sudoku.utils.valid_num(self.grid, 7, loc)) def test_find_empty_cell(self): self.grid[3][8] = 0 empty = self.sudoku.utils.find_empty_cell(self.grid) self.assertEqual(empty, (3, 8)) def test_find_empty_cell_none(self): empty = self.sudoku.utils.find_empty_cell(self.grid) self.assertIsNone(empty)
ArttuLe/ot-harjoitustyo
src/tests/utilities_test.py
utilities_test.py
py
2,040
python
en
code
0
github-code
6
38137944576
import dash from dash import html, dcc from dash.dependencies import Input, Output import plotly.graph_objs as go from plotly.subplots import make_subplots import pandas as pd # Load data df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv") # Create subplots fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05) # Add candlestick chart fig.add_trace(go.Candlestick(x=df['Date'], open=df['AAPL.Open'], high=df['AAPL.High'], low=df['AAPL.Low'], close=df['AAPL.Close'], name='Candlestick'), row=1, col=1) # Add volume chart fig.add_trace(go.Bar(x=df['Date'], y=df['AAPL.Volume'], name='Volume'), row=2, col=1) # Update layout fig.update_layout(height=600, title_text="Candlestick and Volume Chart") # Create Dash app app = dash.Dash(__name__) # Define dropdown options dropdown_options = [{'label': 'Hour', 'value': '1H'}, {'label': 'Day', 'value': '1D'}, {'label': 'Week', 'value': '1W'}, {'label': 'Month', 'value': '1M'}] # Define app layout app.layout = html.Div(children=[ html.Label('Select timeframe:'), dcc.Dropdown(id='timeframe-dropdown', options=dropdown_options, value='1H', clearable=False), dcc.Graph(id='graph', figure=fig), html.Br(), ]) # Define callback to update chart based on dropdown selection @app.callback(Output('graph', 'figure'), [Input('timeframe-dropdown', 'value')]) def update_chart(timeframe): # Filter data based on selected timeframe if timeframe == '1H': df_filtered = df[-252:] elif timeframe == '1D': df_filtered = df[-126:] elif timeframe == '1W': df_filtered = df[-63:] elif timeframe == '1M': df_filtered = df[-21:] # Create new chart based on filtered data fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.05) fig.add_trace(go.Candlestick(x=df_filtered['Date'], open=df_filtered['AAPL.Open'], high=df_filtered['AAPL.High'], low=df_filtered['AAPL.Low'], close=df_filtered['AAPL.Close'], name='Candlestick'), row=1, col=1) fig.add_trace(go.Bar(x=df_filtered['Date'], y=df_filtered['AAPL.Volume'], name='Volume'), row=2, col=1) fig.update(layout_xaxis_rangeslider_visible=False) return fig # Run app if __name__ == '__main__': app.run_server(debug=True, port=5000)
TIIIIIIW/SOFTWARE-DEVELOPMENT-2
ML/Data/TestDash.py
TestDash.py
py
2,975
python
en
code
1
github-code
6
6951725407
import turtle import time import random delay = 0.1 #Score score =0 highScore=0 #Setting up the screen window = turtle.Screen() window.title("Snake Game by Lexiang Pan and Ryan Shen") window.bgcolor("green") window.setup(width=600, height = 600) window.tracer(0) #Head of the snake: head = turtle.Turtle() head.speed(0) head.shape("square") head.color("black") head.penup() head.goto(0,0) head.direction = "stop" #Food of snake apple = turtle.Turtle() apple.speed(0) apple.shape("circle") apple.color("red") apple.penup() apple.goto(0,100) apple.direction = "stop" segments = [] #Pen pen = turtle.Turtle() pen.speed(0) pen.shape("square") pen.color("white") pen.penup() pen.hideturtle() pen.goto(0, 260) pen.write("Score: 0 High Score: 0", align="center", font=("Courier", 24, "normal")) #functions def going_up(): if head.direction != "down": head.direction = "up" def going_down(): if head.direction != "up": head.direction = "down" def going_left(): if head.direction != "right": head.direction = "left" def going_right(): if head.direction != "left": head.direction = "right" #Functions def snakeMoving(): if head.direction == "up": y = head.ycor() head.sety(y + 20) if head.direction == "down": y = head.ycor() head.sety(y - 20) if head.direction == "left": x = head.xcor() head.setx(x - 20) if head.direction == "right": x = head.xcor() head.setx(x + 20) #Function def restartGame(segments, delay): time.sleep(1) head.goto(0,0) head.direction = "stop" #hide segments for s in segments: s.goto(1000,1000) #Clear segments list segments = [] #reset score score=0 #reset delay delay =0.1 pen.clear() pen.write("Score: {} High Score: {}".format(score, highScore), align="center", font=("Courier", 24, "normal")) #Keyboard Binding window.listen() window.onkeypress(going_up, "w") window.onkeypress(going_down, "s") window.onkeypress(going_left, "a") window.onkeypress(going_right, "d") while True: window.update() #check for collision with border if head.xcor()>290 or head.xcor()<-290 or head.ycor()>290 or head.ycor()<-290: restartGame(segments, delay) #check for collision with food if head.distance(apple) < 20: #move food to a new coordinate x = random.randint(-290,290) y = random.randint(-290,290) apple.goto(x, y) #add segment new_segment = turtle.Turtle() new_segment.speed(0) new_segment.shape("square") new_segment.color("blue") new_segment.penup() segments.append(new_segment) #Shorten delay delay -=0.001 #increase score score +=10 if score >highScore: highScore = score pen.clear() pen.write("Score: {} High Score: {}".format(score, highScore), align="center", font=("Courier", 24, "normal")) #moving the end segments first for index in range(len(segments)-1, 0, -1): x = segments[index-1].xcor() y = segments[index-1].ycor() segments[index].goto(x, y) #moving segments to where the head is if len(segments) > 0: x = head.xcor() y = head.ycor() segments[0].goto(x, y) snakeMoving() #check for head collision with body segments for segment in segments: if segment.distance(head) < 20: restartGame(segments, delay) time.sleep(delay) window.mainloop()
RyanSh3n/ICS3U1
CPT/SnakeGame.py
SnakeGame.py
py
3,567
python
en
code
0
github-code
6
43133597312
# This script is developed by Team 11 CIS 3760 # Parser - to parse the plain text file into json file import sys import re import json import os sys.path.insert(1, os.path.join(sys.path[0], '..')) import course_util uOCourseCodeIsolatedPat = re.compile(r'^\w{3}[ ]?\d{4}$') uOCourseCodePat = re.compile(r'\w{3}[ ]?\d{4}') uOOneOfCondPat = re.compile(r'One of .+', re.IGNORECASE) uOAntiReqPat = re.compile(r'The courses? (\w{3}\w?[ ]?\d{4},?[ ]?)+', re.IGNORECASE) uOCarlAltPat = re.compile(r'\w{3}[ ]?\d{4} \(\w{4}[ ]?\d{4}(?:(?: or | ou | and | et )\w{4}[ ]?\d{4})+\)') uOOrListPat = re.compile(r'\(\w{3,4}[ ]?\d{4}(?:(?: or | ou )\w{3,4}[ ]?\d{4})\)') uOOrListNoBracketPat = re.compile(r'\w{3}[ ]?\d{4}(?:(?: or | ou )\w{3}[ ]?\d{4})+') uOOrCondNoBracketIsoPat = re.compile(r'^\w{3,4}[ ]?\d{4}(?:(?: or | ou )\w{3}[ ]?\d{3,4})[.]?$') uOEnglishCoursePat = re.compile(r'\w{3}[ ]?\d[1234]\d{2}') uOAndListIsoPat = re.compile(r'^\w{3,4}[ ]?\d{4}(?:(?: and | et |, )\w{3,4}[ ]?\d{4})+$') uOAndCondIsoPat = re.compile(r'^\w{3,4}[ ]?\d{4}(?:(?: and | et |, )\w{3,4}[ ]?\d{4})$') uOAndCondPat = re.compile(r'\w{3,4}[ ]?\d{4}(?:(?: and | et |, )\w{3,4}[ ]?\d{4})') uOAndOptionPat = re.compile(r'^\(?\w{3}[ ]?\d{4}(?:(?: and | et |, )\w{3}[ ]?\d{4})\)?$') uOAndListPat = re.compile(r'^\(?\w{3}[ ]?\d{4}(?:(?: and | et |, )\w{3}[ ]?\d{4})+\)?$') uONotCombineFRPat = re.compile(r'^Les cours \w{3}[ ]?\d{3,4}(?:(?: or | ou | and | et |, )\w{3,4}[ ]?\d{4})+ ne peuvent être combinés pour l\'obtention de crédits[.;]?', re.IGNORECASE) uONotCombineENGPat = re.compile(r'^\w{3}[ ]?\d{3,4}(?:(?: or | ou | and | et |, )\w{3,4}[ ]?\d{4})+ cannot be combined for units[.;]?', re.IGNORECASE) uOSingleThirdPartyOptPat = re.compile(r'^\w{3}[ ]?\d{4} \(\w{4}[ ]?\d{4}\)$') uOThirdPartyCourseListPat = re.compile(r'\(?\w{4}[ ]?\d{4}(?:(?: or | ou | and | et |, )\w{4}[ ]?\d{4})\)?') uOCreditPrereqENGPat = re.compile(r'^\d+ university units[.;]?$') uOCreditPrereqFRPat = re.compile(r'^\d+ crédits universitaires[.;]?$') # splits string by commas not appearing within () or [] stringListSplitterPat = re.compile(r'(?=,\s*(?![^\[\]\[\]]*[\]\]]))(?=,\s*(?![^()\[\]]*[\)\]]))') def splitCourseOrCond(raw : str, pattern, coursePat=None) -> list: courseOrList = [] splitOrCond = re.split(pattern, raw) for courseCode in splitOrCond: # remove any parenthesis courseCode = courseCode.replace('(', '') courseCode = courseCode.replace(')', '') if coursePat: if re.search(pattern, courseCode): courseOrList.append(courseCode.strip()) else: courseOrList.append(courseCode.strip()) return courseOrList def splitOnPeriod(string : str): splitList = re.split(r'\.', string) return splitList def splitOnComma(string : str): newList = re.split(stringListSplitterPat, string) for i, item in enumerate(newList): if item.startswith(', '): newList[i] = item[2:] if item == '': newList.pop(i) return newList def normalizeUnicodeString(string : str) -> str: string = string.replace(u'\xa0', ' ') # item = unicodedata.normalize('NFKC', item) string = string.strip() string = string.replace('Préalable : ', '') string = string.replace('Préalables : ', '') string = string.replace('Prerequisite: ', '') string = string.replace('Prerequisites: ', '') return string def parseUOttawaPrereqElm(prereqString : str): prereqList = [] splitList = splitOnPeriod(prereqString) # print('splitList:', splitList) for item in splitList: item = normalizeUnicodeString(item) if item == '' or re.search(uOAntiReqPat, item) or re.match(uONotCombineENGPat, item) \ or re.match(uONotCombineFRPat, item): continue # Case where or condition list in the form 'One of Calculus and Vectors (MCV4U) or MAT 1339' if re.match(uOOneOfCondPat, item): temp = item[7:] orList = splitCourseOrCond(temp, r' or | ou ') newList = [] numCourses = len(orList) for newElem in orList: newList.append(parseUOttawaPrereqElm(newElem)) prereqList.append((numCourses, newList)) commaSplitList = splitOnComma(item) for element in commaSplitList: # Single isolated couse code if re.match(uOCourseCodeIsolatedPat, element): prereqList.append(element) # Message regarding 'cannot be combined' -- ignore case elif re.match(uONotCombineFRPat, element) or re.match(uONotCombineENGPat, element): continue # premission required case (2 of several) -- rest ignored elif re.match(r'Permission de l\'Institut', element) \ or re.match(r'permission of the instructor', element): prereqList.append(element) elif re.match(uOCreditPrereqENGPat, element) or re.match(uOCreditPrereqFRPat, element): prereqList.append(element) elif re.search(r'This course is (?:primarily )?intended', element) \ or re.search(r'principalement aux étudiants', element) \ or re.search(r'cours est destiné', element) or re.search(r'cours ne peut pas', element)\ or re.search(r'an equivalent', element) \ or re.search(r'verify your program', element) \ or re.search(r'cannot count', element): pass # case of a list with third party courses elif re.search(uOThirdPartyCourseListPat, element): temp = re.split(uOThirdPartyCourseListPat, element) for item in temp: if re.search(r'\w{4}[ ]?\d{4}', item): pass else: prereqList.append(parseUOttawaPrereqElm(item)) # case where single course code has third party alternative elif re.match(uOSingleThirdPartyOptPat, element): newCourse = re.search(uOCourseCodePat, element).group() prereqList.append(newCourse) # single or condition without brackets elif re.match(uOOrCondNoBracketIsoPat, element): orList = splitCourseOrCond(element, r' or | ou ') tempList = [] for item in orList: if re.match(uOCourseCodeIsolatedPat, item): tempList.append(item) # case where something other than a course code is part of an OR group # which then becomes of length 1 if len(tempList) == 1: prereqList.append(tempList[0]) elif len(tempList) > 1: prereqList.append(tempList) # and list, possibly multiple elif re.match(uOAndListIsoPat, element): # single and condition (two courses) if re.match(uOAndCondIsoPat, element): andList = splitCourseOrCond(element, r' and | et |, ') for item in andList: if re.match(uOCourseCodeIsolatedPat, item): prereqList.append(item) # Ontario Highschool course code elif re.search(r'[ \(][A-Z]{3}[ ]?\d[A-Z]', element): newItem = re.search(r'[ \(][A-Z]{3}[ ]?\d[A-Z]', element).group() if newItem.startswith('(') or newItem.startswith(' '): newItem = newItem[1:] prereqList.append(newItem) # check if brackets surrounding text exist elif re.search(r'\(.+\)', element): #case where there is an OR list if re.match(uOOrListPat, element): prereqList.append(splitCourseOrCond(element, r' or | ou ', uOCourseCodePat)) # check if a uOttawa course code exists elif re.search(uOCourseCodePat, element): #split by commas outside of brackets bracketSplitList = re.split(stringListSplitterPat, element) tempList = [] for item in bracketSplitList: # filter out split prereqs starting with 'or' if re.search(r' or | ou ', item): if item.startswith('or'): pass splitList = splitCourseOrCond(item, r' or | ou ', uOCourseCodePat) for ele in splitList: tempList.append(parseUOttawaPrereqElm(ele)) # filter out coreq cases elif re.search(r'coreq', item) or re.search(r'concomitant', item): pass # if starting with a uOttawa course code, add it elif re.match(r'^[a-zA-Z]{3}[ ]?\d{4}', item): prereqList.append(re.match(r'^[a-zA-Z]{3}[ ]?\d{4}', item).group()) prereqList.append(tempList) # filter everything else else: pass return prereqList def parseUOttawaPrereqs(courseData : list): for i, element in enumerate(courseData): # print('subject:', element['course_name']) prereqString = element['prereqs'] # print('prereqstring:', prereqString) if len(prereqString) == 0: continue prereqList = [] for ele in prereqString: # if it is not an english course split and discard english translations if they exist # potentially breaking if the ` / ` sequence exists for a different purpose if not re.match(uOEnglishCoursePat, element['course_num']): ele = ele.split(' / ', 2)[0] prereq = parseUOttawaPrereqElm(ele) if len(prereq) == 1 and prereq[0] == '': pass else: if isinstance(prereq, list): for item in prereq: prereqList.append(item) else: prereqList.append(prereq) # #TODO: convert prereq to new object as per #115 #print(newPrereq) # courseData[i]['prereqs'] = prereqList ################################## if __name__ == "__main__": if not len(sys.argv) == 3: exit('Invalid Arguments') fileIn = sys.argv[1] # plain text file fileOut = sys.argv[2] # output JSON file tempList = [] courseDataList = course_util.get_courses(fileIn) parseUOttawaPrereqs(courseDataList) json_object = json.dumps(courseDataList, indent=2, ensure_ascii=False) # dumping into JSON # Writing to sample.json with open(fileOut, "w") as outfile: # writing to JSON file outfile.truncate(0) outfile.write(json_object)
jessendasilva1/UniveristySearch
graphing/util/parser/ottawaCourseParser.py
ottawaCourseParser.py
py
11,463
python
en
code
0
github-code
6
22168670744
from odoo import models, api from odoo.addons.l10n_ar.models.account_fiscal_position import AccountFiscalPosition @api.model def _get_fiscal_position(self, partner, delivery=None): company = self.env.company if company.country_id.code == "AR": self = self.with_context( company_code='AR', l10n_ar_afip_responsibility_type_id=partner.l10n_ar_afip_responsibility_type_id.id) return super(AccountFiscalPosition, self)._get_fiscal_position(partner, delivery=delivery) AccountFiscalPosition._get_fiscal_position = _get_fiscal_position class AccountFiscalPositionMp(models.Model): _inherit = 'account.fiscal.position' @api.model def _search(self, args, offset=0, limit=None, order=None, count=False, access_rights_uid=None): """ Take into account the partner afip responsibility in order to auto-detect the fiscal position """ if self._context.get('company_code') == 'AR': args += [('l10n_ar_afip_responsibility_type_ids', '=', self._context.get('l10n_ar_afip_responsibility_type_id'))] return super()._search(args, offset, limit, order, count=count, access_rights_uid=access_rights_uid) def _onchange_afip_responsibility(self): return {} @api.model def _get_fpos_by_region(self, country_id=False, state_id=False, zipcode=False, vat_required=False): if country_id and 'website_id' in self._context and 'l10n_ar_afip_responsibility_type_id' not in self._context: company = self.env['res.company'].browse(self._context.get('force_company', self.env.company.id)) if company.country_id.code == 'AR': self = self.with_context(company_code='AR') # odoo only match fiscal positions if partner has a country, we've many customers with partners with country_id = False # so, for ARG, if no country is configured we use Argentina for the fiscal autodetection if not country_id and 'l10n_ar_afip_responsibility_type_id' in self._context: country_id = self.env.ref('base.ar').id return super()._get_fpos_by_region(country_id=country_id, state_id=state_id, zipcode=zipcode, vat_required=vat_required)
ingadhoc/odoo-argentina
l10n_ar_ux/models/account_fiscal_position.py
account_fiscal_position.py
py
2,196
python
en
code
89
github-code
6
36011166018
# encoding: utf8 # Import local files: import rois as ROIS import gui_functions as GUIF import structure_set_functions as SSF from tkinter import messagebox # Clinical Goal class class ClinicalGoal(object): def __init__(self, name, criteria, type, tolerance, value, priority): self.name = name self.criteria = criteria self.type = type self.tolerance = tolerance self.value = value self.priority = priority # Applies the clinical goal object to a given EvaluationSetup. # Parameters: # es - A RayStation EvaluationSetup instance, in which the clinical goal is to be created # normalized_tolerance - an alternative to the original tolerance (AcceptanceLevel), e.q. recalculated as a percentage value of the prescription dose. # normalized_value - an alternative to the original dose value (ParameterValue), e.q. recalculated as a percentage value of the prescription dose. def apply_to(self, es, normalized_tolerance = None, normalized_value = None): # Use preset values if normalized arguments are not given: if normalized_tolerance is None: normalized_tolerance = self.tolerance if normalized_value is None: normalized_value = self.value try: if self.type == 'AverageDose': # When clinical goal is of type AverageDose, we do not use the ParameterValue when invoking the RayStation AddClinicalGoal function: es.AddClinicalGoal(RoiName = self.name, GoalCriteria = self.criteria, GoalType = self.type, AcceptanceLevel = normalized_tolerance, Priority = self.priority) else: # Call AddClinicalGoal function with ParameterValue: es.AddClinicalGoal(RoiName = self.name, GoalCriteria = self.criteria, GoalType = self.type, AcceptanceLevel = normalized_tolerance, ParameterValue = normalized_value, Priority = self.priority) except Exception as e: GUIF.handle_error_on_clinical_goal_creation(self, normalized_tolerance, normalized_value, e) # Gives a text representation of the clinical goal object. def text(self): return f"Name: {self.name}\nCriteria: {self.criteria}\nType: {self.type}\nTolerance: {self.tolerance}\nValue: {self.value}\nPriority: {self.priority}" # Types: volume_at_dose = 'VolumeAtDose' abs_volume_at_dose = 'AbsoluteVolumeAtDose' dose_at_abs_volume = 'DoseAtAbsoluteVolume' dose_at_volume = 'DoseAtVolume' average_dose = 'AverageDose' homogeneity_index = 'HomogeneityIndex' conformity_index = 'ConformityIndex' # Sets up clinical goals. # Creates clinical goals in RayStation from clinical goal objects from the given Site, # using the given prescription to determine target clinical goals as well as doing EQD2 conversion on OAR clinical goals. def setup_clinical_goals(ss, es, site, prescription, target): for cg in site.target_clinical_goals: # Make sure corresponding ROI exists before trying to create clinical goal: if SSF.has_roi(ss, cg.name): if cg.name in [ROIS.external.name, ROIS.igtv.name, ROIS.gtv.name] and cg.criteria == 'AtMost' and cg.tolerance != 5000: cg.apply_to(es, normalized_tolerance = round(cg.tolerance*prescription.total_dose*100,0)) elif cg.name in [ROIS.ctv_sb.name, ROIS.ptv_sbc.name] and target != ROIS.ctv_sb.name or cg.tolerance == 5000 or cg.type == homogeneity_index: cg.apply_to(es) elif cg.type == conformity_index: cg.apply_to(es, normalized_value = round(cg.value*prescription.total_dose*100,0)) # Attempt fix of VolumeAtDose for targets (had to implement for Breast SIB CTVp-CTVsb): elif cg.type == volume_at_dose: cg.apply_to(es) else: cg.apply_to(es, normalized_tolerance = round(cg.tolerance*prescription.total_dose*100,0)) else: # Missing ROI: GUIF.handle_missing_roi_for_clinical_goal(cg.name) for cg in site.oar_clinical_goals: # Make sure corresponding ROI exists before trying to create clinical goal: if SSF.has_roi(ss, cg.name): if cg.type in [dose_at_volume, dose_at_abs_volume, average_dose]: cg.apply_to(es, normalized_tolerance = round(cg.tolerance.equivalent(prescription.nr_fractions)*100,0)) else: cg.apply_to(es, normalized_value = round(cg.value.equivalent(prescription.nr_fractions)*100,0)) else: # Missing ROI: GUIF.handle_missing_roi_for_clinical_goal(cg.name)
dicom/raystation-scripts
rt_classes/clinical_goal.py
clinical_goal.py
py
4,341
python
en
code
40
github-code
6
25911867612
from Solution import Solution class P004(Solution): def is_palindromic(self, number): number_as_string = str(number) reverse = number_as_string[::-1] if reverse == number_as_string: return True else: return False def solve(self): self.problem_number = 4 start = 99 finish = 999 result = 0 not_done = True i = finish while not_done and (i > start): for j in range(finish, start, -1): number = i * j if self.is_palindromic(number) and (number > result): result = number break i -= 1 return result def main(): P004().run() if __name__ == "__main__": main()
TalaatHarb/project-euler-100
python-project-euler-100/p004.py
p004.py
py
783
python
en
code
2
github-code
6
2768054561
# add is O(1) because it appends which doesnt take any time. # Remove is O(1) because if stack_1 is empty, returns empty queue # It appends popped values from stack_1 to stack_2 and returns popped value of stack_2 class QueueStack: def __init__(self): self.stack_1 = [] self.stack_2 = [] def add(self, item): #adds item to stack self.stack_1.append(item) return (self.stack_1) def remove(self): #will remove item from stack if len(self.stack_1) == 0 and len(self.stack_2) == 0: print("Queue is empty") else: if len(self.stack_2) == 0 and len(self.stack_1) > 0: while len(self.stack_1) > 0: self.stack_2.append(self.stack_1.pop()) print(self.stack_2.pop()) queue = QueueStack() queue.remove() queue.add(1) queue.add(2) queue.add(3) queue.remove() queue.add(4) queue.remove() queue.remove() queue.add(5) queue.remove() queue.remove() queue.remove() # it prints “Queue is empty” # it returns 1 # it returns 2 # it returns 3 # it returns 4 # it returns 5 # it prints “Queue is empty”
CarlBorillo/CECS-274
CECS 274 PROJ 1/CECS 274 PROJ 1/1_5_queue.py
1_5_queue.py
py
1,148
python
en
code
0
github-code
6
34398796086
from typing import List import docx from .IngestorInterface import IngestorInterface from .QuoteModel import QuoteModel class DocxIngestor(IngestorInterface): allowed_extensions = ['docx'] @classmethod def parse(cls, path: str) -> List[QuoteModel]: if not cls.can_ingest(path): raise Exception('Cannot Ingest Exception') quotes = [] doc = docx.Document(path) for para in doc.paragraphs: if para.text != "": parsed = para.text.split('-') parsed[0] = parsed[0].strip(' ').strip('"') parsed[1] = parsed[1].strip(' ') new_quote = QuoteModel(parsed[0], parsed[1]) quotes.append(new_quote) return quotes
KosziDrimi/Meme-Generator-project
QuoteEngine/DocxIngestor.py
DocxIngestor.py
py
800
python
en
code
0
github-code
6
12138793296
from dataclasses import fields from pyexpat import model import django from django import forms from django.db.models import fields from django.contrib.auth.forms import UserCreationForm,AuthenticationForm from django.forms import ModelForm from .models import * class CustomUserCreationForm(UserCreationForm): class Meta: model=Userreg fields=('username','email','phoneno','password1','password2') def clean(self): val = super(CustomUserCreationForm, self).clean() email = val.get("email") if email == "": self.add_error('email','this field is required') return val class EditUserForm(forms.ModelForm): class Meta: model=Userreg fields=('username','email','phoneno') class Productform(ModelForm): class Meta: model = Product fields = ('product_name','description','category','mrp_price','stocks','product_image1','product_image2','product_image3','product_image4','descriptionone','descriptiontwo','descriptionthree','descriptionfour') labels = { 'product_name':'Product name', 'description' : 'Description', 'descriptionone' : 'Specification 1', 'descriptiontwo' : 'Specification 2', 'descriptionthree' : 'Specification 3', 'descriptionfour' : 'Specification 4', 'category' : 'Category', 'mrp_price' : 'Price', 'stocks' : 'InStock', 'product_image1' : 'Cover Image 1', 'product_image2' : 'Cover Image 2', 'product_image3' : 'Cover Image 3', 'product_image4' : 'Cover Image 4', } class CategoryForm(forms.ModelForm): class Meta: model=Category fields = '__all__' class EditCategoryForm(forms.ModelForm): class Meta: model=Category fields = '__all__' class AddressForm(ModelForm): class Meta: model = Address fields = ('type','first_name','last_name','mobile','email','address_lane_1','address_lane_2','city','district','state','country','pincode') labels = { 'type' : 'Address Type', 'first_name':'First name', 'last_name' : 'Last name', 'mobile' : 'Mobile', 'address_lane_1' : 'Address Lane 1', 'address_lane_2' : 'Address Lane 1', 'city' : 'City', 'state' : 'State', 'country' : 'Country', 'pincode' : 'Pincode', } class DateInput(forms.DateTimeInput): input_type = 'date' # class CouponForm(ModelForm): # class Meta: # model=Coupon # fields = ('coupon_title','coupon_code','coupon_limit','coupn_offer') # labels = { # 'coupon_title' : 'Coupon Title', # 'coupon_code':'Coupon Code', # 'coupon_limit' : 'Coupon Limit', # 'coupn_offer' : 'Coupon Offer Price', # } class CouponApplyForm(forms.ModelForm): class Meta: model = CouponCode fields = ['code','valid_from','valid_to','discount','active'] widgets = { 'valid_from': DateInput(), 'valid_to':DateInput(), } def __init__(self,*args,**kwargs): super(CouponApplyForm, self).__init__(*args, **kwargs) class EditCouponForm(forms.ModelForm): class Meta: model=CouponCode fields=('code','valid_from','valid_to','discount','active') class ProductOfferForm(forms.ModelForm): class Meta: model = ProductOffer fields = ['code','product_id', 'valid_from','valid_to','discount','is_active'] widgets = { 'valid_from': DateInput(), 'valid_to':DateInput(), } def __init__(self,*args,**kwargs): super(ProductOfferForm, self).__init__(*args, **kwargs) class CategoryOfferForm(forms.ModelForm): class Meta: model = CategoryOffer fields = ['code','category_id', 'valid_from','valid_to','discount','is_active'] widgets = { 'valid_from': DateInput(), 'valid_to': DateInput(), } def __init__(self,*args,**kwargs): super(CategoryOfferForm, self).__init__(*args, **kwargs) class EditCouponCatForm(forms.ModelForm): class Meta: model=CategoryOffer fields=('code','category_id', 'valid_from','valid_to','discount','is_active') class EditProductOffer(forms.ModelForm): class Meta: model=ProductOffer fields=('code','product_id', 'valid_from','valid_to','discount','is_active')
baadhira/shopify-ecommerce
adminapp/forms.py
forms.py
py
4,635
python
en
code
0
github-code
6
27615702847
""" Get 10 titles of the most popular movies/series etc. by each genre. Получите 10 наименований самых популярных фильмов/сериалов и т. д. в каждом жанре. title.basics.tsv.gz title.ratings.tsv.gz """ from pyspark import SparkConf from pyspark.sql import SparkSession import pyspark.sql.types as t import pyspark.sql.functions as f from pyspark.sql import Window def task8(): spark_session = (SparkSession.builder .master("local") .appName("task app") .config(conf=SparkConf()) .getOrCreate()) schema_title_basics = t.StructType([ t.StructField("tconst", t.StringType(), nullable=True), t.StructField("titleType", t.StringType(), nullable=True), t.StructField("primaryTitle", t.StringType(), nullable=True), t.StructField("originalTitle", t.StringType(), nullable=True), t.StructField("isAdult", t.StringType(), nullable=True), t.StructField("startYear", t.IntegerType(), nullable=True), t.StructField("endYear", t.IntegerType(), nullable=True), t.StructField("runtimeMinutes", t.IntegerType(), nullable=True), t.StructField("genres", t.StringType(), nullable=True), ]) schema_ratings_basics = t.StructType([ t.StructField("tconst", t.StringType(), nullable=True), t.StructField("averageRating", t.DoubleType(), nullable=True), t.StructField("numVotes", t.IntegerType(), nullable=True) ]) file_read_basics = r'.\Data\input\title.basics.tsv.gz' file_read_ratings = r'.\Data\input\title.ratings.tsv.gz' from_csv_basics_df = spark_session.read.csv( file_read_basics, header=True, nullValue='null', sep=r'\t', schema=schema_title_basics) from_csv_ratings_df = spark_session.read.csv( file_read_ratings, header=True, nullValue='null', sep=r'\t', schema=schema_ratings_basics) temp_df1 = from_csv_basics_df.withColumn("genres", f.explode(f.split(f.col("genres"), ","))) temp_df1 = temp_df1.select("tconst", "titleType", "primaryTitle", "genres") temp_df2 = from_csv_ratings_df.select("tconst", "averageRating") temp_df3 = temp_df1.join(temp_df2, "tconst") window = (Window.orderBy(f.desc("genres"), f.desc("averageRating")).partitionBy("genres")) from_csv_df_task8 = temp_df3.withColumn("Rating_genre", f.row_number().over(window)).where(f.col("Rating_genre") <= 10) #from_csv_df_task8.show(100) file_write = r'.\Data\output\task08' from_csv_df_task8.write.csv(file_write, header=True, mode="overwrite") return 0
Tetyana83/spark
task8.py
task8.py
py
2,591
python
en
code
0
github-code
6
42242066819
from random import Random from torch.utils.data import DataLoader from torchvision import transforms, datasets class Partition: def __init__(self, data, index): self.data = data self.index = index def __len__(self): return len(self.index) def __getitem__(self, idx): data_idx = self.index[idx] return self.data[data_idx] class DataPartitioner: def __init__(self, data, sizes=[1], seed=1340): self.data = data self.partitions = [] rng = Random() rng.seed(seed) data_len = len(data) indexes = list(range(data_len)) rng.shuffle(indexes) for part in sizes: part_len = int(part * data_len) self.partitions.append(indexes[0: part_len]) indexes = indexes[part_len:] def use(self, rank): return Partition(self.data, self.partitions[rank]) def get_mnist(data_dir, rank, size): trans = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(0.1307, 0.3081), ]) batch_size = 128 num_workers = 8 download = True dataset_train = datasets.MNIST(root=data_dir, train=False, transform=trans, download=download) batch_size_part = int(batch_size / size) partition_sizes = [1.0 / size for _ in range(size)] paritition = DataPartitioner(dataset_train, partition_sizes) paritition = paritition.use(rank) train_data = DataLoader(dataset=paritition, batch_size=batch_size_part, num_workers=num_workers, shuffle=True) print('data shape', next(iter(train_data))[0].shape) return train_data if __name__ == '__main__': data = get_mnist('~/data/', 0, 3)
DragonChen-TW/torch_DDP
data_partition.py
data_partition.py
py
1,832
python
en
code
1
github-code
6
36551632681
import matplotlib.pyplot as plt from DataHandler import DataHandler from LinearClassifier import LinearClassifier if __name__ == '__main__': #generating a normal distributed data (1000 samples per class) data_handler = DataHandler() class0Dataset = data_handler.get2DGaussian(1000, [-2, -2]) class1Dataset = data_handler.get2DGaussian(1000, [2, 2]) #labling the data class0Dataset = data_handler.label(class0Dataset, 0) class1Dataset = data_handler.label(class1Dataset, 1) #shuffling the data dataset = data_handler.shuffle(class0Dataset + class1Dataset) ############################################################### classifier = LinearClassifier() print("initial weights : ", classifier.weights) print("initial bais : ", classifier.bais) actual = [row[-1] for row in dataset] pridected = [classifier.predict(row) for row in dataset] print("Accuracy before training : %.2f%%\n" % data_handler.accuracy(actual, pridected)) classifier.plot() plt.show() learning_rate = 0.01 n_folds = 5 n_epoch = 2 scores = data_handler.evaluate_model(dataset, classifier, n_folds, learning_rate, n_epoch) print('Scores: %s' % scores) print('Average Accuracy: %.2f%%' % (sum(scores) / float(len(scores)))) print("final weights : ", classifier.weights) print("final bais : ", classifier.bais) # plot results x, y, label = zip(*class0Dataset) X, Y, label = zip(*class1Dataset) plt.plot(x, y, 'x') plt.plot(X, Y, 'x') classifier.plot() plt.show()
Mustapha-Belkacim/Linear-classifier
main.py
main.py
py
1,623
python
en
code
0
github-code
6
40113246551
import os import sys import ruamel.yaml as yaml import llnl.util.tty as tty import llnl.util.lang import spack.repo import spack.cmd.common.arguments as arguments from spack.cmd import display_specs from spack.filesystem_view import filter_exclude from spack.build_systems.python import PythonPackage import spack.util.spack_yaml as syaml from spack.util.spack_yaml import syaml_dict, syaml_list description = "create a package.yaml from installed packages" section = "administration" level = "long" class PackagesDumper(syaml.OrderedLineDumper): """Customization to match common packages.yaml style """ def represent_list(self, seq, flow_style=None): """Impose an arbitrary length limit up to flow lists """ res = super(PackagesDumper, self).represent_list(seq) tot_len = sum(len(e.value) for e in res.value) res.flow_style = tot_len < 60 return res PackagesDumper.add_representer(syaml_list, PackagesDumper.represent_list) def setup_parser(sp): scopes = spack.config.scopes() sp.add_argument('-f', '--format', help="specify format for path/module keys", metavar="FMT", default='$_$@') sp.add_argument('-d', '--dependencies', help="add selected dependencies to the specs", action='store_true') sp.add_argument('-m', '--module', choices=spack.modules.module_types.keys(), default=None, help="point to modules generated for MOD", metavar="MOD") sp.add_argument("--scope", choices=scopes, default=spack.config.default_modify_scope(), help="configuration scope to modify.") sp.add_argument("-v", "--variants", choices=('all', 'changed'), default='all', help="which variant flags to store: only changed ones or all (default)") arguments.add_common_arguments(sp, ['tags', 'constraint']) sp.add_argument('--exclude', action='append', default=[], help="exclude packages with names matching the given regex pattern") sp.add_argument('--explicit', help='export specs that were installed explicitly', default=None, action='store_true') def _to_key(spec, fmt, variants): """Convert the provided `spec` to a simple, identifiable string, using the spec format given by `fmt`, and using all variants if `variants` is set to ``"all"``, otherwise only the ones changed from the default value. """ key = spec.format(fmt) sflags = [] bflags = [] for k, v in spec.variants.items(): default = None if k in spec.package.variants: default = spec.package.variants[k].default if v.value != default or variants == 'all': if v.value in (True, False): bflags.append(v) elif v.name != 'patches': sflags.append(v) sflags = ' '.join(str(f) for f in sorted(sflags)) bflags = ''.join(str(f) for f in sorted(bflags)) key = ' '.join([e for e in (key, sflags, bflags) if len(e) > 0]) return str(key) def export(parser, args): q_args = {"explicit": True if args.explicit else any} specs = args.specs(**q_args) # Exit early if no package matches the constraint if not args.specs and args.constraint: msg = "No package matches the query: {0}" msg = msg.format(' '.join(args.constraint)) tty.msg(msg) return packages = spack.config.get('packages', scope=args.scope) # If tags have been specified on the command line, filter by tags if args.tags: packages_with_tags = spack.repo.path.packages_with_tags(*args.tags) specs = [x for x in specs if x.name in packages_with_tags] if args.exclude: specs = set(filter_exclude(specs, args.exclude)) cls = None if args.module: cls = spack.modules.module_types[args.module] # Add all selected specs to the external packages new_packages = {} for spec in specs: pkg_toplevel = new_packages.setdefault(spec.name, {}) pkg_externals = pkg_toplevel.setdefault("externals", []) pkg_versions = pkg_toplevel.setdefault("version", syaml_list()) key = _to_key(spec, args.format, args.variants) externality = dict(spec=key, prefix=str(spec.prefix)) if key in [ext["spec"] for ext in pkg_externals]: tty.warn("spec already present, skipping: {0}".format(key)) continue mod = cls(spec) if cls else None if mod and not mod.conf.blacklisted: if os.path.exists(mod.layout.filename): externality["modules"] = [str(mod.layout.use_name)] else: msg = "module not present for {0}" msg = msg.format(spec.format("$_$@")) tty.warn(msg) version = str(spec.version) if version not in pkg_versions: pkg_versions.append(version) pkg_externals.append(externality) spack.config.merge_yaml(packages, new_packages) # Restore ordering packages = syaml_dict(sorted((k, v) for (k, v) in packages.items() if len(v) > 0)) if 'all' in packages: packages['all'] = packages.pop('all') yaml.dump({'packages': packages}, stream=sys.stdout, default_flow_style=False, Dumper=PackagesDumper)
tomdele/spack
lib/spack/spack/cmd/export.py
export.py
py
5,533
python
en
code
null
github-code
6
9378129688
import operator import pandas as pd def segmentation(dataset: pd.DataFrame, rfm: list, d: int): """ Sort RFM Segmentation function :param dataset: given dataset :param rfm: a list of three column name R, F, M :param d: number of delimiters to divide data based on each factor :return: dataset with new segment column """ datalists = [dataset.values.tolist()] for factor in rfm: new_datalists = [] for datalist in datalists: datalist.sort(key=operator.itemgetter(dataset.columns.get_loc(factor))) size = len(datalist) low_index = 0 rem = size % d step = size / d for i in range(d): up_index = low_index + int(step) + (1 if rem > 0 else 0) new_datalists.append(datalist[low_index: up_index]) rem -= 1 low_index = up_index datalists = new_datalists # Determining customer segments customer_segment = dict() id_index = dataset.columns.get_loc('id') for segment_id in range(d**3): for customer in datalists[segment_id]: customer_segment[customer[id_index]] = segment_id + 1 # Adding segmentation results to dataset dataset['Sort_Approch_Segment'] = dataset.apply(lambda row: customer_segment[row['id']], axis=1) return dataset
smh997/Audiobook-Customer-Segmentation-and-Purchase-Prediction
Customer Segmentation/RFM/sort_segmentation.py
sort_segmentation.py
py
1,371
python
en
code
1
github-code
6
72650143867
cod1,num1,valor1 = input().split() cod1,num1,valor1 = int(cod1),int(num1),float(valor1) cod2,num2,valor2 = input().split() cod2,num2,valor2 = int(cod2),int(num2),float(valor2) peca1 = num1*valor1 peca2 = num2*valor2 total = peca1 + peca2 print(f'VALOR A PAGAR: R$ {total:.2f}')
hpalermoemerick/Exercicios-do-Beecrowd
1010_Calculo_Simples.py
1010_Calculo_Simples.py
py
279
python
pt
code
0
github-code
6
26536074156
def regresiva(n): while n > 0: yield n n -= 1 for x in regresiva(10): print(x, end=" ") list(regresiva(10)) #%% def filematch(filename, substr): with open(filename, 'r') as f: for line in f: if substr in line: yield line for line in open('Data/camion.csv'): print(line, end="") for line in filematch('Data/camion.csv', 'Naranja'): print(line, end="")
francosbenitez/unsam
10-generadores-e-iteradores/tests.py
tests.py
py
442
python
en
code
0
github-code
6
75137098747
from django.contrib.auth.backends import ModelBackend from django.contrib.auth.models import Permission from .models import Organization, OrganizationUser class OrganizationBackend(ModelBackend): supports_object_permissions = True def authenticate(self, organization=None, username=None, password=None): if organization is None: return None try: organization = Organization.objects.get(code__iexact=organization) except Organization.DoesNotExist: return None try: user = OrganizationUser.objects.get(organization=organization, username__iexact=username, user__is_active=True) if user.check_password(password): return user except OrganizationUser.DoesNotExist: return None def _create_permission_set(self, perms=None): """ Expects a queryset of permissions, returns a formatted set. """ if perms is None: return set() if isinstance(perms, (list, tuple)): perms = [(perm.content_type.app_label, perm.codename) for perm in perms] else: perms = perms.values_list('content_type__app_label', 'codename').order_by() return set(['%s.%s' % (ct, name) for ct, name in perms]) def get_group_permissions(self, user_obj, obj=None): """ Returns a set of all permission strings that this user has through his/her roles for the given object. We accomplish this by pulling the set of all available permissions, then checking the object. A superuser immediately gets all of the available permissions, and a super role gets all of their super role permissions. The supplied object can be None, an `Organization` object, or an object with an organization attribute. If the object is None, then this function returns all permissions that this user has available, regardless of object. This facilitates situations where you want to limit functionality based off of whether or not a permission exists at all. If the object is an `Organization` object, we only return permissions granted via SuperRoles and Roles the user is a member of, that are part of the supplied organization. If the supplied object has an `organization` attribute (or an _ORGANIZATION_ATTRIBUTE attribute with the name of an actual attribute that returns an `Organization` object), then the returned permissions are all permissions granted via SuperRoles, as well as permissions granted from Roles that the user is a member of, that are part of the organization that owns the object. Finally, if an object is supplied, but it is not an `Organization` object, nor does it have an attribute that points to an `Organization` object, then return all available permissions (as if the supplied object was None) """ # superusers get all permissions, like usual if user_obj.is_superuser: perms = Permission.objects.all() return self._create_permission_set(perms) # if the user is not an OrganizationUser, they get no permissions if not isinstance(user_obj, OrganizationUser): return set() # if the user is not in any roles, they get no permissions if not any([user_obj.super_roles.count(), user_obj.roles.count()]): return set() # at this point, they should have some permissions # start off with the set of super role permissions perms = Permission.objects.filter(superrole__organizationuser=user_obj) # next, get the set of permissions provided by the regular roles if isinstance(obj, Organization): # if the supplied object is an `Organization` object object_org = obj else: # check the object's organization attname = getattr(obj, '_ORGANIZATION_ATTRIBUTE', 'organization') # if no object was passed in, or the object doesn't have an # organization attribute, include all permissions from all roles if obj is None or not hasattr(obj, attname): roles = user_obj.roles.all() perms = perms | Permission.objects.filter(role__in=roles) # done calculating at this point, return early return self._create_permission_set(perms) # At this point, we know the object is not None and the object # has an organization attribute, so fetch the value of the # organization object_org = getattr(obj, attname, None) # If the value of the organization attribute is None, then return # the currently collected permissions if object_org is None: return self._create_permission_set(perms) # Finally, collect the permissions this user has on this object, based # off of the set of organizations they are a member of # If the user is not a member of the organization attached to this # object, then return the collected permissions if object_org not in user_obj.get_all_organizations(): return self._create_permission_set(perms) # The user is in the organization that owns this object, so collect # all of the permissions this user has for this organization roles = user_obj.roles.filter(organization=object_org) perms = perms | Permission.objects.filter(role__in=roles) return self._create_permission_set(perms) def get_all_permissions(self, user_obj, obj=None): if user_obj.is_anonymous(): return set() # we don't support user permissions return self.get_group_permissions(user_obj, obj=obj) def has_perm(self, user_obj, perm, obj=None): if not user_obj.is_active: return False return perm in self.get_all_permissions(user_obj, obj=obj) def has_module_perms(self, user_obj, app_label, obj=None): if not user_obj.is_active: return False for perm in self.get_all_permissions(user_obj, obj=obj): if perm[:perm.index('.')] == app_label: return True return False def get_user(self, user_id): try: return OrganizationUser.objects.get(pk=user_id) except OrganizationUser.DoesNotExist: return None
avidal/django-organizations
organizations/backends.py
backends.py
py
6,718
python
en
code
1
github-code
6
12091024325
from typing import List, Iterator import torch from torch.utils.data.sampler import Sampler from nltk import Tree from nltk.tokenize.treebank import TreebankWordTokenizer class TokenizedLengthSampler(Sampler[List[int]]): """ PyTorch DataLoader - compatible sampler class that batchify sentences with the most similar lengths for maximum efficiency. """ def __init__(self, data_source: List[str], batch_size: int, seed: int): self.data_source = data_source self.length = len(data_source) self.batch_size = batch_size tokenize = TreebankWordTokenizer().tokenize seq_lengths = [len(tokenize(sent)) for sent in data_source] indices = list(range(len(data_source))) indices = sorted(indices, key=lambda i: seq_lengths[i]) batches = [] if self.length % self.batch_size != 0 : batches.append(indices[:self.length % self.batch_size]) for start in range(self.length % self.batch_size, self.length, batch_size): end = start + batch_size batches.append(indices[start:end]) self.length_batches = len(batches) self.batches = [batches[i] for i in torch.randperm(n=self.length_batches, dtype=torch.long).tolist()] self.seq_lengths = seq_lengths def __len__(self): return self.length_batches def __iter__(self) -> Iterator[List[int]]: for batch in self.batches: yield batch
jinulee-v/bert_diora
bert_diora/utils.py
utils.py
py
1,470
python
en
code
0
github-code
6
21929427517
# Trial project - Number guessing import time import random random_number = random.randint(1,100) player_point = 0 attempt_counter = 0 print("Welcome to number guessing challenge. You will get 10 chance to guess the correct number!\n") while attempt_counter <=10: print(f"Currect time : {time.asctime()}") user_input = int(input("Enter your guess : ")) if user_input<random_number: print("Please enter larger number!") attempt_counter += 1 print(f"You have only {10-attempt_counter} attempts remaing !\n") continue elif user_input>random_number: print("Please enter lower number!") attempt_counter += 1 print(f"You have only {10-attempt_counter} attempts remaining !\n") continue else: print("\nCongratulations! You have guessed the correct number.\n") attempt_counter += 1 break print(f"You have took {attempt_counter} attempt")
MahbinAhmed/Learning
Python/Python Practice/number_guessing.py
number_guessing.py
py
941
python
en
code
0
github-code
6
41211802240
#import cv2 from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input, decode_predictions import numpy as np import os import sys import json from PIL import Image # import Image import requests from io import BytesIO import urllib3 import h5py urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) # y_test = [] # 計算相似矩陣 def cosine_similarity(ratings): sim = ratings.dot(ratings.T) if not isinstance(sim, np.ndarray): sim = sim.toarray() norms = np.array([np.sqrt(np.diagonal(sim))]) return (sim / norms / norms.T) def saveVector(vector): ## don't use, just use it in colab to get the vector save_file = h5py.File('../test.h5', 'w') save_file.create_dataset('test', data=vector) save_file.close() def readvector(): open_file = h5py.File('/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/vgg16_p/test.h5', 'r') vector = open_file['test'][:] open_file.close() return vector def getTitleCheck_VGG(): a = np.load('/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/vgg16_p/title.npy', allow_pickle= True) return a.item() def compare(): # y_test = [] model = VGG16(weights='imagenet', include_top=False) # 取样本 image_sample = Image.open("/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/frontend/static/frontend/images/temp.jpg") imageS = image_sample.crop() thisImage = imageS.resize((224, 224)) my_image = image.img_to_array(thisImage) my_x = np.expand_dims(my_image, axis=0) my_x = preprocess_input(my_x) my_features = model.predict(my_x) my_features_compress = my_features.reshape(1, 7 * 7 * 512) # features_compress.append(my_features_compress) features_compress = readvector() # print(np.shape(features_compress)) # print(np.shape(my_features_compress)) new_features = np.append(features_compress, my_features_compress, axis=0) # print(np.shape(new_features)) # exit(0) sim = cosine_similarity(new_features) # print("sim:", np.shape(sim)) # # 依命令行參數,取1個樣本測試測試 # inputNo = int(sys.argv[1]) # tiger, np.random.randint(0,len(y_test),1)[0] # sample = y_test[inputNo] # print(sample) top = np.argsort(-sim[-1, :], axis=0)[1:3] # 取得最相似的前2名序號 y_test = getTitleCheck_VGG() recommend = [y_test[i] for i in top] print(recommend) # print(sim) def compare_melanger(): # y_test = [] model = VGG16(weights='imagenet', include_top=False) # 取样本 image_sample = Image.open("/Users/liujiazhen/Documents/2020-2021/PFE/PFE/PFE/information-retrival-search-engine/informationRetrival/frontend/static/frontend/images/temp.jpg") # 此处添加修改地址 imageS = image_sample.crop() thisImage = imageS.resize((224, 224)) my_image = image.img_to_array(thisImage) my_x = np.expand_dims(my_image, axis=0) my_x = preprocess_input(my_x) my_features = model.predict(my_x) my_features_compress = my_features.reshape(1, 7 * 7 * 512) # features_compress.append(my_features_compress) features_compress = readvector() # print(np.shape(features_compress)) # print(np.shape(my_features_compress)) new_features = np.append(features_compress, my_features_compress, axis=0) # print(np.shape(new_features)) # exit(0) sim = cosine_similarity(new_features) return sim def main(): # 自 images 目錄找出所有 JPEG 檔案 y_test = [] x_test = [] # x_test_final = [] # FILE_PATH = "/Users/panda/Desktop/movie_1202" FILE_PATH = "/Users/panda/Downloads/archive/movies/movies" IMAGE_BASE_PATH = "https://image.tmdb.org/t/p/w500" flag = 0 # read file which is in the id_list open_file = h5py.File('./id_list.h5', 'r') id = open_file['id'][:] open_file.close() tmp = [] for i in range(len(id)): tmp.append(int(id[i].decode('UTF-8'))) # print(tmp) for movie in os.listdir(FILE_PATH): # if flag < 50: # flag += 1 # if flag == 245 or flag == 246 or flag == 247 or flag == 248: # print(movie) # else: # continue if movie.split(".")[1] != "json": continue movie_id = int(movie.split('_')[1].split('.')[0]) if movie_id in tmp: # print(movie_id) # open file fr = open(FILE_PATH + "/" + movie) # print(movie) # print(movie_id) movie_model = json.load(fr) fr.close() if movie_model['poster_path']: img_path = IMAGE_BASE_PATH + movie_model['poster_path'] html = requests.get(img_path, verify=False) poster = Image.open(BytesIO(html.content)) poster_img = poster.crop() # poster = html.content # imgByteArr = BytesIO() # poster.save(imgByteArr, format=poster.format) # poster = imgByteArr.getvalue() # poster_img.show() # img = poster_img.resize((224, 224)) # img.show() # exit(1) if poster: # img = image.load_img(poster_img, target_size=(224, 224)) img = poster_img.resize((224, 224)) # img.show() y_test.append(movie_id) x = image.img_to_array(img) # print(movie_id) # print(x[:,:,0]) # print(np.shape(x[:,:,0])) # exit(0) if np.shape(x)[2] == 1: x = np.stack((x[:, :, 0],) * 3, axis=-1) x = np.expand_dims(x, axis=0) if len(x_test) > 0: # print(1) # print(np.shape(x_test)) # print(np.shape(x)) # exit(0) x_test = np.concatenate((x_test, x)) else: # print(2) x_test = x # flag = flag + 1 # else: # if len(x_test_final) > 0: # # print(np.shape(x_test)) # # print(np.shape(x)) # # exit(0) # #x_test = preprocess_input(x_test) # x_test_final = np.concatenate((x_test_final, x_test)) # else: # # x_test = preprocess_input(x_test) # x_test_final = x_test # x_test = [] # flag = 0 # x_test_final = np.concatenate((x_test_final, x_test)) # 轉成 VGG 的 input 格式 # print(x_test) # print(type(x_test)) # print(np.shape(x_test)) x_test = preprocess_input(x_test) # print(np.shape(x_test_final)) np.save("title.npy", y_test) # include_top=False,表示會載入 VGG16 的模型,不包括加在最後3層的卷積層,通常是取得 Features (1,7,7,512) model = VGG16(weights='imagenet', include_top=False) # 萃取特徵 features = model.predict(x_test) # print(np.shape(features)) # 計算相似矩陣 features_compress = features.reshape(len(y_test), 7 * 7 * 512) # print(np.shape(features_compress)) # sim = cosine_similarity(features_compress) saveVector(features_compress) compare() # # 取样本 # image_sample = Image.open("/Users/panda/Desktop/test_image/test.jpg") # imageS = image_sample.crop() # thisImage = imageS.resize((224, 224)) # my_image = image.img_to_array(thisImage) # my_x = np.expand_dims(my_image, axis=0) # # my_x = preprocess_input(my_x) # # my_features = model.predict(my_x) # # my_features_compress = my_features.reshape(1, 7 * 7 * 512) # # # features_compress.append(my_features_compress) # # # print(np.shape(features_compress)) # # print(np.shape(my_features_compress)) # new_features = np.append(features_compress, my_features_compress, axis=0) # # print(np.shape(new_features)) # # exit(0) # sim = cosine_similarity(new_features) # # print("sim:", np.shape(sim)) # # # # # 依命令行參數,取1個樣本測試測試 # # inputNo = int(sys.argv[1]) # tiger, np.random.randint(0,len(y_test),1)[0] # # sample = y_test[inputNo] # # print(sample) # top = np.argsort(-sim[-1,:], axis=0)[1:3] # # # 取得最相似的前2名序號 # recommend = [y_test[i] for i in top] # print(recommend) # #print(sim) # if __name__ == "__main__": # main() print(getTitleCheck_VGG())
ming19956/PFE
information-retrival-search-engine/informationRetrival/vgg16_p/newvgg.py
newvgg.py
py
9,112
python
en
code
2
github-code
6
71839302589
import unittest, os from pre_requirements import BASE_FOLDER from budget_system import PurchaseList from budget_system.settings.Config import ConfigBudget from pandas.core.frame import DataFrame from numpy import float64 class PurchaseListTest(unittest.TestCase): def setUp(self) -> None: os.environ['CONFIG_BUDGET'] = os.path.join(BASE_FOLDER, 'config.ini') self.year, self.month = 2022, 'May' self.month_path = ConfigBudget().MONTH_PATH.format(year=self.year, month=self.month) self.file_name = 'test_table_one_storeone_[15-05-22].csv' self.location = os.path.join(self.month_path, self.file_name) def test_get_productsdata(self): products_data = PurchaseList(self.location).get_all() least_expensive, most_expensive, spent = products_data self.assertEqual(type(least_expensive), DataFrame) self.assertEqual(type(most_expensive), DataFrame) self.assertEqual(type(spent), float64) def test_get_n_most_expensive_products(self): n_products = 5 most_expensive = PurchaseList(self.location).most_expensive(n_products) self.assertEqual(type(most_expensive), DataFrame) def test_get_n_least_expensive_products(self): n_products = 5 least_expensive = PurchaseList(self.location).least_expensive(n_products) self.assertEqual(type(least_expensive), DataFrame) def test_get_total_spent(self): spent_by_table = PurchaseList(self.location).spending_by_sector() self.assertEqual(type(spent_by_table), float64) def test_get_full_dataframe(self): df = PurchaseList(self.location).data_frame self.assertEqual(type(df), DataFrame) def test_get_full_dataframe_sorted_by_price(self): df_by_price = PurchaseList(self.location).df_by_price self.assertEqual(type(df_by_price), DataFrame) if __name__ == '__main__': unittest.main(verbosity=2)
carlosmperilla/budget-system
tests/test_purchaselist.py
test_purchaselist.py
py
1,997
python
en
code
2
github-code
6
22218524626
''' Convienence methods on VTK routines only ''' import director.vtkAll as vtk import director.vtkNumpy as vnp from director.shallowCopy import shallowCopy import numpy as np def thresholdPoints(polyData, arrayName, thresholdRange): assert(polyData.GetPointData().GetArray(arrayName)) f = vtk.vtkThresholdPoints() f.SetInputData(polyData) f.ThresholdBetween(thresholdRange[0], thresholdRange[1]) f.SetInputArrayToProcess(0,0,0, vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS, arrayName) f.Update() return shallowCopy(f.GetOutput()) def thresholdCells(polyData, arrayName, thresholdRange, arrayType='cells'): assert arrayType in ('points', 'cells') f = vtk.vtkThreshold() f.SetInputData(polyData) f.ThresholdBetween(thresholdRange[0], thresholdRange[1]) if arrayType == 'cells': assert(polyData.GetCellData().GetArray(arrayName)) f.SetInputArrayToProcess(0,0,0, vtk.vtkDataObject.FIELD_ASSOCIATION_CELLS, arrayName) else: assert(polyData.GetPointData().GetArray(arrayName)) f.SetInputArrayToProcess(0,0,0, vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS, arrayName) f.Update() g = vtk.vtkGeometryFilter() g.SetInputConnection(f.GetOutputPort()) g.Update() return shallowCopy(g.GetOutput()) def transformPolyData(polyData, transform): t = vtk.vtkTransformPolyDataFilter() t.SetTransform(transform) t.SetInputData(shallowCopy(polyData)) t.Update() return shallowCopy(t.GetOutput()) def computeDelaunay3D(polyData): f = vtk.vtkDelaunay3D() f.SetInputData(polyData) f.SetOffset(100.0) f.Update() surface = vtk.vtkGeometryFilter() surface.SetInputData(f.GetOutput()) surface.Update() clean = vtk.vtkCleanPolyData() clean.SetInputData(surface.GetOutput()) clean.Update() return shallowCopy(clean.GetOutput()) def computeDelaunay2D(polyData): f = vtk.vtkDelaunay2D() f.SetInputData(polyData) f.Update() return shallowCopy(f.GetOutput()) def computeCentroid(polyData): return np.average(vnp.getNumpyFromVtk(polyData, 'Points'), axis=0) def appendPolyData(polyDataList): append = vtk.vtkAppendPolyData() if polyDataList: for polyData in polyDataList: append.AddInputData(polyData) append.Update() return shallowCopy(append.GetOutput()) def computeNormals(polyData, featureAngle=45): normals = vtk.vtkPolyDataNormals() normals.SetFeatureAngle(featureAngle) normals.SetInputData(polyData) normals.Update() return shallowCopy(normals.GetOutput()) def cleanPolyData(polyData): clean = vtk.vtkCleanPolyData() clean.SetInputData(polyData) clean.Update() return shallowCopy(clean.GetOutput()) def triangulatePolyData(polyData): f = vtk.vtkTriangleFilter() f.SetInputData(polyData) f.Update() return shallowCopy(f.GetOutput()) def decimateMesh(polyData, targetReduction=0.1): ''' Reduce the number of triangles in the input mesh by targetReduction. 0.1 = 10% reduction (if there was 100 triangles, now there will be 90) ''' f = vtk.vtkDecimatePro() f.SetInputData(polyData) f.SetTargetReduction(targetReduction) f.Update() return shallowCopy(f.GetOutput()) def hasNonFinitePoints(polyData, arrayName='Points'): pts = vnp.getNumpyFromVtk(polyData, arrayName) return np.isfinite(pts).any() def labelNonFinitePoints(polyData, arrayName='Points'): ''' adds is_nonfinite label to polyData. non finite includes nan and +/- inf. ''' pts = vnp.getNumpyFromVtk(polyData, arrayName) labels = np.logical_not(np.isfinite(pts)).any(axis=1) vnp.addNumpyToVtk(polyData, np.array(labels, dtype=np.int32), 'is_nonfinite') def removeNonFinitePoints(polyData, arrayName='Points'): polyData = shallowCopy(polyData) labelNonFinitePoints(polyData, arrayName) return thresholdPoints(polyData, 'is_nonfinite', [0, 0]) def flipImage(image, flipAxis=1): ''' Flip a vtkImageData using the vtkImageFlip filter. The flipAxis can be 0 or 1 to flip horizontally or vertically. ''' assert flipAxis in (0, 1) f = vtk.vtkImageFlip() f.SetFilteredAxis(flipAxis) f.SetInputData(image) f.Update() return shallowCopy(f.GetOutput()) def rotateImage180(image): ''' rotates an image by 180 degrees ''' r1 = vtk.vtkImageFlip() r1.SetInputData(image) r1.SetFilteredAxis(0) r1.Update() r2 = vtk.vtkImageFlip() r2.SetInputData(r1.GetOutput()) r2.SetFilteredAxis(1) r2.Update() return shallowCopy(r2.GetOutput())
RobotLocomotion/director
src/python/director/filterUtils.py
filterUtils.py
py
4,630
python
en
code
176
github-code
6
22781339759
import IMP import IMP.pmi import IMP.pmi.macros import RMF import matplotlib.pyplot as plt import seaborn as sns import sys import numpy as np import argparse ######### # PARSER ######### p = argparse.ArgumentParser( description="Align selected RMF files. \n" "Example of usage: align_rmf.py -d mc_tags -cl 2 -st 0" ) p.add_argument('-d', action="store", dest="dir_name", help="directory name to process") p.add_argument('-cl', action="store", dest="cluster", help="Specify cluster") p.add_argument('-st', action="store", dest="state", help="Specify RMF state") parsero = p.parse_args() def get_coordinates_alignment(hier, selection=None): coord_dict = {} if selection: for k, v in selection.items(): sel = IMP.atom.Selection(hier, molecule=v[0], residue_indexes=np.arange(v[1], v[2], 1), resolution=IMP.atom.ALL_RESOLUTIONS, copy_index=v[3]).get_selected_particles() coords = [np.array(IMP.core.XYZ(p).get_coordinates()) for p in sel] coord_dict[k] = coords else: mols = IMP.pmi.tools.get_molecules(hier) # print(mols) for m in mols: sel = IMP.atom.Selection(hier, molecule=m.get_name(), copy_index=IMP.atom.Copy(m).get_copy_index(), resolution=IMP.atom.ALL_RESOLUTIONS).get_selected_particles() coords = [np.array(IMP.core.XYZ(p).get_coordinates()) for p in sel] coord_dict[m.get_name()] = coords return coord_dict def transform_coordinates(hier, transformation): # Transform all coordinates rbs, beads = IMP.pmi.tools.get_rbs_and_beads(hier) for rb in rbs: IMP.core.transform(rb, transformation) for p in beads: temp_coord = IMP.core.XYZ(p) IMP.core.transform(temp_coord, transformation) def get_reference_coordinates(rmf_in, selection=None): """ Get reference coordinates in reference rmf file :param rmf_in: reference rmf file :return: coordinates """ m = IMP.Model() f = RMF.open_rmf_file_read_only(rmf_in) hier = IMP.rmf.create_hierarchies(f, m)[0] IMP.rmf.load_frame(f, RMF.FrameID(0)) # Get coordinates from frame 1 ref_coord = get_coordinates_alignment(hier, selection) del m, f return ref_coord def align_rmf(rmf_in, rmf_out, ref_coord, selection=None, frames=None): """ Align selected frames in rmf_in to ref_coordinates and calculate RMSD. :param rmf_in: input rmf :param rmf_out: output rmf :param selection: selection of particles :param ref_coord: reference coordinates after running Sampcon.py :param frames: passing selected frames :return: """ fh_out = RMF.create_rmf_file(rmf_out) m = IMP.Model() f = RMF.open_rmf_file_read_only(rmf_in) print('Number of frames', f.get_number_of_frames()) if not frames: frames = np.arange(0, f.get_number_of_frames(), 100) hier = IMP.rmf.create_hierarchies(f, m)[0] states = IMP.atom.get_by_type(hier, IMP.atom.STATE_TYPE) for i, s in enumerate(states): if i == sel_state: p = IMP.Particle(m, 'System') hier_temp = IMP.atom.Hierarchy.setup_particle(p) hier_temp.add_child(s) IMP.rmf.add_hierarchy(fh_out, hier_temp) RMSD = [] for i in frames: if i % 100 == 0: print('Frame:', i) IMP.rmf.load_frame(f, RMF.FrameID(i)) temp_coord = get_coordinates_alignment(hier, selection) ali = IMP.pmi.analysis.Alignment(ref_coord, temp_coord) (rmsd, transformation) = ali.align() RMSD.append(rmsd) transform_coordinates(hier, transformation) IMP.rmf.save_frame(fh_out, str(i)) del temp_coord del f print('Mean RMSD:', np.mean(np.array(RMSD))) return RMSD if __name__ == '__main__': ##################### # MAIN ##################### # IO files dir_name = parsero.dir_name # mc_tags_k1 cl = parsero.cl # 2 st = parsero.st # 0 sel_state = 0 ref_rmf = f'../output/{dir_name}/analysis/rmsd/cluster.{cl}/cluster_center_model.rmf3' rmf_in_A = f'../output/{dir_name}/analysis/A_models_clust{cl}_{st}.rmf3' rmf_out_A = f'../output/{dir_name}/analysis/A_models_clust{cl}_{st}_aligned.rmf3' rmf_in_B = f'../output/{dir_name}/analysis/B_models_clust{cl}_{st}.rmf3' rmf_out_B = f'../output/{dir_name}/analysis/B_models_clust{cl}_{st}_aligned.rmf3' cluster_frames_A = f'../output/{dir_name}/analysis/rmsd/cluster.{cl}.sample_A.txt' cluster_frames_B = f'../output/{dir_name}/analysis/rmsd/cluster.{cl}.sample_B.txt' m = IMP.Model() f = RMF.open_rmf_file_read_only(rmf_in_A) nframes_A = f.get_number_of_frames() frames_A = [int(l.strip()) for l in open(cluster_frames_A, 'r')] frames_B = [int(l.strip()) - nframes_A for l in open(cluster_frames_B, 'r')] del m, f ################################# # Get reference and align ################################# reference_coordinates = get_reference_coordinates(ref_rmf) rmsd_A = align_rmf(rmf_in_A, rmf_out_A, reference_coordinates, frames=frames_A) rmsd_B = align_rmf(rmf_in_B, rmf_out_B, reference_coordinates, frames=frames_B) ################################# # Plot RMSD distribution ################################# sns.set(font_scale=3) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(30, 40)) ax1.set_title(f'RMSD_A', size=50, y=1.15, fontweight='bold') sns.histplot(x=rmsd_A, stat='density', fill=True, ax=ax1) ax2.set_title(f'RMSD_B', size=50, y=1.15, fontweight='bold') sns.histplot(x=rmsd_B, stat='density', fill=True, ax=ax2) plt.tight_layout(pad=3.0) # plt.show() plt.savefig(f'../output/{dir_name}/analysis/pict_tags_rmsd.png') print('\nDONE!\n') sys.exit(0)
Altairch95/ExocystDYN
scripts/align_rmf.py
align_rmf.py
py
5,528
python
en
code
0
github-code
6
12028632350
import tkinter from tkinter import messagebox from src.game.minesweeper import Minesweeper from src.game.minesweeper import CellStatus from src.game.minesweeper import GameStatus from datetime import datetime import platform class MineweeperUI: def __init__(self, root): self.ui_window = root self.ui_window.title("Minesweeper") self.minesweeper = Minesweeper() self.minesweeper.set_mines((int(round(datetime.now().timestamp() * 1000)))) self.cells= [] self.grid_init() def grid_init(self): right_click_type = self.button_os_config() for row in range(0, 10): self.cells.append([]) for column in range(0, 10): cell = tkinter.Button(self.ui_window, text=" ", width=5, height=3, command=lambda row=row, column=column, left_button = True: self.button_clicked(row, column, left_button)) cell.bind(right_click_type, lambda event, row=row, column=column, left_button = False: self.button_clicked(row, column, left_button)) cell.grid(row=row + 1, column=column) self.cells[row].append(cell) def button_os_config(self): if platform.system() == "Darwin": return "<Button-2>" else: return "<Button-3>" def button_clicked(self,row, column, left_button): if left_button: self.minesweeper.expose(row, column) else: self.minesweeper.toggle_seal(row, column) self.update_grid() if self.minesweeper.get_game_status() == GameStatus.LOST: self.show_mines() messagebox.showinfo("Game Over", "You have step on a mine! ") if platform.system() == "Windows": exit() elif self.minesweeper.get_game_status() == GameStatus.WON: messagebox.showinfo("Congratulations!", "You are a minesweeper master! ") if platform.system() == "Windows": exit() def show_mines(self): for row in range(10): for column in range(10): if self.minesweeper.is_mine_at(row,column): self.cells[row][column]["text"] = "*" if platform.system() == "Darwin": self.cells[row][column].config(highlightbackground="red", highlightthickness=1) else: self.cells[row][column].config(background='red') def update_grid(self): for row in range(10): for column in range(10): if platform.system() == "Darwin": if self.minesweeper.get_status(row,column) == CellStatus.EXPOSED: adjacent_value = self.minesweeper.adjacent_mine_count(row, column) if adjacent_value > 0: self.cells[row][column]["text"] = str(adjacent_value) self.cells[row][column].config(highlightbackground="Yellow", highlightthickness=1) elif self.minesweeper.get_status(row, column) == CellStatus.SEAL: self.cells[row][column].config(highlightbackground="green", highlightthickness=1) else: self.cells[row][column].config(highlightbackground="#DCDCDC", highlightthickness=1) else: if self.minesweeper.get_status(row, column) == CellStatus.EXPOSED: adjacent_value = self.minesweeper.adjacent_mine_count(row, column) if adjacent_value > 0: self.cells[row][column]["text"] = str(adjacent_value) self.cells[row][column].config(background='Yellow') elif self.minesweeper.get_status(row, column) == CellStatus.SEAL: self.cells[row][column].config(background='green') else: self.cells[row][column].config(background='#DCDCDC') class Main: def __init__(self): root = tkinter.Tk() MineweeperUI(root) root.mainloop()
PriscillaRoy/MinesweeperGame
src/gui/minesweeper_ui.py
minesweeper_ui.py
py
3,636
python
en
code
0
github-code
6
13530263096
n, m = map(int, input().split()) S = [] strings = [] for _ in range(n): S.append(input()) for _ in range(m): strings.append(input()) answer = 0 for i in strings: if i in S: answer += 1 print(answer)
zooonsp/Baekjoon_zooonsp
백준/Silver/14425. 문자열 집합/문자열 집합.py
문자열 집합.py
py
243
python
en
code
0
github-code
6
25390435322
import logging import requests import pandas as pd import time from .sqlite import Orders from .sqlite import Balances class BitMex(): def pull_bitmex_orderbooks(symbol, limit, mode='live'): # Tracking execution time start_ts = time.time() * 1000 # Get request request = requests.get('https://www.bitmex.com/api/v1/orderBook/L2?symbol={}&depth={}'.format(symbol, limit)) bitmex = request.json() # Check to make sure data is pulled properly if request.status_code == 200: # Track latency req_ts = int(time.time()) sell_arr = [] buy_arr = [] for item in bitmex: # ['Price','Amount','Value'] row = [item['price'], item['size'], item['price'] * item['size']] if item['side'] == "Sell": sell_arr.append(row) if item['side'] == "Buy": buy_arr.append(row) # Extract Bids and Asks to DFs df_buy = pd.DataFrame(buy_arr) df_sell = pd.DataFrame(sell_arr) #Ensure that DFs are not empty if len(df_buy) == 0: df_buy = pd.DataFrame([[0,0,0]]) if len(df_sell) == 0: df_sell = pd.DataFrame([[0,0,0]]) df_buy.columns = df_sell.columns = ['Price','Amount','Value'] # # Write order book data to databae for row in buy_arr: Orders.create( ts=req_ts, price=row[0], amount=row[1], value=row[2], b_a='b' ) for row in sell_arr: Orders.create( ts=req_ts, price=row[0], amount=row[1], value=row[2], b_a='a' ) final_ts = time.time() * 1000 # Log request req_log = [start_ts, req_ts, final_ts, request.status_code, symbol, 'orders'] logging.info(req_log) return (df_buy, df_sell) else: logging.warning("Orderbook request failure.") logging.warning(request.json()) return(None, None) ## check_pending_orders will check if there are pending orders. ## It makes decision based on whether there are pending orders and whether we have ## an appropriate balance and will return a decision of 'BUY' or 'SELL' ## default: 'SELL' def check_pending_orders(symbol, client, c_maj, c_min, current_balance, thresh, trade_alloc): # Get pending orders logging.info("Checking pending orders...") # TODO: get this dynamically symbol = "BTC/USD" bitmex = client.fetch_open_orders(symbol) ## this is some data munging that we have to do because bitmex doesn't ## return a nice object sell_arr = [] buy_arr = [] for item in bitmex: # ['orderID','Price','Amount','Value'] row = [item['info']['orderID'], item['info']['price'], item['info']['orderQty'], item['info']['price'] * item['info']['orderQty']] if item['info']['side'] == "Sell": sell_arr.append(row) if item['info']['side'] == "Buy": buy_arr.append(row) pending_orders = {'BUY': buy_arr, 'SELL': sell_arr} if pending_orders != []: if(len(pending_orders['BUY']) + len(pending_orders['SELL']) == 0): for c in (c_maj, c_min): coin = Balances.select().where(Balances.coin == c).order_by(Balances.id.desc()).get() current_balance[c] = coin.balance logging.info("Checking balances....") # do a balance check to see whether we can trade with current balance # based on threshold decision = BitMex.balance_check(current_balance[c_maj], current_balance[c_min], thresh, trade_alloc) if decision: return('BUY', pending_orders) else: return('SELL', pending_orders) else: if(len(pending_orders['BUY']) > 0): return('BUY', pending_orders) else: return('SELL', pending_orders) # TODO: what should we do if no pending orders? # return('SELL', pending_orders) ## DONE def balance_check(balance_maj, balance_min, thresh, trade_alloc): # major = the one you're quoting. # minor = the one you're quoting in. # balance_maj is major coin balance # balance_min is minor coin balance # thresh is threshold under which you buy the major pair # trade_alloc is the allocated amount to trade return((balance_maj <= thresh) and (balance_min >= trade_alloc)) ## eliminate_excess_orders will _ all but the best order def eliminate_excess_orders(df, decision): # checks for all excess orders and returns list of non-optimal oID to cancel logging.info("Eliminating excess orders...") print(o_df) o_df = pd.DataFrame(df) o_df.columns = ['ts','bs','p','a','deal','oid'] if(decision == 'BUY'): o_optimal = o_df.p.max() else: o_optimal = o_df.p.min() oid_keep = o_df[o_df.p == o_optimal].oid orders_to_cancel = [i for i in o_df[o_df.oid != oid_keep[0]].oid] return orders_to_cancel def update_order(pending_orders, o_optimal, decision, trade_alloc, client, symbol): pair = symbol.replace('-','') # cancel all orders resp = self.cancel_all_orders(client, pending_orders, decision) logging.info("Canceling All Orders for {}: {} Side: {}".format(pair, resp, decision)) log_request(conn, time.time(), resp, pair, 'cancel_order - {}'.format(decision)) # issue order resp = issue_order(decision, symbol, o_optimal, trade_alloc/o_optimal, conn) logging.info("Issuing Orders for {}: {} Side: {}".format(pair, resp, decision)) return('Order Updated') def cancel_all_orders(self, client, orders, decision): # order[0] = orderID for order in orders[decision]: logging.info("Cancelling order: {}".format(order[0])) try: client.cancelOrder(order[0]) except OrderNotFound as e: logging.info("Cancelling Excess Orders {} [Fail]:".format(order[0], e)) ## TODO: update with better logging def issue_order(decision, symbol, price, amount, client, precision=0): try: # initialize temporary client to avoid UNAUTH # TODO: don't hard code this ccxt_sym = "BTC/USD" print("issue order") if(decision == 'BUY'): rresp = client.create_limit_buy_order(ccxt_sym, amount, price) oid = rresp['id'] log_trade(conn, symbol, price, amount, oid, decision) return(oid) if(decision == 'SELL'): # To catch bad precision loopback re-order if (precision > 0): print('Debug precision: ', amount, str(amount)) rresp = client.create_limit_sell_order(ccxt_sym, amount, price) else: rresp = client.create_limit_sell_order(ccxt_sym, amount, price) oid = rresp['id'] log_trade(conn, symbol, price, amount, oid, decision) return(oid) except Exception as issue_error: print(type(issue_error)) print(issue_error.args) print(str(issue_error.args[0]).replace(',','|')) # In scenario with improper amount precision if ('precision of amount' in str(issue_error.args)): logging.warning(str('Improper Amount Precision - {}'.format(str(issue_error.args[0])))) m = re.search('(The precision of amount).*[0-9]{1}', str(issue_error.args[0])) precision = int(m.group(0)[-1]) print(precision) order_amount = truncate(amount, precision) if (order_amount > 0.0): print('Reissuing order', order_amount, precision) issue_order(decision, symbol, price, order_amount, conn, precision) return('Reissued Order') else: return('Error issueing order: order_amount too low for precision') return(str(issue_error).replace(',','|')) def is_best_order(decision, symbol, o_optimal, client, pending_orders, order_df): pair = symbol.replace('-','') if (decision == 'BUY'): if (o_optimal > pending_orders['BUY'][0][2]): return(False) else: return(True) elif (decision == 'SELL'): if (o_optimal < pending_orders['SELL'][0][2]): return(False) else: return(True)
noqcks/bmex-algo
src/bitmex.py
bitmex.py
py
8,025
python
en
code
0
github-code
6
30821160760
import pandas data = pandas.read_csv("Squirrel_Data.csv") #the begining and the end of the first and last lines #gray_squirrels = data[data["Primary Fur Color"] == "Gray"] #print(gray_squirrels) gray_squirrels_count = len(data[data["Primary Fur Color"] == "Gray"]) red_squirrels_count = len(data[data["Primary Fur Color"] == "Cinnamon"]) black_squirrels_count = len(data[data["Primary Fur Color"] == "Black"]) #print(gray_squirrels_count) data_dict ={ "Fur Color": ["Gray", "Cinnamon", "Black"], "Count": [gray_squirrels_count, red_squirrels_count, black_squirrels_count] } #make a csv file from data #new_data_frame = pandas.DataFrame(data_dict) #new_data_frame.to_csv("squirrel_count.csv") #print(("Made Squirrel_Count.csv")) #make panda data frame from dictionary student_dict = { "student": ["Angela", "James", "Lily"], "score": [56, 76, 98] } student_data_frame = pandas.DataFrame(student_dict) print(student_data_frame) #loop through a data frame #for(key,value) in student_data_frame.items(): # print(value) #loop through rows of a data frame for (index, row) in student_data_frame.iterrows(): print(index) print(row) print(row.student) print(row.score) if row.student == "Angela": print(row.score) #{new_key:new_value for (index, row) in df.iterrows()}
d3cod3d/notes
pandas_cheat_sheet.py
pandas_cheat_sheet.py
py
1,312
python
en
code
0
github-code
6
22837983090
import pandas as pd import networkx as nx # def splitDataFrameList(df,target_column,separator): # ''' df = dataframe to split, # target_column = the column containing the values to split # separator = the symbol used to perform the split # returns: a dataframe with each entry for the target column separated, with each element moved into a new row. # The values in the other columns are duplicated across the newly divided rows. # ''' # def splitListToRows(row,row_accumulator,target_column,separator): # split_row = row[target_column].split(separator) # for s in split_row: # new_row = row.to_dict() # new_row[target_column] = s # row_accumulator.append(new_row) # new_rows = [] # df.apply(splitListToRows,axis=1,args = (new_rows,target_column,separator)) # new_df = pd.DataFrame(new_rows) # return new_df # df = pd.read_csv('../reading_and_cleaning/cleaned_podcasts.csv', sep='\t', index_col=0) # df = df.replace(r'', np.nan, regex=True) # df = df[pd.notnull(df['guests'])] # split_hosts = splitDataFrameList(df, 'hosts', ', ') #G1 = nx.from_pandas_dataframe(split_hosts, 'guests', 'hosts', edge_attr=['date', 'duration', 'podcast'], create_using=nx.MultiDiGraph()) # for index, row in split_hosts.iterrows(): # if(row['hosts'] == row['guests']): # split_hosts.drop(index=index, inplace=True) # guest_durations = split_hosts.groupby(['hosts', 'guests'])['duration'].sum() # guest_durations = guest_durations.reset_index() guest_durations = pd.read_csv('../reading_and_cleaning/guest_durations.csv', sep='\t', index_col=0) G1 = nx.from_pandas_dataframe(guest_durations, 'guests', 'hosts', edge_attr=['duration'], create_using=nx.DiGraph()) G2 = nx.from_pandas_dataframe(guest_durations, 'guests', 'hosts', edge_attr=['duration'], create_using=nx.Graph()) ################################################################################################################################## remove = [node for node,degree in G2.degree().items() if degree < 3] G2.remove_nodes_from(remove) #print(nx.number_of_nodes(G2)) remove = [node for node,degree in G1.degree().items() if degree < 3] G1.remove_nodes_from(remove) #print(nx.number_of_nodes(G1)) ################################################################################################################################## pr = nx.pagerank(G1, weight='duration') hubs, authorities = nx.hits(G1) nodes_df = pd.DataFrame.from_dict(pr, orient='index') nodes_df.rename(columns = {0:'pr'}, inplace = True) nodes_df['hub'] = hubs.values() nodes_df['auth'] = authorities.values() #print(len(nodes_df), len(nx.eccentricity(G2).values())) nodes_df['eccentricity'] = nx.eccentricity(G2).values() nodes_df['closeness'] = nx.closeness_centrality(G2).values() nodes_df['betweenness'] = nx.betweenness_centrality(G2).values() nodes_df['degree_cen'] = nx.degree_centrality(G2).values() nodes_df['eigen'] = nx.eigenvector_centrality(G2).values() nodes_df.to_csv('node_values.csv', sep='\t')
brooksjaredc/podcast_network_analysis
analyzing_functions/set_node_attr.py
set_node_attr.py
py
2,988
python
en
code
1
github-code
6
23142628393
# Neuon AI - PlantCLEF 2020 import tensorflow as tf from preprocessing import inception_preprocessing slim = tf.contrib.slim import numpy as np import cv2 from nets.inception_v4 import inception_v4 from nets import inception_utils from PIL import Image from six.moves import cPickle import pandas as pd from sklearn.metrics.pairwise import cosine_similarity # ============================================================= # # Directories # ============================================================= # image_dir_parent_train = "PlantCLEF2020TrainingData" image_dir_parent_test = "PlantCLEF2020TrainingData" checkpoint_model = "checkpoints\run16\040000.ckpt" species_name_map_csv = "list\clef2020_herbarium_species.csv" classmap_txt = "list\clef2020_herbarium_species_classid_map_to_index.txt" herbarium_dictionary_file = "mean_emb_dict_997_herb_500_run16_40k_crops.pkl" test_image = "PlantCLEF2020TrainingData\photo\373\5859.jpg" # ============================================================= # # Parameters # ============================================================= # topN = 5 # Number of predictions to output batch = 10 # Assign batch = 10, # 10 variations of flipped cropped imgs (center, top left, top right, bottom left, bottom right, # center flipped, top left flipped, top right flipped, bottom left flipped, bottom right flipped) numclasses1 = 997 # Class number of Herbarium network numclasses2 = 10000 # Class number of Field network input_size = (299,299,3) # Image input size # ============================================================= # # Load data # ============================================================= # # ----- Read herbarium dictionary pkl file ----- # with open(herbarium_dictionary_file,'rb') as fid1: herbarium_dictionary = cPickle.load(fid1) # ----- Map species index to folder ----- # with open(classmap_txt,'r') as fid: classmap = [x.strip().split(' ')[0] for x in fid.readlines()] # ----- Map species name to index ----- # species_name_map_df = pd.read_csv(species_name_map_csv, sep=',') species_list = species_name_map_df['species'].to_list() # ============================================================= # # Run network / validate image # ============================================================= # # ----- Initiate tensors ----- # x1 = tf.placeholder(tf.float32,(batch,) + input_size) x2 = tf.placeholder(tf.float32,(batch,) + input_size) y1 = tf.placeholder(tf.int32,(batch,)) y2 = tf.placeholder(tf.int32,(batch,)) is_training = tf.placeholder(tf.bool) is_train = tf.placeholder(tf.bool, name="is_training") # ----- Image preprocessing methods ----- # train_preproc = lambda xi: inception_preprocessing.preprocess_image( xi,input_size[0],input_size[1],is_training=True) test_preproc = lambda xi: inception_preprocessing.preprocess_image( xi,input_size[0],input_size[1],is_training=False) def data_in_train1(): return tf.map_fn(fn = train_preproc,elems = x1,dtype=np.float32) def data_in_test1(): return tf.map_fn(fn = test_preproc,elems = x1,dtype=np.float32) def data_in_train2(): return tf.map_fn(fn = train_preproc,elems = x2,dtype=np.float32) def data_in_test2(): return tf.map_fn(fn = test_preproc,elems = x2,dtype=np.float32) data_in1 = tf.cond( is_training, true_fn = data_in_train1, false_fn = data_in_test1 ) data_in2 = tf.cond( is_training, true_fn = data_in_train2, false_fn = data_in_test2 ) def read_img(img_path): img = [] try: current_img = img_path im = cv2.imread(current_img) if im is None: im = cv2.cvtColor(np.asarray(Image.open(current_img).convert('RGB')),cv2.COLOR_RGB2BGR) im = cv2.resize(im,(input_size[0:2])) if np.ndim(im) == 2: im = cv2.cvtColor(im,cv2.COLOR_GRAY2RGB) else: im = cv2.cvtColor(im,cv2.COLOR_BGR2RGB) # Center and Corner crops im1 = im[0:260,0:260,:] im2 = im[0:260,-260:,:] im3 = im[-260:,0:260,:] im4 = im[-260:,-260:,:] im5 = im[19:279,19:279,:] imtemp = [cv2.resize(ims,(input_size[0:2])) for ims in (im1,im2,im3,im4,im5)] [img.append(ims) for ims in imtemp] # Flip image flip_img = cv2.flip(im, 1) flip_im1 = flip_img[0:260,0:260,:] flip_im2 = flip_img[0:260,-260:,:] flip_im3 = flip_img[-260:,0:260,:] flip_im4 = flip_img[-260:,-260:,:] flip_im5 = flip_img[19:279,19:279,:] flip_imtemp = [cv2.resize(imf,(input_size[0:2])) for imf in (flip_im1,flip_im2,flip_im3,flip_im4,flip_im5)] [img.append(imf) for imf in flip_imtemp] except: print("Exception found: Image not read...") pass img = np.asarray(img,dtype=np.float32)/255.0 return img # ----- Construct network 1 ----- # with slim.arg_scope(inception_utils.inception_arg_scope()): logits,endpoints = inception_v4(data_in1, num_classes=numclasses1, is_training=is_training, scope='herbarium') herbarium_embs = endpoints['PreLogitsFlatten'] herbarium_bn = tf.layers.batch_normalization(herbarium_embs, training=is_train) herbarium_feat = tf.contrib.layers.fully_connected( inputs=herbarium_bn, num_outputs=500, activation_fn=None, normalizer_fn=None, trainable=True, scope='herbarium' ) herbarium_feat = tf.math.l2_normalize( herbarium_feat, axis=1 ) # ----- Construct network 2 ----- # with slim.arg_scope(inception_utils.inception_arg_scope()): logits2,endpoints2 = inception_v4(data_in2, num_classes=numclasses2, is_training=is_training, scope='field') field_embs = endpoints2['PreLogitsFlatten'] field_bn = tf.layers.batch_normalization(field_embs, training=is_train) field_feat = tf.contrib.layers.fully_connected( inputs=field_bn, num_outputs=500, activation_fn=None, normalizer_fn=None, trainable=True, scope='field' ) field_feat = tf.math.l2_normalize( field_feat, axis=1 ) feat_concat = tf.concat([herbarium_feat, field_feat], 0) variables_to_restore = slim.get_variables_to_restore() restorer = tf.train.Saver(variables_to_restore) # ----- Run session ----- # with tf.Session() as sess: sess.run(tf.global_variables_initializer()) restorer.restore(sess, checkpoint_model) test_image = read_img(test_image) sample_embedding = sess.run( field_feat, feed_dict = { x2:test_image, is_training : False, is_train : False } ) # Average center + corner crop embeddings averaged_flip = np.mean(sample_embedding, axis=0) reshaped_emb_sample = averaged_flip.reshape(1,500) print('Getting herbarium dictionary...') herbarium_emb_list = [] for herbarium_class, herbarium_emb in herbarium_dictionary.items(): herbarium_emb_list.append(np.squeeze(herbarium_emb)) herbarium_emb_list = np.array(herbarium_emb_list) print('Comparing sample embedding with herbarium distance...') similarity = cosine_similarity(reshaped_emb_sample, herbarium_emb_list) print('Getting probability distribution...') similarity_distribution = [] for sim in similarity: new_distribution = [] for d in sim: new_similarity = 1 - d # 1 - cosine value (d) new_distribution.append(new_similarity) similarity_distribution.append(new_distribution) similarity_distribution = np.array(similarity_distribution) # Apply inverse weighting with power of 5 probabilty_list = [] for d in similarity_distribution: inverse_weighting = (1/np.power(d,5))/np.sum(1/np.power(d,5)) probabilty_list.append(inverse_weighting) probabilty_list = np.array(probabilty_list) print('Getting topN predictions...') for prediction in probabilty_list: topN_class_list = prediction.argsort()[-topN:][::-1] topN_probability_list = np.sort(prediction)[-topN:][::-1] counter = 0 for cl, prob in zip(topN_class_list, topN_probability_list): counter += 1 class_index = classmap[int(cl)] pred_name = species_list[int(cl)] print('\nPREDICTION:', counter) print('Species:', pred_name) print('Class index (folder):', class_index) print('Probability:', prob)
NeuonAI/plantclef2020_challenge
validate_image.py
validate_image.py
py
9,376
python
en
code
1
github-code
6
32509221733
import numpy as np import matplotlib.pyplot as plt import scipy.stats as sc import csv def myAnova(Matrice, pvalue_crit): # Initialisation : H = 0 F = 0 var_intra = 0 var_inter = 0 obs_moy = 0 eff_tot = 0 # Moyenne des classes : for i in range(len(Matrice)): obs_moy = sum(Matrice[i]) + obs_moy eff_tot = len(Matrice[i]) + eff_tot # print("Moyenne de la classe", i, "=", round(obs_moy/eff_tot,1)) # print("Effectif total =", eff_tot, "\n") obs_moy = obs_moy / eff_tot # print("Moyenne de la moyenne des classes =", round(obs_moy,1)) # print("Effectif Total =", eff_tot) # Variance intra (= moyenne des classes) : sum_var_intra = 0 for j in range(0, len(Matrice)): for i in range(0, len(Matrice[j])): sum_var_intra = sum_var_intra + (Matrice[j][i] - np.mean(Matrice[j])) ** 2 var_intra = (1 / eff_tot) * sum_var_intra # print("Variance Intra = ", round(var_intra, 3)) # Variance inter (= moyenne des observations) : sum_var_inter = 0 for j in range(0, len(Matrice)): sum_var_inter = sum_var_inter + (len(Matrice[j]) * (np.mean(Matrice[j]) - obs_moy) ** 2) var_inter = (1 / eff_tot) * sum_var_inter # print("Variance Inter = ", round(var_inter, 3)) # Valeur de la stat F : # var_tot = var_intra + var_inter F = (var_inter / (len(Matrice) - 1)) / (var_intra / (eff_tot - len(Matrice))) # print("Variance Totale = ", round(var_tot, 3)) # print("Satistique F = ", round(F, 3)) # Hypothèse H (=0 ou 1) : p_value = sc.f.cdf(F, len(Matrice) - 1, eff_tot - len(Matrice)) # print("pValue = ", round(p_value, 4)) if (p_value > 1 - pvalue_crit): H = False # print("H =", H, "--> Donc on rejette H0.\n") else: H = True # print("H =", H, "--> Donc on valide H0.\n") return (H, F, var_intra, var_inter) def readDat_csv(NomDuFichierCSV, nbline, nbcol): # Auteur P. Maurine # Date : 13/12/2019 # Prend le fichier csv NomDuFichierCSV de n lignes p colonnes et retourne # une matrice de nxp floats L = [] Sample = np.array([], dtype=float) with open(NomDuFichierCSV, newline='') as f: read = csv.reader(f, delimiter=";") for row in read: L.extend(row) Sample = [float(i) for i in L] Sample = np.reshape(Sample, [nbline, nbcol]) return (Sample) def Temp_Dept(Sample, Departement): Temp = np.zeros(len(Sample[1]) - 1) indice = 0 for i in range(1, len(Sample[1])): Temp[indice] = Sample[np.where(Sample[:, 0] == Departement), i] indice += 1 return (Temp) def Temp_An(Sample, Annee): Temp = np.zeros((len(Sample) - 1)) indice = 0 for i in range(1, len(Sample)): Temp[indice] = Sample[i, np.where(Sample[0, :] == Annee)] indice += 1 return (Temp) def Temp_Dept(Sample, Departement): Temp = np.zeros(len(Sample[1]) - 1) indice = 0 for i in range(1, len(Sample[1])): Temp[indice] = Sample[np.where(Sample[:, 0] == Departement), i] indice += 1 return (Temp) matCSV = readDat_csv("DonneesMeteoFrance.csv", 95, 47) Temp_Fr_2000 = Temp_An(matCSV, 2000) # print("Températures enregistrées en France lors de l'an 2000 :\n", Temp_Fr_2000, "\n") Temp_Fr_2005 = Temp_An(matCSV, 2005) # print("Températures enregistrées en France lors de l'an 2005 :\n", Temp_Fr_2005, "\n") Temp_Fr_2010 = Temp_An(matCSV, 2010) # print("Températures enregistrées en France lors de l'an 2010 :\n", Temp_Fr_2010, "\n") Mat_An_1 = np.zeros((3, len(Temp_Fr_2000))) for i in range(0, len(Temp_Fr_2000)): Mat_An_1[0][i] = Temp_Fr_2000[i] Mat_An_1[1][i] = Temp_Fr_2005[i] Mat_An_1[2][i] = Temp_Fr_2010[i] # print("Matrice pour 2000, 2005 et 2010 :\n", Mat_An_1, "\n") H_An1, F_An1, var_intra_An1, var_inter_An1 = myAnova(Mat_An_1, 0.05) print("Utilisation de la fonction myAnova (Année 2000, 2005 et 2010) :") print("--> Hypothèse H =", H_An1, "(On rejette H0)") print("--> Statistique F =", round(F_An1, 2)) print("--> Variance Intra =", round(var_intra_An1, 2)) print("--> Variance Inter =", round(var_inter_An1, 2), "\n") # Températures en Frane entre 1970, 1975 et 1980 : ---------------------------- # Extraction des données : Temp_Fr_1970 = Temp_An(matCSV, 1970) # print("Températures enregistrées en France lors de l'an 1970 :\n", Temp_Fr_1970, "\n") Temp_Fr_1975 = Temp_An(matCSV, 1975) # print("Températures enregistrées en France lors de l'an 1975 :\n", Temp_Fr_1975, "\n") Temp_Fr_1980 = Temp_An(matCSV, 1980) # print("Températures enregistrées en France lors de l'an 1980 :\n", Temp_Fr_1980, "\n") Mat_An_2 = np.zeros((3, len(Temp_Fr_2000))) for i in range(0, len(Temp_Fr_2000)): Mat_An_2[0][i] = Temp_Fr_1970[i] Mat_An_2[1][i] = Temp_Fr_1975[i] Mat_An_2[2][i] = Temp_Fr_1980[i] # print("Matrice pour 1970, 1975 et 1980 :\n", Mat_An_2, "\n") H_An2, F_An2, var_intra_An2, var_inter_An2 = myAnova(Mat_An_2, 0.05) print("Utilisation de la fonction myAnova (Année 1970, 1975 et 1980) :") print("--> Hypothèse H =", H_An2, "(On rejette H0)") print("--> Statistique F =", round(F_An2, 2)) print("--> Variance Intra =", round(var_intra_An2, 2)) print("--> Variance Inter =", round(var_inter_An2, 2), "\n")
Varelafv/TD6.py
TD2-EXO2.py
TD2-EXO2.py
py
5,319
python
fr
code
0
github-code
6
7874070036
import random r,p,s = "Rock", "Paper","Scissor" words = ("Rock", "Paper","Scissor") cpu = random.choice(words) me = input("Rock, Paper or Scissor: \n\n") print(f"{cpu} \n") if me == cpu: print("Game Draw!!") elif me == "Rock": if cpu == "Scissor": print("You Won!!") elif cpu == "Paper": print("You Lost!!") elif me == "Paper": if cpu == "Scissor": print("You Lost!!") elif cpu == "Rock": print("You Won!!") elif me == "Scissor": if cpu == "Paper": print("You Won!!") elif cpu == "Rock": print("You Lost!!")
Sheham30/Python
RockPaperScissor/01.py
01.py
py
586
python
en
code
0
github-code
6
35226848142
import torch import torch.nn.functional from .calculate_ssim import ssim from .utils import fspecial_gauss def ms_ssim(image1: torch.Tensor, image2: torch.Tensor, filter_weight: torch.Tensor) -> float: """ Multi scale structural similarity Args: image1 (np.array): Original tensor picture. image2 (np.array): Target tensor picture. filter_weight (torch.Tensor): Gaussian filter weight. Returns: MS_SSIM value. """ assert image1.shape == image2.shape ssim_value = ssim(image1, image2, filter_weight=filter_weight) weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(image1.device, dtype=image2.dtype) mcs = [] for _ in range(weights.shape[0]): _, cs_value = ssim(image1, image2, filter_weight=filter_weight, cs=True) mcs.append(cs_value) padding = (image1.shape[2] % 2, image2.shape[3] % 2) image1 = torch.nn.functional.avg_pool2d(image1, kernel_size=2, padding=padding) image2 = torch.nn.functional.avg_pool2d(image2, kernel_size=2, padding=padding) mcs = torch.stack(mcs, dim=0) out = torch.prod((mcs[:-1] ** weights[:-1].unsqueeze(1)) * (ssim_value ** weights[-1]), dim=0) return out class MS_SSIM(torch.nn.Module): def __init__(self) -> None: super(MS_SSIM, self).__init__() self.filter_weight = fspecial_gauss(11, 1.5) def forward(self, image1_tensor: torch.Tensor, image2_tensor: torch.Tensor) -> torch.Tensor: """ Args: image1_tensor (torch.Tensor): Original tensor picture. image2_tensor (torch.Tensor): Target tensor picture. Returns: torch.Tensor. """ assert image1_tensor.shape == image2_tensor.shape out = torch.mean(ms_ssim(image1_tensor, image2_tensor, filter_weight=self.filter_weight)) return out
avacaondata/SpainAI_Hackaton_ComputerVision
ESRGAN-PyTorch/esrgan_pytorch/utils/image_quality_assessment/calculate_mssim.py
calculate_mssim.py
py
1,882
python
en
code
1
github-code
6
2018426878
import unittest import sys import os import tempfile import shutil from appliapps.flow.branch import Branch from appliapps.flow.collate import Collate from appliapps.flow.merge import Merge from appliapps.flow.split import Split class Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.tdir = tempfile.mkdtemp(dir=".") os.chdir(cls.tdir) with open("input.ini", "w") as f: f.write("""COMMENT = comm,ent SOMEKEY = some, key LOG_LEVEL = INFO LOG_STORAGE = memory""") def test1_branch(self): sys.argv = ['--INPUT', 'input.ini', '--BRANCH', 'tandem.ini', 'omssa.ini', '--COMMENT', 'kommentar'] Branch.main() assert os.path.exists('tandem.ini') assert os.path.exists('omssa.ini') def test2_collate(self): sys.argv = ['--COLLATE', 'tandem.ini', 'omssa.ini', '--OUTPUT', 'collate.ini'] Collate.main() assert os.path.exists('collate.ini') def test3_split(self): sys.argv = ['--INPUT', 'input.ini', '--SPLIT', 'split.ini', '--SPLIT_KEY', 'SOMEKEY'] Split.main() assert os.path.exists('split.ini_0') assert os.path.exists('split.ini_1') def test4_merge(self): sys.argv = ['--MERGE', 'split.ini', '--MERGED', 'merged.ini'] Merge.main() assert os.path.exists('merged.ini_0') @classmethod def tearDownClass(cls): os.chdir("..") shutil.rmtree(cls.tdir)
lcb/applicake
tests/test_flow.py
test_flow.py
py
1,454
python
en
code
1
github-code
6
74077927228
from PyQt5.QtCore import QFile, QTextStream, QIODevice class StyleLoader: def __init__(self, variables_path: str = None): self._variables = {} self._stylesheets = {} self._init_variables(variables_path) def get_merged_stylesheets(self, names: list): return self._merge_stylesheets([self.get_stylesheet(name=name) for name in names]) def get_stylesheet(self, name: str) -> str: stylesheet = self._stylesheets.get(name) if stylesheet is None: stylesheet = self._create_stylesheet(name) self._stylesheets[name] = stylesheet return stylesheet def _merge_stylesheets(self, stylesheets: list) -> str: return "\n".join(stylesheets) def _create_stylesheet(self, path: str) -> str: stylesheet = self._load_unmapped_stylesheet(path) return self._map_stylesheet(stylesheet) def _load_unmapped_stylesheet(self, path: str) -> str: file = QFile(path) if not file.open(QIODevice.ReadOnly | QIODevice.Text): return "" content = file.readAll().data().decode("utf-8") file.close() return content def _map_stylesheet(self, stylesheet: str) -> str: for variable_name, variable_value in self._variables.items(): stylesheet = stylesheet.replace(variable_name, variable_value) return stylesheet def _init_variables(self, path: str) -> None: if path is None: return file = QFile(path) if not file.open(QIODevice.ReadOnly | QIODevice.Text): return stream = QTextStream(file) while not stream.atEnd(): line = stream.readLine().strip().replace(" ", "") if line.startswith("@"): variable_name, variable_value = line.split("=", 1) self._variables[variable_name] = variable_value file.close()
lennertsoffers/KeyCursor
key_cursor_config/model/StyleLoader.py
StyleLoader.py
py
1,926
python
en
code
1
github-code
6
19459348473
import os import csv def find_duration(indexlist, index, f): index = index + 1 if 'LOG:' in f[index].split(): indexlist.append(index) else: find_duration(indexlist, index, f) location = '/Users/karinstaring/thesis/script/finally/Karin_Staring_Geomatics_Thesis/results/queries/query2/' for filename in os.listdir(location): if filename == 'quer2_postgresql.log': f = open(os.path.join(location, 'query2_postgresql.log'), "r").readlines() cityobject_number = 0 all_times = [] i = 0 for line in f: split_line = line.split() if 'statement:' in split_line and 'SELECT' in split_line: print(split_line) if 'surfaces.id' in split_line: if cityobject_number == 1: all_times.append(one_query) cityobject_number = 0 cityobject_number = cityobject_number + 1 one_query = [] indexlist = [] find_duration(indexlist, i, f) first_index = indexlist[0] duration = f[first_index] one_query.append(float(duration.split('duration:')[1].split('ms')[0].replace(' ', ''))) else: indexlist = [] find_duration(indexlist, i, f) first_index = indexlist[0] duration = f[first_index] one_query.append(float(duration.split('duration:')[1].split('ms')[0].replace(' ', ''))) i = i + 1 all_times.append(one_query) file_name = 'query2_postgresql.csv' with open('/Users/karinstaring/thesis/script/finally/Karin_Staring_Geomatics_Thesis/results/queries/query2/' + str(file_name), 'w') as csvfile: writer = csv.writer(csvfile, delimiter=',') for row in all_times: writer.writerow(row)
kjstaring/scripts
results/queries/log_file_analysis.py
log_file_analysis.py
py
1,810
python
en
code
0
github-code
6
2248378771
import random Kaarten = ("2","3","4","5","6","7","8","9","10","boer","vrouw","heer","aas") Kleur = ("harten ","klaveren ","schoppen ","ruiten ") Deck = [] teller = 0 for x in Kleur[0:4]: for i in Kaarten[0:13]: Deck.append (x + i) Deck.append ("Joker1") Deck.append ("Joker2") for y in range(7): RandomKaart= random.choices(Deck) teller += 1 print(f"Karten {teller} : {RandomKaart}") print(Deck)
MaxQutimu/leren-programmeren
Leren Programmeren/M-04-Lijstjes en Samenstellingen/Deck.py
Deck.py
py
420
python
en
code
0
github-code
6
32463868402
import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch import torchvision import torchvision.transforms as transforms class DataLoader: def __init__(self, batch_size = 4): ''' num_workers should be 0 in window env (otherwise pipe_error occurs) ''' print("---- downloading dataset from online... ----") trainset, testset = self.download_data() self.trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=0) self.testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=0) def download_data(self): ''' download CIFAR-10 data which can be replaced by MNIST or etc later on. ''' transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) return trainset, testset def show_image(self): ''' Just for the testing. ''' # get some random training images dataiter = iter(self.trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show()
jindeok/XAI_torch_captum
XAI_torch/utils.py
utils.py
py
2,051
python
en
code
0
github-code
6
32562155548
from django.conf.urls.defaults import * from django.conf import settings from gallery.feeds import Photos, Videos, Tags, TagContents, Comments try: import django_openidconsumer except ImportError: django_openidconsumer = None feeds = { 'comments': Comments, 'photos': Photos, 'videos': Videos, 'tags': Tags, 'tag': TagContents, } urls = [ (r'^$', 'gallery.views.index'), (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed', {'feed_dict': feeds}), (r'^tag/(?P<tag_name>[\w\+\-]*)/$', 'gallery.views.medias_in_tag'), (r'^tag/(?P<tag_name>[\w\+\-]*)/(?P<page>\d+)/$', 'gallery.views.medias_in_tag'), (r'^event/(?P<media_type>\w+)/(?P<media_id>\d+)/(?P<event_id>\d+)/$', 'gallery.views.medias_in_event'), (r'^photo/(?P<photo_id>\d+)/(?P<tag_name>[\w\-]*)/$', 'gallery.views.medias_in_tag'), (r'^photo/(?P<photo_id>\d+)/$', 'gallery.views.photo'), (r'^video/(?P<video_id>\d+)/(?P<tag_name>[\w\-]*)/$', 'gallery.views.medias_in_tag'), (r'^date/(?P<year>\d+)/(?P<month>\d+)/(?P<day>\d+)/$', 'gallery.views.date'), (r'^date/(?P<year>\d+)/(?P<month>\d+)/(?P<day>\d+)/(?P<page>\d+)/$', 'gallery.views.date'), (r'^recent/$', 'gallery.views.recent'), (r'^recent/(?P<tag_name>[\w\+\-]*)/$', 'gallery.views.recent'), (r'^recent/(?P<tag_name>[\w\+\-]*)/(?P<page>\d+)/$', 'gallery.views.recent'), (r'^events/$', 'gallery.views.events'), (r'^event/(?P<event_id>\d+)/$', 'gallery.views.event'), (r'^slideshow/(?P<tag_name>[\w\+\-]*)/(?P<photo_id>\d+)/$', 'gallery.views.slideshow'), ] if django_openidconsumer: urls.extend([ #(r'^comment/(?P<comment_id>\d+)/$', 'gallery.views.comment'), (r'^openid/$', 'django_openidconsumer.views.begin', {'sreg': 'fullname'}), (r'^openid/complete/$', 'django_openidconsumer.views.complete'), (r'^openid/signout/$', 'django_openidconsumer.views.signout'), (r'^status/cache/$', 'gallery.memcached_status.cache_status'), ]) media_path = settings.GALLERY_SETTINGS.get('media_path') static_path = settings.GALLERY_SETTINGS.get('static_path') if media_path: urls.append((r'^media/(.*)$', 'django.views.static.serve', {'document_root': media_path})) if static_path: urls.append((r'^static/(.*)$', 'django.views.static.serve', {'document_root': static_path})) urlpatterns = patterns('', *urls)
ginking/Gallery-1
urls.py
urls.py
py
2,422
python
en
code
0
github-code
6
8915382368
from datetime import datetime from astral import Astral from pyHS100 import Discover, SmartPlug, SmartBulb import time, socket, requests, pytz, simplejson #Used to determine daylight status, occupancy status, and does the things #if the things are needed based on prior info class SmartSwitchControl(): a = Astral() city = a['Toronto'] count = 0 def run(self): global count global lightson now = datetime.now(pytz.utc) sun = city.sun(date = now, local = True) time.sleep(0.5) if now >= sun['dusk'] or now <= sun['dawn']: requests.post("https://maker.ifttt.com/trigger/motion/with/key/ctOeqYQKH00WbPhjj-fCRyio_MW6GdmEQ2as2h5bQvI") Lightson = True #print("Lights on") elif now >= sun['dawn']: #print("It's not dark yet") pass #Creates JSON syntaxed representation of current smart device info and status def updateStatus(self): devices = [] deviceCount = 0 try: for dev in Discover.discover().values(): ipBreak = str(dev).split(' (')[0] ip = ipBreak.split('at ')[1] idBreak = str(dev).split('(')[1] ID = idBreak.split(')')[0] statusBreak = str(dev).split('is_on: ')[1] status = statusBreak.split(' - ')[0] if status == "True": status = "on" if status == "False": status = "off" entry = {'id': "switch"+str(deviceCount), 'name': ID, 'is_on': status, 'ip': ip } devices.append(entry) deviceCount += 1 return devices except Exception as e: print("Error in device detection...resetting", e) pass
bradyjibanez/Voyager
occupantInference/smartSwitchControl.py
smartSwitchControl.py
py
2,417
python
en
code
0
github-code
6
24604094520
# Packages import time import selenium from selenium import webdriver import NameExtractor app_names = [] element_web = [] k = 0 count = 1 def decompiler(path, file_path): global app_names, driver driver = webdriver.Chrome(path) driver.maximize_window() app_names = NameExtractor.name_extractor(file_path) for i in app_names: try: driver.refresh() driver.get("https://www.apkdecompilers.com/") time.sleep(5) # find element # extra code print(app_names) driver.get("https://www.apkdecompilers.com/") driver.find_element_by_id('apk') time.sleep(10) # send element element_send = driver.find_element_by_id("apk") element_send.send_keys(i) print(i) driver.find_element_by_id("submit-btn").click() time.sleep(270) # download element driver.find_element_by_xpath("/html/body/section[1]/div/div/div/div/div/div/div/div[2]/div/div/div/div/div/div/div[2]/a/b/u/h3").click() time.sleep(50) except: # find element # extra code driver.refresh() driver.get("http://www.javadecompilers.com/apk") # send element element_send = driver.find_element_by_id("upload_datafile") element_send.send_keys(i) print(i) send_element = driver.find_element_by_xpath("/html/body/div[2]/div/div[2]/div/div[2]/div/form/div/div/div/div[2]/div[1]/div/button") webdriver.ActionChains(driver).move_to_element(send_element).click(send_element).perform() time.sleep(270) # download element down_element = driver.find_element_by_xpath("/html/body/div[2]/div/div[2]/div/div[2]/div/div[2]/div/div[1]/div/div[2]/div/div[1]/div[2]/a") webdriver.ActionChains(driver).move_to_element(down_element).click(down_element).perform() time.sleep(50) driver.close() driver_path = "C:\Program Files (x86)\Python38-32\Chrome Driver\chromedriver.exe" file_path = "D:\Project\Privacy Detection\Apps\App Data.xlsx" decompiler(driver_path,file_path)
Neilnarnaware/Privacy-Detection-of-Android-Application
Decompiler.py
Decompiler.py
py
2,296
python
en
code
0
github-code
6
16106180145
#!/usr/bin/env python3 if __name__ == "__main__": import argparse import os import benj ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", dest="h5ad", required=True) ap.add_argument("-o", "--output", required=True) ap.add_argument("--labels", required=True, nargs="+") ap.add_argument("-b", "--batch", required=True) ap.add_argument("--hvg", type=int, default=5000) ap.add_argument("--compression", type=int, default=6) ap.add_argument("--with-mean", dest="with_mean", action="store_true") ap.add_argument("--without-mean", dest="with_mean", action="store_false") ap.set_defaults(with_mean=False) args = benj.parse_args(ap, ["log", "scanpy", "anndata"]) if "subset" not in args or args["subset"] is None: args["subset"] = [] sw = benj.stopwatch() with sw("Reading H5AD"): adata = benj.parse_anndata(**args) adata = benj.integrate_rna(adata, batch=args["batch"], hvg=args["hvg"], use_scaling=True, use_harmony=True, use_bbknn=False, use_rgg=False, plot=args["labels"], target_sum=1e4, output=args["output"], compression=args["compression"]) with sw("Training celltypist for " + ",".join(label)): import celltypist import scanpy as sc ct = celltypist.train(adata.raw.to_adata(), labels=adata.obs.loc[:, labels], genes=adata.var_names, n_jobs=-1, with_mean=args["with_mean"]) ct.write(os.path.join(sc.settings.figdir, f"celltypist_{label}.pkl"))
KellisLab/benj
scripts/integrate_and_train.py
integrate_and_train.py
py
1,676
python
en
code
2
github-code
6
11735575748
"""Add File table Revision ID: 3822d04489a0 Revises: Create Date: 2021-06-26 16:18:52.167545 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3822d04489a0' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('files', sa.Column('id', sa.Integer(), nullable=False), sa.Column('filepath', sa.String(), nullable=False), sa.Column('storage', sa.String(), nullable=False), sa.Column('primary', sa.Boolean(), nullable=False), sa.Column('has_thumbnail', sa.Boolean(), nullable=False), sa.Column('category', sa.Enum('unknown', 'other', 'image', 'photo', 'scan', 'dump', 'dump_metadata', 'text', 'prose', 'transcription', 'collection', name='filecategory'), nullable=True), sa.Column('title', sa.String(), nullable=True), sa.Column('comment', sa.Text(), nullable=True), sa.Column('analyzed', sa.DateTime(), nullable=True), sa.Column('upload_date', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('asset_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['asset_id'], ['assets.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('files') # ### end Alembic commands ###
retroherna/rhinventory
alembic/versions/3822d04489a0_add_file_table.py
3822d04489a0_add_file_table.py
py
1,531
python
en
code
1
github-code
6
33696612007
from __future__ import print_function from seq import * from parentSeq import * from ore_algebra import * import time def test1(): R,n = ZZ['n'].objgen() A,Sn = OreAlgebra(R, 'Sn').objgen() a1 = Sn**2 - Sn - 1 init1 = [0,1] range_ = 1000 sum_ = 0 for _ in range (range_): begin = time.time() m1 = a1.to_list (init1, 100)[-1] end = time.time() sum_ += end - begin print ("Single call to to_list() :",sum_) sum_ = 0 for _ in range(range_): begin = time.time() init1 = [0,1] for i in range(2,100): a1.to_list (init1, 3, start=i-2,append=True) init1 = init1[1:] m2 = init1[-1] end = time.time() sum_ += end - begin print ("Multiple calls to to_list() :", sum_) if m1!=m2: print("ERROR") print(m1, "\n", m2) else : print ("SUCCESS") def test2(): pass if __name__ == "__main__": #n = ZZ['n'].gen() #P = ParentSeqRec (ZZ['n'], 'Sn', RR) #a = P ([0,1], Sn^2 - Sn - 1) test2()
Kiskuit/SuitesPRecursives
src/test.py
test.py
py
1,087
python
en
code
0
github-code
6
26822225482
import hashlib import base64 import os import sys from Crypto.Cipher import AES from hashlib import md5 from PyQt4 import QtGui, QtCore import collections from eclib import EC from eclib import DiffieHellman class MainWindow(QtGui.QWidget): def __init__(self): QtGui.QWidget.__init__(self) global to_enc global dec1 global dec2 global label_ans self.setGeometry(0, 0, 500, 650) self.setWindowTitle("Elliptic Curve Cryptography") self.setWindowIcon(QtGui.QIcon("icon.png")) self.resize(500, 650) self.setMinimumSize(500, 650) self.center() self.tab_widget = QtGui.QTabWidget() tab = QtGui.QWidget() tab2 = QtGui.QWidget() p3_vertical = QtGui.QVBoxLayout(tab) self.tab_widget.addTab(tab, "EC Diffie Hellman") # ECDH GUI DECLARATIONS labele1 = QtGui.QLabel(" Elliptical Curve EQUATION ") labele2 = QtGui.QLabel("y^3 = x^2 + ax + b( mod q )") labele1.setStyleSheet('font-size: 13pt') labele2.setStyleSheet('font-size: 12pt') labele1.setAlignment(QtCore.Qt.AlignCenter) labele2.setAlignment(QtCore.Qt.AlignCenter) labela = QtGui.QLabel("Enter value of a:") labelb = QtGui.QLabel("Enter value of b:") labelc = QtGui.QLabel("Enter value of q (prime):") label_PrivA = QtGui.QLabel("Enter Private Key of A:") label_PrivB = QtGui.QLabel("Enter Private Key of B:") label_result = QtGui.QLabel("ENCODED / DECODED TEXT") label_result.setStyleSheet('font-size: 12pt') textEdit = QtGui.QTextEdit() button_file = QtGui.QPushButton("Import File") button_encrypt = QtGui.QPushButton("Encrypt") button_decrypt = QtGui.QPushButton("Decrypt") button_file.clicked.connect(self.importfile) button_encrypt.clicked.connect(self.ecdhencrypt) button_decrypt.clicked.connect(self.ecdhdecrypt) self.vala = QtGui.QTextEdit() self.valb = QtGui.QTextEdit() self.valc = QtGui.QTextEdit() self.apriv = QtGui.QTextEdit() self.bpriv = QtGui.QTextEdit() self.textEdit = QtGui.QTextEdit() self.vala.setMaximumHeight(labela.sizeHint().height()*1.5) self.valb.setMaximumHeight(labelb.sizeHint().height()*1.5) self.valc.setMaximumHeight(labelc.sizeHint().height()*1.5) self.apriv.setMaximumHeight(label_PrivA.sizeHint().height()*1.5) self.bpriv.setMaximumHeight(label_PrivB.sizeHint().height()*1.5) hbox = QtGui.QHBoxLayout() hbox1 = QtGui.QHBoxLayout() vbox1 = QtGui.QHBoxLayout() vbox2 = QtGui.QHBoxLayout() # GUI LAYOUT p3_vertical.addWidget(labele1) p3_vertical.addWidget(labele2) vbox1.addWidget(labela) vbox1.addWidget(self.vala) vbox2.addWidget(labelb) vbox2.addWidget(self.valb) hbox1.addLayout(vbox1) hbox1.addLayout(vbox2) p3_vertical.addLayout(hbox1) p3_vertical.addWidget(labelc) p3_vertical.addWidget(self.valc) p3_vertical.addWidget(label_PrivA) p3_vertical.addWidget(self.apriv) p3_vertical.addWidget(label_PrivB) p3_vertical.addWidget(self.bpriv) p3_vertical.addWidget(button_file) p3_vertical.addWidget(label_result) p3_vertical.addWidget(self.textEdit) hbox.addWidget(button_encrypt) hbox.addWidget(button_decrypt) p3_vertical.addStretch(1) p3_vertical.addLayout(hbox) vbox = QtGui.QVBoxLayout() vbox.addWidget(self.tab_widget) self.setLayout(vbox) # GUI Functionality def ecdhencrypt(self): global A, B, C, PrivA, PrivB A = int(self.vala.toPlainText()) B = int(self.valb.toPlainText()) C = int(self.valc.toPlainText()) PrivA = int(self.apriv.toPlainText()) PrivB = int(self.bpriv.toPlainText()) txt = data ec = EC(A, B, C) g, _ = ec.at(7) assert ec.order(g) <= ec.q dh = DiffieHellman(ec, g) apub = dh.gen(PrivA) bpub = dh.gen(PrivB) assert dh.secret(PrivA, bpub) == dh.secret(PrivB, apub) BLOCK_SIZE = 64 PADDING = '{' pad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * PADDING EncodeAES = lambda c, s: base64.b64encode(c.encrypt(pad(s))) x, y = dh.secret(PrivA, apub) secret = x+y secret = hashlib.md5('secret').hexdigest() cipher = AES.new(secret) encoded = EncodeAES(cipher, txt) self.textEdit.setText(encoded) fileName = open('Encrypted.txt', 'w') fileName.write(encoded) fileName.close() def ecdhdecrypt(self): global A, B, C, PrivA, PrivB A = int(self.vala.toPlainText()) B = int(self.valb.toPlainText()) C = int(self.valc.toPlainText()) PrivA = int(self.apriv.toPlainText()) PrivB = int(self.bpriv.toPlainText()) txt = data ec = EC(A, B, C) g, _ = ec.at(7) assert ec.order(g) <= ec.q dh = DiffieHellman(ec, g) apub = dh.gen(PrivA) bpub = dh.gen(PrivB) assert dh.secret(PrivA, bpub) == dh.secret(PrivB, apub) BLOCK_SIZE = 64 PADDING = '{' pad = lambda s: s + (BLOCK_SIZE - len(s) % BLOCK_SIZE) * PADDING DecodeAES = lambda c, e: c.decrypt(base64.b64decode(e)).rstrip(PADDING) x, y = dh.secret(PrivA, apub) secret = x+y secret = hashlib.md5('secret').hexdigest() cipher = AES.new(secret) decoded = DecodeAES(cipher, txt) self.textEdit.setText(decoded) fileName = open('Decrypted.txt', 'w') fileName.write(decoded) fileName.close() def importfile(self): global data fname = QtGui.QFileDialog.getOpenFileName(self, 'Open file', '/home') f = open(fname, 'r') with f: data = f.read() def center(self): screen = QtGui.QDesktopWidget().screenGeometry() size = self.geometry() self.move( (screen.width()-size.width())/2, (screen.height()-size.height())/2) def loadValues(self): global ec global eg idx = self.tab_widget.currentIndex() if idx == 1: global g global pub ec = EC(a, b, q) g, _ = ec.at(7) eg = ElGamal(ec, g) pub = eg.gen(priv) print_pub = str(pub[0]) + "," + str(pub[1]) self.elg_key.insertPlainText(print_pub) app = QtGui.QApplication(sys.argv) frame = MainWindow() frame.show() sys.exit(app.exec_())
iCHAIT/Elliptical-Curve-Cryptography
gui.py
gui.py
py
6,704
python
en
code
24
github-code
6
21158960410
#!/usr/bin/env python # Remove bootstrap solutions from a list of mss from __future__ import print_function import sys import pyrap.tables as pt def remove_columns(mslist_name,colnames=['SCALED_DATA']): if mslist_name.endswith('.ms'): mslist=[mslist_name] else: mslist=[s.strip() for s in open(mslist_name).readlines()] for ms in mslist: t = pt.table(ms) cpresent = t.colnames() t.close() if isinstance(colnames,str): colnames=[colnames] for colname in colnames: print('Removing',colname,'column in',mslist_name) if colname in cpresent: print('Removing',colname,' from',ms) t=pt.table(ms,readonly=False) t.removecols(colname) t.close() else: print('Table',ms,'has no',colname,'column') if __name__=='__main__': remove_columns(sys.argv[1],sys.argv[2])
mhardcastle/ddf-pipeline
utils/remove_bootstrap.py
remove_bootstrap.py
py
955
python
en
code
22
github-code
6
5145788640
import enum from ocrdgen.font.font import FontManager from ocrdgen.image.background import BgManager from pathlib import Path import numpy as np from PIL import ImageDraw, Image from ocrdgen.ops import boxes_ops import cv2 as cv from collections import OrderedDict from .base import BaseDrawer from ocrdgen import models class WordDrawer(BaseDrawer): def __init__(self, image: Image, font, text, xy, align="left", anchor=None, image_mode="RGBA", fill=(0,0,0)): super().__init__(image=image, font=font, text=text, xy=xy, anchor=anchor, align=align, image_mode=image_mode, fill=fill) text_test = self.text.strip().split(" ") # print(len(text_split), text_split) assert len(text_test) == 1, f"Error, expected one word only, but more word is given!" def draw_text(self, image=None): if type(image) == type(None): image = self.image.copy() idraw = ImageDraw.Draw(image) idraw.text(self.xy, self.text, font=self.font, fill=self.fill) # idraw.textbbox() return image def draw_bbox(self, image, color=(255,0,0,255), thick=1): xmin, ymin, xmax, ymax = self.xymm_with_offset(self.text, self.x, self.y) np_img = cv.rectangle(np.array(image), (xmin, ymin), (xmax, ymax), color, thick) return Image.fromarray(np_img) def draw(self, image=None, draw_bbox=False, bbox_color=(255, 0, 0, 255), bbox_thick=1): image = self.draw_text(image) bbox = self.wordbbox() if draw_bbox: image = self.draw_bbox(image, color=bbox_color, thick=bbox_thick) return image, bbox def wordbbox(self): wordbox = models.WordBox(text=self.text, bbox=self.textbbox(), chars=self.charbbox()) return wordbox def charbbox(self): data = [] xmin, ymin = self.x, self.y for i in range(len(self.text)): if len(self.text[i])>0: xymm = self.xymm_with_offset(self.text[i], xmin, ymin) xywh = boxes_ops.xymm_to_xywh(xymm) dt = models.CharBox(char=self.text[i], bbox=xywh, seq_id=i) # dt = (self.text[i], xywh) _, _, xmax, _ = xymm xmin = xmax data.append(dt) return data def draw_char_text(self, image=None): image = self.draw_text(image) return image def draw_char_bbox(self, image, color=(0,255,0,255), thick=1): image: np.ndarray = np.array(image) charboxes = self.charbbox() for idx, charbox in enumerate(charboxes): char, xywh = charbox.char, charbox.bbox xmin,ymin,xmax,ymax = boxes_ops.xywh_to_xymm(xywh) if char!=" ": # xmin, ymin, xmax, ymax = self.xymm_with_offset(char, x, y) image = cv.rectangle(image, (xmin, ymin), (xmax, ymax), color, thick) image: Image = Image.fromarray(image) return image def draw_char(self, image=None, draw_bbox=False, bbox_color=(0,255,0,255), bbox_thick=1): image = self.draw_char_text(image) bbox = self.charbbox() if draw_bbox: image = self.draw_char_bbox(image, color=bbox_color, thick=bbox_thick) return image, bbox
nunenuh/ocrdgen
ocrdgen/drawer/word.py
word.py
py
3,432
python
en
code
0
github-code
6
13842222350
import cv2 import numpy as np import math from numpy import random as nr import sys def lines(code=None, step=12): l = np.zeros((h, w, 3), np.uint8) l[:] = 255 if code == 0: # - horizontal for i in range(0, h, step): l = cv2.line(l, (0, i), (w, i), black) elif code == 1: # | horizontal for i in range(0, w, step): l = cv2.line(l, (i, 0), (i, h), black) elif code == 2: # \ 45 l = lines(code=3, step=step) l = cv2.flip(l, 0) elif code == 3: # / 45 for i in range(0, 2*w, step): l = cv2.line(l, (i, 0), (0, i), black) elif code == 4: # / 22.5 cotheta = 2.4142 tantheta = 0.4142 for i in range(0, int(w+h*cotheta), step): l = cv2.line(l, (i, 0), (0, int(i*tantheta)), black) elif code == 5: # / 67.5 cotheta = 0.4142 tantheta = 2.4142 for i in range(0, int(w+h*cotheta), step): l = cv2.line(l, (i, 0), (0, int(i*tantheta)), black) else: pass # empty return l def tsh(img, stage=None, Numberoftsh=None, equalizeHist=False): type = cv2.THRESH_BINARY img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if equalizeHist == False: pass else: img_gray = cv2.equalizeHist(img_gray, img_gray) _, th = cv2.threshold(img_gray, 255-int(((stage)/Numberoftsh)*255), 255, type) th = cv2.cvtColor(th, cv2.COLOR_GRAY2BGR) return th def createmasks(img, Numberoftsh=None): global masks for i in range(Numberoftsh): if seqline[i] == 4: step = 16 elif seqline[i] == 5: step = 10 else: step = 8 if masks is not None: masks = np.append(masks, np.expand_dims(lines(code=seqline[i], step=step), axis=0), axis=0) else: masks = lines(code=seqline[i], step=step) masks = np.expand_dims(masks, axis=0) #print(masks.shape) return masks def crosshatching(img, Numberoftsh=None, equalizeHist=False, color=False): global frame, flag, w, h h, w, _ = img.shape frame = np.zeros((h, w, 3), np.uint8) frame[:] = 255 if flag is False: createmasks(img, Numberoftsh=Numberoftsh) flag = True for i in range(Numberoftsh): th = tsh(img, stage=i, Numberoftsh=Numberoftsh, equalizeHist=equalizeHist) dst = cv2.addWeighted(masks[i], 1, th, 1, 0) dst = cv2.bitwise_and(dst, frame) frame = dst if color is False: return frame else: frame = cv2.bitwise_or(frame, img) return frame def showimage(img, Numberoftsh = 7, equalizeHist=False): global w, h h, w, _ = img.shape dst = crosshatching(img, Numberoftsh=Numberoftsh, equalizeHist=equalizeHist, color=True) #dst = cv2.resize(dst, (int(w/2), int(h/2))) cv2.imshow('dst', dst) cv2.waitKey(0) cv2.destroyAllWindows() def playvideo(video=None, Numberoftsh=None, color=False): global w, h if video is None: cap = cv2.VideoCapture(0) else: cap = video while True: _, frame = cap.read() if video is None: frame = cv2.flip(frame, 1) frame = crosshatching(frame, Numberoftsh=Numberoftsh, equalizeHist=False, color=color) cv2.imshow('main', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break black = (0, 0, 0) white = (255, 255, 255) #red = (0, 0, 255) #green = (0, 255, 0) #blue = (255, 0, 0) seqline = (-1, 0, 4, 3, 5, 2, 1) masks = None flag = False # existence of line masks if __name__ == "__main__": if len(sys.argv) > 1: pass else: #img = cv2.imread('eagle.jpg') #h, w, _ = img.shape #img = cv2.resize(img, (int(w/8), int(h/8))) #showimage(img) #video = cv2.VideoCapture(0) #video = cv2.VideoCapture('video/Wildlife.wmv') playvideo(video=None, Numberoftsh=7, color=True)
ZZ76/filters
crosshatching.py
crosshatching.py
py
3,968
python
en
code
4
github-code
6
25145519000
from dataclasses import dataclass from typing import Any from msg.serializers import BaseExpenseCreationSerializer, BaseExpensePropertySerializer @dataclass class ExpenseCreationHelper: data: dict def __call__(self, *args: Any, **kwds: Any) -> Any: if not self._parse_data(): return return True def _parse_data(self): user_id = self.data.pop('user_id', None) expense_category_name = self.data.pop('expense_category_name', None) expense_ser = BaseExpenseCreationSerializer(data={ 'user_id': user_id, 'expense_category_name': expense_category_name }) expense_ser.is_valid(raise_exception=True) expense_inst = expense_ser.save() self.data['expense_id'] = expense_inst.id expense_property_ser = BaseExpensePropertySerializer(data=self.data) expense_property_ser.is_valid(raise_exception=True) expense_property_ser.save() return True
enamsaraev/tg_api
msg/helpers.py
helpers.py
py
1,000
python
en
code
0
github-code
6
38081298604
import asyncio import threading from sqlalchemy.orm import Query from ConsumerService.consumer.persistence import db from ConsumerService.consumer.business import manage_event_data from aio_pika import connect, ExchangeType from flask import Flask, request, jsonify, Response app = Flask(__name__) @app.route('/getPatientMedsPeriods') def get_patient_med_period(): p_id = request.args['p_id'] med = request.args['med'] patient_meds_periods = [] result = manage_event_data.get_patient_med_period(p_id, med) if isinstance(result,Query): _len = result.count() else: _len = len(result) if _len > 0: for r in result: a = {"p_id": r.p_id, "medication_name": r.medication_name, "medication_period_start": r.medication_period_start, "medication_period_end": r.medication_period_end} patient_meds_periods.append(a) return jsonify(patient_meds_periods) else: # No elements in the result --> return NOT_FOUND_404 return Response('No medication periods has been found for patient {} with medication: {}'.format(p_id, med), 404) @app.route('/getPatientAllMedsPeriods') def get_patient_all_meds_period(): p_id = request.args['p_id'] patient_meds_periods = [] result = manage_event_data.get_patient_all_meds_periods(p_id) if isinstance(result,Query): _len = result.count() else: _len = len(result) if _len > 0: for r in result: a = {"p_id": r.p_id, "medication_name": r.medication_name, "medication_period_start": r.medication_period_start, "medication_period_end": r.medication_period_end} patient_meds_periods.append(a) return jsonify(patient_meds_periods) else: # No elements in the result --> return NOT_FOUND_404 return Response('No medication periods has been found for patient:{}'.format(p_id), 404) async def main(loop): print("Connecting to the PostgreSQL database...") if not db.is_table_exist(): conn = db.create_tables() else: conn = db.get_connection() connection = await connect(host="localhost", login="admin", password="password", loop=loop ) # connection = await connect(host=os.environ.get('RABBIT_HOST'), # login=os.environ.get('RABBIT_USER'), # password=os.environ.get('RABBIT_PASS'), # loop=loop # ) async with connection: # Creating a channel channel = await connection.channel() # Declaring the queue queue = await channel.declare_queue(name='events', auto_delete=True) exchange = await channel.declare_exchange("meds", ExchangeType.FANOUT) routing_key = "new.events" await queue.bind(exchange, routing_key) async with queue.iterator() as queue_iter: async for message in queue_iter: async with message.process(): event_str = message.body.decode('UTF-8') manage_event_data.save_event(event_str) if __name__ == '__main__': # start flask on separate thread threading.Thread(target=lambda : app.run(debug=True, use_reloader=False)).start() # Get the current event loop. # If there is no current event loop set in the current OS thread, # the OS thread is main, and set_event_loop() has not yet been called, # asyncio will create a new event loop and set it as the current one. loop = asyncio.get_event_loop() if loop is not None: loop.run_until_complete(main(loop)) else: print("Error establishing event loop!")
oran1980/clewMedical
application-assignment/ConsumerService/consumer/main.py
main.py
py
3,890
python
en
code
1
github-code
6
26113020545
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "03/04/2017" # TODO # keep aspect ratio managed here? # smarter dirty flag handling? import datetime as dt import math import weakref import logging import numbers from typing import Optional, Union from collections import namedtuple import numpy from .... import qt from ...._glutils import gl, Program from ..._utils import checkAxisLimits, FLOAT32_MINPOS from .GLSupport import mat4Ortho from .GLText import Text2D, CENTER, BOTTOM, TOP, LEFT, RIGHT, ROTATE_270 from ..._utils.ticklayout import niceNumbersAdaptative, niceNumbersForLog10 from ..._utils.dtime_ticklayout import calcTicksAdaptive, bestFormatString from ..._utils.dtime_ticklayout import timestamp _logger = logging.getLogger(__name__) # PlotAxis #################################################################### class PlotAxis(object): """Represents a 1D axis of the plot. This class is intended to be used with :class:`GLPlotFrame`. """ def __init__(self, plotFrame, tickLength=(0., 0.), foregroundColor=(0., 0., 0., 1.0), labelAlign=CENTER, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=CENTER, titleRotate=0, titleOffset=(0., 0.)): self._ticks = None self._plotFrameRef = weakref.ref(plotFrame) self._isDateTime = False self._timeZone = None self._isLog = False self._dataRange = 1., 100. self._displayCoords = (0., 0.), (1., 0.) self._title = '' self._tickLength = tickLength self._foregroundColor = foregroundColor self._labelAlign = labelAlign self._labelVAlign = labelVAlign self._titleAlign = titleAlign self._titleVAlign = titleVAlign self._titleRotate = titleRotate self._titleOffset = titleOffset @property def dataRange(self): """The range of the data represented on the axis as a tuple of 2 floats: (min, max).""" return self._dataRange @dataRange.setter def dataRange(self, dataRange): assert len(dataRange) == 2 assert dataRange[0] <= dataRange[1] dataRange = float(dataRange[0]), float(dataRange[1]) if dataRange != self._dataRange: self._dataRange = dataRange self._dirtyTicks() @property def isLog(self): """Whether the axis is using a log10 scale or not as a bool.""" return self._isLog @isLog.setter def isLog(self, isLog): isLog = bool(isLog) if isLog != self._isLog: self._isLog = isLog self._dirtyTicks() @property def timeZone(self): """Returnss datetime.tzinfo that is used if this axis plots date times.""" return self._timeZone @timeZone.setter def timeZone(self, tz): """Sets dateetime.tzinfo that is used if this axis plots date times.""" self._timeZone = tz self._dirtyTicks() @property def isTimeSeries(self): """Whether the axis is showing floats as datetime objects""" return self._isDateTime @isTimeSeries.setter def isTimeSeries(self, isTimeSeries): isTimeSeries = bool(isTimeSeries) if isTimeSeries != self._isDateTime: self._isDateTime = isTimeSeries self._dirtyTicks() @property def displayCoords(self): """The coordinates of the start and end points of the axis in display space (i.e., in pixels) as a tuple of 2 tuples of 2 floats: ((x0, y0), (x1, y1)). """ return self._displayCoords @displayCoords.setter def displayCoords(self, displayCoords): assert len(displayCoords) == 2 assert len(displayCoords[0]) == 2 assert len(displayCoords[1]) == 2 displayCoords = tuple(displayCoords[0]), tuple(displayCoords[1]) if displayCoords != self._displayCoords: self._displayCoords = displayCoords self._dirtyTicks() @property def devicePixelRatio(self): """Returns the ratio between qt pixels and device pixels.""" plotFrame = self._plotFrameRef() return plotFrame.devicePixelRatio if plotFrame is not None else 1. @property def title(self): """The text label associated with this axis as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title self._dirtyPlotFrame() @property def titleOffset(self): """Title offset in pixels (x: int, y: int)""" return self._titleOffset @titleOffset.setter def titleOffset(self, offset): if offset != self._titleOffset: self._titleOffset = offset self._dirtyTicks() @property def foregroundColor(self): """Color used for frame and labels""" return self._foregroundColor @foregroundColor.setter def foregroundColor(self, color): """Color used for frame and labels""" assert len(color) == 4, \ "foregroundColor must have length 4, got {}".format(len(self._foregroundColor)) if self._foregroundColor != color: self._foregroundColor = color self._dirtyTicks() @property def ticks(self): """Ticks as tuples: ((x, y) in display, dataPos, textLabel).""" if self._ticks is None: self._ticks = tuple(self._ticksGenerator()) return self._ticks def getVerticesAndLabels(self): """Create the list of vertices for axis and associated text labels. :returns: A tuple: List of 2D line vertices, List of Text2D labels. """ vertices = list(self.displayCoords) # Add start and end points labels = [] tickLabelsSize = [0., 0.] font = qt.QApplication.instance().font() xTickLength, yTickLength = self._tickLength xTickLength *= self.devicePixelRatio yTickLength *= self.devicePixelRatio for (xPixel, yPixel), dataPos, text in self.ticks: if text is None: tickScale = 0.5 else: tickScale = 1. label = Text2D(text=text, font=font, color=self._foregroundColor, x=xPixel - xTickLength, y=yPixel - yTickLength, align=self._labelAlign, valign=self._labelVAlign, devicePixelRatio=self.devicePixelRatio) width, height = label.size if width > tickLabelsSize[0]: tickLabelsSize[0] = width if height > tickLabelsSize[1]: tickLabelsSize[1] = height labels.append(label) vertices.append((xPixel, yPixel)) vertices.append((xPixel + tickScale * xTickLength, yPixel + tickScale * yTickLength)) (x0, y0), (x1, y1) = self.displayCoords xAxisCenter = 0.5 * (x0 + x1) yAxisCenter = 0.5 * (y0 + y1) xOffset, yOffset = self.titleOffset # Adaptative title positioning: # tickNorm = math.sqrt(xTickLength ** 2 + yTickLength ** 2) # xOffset = -tickLabelsSize[0] * xTickLength / tickNorm # xOffset -= 3 * xTickLength # yOffset = -tickLabelsSize[1] * yTickLength / tickNorm # yOffset -= 3 * yTickLength axisTitle = Text2D(text=self.title, font=font, color=self._foregroundColor, x=xAxisCenter + xOffset, y=yAxisCenter + yOffset, align=self._titleAlign, valign=self._titleVAlign, rotate=self._titleRotate, devicePixelRatio=self.devicePixelRatio) labels.append(axisTitle) return vertices, labels def _dirtyPlotFrame(self): """Dirty parent GLPlotFrame""" plotFrame = self._plotFrameRef() if plotFrame is not None: plotFrame._dirty() def _dirtyTicks(self): """Mark ticks as dirty and notify listener (i.e., background).""" self._ticks = None self._dirtyPlotFrame() @staticmethod def _frange(start, stop, step): """range for float (including stop).""" while start <= stop: yield start start += step def _ticksGenerator(self): """Generator of ticks as tuples: ((x, y) in display, dataPos, textLabel). """ dataMin, dataMax = self.dataRange if self.isLog and dataMin <= 0.: _logger.warning( 'Getting ticks while isLog=True and dataRange[0]<=0.') dataMin = 1. if dataMax < dataMin: dataMax = 1. if dataMin != dataMax: # data range is not null (x0, y0), (x1, y1) = self.displayCoords if self.isLog: if self.isTimeSeries: _logger.warning("Time series not implemented for log-scale") logMin, logMax = math.log10(dataMin), math.log10(dataMax) tickMin, tickMax, step, _ = niceNumbersForLog10(logMin, logMax) xScale = (x1 - x0) / (logMax - logMin) yScale = (y1 - y0) / (logMax - logMin) for logPos in self._frange(tickMin, tickMax, step): if logMin <= logPos <= logMax: dataPos = 10 ** logPos xPixel = x0 + (logPos - logMin) * xScale yPixel = y0 + (logPos - logMin) * yScale text = '1e%+03d' % logPos yield ((xPixel, yPixel), dataPos, text) if step == 1: ticks = list(self._frange(tickMin, tickMax, step))[:-1] for logPos in ticks: dataOrigPos = 10 ** logPos for index in range(2, 10): dataPos = dataOrigPos * index if dataMin <= dataPos <= dataMax: logSubPos = math.log10(dataPos) xPixel = x0 + (logSubPos - logMin) * xScale yPixel = y0 + (logSubPos - logMin) * yScale yield ((xPixel, yPixel), dataPos, None) else: xScale = (x1 - x0) / (dataMax - dataMin) yScale = (y1 - y0) / (dataMax - dataMin) nbPixels = math.sqrt(pow(x1 - x0, 2) + pow(y1 - y0, 2)) / self.devicePixelRatio # Density of 1.3 label per 92 pixels # i.e., 1.3 label per inch on a 92 dpi screen tickDensity = 1.3 / 92 if not self.isTimeSeries: tickMin, tickMax, step, nbFrac = niceNumbersAdaptative( dataMin, dataMax, nbPixels, tickDensity) for dataPos in self._frange(tickMin, tickMax, step): if dataMin <= dataPos <= dataMax: xPixel = x0 + (dataPos - dataMin) * xScale yPixel = y0 + (dataPos - dataMin) * yScale if nbFrac == 0: text = '%g' % dataPos else: text = ('%.' + str(nbFrac) + 'f') % dataPos yield ((xPixel, yPixel), dataPos, text) else: # Time series try: dtMin = dt.datetime.fromtimestamp(dataMin, tz=self.timeZone) dtMax = dt.datetime.fromtimestamp(dataMax, tz=self.timeZone) except ValueError: _logger.warning("Data range cannot be displayed with time axis") return # Range is out of bound of the datetime tickDateTimes, spacing, unit = calcTicksAdaptive( dtMin, dtMax, nbPixels, tickDensity) for tickDateTime in tickDateTimes: if dtMin <= tickDateTime <= dtMax: dataPos = timestamp(tickDateTime) xPixel = x0 + (dataPos - dataMin) * xScale yPixel = y0 + (dataPos - dataMin) * yScale fmtStr = bestFormatString(spacing, unit) text = tickDateTime.strftime(fmtStr) yield ((xPixel, yPixel), dataPos, text) # GLPlotFrame ################################################################# class GLPlotFrame(object): """Base class for rendering a 2D frame surrounded by axes.""" _TICK_LENGTH_IN_PIXELS = 5 _LINE_WIDTH = 1 _SHADERS = { 'vertex': """ attribute vec2 position; uniform mat4 matrix; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); } """, 'fragment': """ uniform vec4 color; uniform float tickFactor; /* = 1./tickLength or 0. for solid line */ void main(void) { if (mod(tickFactor * (gl_FragCoord.x + gl_FragCoord.y), 2.) < 1.) { gl_FragColor = color; } else { discard; } } """ } _Margins = namedtuple('Margins', ('left', 'right', 'top', 'bottom')) # Margins used when plot frame is not displayed _NoDisplayMargins = _Margins(0, 0, 0, 0) def __init__(self, marginRatios, foregroundColor, gridColor): """ :param List[float] marginRatios: The ratios of margins around plot area for axis and labels. (left, top, right, bottom) as float in [0., 1.] :param foregroundColor: color used for the frame and labels. :type foregroundColor: tuple with RGBA values ranging from 0.0 to 1.0 :param gridColor: color used for grid lines. :type gridColor: tuple RGBA with RGBA values ranging from 0.0 to 1.0 """ self._renderResources = None self.__marginRatios = marginRatios self.__marginsCache = None self._foregroundColor = foregroundColor self._gridColor = gridColor self.axes = [] # List of PlotAxis to be updated by subclasses self._grid = False self._size = 0., 0. self._title = '' self._devicePixelRatio = 1. @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return self._renderResources is None GRID_NONE = 0 GRID_MAIN_TICKS = 1 GRID_SUB_TICKS = 2 GRID_ALL_TICKS = (GRID_MAIN_TICKS + GRID_SUB_TICKS) @property def foregroundColor(self): """Color used for frame and labels""" return self._foregroundColor @foregroundColor.setter def foregroundColor(self, color): """Color used for frame and labels""" assert len(color) == 4, \ "foregroundColor must have length 4, got {}".format(len(self._foregroundColor)) if self._foregroundColor != color: self._foregroundColor = color for axis in self.axes: axis.foregroundColor = color self._dirty() @property def gridColor(self): """Color used for frame and labels""" return self._gridColor @gridColor.setter def gridColor(self, color): """Color used for frame and labels""" assert len(color) == 4, \ "gridColor must have length 4, got {}".format(len(self._gridColor)) if self._gridColor != color: self._gridColor = color self._dirty() @property def marginRatios(self): """Plot margin ratios: (left, top, right, bottom) as 4 float in [0, 1]. """ return self.__marginRatios @marginRatios.setter def marginRatios(self, ratios): ratios = tuple(float(v) for v in ratios) assert len(ratios) == 4 for value in ratios: assert 0. <= value <= 1. assert ratios[0] + ratios[2] < 1. assert ratios[1] + ratios[3] < 1. if self.__marginRatios != ratios: self.__marginRatios = ratios self.__marginsCache = None # Clear cached margins self._dirty() @property def margins(self): """Margins in pixels around the plot.""" if self.__marginsCache is None: width, height = self.size left, top, right, bottom = self.marginRatios self.__marginsCache = self._Margins( left=int(left*width), right=int(right*width), top=int(top*height), bottom=int(bottom*height)) return self.__marginsCache @property def devicePixelRatio(self): return self._devicePixelRatio @devicePixelRatio.setter def devicePixelRatio(self, ratio): if ratio != self._devicePixelRatio: self._devicePixelRatio = ratio self._dirty() @property def grid(self): """Grid display mode: - 0: No grid. - 1: Grid on main ticks. - 2: Grid on sub-ticks for log scale axes. - 3: Grid on main and sub ticks.""" return self._grid @grid.setter def grid(self, grid): assert grid in (self.GRID_NONE, self.GRID_MAIN_TICKS, self.GRID_SUB_TICKS, self.GRID_ALL_TICKS) if grid != self._grid: self._grid = grid self._dirty() @property def size(self): """Size in device pixels of the plot area including margins.""" return self._size @size.setter def size(self, size): assert len(size) == 2 size = tuple(size) if size != self._size: self._size = size self.__marginsCache = None # Clear cached margins self._dirty() @property def plotOrigin(self): """Plot area origin (left, top) in widget coordinates in pixels.""" return self.margins.left, self.margins.top @property def plotSize(self): """Plot area size (width, height) in pixels.""" w, h = self.size w -= self.margins.left + self.margins.right h -= self.margins.top + self.margins.bottom return w, h @property def title(self): """Main title as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title self._dirty() # In-place update # if self._renderResources is not None: # self._renderResources[-1][-1].text = title def _dirty(self): # When Text2D require discard we need to handle it self._renderResources = None def _buildGridVertices(self): if self._grid == self.GRID_NONE: return [] elif self._grid == self.GRID_MAIN_TICKS: def test(text): return text is not None elif self._grid == self.GRID_SUB_TICKS: def test(text): return text is None elif self._grid == self.GRID_ALL_TICKS: def test(_): return True else: logging.warning('Wrong grid mode: %d' % self._grid) return [] return self._buildGridVerticesWithTest(test) def _buildGridVerticesWithTest(self, test): """Override in subclass to generate grid vertices""" return [] def _buildVerticesAndLabels(self): # To fill with copy of axes lists vertices = [] labels = [] for axis in self.axes: axisVertices, axisLabels = axis.getVerticesAndLabels() vertices += axisVertices labels += axisLabels vertices = numpy.array(vertices, dtype=numpy.float32) # Add main title xTitle = (self.size[0] + self.margins.left - self.margins.right) // 2 yTitle = self.margins.top - self._TICK_LENGTH_IN_PIXELS labels.append(Text2D(text=self.title, font=qt.QApplication.instance().font(), color=self._foregroundColor, x=xTitle, y=yTitle, align=CENTER, valign=BOTTOM, devicePixelRatio=self.devicePixelRatio)) # grid gridVertices = numpy.array(self._buildGridVertices(), dtype=numpy.float32) self._renderResources = (vertices, gridVertices, labels) _program = Program( _SHADERS['vertex'], _SHADERS['fragment'], attrib0='position') def render(self): if self.margins == self._NoDisplayMargins: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) gl.glViewport(0, 0, width, height) prog = self._program prog.use() gl.glLineWidth(self._LINE_WIDTH) gl.glUniformMatrix4fv(prog.uniforms['matrix'], 1, gl.GL_TRUE, matProj.astype(numpy.float32)) gl.glUniform4f(prog.uniforms['color'], *self._foregroundColor) gl.glUniform1f(prog.uniforms['tickFactor'], 0.) gl.glEnableVertexAttribArray(prog.attributes['position']) gl.glVertexAttribPointer(prog.attributes['position'], 2, gl.GL_FLOAT, gl.GL_FALSE, 0, vertices) gl.glDrawArrays(gl.GL_LINES, 0, len(vertices)) for label in labels: label.render(matProj) def renderGrid(self): if self._grid == self.GRID_NONE: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) gl.glViewport(0, 0, width, height) prog = self._program prog.use() gl.glLineWidth(self._LINE_WIDTH) gl.glUniformMatrix4fv(prog.uniforms['matrix'], 1, gl.GL_TRUE, matProj.astype(numpy.float32)) gl.glUniform4f(prog.uniforms['color'], *self._gridColor) gl.glUniform1f(prog.uniforms['tickFactor'], 0.) # 1/2.) # 1/tickLen gl.glEnableVertexAttribArray(prog.attributes['position']) gl.glVertexAttribPointer(prog.attributes['position'], 2, gl.GL_FLOAT, gl.GL_FALSE, 0, gridVertices) gl.glDrawArrays(gl.GL_LINES, 0, len(gridVertices)) # GLPlotFrame2D ############################################################### class GLPlotFrame2D(GLPlotFrame): def __init__(self, marginRatios, foregroundColor, gridColor): """ :param List[float] marginRatios: The ratios of margins around plot area for axis and labels. (left, top, right, bottom) as float in [0., 1.] :param foregroundColor: color used for the frame and labels. :type foregroundColor: tuple with RGBA values ranging from 0.0 to 1.0 :param gridColor: color used for grid lines. :type gridColor: tuple RGBA with RGBA values ranging from 0.0 to 1.0 """ super(GLPlotFrame2D, self).__init__(marginRatios, foregroundColor, gridColor) self.axes.append(PlotAxis(self, tickLength=(0., -5.), foregroundColor=self._foregroundColor, labelAlign=CENTER, labelVAlign=TOP, titleAlign=CENTER, titleVAlign=TOP, titleRotate=0)) self._x2AxisCoords = () self.axes.append(PlotAxis(self, tickLength=(5., 0.), foregroundColor=self._foregroundColor, labelAlign=RIGHT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=BOTTOM, titleRotate=ROTATE_270)) self._y2Axis = PlotAxis(self, tickLength=(-5., 0.), foregroundColor=self._foregroundColor, labelAlign=LEFT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=TOP, titleRotate=ROTATE_270) self._isYAxisInverted = False self._dataRanges = { 'x': (1., 100.), 'y': (1., 100.), 'y2': (1., 100.)} self._baseVectors = (1., 0.), (0., 1.) self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None def _dirty(self): super(GLPlotFrame2D, self)._dirty() self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return (super(GLPlotFrame2D, self).isDirty or self._transformedDataRanges is None or self._transformedDataProjMat is None or self._transformedDataY2ProjMat is None) @property def xAxis(self): return self.axes[0] @property def yAxis(self): return self.axes[1] @property def y2Axis(self): return self._y2Axis @property def isY2Axis(self): """Whether to display the left Y axis or not.""" return len(self.axes) == 3 @isY2Axis.setter def isY2Axis(self, isY2Axis): if isY2Axis != self.isY2Axis: if isY2Axis: self.axes.append(self._y2Axis) else: self.axes = self.axes[:2] self._dirty() @property def isYAxisInverted(self): """Whether Y axes are inverted or not as a bool.""" return self._isYAxisInverted @isYAxisInverted.setter def isYAxisInverted(self, value): value = bool(value) if value != self._isYAxisInverted: self._isYAxisInverted = value self._dirty() DEFAULT_BASE_VECTORS = (1., 0.), (0., 1.) """Values of baseVectors for orthogonal axes.""" @property def baseVectors(self): """Coordinates of the X and Y axes in the orthogonal plot coords. Raises ValueError if corresponding matrix is singular. 2 tuples of 2 floats: (xx, xy), (yx, yy) """ return self._baseVectors @baseVectors.setter def baseVectors(self, baseVectors): self._dirty() (xx, xy), (yx, yy) = baseVectors vectors = (float(xx), float(xy)), (float(yx), float(yy)) det = (vectors[0][0] * vectors[1][1] - vectors[1][0] * vectors[0][1]) if det == 0.: raise ValueError("Singular matrix for base vectors: " + str(vectors)) if vectors != self._baseVectors: self._baseVectors = vectors self._dirty() def _updateTitleOffset(self): """Update axes title offset according to margins""" margins = self.margins self.xAxis.titleOffset = 0, margins.bottom // 2 self.yAxis.titleOffset = -3 * margins.left // 4, 0 self.y2Axis.titleOffset = 3 * margins.right // 4, 0 # Override size and marginRatios setters to update titleOffsets @GLPlotFrame.size.setter def size(self, size): GLPlotFrame.size.fset(self, size) self._updateTitleOffset() @GLPlotFrame.marginRatios.setter def marginRatios(self, ratios): GLPlotFrame.marginRatios.fset(self, ratios) self._updateTitleOffset() @property def dataRanges(self): """Ranges of data visible in the plot on x, y and y2 axes. This is different to the axes range when axes are not orthogonal. Type: ((xMin, xMax), (yMin, yMax), (y2Min, y2Max)) """ return self._DataRanges(self._dataRanges['x'], self._dataRanges['y'], self._dataRanges['y2']) def setDataRanges(self, x=None, y=None, y2=None): """Set data range over each axes. The provided ranges are clipped to possible values (i.e., 32 float range + positive range for log scale). :param x: (min, max) data range over X axis :param y: (min, max) data range over Y axis :param y2: (min, max) data range over Y2 axis """ if x is not None: self._dataRanges['x'] = checkAxisLimits( x[0], x[1], self.xAxis.isLog, name='x') if y is not None: self._dataRanges['y'] = checkAxisLimits( y[0], y[1], self.yAxis.isLog, name='y') if y2 is not None: self._dataRanges['y2'] = checkAxisLimits( y2[0], y2[1], self.y2Axis.isLog, name='y2') self.xAxis.dataRange = self._dataRanges['x'] self.yAxis.dataRange = self._dataRanges['y'] self.y2Axis.dataRange = self._dataRanges['y2'] _DataRanges = namedtuple('dataRanges', ('x', 'y', 'y2')) @property def transformedDataRanges(self): """Bounds of the displayed area in transformed data coordinates (i.e., log scale applied if any as well as skew) 3-tuple of 2-tuple (min, max) for each axis: x, y, y2. """ if self._transformedDataRanges is None: (xMin, xMax), (yMin, yMax), (y2Min, y2Max) = self.dataRanges if self.xAxis.isLog: try: xMin = math.log10(xMin) except ValueError: _logger.info('xMin: warning log10(%f)', xMin) xMin = 0. try: xMax = math.log10(xMax) except ValueError: _logger.info('xMax: warning log10(%f)', xMax) xMax = 0. if self.yAxis.isLog: try: yMin = math.log10(yMin) except ValueError: _logger.info('yMin: warning log10(%f)', yMin) yMin = 0. try: yMax = math.log10(yMax) except ValueError: _logger.info('yMax: warning log10(%f)', yMax) yMax = 0. try: y2Min = math.log10(y2Min) except ValueError: _logger.info('yMin: warning log10(%f)', y2Min) y2Min = 0. try: y2Max = math.log10(y2Max) except ValueError: _logger.info('yMax: warning log10(%f)', y2Max) y2Max = 0. self._transformedDataRanges = self._DataRanges( (xMin, xMax), (yMin, yMax), (y2Min, y2Max)) return self._transformedDataRanges @property def transformedDataProjMat(self): """Orthographic projection matrix for rendering transformed data :type: numpy.matrix """ if self._transformedDataProjMat is None: xMin, xMax = self.transformedDataRanges.x yMin, yMax = self.transformedDataRanges.y if self.isYAxisInverted: mat = mat4Ortho(xMin, xMax, yMax, yMin, 1, -1) else: mat = mat4Ortho(xMin, xMax, yMin, yMax, 1, -1) self._transformedDataProjMat = mat return self._transformedDataProjMat @property def transformedDataY2ProjMat(self): """Orthographic projection matrix for rendering transformed data for the 2nd Y axis :type: numpy.matrix """ if self._transformedDataY2ProjMat is None: xMin, xMax = self.transformedDataRanges.x y2Min, y2Max = self.transformedDataRanges.y2 if self.isYAxisInverted: mat = mat4Ortho(xMin, xMax, y2Max, y2Min, 1, -1) else: mat = mat4Ortho(xMin, xMax, y2Min, y2Max, 1, -1) self._transformedDataY2ProjMat = mat return self._transformedDataY2ProjMat @staticmethod def __applyLog( data: Union[float, numpy.ndarray], isLog: bool ) -> Optional[Union[float, numpy.ndarray]]: """Apply log to data filtering out """ if not isLog: return data if isinstance(data, numbers.Real): return None if data < FLOAT32_MINPOS else math.log10(data) isBelowMin = data < FLOAT32_MINPOS if numpy.any(isBelowMin): data = numpy.array(data, copy=True, dtype=numpy.float64) data[isBelowMin] = numpy.nan with numpy.errstate(divide='ignore'): return numpy.log10(data) def dataToPixel(self, x, y, axis='left'): """Convert data coordinate to widget pixel coordinate. """ assert axis in ('left', 'right') trBounds = self.transformedDataRanges xDataTr = self.__applyLog(x, self.xAxis.isLog) if xDataTr is None: return None yDataTr = self.__applyLog(y, self.yAxis.isLog) if yDataTr is None: return None # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat = numpy.array(((xx, yx), (xy, yy))) coords = numpy.dot(skew_mat, numpy.array((xDataTr, yDataTr))) xDataTr, yDataTr = coords plotWidth, plotHeight = self.plotSize xPixel = (self.margins.left + plotWidth * (xDataTr - trBounds.x[0]) / (trBounds.x[1] - trBounds.x[0])) usedAxis = trBounds.y if axis == "left" else trBounds.y2 yOffset = (plotHeight * (yDataTr - usedAxis[0]) / (usedAxis[1] - usedAxis[0])) if self.isYAxisInverted: yPixel = self.margins.top + yOffset else: yPixel = self.size[1] - self.margins.bottom - yOffset return ( int(xPixel) if isinstance(xPixel, numbers.Real) else xPixel.astype(numpy.int64), int(yPixel) if isinstance(yPixel, numbers.Real) else yPixel.astype(numpy.int64), ) def pixelToData(self, x, y, axis="left"): """Convert pixel position to data coordinates. :param float x: X coord :param float y: Y coord :param str axis: Y axis to use in ('left', 'right') :return: (x, y) position in data coords """ assert axis in ("left", "right") plotWidth, plotHeight = self.plotSize trBounds = self.transformedDataRanges xData = (x - self.margins.left + 0.5) / float(plotWidth) xData = trBounds.x[0] + xData * (trBounds.x[1] - trBounds.x[0]) usedAxis = trBounds.y if axis == "left" else trBounds.y2 if self.isYAxisInverted: yData = (y - self.margins.top + 0.5) / float(plotHeight) yData = usedAxis[0] + yData * (usedAxis[1] - usedAxis[0]) else: yData = self.size[1] - self.margins.bottom - y - 0.5 yData /= float(plotHeight) yData = usedAxis[0] + yData * (usedAxis[1] - usedAxis[0]) # non-orthogonal axis if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat = numpy.array(((xx, yx), (xy, yy))) skew_mat = numpy.linalg.inv(skew_mat) coords = numpy.dot(skew_mat, numpy.array((xData, yData))) xData, yData = coords if self.xAxis.isLog: xData = pow(10, xData) if self.yAxis.isLog: yData = pow(10, yData) return xData, yData def _buildGridVerticesWithTest(self, test): vertices = [] if self.baseVectors == self.DEFAULT_BASE_VECTORS: for axis in self.axes: for (xPixel, yPixel), data, text in axis.ticks: if test(text): vertices.append((xPixel, yPixel)) if axis == self.xAxis: vertices.append((xPixel, self.margins.top)) elif axis == self.yAxis: vertices.append((self.size[0] - self.margins.right, yPixel)) else: # axis == self.y2Axis vertices.append((self.margins.left, yPixel)) else: # Get plot corners in data coords plotLeft, plotTop = self.plotOrigin plotWidth, plotHeight = self.plotSize corners = [(plotLeft, plotTop), (plotLeft, plotTop + plotHeight), (plotLeft + plotWidth, plotTop + plotHeight), (plotLeft + plotWidth, plotTop)] for axis in self.axes: if axis == self.xAxis: cornersInData = numpy.array([ self.pixelToData(x, y) for (x, y) in corners]) borders = ((cornersInData[0], cornersInData[3]), # top (cornersInData[1], cornersInData[0]), # left (cornersInData[3], cornersInData[2])) # right for (xPixel, yPixel), data, text in axis.ticks: if test(text): for (x0, y0), (x1, y1) in borders: if min(x0, x1) <= data < max(x0, x1): yIntersect = (data - x0) * \ (y1 - y0) / (x1 - x0) + y0 pixelPos = self.dataToPixel( data, yIntersect) if pixelPos is not None: vertices.append((xPixel, yPixel)) vertices.append(pixelPos) break # Stop at first intersection else: # y or y2 axes if axis == self.yAxis: axis_name = 'left' cornersInData = numpy.array([ self.pixelToData(x, y) for (x, y) in corners]) borders = ( (cornersInData[3], cornersInData[2]), # right (cornersInData[0], cornersInData[3]), # top (cornersInData[2], cornersInData[1])) # bottom else: # axis == self.y2Axis axis_name = 'right' corners = numpy.array([self.pixelToData( x, y, axis='right') for (x, y) in corners]) borders = ( (cornersInData[1], cornersInData[0]), # left (cornersInData[0], cornersInData[3]), # top (cornersInData[2], cornersInData[1])) # bottom for (xPixel, yPixel), data, text in axis.ticks: if test(text): for (x0, y0), (x1, y1) in borders: if min(y0, y1) <= data < max(y0, y1): xIntersect = (data - y0) * \ (x1 - x0) / (y1 - y0) + x0 pixelPos = self.dataToPixel( xIntersect, data, axis=axis_name) if pixelPos is not None: vertices.append((xPixel, yPixel)) vertices.append(pixelPos) break # Stop at first intersection return vertices def _buildVerticesAndLabels(self): width, height = self.size xCoords = (self.margins.left - 0.5, width - self.margins.right + 0.5) yCoords = (height - self.margins.bottom + 0.5, self.margins.top - 0.5) self.axes[0].displayCoords = ((xCoords[0], yCoords[0]), (xCoords[1], yCoords[0])) self._x2AxisCoords = ((xCoords[0], yCoords[1]), (xCoords[1], yCoords[1])) if self.isYAxisInverted: # Y axes are inverted, axes coordinates are inverted yCoords = yCoords[1], yCoords[0] self.axes[1].displayCoords = ((xCoords[0], yCoords[0]), (xCoords[0], yCoords[1])) self._y2Axis.displayCoords = ((xCoords[1], yCoords[0]), (xCoords[1], yCoords[1])) super(GLPlotFrame2D, self)._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources # Adds vertices for borders without axis extraVertices = [] extraVertices += self._x2AxisCoords if not self.isY2Axis: extraVertices += self._y2Axis.displayCoords extraVertices = numpy.array( extraVertices, copy=False, dtype=numpy.float32) vertices = numpy.append(vertices, extraVertices, axis=0) self._renderResources = (vertices, gridVertices, labels) @property def foregroundColor(self): """Color used for frame and labels""" return self._foregroundColor @foregroundColor.setter def foregroundColor(self, color): """Color used for frame and labels""" assert len(color) == 4, \ "foregroundColor must have length 4, got {}".format(len(self._foregroundColor)) if self._foregroundColor != color: self._y2Axis.foregroundColor = color GLPlotFrame.foregroundColor.fset(self, color) # call parent property
silx-kit/silx
src/silx/gui/plot/backends/glutils/GLPlotFrame.py
GLPlotFrame.py
py
42,835
python
en
code
106
github-code
6
5589205557
import re import plac import ujson as json from utils import load_jsonl_file, dumps_jsonl regex_ws = re.compile(r'\s+') def load_corpus(path): documents = json.load(open(path, 'r')) return documents def hydrate(parses, relation): doc = parses.get(relation['DocID']) text = doc.get('text', '') if doc else '' return { 'Arg1': { 'TokenList': relation['Arg1'], 'RawText': ' '.join([text[t[0]:t[1]] for t in relation['Arg1']]), }, 'Arg2': { 'TokenList': relation['Arg2'], 'RawText': ' '.join([text[t[0]:t[1]] for t in relation['Arg2']]), }, 'Connective': { 'TokenList': relation['Connective'], 'RawText': ' '.join([text[t[0]:t[1]] for t in relation['Connective']]), }, 'DocId': relation['DocID'] } def main(parses_path, relation_path): corpus = load_corpus(parses_path) relations = load_jsonl_file(relation_path) dumps_jsonl(map(lambda r: hydrate(corpus, r), relations)) if __name__ == '__main__': plac.call(main)
rknaebel/bbc-discourse
hydrate.py
hydrate.py
py
1,089
python
en
code
1
github-code
6
1059675909
""" This module defines the interface for the Server. .. autoclass:: Server :members: :undoc-members: :show-inheritance: """ import atexit import base64 import logging import os import threading from functools import partial, wraps import pluginbase import tornado.httpserver import tornado.web from flask import (Flask, flash, jsonify, redirect, render_template, request, send_from_directory, session, url_for) from flask_babel import Babel from flask_login import current_user, logout_user from sockjs.tornado import SockJSRouter from tornado import web from tornado.ioloop import IOLoop from tornado.wsgi import WSGIContainer from opsoro.apps import Apps from opsoro.console_msg import * from opsoro.expression import Expression from opsoro.preferences import Preferences from opsoro.robot import Robot from opsoro.server.request_handlers import RHandler from opsoro.users import SocketConnection, Users # Helper function get_path = partial(os.path.join, os.path.abspath(os.path.dirname(__file__))) class Server(object): def __init__(self): self.request_handler = RHandler(self) # Create flask instance for webserver self.flaskapp = Flask(__name__) # self.flaskapp.config['DEBUG'] = True self.flaskapp.config['TEMPLATES_AUTO_RELOAD'] = True # Translation support self.flaskapp.config.from_pyfile('settings.cfg') self.babel = Babel(self.flaskapp) # Setup key for sessions self.flaskapp.secret_key = "5\x075y\xfe$\x1aV\x1c<A\xf4\xc1\xcfst0\xa49\x9e@\x0b\xb2\x17" # Setup login manager Users.setup(self.flaskapp) # Setup app system Apps.register_apps(self) # self.activeapp = None # Initialize all URLs self.request_handler.set_urls() # Run stop function at exit atexit.register(self.at_exit) def at_exit(self): print_info('Goodbye!') # Sleep robot Robot.sleep() Apps.stop_all() if threading.activeCount() > 0: threads = threading.enumerate() for thread in threads: try: thread.stop() thread.join() except AttributeError: pass def render_template(self, template, **kwargs): return self.request_handler.render_template(template, **kwargs) def run(self): # Setup SockJS flaskwsgi = WSGIContainer(self.flaskapp) self.socketrouter = SockJSRouter(SocketConnection, '/sockjs') tornado_app = tornado.web.Application(self.socketrouter.urls + [(r".*", tornado.web.FallbackHandler, {"fallback": flaskwsgi})]) tornado_app.listen(80) # Wake up robot Robot.wake() # Start default app startup_app = Preferences.get('general', 'startup_app', None) if startup_app in Apps.apps: self.request_handler.page_openapp(startup_app) # SSL security # http_server = tornado.httpserver.HTTPServer(tornado_app, ssl_options={ # "certfile": "/etc/ssl/certs/server.crt", # "keyfile": "/etc/ssl/private/server.key", # }) # http_server.listen(443) try: # ioloop.PeriodicCallback(UserSocketConnection.dump_stats, 1000).start() IOLoop.instance().start() except KeyboardInterrupt: print_info('Keyboard interupt') self.at_exit() def shutdown(self): logging.info("Stopping server") io_loop = IOLoop.instance() io_loop.stop() def protected_view(self, f): @wraps(f) def wrapper(*args, **kwargs): if current_user.is_authenticated: if current_user.is_admin: # the actual page return f(*args, **kwargs) else: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) else: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) return wrapper def app_view(self, f): appname = f.__module__.split(".")[-1] @wraps(f) def wrapper(*args, **kwargs): # Protected page if current_user.is_authenticated: if not current_user.is_admin: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) else: flash("You do not have permission to access the requested page. Please log in below.") return redirect(url_for("login")) # Check if app is active if appname in Apps.active_apps: # This app is active return f(*args, **kwargs) else: # Return app not active page assert appname in Apps.apps, "Could not find %s in list of loaded apps." % appname data = { "app": {}, # "appname": appname, "page_icon": Apps.apps[appname].config["icon"], "page_caption": Apps.apps[appname].config["full_name"] } data["title"] = self.request_handler.title # if self.activeapp in Apps.apps: # # Another app is active # data["app"]["active"] = True # data["app"]["name"] = Apps.apps[self.activeapp].config["full_name"] # data["app"]["icon"] = Apps.apps[self.activeapp].config["icon"] # data["title"] += " - %s" % Apps.apps[self.activeapp].config["full_name"] # else: # # No app is active # data["app"]["active"] = False return render_template("app_not_active.html", **data) return wrapper def app_api(self, f): appname = f.__module__.split(".")[-1] @wraps(f) def wrapper(*args, **kwargs): # Protected page if current_user.is_authenticated: if not current_user.is_admin: return jsonify(status="error", message="You do not have permission to access the requested page.") else: return jsonify(status="error", message="You do not have permission to access the requested page.") # Check if app is active if appname in Apps.active_apps: # This app is active data = f(*args, **kwargs) if data is None: data = {} if "status" not in data: data["status"] = "success" return jsonify(data) else: # Return app not active page assert appname in Apps.apps, "Could not find %s in list of loaded apps." % appname return jsonify(status="error", message="This app is not active.") return wrapper
OPSORO/OS
src/opsoro/server/__init__.py
__init__.py
py
7,251
python
en
code
9
github-code
6
73831952826
from odoo import api, models, fields, _ from odoo.exceptions import UserError import logging _logger = logging.getLogger(__name__) class LgpsPartner(models.Model): _inherit = 'res.partner' client_type = fields.Selection( [ ('new', _('New')), ('aftersales', _('After Sales')), ], default='new', string=_("Client Type") ) first_installation_day = fields.Date( string=_("First Installation Day") ) custom_status = fields.Selection( [ ('active', _('Active')), ('cancelled', _('Cancelled')), ('demo', _('Demo')), ('inactive', _('Inactive')), ('suspended', _('Suspended')), ('on_negotiation', _('On Negotiation')), ('in_credit_bureau', _('In Credit Bureau')), ], default='active' ) client_rank = fields.Selection( [ ('a', 'A'), ('b', 'B'), ('c', 'C'), ('d', 'D'), ('e', 'E'), ], default='e', string=_("Client Rank") ) coordination_executive = fields.Many2one( comodel_name="res.users", string=_("Coordination"), ondelete="set null", ) credit_collection_executive = fields.Many2one( comodel_name="res.users", string=_("Credit and Collection"), ondelete="set null", ) after_sales_executive = fields.Many2one( comodel_name="res.users", string=_("After Sales"), ondelete="set null", ) special_negotiations = fields.Boolean( string=_("Special Negotiations"), default=False ) special_negotiation_notes = fields.Html( string=_("Special Negotiations Notes") ) gpsdevice_ids = fields.One2many( comodel_name="lgps.device", inverse_name="client_id", string="Gps Devices", readonly=True, ) @api.model def create(self, values): if self._check_if_can_create(): new_record = super(LgpsPartner, self).create(values) return new_record # def write(self, values): # if self._check_if_can_create(): # return super(LgpsPartner, self).write(values) def _check_if_can_create(self): user = self.env.user if not user.has_group('lgps.lgps_group_create_contacts'): raise UserError('Solo personal de Administración y Finanzas puede dar alta de Clientes y Proveedores ' 'nuevos.') return True
intralix/odoo-addons
lgps/models/custom_partner.py
custom_partner.py
py
2,580
python
en
code
0
github-code
6
2721867306
""" api.py ~~~~~~ This file define simple REST APi for a Machine Learning Model """ from os import environ as env from joblib import load from flask import abort, Flask, jsonify, make_response, request from pandas import DataFrame service_name = env['SERVICE_NAME'] version = env['API_VERSION'] model = load('data/model.joblib') app = Flask(__name__) @app.route(f'/{service_name}/v{version}/predict', methods=['POST']) def predict(): """Predict Incoming Request""" try: req = request.json print(req) features = DataFrame(req) prediction = model.predict(features).tolist() return make_response(jsonify({'prediction': prediction})) except ValueError: raise RuntimeError('Features are not in the correct format.') if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)
repodevs/flask-machine-learning-service
api.py
api.py
py
846
python
en
code
0
github-code
6
10806067701
from itertools import count from random import choice chance = ['h', 'h', 'h', 'h', 'h', 'h', 'h', 'h', 'h', 't'] works = 0 for i in range(100000): outcomes = [] for x in range(10): outcomes.append(choice(chance)) if outcomes.count('h') >= 3: works += 1 print(works)
Theeran-SK/Miscellaneous
bmc.py
bmc.py
py
297
python
en
code
0
github-code
6
32500164614
""" כתבו תוכנית המקבלת 10 מספרים מהמשתמש ומדפיסה את הגדול ביותר. """ def age_in_month(user_age): while True: age = user_age * 12 print(f"your AGE in month is {age}") break while True: try: age_in_month(int(input("Hello user,Please enter your AGE\n"))) except ValueError: print("The AGE Must Have to be a Number") age_in_month(int(input("Hello user,Please enter your AGE\n")))
eehud738/python-
Section 2/HW2.py
HW2.py
py
500
python
he
code
0
github-code
6
1419172936
"""scene.py module""" # Michael Gresham # CPSC 386-01 # 2021-11-29 # [email protected] # @Michael-Gresham # # Lab 03-00 # # My scene class # Holds all the scenes that are present in snek game. import pygame from pygame.constants import SCRAP_SELECTION from random import randint import os import pickle from datetime import datetime class Scene: """General Scene class that's inherited by all other Scene types.""" def __init__(self, screen, clock, background_color=(0, 0, 0)): self._is_valid = True self._frame_rate = 60 self._screen = screen self._background = pygame.Surface(self._screen.get_size()) self._background_color = background_color self._background.fill(self._background_color) self._clock = clock def is_valid(self): """If game state is valid return true.""" return self._is_valid def frame_rate(self): """return the frame rate of the game.""" return self._frame_rate def start_scene(self): """method driver for the class""" pass def end_scene(self): """Does nothing here but meant to return next scene.""" pass def update(self): """update the display of the scene.""" pygame.display.update() def draw(self): """Display the screen background onto the screen.""" self._screen.blit(self._background, (0, 0)) def process_event(self, event): """Handles all the events at the particular scene.""" if event.type == pygame.QUIT: self._is_valid = False if event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE: print("Good bye!") self._is_valid = False class TitleScene(Scene): """Class which handles the title screen of snake.""" def __init__(self, screen, clock, title_size, background_color=(0, 0, 0)): # class initializer. Initializes basic displays. super().__init__(screen, clock, background_color) (w, h) = self._screen.get_size() self._speed = [0.5, 1, 2] self._title_name = "Snek Game" self._title_size = title_size self._title_color = [50, 50, 50] title_font = pygame.font.Font( pygame.font.get_default_font(), self._title_size ) self._title = title_font.render( self._title_name, True, self._title_color ) self._title_pos = self._title.get_rect(center=(w // 2, h // 4)) instruction_name = "Press any key to continue" self._instruction_size = title_size // 4 print(str(self._instruction_size)) instruction_font = pygame.font.Font( pygame.font.get_default_font(), self._instruction_size ) self._instruction = instruction_font.render( instruction_name, True, (255, 255, 0) ) self._instruction_pos = self._instruction.get_rect( center=(w // 2, h // 2 + h // 4) ) self._reverse = False def start_scene(self): """Method driver of the class. Calls other method in order to run the scene.""" while True: self.draw() self.update() for event in pygame.event.get(): if event.type == pygame.KEYDOWN: return self.end_scene() self.process_event(event) pass def draw(self): """redraws the background, title name, and instructions and updates screen.""" super().draw() self._screen.blit(self._title, self._title_pos) self._screen.blit(self._instruction, self._instruction_pos) self.display_rules() pygame.display.update() def display_rules(self): """Displays the instructions for Snake Game.""" instructions = [ "Press arrow keys to change the direction of the snake.", "Goal of game is to survive and eat as many apples as possible.", "Every apple you eat extends the length of the snake.", "Try not to hit yourself or hit into a wall or its game over.", "Overall score is based off time survived and apples eaten", "Good Luck!", ] (w, h) = self._screen.get_size() height = (h // 4) + 100 width = w // 4 count = 0 for instruction in instructions: instruction_font = pygame.font.Font( pygame.font.get_default_font(), 15 ) instruction_render = instruction_font.render( instruction, True, (255, 255, 255) ) if count == 5: self._screen.blit(instruction_render, (w // 2 - 50, height)) else: self._screen.blit(instruction_render, (width, height)) height += 50 count += 1 def update(self): """Updates the color of title text and updates background.""" super().update() for x in range(3): self._title_color[x] += 1 * self._speed[x] if self._title_color[x] <= 0 or self._title_color[x] >= 255: self._reverse = not self._reverse self._speed[x] *= -1 if self._title_color[x] > 255: self._title_color[x] = 255 if self._title_color[x] < 0: self._title_color[x] = 0 title_font = pygame.font.Font( pygame.font.get_default_font(), self._title_size ) self._title = title_font.render( self._title_name, True, self._title_color ) def end_scene(self): """returns the next scene.""" return "Level1" pass def process_event(self, event): """handles the exit button.""" if event.type == pygame.QUIT: print("Goodbye!") pygame.quit() class GameScene(Scene): """Start of the GameScene Class""" def __init__(self, screen, clock, background_color=(0, 0, 0)): """ This function initializes the GameScene class setting the snake game board and the display as well. """ super().__init__(screen, clock, background_color) # sets the board and initializes location of snake and apple. self.direction = None self.start_ticks = pygame.time.get_ticks() self.score = 0 self.time = 0 self.snake_size = 1 self.snake = [] # self.player = player self.offset = 100 (w, h) = self._screen.get_size() self.board = [] for x in range(0, ((h - 100) // 20)): row = [] for y in range(0, (w // 20)): if ( x == 0 or y == 0 or y == (w // 20) - 1 or x == ((h - 100) // 20) - 1 ): row.append("border") elif x == ((h - 100) // 20) // 2 and y == (w // 20) // 2: row.append("snek") self.snake.append((x, y)) elif ( x == ((((h - 100) // 20) // 2) + (((h - 100) // 20) // 4)) and y == (w // 20) // 2 ): row.append("apple") else: row.append("empty") self.board.append(row) self.timer = "Timer: " + str(self.time) title_font = pygame.font.Font(pygame.font.get_default_font(), 25) self._title_time = title_font.render(self.timer, True, (255, 255, 255)) self._timer_pos = self._title_time.get_rect( center=(w // 4, self.offset // 2) ) self.title_score = "Score: " + str(self.score) self._title_score = title_font.render( self.title_score, True, (255, 255, 255) ) self._score_pos = self._title_score.get_rect( center=(w // 2 + w // 4, self.offset // 2) ) def start_scene(self): """method driver that drives the game logic.""" self.__init__(self._screen, self._clock) while True: # gets the time in game in miliseconds. miliseconds = pygame.time.get_ticks() - self.start_ticks exit = self.move() if exit != None: return exit self.draw() self.update(miliseconds) for event in pygame.event.get(): self.process_event(event) pass def update(self, miliseconds): """handles updating the timer, background, and score.""" if (miliseconds // 1000) > self.time: self.time = miliseconds // 1000 self.timer = "Timer: " + str(self.time) title_font = pygame.font.Font(pygame.font.get_default_font(), 25) self._title_time = title_font.render( self.timer, True, (255, 255, 255) ) if (self.time % 3) == 0 and self.time != 0: self.score += 1 self.title_score = "Score: " + str(self.score) title_font = pygame.font.Font(pygame.font.get_default_font(), 25) self._title_score = title_font.render( self.title_score, True, (255, 255, 255) ) pygame.display.update() pass def create_apple(self): """Handles the logic that places a new apple when one is eaten.""" valid = False while valid == False: row = randint(1, len(self.board) - 1) column = randint(1, len(self.board[0]) - 1) if self.board[row][column] == "empty": self.board[row][column] = "apple" valid = True pass def move(self): """Handles the movement logic of the snake. and loss conditions.""" if self.direction == None: pass else: row = self.snake[0][0] column = self.snake[0][1] added = False if self.direction == "up": row -= 1 elif self.direction == "down": row += 1 elif self.direction == "left": column -= 1 elif self.direction == "right": column += 1 if ( self.board[row][column] == "border" or self.board[row][column] == "snek" ): return self.end_scene() if ( self.board[row][column] != "border" and self.board[row][column] != "apple" ): self.board[row][column] = "snek" self.snake.insert(0, (row, column)) if self.board[row][column] == "apple": print("hello World") added = True self.score += 10 self.create_apple() self.board[row][column] = "snek" self.snake.insert(0, (row, column)) miliseconds = pygame.time.get_ticks() - self.start_ticks self.draw() self.update(miliseconds) if added == False: (x, y) = self.snake.pop() self.board[x][y] = "empty" self._clock.tick(10) pass def end_scene(self): """returns next scene which is end scene.""" print(str(self.score)) print(str(self.time)) return "End Scene" def draw(self): """displays the score, time, and the game screen on pygame display.""" super().draw() self._screen.blit(self._title_score, self._score_pos) self._screen.blit(self._title_time, self._timer_pos) for x in range(0, len(self.board)): for y in range(0, len(self.board[0])): if self.board[x][y] == "border": pygame.draw.rect( self._screen, (164, 116, 73), pygame.Rect((y * 20), (x * 20) + self.offset, 20, 20), ) elif self.board[x][y] == "empty": pygame.draw.rect( self._screen, (0, 154, 23), pygame.Rect((y * 20), (x * 20) + self.offset, 20, 20), ) elif self.board[x][y] == "apple": pygame.draw.rect( self._screen, (0, 154, 23), pygame.Rect((y * 20), (x * 20) + self.offset, 20, 20), ) pygame.draw.circle( self._screen, (255, 0, 0), ((y * 20) + 10, (x * 20) + 10 + self.offset), 10, ) elif self.board[x][y] == "snek": pygame.draw.rect( self._screen, (0, 0, 255), pygame.Rect((y * 20), (x * 20) + self.offset, 20, 20), ) pass def process_event(self, event): """handle various events in game: movement and exit button.""" if event.type == pygame.QUIT: pygame.quit() quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_UP and self.direction != "down": self.direction = "up" if event.key == pygame.K_DOWN and self.direction != "up": self.direction = "down" if event.key == pygame.K_LEFT and self.direction != "right": self.direction = "left" if event.key == pygame.K_RIGHT and self.direction != "left": self.direction = "right" class End_Scene(Scene): """The end screen of snake, handles leader board and reset logic.""" main_dir = os.path.split(os.path.abspath(__file__))[0] data_dir = os.path.join(main_dir, "data") def __init__(self, screen, clock, background_color=(0, 0, 0)): """ This function initializes the end scene by setting up visual text and visual instructions. """ super().__init__(screen, clock, background_color) self.player_score = 0 self.player_time = 0 (w, h) = self._screen.get_size() self.leaderboard = [] # code for Game over screen. self._title_name = "Leader Board" self._title_size = 60 self._title_color = [255, 255, 255] title_font = pygame.font.Font( pygame.font.get_default_font(), self._title_size ) self._title = title_font.render( self._title_name, True, self._title_color ) self._title_pos = self._title.get_rect(center=(w // 2, h // 8)) self._score_name = " Date Score Time" self._score_size = 30 self._score_color = [255, 255, 255] title_font = pygame.font.Font( pygame.font.get_default_font(), self._score_size ) self._score = title_font.render( self._score_name, True, self._score_color ) self._score_pos = self._title.get_rect(center=(w // 4, h // 4)) pass def draw(self): """draws the leaderboard and options onto the screen.""" super().draw() self._screen.blit(self._score, self._score_pos) self._screen.blit(self._title, self._title_pos) count = 10 if 10 > len(self.leaderboard): count = len(self.leaderboard) for x in range(0, count): (w, h) = self._screen.get_size() date = self.leaderboard[x][2].strftime("%d/%m/%Y %H:%M:%S") record_name = "{0:<2} {1:<10} {2:<10} {3:<30}".format( str(x + 1), date, self.leaderboard[x][0], self.leaderboard[x][1] ) print(record_name) record_size = 25 record_color = (255, 255, 255) record_font = pygame.font.SysFont("couriernew", record_size, 1, 0) record = record_font.render(record_name, True, record_color) record_pos = self._title.get_rect( center=(w // 4 + 10, h // 4 + (30 * (x + 1))) ) self._screen.blit(record, record_pos) restart_title = "Press Space to play again!" restart_size = 20 restart_color = (255, 255, 255) restart_font = pygame.font.Font( pygame.font.get_default_font(), restart_size ) restart = restart_font.render(restart_title, True, restart_color) restart_pos = record_pos = self._title.get_rect( center=(w // 2, h // 2 + h // 4) ) self._screen.blit(restart, restart_pos) restart_title = "Press Escape to exit the game!" restart_size = 20 restart_color = (255, 255, 255) restart_font = pygame.font.Font( pygame.font.get_default_font(), restart_size ) restart = restart_font.render(restart_title, True, restart_color) restart_pos = record_pos = self._title.get_rect( center=(w // 2, h // 2 + h // 4 + 50) ) self._screen.blit(restart, restart_pos) def pickle_in_player(self): """takes player game records and puts it in pickle file.""" game_record = [] game_date = datetime.now() game_record.append(self.player_score) game_record.append(self.player_time) game_record.append(game_date) with open(self.data_dir + "/leaderboard.pickle", "ab") as fh: pickle.dump(game_record, fh, pickle.HIGHEST_PROTOCOL) def load_in(self): """loads in all game records.""" with open(self.data_dir + "/leaderboard.pickle", "rb") as fh: while True: try: yield pickle.load(fh) except EOFError: break def start_scene(self, score, time): """method driver that handles End Scene logic.""" print(pygame.font.get_fonts()) print(score) print(time) self.player_score = score self.player_time = time self.pickle_in_player() self.leaderboard = list(self.load_in()) self.leaderboard.sort(key=lambda l: l[0], reverse=True) self.draw() self.update() print(self.leaderboard) while True: for event in pygame.event.get(): next_scene = self.process_event(event) if next_scene != None: return next_scene pass def process_event(self, event): """handles the event in end screen: new game and exit game.""" if event.type == pygame.QUIT: pygame.quit() quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: return "exit" if event.key == pygame.K_SPACE: return "Title"
Michael-Gresham/Portfolio
cpsc-386-04-snake-Michael-Gresham-main/scene.py
scene.py
py
19,048
python
en
code
0
github-code
6
35023516423
import cv2 import time from base_camera import BaseCamera from Process import Process global sess class Camera(BaseCamera): video_source = 0 process = Process() @staticmethod def set_video_source(source): Camera.video_source = source # @staticmethod def frames(self): camera = cv2.VideoCapture(Camera.video_source) video_FourCC = int(camera.get(cv2.CAP_PROP_FOURCC)) video_fps = camera.get(cv2.CAP_PROP_FPS) video_size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) if not camera.isOpened(): raise RuntimeError('Could not start camera.') print("!!! TYPE:", type(video_FourCC), type(video_fps), type(video_size)) accum_time = 0 curr_fps = 0 fps = "FPS: ??" font = cv2.FONT_HERSHEY_SIMPLEX # prev_time = timer() in_num = 0 out_num = 0 num = 0 data = {} while True: # read current frame print(in_num, out_num, "in_numin_numin_numin_numin_numin_numoutin_numin_numin_numin_numin_num") _, img = camera.read() if img is None: break result, centers = self.process.process(img) for center in centers: x, y, w, h = center # cv2.circle(result,(x,y), 30, (0,0,255), -1) if len(data) == 0: data[f'{x},{y},{w},{h},{num}'] = [x, y, w, h, x, y, w, h] # 最初检测点 最后检测点 continue for key in list(data.keys()): tx, ty, tw, th, tn = key.split(',') tx, ty, tw, th, tn = int(tx), int(ty), int(tw), int(th), int(tn) if num - tn > 4: del data[key] continue else: print('distance', self.process.overlap([x, y, w, h], [tx, ty, tw, th])) if self.process.overlap([x, y, w, h], [tx, ty, tw, th]) > 0.5: value = data[key] value[4], value[5], value[6], value[7] = x, y, w, h del data[key] data[f'{x},{y},{w},{h},{num}'] = value else: data[f'{x},{y},{w},{h},{num}'] = [x, y, w, h, x, y, w, h] for key in list(data.keys()): value = data[key] y1 = value[1] + value[3] // 2 y2 = value[5] + value[7] // 2 # print(y1,y2,"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") if y1 < 700 and y2 >= 700: del data[key] out_num += 1 continue elif y1 > 700 and y2 < 700: del data[key] in_num += 1 continue elif num == video_fps: num = 0 tx, ty, tn = key.split(',') if video_fps - int(tn) > 4: del data[key] continue else: del data[key] data[f'{tx},{ty},{num}'] = value cv2.line(result, (0, 700), (800, 700), (0, 0, 255), 5) cv2.putText(result, f'in: {in_num} out: {out_num}', (50, 780), font, 1.5, (0, 0, 255), 2) cv2.namedWindow("result", cv2.WINDOW_NORMAL) cv2.imshow("result", result) if cv2.waitKey(1) & 0xFF == ord('q'): break print(data.keys(), "data.keys()data.keys()data.keys()") # encode as a jpeg image and return it yield cv2.imencode('.jpg', img)[1].tobytes()
Micbetter/ISense-flow
camera_opencv.py
camera_opencv.py
py
3,981
python
en
code
0
github-code
6
41728763711
import os import datetime import time # requires import of opencv through pip # pip install opencv-python import cv2 # requires import of PIL pillow through pip # python -m pip install pillow from PIL import Image, ImageTk import sys import tkinter def my_VidFunction(vid_name): cap = cv2.VideoCapture(vid_name) #check if the video capture is open if(cap.isOpened() == False): print("Error Opening Video Stream Or File") while(cap.isOpened()): ret, frame =cap.read() if ret == True: cv2.namedWindow('frame', cv2.WINDOW_KEEPRATIO) cv2.setWindowProperty('frame',cv2.WND_PROP_ASPECT_RATIO,cv2.WINDOW_KEEPRATIO) #cv2.namedWindow('frame', cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty('frame', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) cv2.imshow('frame', frame) if cv2.waitKey(25) == ord('q'): break else: break cap.release() cv2.destroyAllWindows() def showPIL(pilImage): root = tkinter.Tk() w, h = root.winfo_screenwidth(), root.winfo_screenheight() root.overrideredirect(1) root.geometry("%dx%d+0+0" % (w, h)) root.focus_set() root.bind("<Escape>", lambda e: (e.widget.withdraw(), e.widget.quit())) canvas = tkinter.Canvas(root,width=w,height=h) canvas.pack() canvas.configure(background='black') imgWidth, imgHeight = pilImage.size if imgWidth > w or imgHeight > h: ratio = min(w/imgWidth, h/imgHeight) imgWidth = int(imgWidth*ratio) imgHeight = int(imgHeight*ratio) pilImage = pilImage.resize((imgWidth,imgHeight), Image.ANTIALIAS) image = ImageTk.PhotoImage(pilImage) imagesprite = canvas.create_image(w/2,h/2,image=image) root.after(2000, root.destroy) root.mainloop() #grab time now now = datetime.datetime.now() print('Press ctl and c in terminal or command window to exit slide show.') print('Make sure default image viewer opens full screen. Then close it when full screen.') im = Image.open(r"black_all.png") showPIL(im) while (True): # open method used to open different extension image file # resized_im = im.resize((round(im.size[0]*4), round(im.size[1]*4))) # This method will show image in any image viewer # resized_im.show() if ((now.hour >= 8) and (now.hour <= 22 )): if ((now.hour == 12) and ((now.minute % 30 == 0) or (now.minute % 30 == 1))) or ((now.hour == 17) and ((now.minute % 60 == 0) or (now.minute % 60 == 1))): my_VidFunction('ShiftChangeYouTubeHIGH.mp4') # grab time again, so not using time at stop of this loop instance now = datetime.datetime.now() else: my_VidFunction('cci_icommons_album.mp4') # grab time again, so not using time at stop of this loop instance now = datetime.datetime.now() else: showPIL(im) # close the image #im.close() #resized_im.close()
icommonscrc/Looney-Toon
OpenVideoAtTimeV8.py
OpenVideoAtTimeV8.py
py
2,716
python
en
code
0
github-code
6
23225332326
import copy import six from lxml import etree from ems.exceptions import SchemaException from ems.exceptions import ValidationException from ems.exceptions import XMLException from ems.schema import fields def parse_meta(name, bases, dct): """ Parse the _META_ attribute from a schema definition. """ # Set default metadata schema_meta = { # The XML tag for the root element. 'tag': name, # Validate the schema values when rendering. 'validate': True, # Always omit empty values for fields which are not required. 'omit_empty': False, # Omit strings which are equal to '' 'omit_blank': False, # Validation fails for Choice types with more than one value populated. 'strict_choice': False, } # Sets up defaults if the _META_ attribute is not found. if '_META_' in dct: for k, v in six.iteritems(dct['_META_']): schema_meta[k] = v # Remove original definition del dct['_META_'] dct['_schema_meta'] = schema_meta def parse_fields(name, bases, dct): """ Parse the _SCHEMA_ attribute and set up the appropriate methods for each defined field. """ if '_SCHEMA_' not in dct: raise SchemaException('No _SCHEMA_ attribute found for %s' % name) # Holds the fields from the schema definition schema_fields = {} # Holds a reverse lookup to the fields from their tag names. Used when # parsing an XML into an object. field_lookup = {} for k, v in six.iteritems(dct['_SCHEMA_']): if not isinstance(v, dict): raise SchemaException('Schema definitions must be dict objects') # Default to string type. field_type = v.get('type', 'string') # Tag name defaults to field name. if 'tag' not in v: v['tag'] = k # Get field class from factory helper method. schema_fields[k] = fields.factory(field_type, **v) # Lookup for the XML tag -> attribute name field_lookup[v['tag']] = k # Create new property functions for the field values. # Functions are wrapped to force 'k' to be evaluated now. Otherwise k # will always be the value of the last element in the loop. def wrap_get_f(k=k): def get_f(self): return self._schema_fields[k].value return get_f def wrap_set_f(k=k): def set_f(self, value): self._schema_fields[k].value = value return set_f dct[k] = property(wrap_get_f(), wrap_set_f()) # Remove the original schema definition and add the new one del dct['_SCHEMA_'] dct['_schema_fields'] = schema_fields dct['_field_lookup'] = field_lookup def webservice_meta(**kwds): """ Class decorator for creating new web service objects. Takes _META_ args as keyword arguments. """ def wrapper(cls): orig_vars = cls.__dict__.copy() slots = orig_vars.get('__slots__') if slots is not None: if isinstance(slots, str): slots = [slots] for slots_var in slots: orig_vars.pop(slots_var) orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) if orig_vars.get('_META_', None) is None: orig_vars['_META_'] = {} if kwds is not None: for k, v in six.iteritems(kwds): orig_vars['_META_'][k] = v return WebServiceMeta(cls.__name__, cls.__bases__, orig_vars) return wrapper class WebServiceMeta(type): """ Metaclass used to create new WebService objects from a schema, defined as a dictionary. """ def __new__(meta, name, bases, dct): # Sets up the _schema_meta attribute. parse_meta(name, bases, dct) # Sets up the _schema_fields attribute. parse_fields(name, bases, dct) return super(WebServiceMeta, meta).__new__(meta, name, bases, dct) class WebServiceObject(object): """ Base class for objects to be serialized/deserialized for the API. Also used by nested objects. Subclasses should also use the WebServiceMeta metaclass. """ def __init__(self, **kwds): # Ensure that the field values are NOT shared across instances of the # same class. self._schema_fields = copy.deepcopy(self._schema_fields) # Allow any field to be set via keyword arguments for k, v in six.iteritems(kwds): if k in self._schema_fields: self._schema_fields[k].value = v else: raise TypeError('%s got unexpected keyword argument %s' % (self.__class__.__name__, k)) def validate(self): """ Checks whether the values are valid for the class schema. Returns None if valid. Otherwise, raises ValidationException. """ for field in six.itervalues(self._schema_fields): field.validate() def is_valid(self): """ Convenience wrapper for validate() to return True or False. """ try: self.validate() except ValidationException: return False return True def to_element(self, root_element=None): """ Returns the object as an lxml.Element instance. """ if root_element is None: root_element = etree.Element(self._schema_meta['tag']) for field in six.itervalues(self._schema_fields): if self._schema_meta['validate']: field.validate() children = field.to_element( omit_empty=self._schema_meta['omit_empty'], omit_blank=self._schema_meta['omit_blank']) # Append each child element if the rendered elements form a list. # This means that each child gets a root tag. E.g. # <attribute> # <a>1</a> # </attribute> # <attribute> # <a>2</a> # </attribute> if isinstance(children, list): [root_element.append(elem) for elem in children] elif children is not None: root_element.append(children) return root_element def render(self, pretty=False): """ Renders the object into an XML string representation. """ element = self.to_element() return etree.tostring(element, pretty_print=pretty) @classmethod def parse(cls, root_element, strict=True): """ Returns a new instance of the class from an XML. """ # New instance of myself to return obj = cls() for elem in root_element: attr_name = cls._field_lookup.get(elem.tag, None) if attr_name is None and strict: raise XMLException('Unexpected element: %s' % elem.tag) elif attr_name is None: continue # Field objects should provide a parse method obj._schema_fields[attr_name].parse(elem) return obj @classmethod def from_file(cls, filename, strict=True): """ Parse an XML from a file. """ tree = etree.parse(filename) root = tree.getroot() return cls.parse(root, strict=strict) @classmethod def from_text(cls, text, strict=True): """ Parse an XML from a string. """ bytes_ = six.BytesIO(text.encode('utf-8')) return cls.from_file(bytes_)
ceramyq/python-ems
ems/schema/base.py
base.py
py
7,670
python
en
code
0
github-code
6