seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
29325722402
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ To read sequentially the data from the hard disk, the data format is convert to TFRecord. """ import re from pathlib import Path import pandas as pd import numpy as np import tensorflow as tf from tqdm import tqdm from sklearn.utils import shuffle __date__ = '2021/04/06' def load_data(npy_path, csv_path): images = np.load(npy_path) df = pd.read_csv(csv_path, index_col=None, header=0) d = {'artifact': 0, 'galx_artificial_real': 1, 'rand_artificial_real': 1} labels = df['object_type'].map(d).values return images, labels def _bytes_feature(value): """Returns byte_list type from string / byte type.""" if isinstance(value, type(tf.constant(0))): # BytesList won't unpack a string from an EagerTensor. value = value.numpy() return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) def _float_feature(value): """Returns float_list type from float / double type.""" return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _int64_feature(value): """Return Int64_list type from bool / enum / int / uint type.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def make_example(image, label, detector_id, sample_index, unique_index): """Convert data formats.""" feature = { 'image': _float_feature(image.reshape(-1)), 'label': _int64_feature([label]), 'detector_id': _int64_feature([detector_id]), 'sample_index': _int64_feature([sample_index]), 'unique_index': _int64_feature([unique_index]) } return tf.train.Example(features=tf.train.Features(feature=feature)) def main(): data_dir = Path('../../data/raw/real_bogus1') npy_list = list(data_dir.glob('images*.npy')) npy_list.sort() output_dir = Path('../../data/processed/real_bogus1') if not output_dir.exists(): output_dir.mkdir(parents=True) r = re.compile(r'images(\d+)') unique_id = 0 # Size and start of unique index for each detector. data_info = {'detector_id': [], 'size': [], 'start_index': []} for npy_path in npy_list: m = r.search(npy_path.stem) detector_id = int(m.group(1)) csv_path = data_dir / 'params{}.csv'.format(detector_id) images, labels = load_data(npy_path=npy_path, csv_path=csv_path) n = len(images) indices = np.arange(n) # Unique index across the entire data set. unique_indices = indices + unique_id data_info['detector_id'].append(detector_id) data_info['size'].append(n) data_info['start_index'].append(unique_id) unique_id += n images, labels, indices, unique_indices = shuffle( images, labels, indices, unique_indices ) # Write TFRecord. record_path = str(output_dir / 'data{}.tfrecord'.format(detector_id)) with tf.io.TFRecordWriter( record_path, tf.io.TFRecordOptions(compression_type='GZIP')) as writer: for image, label, index, unique_index in zip( tqdm(images, desc=str(detector_id)), labels, indices, unique_indices): example = make_example( image=image, label=label, detector_id=detector_id, sample_index=index, unique_index=unique_index ) writer.write(example.SerializeToString()) # Save the information of each file. df = pd.DataFrame(data_info) df.to_csv(output_dir / 'data_info.csv') if __name__ == '__main__': main()
ichiro-takahashi/tomoe-realbogus
src/data/make_record.py
make_record.py
py
3,756
python
en
code
2
github-code
6
27251363866
""" 文件名: Code/Chapter07/C02_RNNImgCla/FashionMNISTRNN.py 创建时间: 2023/4/27 8:08 下午 作 者: @空字符 公众号: @月来客栈 知 乎: @月来客栈 https://www.zhihu.com/people/the_lastest """ import torch import torch.nn as nn import sys sys.path.append('../../') from Chapter06.C04_LN.layer_normalization import LayerNormalization class FashionMNISTRNN(nn.Module): def __init__(self, input_size=28, hidden_size=128, num_layers=2, num_classes=10): super(FashionMNISTRNN, self).__init__() self.rnn = nn.RNN(input_size, hidden_size,nonlinearity='relu', num_layers=num_layers, batch_first=True) self.classifier = nn.Sequential(LayerNormalization(hidden_size), nn.Linear(hidden_size, hidden_size), nn.ReLU(inplace=True), nn.Linear(hidden_size, num_classes)) def forward(self, x, labels=None): x = x.squeeze(1) # [batch_size,1,28,28] --> [batch_size,28,28] x, _ = self.rnn(x) # input: [batch_size, time_steps, input_size] # x: [batch_size, time_steps, hidden_size] logits = self.classifier(x[:, -1].squeeze(1)) # 取最后一个时刻进行分类,[batch_size, 1,hidden_size]---squeeze-->[batch_size,hidden_size] # logits: [batch_size, hidden_size] if labels is not None: loss_fct = nn.CrossEntropyLoss(reduction='mean') loss = loss_fct(logits, labels) return loss, logits else: return logits if __name__ == '__main__': model = FashionMNISTRNN() x = torch.rand([32, 1, 28, 28]) y = model(x) print(y.shape)
moon-hotel/DeepLearningWithMe
Code/Chapter07/C02_RNNImgCla/FashionMNISTRNN.py
FashionMNISTRNN.py
py
1,754
python
en
code
116
github-code
6
75282287228
import re import sys def part1(): recepies = [3, 7] a_index, b_index = 0, 1 in_data = 440231 while len(recepies) < in_data + 10: s = recepies[a_index] + recepies[b_index] for l in str(s): recepies.append(int(l)) recepies_len = len(recepies) a_index = (a_index + recepies[a_index] + 1) % recepies_len b_index = (b_index + recepies[b_index] + 1) % recepies_len return ''.join(map(str, recepies[in_data:in_data+10])) def part2(): recepies = [3, 7] a_index, b_index = 0, 1 in_data = list(map(int, list('01245'))) in_data = list(map(int, list('59414'))) in_data = list(map(int, list('440231'))) in_data_len = len(in_data) build_index = 0 while True: s = recepies[a_index] + recepies[b_index] for l in str(s): l = int(l) recepies.append(int(l)) if l == in_data[build_index]: build_index += 1 else: build_index = 0 if build_index >= in_data_len: print('FOUND!') return(len(recepies) - abs(in_data_len)) recepies_len = len(recepies) a_index = (a_index + recepies[a_index] + 1) % recepies_len b_index = (b_index + recepies[b_index] + 1) % recepies_len def main(): print(part1()) print(part2()) if __name__ == '__main__': main()
elitan/adventofcode
2018/14/main.py
main.py
py
1,209
python
en
code
1
github-code
6
30590549707
import numpy as np from pathlib import Path from PIL import Image, ImageDraw, ImageFont from tqdm import tqdm SQSIZE = 60 SPACING = 15 def make_col(start, end, n=5): """Create a column of numbers.""" nums = np.random.choice(np.arange(start, end+1), size=n, replace=False) return nums def generate_card(): """Create a bingo card and save it as PNG image.""" # Create five columns cols = np.array([make_col(15*i + 1, 15*i + 15) for i in range(5)]) # Replace the center cell by the median of the first column # so that it ends up in the middle when sorting the columns cols[2, 2] = np.median(np.r_[ cols[2, :2], cols[2, 3:] ]) # Sort the columns rows = np.sort(cols.T, axis=0) rows[2, 2] = -1 cols = rows.T # Create the bingo image and fill the background with a light color bgcolor = tuple(np.random.randint(200, 255) for _ in range(3)) textcolor = tuple(np.random.randint(50, 150) for _ in range(3)) img_width = 5 * SQSIZE + 6 * SPACING img_height = 6 * SQSIZE + 7 * SPACING img = Image.new("RGB", (img_width, img_height), color=bgcolor) draw = ImageDraw.Draw(img) topfont = ImageFont.truetype(r"C:\Windows\Fonts\CALIST.TTF", size=int(SQSIZE * 0.75)) numfont = ImageFont.truetype(r"C:\Windows\Fonts\CALIST.TTF", size=SQSIZE // 2) for rowidx in range(5): # Show one letter from 'BINGO' at the top of the column x0 = SPACING + SQSIZE // 4 + (SPACING + SQSIZE) * rowidx y0 = SPACING draw.text((x0, y0), "BINGO"[rowidx], font=topfont, fill=textcolor) for colidx in range(5): # Create a square to put the number in x0 = SPACING + (SPACING + SQSIZE) * rowidx y0 = SPACING + (SPACING + SQSIZE) * (colidx + 1) x1 = x0 + SQSIZE y1 = y0 + SQSIZE draw.rectangle([x0, y0, x1, y1], outline=(0, 0, 0)) # Create the text for the number text = str(rows[colidx, rowidx]) textcoords = (x0+SPACING, y0+SPACING) # For single-digit numbers, move the text to center it if rows[colidx, rowidx] < 10: textcoords = (x0 + int(SPACING * 1.5), y0 + SPACING) font = numfont # For the center box: other text and font size if rowidx == colidx == 2: text = "BONUS" font = ImageFont.truetype(r"C:\Windows\Fonts\CALIST.TTF", size=SQSIZE // 5) textcoords = (x0 + SPACING // 2 + 1, y0 + int(SPACING * 1.5)) # Put the number in the square draw.text(textcoords, text, font=numfont, fill=textcolor) # Create a filename with a number that doesn't exist yet bingodir = Path(__file__).parent volgnr = 0 while True: fn = bingodir / f"kaart{volgnr:03d}.png" if not fn.is_file(): break volgnr += 1 # Finally, save the image img.save(fn) if __name__ == "__main__": for _ in tqdm(range(150)): generate_card()
Lewistrick/bingogenerator
bingo.py
bingo.py
py
3,060
python
en
code
0
github-code
6
21884308147
"""Setting up various cosmic populations.""" from frbpoppy import CosmicPopulation # You can set up a population with arguments ... pop = CosmicPopulation(1e4, n_days=1, name='my_own_population', repeaters=True, generate=False) # ... but also adapt specific components: # The numer density / distance parameters pop.set_dist(model='vol_co', z_max=0.01, alpha=-1.5, H_0=67.74, W_m=0.3089, W_v=0.6911) # Which dispersion measure components to include pop.set_dm(mw=True, igm=True, host=True) # Dispersion measure properties pop.set_dm_host(model='gauss', mean=100, std=200) pop.set_dm_igm(model='ioka', slope=1000, std=None) pop.set_dm_mw(model='ne2001') # Emission range of FRB sources pop.set_emission_range(low=100e6, high=10e9) # Luminsity of FRBs # See the per_source argument? That allows you to give different properties # to different bursts from the same source. You can do that for the luminosity, # or any of the following parameters pop.set_lum(model='powerlaw', low=1e38, high=1e38, power=0, per_source='different') # Pulse width pop.set_w(model='uniform', low=10, high=10) # Spectral index pop.set_si(model='gauss', mean=0, std=0) # If repeaters, how they repeat pop.set_time(model='regular', rate=2) # And then generate the population! pop.generate() # Or simply use some predefined models pop_simple = CosmicPopulation.simple(1e4, generate=True) pop_complex = CosmicPopulation.complex(1e4, generate=True)
TRASAL/frbpoppy
examples/setting_up_populations.py
setting_up_populations.py
py
1,478
python
en
code
26
github-code
6
9830880946
# -*- coding: utf-8 -*- ## # @file __init__.py # @brief Contain paths to information files # @author Gabriel H Riqueti # @email [email protected] # @date 06/05/2021 # import os from pathlib import Path PATH_NERNST_EQUATION_INFO = Path(os.path.abspath(__file__)).parent / 'nernst_equation.txt' PATH_GOLDMAN_EQUATION_INFO = Path(os.path.abspath(__file__)).parent / 'goldman_equation.txt' if not PATH_NERNST_EQUATION_INFO.exists(): raise FileNotFoundError(PATH_NERNST_EQUATION_INFO.as_posix() + ' not found!') if not PATH_GOLDMAN_EQUATION_INFO.exists(): raise FileNotFoundError(PATH_GOLDMAN_EQUATION_INFO.as_posix() + ' not found!')
gabrielriqu3ti/biomedical_signal_processing
biomedical_signal_processing/info/__init__.py
__init__.py
py
670
python
en
code
0
github-code
6
34913449577
import numpy as np import scipy.integrate import scipy.optimize import bokeh.plotting from bokeh.plotting import figure, output_file, show import bokeh.io from bokeh.models import Span def dilute(molecule_diluted,molecules_0,DR=0.2): #input Object want to dilute and where the parameters is stored molecules_0[molecule_diluted.idx] *= (1-DR) def replenish(molecule_replenished, molecules_0, DR=0.2) : #input Object want to replenish and where the parameters is stored molecules_0[molecule_replenished.idx] += molecule_replenished.lc * DR def dilute_species(molecules_diluted,molecules_0,DR=0.2): #dilute a list of molecules for molecule in (molecules_diluted): dilute(molecule,molecules_0,DR) def replenish_species(molecules_replenished, molecules_0, DR=0.2) : #replenish a list of molecules for molecule in (molecules_replenished): replenish(molecule,molecules_0,DR) def run_model(model,t,parameters_list,molecules_0,dilute_list,replenish_list,result_all,DR=0.2): start_cycle,end_cycle = np.array(t)*4 for n in range (start_cycle,end_cycle): #define time t_start= n*15 t_end = (n+1)*15 t= np.linspace(t_start,t_end,2) #solve equation and save result result = scipy.integrate.odeint(model, molecules_0, t, args=parameters_list) result_all = np.append(result_all,result[1]) #update parameter molecules_0 = result.transpose()[:,-1] #dilution ###diute out dilute_species((dilute_list),molecules_0,DR) ###replenish replenish_species((replenish_list),molecules_0,DR) return result_all,molecules_0 def plot_result(molecule): t = np.linspace(0, 15*(len(molecule)-1), len(molecule)) p = bokeh.plotting.figure( plot_width=800, plot_height=400, x_axis_label="t", y_axis_type="linear", ) colors = bokeh.palettes.d3["Category10"][3] # Populate glyphs p.line( t/60, molecule, line_width=2, color=colors[0] ) vline1 = Span(location=4, dimension='height', line_color='black', line_width=1,line_dash='dashed') vline2 = Span(location=16, dimension='height', line_color='black', line_width=1,line_dash='dashed') p.add_layout(vline1) p.add_layout(vline2) show(p) def plot_result_two_state(molecule): t = np.linspace(0, 15*(len(molecule)-1), len(molecule)) p = bokeh.plotting.figure( plot_width=800, plot_height=400, x_axis_label="t", y_axis_type="linear", ) colors = bokeh.palettes.d3["Category10"][3] # Populate glyphs p.line( t/60, molecule, line_width=2, color=colors[0] ) vline1 = Span(location=4, dimension='height', line_color='black', line_width=1,line_dash='dashed') #vline2 = Span(location=16, dimension='height', line_color='black', line_width=1,line_dash='dashed') p.add_layout(vline1) #p.add_layout(vline2) show(p)
william831015/GRN-in-chemostat
scripts/functions.py
functions.py
py
3,004
python
en
code
0
github-code
6
4992423632
from __future__ import annotations import typing from homeassistant.components.switch import ( DOMAIN as PLATFORM_SWITCH, SwitchEntity, ) try: from homeassistant.components.switch import SwitchDeviceClass DEVICE_CLASS_OUTLET = SwitchDeviceClass.OUTLET DEVICE_CLASS_SWITCH = SwitchDeviceClass.SWITCH except: from homeassistant.components.switch import DEVICE_CLASS_OUTLET, DEVICE_CLASS_SWITCH from .merossclient import const as mc # mEROSS cONST from . import meross_entity as me if typing.TYPE_CHECKING: from homeassistant.core import HomeAssistant from homeassistant.config_entries import ConfigEntry async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_devices ): me.platform_setup_entry(hass, config_entry, async_add_devices, PLATFORM_SWITCH) class MLSwitch(me.MerossToggle, SwitchEntity): """ generic plugs (single/multi outlet and so) """ PLATFORM = PLATFORM_SWITCH @staticmethod def build_for_device(device: me.MerossDevice, channel: object, namespace: str): return MLSwitch(device, channel, None, DEVICE_CLASS_OUTLET, None, namespace) class ToggleXMixin( me.MerossDevice if typing.TYPE_CHECKING else object ): def __init__(self, api, descriptor, entry): super().__init__(api, descriptor, entry) # we build switches here after everything else have been # setup since the togglex verb might refer to a more specialized # entity than switches togglex = descriptor.digest.get(mc.KEY_TOGGLEX) if isinstance(togglex, list): for t in togglex: channel = t.get(mc.KEY_CHANNEL) if channel not in self.entities: MLSwitch.build_for_device( self, channel, mc.NS_APPLIANCE_CONTROL_TOGGLEX ) elif isinstance(togglex, dict): channel = togglex.get(mc.KEY_CHANNEL) if channel not in self.entities: MLSwitch.build_for_device( self, channel, mc.NS_APPLIANCE_CONTROL_TOGGLEX ) # This is an euristhic for legacy firmwares or # so when we cannot init any entity from system.all.digest # we then guess we should have at least a switch # edit: I guess ToggleX firmwares and on already support # system.all.digest status broadcast if not self.entities: MLSwitch.build_for_device(self, 0, mc.NS_APPLIANCE_CONTROL_TOGGLEX) def _handle_Appliance_Control_ToggleX(self, header: dict, payload: dict): self._parse__generic(mc.KEY_TOGGLEX, payload.get(mc.KEY_TOGGLEX)) def _parse_togglex(self, payload: dict): self._parse__generic(mc.KEY_TOGGLEX, payload) class ToggleMixin( me.MerossDevice if typing.TYPE_CHECKING else object ): def __init__(self, api, descriptor, entry): super().__init__(api, descriptor, entry) # older firmwares (MSS110 with 1.1.28) look like dont really have 'digest' # but have 'control' and the toggle payload looks like not carrying 'channel' p_control = descriptor.all.get(mc.KEY_CONTROL) if p_control: p_toggle = p_control.get(mc.KEY_TOGGLE) if isinstance(p_toggle, dict): MLSwitch.build_for_device( self, p_toggle.get(mc.KEY_CHANNEL, 0), mc.NS_APPLIANCE_CONTROL_TOGGLE, ) if not self.entities: MLSwitch.build_for_device(self, 0, mc.NS_APPLIANCE_CONTROL_TOGGLE) def _handle_Appliance_Control_Toggle(self, header: dict, payload: dict): self._parse_toggle(payload.get(mc.KEY_TOGGLE)) def _parse_toggle(self, payload): """ toggle doesn't have channel (#172) """ if isinstance(payload, dict): entity: MLSwitch = self.entities[payload.get(mc.KEY_CHANNEL, 0)] # type: ignore entity._parse_toggle(payload)
ZioTitanok/HomeAssistant-Configuration
custom_components/meross_lan/switch.py
switch.py
py
4,016
python
en
code
0
github-code
6
71780096828
from colorfield.fields import ColorField from django.core.validators import MinValueValidator, RegexValidator from django.db import models from users.models import User class Ingredient(models.Model): """Класс интредиент""" name = models.CharField( verbose_name='Наименование ингредиента', max_length=150, help_text='Наименование ингредиента', ) measurement_unit = models.CharField( verbose_name='Единица измерения', max_length=150, help_text='Единица измерения', ) class Meta: ordering = ('name',) verbose_name = 'Ингредиент' verbose_name_plural = 'Ингредиенты' def __str__(self): return self.name class Tag(models.Model): """Класс тег""" name = models.CharField( max_length=50, verbose_name='Hазвание', unique=True, db_index=True ) color = ColorField( default='#17A400', max_length=7, verbose_name='Цвет', unique=True, help_text='Цвет в формате HEX кода', ) slug = models.SlugField( max_length=50, verbose_name='slug', unique=True, validators=[RegexValidator( regex=r'^[-a-zA-Z0-9_]+$', message='Использован недопустимый символ' )] ) class Meta: verbose_name = 'Тег' verbose_name_plural = 'Теги' ordering = ('name', ) def __str__(self): return self.name class Recipe(models.Model): """Класс рецепт""" author = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name='Автор', related_name='recipes', help_text='Автор рецепта', ) name = models.CharField( verbose_name='Название рецепта', max_length=150, help_text='Название рецепта', ) image = models.ImageField( verbose_name='Картинка', upload_to='recipes/images', help_text='Картинка', ) text = models.TextField( verbose_name='Описание', help_text='Описание рецепта', ) ingredients = models.ManyToManyField( Ingredient, verbose_name='Ингредиенты рецепта', through='RecipeIngredient', related_name='recipes', help_text='Ингредиенты в составе рецепта', ) tags = models.ManyToManyField( Tag, verbose_name='Тег рецепта', related_name='recipes', help_text='Тег рецепта', ) cooking_time = models.IntegerField( verbose_name='Время приготовления', validators=[ MinValueValidator( 1, message='Минимальное время приготовления 1 мин.' ) ], help_text='Время приготовления', ) pub_date = models.DateTimeField( verbose_name='Дата публикации', auto_now_add=True, help_text='Дата публикации', ) class Meta: ordering = ('-pub_date', ) verbose_name = 'Рецепт' verbose_name_plural = 'Рецепты' def __str__(self): return self.name class RecipeIngredient(models.Model): """Класс рецепт-интредиент""" recipe = models.ForeignKey( Recipe, on_delete=models.CASCADE, verbose_name='Рецепт', related_name='ingredient', help_text='Рецепт', ) ingredient = models.ForeignKey( Ingredient, on_delete=models.CASCADE, verbose_name='Ингредиент', related_name='ingredient', help_text='Ингредиент', ) amount = models.IntegerField( verbose_name='Количество', validators=[ MinValueValidator( 1, message='Минимальное количество 1' ) ], help_text='Количество', ) class Meta: ordering = ('recipe',) verbose_name = 'Количество ингредиента' verbose_name_plural = 'Количество ингредиентов' constraints = [ models.UniqueConstraint( fields=('recipe', 'ingredient', ), name='unique_ingredient', ), ] def __str__(self): return f'{self.ingredient} в {self.ingredient.measurement_unit}' class Follow(models.Model): """Класс подписки""" follower = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name='Подписчик', related_name='follower', help_text='Подписчик', ) author = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name='Автор', related_name='author', help_text='Автор', ) class Meta: ordering = ('-id',) verbose_name = 'Подписка' verbose_name_plural = 'Подписки' constraints = [ models.UniqueConstraint( fields=('follower', 'author', ), name='unique_follow', ), ] def __str__(self): return f'{self.follower} подписался на: {self.author}' class FavoriteRecipe(models.Model): """Класс избранное""" user = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name='Пользователь', related_name='favorite', help_text='Пользователь добавивший рецепт', ) recipe = models.ForeignKey( Recipe, verbose_name='Избранное', on_delete=models.CASCADE, related_name='favorite', help_text='Избранный рецепт', ) class Meta: ordering = ('id',) verbose_name = 'Избранное' verbose_name_plural = 'Избранные рецепты' constraints = [ models.UniqueConstraint( fields=('user', 'recipe', ), name='unique_favorite', ), ] def __str__(self): return f'{self.recipe} добавлен в избранное' class ShoppingCart(models.Model): """Класс покупок""" user = models.ForeignKey( User, on_delete=models.CASCADE, verbose_name='Пользователь', related_name='shopping', help_text='Пользователь добавивший покупки', ) recipe = models.ForeignKey( Recipe, on_delete=models.CASCADE, verbose_name='Покупки', related_name='shopping', help_text='Рецепт для покупок', ) class Meta: ordering = ('id',) verbose_name = 'Покупка' verbose_name_plural = 'Покупки' constraints = [ models.UniqueConstraint( fields=('user', 'recipe', ), name='unique_shopping', ), ] def __str__(self): return f'{self.recipe} добавлен в покупки.'
GirzhuNikolay/foodgram-project-react
backend/recipes/models.py
models.py
py
7,583
python
ru
code
0
github-code
6
73811427708
from torch.utils.data import DataLoader from sklearn.model_selection import KFold from .datasets import get_cifar10_datasets, get_cifar100_datasets, get_mnist_datasets, get_image_net_dataset, TruncatedDataset, MergedDataset from .partition import partition_by_class, partition_with_dirichlet_distribution data_path = '/home/hansel/developer/embedding/data/' def get_datasets(data_dir, dataset, use_hdf5=False): if dataset == 'cifar10': trn_dataset, val_dataset = get_cifar10_datasets(data_dir=data_dir, use_hdf5=use_hdf5) elif dataset == 'cifar100': trn_dataset, val_dataset = get_cifar100_datasets(data_dir=data_dir) elif dataset == 'mnist': trn_dataset, val_dataset = get_mnist_datasets(data_dir=data_dir, use_hdf5=use_hdf5) elif dataset == 'imagenet': trn_dataset, val_dataset = get_image_net_dataset(data_dir=data_dir) return trn_dataset, val_dataset def get_dl_lists(dataset, batch_size, partition=None, n_site=None, alpha=None, net_dataidx_map_train=None, net_dataidx_map_test=None, shuffle=True, k_fold_val_id=None, seed=None, site_indices=None, use_hdf5=True): trn_dataset, val_dataset = get_datasets(data_dir=data_path, dataset=dataset, use_hdf5=use_hdf5) if partition == 'regular': trn_ds_list = [TruncatedDataset(trn_dataset, dataset) for _ in range(n_site)] val_ds_list = [TruncatedDataset(val_dataset, dataset) for _ in range(n_site)] elif partition == 'by_class': (net_dataidx_map_train, net_dataidx_map_test) = partition_by_class(data_dir=data_path, dataset=dataset, n_sites=n_site, seed=seed) trn_ds_list = [TruncatedDataset(trn_dataset, dataset, idx_map) for idx_map in net_dataidx_map_train.values()] val_ds_list = [TruncatedDataset(val_dataset, dataset, idx_map) for idx_map in net_dataidx_map_test.values()] elif partition == 'dirichlet': (net_dataidx_map_train, net_dataidx_map_test) = partition_with_dirichlet_distribution(data_dir=data_path, dataset=dataset, n_sites=n_site, alpha=alpha, seed=seed) trn_ds_list = [TruncatedDataset(trn_dataset, dataset, idx_map) for idx_map in net_dataidx_map_train.values()] val_ds_list = [TruncatedDataset(val_dataset, dataset, idx_map) for idx_map in net_dataidx_map_test.values()] elif partition == 'given': trn_ds_list = [TruncatedDataset(trn_dataset, dataset, idx_map) for idx_map in net_dataidx_map_train.values()] val_ds_list = [TruncatedDataset(val_dataset, dataset, idx_map) for idx_map in net_dataidx_map_test.values()] elif partition == '5foldval': trn_ds_list = [TruncatedDataset(trn_dataset, dataset, idx_map) for idx_map in net_dataidx_map_train.values()] val_ds_list = [TruncatedDataset(val_dataset, dataset, idx_map) for idx_map in net_dataidx_map_test.values()] merged_ds_list = [MergedDataset(trn_ds_list[i], val_ds_list[i], dataset) for i in range(len(trn_ds_list))] kfold = KFold(n_splits=5, shuffle=True, random_state=1) splits = [list(kfold.split(range(len(merged_ds)))) for merged_ds in merged_ds_list] indices = [split[k_fold_val_id] for split in splits] trn_ds_list = [TruncatedDataset(merged_ds_list[i], dataset, idx_map[0]) for i, idx_map in enumerate(indices)] val_ds_list = [TruncatedDataset(merged_ds_list[i], dataset, idx_map[1]) for i, idx_map in enumerate(indices)] trn_dl_list = [DataLoader(dataset=trn_ds, batch_size=batch_size, shuffle=shuffle, pin_memory=True, num_workers=0) for trn_ds in trn_ds_list] val_dl_list = [DataLoader(dataset=val_ds, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=0) for val_ds in val_ds_list] if site_indices is not None: trn_dl_list = [trn_dl_list[i] for i in site_indices] val_dl_list = [val_dl_list[i] for i in site_indices] return trn_dl_list, val_dl_list
somcogo/embedding
utils/data_loader.py
data_loader.py
py
3,860
python
en
code
0
github-code
6
22610043366
from django import forms from django.forms.models import inlineformset_factory from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Field, Fieldset, Div, HTML, Submit, Button from hybridjango.custom_layout_object import * from hybridjango.mixins import BootstrapFormMixin from .models import * class EventCommentForm(forms.ModelForm): class Meta: model = EventComment fields = ['event', 'text'] class EventForm(forms.ModelForm): class Meta: model = Event fields = [ 'title', 'type', 'ingress', 'text', # TODO: Make this field a HTMLField in form 'image', 'event_start', 'event_end', 'weight', 'location', 'hidden', 'news', 'public', 'signoff_close_on_signup_close', 'signoff_close', ] widgets = { 'ingress': forms.Textarea(attrs={'rows': 3}), } def __init__(self, *args, **kwargs): super(EventForm, self).__init__(*args, **kwargs) for field in self.fields: if self.fields[field] == self.fields['event_start'] or self.fields[field] == self.fields['event_end']: self.fields[field].widget.attrs.update({'class': 'form_datetime', 'autocomplete': 'off'}) else: self.fields[field].widget.attrs.update({'class': 'form-control'}) class MarkPunishmentForm(forms.ModelForm, BootstrapFormMixin): class Meta: model = MarkPunishment exclude = [ 'rules', 'delays', 'duration', ] def __init__(self, *args, **kwargs): super(MarkPunishmentForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = True self.helper.form_class = 'form-horizontal' self.helper.label_class = 'col-md-3 create-label' self.helper.field_class = 'col-md-9' self.helper.layout = Layout( Div( Field('goes_on_secondary'), Field('too_many_marks'), Field('signoff_close'), HTML("<br>"), Field('mark_on_late_signoff'), HTML("<br>"), Field('remove_on_too_many_marks'), HTML("<br>"), HTML("<br>"), Fieldset('Add delays', Formset('delays')), HTML("<br>"), Fieldset('Add rules', Formset('rules')), HTML("<br>"), Submit('submit', 'Lagre'), Button('back', "Tilbake", css_class='btn btn-default pull-right', onclick="goBack()"), ) ) class RuleForm(forms.ModelForm, BootstrapFormMixin): class Meta: model = Rule exclude = [ 'punishment', ] RuleFormSet = inlineformset_factory( MarkPunishment, Rule, form=RuleForm, fields=['rule'], extra=1, can_delete=True ) class DelayForm(forms.ModelForm, BootstrapFormMixin): class Meta: model = Delay exclude = [ 'punishment', ] DelayFormSet = inlineformset_factory( MarkPunishment, Delay, form=DelayForm, fields=['marks', 'minutes'], extra=1, can_delete=True )
hybrida/hybridjango
apps/events/forms.py
forms.py
py
3,382
python
en
code
4
github-code
6
14205447601
#!/usr/bin/env python # coding: utf-8 # ## Single Dimension Array # In[1]: import pandas as pd import matplotlib.pyplot as plt # In[2]: data = [10, 23, 34, 35, 45, 59] df = pd.DataFrame(data, columns=['Score']) df # In[3]: #plt.pie(df) plt.pie(df, labels=df['Score']) plt.title("Students Score") plt.show() # In[4]: label_name = ['John', 'Tim', 'Kenny', 'AK', 'Helvetica', 'Bryan'] # In[5]: plt.pie(df, labels=label_name) plt.title("Students Score") plt.show() # In[6]: plt.pie(df, labels=label_name, autopct='%1.1f%%') plt.title("Students Score") plt.show() # In[7]: plt.pie(df, labels=label_name, autopct='%1.2f%%') plt.title("Students Score") plt.show() # In[8]: plt.pie(df, labels=label_name, autopct='%1.3f%%') plt.title("Students Score") plt.show() # ## Two Dimension Array # In[9]: new_data = [['John', 10], ['Tim', 24], ['AK', 34]] # In[10]: new_data # In[11]: newdf = pd.DataFrame(new_data) # In[12]: newdf # In[13]: newdf = pd.DataFrame(new_data, columns=['Name', 'Score']) # In[14]: newdf # In[15]: newdf['Score'] # In[16]: newdf['Name'] # In[17]: plt.pie(newdf['Score'], labels=newdf['Name'], autopct='%1.1f%%') plt.show() # In[ ]: # In[ ]:
AileshC/PythonLearning
python_notebooks/MatPlotLib_Pie_Demo.py
MatPlotLib_Pie_Demo.py
py
1,233
python
en
code
1
github-code
6
38116639709
print("'0' for exit") #take ch input from the user ch = input('ch: ') if (ch == '0'): exit() elif ch.isnumeric(): print('digit') elif ch.isalpha(): print('alphabet') else: print('neither alphabet nor digit')
3Sangeetha3/python
if_elif_else.py
if_elif_else.py
py
224
python
en
code
1
github-code
6
6629686746
import tensorflow as tf from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession #Configure GPU config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) for gpu in tf.config.experimental.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, True) print(tf.config.experimental.get_memory_growth(gpu)) from tensorflow.keras import (models, layers, datasets, callbacks, optimizers, initializers, regularizers) from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt import os import time import numpy as np from six import iteritems from time import perf_counter import ml_genn as mlg from ml_genn import Model from ml_genn.utils import parse_arguments, raster_plot #Separable convolutional components MobilenetV1 def SeparableConv( x , num_filters , strides , alpha=1.0 ): planes = int(num_filters*alpha) x.append(layers.Conv2D(planes, kernel_size=1, strides=1, padding="same", activation='relu', use_bias=False, kernel_initializer=initializer)) x.append(layers.Conv2D(planes, kernel_size=3, strides=strides, padding="same", groups=planes, activation='relu', use_bias=False, kernel_initializer=initializer)) x.append(layers.Conv2D(planes, kernel_size=1, strides=1, padding="same", activation='relu', use_bias=False, kernel_initializer=initializer)) return x #Convolutional components MobilenetV1 def Conv( x , num_filters , kernel_size , strides=1 , alpha=1.0 ): x.append(layers.Conv2D( int(num_filters * alpha ) , kernel_size=kernel_size , strides=strides , activation='relu', use_bias=False , padding='same', kernel_initializer=initializer)) return x if __name__ == '__main__': args = parse_arguments('AlexNet classifier model') print('arguments: ' + str(vars(args))) #check if tensorflow is running on GPU print(tf.test.is_gpu_available()) print(tf.test.is_built_with_cuda()) n_norm_samples=1000 #Load Dataset (x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data() train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)) #Normalize data x_train = x_train / 255.0 x_test = x_test / 255.0 encoder = OneHotEncoder() encoder.fit(y_train) y_train = encoder.transform(y_train).toarray() y_test = encoder.transform(y_test).toarray() index_norm=np.random.choice(x_train.shape[0], n_norm_samples, replace=False) x_norm = x_train[index_norm] y_norm = y_train[index_norm] # Create L2 regularizer regularizer = regularizers.l2(0.01) # Create image data generator data_gen = ImageDataGenerator(width_shift_range=0.3,height_shift_range=0.8,rotation_range=30,zoom_range=0.1, shear_range=0.01) # Get training iterator iter_train = data_gen.flow(x_train, y_train, batch_size=256) initializer="he_uniform" #Creation Model layers_mobilenetv1 =[ layers.Conv2D(32,3, strides=1, activation='relu', padding="same", use_bias=False, input_shape=x_train.shape[1:]) ] layers_mobilenetv1 = Conv(layers_mobilenetv1,num_filters=32 , kernel_size=3 , strides=1 ) layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=32 , strides=1 ) layers_mobilenetv1 = Conv( layers_mobilenetv1, num_filters=64 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=64 , strides=1 ) layers_mobilenetv1 = Conv( layers_mobilenetv1, num_filters=128 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=128 , strides=1 ) layers_mobilenetv1 = Conv(layers_mobilenetv1, num_filters=128 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=128 , strides=2 ) layers_mobilenetv1 = Conv( layers_mobilenetv1, num_filters=256 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=256 , strides=1 ) layers_mobilenetv1 = Conv( layers_mobilenetv1, num_filters=256 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=256 , strides=2 ) layers_mobilenetv1 = Conv( layers_mobilenetv1, num_filters=512 , kernel_size=1 ) for i in range( 5 ): layers_mobilenetv1 = SeparableConv( layers_mobilenetv1, num_filters=256 , strides=1 ) layers_mobilenetv1 = Conv( layers_mobilenetv1, num_filters=512 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv(layers_mobilenetv1, num_filters=512 , strides=2 ) layers_mobilenetv1 = Conv(layers_mobilenetv1, num_filters=1024 , kernel_size=1 ) layers_mobilenetv1 = SeparableConv(layers_mobilenetv1, num_filters=1024 , strides=2 ) layers_mobilenetv1 = Conv(layers_mobilenetv1, num_filters=1024 , kernel_size=1 ) layers_mobilenetv1.append(layers.GlobalAveragePooling2D()) layers_mobilenetv1.append(layers.Dense(10,activation='softmax', use_bias=False)) tf_model = models.Sequential(layers_mobilenetv1,name="mobilenetv1") tf_model.summary() if args.reuse_tf_model: tf_model = models.load_model('mobilenetv1') else: optimizer = optimizers.SGD(lr=0.05, momentum=0.9) tf_model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) checkpoint_path = "training_1/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1, save_best_only=True, monitor='val_accuracy') #train TensorFlow model steps_per_epoch = x_train.shape[0] // 256 tf_model.fit(iter_train, steps_per_epoch=steps_per_epoch, epochs=200, callbacks=cp_callback, validation_data=(x_test,y_test)) #Save Mobilenetv1_tf_model models.save_model(tf_model, 'mobilenetv1', save_format='h5') #Evaluate TensorFlow model tf_model.evaluate(x_test, y_test) tf_eval_start_time = perf_counter() tf_model.evaluate(x_test, y_test) print("TF evaluation:%f" % (perf_counter() - tf_eval_start_time)) # Convert and compile ML GeNN model converter = args.build_converter(x_norm, K=10, norm_time=500) # Convert and compile ML GeNN model mlg_model = Model.convert_tf_model( tf_model, converter=converter, connectivity_type=args.connectivity_type, input_type=args.input_type, dt=args.dt, batch_size=args.batch_size, rng_seed=args.rng_seed, kernel_profiling=args.kernel_profiling) time = 10 if args.converter == 'few-spike' else 500 mlg_eval_start_time = perf_counter() acc, spk_i, spk_t = mlg_model.evaluate([x_test], [y_test], time, save_samples=args.save_samples) print("MLG evaluation:%f" % (perf_counter() - mlg_eval_start_time)) if args.kernel_profiling: print("Kernel profiling:") for n, t in iteritems(mlg_model.get_kernel_times()): print("\t%s: %fs" % (n, t)) # Report ML GeNN model results print('Accuracy of MobileNetv1 GeNN model: {}%'.format(acc[0])) if args.plot: neurons = [l.neurons.nrn for l in mlg_model.layers] raster_plot(spk_i, spk_t, neurons, time=time)
jfgf11/ml_genn_examples_ssh
Sequential API/mobilenetv1.py
mobilenetv1.py
py
7,524
python
en
code
0
github-code
6
43095956138
import plugins import sys import data import model plugins.load_all('config.json') target = sys.argv[1] start_node = model.Node('person', target) d = data.Storage(target) d.add_node(start_node) def handle(tokens): if tokens[0].lower() == 'list': # show list of nodes if len(tokens) > 1: if tokens[1].lower() == 'nodes': nodes = d.get_nodes() print('\n'.join(map(lambda x: str(x), nodes))) elif tokens[1].lower() == 'actions': if len(tokens) > 2: actions = plugins.fetch_actions(tokens[2]) print('\n'.join(map(lambda x: str(x), actions))) else: print('USAGE: list actions NODE_TYPE') else: print('USAGE: list (nodes | actions NODE_TYPE)') elif tokens[0].lower() == 'get': if len(tokens) > 1: id = int(tokens[1]) result = d.get_node(id) print(result) print(result.data_json) else: print('USAGE: get NODE_ID') elif tokens[0].lower() == 'run': # run plugin if len(tokens) > 2: action_name = tokens[1] action = plugins.fetch(action_name) target_id = int(tokens[2]) target = d.get_node(target_id) result = action['func'](target) for n in result: d.add_node(n) connection = model.Connection(target.id, n.id, action_name, 'concrete', '') d.add_connection(connection) d.add_node(target) print(result) else: print('USAGE: run ACTION NODE_ID') else: print('< Unknown command: ' + command) while True: command = raw_input('> ') tokens = command.split(' ') if tokens[0].lower() == 'quit': break else: try: handle(tokens) except Exception as e: print(e)
tracer-sec/osint
console.py
console.py
py
2,022
python
en
code
8
github-code
6
39540715020
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 15 2021 @author: sagrana """ from rest_framework import status from rest_framework.generics import CreateAPIView, RetrieveAPIView from rest_framework.response import Response from rest_framework.permissions import AllowAny from .models import User from .serializers import UserRegistrationSerializer from .serializers import UserLoginSerializer class UserRegistrationView(CreateAPIView): """"UserRegistrationView """ serializer_class = UserRegistrationSerializer permission_classes = (AllowAny,) def post(self, request, *args, **kwargs): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) serializer.save() response = { 'success': 'True', 'status code': status.HTTP_200_OK, 'message': 'User registered successfully', } status_code = status.HTTP_200_OK return Response(response, status=status_code) class UserLoginView(RetrieveAPIView): """UserLoginView """ permission_classes = (AllowAny,) serializer_class = UserLoginSerializer queryset = User.objects.all() def post(self, request): """post :param request: :return: """ serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) response = { 'success': 'True', 'status code': status.HTTP_200_OK, 'message': 'User logged in successfully', 'token': serializer.data['token'], } status_code = status.HTTP_200_OK return Response(response, status=status_code)
theRuthless/stark_ly3000_web_app
backend/users/views.py
views.py
py
1,740
python
en
code
0
github-code
6
35007798704
from src.main.python.Solution import Solution # Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? # Find all unique triplets in the array which gives the sum of zero. # # Note: # Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c) # The solution set must not contain duplicate triplets. # # For example, given array S = {-1 0 1 2 -1 -4}, # A solution set is: # (-1, 0, 1) # (-1, -1, 2) class Q015(Solution): def threeSum(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ ans = [] if nums and len(nums) >= 3: nums.sort() i = 0 while i < len(nums)-2: j, k = i+1, len(nums)-1 while j < k: sum = nums[i] + nums[j] + nums[k] if sum == 0: ans.append([nums[i], nums[j], nums[k]]) k -= 1 while j < k < len(nums)-1 and nums[k] == nums[k+1]: k -= 1 j += 1 while k > j and nums[j] == nums[j-1]: j += 1 elif sum < 0: j += 1 else: k -= 1 i += 1 while i < len(nums)-2 and nums[i] == nums[i-1]: i += 1 return ans
renkeji/leetcode
python/src/main/python/Q015.py
Q015.py
py
1,482
python
en
code
0
github-code
6
27811540343
""" 쳅터: day 5 주제: 재귀함수(recursion) 자기 자신을 호출하는 함수 문제: A. 팩토리얼 계산 함수 fact를 재귀한수로 정의하여, fact(5)를 호출한 결과를 출력하라 작성자: 윤경환 작성일: 18 10 10 """ def fact(a): #팩토리얼 if a == 1: #a가 1일때 return a #a반환 else: #아닐때 return a*fact(a-1) #재귀함수 사용 print(fact(5)) #출력
younkyounghwan/python_class
lab5_13.py
lab5_13.py
py
427
python
ko
code
0
github-code
6
70264789629
import django, os from django.core.management import call_command from dotenv import load_dotenv def init_db(): """Method to initialize the database with sample data""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'FriendsLessonsSystem.settings') load_dotenv() django.setup() from FriendsLessonsAPI.models import User, Course, Enrollment call_command('flush') call_command('makemigrations') call_command('migrate') joe = User.objects.create(first_name='Joe', last_name='Smith', username='joe123', birth_date='2000-01-01') mark = User.objects.create(first_name='Mark', last_name='Johnson', username='mark456', birth_date='1999-12-31') jody = User.objects.create(first_name='Jody', last_name='Williams', username='jody789', birth_date='1998-12-30') rachel = User.objects.create(first_name='Rachel', last_name='Smith', username='rachel246', birth_date='1997-12-29') jane = User.objects.create(first_name='Jane', last_name='Doe', username='jane512', birth_date='1995-05-01') joe.friends.add(mark, jody, rachel) jane.friends.add(joe, rachel) math = Course.objects.create(name='Math', description='Math course') spanish = Course.objects.create(name='Spanish', description='Spanish course') history = Course.objects.create(name='History', description='History course') Enrollment.objects.create(user=rachel, course=math, lessons_taken=3) Enrollment.objects.create(user=rachel, course=spanish, lessons_taken=2) Enrollment.objects.create(user=jane, course=history, lessons_taken=10) Enrollment.objects.create(user=jane, course=math, lessons_taken=1) Enrollment.objects.create(user=jane, course=spanish, lessons_taken=5) Enrollment.objects.create(user=joe, course=spanish, lessons_taken=1) if __name__ == '__main__': init_db()
ValentinGiorgetti/Desafio-Backend
FriendsLessonsSystem/init_db.py
init_db.py
py
1,830
python
en
code
0
github-code
6
14254446016
from __future__ import absolute_import, division, print_function, unicode_literals from _GTW import GTW from _TFL._Meta.Once_Property import Once_Property import _GTW._RST._TOP._elFinder class Error (Exception) : """elFinder error message""" def __init__ (self, code, data = None) : self.code = code self.data = data # end def __init__ @Once_Property def json_cargo (self) : if self.data : return [self.code, self.data] return self.code # end def json_cargo # end class Error if __name__ != "__main__" : GTW.RST.TOP.elFinder._Export ("*") ### __END__ GTW.RST.TOP.elFinder.Error
xiaochang91/tapyr
_GTW/_RST/_TOP/_elFinder/Error.py
Error.py
py
689
python
en
code
0
github-code
6
2415322860
import gtk import gobject from tryton.gui.window.view_form.view.form import ViewForm from tryton.gui.window.view_form.view.form_gtk.widget import Widget from tryton.gui.window.view_form.screen import Screen from tryton.common.selection import SelectionMixin from tryton.common.treeviewcontrol import MOVEMENT_KEYS def get_plugins(model): return [] class Many2ManySelection(Widget, SelectionMixin): expand = True def __init__(self, view, attrs): super(Many2ManySelection, self).__init__(view, attrs) self.widget = gtk.VBox(homogeneous=False, spacing=5) hbox = gtk.HBox(homogeneous=False, spacing=0) hbox.set_border_width(2) label = gtk.Label(attrs.get('string', '')) label.set_alignment(0.0, 0.5) hbox.pack_start(label, expand=True, fill=True) frame = gtk.Frame() frame.add(hbox) frame.set_shadow_type(gtk.SHADOW_OUT) self.widget.pack_start(frame, expand=False, fill=True) self.screen = Screen(attrs['relation'], view_ids=attrs.get('view_ids', '').split(','), mode=['tree'], views_preload=attrs.get('views', {})) self.screen.new_group() self.treeview = self.screen.current_view.treeview self.treeview.get_selection().connect('changed', self.changed) self.treeview.connect('focus-out-event', lambda *a: self._focus_out()) self.treeview.connect('button-press-event', self.button_press_event) self.treeview.connect('key-press-event', self.key_press_event) self.widget.pack_start(self.screen.widget, expand=True, fill=True) self.nullable_widget = False self.init_selection() @property def modified(self): if self.record and self.field: group = set(r.id for r in self.field.get_client(self.record)) value = set(self.get_value()) return value != group return False def changed(self, selection): def focus_out(): if self.widget.props.window: self._focus_out() # Must be deferred because it triggers a display of the form gobject.idle_add(focus_out) def button_press_event(self, treeview, event): # grab focus because it doesn't whith CONTROL MASK treeview.grab_focus() if event.button == 1: event.state ^= gtk.gdk.CONTROL_MASK def key_press_event(self, treeview, event): if event.keyval in MOVEMENT_KEYS: event.state ^= gtk.gdk.CONTROL_MASK def get_value(self): return [r.id for r in self.screen.selected_records] def set_value(self, record, field): field.set_client(record, self.get_value()) def display(self, record, field): selection = self.treeview.get_selection() selection.handler_block_by_func(self.changed) try: self.update_selection(record, field) super(Many2ManySelection, self).display(record, field) if field is None: self.screen.clear() self.screen.current_record = None self.screen.parent = None else: self.screen.parent = record current_ids = [r.id for r in self.screen.group] new_ids = [s[0] for s in self.selection] if current_ids != new_ids: self.screen.clear() self.screen.load(new_ids) group = field.get_client(record) nodes = [[r.id] for r in group if r not in group.record_removed and r not in group.record_deleted] selection.unselect_all() self.screen.current_view.select_nodes(nodes) self.screen.display() finally: selection.handler_unblock_by_func(self.changed) ViewForm.WIDGETS['many2many_selection'] = Many2ManySelection
PierreCookie/tryton_pre_mono
tryton/plugins/many2many_selection.py
many2many_selection.py
py
3,934
python
en
code
null
github-code
6
2825738960
# https://www.codewars.com/kata/51c8e37cee245da6b40000bd/train/python # Complete the solution so that it strips all text that follows any of a set of comment markers passed in. Any whitespace at the end of the line should also be stripped out. # Example: # Given an input string of: # apples, pears # and bananas # grapes # bananas !apples # The output expected would be: # apples, pears # grapes # bananas # The code would be called like so: # result = solution("apples, pears # and bananas\ngrapes\nbananas !apples", ["#", "!"]) # # result should == "apples, pears\ngrapes\nbananas" import re def solution(string,markers): new_str = string.split('\n') to_find = '|'.join(markers) compiled = re.compile('.*(?=('+ to_find + ')*)') print(compiled) final = [compiled.findall(i)[0].strip() if compiled.findall(i) else i for i in new_str] return '\n'.join(final) print(solution('apples, pears # and bananas\ngrapes\nbananas #!apples', ['#','!']))
Tadiuz/PythonPrograms
PP/CodeWars/Strip_Comment.py
Strip_Comment.py
py
998
python
en
code
0
github-code
6
7930998505
import numpy as np import matplotlib.pyplot as plt # seulement deux etats def epidemie_1(temps = 50, population = 10**6): propagation = np.array( [[0.9 , 0.1], [0.3, 0.7]]) # 0 -> infecte, 1 -> sain popu = np.array([0, 1]) X_temps = np.linspace(0, temps, temps) Y_infectes = [] for t in range(temps): Y_infectes.append(popu[0]*population) popu = np.dot(popu, propagation) plt.plot(X_temps, Y_infectes) # illustration de markov deux etats # modele irrealiste a cause de la pente, voir site worldometers.info juste pour donner une impression de ce que ca devrait donner pas pour donner #epidemie_1() #plt.show() # 5 etats cette fois: def epidemie_2(temps = 100, population = 10**6): propagation = np.array( [ [0.7, 0.2, 0, 0, 0.0001, 0.0999], # 0 -> infecte vaccine [0.2, 0.8, 0, 0, 0, 0], # 1 -> sain vaccine [0 , 0.2, 0.1, 0.7, 0, 0], # 2 -> sain non vaccin [0,0.2, 0, 0.7, 0.001, 0.099], # 3 -> infecte non vaccine [0, 0, 0, 0, 1, 0 ], # 4 -> mort [0, 0, 0, 0, 0, 1 ] # 5 -> immunise ]) popu = np.array([0, 0, 1, 0, 0, 0]) X_temps = np.linspace(0, temps, temps) Y_infectes = [] for t in range(temps): Y_infectes.append(popu[0]*population) popu = np.dot(popu, propagation) plt.plot(X_temps, Y_infectes) #epidemie_2() #plt.show() # modele bcp plus complique car bcp d'etats mais # resultats bien plus satisfaisant # on peut jouer sur la propagation de l'epidemie # qui prennent en compte la reaction des gens, des gouvernements, le confinement ( notamment probabilite d'infection qui descend, celle de vaccination monte, mais aussi mutation aleatoire) # Chaine de Markov cachee # changement de domaine def max_arg(liste): """ renvoie le max de la liste et le plus petit indice ou il a ete realise""" m = liste[0] i_max = 0 for n in range(len(liste)): if liste[n] > m: m = liste[n] i_max = n return m, i_max def Viterbi(A, B, Obs): # A matrice de transition # B les probabilites d'observation tq b_j(o_t) = B[j][t] # On travaille avec des logarithmes logA = np.log(A) logB = np.log(B) N = len(A) T = len(Obs) pointeurs = np.reshape(np.zeros(T*N), (N,T)) # sert a retracer le chemin a la fin alpha_prec = np.array(B[:][Obs[0]]) alpha_suiv = np.zeros(N) for t in range(T): nouv_alpha = np.zeros(N) for j in range(N): nouv_alpha[j], pointeurs[j][t] = max_arg( np.array( np.log(alpha_suiv[i]) + logA[i][j] + logB[j][Obs[t]] for i in range(N))) # log est croissante, conserve donc le max # on met en pointeur l'etat i qui realise le maximum : c'etait l'etat precedent alpha_prec = alpha_suiv[:] alpha_suiv = nouv_alpha[:] pmax, i_final = max_arg(alpha_suiv) pmax = np.exp(pmax) etats_successifs = np.zeros(T) i = i_final for t in range(1, T+1, -1): etats_successifs[t] = i i = pointeurs[i][t-1] return pmax, etats_successifs def forward(A, B, Obs): N = len(A) T = len(B) alpha_prec = np.array(B[:][Obs[0]]) alpha_suiv = np.zeros(N) for t in range(T): nouv_alpha = np.zeros(N) for j in range(N): nouv_alpha[j] = B[j][Obs[t]] * sum( alpha_suiv[i] * A[i][j] for i in range(N)) alpha_prec = alpha_suiv[:] alpha_suiv = nouv_alpha[:] return sum(alpha_suiv) # def baum-welch(A,B, Obs): # if # condition de convergence # else: # N = len(A) # T = len(Obs) # alphas = np.reshape(np.zeros(N*T), (N, T)) # betas = np.reshape(np.zeros(N*T), (N, T)) # # a initialiser correctement avec un for ICI # C = sum(alphas) # D = sum(beta) # alphas = alphas/C # beta = beta/D # for t in range(1, T): # on construit # for i in range(N): # alphas[i][t] = B[i][Obs[t]] * # betas[i][t] = # ABANDON MOMOENTANE def baum_welch_naif(A, B, Obs): N = len(A) T = len(Obs) alphas = np.reshape(np.zeros(N*T), (T, N)) betas = np.reshape(np.zeros(N*T), (T, N)) # trouver toutes les valeurs des alphas et betas alphas[:][0] = B[:][Obs[0]] betas[T-1][:] = np.ones(N) for t in range(1, T-2): for j in range(N): alphas[t][j] = B[j][Obs[t]] * sum( alphas[t-1][i] * A[i][j] for i in range(N)) betas[T-1-t][j] = B[Obs[T-t]][j] * sum( betas[T-t][i] * A[j][i] for i in range(N)) Pobs = sum(alphas[T-1][:]) # step Expectations zeta = np.reshape(np.zeros(N*N*T), (T,N, N)) gamma = np.reshape(np.zeros(N*T), (T,N)) for t in range(T-1): for i in range(N): for j in range(N): zeta[t][i][j] = alphas[t][i] * betas[t+1][j] * A[i][j] * B[Obs[t]][j] / Pobs for t in range(T): for i in range(N): gamma[t][i] = (alphas[t][j] * betas[t][j]) / Pobs #step S nouvA = np.reshape(np.zeros(N**2), (N,N)) nouvB = np.reshape(np.zeros(N * len(B[0])), (N, len(B[0]))) for i in range(N): denom = sum( sum( zeta[t][i][k] for k in range(N)) for t in range(T)) for j in range(N): nouvA[i][j] = sum( zeta[t][i][j] for t in range(T)) / denom for j in range(N): for k in range(len(B)): denom = sum(gamma[t][j] for t in range(T)) for t in range(T): if Obs[t] == k: nouvB[j][k] = nouvB[j][k] + gamma[t][j] / denom return nouvA, nouvB def traite_fichier_adn(): nucleotide = open("adn_pur.txt", "r") nombres = open("adn_traite", "a") lignes = nucleotide.readlines() N = ['a', 'c', 't', 'g'] for l in lignes: for carac in l: if carac == 'a': nombres.write("0 ") if carac == 'c': nombres.write("1 ") if carac == 't': nombres.write("2 ") if carac == 'g': nombres.write("3 ") nucleotide.close() nombres.close() adn = open("adn_traite", "r") sequence = adn.readlines() Ob = [] for ligne in sequence: for nclt in ligne: if nclt in ['0', '1', '2', '3']: Ob.append(int(nclt)) adn.close() def sequencageADN(Obs): precision = 0.1 A = 0.25 * np.reshape(np.ones(16), (4, 4)) B = 0.25 * np.reshape(np.ones(16), (4, 4)) Ap, Bp = baum_welch_naif(A, B, Obs) while np.linalg.norm(A - Ap) < precision or np.linalg.norm(B - Bp)<precision: A = Ap B = Bp Ap, Bp = baum_welch_naif(A, B, Obs) return A, B #print(sequencageADN(Ob)) def ruine_du_joueur(N, p, T = 100): X_t = np.zeros(2*N+1) X_t[N] = 1.0 T = list(range(1, T)) A = np.reshape(np.zeros((2*N+1)**2), ((2*N+1),(2*N+1))) A[0][0] = 1 A[-1][-1] = 1 for i in range(1, 2*N): A[i][i-1] = 1-p A[i][i+1] = p print(A) Argent = [] for t in T: m = max(X_t) for k in range(2*N+1): if X_t[k] == m: Argent.append(k) break X_t = np.dot(X_t, A) plt.plot(T, Argent) import random as rd def vol_du_joueur(N, p): for _ in range(3): X = [0] Y = [N] temps = 0 A = N while A > 0 and A < 2*N: temps += 1 if rd.random()< p: A += 1 else: A -= 1 X.append(temps) Y.append(A) plt.plot(X, Y) plt.xlabel("temps") plt.ylabel("Pieces") plt.show() #vol_du_joueur(20, 0.5) def temps_de_vol(N,p): Y = [] nb_essais = 100000 for k in range(nb_essais): temps = 0 A = N while A > 0 and A < 2*N: temps += 1 if rd.random()< p: A += 1 else: A -= 1 Y.append(temps) Yp = [0]*(max(Y)+1) for y in Y: Yp[y] += 1 plt.bar(list(range(max(Y)+1)), Yp, width=1.0, edgecolor = "#981FFA") plt.show() #temps_de_vol(200, 0.7) import cmath def mouvement_brownien(N): position = 0 + 0j X = [position] t = 1 i = 1j direction = 1 while t < N: dir = rd.random() dist = rd.random() if dir < 0.05 or 0.50> dir > 0.45: if dist <0.01: direction *= cmath.exp(dir*2*np.pi*1j) position = position + dist * direction X.append(position) t += 1 plt.plot( [ z.real for z in X], [z.imag for z in X]) plt.show() mouvement_brownien(10000) def baum_welch(A, B, Obs): N = len(A) T = len(Obs) alphas = np.reshape(np.zeros(N*T), (T, N)) betas = np.reshape(np.zeros(N*T), (T, N)) # trouver toutes les valeurs des alphas et betas alphas[:][0] = B[:][Obs[0]] betas[T-1][:] = np.ones(N) for t in range(1, T-2): for j in range(N): alphas[t][j] = B[j][Obs[t]] * sum( alphas[t-1][i] * A[i][j] for i in range(N)) betas[T-1-t][j] = B[Obs[T-t]][j] * sum( betas[T-t][i] * A[j][i] for i in range(N)) constantesC = [] for t in range(T): C = sum(alphas[t][:])**(-1) constantes.append(C) alphas[t][:] = alphas[t][:] / C constancesc = [] for t in range(T): c = 0 for y in range(N): c += np.dot(alphas[t][:], A[y]) * B[t][y] c = 1 / c constantesc.append(c) Pobs = sum(alphas[T-1][:]) # step Expectations zeta = np.reshape(np.zeros(N*N*T), (T,N, N)) gamma = np.reshape(np.zeros(N*T), (T,N)) for t in range(T-1): for i in range(N): for j in range(N): zeta[t][i][j] = alphas[t][i] * betas[t+1][j] * A[i][j] * B[Obs[t]][j] / Pobs for t in range(T): for i in range(N): gamma[t][i] = (alphas[t][j] * betas[t][j]) / Pobs #step S nouvA = np.reshape(np.zeros(N**2), (N,N)) nouvB = np.reshape(np.zeros(N * len(B[0])), (N, len(B[0]))) for i in range(N): denom = sum( sum( zeta[t][i][k] for k in range(N)) for t in range(T)) for j in range(N): nouvA[i][j] = sum( zeta[t][i][j] for t in range(T)) / denom for j in range(N): for k in range(len(B)): denom = sum(gamma[t][j] for t in range(T)) for t in range(T): if Obs[t] == k: nouvB[j][k] = nouvB[j][k] + gamma[t][j] / denom return nouvA, nouvB
kmlst/TIPE-Coding-regions-in-DNA-with-Hidden-Markov-Model
tipe_code.py
tipe_code.py
py
10,617
python
en
code
0
github-code
6
6043134873
import logging import certifi import random, string from elasticsearch import Elasticsearch from flask import Flask, render_template, request, redirect, url_for, flash from datetime import datetime from quiz import quiz app = Flask(__name__) app.secret_key = 'dfuy48yerhfjdbsklueio' es = Elasticsearch( ['https://host:port'], http_auth=('user', 'pass'), send_get_body_as='POST', # needed for GAE use_ssl=True, ca_certs=certifi.where() ) @app.route('/') def index(): return render_template('index.html', quiz=quiz) @app.route('/submit', methods=['POST']) def submit(): form = request.form.to_dict() doc = { 'timestamp': datetime.utcnow(), 'email' : form['email'], 'remote_addr' : request.remote_addr, 'user_agent' : request.headers.get('User-Agent'), 'correct': True } for q in quiz: doc[q['name']] = { 'question' : q['question'], 'answer' : form[q['name']] } if form[q['name']] != [i for i in q['options'] if i['correct']][0]['answer']: doc['correct'] = False es.index(index='esquiz', doc_type='answer', pipeline='esquiz', body=doc) flash('Thanks for your response') return redirect(url_for('index')) @app.route('/draw', methods=['GET']) def draw(): seed = ''.join(random.choice(string.lowercase) for i in range(20)) query = { "query": { "function_score": { "query": { "term" : { "correct" : True } }, "functions": [{ "random_score": { "seed": seed } }] } } } email = None res = es.search(index='esquiz', body=query, size=1, _source_include="email") if res['hits']['total'] > 0: email = res['hits']['hits'][0]['_source']['email'] return render_template('draw.html', winner=email) @app.errorhandler(500) def server_error(e): # For Google App Engine logging.exception('An error occurred during a request.') return 'An internal error occurred.', 500 if __name__ == '__main__': app.run()
mcascallares/esquiz
main.py
main.py
py
2,109
python
en
code
1
github-code
6
910310900
import os, sys from glob import glob __all__ = ['context', 'Context'] class Context(object): '''Finds out where the data directory is located etc. The data directory contains data files with standard basis sets and pseudo potentials. ''' def __init__(self): # Determine data directory (also for in-place build) self.data_dir = os.getenv('HORTONDATA') if self.data_dir is None: fn_data_dir = os.path.join(os.path.dirname(__file__), 'data_dir.txt') if os.path.isfile(fn_data_dir): with open(fn_data_dir) as f: self.data_dir = os.path.join(f.read().strip(), 'share/horton') if self.data_dir is None: self.data_dir = './data' self.data_dir = os.path.abspath(self.data_dir) # Determine include directory self.include_dir = os.getenv('HORTONINCLUDE') if self.include_dir is None: fn_data_dir = os.path.join(os.path.dirname(__file__), 'data_dir.txt') if os.path.isfile(fn_data_dir): with open(fn_data_dir) as f: self.include_dir = os.path.join( f.read().strip(), 'include/python%i.%i' % (sys.version_info.major, sys.version_info.minor)) if not os.path.isdir(self.data_dir): raise IOError('Can not find the data files. The directory %s does not exist.' % self.data_dir) def get_fn(self, filename): '''Return the full path to the given filename in the data directory.''' return os.path.join(self.data_dir, filename) def glob(self, pattern): '''Return all files in the data directory that match the given pattern.''' return glob(self.get_fn(pattern)) def get_include(self): '''Return the list with directories containing header files (.h and .pxd)''' return self.include_dir context = Context()
theochem/horton
horton/context.py
context.py
py
1,945
python
en
code
83
github-code
6
26538766731
from backend.common.exceptions.common import RuleValidationException, ParameterException from backend.common.exceptions.mquery import MqueryException from backend.helpers.async_elastic_helper import AsyncElasticHelper from backend.helpers.mquery_helper import MqueryHelper from backend.helpers.yara_helper import YaraHelper from backend.schema.add_retrohunt_schema import AddRetrohuntTaskSchema, PriorityTypes class YaraRetrohuntFacade: yara_helper = YaraHelper mquery_helper = MqueryHelper async_elastic_helper = AsyncElasticHelper @classmethod async def add_retrohunt_task(cls, rule_id: str, task: AddRetrohuntTaskSchema): if not await cls.yara_helper.is_yara_valid(task.yara): raise RuleValidationException(f"Syntax error for new Yara rule") resp_json, resp_status = await cls.mquery_helper.submit_task(task.yara, task.priority.value) if resp_status == 200: task_id = resp_json["query_hash"] resp_json, resp_status = await cls.mquery_helper.view_task_status(task_id) if resp_status != 200: raise MqueryException(f"Problem submitting yara rule. Internal status code: {resp_status}") # Update rule in Elastic with a reference of the task_uid await cls.async_elastic_helper.add_retrohunt_task_id_to_rule(rule_id, task_id) elif resp_status == 400: raise ParameterException("Yara rule is not correctly formatted") else: raise MqueryException("Problem submitting yara rule") @classmethod async def remove_retrohunt_task(cls, task_id: str): resp_json, resp_status = await cls.mquery_helper.remove_task(task_id) if resp_status != 200 or resp_json["status"] != "ok": raise MqueryException( f'Error removing retrohunt task {task_id}, status code: {resp_status}', status_code=resp_status ) rule = (await cls.async_elastic_helper.get_rules_by_retrohunt_task(task_id))[0] await cls.async_elastic_helper.add_retrohunt_task_id_to_rule(rule['_id'], '') @classmethod async def resubmit_task(cls, rule_id: str): rule = await cls.async_elastic_helper.get_rule_by_id(rule_id) await cls.add_retrohunt_task( str(rule.id), AddRetrohuntTaskSchema(yara=rule.body, priority=PriorityTypes.medium) ) resp_json, resp_status = await cls.mquery_helper.remove_task(rule.retrohunt_task_id) if resp_status != 200 or resp_json["status"] != "ok": raise MqueryException( f'Error removing retrohunt task {rule.retrohunt_task_id}, status code: {resp_status}', status_code=resp_status )
CorraMatte/malstream
backend/facades/yara_retrohunt_facade.py
yara_retrohunt_facade.py
py
2,715
python
en
code
3
github-code
6
16421467025
# Test the models with LG_chem stock # If the prediction is success, Expand the number of stock import math import os import pdb from datetime import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset from sklearn.preprocessing import MinMaxScaler base = os.path.abspath(__file__) base = base.split('/') def save_stock_plot(rawdata, stock_name="LG_chme"): global base try: plt.figure(figsize=(20,5)) plt.plot(range(len(rawdata)), rawdata['Close']) path = "/".join(base[:-2]+["models"]) file_name = f"/{stock_name}.jpg" path += file_name plt.savefig(path) print("Save Success!!") except Exception as e: print(f"Save Stock plot Failed!!: {e}") class windowDataset(Dataset): def __init__(self, y, input_window=80, output_window=20, stride=5, n_attr=1): #총 데이터의 개수 L = y.shape[0] #stride씩 움직일 때 생기는 총 sample의 개수 num_samples = (L - input_window - output_window) // stride + 1 if n_attr == 1: #input과 output X = np.zeros([input_window, num_samples]) Y = np.zeros([output_window, num_samples]) for i in np.arange(num_samples): start_x = stride*i end_x = start_x + input_window X[:,i] = y[start_x:end_x] start_y = stride*i + input_window end_y = start_y + output_window Y[:,i] = y[start_y:end_y] X = X.reshape(X.shape[0], X.shape[1], n_attr) Y = Y.reshape(Y.shape[0], Y.shape[1], n_attr) X = X.transpose((1,0,2)) Y = Y.transpose((1,0,2)) self.x = X self.y = Y else: #input과 output X = np.zeros([input_window, n_attr, num_samples]) Y = np.zeros([output_window, n_attr, num_samples]) for i in np.arange(num_samples): start_x = stride*i end_x = start_x + input_window X[:,:,i] = y[start_x:end_x] start_y = stride*i + input_window end_y = start_y + output_window Y[:,:,i] = y[start_y:end_y] X = X.reshape(X.shape[2], X.shape[0], X.shape[1]) Y = Y.reshape(Y.shape[2], Y.shape[0], Y.shape[1]) self.x = X self.y = Y self.len = len(X) def __getitem__(self, i): return self.x[i], self.y[i] #return self.x[i], self.y[i, :-1], self.y[i,1:] def __len__(self): return self.len class TFModel(nn.Module): def __init__(self,iw, ow, d_model, nhead, nlayers, dropout=0.5, n_attr=1): super(TFModel, self).__init__() self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=nlayers) self.pos_encoder = PositionalEncoding(d_model, dropout) self.encoder = nn.Sequential( nn.Linear(n_attr, d_model//2), nn.ReLU(), nn.Linear(d_model//2, d_model) ) self.linear = nn.Sequential( nn.Linear(d_model, d_model//2), nn.ReLU(), nn.Linear(d_model//2, n_attr) ) self.linear2 = nn.Sequential( nn.Linear(iw, (iw+ow)//2), nn.ReLU(), nn.Linear((iw+ow)//2, ow) ) def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def forward(self, src, srcmask): src = self.encoder(src) src = self.pos_encoder(src) output = self.transformer_encoder(src.transpose(0,1), srcmask).transpose(0,1) output = self.linear(output)[:,:,0] output = self.linear2(output) return output class TFModel2(nn.Module): def __init__(self,d_model, nhead, nhid, nlayers, dropout=0.5, n_attr=7): super(TFModel2, self).__init__() self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, dim_feedforward=nhid, num_encoder_layers=nlayers, num_decoder_layers=nlayers,dropout=dropout) self.pos_encoder = PositionalEncoding(d_model, dropout) self.pos_encoder_d = PositionalEncoding(d_model, dropout) self.linear = nn.Linear(d_model, n_attr) self.encoder = nn.Linear(n_attr, d_model) self.encoder_d = nn.Linear(n_attr, d_model) def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def forward(self, src, tgt, srcmask, tgtmask): src = self.encoder(src) src = self.pos_encoder(src) tgt = self.encoder_d(tgt) tgt = self.pos_encoder_d(tgt) output = self.transformer(src.transpose(0,1), tgt.transpose(0,1), srcmask, tgtmask) output = self.linear(output) return output class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) def gen_attention_mask(x): mask = torch.eq(x, 0) return mask def evaluate(data_train, device, model, iw, n_attr, length): # 마지막 30*2일 입력으로 넣어서 그 이후 30일 예측 결과 얻음. input = torch.tensor(data_train[-iw:]).reshape(1,-1,n_attr).to(device).float().to(device) model.eval() src_mask = model.generate_square_subsequent_mask(input.shape[1]).to(device) predictions = model(input, src_mask) return predictions.detach().cpu().numpy() """ input = torch.tensor(data_train[-iw:]).reshape(1,-1,n_attr).to(device).float().to(device) output = torch.tensor(data_train[-1].reshape(1,-1,n_attr)).float().to(device) model.eval() for i in range(length): src_mask = model.generate_square_subsequent_mask(input.shape[1]).to(device) tgt_mask = model.generate_square_subsequent_mask(output.shape[1]).to(device) predictions = model(input, output, src_mask, tgt_mask).transpose(0,1) predictions = predictions[:, -1:, :] output = torch.cat([output, predictions.to(device)], axis=1) return torch.squeeze(output, axis=0).detach().cpu().numpy()[1:] """ def predict(stock, period): global base print(f"Notice: Since it is in the initial stage of the service, \ we predict only the stock price of LG Chem, not the stock price \ of the designated company.\n\n") # 이 코드대신 지수형이 spl로 얻어온 data가 rawdata가 되어야 함. # 추가적인 정보 없는건 1729일 print(f"Loading Stock Data ...") n_attr = 1 path = "/".join(base[:-3]+["data","lg_chem_closing_prices.csv"]) model_path = "/".join(base[:-2]+["Prediction", f"{stock}_{datetime.now().date()}.pth"]) rawdata = pd.read_csv(path) print(f"Saving Stock data as .png ...") save_stock_plot(rawdata, stock) #pdb.set_trace() print(f"Preprocessing Data with MinMaxScaling ...") min_max_scaler = MinMaxScaler() rawdata["Close"] = min_max_scaler.fit_transform(rawdata["Close"].to_numpy().reshape(-1,n_attr)) print(f"Spliting Data ...") iw = 30*7 ow = 10 train = rawdata[:-iw] data_train = train["Close"].to_numpy() test = rawdata[-iw:] data_test = test["Close"].to_numpy() print(f"Preparing Dataset ...") train_dataset = windowDataset(data_train, input_window=iw, output_window=ow, stride=1, n_attr=n_attr) train_loader = DataLoader(train_dataset, batch_size=64) #test_dataset = windowDataset(data_test, input_window=iw, output_window=ow, stride=1, n_attr=n_attr) #test_loader = DataLoader(test_dataset) """ # 성능 올리기위해 종가말고 다른 것도 같이 넣음. # 총 1720일의 data있음 print(f"Loading Stock Data ...") n_attr = 7 path = "/".join(base[:-3]+["data","lg_chem_prices.csv"]) rawdata = pd.read_csv(path) #print(f"Saving Stock data as .png ...") #save_stock_plot(rawdata, stock) print(f"Preprocessing Data with MinMaxScaling ...") min_max_scaler = MinMaxScaler() rawdata.loc[:,rawdata.columns] = min_max_scaler.fit_transform(rawdata.to_numpy()) print(f"Spliting Data ...") iw = 60 ow = 5 #pdb.set_trace() train = rawdata[:-(iw)] data_train = train.to_numpy() test = rawdata[-(iw):] data_test = test.to_numpy() print(f"Preparing Dataset ...") train_dataset = windowDataset(data_train, input_window=iw, output_window=ow, stride=1, n_attr=n_attr) train_loader = DataLoader(train_dataset, batch_size=64) #test_dataset = windowDataset(data_test, input_window=iw, output_window=ow, stride=1, n_attr=n_attr) #test_loader = DataLoader(test_dataset) """ print(f"Model Constructing ...") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") lr = 1e-4 #model = TFModel2(256, 8, 256, 2, 0.1, n_attr).to(device) model = TFModel(iw, ow, 512, 8, 4, 0.4, n_attr).to(device) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr) if not os.path.exists(model_path): print("Trainig ...") epoch = 10 model.train() for i in range(epoch): batchloss = 0.0 for (inputs, outputs) in tqdm(train_loader): optimizer.zero_grad() src_mask = model.generate_square_subsequent_mask(inputs.shape[1]).to(device) result = model(inputs.float().to(device), src_mask) loss = criterion(result, outputs[:,:,0].float().to(device)) loss.backward() optimizer.step() batchloss += loss print(f"{i+1}th epoch MSEloss:" + "{:0.6f}".format(batchloss.cpu().item() / len(train_loader))) torch.save(model, model_path) """ model.train() progress = tqdm(range(epoch)) for i in progress: batchloss = 0.0 for (inputs, dec_inputs, outputs) in train_loader: optimizer.zero_grad() src_mask = model.generate_square_subsequent_mask(inputs.shape[1]).to(device) tgt_mask = model.generate_square_subsequent_mask(dec_inputs.shape[1]).to(device) result = model(inputs.float().to(device), dec_inputs.float().to(device), src_mask, tgt_mask) loss = criterion(result.permute(1,0,2), outputs.float().to(device)) loss.backward() optimizer.step() batchloss += loss progress.set_description("{:0.5f}".format(batchloss.cpu().item() / len(train_loader))) """ torch.save(model.state_dict(), model_path) print("Predicting ...") result = evaluate(data_test, device, model, iw, n_attr, ow) result = min_max_scaler.inverse_transform(result)[0] real = rawdata["Close"].to_numpy() real = min_max_scaler.inverse_transform(real.reshape(-1,1))[:,0] #pdb.set_trace() """ tmp = np.zeros((10,7)) tmp[:,:] = result.reshape(10,-1) result = tmp result = min_max_scaler.inverse_transform(result).reshape(-1,10)[3] real = rawdata.to_numpy() real = min_max_scaler.inverse_transform(real)[:,3] """ plt.figure(figsize=(20,5)) #plt.plot(range(1419,1719),real[1420:], label="real") plt.plot(range(1419,1719),real[1418:],label="real") plt.plot(range(1719-ow,1719),result, label="predict") plt.legend() path = "/".join(base[:-2]+["models","prediction2.jpg"]) plt.savefig(path) print(f"Complete!!") # 예측된 가격의 평균과, 직전의 값을 비교했을 때, 평균이 크면 사라, 작으면 사지 마라. mean_pred = np.mean(result) if mean_pred >= real[-1]: answer = f"""You should buy the stock you want to know the price, because we predict the price will rise. Maybe it will be {mean_pred}won.""" else: answer = f"""You shouldn't buy the stock you want to know the price, because we predict the price will go down. Maybe it will be {mean_pred}won.""" return answer if __name__=="__main__": print(predict("", ""))
groundwater98/Miraeasset_Bigdata_Festival
ML/Prediction/predict.py
predict.py
py
13,225
python
en
code
1
github-code
6
28031383283
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import rospy import cv2 import cv_bridge import sensor_msgs.msg import argparse import numpy as np class image_converter: def __init__(self, input_topic, output_topic): self.image_pub = rospy.Publisher( output_topic, sensor_msgs.msg.Image, queue_size=10) self.bridge = cv_bridge.CvBridge() self.image_sub = rospy.Subscriber( input_topic, sensor_msgs.msg.Image, self.callback) def callback(self, data): cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8") # # DO SOMETHING # cv_image = self.canny_edge(cv_image) try: ros_img = self.bridge.cv2_to_imgmsg(cv_image, "mono8") # canny: mono8(8UC1) except cv_bridge.CvBridgeError as e: print(e) self.image_pub.publish(ros_img) def canny_edge(self, img): """ return canny edge image """ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) canny = cv2.Canny(gray, 100, 150) return canny # Usage: # rosrun PACKAGE image_converter.py input:=/camera/image_raw_throttle output:=/test # def main(args): rospy.init_node('image_converter', anonymous=True) input_topic = rospy.resolve_name("input") output_topic = rospy.resolve_name("output") print("input_topic: %s" % (input_topic,)) print("output_topic: %s" % (output_topic,)) sys.stdout.flush() ic = image_converter(input_topic, output_topic) try: print("Invoke rospy.spin().") sys.stdout.flush() rospy.spin() except KeyboardInterrupt: print("Shutting down") cv2.destroyAllWindows() if __name__ == '__main__': main(sys.argv)
kargenk/image_converter
image_converter.py
image_converter.py
py
1,762
python
en
code
0
github-code
6
9842073923
import redneuronal import random import time import statistics class RedNeuronalGA: def __init__(self, size, config:list, inputsize, mut_rate = 0.01, lastbest_rate = 0.5, tour_size = 10): ''' :param size: :param n_genes: :param config: lista que indica [numero de layers, [numero de neuronas por layer]] :param mut_rate: :param lastbest_rate: :param tour_size: ''' self.totalfitness = [] self.inputsize = inputsize self.lastbest_rate = lastbest_rate self.pop_size = size self.mutation_rate = mut_rate self.tournament_size = tour_size self.current_generation = [] #lista de redes self.current_fitness = [] #valores de fitness encontrados despues de jugar self.final_ind = None self.config = config def set_tournamentsize(self, size): self.tournament_size = size def set_mutationrate(self, rate): self.mutation_rate = rate def set_survivalrate(self, rate): self.lastbest_rate = rate def initialize(self): for i in range(self.pop_size): red = [] n_layers = self.config[0] for j in range(n_layers): #numero de layers layer = [] n_neuronasj = self.config[1][j] for k in range(n_neuronasj): neuron = [] if j == 0: for p in range(self.inputsize): neuron.append(random.random()*2) else: for p in range(self.config[1][j-1]): neuron.append(random.random()*2) neuron.append(0.8) layer.append(neuron) red.append(layer) self.current_generation.append(redneuronal.RedN(red, i)) def tournament_selection(self, population: list, k): ''' Randomly select the best individual after k iterations''' N = len(population) best = None for i in range(k): ind = population[random.randint(0, N - 1)] if best == None or self.fitness(ind) > self.fitness(best): best = ind return best def reproduce(self, red1:redneuronal.RedN, red2:redneuronal.RedN, index): nlayers = len(red1.red) new = [] for i in range(nlayers): layer1 = red1.red[i] layer2 = red2.red[i] l = len(layer1) r = random.randint(1, l - 1) rep = layer1[0:r] + layer2[r:l] baby = [] for i in range(l): if random.random() < self.mutation_rate: baby.append(self.mutneuron(rep[i])) else: baby.append(rep[i]) new.append(baby) return redneuronal.RedN(new, index) def find(self): # best individuals of last generation best = [] size = self.pop_size # selecciono a los posibles mejores while (len(best) < size*self.lastbest_rate): sel = self.tournament_selection(self.current_generation, self.tournament_size) if sel not in best: best.append(sel) self.current_generation.remove(sel) # crear nueva generacion a partir de los mejores anteriores gen = [] count = 0 while (len(gen) < size): ind1, ind2 = random.sample(best, 2) baby = self.reproduce(ind1, ind2,count) count+=1 gen.append(baby) self.current_generation = gen self.savefitness() self.current_fitness = [] def fitness(self, ind:redneuronal.RedN): return self.current_fitness[ind.index] def savefitness(self): self.totalfitness.append(statistics.mean(self.current_fitness)) def mutneuron(self, neuron:list): print('mutante!') new = [] for i in range(len(neuron)-1): if random.random()<0.5: new.append(random.random() * 2) else: new.append(neuron[i]) new.append((neuron[-1]+random.random())%2) return new
plt1994/cc5114ne
genalg.py
genalg.py
py
4,234
python
en
code
0
github-code
6
72873485629
import fileinput; import os; path = "E:\pythonProjects\Simple Examples\phpFiles"; data = os.listdir(path); i=0; wordtofind = input("Enter Word To Find"); wordtoreplace = input("Enter Word To Replace"); def manipulate(param): rfile = open(param).read() if rfile.__contains__(wordtofind): rfile = rfile.replace(wordtofind,wordtoreplace) wfile = open(param,'w') wfile.write(rfile) wfile.close() while (i<len(data)): if not data[i].startswith("Python.py"): manipulate(data[i]) i=i+1;
ebuddiess/pythonTheSnake
Simple Examples/ContentRenamer.py
ContentRenamer.py
py
527
python
en
code
0
github-code
6
44713652316
import sys import xmltodict color_names = { 'Foreground Color': 'ForegroundColour', 'Background Color': 'BackgroundColour', 'Cursor Text Color': 'CursorColour', 'Ansi 0 Color': 'Black', 'Ansi 1 Color': 'Red', 'Ansi 2 Color': 'Green', 'Ansi 3 Color': 'Yellow', 'Ansi 4 Color': 'Blue', 'Ansi 5 Color': 'Magenta', 'Ansi 6 Color': 'Cyan', 'Ansi 7 Color': 'White', 'Ansi 8 Color': 'BoldBlack', 'Ansi 9 Color': 'BoldRed', 'Ansi 10 Color': 'BoldGreen', 'Ansi 11 Color': 'BoldYellow', 'Ansi 12 Color': 'BoldBlue', 'Ansi 13 Color': 'BoldMagenta', 'Ansi 14 Color': 'BoldCyan', 'Ansi 15 Color': 'BoldWhite' } def get_color(data, name): color_data = data['dict'][data['key'].index(name)] red = get_component(color_data, 'Red Component') green = get_component(color_data, 'Green Component') blue = get_component(color_data, 'Blue Component') return (red, green, blue) def get_component(color_data, component_name): component_index = color_data['key'].index(component_name) component_value = color_data['real'][component_index] return round(float(component_value) * 256) input_filename = sys.argv[1] with open(input_filename) as fd: iterm = xmltodict.parse(fd.read())['plist']['dict'] fg_data = get_color(iterm, 'Foreground Color') for iterm_color in color_names.keys(): mintty_color = color_names[iterm_color] color = get_color(iterm, iterm_color) print("{} = {}, {}, {}".format(mintty_color, color[0], color[1], color[2]))
arcadecoffee/iterm-to-mintty
iterm-to-mintty.py
iterm-to-mintty.py
py
1,706
python
en
code
0
github-code
6
25008840061
from osv import fields, osv import ir class partner_wh_rebate(osv.osv): _name = "res.partner" _inherit = "res.partner" _columns = { 'rebate': fields.float('Rebate (%)', digits=(5, 2)), } partner_wh_rebate() class sale_order_rebate(osv.osv): _name = "sale.order" _inherit = "sale.order" def _amount_wo_rebate(self, cr, uid, ids, field_name, arg, context): return super(sale_order_rebate, self)._amount_untaxed(cr, uid, ids, field_name, arg, context) def _amount_rebate(self, cr, uid, ids, field_name, arg, context): wo_rebate = self._amount_wo_rebate(cr, uid, ids, field_name, arg, context) orders = self.read(cr, uid, ids, ['rebate_percent'], context) rebates = dict([(o['id'], o['rebate_percent']) for o in orders]) res = {} for id in ids: res[id] = wo_rebate.get(id, 0.0) * (rebates.get(id, 0.0) / 100.0) return res def _amount_untaxed(self, cr, uid, ids, field_name, arg, context): wo_rebate = self._amount_wo_rebate(cr, uid, ids, field_name, arg, context) rebate = self._amount_rebate(cr, uid, ids, field_name, arg, context) res = {} for id in ids: res[id] = wo_rebate.get(id, 0.0) - rebate.get(id, 0.0) return res def _amount_tax(self, cr, uid, ids, field_name, arg, context): res = {} cur_obj=self.pool.get('res.currency') for order in self.browse(cr, uid, ids): val = 0.0 cur=order.pricelist_id.currency_id for line in order.order_line: for c in self.pool.get('account.tax').compute(cr, uid, line.tax_id, line.price_unit, line.product_uom_qty, order.partner_invoice_id.id): val += cur_obj.round(cr, uid, cur, (c['amount'] * (100.0 - order.rebate_percent) / 100.0)) res[order.id] = cur_obj.round(cr, uid, cur, val) return res _columns = { 'rebate_percent': fields.float('Rebate (%)', digits=(5, 2), readonly=True, states={'draft':[('readonly',False)]}), # 'rebate_account': fields.many2one('account.account', 'Rebate account', required=True, readonly=True, states={'draft':[('readonly',False)]}), 'amount_wo_rebate': fields.function(_amount_wo_rebate, method=True, string='Intermediate sum'), 'amount_rebate': fields.function(_amount_rebate, method=True, string='Rebate'), 'amount_untaxed': fields.function(_amount_untaxed, method=True, string='Untaxed Amount'), 'amount_tax': fields.function(_amount_tax, method=True, string='Taxes'), } _defaults = { 'rebate_percent': lambda *a: 0.0, } # # Why not using super().onchange_partner_id ? # def onchange_partner_id(self, cr, uid, ids, partner_id): if not partner_id: return {'value': {'partner_invoice_id': False, 'partner_shipping_id': False, 'partner_order_id': False}} partner = self.pool.get('res.partner').browse(cr, uid, partner_id) addr = self.pool.get('res.partner').address_get(cr, uid, [partner_id], ['delivery', 'invoice', 'contact']) pricelist = partner.property_product_pricelist.id return { 'value': { 'rebate_percent': partner.rebate or 0.0, 'partner_invoice_id': addr['invoice'], 'partner_order_id': addr['contact'], 'partner_shipping_id': addr['delivery'], 'pricelist_id': pricelist } } def action_invoice_create(self, cr, uid, ids, grouped=False, states=['confirmed','done']): assert len(ids)==1, "Can only invoice one sale order at a time" invoice_id = super(sale_order_rebate, self).action_invoice_create(cr, uid, ids, grouped, states) if invoice_id: order = self.browse(cr, uid, ids[0]) inv_obj = self.pool.get('account.invoice') inv_obj.write(cr, uid, [invoice_id], {'rebate_percent': order.rebate_percent}) inv_obj.button_compute(cr, uid, [invoice_id]) return invoice_id sale_order_rebate() class account_invoice_wh_rebate(osv.osv): _name = "account.invoice" _inherit = "account.invoice" def _amount_wo_rebate(self, cr, uid, ids, field_name, arg, context): return super(account_invoice_wh_rebate, self)._amount_untaxed(cr, uid, ids, field_name, arg, context) def _amount_untaxed(self, cr, uid, ids, field_name, arg, context): un_taxed = super(account_invoice_wh_rebate, self)._amount_untaxed(cr, uid, ids, field_name, arg, context) res = {} for invoice in self.browse(cr, uid, ids): res[invoice.id] = un_taxed[invoice.id] - invoice.rebate_amount return res _columns = { 'amount_wo_rebate': fields.function(_amount_wo_rebate, method=True, string='Intermediate sum'), 'amount_untaxed': fields.function(_amount_untaxed, method=True, string='Untaxed Amount'), 'rebate_percent': fields.float('Rebate (%)', digits=(5, 2), readonly=True), 'rebate_amount': fields.float('Rebate amount', digits=(14, 2), readonly=True) } account_invoice_wh_rebate() class account_invoice_line_wh_rebate(osv.osv): _name = "account.invoice.line" _inherit = "account.invoice.line" def move_line_get(self, cr, uid, invoice_id): invoice = self.pool.get('account.invoice').browse(cr, uid, invoice_id) res = [] tax_grouped = {} tax_obj = self.pool.get('account.tax') #TODO: rewrite using browse instead of the manual SQL queries cr.execute('SELECT * FROM account_invoice_line WHERE invoice_id=%s', (invoice_id,)) lines = cr.dictfetchall() rebate_percent = invoice.rebate_percent rebate_amount = 0.0 for line in lines: price_unit = line['price_unit'] * (100.0 - rebate_percent) / 100.0 res.append({'type':'src', 'name':line['name'], 'price_unit':price_unit, 'quantity':line['quantity'], 'price':round(line['quantity']*price_unit, 2), 'account_id':line['account_id']}) cr.execute('SELECT tax_id FROM account_invoice_line_tax WHERE invoice_line_id=%s', (line['id'],)) rebate_amount += (line['price_unit'] * rebate_percent / 100.0) * line['quantity'] for (tax_id,) in cr.fetchall(): # even though we pass only one tax id at a time to compute, it can return several results # in case a tax has a parent tax sequence = tax_obj.read(cr, uid, [tax_id], ['sequence'])[0]['sequence'] for tax in tax_obj.compute(cr, uid, [tax_id], price_unit, line['quantity'], invoice.address_invoice_id.id): tax['sequence'] = sequence if invoice.type in ('out_invoice','in_refund'): tax['account_id'] = tax['account_collected_id'] else: tax['account_id'] = tax['account_paid_id'] key = tax['account_id'] if not key in tax_grouped: tax_grouped[key] = tax else: tax_grouped[key]['amount'] += tax['amount'] # delete automatic tax lines for this invoice cr.execute("DELETE FROM account_invoice_tax WHERE NOT manual AND invoice_id=%s", (invoice_id,)) # (re)create them ait = self.pool.get('account.invoice.tax') for t in tax_grouped.values(): ait.create(cr, uid, {'invoice_id':invoice_id, 'name':t['name'], 'account_id':t['account_id'], 'amount':t['amount'], 'manual':False, 'sequence':t['sequence']}) # update rebate amount for this invoice self.pool.get('account.invoice').write(cr, uid, [invoice_id], {'rebate_amount': rebate_amount}) return res account_invoice_line_wh_rebate() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
factorlibre/openerp-extra-6.1
sale_rebate/sale.py
sale.py
py
7,924
python
en
code
9
github-code
6
33967529914
# -*- coding: utf-8 -*- # !/usr/bin/env python # @Time :2020/7/7 15:39 # @Author :Sheng Chen # @Email :[email protected] import sys sys.path.append(r'/home/chensheng/likou') from typing import List, Tuple class Solution: rows = [{} for i in range(9)] columns = [{} for i in range(9)] boxes = [{} for i in range(9)] fillIndex = [] isValid = False ini = False def isValidSudoku(self, board: List[List[str]]): # global rows,columns,boxes,fillIndex,isValid for i in range(9): for j in range(9): num = board[i][j] if num != '.': self.rows[i][num] = self.rows[i].get(num, 0) + 1 self.columns[j][num] = self.columns[j].get(num, 0) + 1 boxIndex = (i // 3) * 3 + j // 3 self.boxes[boxIndex][num] = self.boxes[boxIndex].get(num, 0) + 1 if self.rows[i][num] > 1 or self.columns[j][num] > 1 or self.boxes[boxIndex][num] > 1: return else: self.fillIndex.append((i, j)) self.isValid = True self.ini = True def solveSudoku(self, board: List[List[str]]) -> None: if not self.ini: self.isValidSudoku(board) if not self.isValid: return if len(self.fillIndex) == 0: return True i, j = self.fillIndex.pop(0) row = self.rows[i] column = self.columns[j] box = self.boxes[(i // 3) * 3 + j // 3] dic = {**row, **column, **box} candidate_num = [str(num) for num in range(1, 10) if str(num) not in dic] if len(candidate_num) == 0: self.fillIndex.insert(0, (i, j)) return False else: for num in candidate_num: board[i][j] = num self.rows[i][num] = 1 self.columns[j][num] = 1 self.boxes[(i // 3) * 3 + j // 3][num] = 1 a = self.solveSudoku(board) if not a: board[i][j] = '.' del self.rows[i][num] del self.columns[j][num] del self.boxes[(i // 3) * 3 + j // 3][num] else: return True self.fillIndex.insert(0, (i, j)) return False if __name__ == '__main__': board = [[".", ".", "9", "7", "4", "8", ".", ".", "."], ["7", ".", ".", ".", ".", ".", ".", ".", "."], [".", "2", ".", "1", ".", "9", ".", ".", "."], [".", ".", "7", ".", ".", ".", "2", "4", "."], [".", "6", "4", ".", "1", ".", "5", "9", "."], [".", "9", "8", ".", ".", ".", "3", ".", "."], [".", ".", ".", "8", ".", "3", ".", "2", "."], [".", ".", ".", ".", ".", ".", ".", ".", "6"], [".", ".", ".", "2", "7", "5", "9", ".", "."]] obj = Solution() obj.solveSudoku(board) print(board) print(4//2*2)
fqlovetu/likou_python
37解数独/solution1.py
solution1.py
py
2,979
python
en
code
0
github-code
6
22959918169
#escreva um programa que leia um número inteiro e peça para o usuário escolher qual será a BASE DE CONVERSÃO: # 1-> para binário; 2-> para octal & 3-> para hexadecimal import math print('\n\t Base de Conversão!') num = int(input('\n Informe um número => ')) numConv = str(input(' Informe: \033[1;33m1 - binário, 2 - octal & 3 - hexadecimal\033[m => ')) if numConv == '1': transfBin = bin(num) print(' O número {} convertido para binário fica \033[1;33m{}\033[m'.format(num,transfBin)) elif numConv=='2': transfOctal = oct(num) print(' O número {} convertido para octal fica \033[1;33m{}\033[m'.format(num, transfOctal)) elif numConv=='3': transfHex = hex(num) print( 'O número {} convertido para hexadecimal fica \033[1;33m{}\033[m'.format(num, transfHex)) else: print('\033[1;31m O número informado não existe na tabela\033[m')
eduardabenevenutti77/curso_em_video.py
mundo2 - python/if_else/BaseConversao.py
BaseConversao.py
py
891
python
pt
code
0
github-code
6
1293789301
import numpy as np import onnx from tests.tools import expect class Sqrt: @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Sqrt', inputs=['x'], outputs=['y'], ) x = np.array([1, 4, 9]).astype(np.float32) y = np.sqrt(x) # expected output [1., 2., 3.] expect(node, inputs=[x], outputs=[y], name='test_sqrt_example') x = np.abs(np.random.randn(3, 4, 5).astype(np.float32)) y = np.sqrt(x) expect(node, inputs=[x], outputs=[y], name='test_sqrt') if __name__ == '__main__': Sqrt.export()
gglin001/onnx-jax
tests/node/test_sqrt.py
test_sqrt.py
py
632
python
en
code
7
github-code
6
70005437309
from __future__ import with_statement from fabric.api import * import os, glob, socket import fabric.contrib.project as project PROD = 'spreadwebm.org' PROD_PATH = 'domains/spreadwebm.com/web/public/' ROOT_PATH = os.path.abspath(os.path.dirname(__file__)) DEPLOY_PATH = os.path.join(ROOT_PATH, 'deploy') def clean(): local('rm -rf ./deploy/*') def regen(): clean() local('hyde.py -g -s .') def pushcss(): """ For pushing CSS-only changes to the local docroot during testing. """ local('cp -r media/css/* deploy/media/css/') def serve(): ## Kill any heel process local('heel --kill') ## Start webserver on local hostname #local('heel --daemonize --address ' + socket.gethostbyaddr(socket.gethostname())[0] + ' --root ./deploy') ## Start webserver on development hostname local('heel --daemonize --address localhost --root ./deploy') def reserve(): regen() local('heel --kill') serve() @hosts(PROD) def publish(): regen() project.rsync_project( remote_dir=PROD_PATH, local_dir=DEPLOY_PATH.rstrip('/') + '/', delete=True )
louquillio/spreadwebm.com
fabfile.py
fabfile.py
py
1,127
python
en
code
1
github-code
6
19617294623
# _*_ coding: utf-8 _*_ import os import csv import time import json import logging import numpy as np import tensorflow as tf from sklearn.metrics import auc, roc_curve # calculate_auc : calculate AUC rate def calculate_auc(labels, predicts): fpr, tpr, _ = roc_curve(labels, predicts, pos_label=1) AUC = auc(fpr, tpr) return fpr, tpr, AUC def contrastive_loss(labels, distance): loss = tf.to_float(tf.reduce_sum(tf.square(distance - labels))) return loss def compute_accuracy(prediction, labels, threshold=0.5): accu = 0.0 for i in xrange(len(prediction)): if labels[i][0] == 1: if prediction[i][0] > threshold: accu += 1.0 else: if prediction[i][0] < threshold: accu += 1.0 acc = accu / len(prediction) return acc # read_and_decode : generate a queue based on filename def read_and_decode(filename): filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'cfg_1': tf.FixedLenFeature([], tf.string), 'cfg_2': tf.FixedLenFeature([], tf.string), 'dfg_1': tf.FixedLenFeature([], tf.string), 'dfg_2': tf.FixedLenFeature([], tf.string), 'fea_1': tf.FixedLenFeature([], tf.string), 'fea_2': tf.FixedLenFeature([], tf.string), 'num1': tf.FixedLenFeature([], tf.int64), 'num2': tf.FixedLenFeature([], tf.int64), 'max': tf.FixedLenFeature([], tf.int64)}) label = tf.cast(features['label'], tf.int32) cfg_1 = features['cfg_1'] cfg_2 = features['cfg_2'] dfg_1 = features['dfg_1'] dfg_2 = features['dfg_2'] num1 = tf.cast(features['num1'], tf.int32) fea_1 = features['fea_1'] num2 = tf.cast(features['num2'], tf.int32) fea_2 = features['fea_2'] max_num = tf.cast(features['max'], tf.int32) return label, cfg_1, cfg_2, dfg_1, dfg_2, fea_1, fea_2, num1, num2, max_num # GoCloneTfHandler : handler using tensorflow to detect code clone in Golang class GoCloneTfHandler(object): def __init__(self, iteration_times=5, embedding_depth=2, embedding_size=64, feature_num=10, mini_batch=10, learning_rate=0.0001, max_iter=1, decay_steps=10, decay_rate=0.0001, snapshot=1, test_num=1000, train_tfrecord="tfrecord/train.tfrecord",test_tfrecord="tfrecord/test.tfrecord",valid_tfrecord="tfrecord/valid.tfrecord", exist_model="", ckpt_file="", test_file="", result_file="",func_info_path=""): # self.iteration_times = iteration_times # T self.embedding_depth = embedding_depth # N self.embedding_size = embedding_size # P self.feature_num = feature_num # D self.mini_batch = mini_batch # B self.learning_rate = learning_rate # lr self.max_iter = max_iter self.decay_steps = decay_steps self.decay_rate = decay_rate self.snapshot = snapshot self.test_file = test_file self.result_file = result_file self.test_num = test_num self.train_tfrecord = train_tfrecord self.test_tfrecord = test_tfrecord self.valid_tfrecord = valid_tfrecord self.exist_model = exist_model self.ckpt_file = ckpt_file self.func_info_path = func_info_path self.pair_list = [] self.logger = logging.getLogger("default") self.logger_init() def load_csv_as_pair(self, pair_label_file): with open(pair_label_file, "r") as fp: pair_label = csv.reader(fp) for line in pair_label: self.pair_list.append((line[0], line[1])) # logger_init : initialize logger for console and file def logger_init(self): self.logger.setLevel(logging.DEBUG) log_format = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) console_handler.setFormatter(log_format) self.logger.addHandler(console_handler) log_file_name = "logs/log%s.txt" % time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()) file_handler = logging.FileHandler(log_file_name, mode='w', encoding='utf-8') file_handler.setLevel(logging.INFO) file_handler.setFormatter(log_format) self.logger.addHandler(file_handler) # structure2vec : Construct pairs dataset to train the model. def structure2vec(self, mu_prev, cfg, dfg, x, name="structure2vec"): with tf.variable_scope(name): W_1 = tf.get_variable('W_1', [self.feature_num, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) param_cfg = tf.get_variable('param_cfg', 1, tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_CFG_1 = tf.get_variable('P_CFG_1', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_CFG_2 = tf.get_variable('P_CFG_2', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) L_CFG = tf.reshape(tf.matmul(cfg, mu_prev, transpose_a=True), (-1, self.embedding_size)) S_CFG =param_cfg*tf.reshape(tf.matmul(tf.nn.relu(tf.matmul(L_CFG, P_CFG_2)), P_CFG_1), (-1, self.embedding_size)) param_dfg = tf.get_variable('param_dfg', 1, tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_DFG_1 = tf.get_variable('P_DFG_1', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) P_DFG_2 = tf.get_variable('P_DFG_2', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) L_DFG = tf.reshape(tf.matmul(dfg, mu_prev, transpose_a=True), (-1, self.embedding_size)) S_DFG = param_dfg*tf.reshape(tf.matmul(tf.nn.relu(tf.matmul(L_DFG, P_DFG_2)), P_DFG_1), (-1, self.embedding_size)) return tf.tanh(tf.add(tf.add(tf.reshape(tf.matmul(tf.reshape(x, (-1, self.feature_num)), W_1), (-1, self.embedding_size)), S_CFG), S_DFG)) def structure2vec_net(self, cfgs, dfgs, x, v_num): with tf.variable_scope("structure2vec_net") as structure2vec_net: B_mu_5 = tf.Variable(tf.zeros(shape = [0, self.embedding_size]), trainable=False) w_2 = tf.get_variable('w_2', [self.embedding_size, self.embedding_size], tf.float32, tf.truncated_normal_initializer(mean=0.0, stddev=0.1)) for i in range(self.mini_batch): cur_size = tf.to_int32(v_num[i][0]) mu_0 = tf.reshape(tf.zeros(shape = [cur_size, self.embedding_size]), (cur_size, self.embedding_size)) cfg = tf.slice(cfgs[i], [0, 0], [cur_size, cur_size]) dfg = tf.slice(dfgs[i], [0, 0], [cur_size, cur_size]) fea = tf.slice(x[i],[0,0], [cur_size, self.feature_num]) mu_1 = self.structure2vec(mu_0, cfg, dfg, fea) structure2vec_net.reuse_variables() mu_2 = self.structure2vec(mu_1, cfg, dfg, fea) mu_3 = self.structure2vec(mu_2, cfg, dfg, fea) mu_4 = self.structure2vec(mu_3, cfg, dfg, fea) mu_5 = self.structure2vec(mu_4, cfg, dfg, fea) B_mu_5 = tf.concat([B_mu_5,tf.matmul(tf.reshape(tf.reduce_sum(mu_5, 0), (1, self.embedding_size)), w_2)],0) return B_mu_5 def cal_distance(self, model1, model2): a_b = tf.reduce_sum(tf.reshape(tf.reduce_prod(tf.concat([tf.reshape(model1,(1,-1)), tf.reshape(model2,(1,-1))],0),0),(self.mini_batch,self.embedding_size)),1,keep_dims=True) a_norm = tf.sqrt(tf.reduce_sum(tf.square(model1),1,keep_dims=True)) b_norm = tf.sqrt(tf.reduce_sum(tf.square(model2),1,keep_dims=True)) distance = a_b/tf.reshape(tf.reduce_prod(tf.concat([tf.reshape(a_norm,(1,-1)), tf.reshape(b_norm,(1,-1))],0),0),(self.mini_batch,1)) return distance def get_batch(self, label, cfg_str1, cfg_str2, dfg_str1, dfg_str2, fea_str1, fea_str2, num1, num2, max_num): y = np.reshape(label, [self.mini_batch, 1]) v_num_1 = [] v_num_2 = [] for i in range(self.mini_batch): v_num_1.append([int(num1[i])]) v_num_2.append([int(num2[i])]) cfg_1 = [] cfg_2 = [] dfg_1 = [] dfg_2 = [] for i in range(self.mini_batch): cfg_arr = np.array(cfg_str1[i].split(',')) cfg_adj = np.reshape(cfg_arr, (int(num1[i]), int(num1[i]))) cfg_ori1 = cfg_adj.astype(np.float32) cfg_ori1.resize(int(max_num[i]), int(max_num[i]), refcheck=False) cfg_1.append(cfg_ori1.tolist()) cfg_arr = np.array(cfg_str2[i].split(',')) cfg_adj = np.reshape(cfg_arr, (int(num2[i]), int(num2[i]))) cfg_ori2 = cfg_adj.astype(np.float32) cfg_ori2.resize(int(max_num[i]), int(max_num[i]), refcheck=False) cfg_2.append(cfg_ori2.tolist()) dfg_arr = np.array(dfg_str1[i].split(',')) dfg_adj = np.reshape(dfg_arr, (int(num1[i]), int(num1[i]))) dfg_ori1 = dfg_adj.astype(np.float32) dfg_ori1.resize(int(max_num[i]), int(max_num[i]), refcheck=False) dfg_1.append(dfg_ori1.tolist()) dfg_arr = np.array(dfg_str2[i].split(',')) dfg_adj = np.reshape(dfg_arr, (int(num2[i]), int(num2[i]))) dfg_ori2 = dfg_adj.astype(np.float32) dfg_ori2.resize(int(max_num[i]), int(max_num[i]), refcheck=False) dfg_2.append(dfg_ori2.tolist()) fea_1 = [] fea_2 = [] for i in range(self.mini_batch): fea_arr = np.array(fea_str1[i].split(',')) fea_ori = fea_arr.astype(np.float32) fea_vec1 = np.resize(fea_ori, (np.max(v_num_1), self.feature_num)) fea_1.append(fea_vec1) fea_arr = np.array(fea_str2[i].split(',')) fea_ori= fea_arr.astype(np.float32) fea_vec2 = np.resize(fea_ori, (np.max(v_num_2), self.feature_num)) fea_2.append(fea_vec2) return y, cfg_1, cfg_2, dfg_1, dfg_2, fea_1, fea_2, v_num_1, v_num_2 def run(self): tf.global_variables_initializer() global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(self.learning_rate, global_step, self.decay_steps, self.decay_rate, staircase=True) v_num_left = tf.placeholder(tf.float32, shape=[self.mini_batch, 1], name='v_num_left') cfg_left = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='cfg_left') dfg_left = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='dfg_left') fea_left = tf.placeholder(tf.float32, shape=([self.mini_batch, None, self.feature_num]), name='fea_left') v_num_right = tf.placeholder(tf.float32, shape=[self.mini_batch, 1], name='v_num_right') cfg_right = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='cfg_right') dfg_right = tf.placeholder(tf.float32, shape=([self.mini_batch, None, None]), name='dfg_right') fea_right = tf.placeholder(tf.float32, shape=([self.mini_batch, None, self.feature_num]), name='fea_right') labels = tf.placeholder(tf.float32, shape=([self.mini_batch, 1]), name='gt') dropout_f = tf.placeholder("float") with tf.variable_scope("siamese") as siamese: model1 = self.structure2vec_net(cfg_left, dfg_left, fea_left, v_num_left) siamese.reuse_variables() model2 = self.structure2vec_net(cfg_right, dfg_right, fea_right, v_num_right) dis = self.cal_distance(model1, model2) loss = contrastive_loss(labels, dis) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) list_test_label, list_test_cfg_1, list_test_cfg_2, list_test_dfg_1, list_test_dfg_2, list_test_fea_1, \ list_test_fea_2, list_test_num1, list_test_num2, list_test_max = read_and_decode(self.test_tfrecord) batch_test_label, batch_test_cfg_1, batch_test_cfg_2, batch_test_dfg_1, batch_test_dfg_2, batch_test_fea_1, \ batch_test_fea_2, batch_test_num1, batch_test_num2, batch_test_max \ = tf.train.batch([list_test_label, list_test_cfg_1, list_test_cfg_2, list_test_dfg_1, list_test_dfg_2, list_test_fea_1, list_test_fea_2, list_test_num1, list_test_num2, list_test_max], batch_size=self.mini_batch, capacity=10) init_opt = tf.global_variables_initializer() saver = tf.train.Saver() os.environ["CUDA_VISIBLE_DEVICES"] = "0" # read json from func_info_path with open(self.func_info_path, 'r') as f: func_info_dic = json.load(f) result_dic = {} with tf.Session() as sess: writer = tf.summary.FileWriter('logs/', sess.graph) # check whether to load exist models if self.exist_model == "": sess.run(init_opt) else: saver = tf.train.import_meta_graph(self.ckpt_file) saver.restore(sess, tf.train.latest_checkpoint(self.exist_model)) self.logger.info("Loading models from %s" % self.ckpt_file) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # Training cycle iter=0 self.load_csv_as_pair(self.test_file) while iter < self.max_iter: iter += 1 total_batch = int(self.test_num / self.mini_batch) if iter % self.snapshot == 0: total_labels = [] total_predicts = [] avg_loss = 0. avg_acc = 0. test_total_batch = int(self.test_num / self.mini_batch) start_time = time.time() for m in range(test_total_batch): test_label, test_cfg_1, test_cfg_2, test_dfg_1, test_dfg_2, \ test_fea_1, test_fea_2, test_num1, test_num2, test_max = sess.run( [batch_test_label, batch_test_cfg_1, batch_test_cfg_2, batch_test_dfg_1, batch_test_dfg_2, batch_test_fea_1, batch_test_fea_2, batch_test_num1, batch_test_num2, batch_test_max]) y, cfg_1, cfg_2, dfg_1, dfg_2, fea_1, fea_2, v_num_1, v_num_2 \ = self.get_batch(test_label, test_cfg_1, test_cfg_2, test_dfg_1, test_dfg_2, test_fea_1, test_fea_2, test_num1, test_num2, test_max) predict = dis.eval( feed_dict={cfg_left: cfg_1, dfg_left: dfg_1, fea_left: fea_1, v_num_left: v_num_1, cfg_right: cfg_2, dfg_right: dfg_2, fea_right: fea_2, v_num_right: v_num_2, labels: y, dropout_f: 1.0}) for k, p in enumerate(predict): (id1, id2) = self.pair_list[y[k][0]] result_dic[(func_info_dic[id1], func_info_dic[id2])] = p[0] if m % 20 == 0: self.logger.info("Testing: %s/%s" % (m, test_total_batch)) coord.request_stop() coord.join(threads) result_desc = sorted(result_dic.items(), key=lambda item:-item[1]) with open(self.result_file, "w") as f: for r in result_desc: f.write("%s\n%s\n%.4f\n\n" % (r[0][0], r[0][1], r[1]))
wangcong15/go-clone
Go-CloneF/src/tfrecord2test.py
tfrecord2test.py
py
15,894
python
en
code
5
github-code
6
27214868635
from enum import IntEnum, auto from typing import List, Mapping, Union, Tuple, Optional from .aetg import AETGGenerator from .matrix import MatrixGenerator from ...model import int_enum_loads from ...reflection import progressive_for __all__ = ['tmatrix'] @int_enum_loads(enable_int=False, name_preprocess=str.upper) class MatrixMode(IntEnum): AETG = auto() MATRIX = auto() def tmatrix(ranges: Mapping[Union[str, Tuple[str, ...]], List], mode='aetg', seed: Optional[int] = 0, level: int = 2) -> Tuple[List[str], List[Tuple]]: """ Overview: Test matrix generator, which can be used in ``pytest.mark.parameterize``. :param ranges: Ranges of the values :param mode: Mode of the matrix, should be one of the ``aetg`` or ``matrix``. Default is ``aetg``. :param seed: Random seed, default is ``0`` which means the result is fixed (recommended). :param level: Lavel of AETG generating algorithm, default is ``2``. :returns: A tuple - ``(names, values)``. Examples:: >>> from hbutils.testing import tmatrix >>> names, values = tmatrix( ... { ... 'a': [2, 3], ... 'e': ['a', 'b', 'c'], ... ('b', 'c'): [(1, 7), (4, 6), (9, 12)], ... } ... ) >>> print(names) ['a', 'e', 'b', 'c'] >>> for i, v in enumerate(values): ... print(i, v) 0 (2, 'c', 9, 12) 1 (3, 'c', 4, 6) 2 (2, 'c', 1, 7) 3 (3, 'b', 9, 12) 4 (2, 'b', 4, 6) 5 (3, 'b', 1, 7) 6 (3, 'a', 9, 12) 7 (2, 'a', 4, 6) 8 (3, 'a', 1, 7) .. note:: This can be directly used in ``pytest.mark.parametrize`` function. >>> @pytest.mark.unittest ... class TestTestingGeneratorFunc: ... @pytest.mark.parametrize(*tmatrix({ ... 'a': [2, 3], ... 'e': ['a', 'b', 'c'], ... ('b', 'c'): [(1, 7), (4, 6), (9, 12)], ... })) ... def test_tmatrix_usage(self, a, e, b, c): ... print(a, e, b, c) """ mode = MatrixMode.loads(mode) key_map = {} final_names = [] final_values = {} for ki, (key, value) in enumerate(ranges.items()): kname = f'key-{ki}' key_map[kname] = key final_names.append(kname) final_values[kname] = value names = [] for key in ranges.keys(): if isinstance(key, str): names.append(key) elif isinstance(key, tuple): for k in key: names.append(k) if mode == MatrixMode.MATRIX: generator = MatrixGenerator(final_values, final_names) elif mode == MatrixMode.AETG: generator = AETGGenerator( final_values, final_names, rnd=seed, pairs=list(progressive_for(final_names, min(level, len(names)))), ) else: raise ValueError(f'Invalid mode - {mode!r}.') # pragma: no cover pairs = [] for case in generator.cases(): _v_case = {} for name in final_names: key = key_map[name] if isinstance(key, str): _v_case[key] = case[name] elif isinstance(key, tuple): for ikey, ivalue in zip(key, case[name]): _v_case[ikey] = ivalue pairs.append(tuple(_v_case[name] for name in names)) return names, pairs
HansBug/hbutils
hbutils/testing/generator/func.py
func.py
py
3,442
python
en
code
7
github-code
6
26113055515
__authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "28/06/2018" import logging import numpy import weakref import functools from typing import Optional from ....utils.weakref import WeakList from ... import qt from .. import items from ..items import core from ...colors import rgba logger = logging.getLogger(__name__) class _RegionOfInterestBase(qt.QObject): """Base class of 1D and 2D region of interest :param QObject parent: See QObject :param str name: The name of the ROI """ sigAboutToBeRemoved = qt.Signal() """Signal emitted just before this ROI is removed from its manager.""" sigItemChanged = qt.Signal(object) """Signal emitted when item has changed. It provides a flag describing which property of the item has changed. See :class:`ItemChangedType` for flags description. """ def __init__(self, parent=None): qt.QObject.__init__(self) if parent is not None: self.setParent(parent) self.__name = '' def getName(self): """Returns the name of the ROI :return: name of the region of interest :rtype: str """ return self.__name def setName(self, name): """Set the name of the ROI :param str name: name of the region of interest """ name = str(name) if self.__name != name: self.__name = name self._updated(items.ItemChangedType.NAME) def _updated(self, event=None, checkVisibility=True): """Implement Item mix-in update method by updating the plot items See :class:`~silx.gui.plot.items.Item._updated` """ self.sigItemChanged.emit(event) def contains(self, position): """Returns True if the `position` is in this ROI. :param tuple[float,float] position: position to check :return: True if the value / point is consider to be in the region of interest. :rtype: bool """ return False # Override in subclass to perform actual test class RoiInteractionMode(object): """Description of an interaction mode. An interaction mode provide a specific kind of interaction for a ROI. A ROI can implement many interaction. """ def __init__(self, label, description=None): self._label = label self._description = description @property def label(self): """Short name""" return self._label @property def description(self): """Longer description of the interaction mode""" return self._description class InteractionModeMixIn(object): """Mix in feature which can be implemented by a ROI object. This provides user interaction to switch between different interaction mode to edit the ROI. This ROI modes have to be described using `RoiInteractionMode`, and taken into account during interation with handles. """ sigInteractionModeChanged = qt.Signal(object) def __init__(self): self.__modeId = None def _initInteractionMode(self, modeId): """Set the mode without updating anything. Must be one of the returned :meth:`availableInteractionModes`. :param RoiInteractionMode modeId: Mode to use """ self.__modeId = modeId def availableInteractionModes(self): """Returns the list of available interaction modes Must be implemented when inherited to provide all available modes. :rtype: List[RoiInteractionMode] """ raise NotImplementedError() def setInteractionMode(self, modeId): """Set the interaction mode. :param RoiInteractionMode modeId: Mode to use """ self.__modeId = modeId self._interactiveModeUpdated(modeId) self.sigInteractionModeChanged.emit(modeId) def _interactiveModeUpdated(self, modeId): """Called directly after an update of the mode. The signal `sigInteractionModeChanged` is triggered after this call. Must be implemented when inherited to take care of the change. """ raise NotImplementedError() def getInteractionMode(self): """Returns the interaction mode. Must be one of the returned :meth:`availableInteractionModes`. :rtype: RoiInteractionMode """ return self.__modeId def createMenuForInteractionMode(self, parent: qt.QWidget) -> qt.QMenu: """Create a menu providing access to the different interaction modes""" availableModes = self.availableInteractionModes() currentMode = self.getInteractionMode() submenu = qt.QMenu(parent) modeGroup = qt.QActionGroup(parent) modeGroup.setExclusive(True) for mode in availableModes: action = qt.QAction(parent) action.setText(mode.label) action.setToolTip(mode.description) action.setCheckable(True) if mode is currentMode: action.setChecked(True) else: callback = functools.partial(self.setInteractionMode, mode) action.triggered.connect(callback) modeGroup.addAction(action) submenu.addAction(action) submenu.setTitle("Interaction mode") return submenu class RegionOfInterest(_RegionOfInterestBase, core.HighlightedMixIn): """Object describing a region of interest in a plot. :param QObject parent: The RegionOfInterestManager that created this object """ _DEFAULT_LINEWIDTH = 1. """Default line width of the curve""" _DEFAULT_LINESTYLE = '-' """Default line style of the curve""" _DEFAULT_HIGHLIGHT_STYLE = items.CurveStyle(linewidth=2) """Default highlight style of the item""" ICON, NAME, SHORT_NAME = None, None, None """Metadata to describe the ROI in labels, tooltips and widgets Should be set by inherited classes to custom the ROI manager widget. """ sigRegionChanged = qt.Signal() """Signal emitted everytime the shape or position of the ROI changes""" sigEditingStarted = qt.Signal() """Signal emitted when the user start editing the roi""" sigEditingFinished = qt.Signal() """Signal emitted when the region edition is finished. During edition sigEditionChanged will be emitted several times and sigRegionEditionFinished only at end""" def __init__(self, parent=None): # Avoid circular dependency from ..tools import roi as roi_tools assert parent is None or isinstance(parent, roi_tools.RegionOfInterestManager) _RegionOfInterestBase.__init__(self, parent) core.HighlightedMixIn.__init__(self) self.__text = None self._color = rgba('red') self._editable = False self._selectable = False self._focusProxy = None self._visible = True self._child = WeakList() def _connectToPlot(self, plot): """Called after connection to a plot""" for item in self.getItems(): # This hack is needed to avoid reentrant call from _disconnectFromPlot # to the ROI manager. It also speed up the item tests in _itemRemoved item._roiGroup = True plot.addItem(item) def _disconnectFromPlot(self, plot): """Called before disconnection from a plot""" for item in self.getItems(): # The item could be already be removed by the plot if item.getPlot() is not None: del item._roiGroup plot.removeItem(item) def _setItemName(self, item): """Helper to generate a unique id to a plot item""" legend = "__ROI-%d__%d" % (id(self), id(item)) item.setName(legend) def setParent(self, parent): """Set the parent of the RegionOfInterest :param Union[None,RegionOfInterestManager] parent: The new parent """ # Avoid circular dependency from ..tools import roi as roi_tools if (parent is not None and not isinstance(parent, roi_tools.RegionOfInterestManager)): raise ValueError('Unsupported parent') previousParent = self.parent() if previousParent is not None: previousPlot = previousParent.parent() if previousPlot is not None: self._disconnectFromPlot(previousPlot) super(RegionOfInterest, self).setParent(parent) if parent is not None: plot = parent.parent() if plot is not None: self._connectToPlot(plot) def addItem(self, item): """Add an item to the set of this ROI children. This item will be added and removed to the plot used by the ROI. If the ROI is already part of a plot, the item will also be added to the plot. It the item do not have a name already, a unique one is generated to avoid item collision in the plot. :param silx.gui.plot.items.Item item: A plot item """ assert item is not None self._child.append(item) if item.getName() == '': self._setItemName(item) manager = self.parent() if manager is not None: plot = manager.parent() if plot is not None: item._roiGroup = True plot.addItem(item) def removeItem(self, item): """Remove an item from this ROI children. If the item is part of a plot it will be removed too. :param silx.gui.plot.items.Item item: A plot item """ assert item is not None self._child.remove(item) plot = item.getPlot() if plot is not None: del item._roiGroup plot.removeItem(item) def getItems(self): """Returns the list of PlotWidget items of this RegionOfInterest. :rtype: List[~silx.gui.plot.items.Item] """ return tuple(self._child) @classmethod def _getShortName(cls): """Return an human readable kind of ROI :rtype: str """ if hasattr(cls, "SHORT_NAME"): name = cls.SHORT_NAME if name is None: name = cls.__name__ return name def getColor(self): """Returns the color of this ROI :rtype: QColor """ return qt.QColor.fromRgbF(*self._color) def setColor(self, color): """Set the color used for this ROI. :param color: The color to use for ROI shape as either a color name, a QColor, a list of uint8 or float in [0, 1]. """ color = rgba(color) if color != self._color: self._color = color self._updated(items.ItemChangedType.COLOR) def isEditable(self): """Returns whether the ROI is editable by the user or not. :rtype: bool """ return self._editable def setEditable(self, editable): """Set whether the ROI can be changed interactively. :param bool editable: True to allow edition by the user, False to disable. """ editable = bool(editable) if self._editable != editable: self._editable = editable self._updated(items.ItemChangedType.EDITABLE) def isSelectable(self): """Returns whether the ROI is selectable by the user or not. :rtype: bool """ return self._selectable def setSelectable(self, selectable): """Set whether the ROI can be selected interactively. :param bool selectable: True to allow selection by the user, False to disable. """ selectable = bool(selectable) if self._selectable != selectable: self._selectable = selectable self._updated(items.ItemChangedType.SELECTABLE) def getFocusProxy(self): """Returns the ROI which have to be selected when this ROI is selected, else None if no proxy specified. :rtype: RegionOfInterest """ proxy = self._focusProxy if proxy is None: return None proxy = proxy() if proxy is None: self._focusProxy = None return proxy def setFocusProxy(self, roi): """Set the real ROI which will be selected when this ROI is selected, else None to remove the proxy already specified. :param RegionOfInterest roi: A ROI """ if roi is not None: self._focusProxy = weakref.ref(roi) else: self._focusProxy = None def isVisible(self): """Returns whether the ROI is visible in the plot. .. note:: This does not take into account whether or not the plot widget itself is visible (unlike :meth:`QWidget.isVisible` which checks the visibility of all its parent widgets up to the window) :rtype: bool """ return self._visible def setVisible(self, visible): """Set whether the plot items associated with this ROI are visible in the plot. :param bool visible: True to show the ROI in the plot, False to hide it. """ visible = bool(visible) if self._visible != visible: self._visible = visible self._updated(items.ItemChangedType.VISIBLE) def getText(self) -> str: """Returns the currently displayed text for this ROI""" return self.getName() if self.__text is None else self.__text def setText(self, text: Optional[str] = None) -> None: """Set the displayed text for this ROI. If None (the default), the ROI name is used. """ if self.__text != text: self.__text = text self._updated(items.ItemChangedType.TEXT) def _updateText(self, text: str) -> None: """Update the text displayed by this ROI Override in subclass to custom text display """ pass @classmethod def showFirstInteractionShape(cls): """Returns True if the shape created by the first interaction and managed by the plot have to be visible. :rtype: bool """ return False @classmethod def getFirstInteractionShape(cls): """Returns the shape kind which will be used by the very first interaction with the plot. This interactions are hardcoded inside the plot :rtype: str """ return cls._plotShape def setFirstShapePoints(self, points): """Initialize the ROI using the points from the first interaction. This interaction is constrained by the plot API and only supports few shapes. """ raise NotImplementedError() def creationStarted(self): """Called when the ROI creation interaction was started. """ pass def creationFinalized(self): """Called when the ROI creation interaction was finalized. """ pass def _updateItemProperty(self, event, source, destination): """Update the item property of a destination from an item source. :param items.ItemChangedType event: Property type to update :param silx.gui.plot.items.Item source: The reference for the data :param event Union[Item,List[Item]] destination: The item(s) to update """ if not isinstance(destination, (list, tuple)): destination = [destination] if event == items.ItemChangedType.NAME: value = source.getName() for d in destination: d.setName(value) elif event == items.ItemChangedType.EDITABLE: value = source.isEditable() for d in destination: d.setEditable(value) elif event == items.ItemChangedType.SELECTABLE: value = source.isSelectable() for d in destination: d._setSelectable(value) elif event == items.ItemChangedType.COLOR: value = rgba(source.getColor()) for d in destination: d.setColor(value) elif event == items.ItemChangedType.LINE_STYLE: value = self.getLineStyle() for d in destination: d.setLineStyle(value) elif event == items.ItemChangedType.LINE_WIDTH: value = self.getLineWidth() for d in destination: d.setLineWidth(value) elif event == items.ItemChangedType.SYMBOL: value = self.getSymbol() for d in destination: d.setSymbol(value) elif event == items.ItemChangedType.SYMBOL_SIZE: value = self.getSymbolSize() for d in destination: d.setSymbolSize(value) elif event == items.ItemChangedType.VISIBLE: value = self.isVisible() for d in destination: d.setVisible(value) else: assert False def _updated(self, event=None, checkVisibility=True): if event == items.ItemChangedType.TEXT: self._updateText(self.getText()) elif event == items.ItemChangedType.HIGHLIGHTED: style = self.getCurrentStyle() self._updatedStyle(event, style) else: styleEvents = [items.ItemChangedType.COLOR, items.ItemChangedType.LINE_STYLE, items.ItemChangedType.LINE_WIDTH, items.ItemChangedType.SYMBOL, items.ItemChangedType.SYMBOL_SIZE] if self.isHighlighted(): styleEvents.append(items.ItemChangedType.HIGHLIGHTED_STYLE) if event in styleEvents: style = self.getCurrentStyle() self._updatedStyle(event, style) super(RegionOfInterest, self)._updated(event, checkVisibility) # Displayed text has changed, send a text event if event == items.ItemChangedType.NAME and self.__text is None: self._updated(items.ItemChangedType.TEXT, checkVisibility) def _updatedStyle(self, event, style): """Called when the current displayed style of the ROI was changed. :param event: The event responsible of the change of the style :param items.CurveStyle style: The current style """ pass def getCurrentStyle(self): """Returns the current curve style. Curve style depends on curve highlighting :rtype: CurveStyle """ baseColor = rgba(self.getColor()) if isinstance(self, core.LineMixIn): baseLinestyle = self.getLineStyle() baseLinewidth = self.getLineWidth() else: baseLinestyle = self._DEFAULT_LINESTYLE baseLinewidth = self._DEFAULT_LINEWIDTH if isinstance(self, core.SymbolMixIn): baseSymbol = self.getSymbol() baseSymbolsize = self.getSymbolSize() else: baseSymbol = 'o' baseSymbolsize = 1 if self.isHighlighted(): style = self.getHighlightedStyle() color = style.getColor() linestyle = style.getLineStyle() linewidth = style.getLineWidth() symbol = style.getSymbol() symbolsize = style.getSymbolSize() return items.CurveStyle( color=baseColor if color is None else color, linestyle=baseLinestyle if linestyle is None else linestyle, linewidth=baseLinewidth if linewidth is None else linewidth, symbol=baseSymbol if symbol is None else symbol, symbolsize=baseSymbolsize if symbolsize is None else symbolsize) else: return items.CurveStyle(color=baseColor, linestyle=baseLinestyle, linewidth=baseLinewidth, symbol=baseSymbol, symbolsize=baseSymbolsize) def _editingStarted(self): assert self._editable is True self.sigEditingStarted.emit() def _editingFinished(self): self.sigEditingFinished.emit() def populateContextMenu(self, menu: qt.QMenu): """Populate a menu used as a context menu""" pass class HandleBasedROI(RegionOfInterest): """Manage a ROI based on a set of handles""" def __init__(self, parent=None): RegionOfInterest.__init__(self, parent=parent) self._handles = [] self._posOrigin = None self._posPrevious = None def addUserHandle(self, item=None): """ Add a new free handle to the ROI. This handle do nothing. It have to be managed by the ROI implementing this class. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ return self.addHandle(item, role="user") def addLabelHandle(self, item=None): """ Add a new label handle to the ROI. This handle is not draggable nor selectable. It is displayed without symbol, but it is always visible anyway the ROI is editable, in order to display text. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ return self.addHandle(item, role="label") def addTranslateHandle(self, item=None): """ Add a new translate handle to the ROI. Dragging translate handles affect the position position of the ROI but not the shape itself. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ return self.addHandle(item, role="translate") def addHandle(self, item=None, role="default"): """ Add a new handle to the ROI. Dragging handles while affect the position or the shape of the ROI. :param Union[None,silx.gui.plot.items.Marker] item: The new marker to add, else None to create a default marker. :rtype: silx.gui.plot.items.Marker """ if item is None: item = items.Marker() color = rgba(self.getColor()) color = self._computeHandleColor(color) item.setColor(color) if role == "default": item.setSymbol("s") elif role == "user": pass elif role == "translate": item.setSymbol("+") elif role == "label": item.setSymbol("") if role == "user": pass elif role == "label": item._setSelectable(False) item._setDraggable(False) item.setVisible(True) else: self.__updateEditable(item, self.isEditable(), remove=False) item._setSelectable(False) self._handles.append((item, role)) self.addItem(item) return item def removeHandle(self, handle): data = [d for d in self._handles if d[0] is handle][0] self._handles.remove(data) role = data[1] if role not in ["user", "label"]: if self.isEditable(): self.__updateEditable(handle, False) self.removeItem(handle) def getHandles(self): """Returns the list of handles of this HandleBasedROI. :rtype: List[~silx.gui.plot.items.Marker] """ return tuple(data[0] for data in self._handles) def _updated(self, event=None, checkVisibility=True): """Implement Item mix-in update method by updating the plot items See :class:`~silx.gui.plot.items.Item._updated` """ if event == items.ItemChangedType.VISIBLE: for item, role in self._handles: visible = self.isVisible() editionVisible = visible and self.isEditable() if role not in ["user", "label"]: item.setVisible(editionVisible) else: item.setVisible(visible) elif event == items.ItemChangedType.EDITABLE: for item, role in self._handles: editable = self.isEditable() if role not in ["user", "label"]: self.__updateEditable(item, editable) super(HandleBasedROI, self)._updated(event, checkVisibility) def _updatedStyle(self, event, style): super(HandleBasedROI, self)._updatedStyle(event, style) # Update color of shape items in the plot color = rgba(self.getColor()) handleColor = self._computeHandleColor(color) for item, role in self._handles: if role == 'user': pass elif role == 'label': item.setColor(color) else: item.setColor(handleColor) def __updateEditable(self, handle, editable, remove=True): # NOTE: visibility change emit a position update event handle.setVisible(editable and self.isVisible()) handle._setDraggable(editable) if editable: handle.sigDragStarted.connect(self._handleEditingStarted) handle.sigItemChanged.connect(self._handleEditingUpdated) handle.sigDragFinished.connect(self._handleEditingFinished) else: if remove: handle.sigDragStarted.disconnect(self._handleEditingStarted) handle.sigItemChanged.disconnect(self._handleEditingUpdated) handle.sigDragFinished.disconnect(self._handleEditingFinished) def _handleEditingStarted(self): super(HandleBasedROI, self)._editingStarted() handle = self.sender() self._posOrigin = numpy.array(handle.getPosition()) self._posPrevious = numpy.array(self._posOrigin) self.handleDragStarted(handle, self._posOrigin) def _handleEditingUpdated(self): if self._posOrigin is None: # Avoid to handle events when visibility change return handle = self.sender() current = numpy.array(handle.getPosition()) self.handleDragUpdated(handle, self._posOrigin, self._posPrevious, current) self._posPrevious = current def _handleEditingFinished(self): handle = self.sender() current = numpy.array(handle.getPosition()) self.handleDragFinished(handle, self._posOrigin, current) self._posPrevious = None self._posOrigin = None super(HandleBasedROI, self)._editingFinished() def isHandleBeingDragged(self): """Returns True if one of the handles is currently being dragged. :rtype: bool """ return self._posOrigin is not None def handleDragStarted(self, handle, origin): """Called when an handler drag started""" pass def handleDragUpdated(self, handle, origin, previous, current): """Called when an handle drag position changed""" pass def handleDragFinished(self, handle, origin, current): """Called when an handle drag finished""" pass def _computeHandleColor(self, color): """Returns the anchor color from the base ROI color :param Union[numpy.array,Tuple,List]: color :rtype: Union[numpy.array,Tuple,List] """ return color[:3] + (0.5,)
silx-kit/silx
src/silx/gui/plot/items/_roi_base.py
_roi_base.py
py
27,769
python
en
code
106
github-code
6
28765664515
from async_scrape import Scrape import requests import json from selenium.webdriver import Edge from selenium.webdriver.common.by import By from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC url = "https://order.marstons.co.uk/" base_dir = "C:/Users/robert.franklin/Desktop/local_projects/random/marstons" # GET ALL RESTAURANT DATA - selenium browser = Edge() browser.get(url) wait = WebDriverWait(browser, 100).until( EC.presence_of_all_elements_located((By.CLASS_NAME, "venues-list")) ) elements = browser.find_elements(By.CLASS_NAME, "venue-card") hrefs = [e.get_dom_attribute("href") for e in elements] browser.close() print(f"Fetched {len(hrefs)} hrefs from {url}") def post_process_func(html, resp, *args, **kwargs): # Save to file fn = resp.url.split("/")[-1] content = json.loads(resp.content) with open(f"{base_dir}/data/raw/{fn}.json", "w") as f: json.dump(content, f, indent=4) base_url = "https://api-cdn.orderbee.co.uk/venues" urls = [base_url + href for href in hrefs] scrape = Scrape(post_process_func=post_process_func) print(f"Begin scrape of {len(urls)} - Example: {urls[0]}") scrape.scrape_all(urls)
cia05rf/marstons
webscrape/scrape.py
scrape.py
py
1,223
python
en
code
0
github-code
6
7090155614
import random def limiter(count, num): while count != 0: try: guess = int(input('Guess a number: ')) count -= 1 if guess == (random.randint(1, num)): print('YOU GOT IT RIGHT!') break else: print("\n That was Wrong!") if count > 1: print(f'You have {count} guesses left\n') else: print(f'You have {count} guess left\n') except UnboundLocalError: print("Variable 'guess' not defined") except ValueError: print("Invalid value, please input a number") else: print('You ran out of guessing Life') print('GMAE OVER!') def easy(): print(''' __EASY LEVEL__ You have 6 GUESSES....''') limiter(6, 10) def medium(): print(''' __MEDIUM LEVEL__ You have 4 guesses...''') limiter(4, 20) def hard(): print(''' __HARD LEVEL__ You have 3 guesses...''') limiter(3, 50) def choice(): user_choice = input('Enter your desired level: ').upper() if user_choice == 'EASY': easy() elif user_choice == 'MEDIUM': medium() elif user_choice == 'HARD': hard() else: print("Not a valid LEVEL, try again") choice() print('''There are 3 levels; EASY, MEDIUM, HARD \n''') choice()
jan-far/Guessing_game
task3.py
task3.py
py
1,395
python
en
code
0
github-code
6
70501561789
from django.conf.urls import patterns, include, url urlpatterns = patterns('django_sprinkler', url(r"^get_context/?", "views.get_context", name="get_context"), url(r"^logs/?", "views.watering_logs", name="watering_logs"), url(r"^toggle_valve/(\d+)?/?", "views.toggle_valve", name="toggle_valve"), url(r"^activate_program/(\d+)?/?", "views.activate_program", name="activate_program"), url(r"^set_state/(\w+)?", "views.set_state", name="set_state"), url(r'^$', "views.home", name="home"), )
jpardobl/django_sprinkler
django_sprinkler/urls.py
urls.py
py
517
python
en
code
0
github-code
6
44364885746
''' 3. (fatores) Programa que lê um número inteiro positivo n e determina a sua decomposição em fatores primos calculando também a multiplicidade de cada fator. ''' def main(): n = int(input("Digite um numero (>1): ")) fator = 2 # primeiro fator while n != 1: # conta a multiplicidade de fator em n mult = 0; while n%fator == 0: n = n / fator; mult = mult + 1; # imprime a multiplicade do fator if mult != 0: print("fator %d multiplicidade %d" %(fator, mult)) fator = fator + 1 #------------------------------------------------------- main() # chamada da função principal
danilosheen/topicos-especiais
q3.py
q3.py
py
681
python
pt
code
0
github-code
6
72777565307
# Plotting solution of x''(t) + x(t) = 0 equation import numpy as np import matplotlib.pyplot as plt import os from io import StringIO import pandas as pd from find_solution import find_solution from plot_utils import create_dir def plot_solution(plot_dir, t_end, delta_t): data = find_solution(t_end=t_end, delta_t=delta_t, print_last=False) create_dir(plot_dir) if data is None: return df = pd.read_csv(StringIO(data), skipinitialspace=True) plt.plot(df['t'], df['x'], label='Approximation') exact_t = np.arange(0.0, t_end, 0.01) exact_x = np.cos(exact_t) plt.plot(exact_t, exact_x, label='Exact $x=\cos(t)$', linestyle='--') plt.title(r'Solution of $\ddot{x} + x = 0, x(0)=1, \dot{x}(0)=0$ for dt=' + f'{delta_t}') plt.xlabel('t') plt.ylabel(r'x') plt.legend() plt.grid() plt.tight_layout() plotfile = os.path.join(plot_dir, f"approx_vs_exact_dt_{delta_t}.pdf") plt.savefig(plotfile) plt.show() if __name__ == '__main__': plot_solution(plot_dir="plots", t_end=6.28, delta_t=1) plot_solution(plot_dir="plots", t_end=6.28, delta_t=0.1)
evgenyneu/ASP3162
03_second_order_ode/plotting/plot_solution.py
plot_solution.py
py
1,130
python
en
code
1
github-code
6
28382656931
import cgi import sys import io import genshin.database.operation as gdo form = cgi.FieldStorage() sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') template = """ <html> <head> <meta charset="utf-8"> <script type="text/javascript"> location.replace('/cgi-bin/characters.py?dname={name}'); </script> </head> <body> <p>Deleting...</p> </body> </html> """ def delete_character_data(name): gdo.delete_character(name) def main(): name = form.getvalue("del") delete_character_data(name) print("Content-type: text/html\n") print(template.format(name=name)) main()
waigoma/genshin-charatraining-supporter
src/cgi-bin/character_delete.py
character_delete.py
py
628
python
en
code
0
github-code
6
17717247977
import image def photo_to_bw(filename): img=image.Image(filename) win=image.ImageWin(img.getWidth(),img.getHeight()) img.draw(win) img.setDelay(0) for row in range(img.getHeight()): for col in range(img.getWidth()): p=img.getPixel(col,row) newvalue=(p.getRed()+p.getGreen()+p.getBlue())//3 if newvalue>127: pixelvalue=255 else: pixelvalue=0 newpixel=image.Pixel(pixelvalue,pixelvalue,pixelvalue) img.setPixel(col,row,newpixel) img.draw(win) win.exitonclick() photo_to_bw("luther.jpg")
tim24jones/thinkcspy
Chap_8/09_photo_to_bw.py
09_photo_to_bw.py
py
627
python
en
code
5
github-code
6
8331488278
#!/usr/bin/env python # two functions "dir" and "help" when exploring modules in python. import urllib # function are implemented in each module by using dir function. dir(urllib) # read about module more using help function. help(urllib.urlopen) import re find_members = [] for member in dir(re): if "find" in member: find_members.append(member) print(sorted(find_members))
igei-yh/learning-python
basic_modules.py
basic_modules.py
py
397
python
en
code
0
github-code
6
21944300528
# -*- coding: utf-8 -*- """ Created on Mon May 7 23:31:33 2018 @author: liguo 异常数据分析 """ from __future__ import print_function from nets import nets_factory from preprocessing import vgg_preprocessing import sys sys.path.append('../../tensorflow/models/slim/') # add slim to PYTHONPATH import tensorflow as tf import os import time import shutil import pandas as pd slim = tf.contrib.slim tf.app.flags.DEFINE_integer('num_classes', 2, 'The number of classes.') tf.app.flags.DEFINE_string('infile', '../test', 'Image file, one image per line.') tf.app.flags.DEFINE_string('model_name', 'resnet_v1_50', 'The name of the architecture to testuate.') tf.app.flags.DEFINE_string('preprocessing_name', None, 'The name of the preprocessing to use. If left as `None`, then the model_name flag is used.') tf.app.flags.DEFINE_string('checkpoint_path', 'checkpoint/','The directory where the model was written to or an absolute path to a checkpoint file.') tf.app.flags.DEFINE_integer('test_image_size', None, 'test image size.') tf.app.flags.DEFINE_string('outliers_path', 'outliers', 'The path to save outliers images.') FLAGS = tf.app.flags.FLAGS model_name_to_variables = {'resnet_v1_50':'resnet_v1_50', 'vgg_16':'vgg_16'} def main(_): model_variables = model_name_to_variables.get(FLAGS.model_name) if model_variables is None: tf.logging.error("Unknown model_name provided `%s`." % FLAGS.model_name) sys.exit(-1) if tf.gfile.IsDirectory(FLAGS.checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path) else: checkpoint_path = FLAGS.checkpoint_path # 读入图像、预处理模型、网络模型 image_string = tf.placeholder(tf.string) image = tf.image.decode_jpeg(image_string, channels=3, try_recover_truncated=True, acceptable_fraction=0.3) network_fn = nets_factory.get_network_fn(FLAGS.model_name, FLAGS.num_classes, is_training=False) # 数据预处理 if FLAGS.test_image_size is None: test_image_size = network_fn.default_image_size processed_image = vgg_preprocessing.preprocess_image(image, test_image_size, test_image_size, is_training=False) processed_images = tf.expand_dims(processed_image, 0) # 获取输出 logits, _ = network_fn(processed_images) probabilities = tf.nn.softmax(logits) # 初始化 init_fn = slim.assign_from_checkpoint_fn(checkpoint_path, slim.get_model_variables(model_variables)) sess = tf.Session() init_fn(sess) start_time = time.time() # 进行推断 result = [] test_images = os.listdir(FLAGS.infile) for test_image in test_images: path = os.path.join(FLAGS.infile, test_image) content = tf.gfile.FastGFile(path, 'rb').read() _logits, _prob = sess.run([logits, probabilities], feed_dict={image_string:content}) sum_squares = _logits[0, 0] * _logits[0, 0] + _logits[0, 1] * _logits[0, 1] _prob = _prob[0, 0:] _prob = _prob[1] classes = 'cat' if 'cat' in test_image else 'dog' result.append([path, test_image, classes, sum_squares, _prob, _logits[0, 0], _logits[0, 1]]) sess.close() # 将结果输出到csv文件 path_list = [] name_list = [] class_list = [] sum_squares_list = [] prob_list = [] logits1_list = [] logits2_list = [] for item in result: path_list.append(item[0]) name_list.append(item[1]) class_list.append(item[2]) sum_squares_list.append(item[3]) prob_list.append(item[4]) logits1_list.append(item[5]) logits2_list.append(item[6]) dataframe = pd.DataFrame({'path':path_list, 'name':name_list, 'class':class_list, 'sum_squares':sum_squares_list, 'prob':prob_list, 'logits1':logits1_list, 'logits2':logits2_list}) dataframe.to_csv("outliers.csv", index=False, sep=',') if not os.path.exists(FLAGS.outliers_path): os.makedirs(FLAGS.outliers_path) # 输出sum_squares最小的部分图片 all_path = os.path.join(FLAGS.outliers_path, 'min_sum_squares') if not os.path.exists(all_path): os.makedirs(all_path) for i in range(min(500, len(result))): for j in range(i+1, len(result)): if result[i][3] > result[j][3]: temp = result[i] result[i] = result[j] result[j] = temp shutil.copyfile(result[i][0], os.path.join(all_path, format(i, "3d")+"_"+result[i][1])) # 输出cat中最难识别的部分图片 cat_path = os.path.join(FLAGS.outliers_path, 'cat_max_logits') if not os.path.exists(cat_path): os.makedirs(cat_path) for i in range(min(250, len(result))): for j in range(i+1, len(result)): if (result[j][2] == 'cat') and (result[i][2] == 'dog' or result[i][4] < result[j][4]): temp = result[i] result[i] = result[j] result[j] = temp shutil.copyfile(result[i][0], os.path.join(cat_path, format(result[i][4], ".3f")+"_"+result[i][1])) # 输出dog中最难识别的部分图片 dog_path = os.path.join(FLAGS.outliers_path, 'dog_min_logits') if not os.path.exists(dog_path): os.makedirs(dog_path) for i in range(min(250, len(result))): for j in range(i+1, len(result)): if (result[j][2] == 'dog') and (result[i][2] == 'cat' or result[i][4] > result[j][4]): temp = result[i] result[i] = result[j] result[j] = temp shutil.copyfile(result[i][0], os.path.join(dog_path, format(result[i][4], ".3f")+"_"+result[i][1])) print('total time cost = %.2f' %(time.time() - start_time)) if __name__ == '__main__': tf.app.run()
wlkdb/dogs_vs_cats
transfer_learning/analysis_outliers.py
analysis_outliers.py
py
5,865
python
en
code
10
github-code
6
30804272942
#Exercise 1: Cats #Instantiate three Cat objects using the code provided above. #Outside of the class, create a function that finds the oldest cat and returns the cat. #Print the following string: “The oldest cat is <cat_name>, and is <cat_age> years old.”. Use the function previously created. class Cat: def __init__(self, cat_name, cat_age): self.name = cat_name self.age = cat_age cat1 = Cat("Malfoy", 3) cat2 = Cat("Fluffy", 6) cat3 = Cat("Germy", 8) def find_oldest_cat(*cats): oldest_cat = None for cat in cats: if oldest_cat is None or cat.age > oldest_cat.age: oldest_cat = cat return oldest_cat oldest_cat = find_oldest_cat(cat1, cat2, cat3) print(f"The oldest cat is {oldest_cat.name}, and he is {oldest_cat.age} years old.") # Exercise 2 : Dogs class Dog: def __init__(self, name, height): self.name = name self.height = height def bark(self): print(f"{self.name} goes woof!") def jump(self): print(f"{self.name} jumps {self.height * 2} cm high!") davids_dog = Dog("Rex", 50) print(f"David's dog is named {davids_dog.name} and is {davids_dog.height}cm tall.") davids_dog.bark() davids_dog.jump() sarahs_dog = Dog("Teacup", 20) print(f"Sarah's dog is named {sarahs_dog.name} and is {sarahs_dog.height}cm tall.") sarahs_dog.bark() sarahs_dog.jump() if davids_dog.height > sarahs_dog.height: print(f"{davids_dog.name} is bigger.") else: print(f"{sarahs_dog.name} is bigger.") #Exercise 3 : Who’s The Song Producer? # a class called Song, it will show the lyrics of a song. #Inside your class create a method called sing_me_a_song that prints each element of lyrics on its own line. #Create an object, for example: #stairway= Song(["There’s a lady who's sure","all that glitters is gold", "and she’s buying a stairway to heaven"]) class Song: def __init__(self, lyrics): self.lyrics = lyrics def sing_me_a_song(self): for line in self.lyrics: print(line) stairway = Song(["We all live in a yellow submarine", "Yellow submarine, yellow submarine", "We all live in a yellow submarine", "Yellow submarine, yellow submarine"]) stairway.sing_me_a_song() #Exercise 4 : Afternoon At The Zoo class Zoo: def __init__(self, zoo_name): self.name = zoo_name self.animals = [] def add_animal(self, new_animal): if new_animal not in self.animals: self.animals.append(new_animal) def get_animals(self): print("Animals in the zoo:") for animal in self.animals: print(animal) def sell_animal(self, animal_sold): if animal_sold in self.animals: self.animals.remove(animal_sold) def sort_animals(self): animal_dict = {} for animal in self.animals: if animal[0] not in animal_dict: animal_dict[animal[0]] = [animal] else: animal_dict[animal[0]].append(animal) sorted_animals = sorted(animal_dict.items()) for key, value in sorted_animals: print(key + ": ", end="") print(", ".join(value)) def get_groups(self): animal_dict = {} for animal in self.animals: if animal[0] not in animal_dict: animal_dict[animal[0]] = [animal] else: animal_dict[animal[0]].append(animal) for key, value in animal_dict.items(): print(key + ": ", end="") print(", ".join(value)) # Create an object called ramat_gan_safari and call all the methods ramat_gan_safari = Zoo("Ramat Gan Safari") ramat_gan_safari.add_animal("Giraffe") ramat_gan_safari.add_animal("Baboon") ramat_gan_safari.add_animal("Bear") ramat_gan_safari.add_animal("Cat") ramat_gan_safari.add_animal("Cougar") ramat_gan_safari.add_animal("Eel") ramat_gan_safari.add_animal("Emu") ramat_gan_safari.get_animals() ramat_gan_safari.sell_animal("Eel") ramat_gan_safari.sort_animals() ramat_gan_safari.get_groups()
nadinebabenko/python1
week20/day2/XP.py
XP.py
py
4,157
python
en
code
0
github-code
6
25004993355
from typing import cast, Any from aea.skills.behaviours import TickerBehaviour from aea.helpers.search.models import Constraint, ConstraintType, Query from packages.fetchai.protocols.oef_search.message import OefSearchMessage from packages.fetchai.skills.tac_control.dialogues import ( OefSearchDialogues, ) from packages.gdp8.skills.agent_action_each_turn.strategy import BasicStrategy DEFAULT_REGISTER_AND_SEARCH_INTERVAL = 5.0 environmentFound = False DEFAULT_SEARCH_QUERY = { "search_key": "env",## is that the key of the environment ? "search_value": "v1", "constraint_type": "==", } class EnvSearchBehaviour(TickerBehaviour): """This class scaffolds a behaviour.""" def setup(self) -> None: """ Implement the setup. :return: None """ def act(self) -> None: """ Implement the act. :return: None """ if not environmentFound: self._search_for_environment() def teardown(self) -> None: """ Implement the task teardown. :return: None """ def _search_for_environment(self) -> None: """ Search for active environment (simulation controller). We assume that the environment is registered as a service (and with an attribute version = expected_version_id ## ??? do we really need to have that attribute ?) :return: None """ ## can add a filter: close to my service if there are too many results service_key_filter = Constraint( DEFAULT_SEARCH_QUERY["search_key"], ConstraintType( DEFAULT_SEARCH_QUERY["constraint_type"], DEFAULT_SEARCH_QUERY["search_value"], ), ) query = Query([service_key_filter],) oef_search_dialogues = cast( OefSearchDialogues, self.context.oef_search_dialogues ) oef_search_msg, _ = oef_search_dialogues.create( counterparty=self.context.search_service_address, performative=OefSearchMessage.Performative.SEARCH_SERVICES, query=query, ) self.context.outbox.put_message(message=oef_search_msg) self.context.logger.info( "searching for environment, search_id={}".format(oef_search_msg.dialogue_reference) ) class AgentLogicBehaviour(TickerBehaviour): """Behaviour looks at if actions required in each tick: is there agent asking for water info? if so, tell them is the round done (on my end)? if so, stop is there enough info for making a decision? if so, do so, if not, might have to send message to ask for info""" def setup(self) -> None: """ Implement the setup. :return: None """ pass def act(self) -> None: strategy = cast(BasicStrategy, self.context.strategy) there_is_agent_asking_for_water_info = True while there_is_agent_asking_for_water_info: there_is_agent_asking_for_water_info = strategy.deal_with_an_agent_asking_for_water_info if not strategy.is_round_done: info_is_enough = strategy.enough_info_to_make_decision if info_is_enough: strategy.make_decision_send_to_env() else: asking_for_info = True while asking_for_info: asking_for_info = strategy.potentially_ask_for_info def teardown(self) -> None: """ Implement the task teardown. :return: None """ pass
DENE-dev/dene-dev
RQ1-data/exp2/1010-OCzarnecki@gdp8-e6988c211a76ac3a2736d49d00f0a6de8b44c3b0/agent_aea/skills/agent_action_each_turn/behaviours.py
behaviours.py
py
3,601
python
en
code
0
github-code
6
31111183004
def getMoneySpent(keyboards, drives, b): budget_arr = [] for keyboard in keyboards: if keyboards == b: continue for drive in drives: if drive == b: continue if (keyboard + drive) <= b: budget_arr.append(keyboard + drive) if not budget_arr: return -1 else: return max(budget_arr) if __name__ == '__main__': maxbudget = getMoneySpent([4], [5], 5) print(maxbudget)
spl99615/hackerrank
electronic_shop.py
electronic_shop.py
py
488
python
en
code
0
github-code
6
26470849611
""" Problem 34: Digit Factorials https://projecteuler.net/problem=34 Goal: Find the sum of all numbers less than N that divide the sum of the factorial of their digits (& therefore have minimum 2 digits). Constraints: 10 <= N <= 1e5 Factorion: A natural number that equals the sum of the factorials of its digits. The only non-single-digit factorions are: 145 and 40585. e.g.: N = 20 qualifying numbers = {19} as 1! + 9! = 362_881, which % 19 = 0 e.g. 18 does not work as 1! + 8! = 40321, which % 18 > 0 sum = 19 """ from math import factorial # pre-calculation of all digit factorials to increase performance factorials = [factorial(x) for x in range(10)] def sum_of_digit_factorials_HR(n: int) -> int: """ HackerRank specific implementation that finds the sum of all numbers < n that are divisors of the sum of the factorials of their digits. """ overall_total = 0 for num in range(10, n): num_total = sum([factorials[int(ch)] for ch in str(num)]) if num_total % num == 0: overall_total += num return overall_total def sum_of_digit_factorials_PE() -> int: """ Project Euler specific implementation that finds the sum of all numbers that are factorions. The numbers cannot have more than 7 digits, as 9! * 8 returns only a 7-digit number. 9! * 7 returns 2_540_160, so the 1st digit of the 7-digit number cannot be greater than 2. """ overall_total = 0 for n in range(10, 2_000_000): digits = [int(ch) for ch in str(n)] n_total = 0 for digit in digits: n_total += factorials[digit] # prevents further unnecessary calculation if n_total > n: break if n_total == n: overall_total += n_total return overall_total
bog-walk/project-euler-python
solution/batch3/problem34.py
problem34.py
py
1,839
python
en
code
0
github-code
6
2282915747
import torch from torch import Tensor from kornia.utils import one_hot import torch.nn.functional as F import numpy as np from matplotlib import pyplot as plt def reg_loss(prediction, ED, ES, device): # print(prediction) prediction_toSyn = prediction.squeeze().detach().cpu().numpy() y_k = synthetic_label(prediction_toSyn, ED.numpy(), ES.numpy()) # print(prediction.squeeze()) # print(y_k) # print(ED) # print(ES) # print('-----') mse_loss = F.mse_loss(prediction.squeeze(), y_k.to(device)) temp_loss = ltemp(y_k, prediction_toSyn) loss = mse_loss + temp_loss return loss def synthetic_label(prediction, ED, ES): y_k = [] for k in range(len(prediction)): if (int(ED) < k) and (k <= int(ES)): y_k.append((abs((k-ES)/(ES-ED)))**3) # print(1) else: y_k.append((abs((k-ES)/(ES-ED)))**(1/3)) # print(y_k) # plt.plot(y_k) # plt.savefig('y_k.png') return torch.from_numpy(np.array(y_k, dtype= "float32")) def ltemp(y_k, prediction): Linc = linc(y_k, prediction) Ldec = ldec(y_k, prediction) ltemp = (Linc+Ldec)/2 # print(ltemp) return torch.from_numpy(np.array(ltemp, dtype= "float32")) def linc(y_k, prediction): Linc = 0 for k in range(len(prediction)-1): if y_k[k+1] > y_k[k]: Linc = Linc + max(0,prediction[k]-prediction[k+1]) # print('linc') return Linc/len(prediction) def ldec(y_k, prediction): Ldec = 0 for k in range(len(prediction)-1): if y_k[k+1] < y_k[k]: Ldec = Ldec + max(0,prediction[k+1]-prediction[k]) # print('ldec') return Ldec/len(prediction)
carlesgarciac/regression
regression-cmr/utils/reg_loss.py
reg_loss.py
py
1,707
python
en
code
0
github-code
6
26023685530
import numpy as np import numpy as np import matplotlib.pyplot as plt from fealpy.mesh.uniform_mesh_2d import UniformMesh2d from scipy.sparse.linalg import spsolve #from ..decorator import cartesian class MembraneOscillationPDEData: # 点击这里可以查看 FEALPy 中的代码 def __init__(self, D=[0, 1, 0, 1], T=[0, 5]): """ @brief 模型初始化函数 @param[in] D 模型空间定义域 @param[in] T 模型时间定义域 """ self._domain = D self._duration = T def domain(self): """ @brief 空间区间 """ return self._domain def duration(self): """ @brief 时间区间 """ return self._duration def source(self, p, t): """ @brief 方程右端项 @param[in] p numpy.ndarray, 空间点 @param[in] t float, 时间点 @return 0 """ return np.zeros_like(p[..., 0]) def init_solution(self, p): """ @brief 初值条件 @param[in] p numpy.ndarray, 空间点 @param[in] t float, 时间点 @return 返回 val """ x, y = p[..., 0], p[..., 1] val = x**2*(x+y) return val def init_solution_diff_t(self, p): """ @brief 初值条件的导数 @param[in] p numpy.ndarray, 空间点 """ return np.zeros_like(p[..., 0]) #@cartesian def dirichlet(self, p, t): """ @brief Dirichlet 边界条件 @param[in] p numpy.ndarray, 空间点 @param[in] t float, 时间点 @return 边界条件函数值 """ return np.zeros_like(p[..., 0]) pde = MembraneOscillationPDEData() # 空间离散 domain = pde.domain() nx = 100 ny = 100 hx = (domain[1] - domain[0])/nx hy = (domain[3] - domain[2])/ny mesh = UniformMesh2d([0, nx, 0, ny], h=(hx, hy), origin=(domain[0], domain[2])) # 时间离散 duration = pde.duration() nt = 1000 tau = (duration[1] - duration[0])/nt # 准备初值 uh0 = mesh.interpolate(pde.init_solution, 'node') # (nx+1, ny+1) vh0 = mesh.interpolate(pde.init_solution_diff_t, 'node') # (nx+1, ny+1) uh1 = mesh.function('node') # (nx+1, ny+1) def advance_explicit(n, *frags): """ @brief 时间步进为显格式 @param[in] n int, 表示第 n 个时间步 """ t = duration[0] + n*tau if n == 0: return uh0, t elif n == 1: rx = tau/hx ry = tau/hy uh1[1:-1, 1:-1] = 0.5*rx**2*(uh0[0:-2, 1:-1] + uh0[2:, 1:-1]) + \ 0.5*ry**2*(uh0[1:-1, 0:-2] + uh0[1:-1, 2:]) + \ (1 - rx**2 - ry**2)*uh0[1:-1, 1:-1] + tau*vh0[1:-1, 1:-1] gD = lambda p: pde.dirichlet(p, t) mesh.update_dirichlet_bc(gD, uh1) return uh1, t else: A = mesh.wave_operator_explicit(tau) source = lambda p: pde.source(p, t + tau) f = mesh.interpolate(source, intertype='node') f *= tau**2 uh2 = [email protected] - uh0.flat uh0[:] = uh1[:] uh1.flat = uh2 gD = lambda p: pde.dirichlet(p, t + tau) mesh.update_dirichlet_bc(gD, uh1) #solution = lambda p: pde.solution(p, t + tau) #e = mesh.error(solution, uh1, errortype='max') #print(f"the max error is {e}") return uh1, t def advance_implicit(n, *frags): """ @brief 时间步进为隐格式 @param[in] n int, 表示第 n 个时间步 """ t = duration[0] + n*tau if n == 0: return uh0, t elif n == 1: rx = tau/hx ry = tau/hy uh1[1:-1, 1:-1] = 0.5*rx**2*(uh0[0:-2, 1:-1] + uh0[2:, 1:-1]) + \ 0.5*ry**2*(uh0[1:-1, 0:-2] + uh0[1:-1, 2:]) + \ (1 - rx**2 - ry**2)*uh0[1:-1, 1:-1] + tau*vh0[1:-1, 1:-1] gD = lambda p: pde.dirichlet(p, t) mesh.update_dirichlet_bc(gD, uh1) return uh1, t else: A0, A1, A2 = mesh.wave_operator_implicit(tau) source = lambda p: pde.source(p, t + tau) f = mesh.interpolate(source, intertype='node') f *= tau**2 f.flat += [email protected] + [email protected] uh0[:] = uh1[:] gD = lambda p: pde.dirichlet(p, t + tau) A0, f = mesh.apply_dirichlet_bc(gD, A0, f) uh1.flat = spsolve(A0, f) #solution = lambda p: pde.solution(p, t + tau) #e = mesh.error(solution, uh1, errortype='max') #print(f"the max error is {e}") return uh1, t """ box = [0, 1, 0, 1, 0, 5] fig, axes = plt.subplots() mesh.show_animation(fig, axes, box, advance_explicit, fname='explicit.mp4', plot_type='imshow', frames=nt+1) plt.show() """ box = [0, 1, 0, 1, -2, 2] from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() axes = fig.add_subplot(111, projection='3d') mesh.show_animation(fig, axes, box, advance_explicit, fname='explicit.mp4', plot_type='surface', frames=nt+1) plt.show() """ box = [0, 1, 0, 1, -1, 1] fig, axes = plt.subplots() mesh.show_animation(fig, axes, box, advance_implicit,fname='implicit.mp4', plot_type='imshow', frames=nt+1) plt.show() box = [0, 1, 0, 1, -2.0, 2.0] fig = plt.figure() axes = fig.add_subplot(111, projection='3d') mesh.show_animation(fig, axes, box, advance_implicit,fname='implicit.mp4', plot_type='surface', frames=nt+1) plt.show() """
suanhaitech/pythonstudy2023
Mia_wave/wace_2.py
wace_2.py
py
5,381
python
en
code
2
github-code
6
7298829560
import matplotlib.pyplot as plt from astropy.io import fits from astropy.visualization import make_lupton_rgb from matplotlib.colors import LogNorm from astropy.wcs import WCS import numpy as np db_open = [fits.open('frame-g-006793-1-0130.fits'), fits.open('frame-i-006793-1-0130.fits'), fits.open('frame-r-006793-1-0130.fits'), fits.open('frame-u-006793-1-0130.fits'), fits.open('frame-z-006793-1-0130.fits')] class Glx(object): def __init__(self, d): self.g = d[0] self.i = d[1] self.r = d[2] self.u = d[3] self.z = d[4] def img_rgb(self, nome='Galáxia'): ## rgb = make_lupton_rgb(self.i[0].data[8:1396,::], self.r[0].data[0:1388,::], self.g[0].data[12:1400,::], stretch=1, Q=10) rgb = make_lupton_rgb(self.i[0].data, self.g[0].data, self.u[0].data, stretch=1, Q=10) plt.imshow(rgb, origin='lower') plt.title(nome) plt.show() def Log_Norm(self): plt.imshow(self.r[0].data, cmap='gray', origin='lower', norm=LogNorm()) plt.show() def Img_1_cor(self): fig, ((ax0, ax1, ax2), (ax3, ax4, ax5)) = plt.subplots(nrows=2, ncols=3, sharex=True, figsize=(18, 8)) ax0.imshow(self.i[0].data, origin='lower', vmin=0.0001, vmax=0.6, cmap='RdBu') ax0.set_title('Filtro I') ax1.imshow(self.g[0].data, origin='lower', vmin=0.0001, vmax=0.6, cmap='RdBu') ax1.set_title('Filtro G') ax3.imshow(self.r[0].data, origin='lower', vmin=0.0001, vmax=0.6, cmap='RdBu') ax3.set_title('Filtro R') ax4.imshow(self.z[0].data, origin='lower', vmin=0.0001, vmax=0.6, cmap='RdBu') ax4.set_title('Filtro Z') ax5.imshow(self.u[0].data, origin='lower', vmin=0.0001, vmax=0.6, cmap='RdBu') ax5.set_title('Filtro U') fig.delaxes(ax=ax2) plt.show() def pl(self): g = self.g[0].data print(g.shape) print(g.min()) print(g.max()) print(g.mean()) print(np.percentile(g.flatten(),3)) print(np.percentile(g.flatten(), 97)) fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, sharex=True, figsize=(18, 8)) ax0.imshow(g, vmin=0.1, vmax=6, origin='lower', cmap='viridis') ax1.imshow(g, vmin=np.percentile(g.flatten(),5), vmax=np.percentile(g.flatten(), 95), origin='lower', cmap='viridis') plt.show() def main(db): galaxia = Glx(db) galaxia.pl() if __name__ == '__main__': main(db=db_open)
ViniBilck/Astro-Vinicius
Cubos/Codes/Galaxy - 1/Galaxy1.py
Galaxy1.py
py
2,530
python
en
code
0
github-code
6
26606119063
#!/usr/bin/env python # coding: utf-8 # # Import Library # In[387]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from glob import glob from sklearn.metrics import mean_absolute_error from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import accuracy_score , classification_report import pandas_profiling from category_encoders import OneHotEncoder from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_validate # In[388]: t=pd.read_csv("test.csv") t.info() # # Import Data # In[389]: def wrangel(path): # read data df=pd.read_csv(path) #extract the social name df["title"]=df["Name"].str.extract("([A-Za-z]+)\.",expand=False) #convert title categorcal data df.loc[df["title"]=="Mr" , "title"] = 0 df.loc[df["title"]=="Miss" , "title"] = 1 df.loc[df["title"]=="Mrs" , "title"] = 2 df.loc[df["title"]=="Master" , "title"] = 3 conditions = (df["title"] == 'Ms') | (df["title"] == 'Col') | (df["title"] == 'Rev') | (df["title"] == 'Dr') | (df["title"] == 'Dona') df.loc[conditions, "title"] = 4 #fill NAN Value of Fare Accorging to Social Name df["Fare"].fillna(df.groupby("Pclass")["Fare"].transform("median"),inplace=True) #fill NAN Value of Age Accorging to Social Name df["Age"].fillna(df.groupby("title")["Age"].transform("median"),inplace=True) #fill NAN Value of Embarked Accorging to Median df["Embarked"]=df["Embarked"].fillna("S") #remove nan columns drop=[] drop.append("Cabin") drop.append("Name") drop.append("Ticket") drop.append("title") df.drop(columns=drop,inplace=True) #convert Sex categorcal data df.loc[df["Sex"]=="male" , "Sex"] = 0 # Male ---> 0 df.loc[df["Sex"]=="female" , "Sex"] = 1 # Female ---> 1 #convert Embarked categorcal data df.loc[df["Embarked"]=="S" , "Embarked"] = 0 # S ---> 1 df.loc[df["Embarked"]=="C" , "Embarked"] = 1 # C ---> 2 df.loc[df["Embarked"]=="Q" , "Embarked"] = 2 # Q ---> 3 return df # In[390]: test = wrangel("test.csv") df = wrangel("train.csv") # In[340]: df.head() # In[341]: df.info() # In[391]: pandas_profiling.ProfileReport(df) # In[343]: df["Embarked"].value_counts() # In[344]: test.info() # In[352]: test.isnull().sum() # # Exploer Data # In[353]: print("Survive :",(df["Survived"]==1).sum()) print("Deceased :",(df["Survived"]==0).sum()) # In[354]: df.describe() # In[355]: # Create the pie chart values=df["Survived"].value_counts() label=["Deceased ","Survive "] plt.pie(values, labels=label,autopct='%1.1f%%') # Add a title plt.title('Distribution of Survived') # Display the chart plt.show() # In[356]: plt.hist(df["Parch"],bins=5, edgecolor='black'); plt.xlabel('Values') plt.ylabel('Frequancy') plt.title("Values of Parch") plt.show(); # In[357]: survive=df[df["Survived"]==1]["SibSp"].value_counts() death=df[df["Survived"]==0]["SibSp"].value_counts() dx=pd.DataFrame([survive,death],index=["survive","death"]) dx.plot(kind="bar"); plt.title("Survive of SibSp "); # In[358]: survive=df[df["Survived"]==1]["Pclass"].value_counts() death=df[df["Survived"]==0]["Pclass"].value_counts() dx=pd.DataFrame([survive,death],index=["survive","death"]) dx.plot(kind="bar"); plt.title("Survive of Pclass "); # In[359]: class1=df[df["Pclass"]==1]["Embarked"].value_counts() class2=df[df["Pclass"]==2]["Embarked"].value_counts() class3=df[df["Pclass"]==3]["Embarked"].value_counts() dx=pd.DataFrame([class1,class2,class3],index=["class 1","class 2","class 3"]) dx.plot(kind="bar",stacked=True); plt.title("Survive of Pclass "); # We Found that Embarked from S in 1st & 2nd & 3rd Class # In[360]: # Create the pie chart values=df["Sex"].value_counts() label=["male","female"] plt.pie(values, labels=label,autopct='%1.1f%%') # Add a title plt.title('Distribution of Survived') # Display the chart plt.show() # In[361]: survive = df[df["Survived"]==1]["Sex"].value_counts() death = df[df["Survived"]==0]["Sex"].value_counts() dx = pd.DataFrame([survive,death],index=["survive","death"]) dx=dx.rename(columns={0:"male",1:"female"}) dx.plot(kind="bar") plt.legend() plt.title("Survive of Sex"); # In[ ]: # In[362]: corrleation = df.drop(columns="Survived").corr() sns.heatmap(corrleation) # # Split Data # In[ ]: # In[363]: df # In[364]: target="Survived" y = df[target] X = df.drop(columns=target) x_train , x_test , y_train , y_test = train_test_split(X,y,test_size=0.2,random_state=42) print("X_train shape:", x_train.shape) print("y_train shape:", y_train.shape) print("X_test shape:", x_test.shape) print("y_test shape:", y_test.shape) # # Baseline # In[365]: y_train_mean = y_train.mean() print ("Baseline :",round(y_train_mean,2)) # # Logestic Regression # # Itrate # In[366]: log_model = LogisticRegression(max_iter=10000) # In[367]: log_model.fit(x_train,y_train) # # # # Evaluate # In[368]: accuracy=classification_report(y_test,log_model.predict(x_test)) print(accuracy) # In[369]: acc_test = accuracy_score(y_test,log_model.predict(x_test)) acc_test = accuracy_score(y_test,log_model.predict(x_test)) acc_train= accuracy_score(y_train,log_model.predict(x_train)) print("Accuracy test:",round(acc_test,2)) print("Accuracy train:",round(acc_train,2)) # # KNN Classfier # In[370]: knn= KNeighborsClassifier(n_neighbors=13) knn.fit(x_train,y_train) # In[371]: accuracy=classification_report(y_test,knn.predict(x_test)) print(accuracy) # In[372]: scoring="accuracy" score = cross_validate(knn , x_train.drop(columns=["PassengerId"],axis=1),y_train,cv=k_fold, n_jobs=1,scoring=scoring) print(score['test_score']) # In[373]: print("Accuracy :",round(np.mean(score['test_score']),2)) # # Descion Tree # In[374]: # Create a decision tree classifier dec_tree= DecisionTreeClassifier() # Train the classifier dec_tree.fit(x_train, y_train) # In[375]: accuracy=classification_report(y_test,dec_tree.predict(x_test)) print(accuracy) # In[376]: acc_test = accuracy_score(y_test,dec_tree.predict(x_test)) print("Accuracy test:",round(acc_test,2)) # In[377]: scoring="accuracy" score = cross_validate(dec_tree , x_train.drop(columns=["PassengerId"],axis=1),y_train,cv=k_fold, n_jobs=1,scoring=scoring) print("Accuracy :",round(np.mean(score['test_score']),2)) # # Random Forest # In[378]: # Create a Random Forest classifier rf_classifier = RandomForestClassifier() # Train the classifier rf_classifier.fit(x_train, y_train) # In[379]: # Calculate the accuracy accuracy = accuracy_score(y_test, rf_classifier.predict(x_test)) print("Accuracy:", round(accuracy,2)) # In[380]: scoring="accuracy" score = cross_validate(rf_classifier , x_train.drop(columns=["PassengerId"],axis=1),y_train, n_jobs=1,scoring=scoring) print("Accuracy :",round(np.mean(score['test_score']),1)) # # Naive Bayes # In[381]: nav= GaussianNB() # Train the classifier nav.fit(x_train, y_train) # In[382]: # Calculate the accuracy accuracy = accuracy_score(y_test, nav.predict(x_test)) print("Accuracy:", round(accuracy,2)) # In[383]: scoring="accuracy" score = cross_validate(nav , x_train.drop(columns=["PassengerId"],axis=1),y_train, n_jobs=1,scoring=scoring) print("Accuracy :",round(np.mean(score['test_score']),2)) # # Communicat # The best model is Random Forest with Accuracy : 82 # In[384]: pred_test=rf_classifier.predict(test) data = pd.DataFrame({'PassengerId': test["PassengerId"], 'Survived': pred_test}) # In[385]: data.head() # In[386]: data.to_csv(r'D:\projects\gender_submission.csv', index=False) # In[ ]:
tamerelateeq/Titanc
titank.py
titank.py
py
8,173
python
en
code
0
github-code
6
14469263973
''' You are given an integer n. There is an undirected graph with n nodes, numbered from 0 to n - 1. You are given a 2D integer array edges where edges[i] = [ai, bi] denotes that there exists an undirected edge connecting nodes ai and bi. Return the number of pairs of different nodes that are unreachable from each other. Example 1: Input: n = 3, edges = [[0,1],[0,2],[1,2]] Output: 0 Explanation: There are no pairs of nodes that are unreachable from each other. Therefore, we return 0. Example 2: Input: n = 7, edges = [[0,2],[0,5],[2,4],[1,6],[5,4]] Output: 14 Explanation: There are 14 pairs of nodes that are unreachable from each other: [[0,1],[0,3],[0,6],[1,2],[1,3],[1,4],[1,5],[2,3],[2,6],[3,4],[3,5],[3,6],[4,6],[5,6]]. Therefore, we return 14. Constraints: 1 <= n <= 105 0 <= edges.length <= 2 * 105 edges[i].length == 2 0 <= ai, bi < n ai != bi There are no repeated edges. ''' class Solution: def countPairs(self, n: int, edges: List[List[int]]) -> int: adj = defaultdict(list) for edge in edges: adj[edge[0]].append(edge[1]) adj[edge[1]].append(edge[0]) num_pairs = 0 size = 0 remaining = n visit = [False] * n for i in range(n): if not visit[i]: size = self.dfs(i, adj, visit) num_pairs += size * (remaining - size) remaining -= size return num_pairs def dfs(self, node, adj, visit): count = 1 visit[node] = True if node not in adj: return count for nei in adj[node]: if not visit[nei]: count += self.dfs(nei, adj, visit) return count
loganyu/leetcode
problems/2316_count_unreachable_pairs_of_nodes_in_an_undirected_graph.py
2316_count_unreachable_pairs_of_nodes_in_an_undirected_graph.py
py
1,707
python
en
code
0
github-code
6
11467832022
#Vertex class class Vertex: def __init__(self, key): self.id = key self.connected_to = {} #Add neighbors def add_neighbor(self, nbr, weight=0): self.connected_to[nbr] = weight #return all keys in connected to dict def get_connections(self): self.connected_to.keys() #Return id def get_id(self): return self.id #Return weight def get_weight(self, nbr): return self.connected_to[nbr] def __str__(self): return str(self.id) + ' connected to: ' + str([x.id for x in self.connected_to]) #Graph class, represented as an adjacency list class Graph: def __init__(self): self.vert_list = {} self.num_vert = 0 #Add vertex at index key def add_vertex(self, key): self.num_vert += 1 new_vertex = Vertex(key) self.vert_list[key] = new_vertex return new_vertex #Return vertex at index n def get_vertex(self, n): #Looks through keys in vert_list if n in self.vert_list: return self.vert_list[n] else: return None #Add an edge between two vertices def add_edge(self, f, t, cost=0): #f = from vertex #t = to #cost = weight if f not in self.vert_list: nv = self.add_vertex(f) if t not in self.vert_list: nv = self.add_vertex(t) self.vert_list[f].add_neighbor(self.vert_list[t], cost) #Reutns all vertices def get_vertices(self): return self.vert_list.keys() #make an iterattable object def __iter__(self): return iter(self.vert_list.values()) def __contains__(self, n): return n in self.vert_list #Rivalry class class Rivalry: def __init__(self, boy1, boy2): self.boy1 = boy1 self.boy2 = boy2 @staticmethod def fromList(le): if len(le) !=2: raise Exception('Invalid boy line entry') return Rivalry(le[0], le[1]) def __str__(self): return "Rivalry(boy1: {}, boy2: {})".format(self.boy1, self.boy2) def __repr__(self): return self.__str__() #Boy class class Boy: def __init__(self, index, boy): self.index = index self.boy = boy @staticmethod def fromList(le): if len(le) !=2: raise Exception('Invalid boy') return Boy(le[0], le[1]) def __str__(self): return "Rivalry(index: {}, boy: {})".format(self.index, self.boy) def __repr__(self): return self.__str__() def make_graph(boys, rivalries): #Add each boy as a vertex g = Graph() for i in range(len(boys)): g.add_vertex(boys[i]) #Add each rivalry as an edge, using boy1 as a 'from' vertex and boy2 as a 'to' vertex for i in range(len(rivalries)): boy1 = rivalries[i].boy1 boy2 = rivalries[i].boy2 g.add_edge(boy1, boy2) return g def bfs(graph_to_search, start, end): queue = [[start]] visited = set() while queue: # Gets the first path in the queue path = queue.pop(0) # Gets the last node in the path vertex = path[-1] # Checks if we got to the end if vertex == end: return path # We check if the current node is already in the visited nodes set in order not to recheck it elif vertex not in visited: # enumerate all adjacent nodes, construct a new path and push it into the queue neighbors = vertex.connected_to #for current_neighbour in graph_to_search.get_vertex(vertex).get_connections(): for current_neighbour in neighbors: new_path = list(path) new_path.append(current_neighbour) queue.append(new_path) # Mark the vertex as visited visited.add(vertex) #Checks each edge to see that it goes between a Babyface and Heel def edge_check(boys, rivalries, babyfaces, heels): valid_edges = False for rivalry in rivalries: if rivalry.boy1 in babyfaces: if rivalry.boy2 in heels: #then this connection is valid valid_edges = True else: valid_edges = False elif rivalry.boy1 in heels: if rivalry.boy2 in babyfaces: valid_edges = True else: valid_edges = False return valid_edges #***************************** #Get info from text file lines = [] with open('boys.txt', 'r') as file: line = file.readline() while line: #Stick current line into new list cur_line = line.split() if len(cur_line) > 0: lines.append(cur_line) line = file.readline() #Now that we have all the data, we can parse and format it if len(lines[0]) != 1: raise Exception('invalid formatting for number of boys on line 1') #first line num_boys = int(lines[0][0]) # print("Number of boys:") # print(num_boys) boys = [boy[0] for boy in lines[1:(num_boys+1)]] #From the number of rivalries to the end #print("Rivalries:") rivalries = lines[(2+num_boys):] # print(rivalries) # print("Boys") # print(boys) #Make a list of Rivalry objects #rivalries = [Rivalry.fromList(riv) for riv in rivalries] #Test data #boys = ['Ace', 'Duke', 'Jax', 'Biggs', 'Stone'] rivalries = [['Ace', 'Duke'], ['Ace', 'Biggs'], ['Jax', 'Duke'], ['Stone', 'Biggs'], ['Stone', 'Duke'], ['Biggs', 'Jax']] #print(rivalries) rivalries = [Rivalry.fromList(riv) for riv in rivalries] #Make the graph g = make_graph(boys, rivalries) #Get set of distances babyfaces=[] heels=[] start = g.get_vertex(boys[0]) babyfaces.append(start.id) #d = 0 for vertex in g: target = g.get_vertex(vertex.id) #Call bfs on this vertex to get its distance from Start if start!=target: #d +=1 path = bfs(g, start, target) if path is not None: d = len(path) else: d = -1 #print"Dist from %s to %s", (start.id, target.id) if d %2 == 0: babyfaces.append(vertex.id) else: heels.append(vertex.id) #Check that edges go bewtween babyfaces and heels and not two of the same group valid_edges = edge_check(boys, rivalries, babyfaces, heels) if valid_edges == True: print("This is valid!") print("babyfaces:") print(babyfaces) print("Heels") print(heels) else: print("No, it is not possible to designate this list of boys as one or the other with the given rivalries")
sarahovey/AnalysisOfAlgos
hw5/hw5.py
hw5.py
py
6,759
python
en
code
0
github-code
6
73551642109
import random class Rsa: def __init__(self, q=19, p=23, size_of_key=0): self.q = q self.p = p if size_of_key: self.q = self.gen_prime(size_of_key) self.p = self.gen_prime(size_of_key) while self.p == self.q : self.p = self.gen_prime(size_of_key) self.public, self.private = self.generate_key_pair(self.q, self.p) def gen_prime(self, size_of_key): first_primes_list = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349] def nBitRandom(n): return random.randrange(2**(n-1)+1, 2**n - 1) def getLowLevelPrime(n): '''Generate a prime candidate divisible by first primes''' while True: # Obtain a random number pc = nBitRandom(n) # Test divisibility by pre-generated # primes for divisor in first_primes_list: if pc % divisor == 0 and divisor**2 <= pc: break else: return pc def isMillerRabinPassed(mrc): '''Run 20 iterations of Rabin Miller Primality test''' maxDivisionsByTwo = 0 ec = mrc-1 while ec % 2 == 0: ec >>= 1 maxDivisionsByTwo += 1 assert(2**maxDivisionsByTwo * ec == mrc-1) def trialComposite(round_tester): if pow(round_tester, ec, mrc) == 1: return False for i in range(maxDivisionsByTwo): if pow(round_tester, 2**i * ec, mrc) == mrc-1: return False return True # Set number of trials here numberOfRabinTrials = 20 for i in range(numberOfRabinTrials): round_tester = random.randrange(2, mrc) if trialComposite(round_tester): return False return True while True: prime_candidate = getLowLevelPrime(size_of_key) if not isMillerRabinPassed(prime_candidate): continue else: print(size_of_key, "bit prime is: \n", prime_candidate) return prime_candidate def modInverse(self, e, phi): m0 = phi y = 0 x = 1 if (phi == 1): return 0 while (e > 1): # q is quotient q = e // phi t = phi # m is remainder now, process # same as Euclid's algo phi = e % phi e = t t = y # Update x and y y = x - q * y x = t # Make x positive if (x < 0): x = x + m0 return x ''' Tests to see if a number is prime. ''' def is_prime(self, num): if num == 2: return True if num < 2 or num % 2 == 0: return False for n in range(3, int(num**0.5)+2, 2): if num % n == 0: return False return True def gcd(self, a, b): while b != 0: a, b = b, a % b return a def generate_key_pair(self, p, q): # if not (self.is_prime(p) and self.is_prime(q)): # raise ValueError('Both numbers must be prime.') # elif p == q: # raise ValueError('p and q cannot be equal') # n = pq n = p * q # Phi is the totient of n phi = (p-1) * (q-1) # Choose an integer e such that e and phi(n) are coprime e = random.randrange(1, phi) # Use Euclid's Algorithm to verify that e and phi(n) are coprime g = self.gcd(e, phi) while g != 1: e = random.randrange(1, phi) g = self.gcd(e, phi) # Use Extended Euclid's Algorithm to generate the private key d = self.modInverse(e, phi) # Return public and private key_pair # Public key is (e, n) and private key is (d, n) return ((e, n), (d, n)) #def encrypt(self, plaintext, public_key): def encrypt(self, plaintext , pub_key): # Unpack the key into it's components #key , n = public_key key , n = pub_key # Convert each letter in the plaintext to numbers based on the character using a^b mod m cipher = [pow(ord(char), key , n) for char in plaintext] # Return the array of bytes return cipher def decrypt(self, ciphertext): # Unpack the key into its components key, n = self.private ciphertext = ciphertext.split('\/') ciphertext.pop() ciphertext = ciphertext # Generate the plaintext based on the ciphertext and key using a^b mod m aux = [str(pow(int(char), key, n)) for char in ciphertext] # Return the array of bytes as a string plain = [chr(int(char2)) for char2 in aux] return ''.join(plain) # if __name__ == '__main__': # while True: # print("------------------") # x = Rsa(size_of_key=512) # print("Public Key :",x.public) # cipher = x.encrypt(input("Plain Text < "),x.public) # plain = x.decrypt(cipher) # print("Plain Text >",plain)
Ibrahim-AbuShara/End-to-End-Encryption
RSA.py
RSA.py
py
5,861
python
en
code
1
github-code
6
10775113939
import re import os from collections import Counter, defaultdict, namedtuple from itertools import combinations, product from pprint import pprint from parse import parse, findall from math import prod, sqrt dirname = os.path.dirname(__file__) data = open(f'{dirname}/21-input.txt').read().splitlines() data = [parse('{} (contains {})', d).fixed for d in data] data = [(set(i.split(' ')), a.split(', ')) for i, a in data] set_of_all_ingredients = set.union(*[i for i, _ in data]) all_ingredients = sum((list(i) for i, _ in data), list()) result = dict() for ingredients, allergens in data: for allergen in allergens: if allergen in result: result[allergen] &= ingredients else: result[allergen] = ingredients.copy() set_of_ingredients_with_no_allergens = set_of_all_ingredients.copy() for allergen, ingredients in result.items(): set_of_ingredients_with_no_allergens -= ingredients print(sum([all_ingredients.count(s) for s in set_of_ingredients_with_no_allergens])) result2 = {} allergens_left = list(result.keys()) ingredients_identified = set() while allergens_left: for allergen in allergens_left.copy(): possibles = result[allergen] - ingredients_identified if len(possibles) == 1: ingredient = possibles.pop() result2[allergen] = ingredient ingredients_identified.add(ingredient) allergens_left.remove(allergen) print(','.join(result2[allergen] for allergen in sorted(result2.keys())))
knjmooney/Advent-Of-Code
2020/21-allergens.py
21-allergens.py
py
1,513
python
en
code
0
github-code
6
37111986575
#얘는 계속 실행이 되어야 해서, jupyter notebook에서는 안된다. #이걸 하는 목적 : dialog flow로부터 데이터를 받아, 여기서 처리한 후 다시 dialog flow로 반환 #그걸 위해서는 json으로 리턴해야 한다. import requests import urllib import IPython.display as ipd import json from bs4 import BeautifulSoup from flask import Flask, request, jsonify def getWeather(city) : url = "https://search.naver.com/search.naver?query=" url = url + urllib.parse.quote_plus(city + "날씨") print(url) bs = BeautifulSoup(urllib.request.urlopen(url).read(), "html.parser") temp = bs.select('span.todaytemp') desc = bs.select('p.cast_txt') #dictionery가 좋은 리턴방식이다. return {"temp":temp[0].text, "desc":desc[0].text} #temp가 온도, desc가 어제보다 4도 낮아요. #return {"temp":temp[4+7].text, "desc":desc[0].text} #dctionery방식으로 하면, 이런식으로, 수정할때 용이하다. #return temp[0].text + "/" + desc[0].text #리턴 값을 문자열로 준다. #Flask 객체 생성 app = Flask(__name__) @app.route('/') #'데코레이터'라고 한다. 특정 함수가 호출할때, 앞뒤로 감싸는것, 클래스에 선언된 route다. 브라우저에 입력한것을 home에 넣어준다. #잘 몰라도, 웹어플리케이션을 쉽게 만들도록 해준다. def home(): name = request.args.get("name") item = request.args.get("item") return "hello"#호출할때, 반드시 name이라는 파라미터를 호출해야한다. @app.route('/abc')#데코레이터'라고 한다. 특정 함수가 호출할때, 앞뒤로 감싸는것, 클래스에 선언된 route다. 브라우저에 입력한것을 home에 넣어준다. #잘 몰라도, 웹어플리케이션을 쉽게 만들도록 해준다. def abc(): return "test" @app.route('/weather')#데코레이터'라고 한다. 특정 함수가 호출할때, 앞뒤로 감싸는것, 클래스에 선언된 route다. 브라우저에 입력한것을 home에 넣어준다. #잘 몰라도, 웹어플리케이션을 쉽게 만들도록 해준다. def weather(): city = request.args.get("city") info = getWeather(city) #return "<font color=red>" + info["temp"] + "도 " + info["desc"] + "</font>" #return info #웹표준방식이 아니어서, 안된다. #return json.dumps(info) return jsonify(info) #어떤 요청이 들어와도, 무조건, Hello만 리턴하는 서버 #GET방식으로도, POST방식으로도 호출 가능하게 한것, 서비스 할때는, GET방식을 빼준다. #GET방식은 디버깅할때 사용, 공인 서버가 아니다 보니까, dialog가 우리서버를 호출할 수 없다. @app.route('/dialogflow', methods=['GET', 'POST']) def dialogflow(): req = request.get_json(force=True) print(json.dumps(req, indent=4)) res = {'fulfillmentText':'Hello~~~'} return jsonify(res) #dialogflow에서 만든 규약을 지켜서 return을 해야한다. json파일로 해야한다. if __name__ == '__main__': #host = 0.0.0.0에는 실제 ip를 넣어주면 된다. 0.0.0.0은 ip를 모르더라도 접속할 수 있다. 원래는 자기 ip를 써야 한다. #그럴때, 쓸 수 있는게 0.0.0.0, 127.0.0.1 두가지를 사용할 수 있다. app.run(host='0.0.0.0', port = 3000, debug=True)
ssh6189/2020.02.05
server.py
server.py
py
3,365
python
ko
code
0
github-code
6
38169404173
from . import parse as parser from modules import YaraRules, GeoIP, ProjectHoneyPot, LangDetect class Scanner: def __init__(self): self.yara_manager = YaraRules.YaraManager() def parse_email(self, email_content: str): return parser.parse_email(email_content) def scan(self, email: str): # parse it parsed_email = self.parse_email(email) # Use LangDetect on the body of the email, check if it's HTML or not # If it's HTML, use BeautifulSoup to parse it # If it's not HTML, just continue like usual content = parsed_email.get_payload() #lang = LangDetect.detect_language(content) potentialLanguage = [] # Loop around the content if it has multiple parts # Then use the LangDetect to detect the language of each part # Append the result to the potentialLanguage list if parsed_email.is_multipart(): for part in parsed_email.walk(): content_type = part.get_content_type() content_disposition = str(part.get("Content-Disposition")) # Extract text/plain content if "attachment" not in content_disposition and "text/plain" in content_type: content = part.get_payload(decode=True) print("Content -> ", content) # turn content into string but also fix some encoding issues, and make it prettier for it to read content = content.decode('utf-8', 'ignore') content = content.replace("\r\n", "") content = content.replace("\n", "") content = content.replace("\t", "") lang = LangDetect.detect_language(content) potentialLanguage.append(lang) else: continue print("Language -> ", potentialLanguage) # get ip and geoip ip = parsed_email.get("Received-SPF").split("client-ip=")[1].split(";")[0] print("IP Address -> " + str(ip)) #geoip = GeoIP.GeoIP(ip) #print("GeoIP -> ", geoip) # check if ip is in honeypot honeypot = ProjectHoneyPot.ProjectHoneyPot(ip) print("Honeypot -> " + str(honeypot)) # analyze it analysis_result = self.yara_manager.analyze_email(email) # return the result return { "analysis_result": analysis_result, "parsed_email": parsed_email, #"geoip": geoip, "honeypot": honeypot, }
lukasolsen/EmailAnalyser
server/base/service/scan.py
scan.py
py
2,296
python
en
code
0
github-code
6
2247235592
testname = 'TestCase 4.1.1' avoiderror(testname) printTimer(testname, 'Start', '测试AC通过配置二层vlan发现列表发现AP') ################################################################################ # Step 1 # # 操作 # AC1上面创建vlan20,将端口s1p1划入vlan20。 # AC1上面将vlan20加入到自动发现的vlan列表。 # AC1(config-wireless)#discovery vlan-list 20 # S3上面将s3p1划入vlan20 # # 预期 # AC1上show wireless discovery vlan-list看到'VLAN'项已经显示有'0' # ################################################################################ printStep(testname, 'Step 1', 'Config AC1 and S3 to enable discover AP1 automatically', 'Check the result') res1 = 1 # operate # AC1 配置 EnterConfigMode(switch1) SetCmd(switch1, 'vlan', Vlan20) SetCmd(switch1, 'switchport interface', s1p1) EnterInterfaceMode(switch1, 'vlan ' + Vlan20) IdleAfter(3) SetIpAddress(switch1, If_vlan20_s1_ipv4, '255.255.255.0') # 关闭初始配置中AP1三层发现 EnterWirelessMode(switch1) SetCmd(switch1, 'no discovery ip-list', Ap1_ipv4) SetCmd(switch1, 'no discovery ipv6-list', Ap1_ipv6) # 打开二层发现 EnterWirelessMode(switch1) SetCmd(switch1, 'discovery vlan-list', Vlan20) # S3配置 EnterConfigMode(switch3) SetCmd(switch3, 'vlan', Vlan20) SetCmd(switch3, 'switchport interface', s3p1) EnterEnableMode(switch1) data1 = SetCmd(switch1, 'show wireless discovery vlan-list', timeout=5) # check res1 = CheckLine(data1, Vlan20, 'vlan', IC=True) # result printCheckStep(testname, 'Step 1', res1) ################################################################################ # Step 2 # 操作 # 重起AP1 # WLAN-AP# reboot # # 预期 # 重起后AP1被AC1管理。AC1上show wi ap status显示AP的“Status”为“Managed”, # “Configuration Status”为“Success” ################################################################################ printStep(testname, 'Step 2', 'Reboot AP1', 'Check if AC1 managed AP1') res1 = 1 # operate # set managed-ap mode为ap的隐藏命令,可以使Ap重新被AC认证(代替重启AP操作) ChangeAPMode(ap1, ap1mac, switch1, Ap1cmdtype) IdleAfter(20) EnterEnableMode(switch1) res1 = CheckSutCmd(switch1, 'show wireless ap status', check=[(ap1mac, 'Managed', 'Success')], waittime=5, retry=20, interval=5, IC=True) # result printCheckStep(testname, 'Step 2', res1) ################################################################################ # Step 3 # # 操作 # AC1上用命令show wireless ap < AP1MAC > status查看Discovery Reason # # 预期 # AC1上显示 “Discovery Reason”为“L2 Poll Received” ################################################################################ printStep(testname, 'Step 3', 'AC1 show wireless ap <AP1MAC> status', 'Check the result') res1 = 1 # operate&check EnterEnableMode(switch1) res1 = CheckSutCmd(switch1, 'show wireless ap ' + ap1mac + ' status', check=[('Discovery Reason', 'L2 Poll Received')], waittime=8, retry=10, interval=5, IC=True) # result printCheckStep(testname, 'Step 3', res1) ################################################################################ # Step 4 # 操作 # AC1上把vlan 20从vlan发现列表删除 # no discovery vlan-list 20 # # 预期 # AC1上show wireless discovery vlan-list看到“VLAN”项已经没有“20” ################################################################################ printStep(testname, 'Step 4', 'Delete discovery vlan-list 20 on AC1', 'Check the result') res1 = 1 # operate EnterWirelessMode(switch1) SetCmd(switch1, 'no discovery vlan-list', Vlan20) data1 = SetCmd(switch1, 'show wireless discovery vlan-list') # check res1 = CheckLine(data1, Vlan20, 'vlan', IC=True) res1 = 1 if 0 == res1 else 0 # result printCheckStep(testname, 'Step 4', res1) ################################################################################ # Step 5 # 操作 # 重起AP1 # WLAN-AP# reboot # # 预期 # 重起后AP1不能被AC1管理。AC1上show wi ap status显示AP的“Status”为“Failed”, ################################################################################ printStep(testname, 'Step 5', 'Reboot AP1', 'Check if AC1 managed AP1') res1 = 1 # operate ChangeAPMode(ap1, ap1mac, switch1, Ap1cmdtype) IdleAfter(30) EnterEnableMode(switch1) data1 = SetCmd(switch1, 'show wireless ap status', timeout=5) # check res1 = CheckLine(data1, ap1mac, 'Failed', IC=True) # result printCheckStep(testname, 'Step 5', res1) ################################################################################ # Step 6 # 操作 # 恢复默认配置 ################################################################################ printStep(testname, 'Step 6', 'Recover initial config') # operate # S3恢复 EnterConfigMode(switch3) SetCmd(switch3, 'vlan', Vlan40, timeout=1) SetCmd(switch3, 'switchport interface', s3p1, timeout=3) # AC1恢复 EnterConfigMode(switch1) SetCmd(switch1, 'no interface vlan', Vlan20, timeout=5) SetCmd(switch1, 'no vlan', Vlan20, timeout=3) SetCmd(switch1, 'vlan', Vlan40, timeout=3) SetCmd(switch1, 'switchport interface', s1p1, timeout=3) # 开启对AP1的三层发现 EnterWirelessMode(switch1) SetCmd(switch1, 'discovery ip-list', Ap1_ipv4) SetCmd(switch1, 'discovery ipv6-list', Ap1_ipv6) # IdleAfter(Ap_connect_after_reboot) CheckSutCmd(switch1, 'show wireless ap status', check=[(ap1mac, 'Managed', 'Success'), (ap2mac, 'Managed', 'Success')], waittime=5, retry=20, interval=5, IC=True) # end printTimer(testname, 'End')
guotaosun/waffirm
autoTests/waffirm/waffirm_4.1.1_ONE.py
waffirm_4.1.1_ONE.py
py
5,708
python
en
code
0
github-code
6
73789788989
maior = 0 from random import randint import time from operator import itemgetter dados = {'j1': randint(1,6), 'j2': randint(1,6), 'j3': randint(1,6), 'j4': randint(1,6), 'j5': randint(1,6) } for d,i in dados.items(): time.sleep(1) print(f'joogador {d} tirou o numero {i}') ranking = dict() ranking = sorted(dados.items(), key=itemgetter(1), reverse=True) for d,i in enumerate(ranking): print(f'{d+1}o. {i}')
Kaue-Marin/Curso-Python
pacote dowlond/curso python/exercicio91.py
exercicio91.py
py
419
python
en
code
0
github-code
6
35574468725
from collections import defaultdict def createGraph(): g=defaultdict(list) return g def topoSort(g,indeg,q,cnt,n,res): for i in range(n): if indeg[i] is 0: q.append(i) while(q): cur=q.pop(0) for i in g[cur]: indeg[i]-=1 if(indeg[i] is 0): q.append(i) res.append(cur) cnt+=1 if cnt is n: return True return False def kahnsAlgo(g,indeg,n): q,res=[],[] if topoSort(g,indeg,q,0,n,res) is True: return res return [] if __name__ == "__main__": # prequisites=[[1,0],[2,0],[3,1],[3,2]] prequisites=[[1,0],[2,1],[3,2],[1,3]] g=createGraph() n=4 indeg=[0]*n for i,j in prequisites: g[j].append(i) indeg[i]+=1 ans=kahnsAlgo(g,indeg,n) print(ans)
goyalgaurav64/Graph
topological-sort-kahns-algo-bfs.py
topological-sort-kahns-algo-bfs.py
py
868
python
en
code
1
github-code
6
27643482594
from rest_framework.decorators import api_view from rest_framework.response import Response from base.serializers import ProductSerializer, UserSerializer, UserSerializerWithToken from base.models import Product @api_view(['GET']) def getProducts(request): query = request.query_params.get('keyword') if query == None: query = "" products = Product.objects.filter(name__icontains=query) serializer = ProductSerializer(products, many=True) return Response(serializer.data) @api_view(['GET']) def getTopProducts(request): products = Product.objects.filter(rating__gte=4).order_by('-rating')[0:5] serializer = ProductSerializer(products, many=True) return Response(serializer.data) @api_view(['GET']) def getProduct(request, pk): product = Product.objects.get(_id=pk) serializer = ProductSerializer(product, many=False) return Response(serializer.data)
hitrocs-polito/smart-bozor
base/views/product_views.py
product_views.py
py
917
python
en
code
0
github-code
6
15551870726
''' Given an array of n integers nums, a 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] such that i < j < k and nums[i] < nums[k] < nums[j]. Return true if there is a 132 pattern in nums, otherwise, return false. Example 1: Input: nums = [1,2,3,4] Output: false Explanation: There is no 132 pattern in the sequence. Example 2: Input: nums = [3,1,4,2] Output: true Explanation: There is a 132 pattern in the sequence: [1, 4, 2]. Example 3: Input: nums = [-1,3,2,0] Output: true Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0]. ''' # Stack Solution O(N) TC and O(N) Space #we try to find 2-3-1 pattern in reversed nums. class Solution(object): def find132pattern(self, nums): if len(nums) < 3: return False stack = [] # mono stack (decreasing) min_val = float('-inf') # reversed 2-3-1 pattern for elem in reversed(nums): if elem < min_val: return True while stack and stack[-1] < elem: min_val = stack.pop() stack.append(elem) return False
ojhaanshu87/LeetCode
456_132_pattern.py
456_132_pattern.py
py
1,155
python
en
code
1
github-code
6
1149669859
from lib.contents_reader import ContentsReader import asyncio CLEAR_SCREEN = "\u001b[2J" NEW_LINE = "\r\n" class ZineFunctions: def __init__(self, reader, writer, index_file_path): self.reader = reader self.writer = writer self.contents_reader = ContentsReader(index_file_path) async def run_index(self): for welcome_line in self.contents_reader.read_hello_file(): self.writer.write(welcome_line) await self.writer.drain() # Read one byte (any key) await self.reader.read(1) running = True while (running): for index_line in self.contents_reader.read_index_lines(): self.writer.write(index_line) item_choice = await self.reader.read(1) item_choice_int = -1 if item_choice.upper() == 'X': running = False continue item_choice_int = self.contents_reader.map_input_to_numerical_index(item_choice) if item_choice_int == -1: self.writer.write(f"{NEW_LINE}{NEW_LINE}Pick a story, or X to quit.{NEW_LINE}") continue self.writer.write(f"{NEW_LINE}{NEW_LINE}...you picked: %s" % (item_choice)) self.writer.write(f"{NEW_LINE}{NEW_LINE}...press RETURN to start reading, and to continue after each page") await self.reader.read(1) self.writer.write(NEW_LINE + CLEAR_SCREEN) await asyncio.sleep(1) await self.run_story(item_choice_int) self.disconnect() async def run_story(self, story_number): page_number = 1 story_lines = self.contents_reader.read_story(story_number, page_number) while len(story_lines) > 0: self.writer.write(CLEAR_SCREEN) for story_line in story_lines: self.writer.write(story_line) await self.writer.drain() char_read = await self.reader.readline() page_number += 1 story_lines = self.contents_reader.read_story(story_number, page_number) def disconnect(self): self.writer.close()
caraesten/dial_a_zine
dialazine/lib/zine_functions.py
zine_functions.py
py
2,161
python
en
code
58
github-code
6
39253810380
from mangaki.models import Artist, Manga, Genre from django.db.utils import IntegrityError, DataError import re from collections import Counter def run(): with open('../data/manga-news/manga.csv') as f: next(f) artists = {} hipsters = Counter() for i, line in enumerate(f): # print(len(line.split(';;'))) title, vo_title, writer, mangaka, editor, origin, genre1, genre2, manga_type, synopsis, poster = line.split(';;') for artist in [writer, mangaka]: if artist in artists: continue m = re.match('^([A-ZÔÛÏ\'-]+) (.*)$', writer) if m: last_name, first_name = m.groups() last_name = last_name.lower().capitalize() if not m: first_name = '' last_name = artist if Artist.objects.filter(first_name=first_name, last_name=last_name).count() == 0: a = Artist(first_name=first_name, last_name=last_name) a.save() else: a = Artist.objects.get(first_name=first_name, last_name=last_name) artists[artist] = a with open('../data/manga-news/manga.csv') as f: next(f) for i, line in enumerate(f): title, vo_title, writer, mangaka, editor, origin, genre1, genre2, manga_type, synopsis, poster = line.split(';;') try: if Manga.objects.filter(title=title, vo_title=vo_title).count() == 0: manga = Manga(title=title, vo_title=vo_title, mangaka=artists[mangaka], writer=artists[writer], editor=editor, origin=origin.lower().replace('hong kong', 'hong-kong').replace('international', 'intl'), manga_type=manga_type.lower(), source='', poster=poster, synopsis=synopsis) manga.save() else: manga = Manga.objects.get(title=title, vo_title=vo_title) if genre1: manga.genre.add(Genre.objects.get(title=genre1)) if genre2: manga.genre.add(Genre.objects.get(title=genre2)) except IntegrityError as err: print(line) print(writer) print(err) break except DataError as err: print(line) print(origin) print(err) break except Genre.DoesNotExist as err: print(line) print('Genres: [%s] [%s]' % (genre1, genre2)) print(err) break run()
mangaki/mangaki
mangaki/tools/add_manga.py
add_manga.py
py
2,689
python
en
code
137
github-code
6
19107028474
"""Extract data on near-Earth objects and close approaches from CSV and JSON files. The `load_neos` function extracts NEO data from a CSV file, formatted as described in the project instructions, into a collection of `NearEarthObject`s. The `load_approaches` function extracts close approach data from a JSON file, formatted as described in the project instructions, into a collection of `CloseApproach` objects. The main module calls these functions with the arguments provided at the command line, and uses the resulting collections to build an `NEODatabase`. You'll edit this file in Task 2. """ import csv import json from models import NearEarthObject, CloseApproach def load_neos(neo_csv_path): """Read near-Earth object information from a CSV file. :param neo_csv_path: A path to a CSV file containing data about near-Earth objects. :return: A collection of `NearEarthObject`s. """ neo_list = [] neo_collection = [] with open(neo_csv_path) as csv_file: csv_reader = csv.DictReader(csv_file) for row in csv_reader: neo_list.append((dict([('designation',row['pdes']), ('name', row['name']),('diameter', row['diameter']),('hazardous', row['pha'])]))) for neo_dict in neo_list: neo_collection.append(NearEarthObject(**neo_dict)) return neo_collection def load_approaches(cad_json_path): """Read close approach data from a JSON file. :param cad_json_path: A path to a JSON file containing data about close approaches. :return: A collection of `CloseApproach`es. """ cap_list = [] cap_collection = [] with open(cad_json_path, 'r') as json_file: json_reader = json.load(json_file) for i in range(len(json_reader['data'])): cap_list += [dict(zip(['_designation', 'time', 'distance', 'velocity'], [json_reader['data'][i][0], json_reader['data'][i][3], json_reader['data'][i][4], json_reader['data'][i][7]]))] for cap_dict in cap_list: cap_collection.append(CloseApproach(**cap_dict)) return cap_collection
rcmadden/Near-Earth-Objects
extract.py
extract.py
py
2,061
python
en
code
0
github-code
6
12639173645
""" Escribe un programa que calcule las ganancias mensuales de un profesional, correspondientes a 20 días de trabajo, teniendo en cuenta: a. Debe ingresar el monto total por prestación realizada. b. El programa debe descontar el 10,5% correspondiente a impuestos. c. El programa debe mostrar por pantalla el importe bruto y neto, diario y mensual. d. El programa debe mostrar el importe pagado en impuestos diarios y mensual. """ income = [] incomeWDiscont = [] taxTotal = 0 for day in range(2): income.append(0) bene = 1 while True: income[day] += int(input(f"Ingrese el monto de la prestación {bene} del día {day + 1}: ")) bene += 1 while True: val = int(input(f"Desea seguir ingresando prestaciones para el día {day + 1}? \n 1. Si \n 2. No\n")) if val == 1 or val == 2: break print("Ingrese una respuesta válidad.") if val == 2: break total= sum(income) for day in income: print(f"Importe bruto diario {day} y neto diario: {day-day*0.105}") print(f"El importe pagado en impuestos diarios es: {day*0.105}") taxTotal += day*0.105 print(f"Total bruto: {total}, total neto: {total-total*0.105}. Total de impuestos: {taxTotal}")
sbelbey/pp-python
Ejercicios_21_al_30/ejercicio30.py
ejercicio30.py
py
1,220
python
es
code
0
github-code
6
36060029870
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class LocalizationNetwork(nn.Module): def __init__(self, numOfControlPoints=10): super().__init__() self.numOfControlPoints = numOfControlPoints self.pool = nn.MaxPool2d(2, 2) self.aPool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.conv4 = nn.Conv2d(256, 512, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.bn2 = nn.BatchNorm2d(128) self.bn3 = nn.BatchNorm2d(256) self.bn4 = nn.BatchNorm2d(512) self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(512, 256) self.fc2 = nn.Linear(256, numOfControlPoints * 2) self.init_stn() def forward(self, x): x = self.bn1(F.relu(self.conv1(x))) x = self.pool(x) x = self.bn2(F.relu(self.conv2(x))) x = self.pool(x) x = self.bn3(F.relu(self.conv3(x))) x = self.pool(x) x = self.bn4(F.relu(self.conv4(x))) x = self.aPool(x) x = x.view(x.size()[0], -1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = x.view(-1, 2, self.numOfControlPoints) return x def init_stn(self): interval = np.linspace(0.05, 0.95, self.numOfControlPoints // 2) controlPoints = [[],[]] for y in [0.1,0.9]: for i in range(self.numOfControlPoints // 2): controlPoints[1].append(y) for x in interval: controlPoints[0].append(x) self.fc2.weight.data.zero_() self.fc2.bias.data = torch.Tensor(controlPoints).view(-1).float().to(device)
xpiste05/knn_projekt
models/localizationNetwork.py
localizationNetwork.py
py
1,925
python
en
code
0
github-code
6
72493111869
import vk_api from vk_api.keyboard import VkKeyboard, VkKeyboardColor main = VkKeyboard(one_time=True) main.add_button('Создать жалобу на бандита/лидера☢', color=VkKeyboardColor.PRIMARY) main.add_button('Создать жалобу на лидера☣', color=VkKeyboardColor.POSITIVE) main.add_line() # создание новой строки main.add_button('Кнопка 3', color=VkKeyboardColor.NEGATIVE) main.add_button('Кнопка 4', color=VkKeyboardColor.SECONDARY) nick = VkKeyboard(one_time=True) nick.add_button('Да✅', color=VkKeyboardColor.POSITIVE) nick.add_button('Нет⛔', color=VkKeyboardColor.NEGATIVE) success = VkKeyboard(one_time=True) success.add_button('Готово✅', color=VkKeyboardColor.POSITIVE)
Qerkdb/forum-bot
keyboards.py
keyboards.py
py
786
python
ru
code
0
github-code
6
13879817833
N, K = map(int, input().split()) x = 0 count = 0 if N % K == 0 : # 바로 나뉠 때 while(N != 1) : count += 1 N = N / K elif N % K != 0 : # 바로 안 나뉠 때 x = N % K # 뺄 값들 count += x N = N - x while(N != 1) : count += 1 N = N / K print(count) result = 0 # 처음 작성한 풀이에서는 안나눠지면 단순하게 배수일 때까지 빼고 구하면 되겠다 했는데, # N이 K보다 작은 경우는 안따졌다 # 주의 ## 책 풀이 # 1. # while N >= K: # while N % K != 0: # N -= 1 # result += 1 # N // K # result += 1 # while N > 1: # N -= 1 # result += 1 # print(result) # 2. # while True: # # (N == K로 나눠 떨어지는 수)가 될 때까지 1씩 빼기 # target = (N // K) * K # result += (N - target) # N = target # # N이 K보다 작을 때(더 이상 나눌 수 없을 때) 반복문 탈출 # if N < K: # break # # K로 나누기 # result += 1 # N // = K # # 마지막으로 남은 수에 대해 1씩 빼기 # result += (N - 1) # print(result)
codusl100/algorithm
백준/그리디/1이 될 때까지.py
1이 될 때까지.py
py
1,147
python
ko
code
0
github-code
6
13461358632
""" A binary watch has 4 LEDs on the top which represent the hours (0-11), and the 6 LEDs on the bottom represent the minutes (0-59). Each LED represents a zero or one, with the least significant bit on the right. Given a non-negative integer n which represents the number of LEDs that are currently on, return all possible times the watch could represent. """ def countBits(v): """ :type v: int :rtype: int """ count = 0 while v != 0: if v % 2 == 1: count += 1 v >>= 1 return count num_bits = [countBits(i) for i in range(60)] class Solution(object): def readBinaryWatch(self, num): """ :type num: int :rtype: List[str] """ results = [] for h in range(12): for m in range(60): time = str(h) + ":" if num_bits[h] + num_bits[m] == num: if m < 10: time += "0" time += str(m) if time[-1] != ":": results.append(time) return results ans = Solution() print(ans.readBinaryWatch(2))
szhongren/leetcode
401/main.py
main.py
py
1,182
python
en
code
0
github-code
6
38726912007
from __future__ import unicode_literals import shutil import os HOME = os.path.join('pyupdater', 'vendor') junitxml = os.path.join(HOME, 'PyInstaller', 'lib', 'junitxml', 'tests') unittest2 = os.path.join(HOME, 'PyInstaller', 'lib', 'unittest2') items_to_remove = [junitxml, unittest2] def remove(x): if os.path.isfile(x): os.remove(x) if os.path.isdir(x): shutil.rmtree(x, ignore_errors=True) def main(): for i in items_to_remove: remove(i) if __name__ == '__main__': main()
timeyyy/PyUpdater
dev/fix_vendor.py
fix_vendor.py
py
525
python
en
code
7
github-code
6
14988584675
from setuptools import setup package_name = 'leg_controller' setup( name=package_name, version='0.0.0', packages=[package_name], data_files=[ ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ('share/' + package_name, ['package.xml']), ], install_requires=['setuptools'], zip_safe=True, maintainer='pi', maintainer_email='[email protected]', description='TODO: Package description', license='TODO: License declaration', tests_require=['pytest'], entry_points={ 'console_scripts': [ "servo_node = leg_controller.servoController:main", "kin_node = leg_controller.pointToAngle:main", "animation_node = leg_controller.simpleCommands:main" ], }, )
PetriJF/Hexapod
src/leg_controller/setup.py
setup.py
py
813
python
en
code
2
github-code
6
29157516812
#!/usr/bin/env python3 import asyncio from mavsdk import System from mavsdk.gimbal import GimbalMode, ControlMode async def run(): # Init the drone drone = System() await drone.connect(system_address="udp://:14540") # Start printing gimbal position updates print_gimbal_position_task = \ asyncio.ensure_future(print_gimbal_position(drone)) print("Taking control of gimbal") await drone.gimbal.take_control(ControlMode.PRIMARY) # Set the gimbal to YAW_LOCK (= 1) mode (see docs for the difference) # Other valid values: YAW_FOLLOW (= 0) # YAW_LOCK will fix the gimbal pointing to an absolute direction, # whereas YAW_FOLLOW will point relative to vehicle heading. print("Setting gimbal mode") await drone.gimbal.set_mode(GimbalMode.YAW_FOLLOW) print("Look forward first") await drone.gimbal.set_pitch_and_yaw(0, 0) await asyncio.sleep(1) print("Look down") await drone.gimbal.set_pitch_and_yaw(-90, 0) await asyncio.sleep(2) print("Back to horizontal") await drone.gimbal.set_pitch_and_yaw(0, 0) await asyncio.sleep(2) print("Slowly look up") await drone.gimbal.set_pitch_rate_and_yaw_rate(10, 0) await asyncio.sleep(3) print("Back to horizontal") await drone.gimbal.set_pitch_and_yaw(0, 0) await asyncio.sleep(2) print("Look right") await drone.gimbal.set_pitch_and_yaw(0, 90) await asyncio.sleep(2) print("Look forward again") await drone.gimbal.set_pitch_and_yaw(0, 0) await asyncio.sleep(2) print("Slowly look to the left") await drone.gimbal.set_pitch_rate_and_yaw_rate(0, -20) await asyncio.sleep(3) print("Look forward again") await drone.gimbal.set_pitch_and_yaw(0, 0) await asyncio.sleep(2) # Set the gimbal to track a region of interest (lat, lon, altitude) # Units are degrees and meters MSL respectively print("Look at a ROI (region of interest)") await drone.gimbal.set_roi_location(47.39743832, 8.5463316, 488) await asyncio.sleep(3) print("Look forward again") await drone.gimbal.set_pitch_and_yaw(0, 0) await asyncio.sleep(2) print("Release control of gimbal again") await drone.gimbal.release_control() print_gimbal_position_task.cancel() async def print_gimbal_position(drone): # Report gimbal position updates asynchronously # Note that we are getting gimbal position updates in # euler angles; we can also get them as quaternions async for angle in drone.telemetry.camera_attitude_euler(): print(f"Gimbal pitch: {angle.pitch_deg}, yaw: {angle.yaw_deg}") if __name__ == "__main__": # Run the asyncio loop asyncio.run(run())
mavlink/MAVSDK-Python
examples/gimbal.py
gimbal.py
py
2,709
python
en
code
246
github-code
6
31973217705
"""filename and file size in file model Revision ID: 6d23296b922b Revises: 6ec29c8de008 Create Date: 2023-03-02 17:47:25.025321 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6d23296b922b' down_revision = '6ec29c8de008' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('files', schema=None) as batch_op: batch_op.add_column(sa.Column('filename', sa.String(length=255), nullable=True)) batch_op.add_column(sa.Column('file_size', sa.String(length=255), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('files', schema=None) as batch_op: batch_op.drop_column('file_size') batch_op.drop_column('filename') # ### end Alembic commands ###
synzr/file-transfer-service
migrations/versions/6d23296b922b_filename_and_file_size_in_file_model.py
6d23296b922b_filename_and_file_size_in_file_model.py
py
952
python
en
code
0
github-code
6
70943710908
from pytsbe.main import TimeSeriesLauncher def multivariate_launch_example(): """ Example how to launch benchmark with several libraries with different parameters for multivariate time series forecasting For more detailed info check documentation or docstring descriptions in classes below. Important! The parameter 'predefined_model' for FEDOT framework does not launch the AutoML process. It should be removed to use AutoML. """ experimenter = TimeSeriesLauncher(working_dir='./example_multivariate_launch', datasets=['SSH'], launches=2) experimenter.perform_experiment(libraries_to_compare=['FEDOT'], horizons=[20], libraries_params={'FEDOT': {'predefined_model': 'auto'}}, validation_blocks=2, clip_border=400) if __name__ == '__main__': multivariate_launch_example()
ITMO-NSS-team/pytsbe
examples/multivariate_module_launch.py
multivariate_module_launch.py
py
1,037
python
en
code
30
github-code
6
32841420589
import pandas as pd import numpy as np import pickle as pkl import matplotlib.pyplot as plt import re import jieba import subprocess from gensim.test.utils import get_tmpfile, common_texts from gensim.models import Word2Vec, KeyedVectors from sklearn.metrics.pairwise import cosine_similarity from sklearn.manifold import TSNE from matplotlib.font_manager import FontManager from pylab import mpl jieba.load_userdict('C:/Users/choose/venv/Lib/site-packages/jieba/dict.blue.txt') def load_stopwords(): with open('util/stopwords.pkl', 'rb') as f: stopwords = pkl.load(f) return stopwords def load_symbols(): ret = [] with open('util/symbols_20181216.txt', 'r', encoding='utf-8') as f: rows = f.readlines() f.close() for row in rows: if row[:-1] not in ret: ret.append(row[:-1]) return ret def load_pattern(): symbols = load_symbols() symbols += ['\n', '\r\n', '\r'] symbols_str = '' for symbol in symbols: if symbol in '[]()-': symbol = '\\' + symbol symbols_str += symbol return re.compile(r'([0-9]+|\.+|[a-zA-Z])|[{}]+'.format(symbols_str)) def to_sentence(document): ret = list() rule = re.compile('[\W]+') result = rule.split(document) for sentence in result: if len(sentence) > 0: ret.append(sentence) return ret def tokenize(corpus, stopwords=load_stopwords(), pattern=re.compile(r'[\WA-Za-z0-9]+'), length_constraint=2): tokenized_corpus = [] for doc in corpus: tokenized_doc = jieba.lcut(doc) words = [] for word in tokenized_doc: if word in stopwords or pattern.match(word): continue elif len(word) < length_constraint: continue else: words.append(word) tokenized_corpus.append(words) return tokenized_corpus
kartd0094775/IdentifyKOL
util/preprocessing.py
preprocessing.py
py
1,846
python
en
code
0
github-code
6
32149840487
# Upload BOJ silver-1 Brute-force 2615번 오목 # 참고 블로그 : https://velog.io/@hygge/Python-%EB%B0%B1%EC%A4%80-2615-%EC%98%A4%EB%AA%A9-Brute-Force import sys board = [list(map(int,input().split())) for _ in range(19)] visited = [[0 for _ in range(19)] for _ in range(19)] win = 0 ways = [[0,1],[1,0],[1,1],[-1,1]] answer = [] for x in range(19): for y in range(19): if board[x][y]: target = board[x][y] for i in range(4): cnt = 1 nx = x + ways[i][0] ny = y + ways[i][1] while 0 <= nx < 19 and 0 <= ny < 19 and board[nx][ny] == target: cnt += 1 if cnt == 5: # 육목 체크 if 0 <= x-ways[i][0] < 19 and 0 <= y-ways[i][1] < 19 and board[x-ways[i][0]][y-ways[i][1]] == target: break if 0 <= nx + ways[i][0] < 19 and 0 <= ny+ways[i][1] < 19 and board[nx+ways[i][0]][ny+ways[i][1]] == target: break print(target) print(x+1,y+1) sys.exit(0) nx += ways[i][0] ny += ways[i][1] print(0)
HS980924/Algorithm
src/2.BruteForce/B#2615_오목.py
B#2615_오목.py
py
1,378
python
en
code
2
github-code
6
21160883826
import os import math import torch import pytorch_lightning as pl import torch.nn.functional as F import torch.nn as nn from numpy import sqrt, argmax from torch.optim import lr_scheduler from .model import CNN import numpy as np import pandas as pd from sklearn.metrics import roc_curve, confusion_matrix, roc_auc_score from matplotlib import pyplot from backbone.vit_pytorch import cait, vit, deepvit from backbone.torchvision.models_orig import resnet, densenet, inception from factory.config import * class Model(pl.LightningModule): def __init__(self, model_name): super().__init__() self.model_name = model_name # efficientnet-b0 ~ efficientnet-b5 if model_name == 'efficientnet-b0': self.net = CNN(backbone="efficientnet-b0", freeze=False) if model_name == 'efficientnet-b1': self.net = CNN(backbone="efficientnet-b1", freeze=False) if model_name == 'efficientnet-b2': self.net = CNN(backbone="efficientnet-b1", freeze=False) if model_name == 'efficientnet-b3': self.net = CNN(backbone="efficientnet-b2", freeze=False) if model_name == 'efficientnet-b4': self.net = CNN(backbone="efficientnet-b4", freeze=False) if model_name == 'efficientnet-b5': self.net = CNN(backbone="efficientnet-b5", freeze=False) #naive vit elif model_name == 'vit': self.net = vit.ViT(image_size=IMG_SIZE , patch_size=32, num_classes=2, dim=1024, depth=6, heads=16, mlp_dim=2048, dropout=0.1, emb_dropout=0.1) #Cait elif model_name == 'cait': self.net = cait.CaiT(image_size=IMG_SIZE, patch_size=32, num_classes=2, dim=1024, depth=12, cls_depth=2, heads=16, mlp_dim=2048, dropout=0.1, emb_dropout=0.1, layer_dropout=0.05) #deep vit elif model_name == 'deepvit': self.net = deepvit.DeepViT(image_size=IMG_SIZE, patch_size=32, num_classes=2, dim=1024, depth=6, heads=16, mlp_dim=2048, dropout=0.1, emb_dropout=0.1) #resnet50 elif model_name == 'resnet50': self.net = resnet.resnet50(pretrained=True) #resnet101 elif model_name == 'resnet101': self.net = resnet.resnet101(pretrained=True) #resnet152 elif model_name == 'resnet152': self.net = resnet.resnet152(pretrained=True) #densenet121 elif model_name == 'densenet121': self.net = densenet.densenet121(pretrained=True) #densenet161 elif model_name == 'densenet161': self.net = densenet.densenet161(pretrained=True) #densenet169 elif model_name == 'densenet169': self.net = densenet.densenet169(pretrained=True) #densenet201 elif model_name == 'densenet201': self.net = densenet.densenet201(pretrained=True) #inception_v3 elif model_name == 'inception_v3': self.net = inception.inception_v3(pretrained=True) hidden_dim1 = 256 hidden_dim2 = 64 num_classes = 2 dropout = 0.1 self.classifier = nn.Sequential( nn.Linear(1000, hidden_dim1), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim1, hidden_dim2), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim2, num_classes) ) self.train_preds = [] self.train_gts = [] self.valid_preds = [] self.valid_gts = [] self.test_preds = [] self.test_probs = [] self.test_gts = [] def forward(self, x): if 'efficientnet' in self.model_name: return self.net(x) elif 'inception' in self.model_name: x = self.net(x) return self.classifier(x.logits) else: x = self.net(x) return self.classifier(x) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-4) scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1) return [optimizer], [scheduler] def training_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = F.cross_entropy(y_hat, y) for gy in y: self.train_gts.append(gy.cpu().item()) for py in y_hat: c = torch.argmax(py) self.train_preds.append(c.cpu().item()) self.log("loss", loss, on_epoch=True, prog_bar=True) return loss def training_epoch_end(self, outputs): acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.train_gts, self.train_preds ) avg_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log("train_avg_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("train_acc", acc, on_epoch=True, prog_bar=True) self.log("train_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("train_specificity", spe, on_epoch=True, prog_bar=True) self.log("train_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("train_npv", npv, on_epoch=True, prog_bar=True) self.log("train_tn", tn , on_epoch=True, prog_bar=True) self.log("train_fp", fp, on_epoch=True, prog_bar=True) self.log("train_fn", fn, on_epoch=True, prog_bar=True) self.log("train_tp", tp, on_epoch=True, prog_bar=True) self.train_preds = [] self.train_gts = [] def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = F.cross_entropy(y_hat, y) for gy in y: self.valid_gts.append(gy.cpu().item()) for py in y_hat: c = torch.argmax(py) self.valid_preds.append(c.cpu().item()) acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.valid_gts, self.valid_preds ) self.log("val_bat_loss", loss, on_epoch=True, prog_bar=True) self.log("val_acc", acc, on_epoch=True, prog_bar=True) self.log("val_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("val_specificity", spe, on_epoch=True, prog_bar=True) self.log("val_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("val_npv", npv, on_epoch=True, prog_bar=True) self.log("val_tn", tn , on_epoch=True, prog_bar=True) self.log("val_fp", fp, on_epoch=True, prog_bar=True) self.log("val_fn", fn, on_epoch=True, prog_bar=True) self.log("val_tp", tp, on_epoch=True, prog_bar=True) return { "val_bat_loss": loss, "val_acc": acc, "val_sensitivity(recall)": sen, "val_specificity": spe, "val_ppv(precision)":ppv, "val_npv": npv, "val_tn": tn, "val_fp": fp, "val_fn": fn, "val_tp": tp, } def validation_epoch_end(self, outputs): acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.valid_gts, self.valid_preds ) avg_loss = torch.stack([x['val_bat_loss'] for x in outputs]).mean() self.log("val_avg_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("val_acc", acc, on_epoch=True, prog_bar=True) self.log("val_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("val_specificity", spe, on_epoch=True, prog_bar=True) self.log("val_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("val_npv", npv, on_epoch=True, prog_bar=True) self.log("val_tn", tn , on_epoch=True, prog_bar=True) self.log("val_fp", fp, on_epoch=True, prog_bar=True) self.log("val_fn", fn, on_epoch=True, prog_bar=True) self.log("val_tp", tp, on_epoch=True, prog_bar=True) self.valid_preds = [] self.valid_gts = [] def test_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = F.cross_entropy(y_hat, y) for gy in y: self.test_gts.append(gy.cpu().item()) for py in y_hat: c = torch.argmax(py) p = F.softmax(py, dim=0)[1] self.test_probs.append(p.cpu().item()) self.test_preds.append(c.cpu().item()) self.log("test_loss", loss, on_epoch=True, prog_bar=True) return {'test_loss': loss} def test_epoch_end(self, outputs): acc, sen, spe, ppv, npv, tn, fp, fn, tp = self.calculate_metrics( self.test_gts, self.test_preds ) auc = self.calculate_auc(self.test_gts, self.test_probs) avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() self.log("test_avg_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("test_acc", acc, on_epoch=True, prog_bar=True) self.log("test_sensitivity(recall)", sen, on_epoch=True, prog_bar=True) self.log("test_specificity", spe, on_epoch=True, prog_bar=True) self.log("test_ppv(precision)", ppv, on_epoch=True, prog_bar=True) self.log("test_npv", npv, on_epoch=True, prog_bar=True) self.log("test_auc", auc, on_epoch=True, prog_bar=True) self.log("test_tn", tn , on_epoch=True, prog_bar=True) self.log("test_fp", fp, on_epoch=True, prog_bar=True) self.log("test_fn", fn, on_epoch=True, prog_bar=True) self.log("test_tp", tp, on_epoch=True, prog_bar=True) print('============' * 5) print('Accuracy : {:.4f}, Recall(Sensitivity) : {:.4f}, Specificity :{:.4f}, PPV(Precision) : {:.4f}, NPV : {:.4f}, Auc : {:.4f}, Confusion : ( TP-{} | FP-{} | FN-{} | TN-{} )'.format(acc, sen, spe, ppv, npv, auc, tp, fp, fn, tn)) print('============' * 5) dfGTs = pd.DataFrame(np.round_(np.array(self.test_gts))) dfPreds = pd.DataFrame(np.round_(np.array(self.test_preds))) dfProbs = pd.DataFrame(np.round_(np.array(self.test_probs) * 100, 3)) pd.concat([dfGTs, dfPreds, dfProbs], axis=1).to_csv('./test.csv', index=False) def calculate_metrics(self, gts, preds): tn, fp, fn, tp = confusion_matrix(gts, preds, labels=[0,1]).ravel() if math.isnan(tn): tn = 0 if math.isnan(fp): fp = 0 if math.isnan(fn): fn = 0 if math.isnan(tp): tp = 0 acc = (tp + tn) / (tn + fp + fn + tp) sen = tp / (tp + fn) spe = tn / (tn + fp) ppv = tp / (tp + fp) npv = tn / (tn + fn) if math.isnan(acc): acc = 0 if math.isnan(sen): sen = 0 if math.isnan(spe): spe = 0 if math.isnan(ppv): ppv = 0 if math.isnan(npv): npv = 0 return np.float32(acc), np.float32(sen), np.float32(spe), np.float32(ppv), np.float32(npv), tn, fp, fn, tp def calculate_auc(self, gts, probs): try: auc = roc_auc_score(gts, probs) ns_probs = [0 for _ in range(len(gts))] lr_probs = probs ns_auc = roc_auc_score(gts, ns_probs) lr_auc = roc_auc_score(gts, lr_probs) ns_fpr, ns_tpr, _ = roc_curve(gts, ns_probs) lr_fpr, lr_tpr, _ = roc_curve(gts, lr_probs) # calculate g-mean for each threshold gmeans = sqrt(lr_tpr * (1-lr_fpr)) ix = argmax(gmeans) # plot True, Predict, Best pyplot.scatter(lr_fpr[ix], lr_tpr[ix], marker='*', color='black', label='Best') pyplot.text(lr_fpr[ix] + 0.05, lr_tpr[ix] - 0.05, "FPR: {}\nTPR: {}".format(lr_fpr[ix], lr_tpr[ix]), fontsize=7) pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='True') pyplot.plot(lr_fpr, lr_tpr, marker=',', label='Predict (auc={})'.format(round(auc, 3))) pyplot.xlabel('False Positive Rate (1 - Specificity)') pyplot.ylabel('True Positive Rate (Sensitivity)') pyplot.legend() pyplot.savefig('test_roc.png', dpi=600) except ValueError: auc=0 return auc
Junkkkk/ovarian_cancer_detection
models/lightning_model.py
lightning_model.py
py
12,263
python
en
code
1
github-code
6
73019628988
# Bot information SESSION = 'Media_search' USER_SESSION = 'User_Bot' API_ID = 12345 API_HASH = '0123456789abcdef0123456789abcdef' BOT_TOKEN = '123456:ABC-DEF1234ghIkl-zyx57W2v1u123ew11' USERBOT_STRING_SESSION = '' # Bot settings CACHE_TIME = 300 USE_CAPTION_FILTER = False # Admins, Channels & Users ADMINS = [12345789, 'admin123', 98765432] CHANNELS = [-10012345678, -100987654321, 'channelusername'] AUTH_USERS = [] AUTH_CHANNEL = None # MongoDB information DATABASE_URI = "mongodb://[username:password@]host1[:port1][,...hostN[:portN]][/[defaultauthdb]?retryWrites=true&w=majority" DATABASE_NAME = 'Telegram' COLLECTION_NAME = 'channel_files' # If you are using the same database, then use different collection name for each bot # Messages START_MSG = """ **Hi, I'm Media Search bot** Here you can search files in inline mode. Just press follwing buttons and start searching. """ SHARE_BUTTON_TEXT = 'Checkout {username} for searching files' INVITE_MSG = 'Please join @.... to use this bot'
Mahesh0253/Media-Search-bot
sample_info.py
sample_info.py
py
1,000
python
en
code
514
github-code
6
7705288630
import json import torch from transformers import GPT2Tokenizer from transformers import GPT2DoubleHeadsModel from MTDNN import MTDNN from tqdm import trange, tqdm from keras_preprocessing import sequence import pandas as pd import Utils import pickle import os from torch.utils.data import TensorDataset, DataLoader from torch.utils.tensorboard import SummaryWriter import datetime SPECIAL_TOKENS = ['<pad>', '<eos>', '<rstokn>', '<bos>', '<question>', '<commonsensetask>', '<cose>', '<openbook>'] ATTR_TO_SPECIAL_TOKEN = {'bos_token': '<bos>', 'pad_token': '<pad>', 'eos_token': '<eos>', 'additional_special_tokens': ['<rstokn>', '<question>', '<reply>', '<commonsensetask>', '<cose>', '<openbook>'] } current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") logs_dir_tensorboard = "runs2nomcs/" + (str(current_time) + "morecheckpoint-melco-update-ros") writer = SummaryWriter(logs_dir_tensorboard) device = 'cuda:5' def data_preprocess(): final_data = [] questions = [] choices = [] label = [] facts = [] file_name = 'data/OpenBookFacts/train_complete.jsonl' for line in open(file_name, 'r') : data = (json.loads(line)) questions.append(data['question']['stem']) choices.append([data['question']['choices'][0]['text'], data['question']['choices'][1]['text'], data['question']['choices'][2]['text'], data['question']['choices'][3]['text']]) if data['answerKey'] == 'A' : answer = 0 elif data['answerKey'] == 'B' : answer = 1 elif data['answerKey'] == 'C' : answer = 2 else: answer = 3 label.append(answer) facts.append(data['fact1']) openBook_Data = [["openBook"], questions, choices, label, facts] final_data.append(openBook_Data) file_name = 'data/CoS-E/cose_train_data.csv' data = pd.read_csv(file_name) final_data.append([["CoS-E"], data]) file_name_1 = 'data/commonsense/subtaskB_data_all-2.csv' file_name_2 = 'data/commonsense/subtaskC-alldata.csv' data1 = pd.read_csv(file_name_1) data2 = pd.read_csv(file_name_2) data = data1.merge(data2, on='FalseSent').dropna() final_data.append([["commonsense"], data]) # leave the last 500 return final_data def convert_to_tokens(input, tokenizer): if isinstance(input, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(input)) elif isinstance(input, list): return [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(val)) if not isinstance(val, int) else val for val in input ] elif isinstance(input, pd.Series): input = input.tolist() return [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(val)) if not isinstance(val, int) else val for val in input ] else: import sys print("Conversion Error") sys.exit() def padding_falsesent_choices(datas, tokenizer): pad = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[0])] eos = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[1])] rstokn = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[2])] bos = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[3])] questons = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[4])] commonsensetask = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[5])] COSE = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[6])] openBook = [tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[7])] choice_padding = -1 input_ids = [] lm_labels = [] token_type_ids = [] mc_token_ids = [] mc_labels = [] max_length = 128 for data in datas: if data[0] == ["openBook"]: for question, choices, labels, facts in zip( data[1], data[2], data[3], data[4]): # /mc_labels = [] question, choices, facts = convert_to_tokens(question, tokenizer), convert_to_tokens(choices, tokenizer), convert_to_tokens(facts, tokenizer) input1 = [bos + openBook + rstokn + question + rstokn + choices[0] + rstokn + choices[1] + rstokn + choices[2] + rstokn + choices[3] + eos] input2 = [bos + openBook + rstokn + question + rstokn + facts + eos] mc_token_ids.append(len(input1[0])) mc_token_ids.append(len(input2[0])) input1 = sequence.pad_sequences(input1, maxlen=max_length, padding='post', value=pad) input_ids.append(input1[0]) fakechoice = sequence.pad_sequences([[-1]], maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(fakechoice[0]) tt_id1 = [ (len(openBook) + 1) * rstokn + (len(question) + 1) * questons + (len(choices[0]) + 1) * rstokn + (len(choices[1]) + 1) * questons + (len(choices[2]) + 1) * rstokn + (len(choices[3]) + 2) * questons ] tt_id1 = sequence.pad_sequences(tt_id1, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id1[0]) input2 = sequence.pad_sequences(input2, maxlen=max_length, padding='post', value=pad) input_ids.append(input2[0]) choice = [[-1] * (len(openBook) + 2) + [-1] * len(question) + [-1] + facts + eos] choice = sequence.pad_sequences(choice, maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(choice[0]) tt_id2 = [(len(openBook) + 1) * rstokn + (len(question) + 1) * questons + (len(choices[labels]) + 2) * rstokn] tt_id2 = sequence.pad_sequences(tt_id2, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id2[0]) mc_labels.append(labels) mc_labels.append(labels) elif data[0] == ["CoS-E"]: for idx, value in data[1].iterrows(): value = value[1:] value = convert_to_tokens(value, tokenizer) input1 = [bos + COSE + rstokn + value[1] + rstokn + value[2] + rstokn + value[3] + rstokn + value[4] + rstokn + value[5] + rstokn + value[6] + eos] input2 = [bos + COSE + rstokn + value[1] + rstokn + value[8] + eos] mc_token_ids.append(len(input1[0])) mc_token_ids.append(len(input2[0])) input1 = sequence.pad_sequences(input1, maxlen= max_length, padding='post', value=pad) input_ids.append(input1[0]) fakechoice = sequence.pad_sequences([[-1]], maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(fakechoice[0]) tt_id1 = [(len(COSE) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[2]) + 1) * rstokn + (len(value[3]) + 1) * questons + (len(value[4]) + 1) * rstokn + (len(value[5]) + 1) * questons + (len(value[6]) + 2) * rstokn] tt_id1 = sequence.pad_sequences(tt_id1, maxlen= max_length, padding='post', value=pad) token_type_ids.append(tt_id1[0]) input2 = sequence.pad_sequences(input2, maxlen=max_length, padding='post', value=pad) input_ids.append(input2[0]) choice = [[-1] * (len(COSE) + 2) + [-1] * len(value[1]) + [-1] + value[8] + eos] choice = sequence.pad_sequences(choice, maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(choice[0]) tt_id2 = [(len(COSE) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[8]) +2) * rstokn] tt_id2 = sequence.pad_sequences(tt_id2, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id2[0]) mc_labels.append(value[7]) mc_labels.append(value[7]) elif data[0] == ["commonsense"]: for idx, value in data[1].iterrows(): # call tokenizer value = convert_to_tokens(value, tokenizer) input1 = [bos + commonsensetask + rstokn + value[1] + rstokn + value[2] + rstokn + value[3] + rstokn + value[4]+ eos] ml = input1 input1 = sequence.pad_sequences(input1, maxlen=max_length, padding='post', value=pad) fakechoice = sequence.pad_sequences([[-1]], maxlen=max_length, padding='post', value=choice_padding) tt_id1 = [ (len(commonsensetask) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[2]) + 1) * rstokn + (len(value[3]) + 1) * questons + (len(value[4]) + 2) * rstokn ] tt_id1 = sequence.pad_sequences(tt_id1, maxlen=max_length, padding='post', value=pad) for i in range(3): mc_token_ids.append(len(ml)) input_ids.append(input1[0]) lm_labels.append(fakechoice[0]) token_type_ids.append(tt_id1[0]) input2 = [bos + commonsensetask + rstokn + value[1] + rstokn + value[7 + i] + eos] mc_token_ids.append(len(input2[0])) input2 = sequence.pad_sequences(input2, maxlen=max_length, padding='post', value=pad) input_ids.append(input2[0]) choice = [[-1] + [-1] * len(commonsensetask) + [-1] + [-1] * len(value[1]) + [-1] + value[7 + i] + eos] choice = sequence.pad_sequences(choice, maxlen=max_length, padding='post', value=choice_padding) lm_labels.append(choice[0]) tt_id2 = [(len(commonsensetask) + 1) * rstokn + (len(value[1]) + 1) * questons + (len(value[7 + i]) + 2) * rstokn] tt_id2 = sequence.pad_sequences(tt_id2, maxlen=max_length, padding='post', value=pad) token_type_ids.append(tt_id2[0]) mc_labels.append(value[5]) mc_labels.append(value[5]) # mc_labels.append(0) return input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels def converting_tokens(data, tokenizer): print("Converting tokens to ids ...", flush=True) input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = padding_falsesent_choices(data, tokenizer) input_ids = torch.tensor(input_ids) input_ids = input_ids.view((-1, 2) + input_ids.shape[1:]) mc_token_ids = torch.tensor(mc_token_ids) mc_token_ids = mc_token_ids.view((-1, 2) + mc_token_ids.shape[1:]) lm_labels = torch.tensor(lm_labels) lm_labels = lm_labels.view((-1, 2) + lm_labels.shape[1:]) token_type_ids = torch.tensor(token_type_ids) token_type_ids = token_type_ids.view((-1, 2) + token_type_ids.shape[1:]) mc_labels = torch.tensor(mc_labels) mc_labels = mc_labels.view((-1, 2) + mc_labels.shape[1:]) pickle.dump(input_ids, open("data/pickle/input_ids.p", "wb")) pickle.dump(mc_token_ids, open("data/pickle/mc_token_ids.p", "wb")) pickle.dump(lm_labels, open("data/pickle/lm_labels.p", "wb")) pickle.dump(token_type_ids, open("data/pickle/token_type_ids.p", "wb")) pickle.dump(mc_labels, open("data/pickle/mc_labels.p", "wb")) return input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels def train(model, optimizer, scheduler, train_data, output_dir, num_train_epochs, tokenizer, lm_coef, mc_coef,gradient_accumulation_steps, mgpu, temp=[], valid_data = []): training_loss = {} evaluation_loss = {} global_steps = 0 for epochs in range(num_train_epochs): model.train() print("Training start for epoch {}".format(epochs), flush=True) nb_tr_steps, tr_loss = 0, 0 optimizer.zero_grad() lm_sub_batch_loss, mc_sub_batch_loss, sub_batch_loss = 0, 0, 0 print("sub_batch_loss \t lm_sub_batch_loss \t mc_sub_batch_loss") for step, batch in (enumerate(train_data)): model.train() batch = tuple(t.to(device).type(torch.cuda.LongTensor) for t in batch) input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = batch lm_loss, mc_loss, *_ = model( input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids, mc_labels=mc_labels, lm_labels=lm_labels, task=input_ids[0][0][1] ) mc_loss = mc_loss[0] del input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels loss = (lm_loss * lm_coef) + (mc_loss * mc_coef) loss = loss.mean() loss /= gradient_accumulation_steps loss.backward() tr_loss += loss.item() lm_sub_batch_loss += lm_loss.item() mc_sub_batch_loss += mc_loss.item() sub_batch_loss += loss.item() if (global_steps + 1) % gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # global_steps +=1 optimizer.zero_grad() print("{} \t {} \t {}".format(sub_batch_loss, lm_sub_batch_loss/gradient_accumulation_steps, mc_sub_batch_loss/gradient_accumulation_steps)) writer.add_scalar('Training batch loss', sub_batch_loss, global_steps+1) writer.add_scalar('Training lm batch loss', lm_sub_batch_loss/gradient_accumulation_steps, global_steps+1) writer.add_scalar('Training mc batch loss', mc_sub_batch_loss/gradient_accumulation_steps, global_steps+1) training_loss[(global_steps+1)] = (sub_batch_loss, lm_sub_batch_loss/gradient_accumulation_steps, mc_sub_batch_loss/gradient_accumulation_steps) lm_sub_batch_loss, mc_sub_batch_loss, sub_batch_loss = 0, 0, 0 if (global_steps + 1) % 800 == 0: eval_loss, eval_lm_loss, eval_mc_loss = evaluate_gpt2(model, valid_data) print("{} \t {} \t {}".format(eval_mc_loss, eval_lm_loss, eval_mc_loss)) writer.add_scalar('Eval total loss - 100', eval_loss, (global_steps + 1)) writer.add_scalar('Eval total LM loss - 100', eval_lm_loss, (global_steps + 1)) writer.add_scalar('Eval total MC loss - 100', eval_mc_loss, (global_steps + 1)) evaluation_loss[(global_steps + 1)] = (eval_loss, eval_lm_loss, eval_mc_loss) if not os.path.exists(output_dir + '/' + str(global_steps + 1)): os.makedirs(output_dir + '/' + str(global_steps + 1)) torch.save(model, output_dir + '/' + str(global_steps + 1) + '/' + str(global_steps + 1) + '.pt') # model.save_state_dict(output_dir + '/' + str(global_steps + 1)) global_steps += 1 print("Epoch Completed at Step Size {}".format(global_steps)) if not os.path.exists(output_dir + '/' + '_epoch_' + str(epochs)): os.makedirs(output_dir + '/' + '_epoch_' + str(epochs)) torch.save(model, output_dir + '/' + '_epoch_' + str(epochs) + '/' + str(epochs) + '.pt') # model.save_state_dict(output_dir + '/' + '_epoch_' + str(epochs)) pickle.dump(training_loss, open("data/pickle/training_loss-melco-update.p", "wb")) pickle.dump(evaluation_loss, open("data/pickle/evaluation_loss-melco-update.p", "wb")) return model def evaluate_gpt2(model, valid_data): lm_sub_batch_loss, mc_sub_batch_loss = 0, 0 model.eval() print("\n *************************Evaluation************************************ \n") for step, batch in (enumerate(valid_data)): batch = tuple(t.to(device).type(torch.cuda.LongTensor) for t in batch) input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = batch lm_loss, mc_loss, *_ = model( input_ids, token_type_ids=token_type_ids, mc_token_ids=mc_token_ids, mc_labels=mc_labels, lm_labels=lm_labels, task=input_ids[0][0][1] ) del input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels lm_sub_batch_loss += lm_loss.item() mc_sub_batch_loss += mc_loss[0].item() return (lm_sub_batch_loss + mc_sub_batch_loss)/len(valid_data), (lm_sub_batch_loss)/len(valid_data), (mc_sub_batch_loss)/len(valid_data) def main(): flag = True mgpu = True output_dir= 'checkpoints-More-melco-new' epochs = 3 gradient_accumulation_steps = 8 lm_coef, mc_coef = 1, 0 token_class = GPT2Tokenizer model_Class = MTDNN gpt_model = model_Class.from_pretrained('omcs/-Final') # gpt_model = model_Class.from_pretrained('gpt2-large') gpt_tokenizer = token_class.from_pretrained('omcs/-Final', do_lower_case=True) # gpt_tokenizer = token_class.from_pretrained('gpt2-large', do_lower_case=True) gpt_model, gpt_tokenizer = Utils.add_special_tokens(gpt_model, gpt_tokenizer, ATTR_TO_SPECIAL_TOKEN) gpt_model.to(device) #gpt_model = torch.nn.DataParallel(gpt_model, output_device=1, device_ids=[0, 1]) cache_input_ids, cache_mc_token_ids, cache_lm_labels, cache_token_type_ids, cache_mc_labels = \ "data/pickle/input_ids.p", "data/pickle/mc_token_ids.p", "data/pickle/lm_labels.p", "data/pickle/token_type_ids.p", "data/pickle/mc_labels.p" if flag and os.path.exists(cache_input_ids) and os.path.exists(cache_mc_token_ids) and os.path.exists( cache_lm_labels) and os.path.exists(cache_token_type_ids) and os.path.exists(cache_mc_labels): print("Token ids loaded from previous processed file ... ", flush=True) input_ids, mc_token_ids, lm_labels, token_type_ids, mc_labels = pickle.load(open(cache_input_ids, "rb")), pickle.load(open(cache_mc_token_ids, "rb")), \ pickle.load(open(cache_lm_labels, "rb")), pickle.load(open(cache_token_type_ids, "rb")), \ pickle.load(open(cache_mc_labels, "rb")) else: data = data_preprocess() input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels = converting_tokens(data, gpt_tokenizer) temp = [input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels] train_data, valid_data = Utils.build_dataloader((input_ids, token_type_ids, mc_token_ids, lm_labels, mc_labels)) train_data, valid_data = Utils.generate_batch(train_data, valid_data, 1) t_total = len(train_data) / epochs learning_rate, adam_epsilon, weight_decay, warmup_steps = 1e-5, 1e-8, 0, 0 optimizer, scheduler = Utils.optimizer_generater(gpt_model, learning_rate, adam_epsilon, weight_decay, warmup_steps, t_total) model = train(gpt_model, optimizer, scheduler, train_data, output_dir, epochs, gpt_tokenizer, lm_coef, mc_coef, gradient_accumulation_steps, mgpu, temp, valid_data) print("End of execution", flush=True) output_dir = output_dir + '/' + 'final' if not os.path.exists(output_dir): os.makedirs(output_dir) gpt_tokenizer.save_pretrained(output_dir) if __name__ == '__main__': main()
anandhperumal/ANA-at-SemEval-2020-Task-4-UNION
MTD-NCH.py
MTD-NCH.py
py
19,668
python
en
code
5
github-code
6
18164640711
import pickle import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Download NLTK data (you only need to do this once) nltk.download('stopwords') nltk.download('wordnet') # Load the trained model and vectorizer with open('check_spam_classifier.pkl', 'rb') as clf_file: clf = pickle.load(clf_file) with open('check_spam_vectorizer.pkl', 'rb') as vectorizer_file: vectorizer = pickle.load(vectorizer_file) # Load labels from the text file with open('labels.txt', 'r') as labels_file: labels = labels_file.read().splitlines() # Define stopwords and lemmatizer stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() def preprocess_input(text): # Preprocess the input text in the same way as the training data text = text.lower() text = ' '.join([word for word in text.split() if word not in stop_words]) text = ' '.join([lemmatizer.lemmatize(word) for word in text.split()]) return text def is_scam(input_text): # Preprocess the input text input_text = preprocess_input(input_text) # Vectorize the preprocessed text input_text_tfidf = vectorizer.transform([input_text]) # Make a prediction prediction = clf.predict(input_text_tfidf) # Get the label using the labels list predicted_label = labels[prediction[0]] return predicted_label if __name__ == "__main__": user_input = input("Enter text to check if it's a scam: ") result = is_scam(user_input) print(f"Predicted label: {result}")
GOVINDFROMINDIA/Twitter-Scam-Victims
dsg.py
dsg.py
py
1,596
python
en
code
0
github-code
6
41794735960
import datetime import unittest from pyspark import SparkConf from pyspark.sql import SparkSession import pyspark.sql.functions as f from pyspark.sql.types import StructType, StructField, IntegerType, StringType, MapType, ArrayType import json import csv from src.transformations import add_columns, running_total, group_sales_by_type # TODO: Include testing output map and array data class TestTransformations(unittest.TestCase): def setUp(self) -> None: print("Setting up Spark") conf = SparkConf().set("spark.driver.memory", "8g") self.spark = SparkSession \ .builder \ .master("local[4]") \ .config(conf=conf) \ .appName("test simple transformation") \ .getOrCreate() def test_add_columns(self): # Create test data with each row as tuple test_data = [(1, 2), (3, 4), (5, 6)] # Create test DataFrame from the test data, pass the column names as required test_df = self.spark.createDataFrame(data=test_data, schema=["first", "second"]) # Show data-frame test_df.show(truncate=False) # Execute transformation on the test data-frame and show the results result_df = test_df.transform(add_columns) result_df.show(truncate=False) # Validate column result_columns = result_df.columns self.assertIn("sum", result_columns) # Get rest column out of the data frame as list result_data = result_df.select("sum").collect() result_data = [item["sum"] for item in result_data] # Validate result column values self.assertListEqual(result_data, [3, 7, 11]) def test_map_data(self): test_data = [ (1, "product_1", "2022-11-01", {"store 1": 12, "store 2": 3, "online": 5}), (2, "product_1", "2022-11-02", {"store 1": 5, "online": 2}), (3, "product_1", "2022-11-04", {"store 1": 8, "store 2": 12, "online": 11}), (4, "product_1", "2022-11-05", {"store 1": 3, "store 2": 3}) ] test_df = self.spark.createDataFrame(test_data, schema=["order_id", "product", "date", "sales"]) test_df.show(truncate=False) test_df.printSchema() test_df_schema = StructType([ StructField(name="order_id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="date", dataType=StringType(), nullable=False), StructField(name="sales", dataType=MapType(StringType(), IntegerType(), valueContainsNull=False), nullable=False), ]) test_df = self.spark.createDataFrame(test_data, schema=test_df_schema) test_df.show(truncate=False) test_df.printSchema() def test_list_data(self): test_data = [ (1, "product_1", "2022-11-01", "2022-11-05", [3, 4, 6, 7, 12]), (2, "product_1", "2022-11-06", "2022-11-12", [8, 4, 3, 1, 16, 13, 25]), (3, "product_1", "2022-11-13", "2022-11-15", [3, 3, 6]), (4, "product_2", "2022-11-01", "2022-11-07", [1, 12, 6, 9, 12, 2, 2]), ] test_df_schema = StructType([ StructField(name="order_id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="start_date", dataType=StringType(), nullable=False), StructField(name="end_date", dataType=StringType(), nullable=False), StructField(name="sales", dataType=ArrayType(IntegerType()), nullable=False), ]) test_df = self.spark.createDataFrame(test_data, schema=test_df_schema)\ .withColumn("start_date", f.to_date("start_date"))\ .withColumn("end_date", f.to_date("end_date")) test_df.show(truncate=False) test_df.printSchema() sales_data_raw = test_df.select("sales").collect() print(sales_data_raw) sales_data = [item["sales"] for item in sales_data_raw] print(sales_data) print(type(sales_data)) print([[type(item) for item in data] for data in sales_data]) self.assertListEqual( sales_data, [[3, 4, 6, 7, 12], [8, 4, 3, 1, 16, 13, 25], [3, 3, 6], [1, 12, 6, 9, 12, 2, 2]] ) def test_group_sales_by_type(self): # Create test data test_data = [ (1, "product_1", "online", "2022-11-01", 8), (2, "product_1", "online", "2022-11-02", 6), (3, "product_1", "online", "2022-11-04", 12), (4, "product_1", "retail", "2022-11-01", 11), (5, "product_1", "retail", "2022-11-02", 15), (6, "product_1", "retail", "2022-11-03", 22), (7, "product_1", "retail", "2022-11-04", 21), (8, "product_2", "online", "2022-11-02", 1), (9, "product_2", "online", "2022-11-03", 3), (10, "product_2", "retail", "2022-11-01", 1), (11, "product_2", "retail", "2022-11-02", 5), (12, "product_2", "retail", "2022-11-04", 2) ] # Define test data schema test_df_schema = StructType([ StructField(name="id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="sale_type", dataType=StringType(), nullable=False), StructField(name="sale_date", dataType=StringType(), nullable=False), StructField(name="num_sales", dataType=IntegerType(), nullable=False), ]) # Create test DataFrame test_df = self.spark.createDataFrame(test_data, schema=test_df_schema)\ .withColumn("sale_date", f.to_date("sale_date")) # Print the data frame and its schema test_df.show(truncate=False) test_df.printSchema() # Run the transformation on test data grouped_data = test_df.transform(group_sales_by_type) grouped_data.show(truncate=False) grouped_data.printSchema() # Collect results to validate validation_cols = grouped_data.select("sale_dates", "num_sales").collect() sale_dates = [item['sale_dates'] for item in validation_cols] num_sales = [item['num_sales'] for item in validation_cols] # Print sale_dates column result print(sale_dates) # Create and validate expected `sale_dates` result expected_sale_dates = [ [ datetime.datetime.strptime("2022-11-01", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-04", "%Y-%m-%d").date() ], [ datetime.datetime.strptime("2022-11-01", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-03", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-04", "%Y-%m-%d").date() ], [ datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-03", "%Y-%m-%d").date() ], [ datetime.datetime.strptime("2022-11-01", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-02", "%Y-%m-%d").date(), datetime.datetime.strptime("2022-11-04", "%Y-%m-%d").date(), ] ] self.assertListEqual(sale_dates, expected_sale_dates) # Validate number of sales result self.assertListEqual(num_sales, [[8, 6, 12], [11, 15, 22, 21], [1, 3], [1, 5, 2]]) def test_create_struct_data(self): # Create test data test_data = [ (1, "product_1", "2022-11-01", {"retail": 8, "online": 12}), (2, "product_1", "2022-11-02", {"retail": 3}), (3, "product_1", "2022-11-03", {"retail": 5, "online": 2}), (4, "product_1", "2022-11-04", {"online": 8}), (5, "product_2", "2022-11-02", {"retail": 2, "online": 1}), (6, "product_2", "2022-11-03", {"retail": 3, "online": 2}), ] # Define test data schema test_df_schema = StructType([ StructField(name="id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="sale_date", dataType=StringType(), nullable=False), StructField(name="num_sales", dataType=StructType([ StructField("retail", IntegerType(), nullable=True), StructField("online", IntegerType(), nullable=True), ])) ]) # Create test DataFrame test_df = self.spark.createDataFrame(test_data, schema=test_df_schema) \ .withColumn("sale_date", f.to_date("sale_date")) # Print the data frame and its schema test_df.show(truncate=False) test_df.printSchema() # method 1 - process the nested Row instances: num_sales = test_df.select("num_sales").collect() print(num_sales) online_sales = [item['num_sales']['online'] for item in num_sales] retail_sales = [item['num_sales']['retail'] for item in num_sales] self.assertListEqual(online_sales, [12, None, 2, 8, 1, 2]) self.assertListEqual(retail_sales, [8, 3, 5, None, 2, 3]) # method 2 - select to separate columns num_sales_method_2 = test_df.select("num_sales").select("num_sales.*").collect() print(num_sales_method_2) online_sales_method_2 = [item['online'] for item in num_sales_method_2] retail_sales_method_2 = [item['retail'] for item in num_sales_method_2] self.assertListEqual(online_sales_method_2, [12, None, 2, 8, 1, 2]) self.assertListEqual(retail_sales_method_2, [8, 3, 5, None, 2, 3]) # method 3 - convert the struct column to json num_sales_method_3 = test_df.withColumn("num_sales", f.to_json(f.col("num_sales"))).select("num_sales").collect() print(num_sales_method_3) online_sales_method_3 = [ json.loads(item['num_sales'])['online'] if 'online' in json.loads(item['num_sales']) else None for item in num_sales_method_3 ] retail_sales_method_3 = [ json.loads(item['num_sales'])['retail'] if 'retail' in json.loads(item['num_sales']) else None for item in num_sales_method_3 ] self.assertListEqual(online_sales_method_3, [12, None, 2, 8, 1, 2]) self.assertListEqual(retail_sales_method_3, [8, 3, 5, None, 2, 3]) def test_running_total(self): # # Option 1 - provide a date column # test_data = [ # (1, "product_1", datetime.strptime("2022-11-01", "%Y-%m-%d").date(), 1), # (2, "product_1", datetime.strptime("2022-11-03", "%Y-%m-%d").date(), 1), # (3, "product_1", datetime.strptime("2022-11-04", "%Y-%m-%d").date(), 3), # (4, "product_1", datetime.strptime("2022-11-05", "%Y-%m-%d").date(), 2), # (5, "product_2", datetime.strptime("2022-11-02", "%Y-%m-%d").date(), 4), # (6, "product_2", datetime.strptime("2022-11-04", "%Y-%m-%d").date(), 3), # ] # Option 2 - input date as string and cast in Spark test_data = [ (1, "product_1", "2022-11-01", 1), (2, "product_1", "2022-11-03", 1), (3, "product_1", "2022-11-04", 3), (4, "product_1", "2022-11-05", 2), (5, "product_2", "2022-11-02", 4), (6, "product_2", "2022-11-04", 3), ] test_df_columns = ["order_id", "product", "order_date", "qty"] test_df = self.spark.createDataFrame(test_data, test_df_columns)\ .withColumn("order_date", f.to_date("order_date")) test_df.show(truncate=False) test_df.printSchema() result_df = test_df.transform(running_total) result_df.show(truncate=False) result_data = result_df.select("running_sum_qty").collect() result_data = [item['running_sum_qty'] for item in result_data] self.assertListEqual(result_data, [1, 2, 5, 7, 4, 7]) def test_group_sales_by_type_from_file(self): # Define test data schema test_df_schema = StructType([ StructField(name="id", dataType=IntegerType(), nullable=False), StructField(name="product", dataType=StringType(), nullable=False), StructField(name="sale_type", dataType=StringType(), nullable=False), StructField(name="sale_date", dataType=StringType(), nullable=False), StructField(name="num_sales", dataType=IntegerType(), nullable=False), ]) # Read test data from .csv file test_df = self.spark.read.option("header", True).schema(test_df_schema).csv("test_data/test_data.csv") test_df.show(truncate=False) test_df.printSchema() # Perform the transformation result_df = test_df.transform(group_sales_by_type) result_df.show(truncate=False) result_df.printSchema() # Extract result data frame to list result_data_raw = result_df.select("num_sales").collect() result_data = [item["num_sales"] for item in result_data_raw] # Load expected data with open("test_data/test_result.csv", mode='r') as file_handle: expected_data = [json.loads(line[0]) for line in csv.reader(file_handle)] print(f"Expected data: {expected_data}") self.assertListEqual(result_data, expected_data)
SA01/spark-unittest-tutorial
tests/test_transformations.py
test_transformations.py
py
13,745
python
en
code
0
github-code
6
23210233427
import pandas as pd from morpheus import SequentialComposition, ParallelComposition from morpheus.algo.selection import base_selection_algorithm, random_selection_algorithm from morpheus.utils.encoding import * from morpheus.utils import debug_print from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor VERBOSITY = 0 def default_dataset(n_features=7, random_state=997): """ Generate a dataset to be used in tests. Returns: """ X, y = make_classification( n_samples=10 ** 3, n_features=n_features, n_informative=n_features, n_repeated=0, n_redundant=0, n_clusters_per_class=2, random_state=random_state, ) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=random_state ) train = pd.DataFrame(X_train) train = train.assign(y=y_train) test = pd.DataFrame(X_test) test = test.assign(y=y_test) return train, test def default_chain(random_state=997): """ Default classifier chain. For use in further tests. Returns: """ train, _ = default_dataset(random_state=random_state) m_list = default_m_list_for_chain(train.values) sc = SequentialComposition() for m in m_list: sc.add_estimator(m, location="back") return sc def default_ensemble(random_state=997): """ Default classifier ensmeble. For use in further tests. Returns: """ train, _ = default_dataset(random_state=random_state) m_list = default_m_list_for_ensemble(train.values) pc = ParallelComposition() for m in m_list: pc.add_estimator(m) return pc def default_m_list_for_chain(data): targ_ids_1 = [4, 5] desc_ids_1 = [0, 1, 2] targ_ids_2 = [7] desc_ids_2 = [1, 2, 5] all_desc_ids = [desc_ids_1, desc_ids_2] all_targ_ids = [targ_ids_1, targ_ids_2] m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) print(msg) if set(targ_ids).issubset({6, 7}): learner = RandomForestClassifier elif set(targ_ids).issubset({0, 1, 2, 3, 4, 5}): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model(data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5) m_list.append(m) return m_list def default_m_list_for_ensemble(data): targ_ids_1 = [5] desc_ids_1 = [0, 1, 2] targ_ids_2 = [4, 5] desc_ids_2 = [0, 1, 3] all_desc_ids = [desc_ids_1, desc_ids_2] all_targ_ids = [targ_ids_1, targ_ids_2] m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) print(msg) if set(targ_ids).issubset({6, 7}): learner = RandomForestClassifier elif set(targ_ids).issubset({0, 1, 2, 3, 4, 5}): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model(data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5) m_list.append(m) return m_list def default_m_list_for_mercs(data): n, m = data.shape attributes = list(range(m)) metadata = {"nb_atts": m} settings = {"param": 1, "its": 1} m_codes = base_selection_algorithm(metadata, settings) all_desc_ids, all_targ_ids = [], [] for m_code in m_codes: desc_ids, targ_ids, _ = code_to_query(m_code) all_desc_ids.append(desc_ids) all_targ_ids.append(targ_ids) m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) print(msg) if set(targ_ids).issubset(attributes[-1:]): learner = RandomForestClassifier elif set(targ_ids).issubset(attributes[:-1]): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model(data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5) m_list.append(m) return m_list def random_m_list_for_mercs(data, its=1, fraction=0.3, random_state=997): n, m = data.shape attributes = list(range(m)) metadata = {"nb_atts": m} settings = {"param": 1, "its": its, "fraction": fraction} m_codes = random_selection_algorithm(metadata, settings, random_state=random_state) all_desc_ids, all_targ_ids = [], [] for m_code in m_codes: desc_ids, targ_ids, _ = code_to_query(m_code) all_desc_ids.append(desc_ids) all_targ_ids.append(targ_ids) m_list = [] ids = zip(all_desc_ids, all_targ_ids) for desc_ids, targ_ids in ids: msg = """ Learning model with desc ids: {} targ ids: {} """.format( desc_ids, targ_ids ) debug_print(msg, level=1, V=VERBOSITY) if set(targ_ids).issubset(attributes[-1:]): learner = RandomForestClassifier elif set(targ_ids).issubset(attributes[:-1]): learner = RandomForestRegressor else: msg = """ Cannot learn mixed (nominal/numeric) models """ raise ValueError(msg) # Learn a model for desc_ids-targ_ids m = learn_model( data, desc_ids, targ_ids, learner, max_depth=5, n_estimators=5, random_state=random_state, ) m_list.append(m) return m_list def learn_model(data, desc_ids, targ_ids, model, **kwargs): """ Learn a model from the data. The desc ids and targ ids identify which algo task you should try to learn from the data. Model is a machine learning method that has a .fit() method. Args: data: desc_ids: targ_ids: model: **kwargs: Returns: """ X, Y = data[:, desc_ids], data[:, targ_ids] if X.shape[1] == 1: X = X.ravel() if Y.shape[1] == 1: Y = Y.ravel() try: clf = model(**kwargs) clf.fit(X, Y) except ValueError as e: print(e) # Bookkeeping clf.desc_ids = desc_ids clf.targ_ids = targ_ids return clf
eliavw/morpheus
src/morpheus/tests/basics.py
basics.py
py
7,311
python
en
code
0
github-code
6
39729133373
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('store', '0010_auto_20151113_1608'), ] operations = [ migrations.AddField( model_name='review', name='author', field=models.CharField(default=b'Anonymous', max_length=30), ), ]
midnitehighways/shop
store/migrations/0011_review_author.py
0011_review_author.py
py
420
python
en
code
0
github-code
6
36867613594
from datetime import datetime from sqlalchemy import Column, TIMESTAMP class TimestampsMixin: __abstract__ = True __created_at_name__ = 'created_at' __updated_at_name__ = 'updated_at' __datetime_func__ = datetime.now() created_at = Column( __created_at_name__, TIMESTAMP(timezone=False), default=__datetime_func__, nullable=False ) updated_at = Column( __updated_at_name__, TIMESTAMP(timezone=False), default=__datetime_func__, onupdate=__datetime_func__, nullable=False )
siarie/fastapi-start
app/db/mixins.py
mixins.py
py
581
python
en
code
0
github-code
6
14555529648
from time import sleep import btc import click from core import BitcoinTwitterProfile import schedule @click.group() def bitc0in_twitter(): """ Syncs your twitter profile with bitcoin's volatility. """ @bitc0in_twitter.command() def run(): """Start Program""" bitcoin_percent_change = btc.get_percent_change() profile = BitcoinTwitterProfile(bitcoin_percent_change=bitcoin_percent_change) def job(): bitcoin_percent_change = btc.get_percent_change() state = profile.get_market_state(bitcoin_percent_change) if state == "bearish": profile.dumping() else: profile.pumping() schedule.every(10).minutes.do(job) while True: schedule.run_pending() sleep(1) # print(".", end="", flush=True) @bitc0in_twitter.command() def test(): """Tests everything is setup correctly.""" click.echo("TESTING!!!") bms = BitcoinTwitterProfile(bitcoin_percent_change=5) bms.dumping() click.echo("check the for bearish profile") click.echo(f"state: {bms.state}") click.echo("Sleeping for 15 seconds.") sleep(15) bms.pumping() click.echo("check the for bullish profile") click.echo(f"state: {bms.state}") sleep(15) bms.dumping() if __name__ == "__main__": bitc0in_twitter()
dgnsrekt/bitc0in-twitter
bitc0in_twitter/cli.py
cli.py
py
1,335
python
en
code
1
github-code
6
29282262756
# -*- coding: utf-8 -*- import ispformat.schema as _schema from jsonschema import Draft4Validator, RefResolver, draft4_format_checker from jsonschema.exceptions import RefResolutionError, ValidationError from urlparse import urlsplit class MyRefResolver(RefResolver): def resolve_remote(self, uri): # Prevent remote resolving raise RefResolutionError("LOL NOPE") geojson_allowed_types=('Polygon', 'MultiPolygon') def validate_geojson_type(d): """ Make sure a geojson dict only contains allowed geometry types """ type_=d.get('type') if type_ not in geojson_allowed_types: return False return True def validate_geojson(geodict): """ Convenience function to validate a geojson dict """ _version = 0.1 schema = _schema.load_schema(_version, 'geojson/geojson') v = Draft4Validator( schema, resolver=MyRefResolver.from_schema(schema, store=_schema.deps_for_version(_version)), format_checker=draft4_format_checker, ) for err in v.iter_errors(geodict): return False if not validate_geojson_type(geodict): return False return True def validate_isp(jdict): """ Validate a json-object against the isp json-schema """ if not 'version' in jdict: raise ValidationError(u'version is a required property') try: schema=_schema.versions[jdict['version']] except (AttributeError, TypeError, KeyError): raise ValidationError(u'version %r unsupported'%jdict['version']) v=Draft4Validator( schema, resolver=MyRefResolver.from_schema(schema, store=_schema.deps_for_version(jdict['version'])), format_checker=draft4_format_checker, ) for err in v.iter_errors(jdict): yield err def is_valid_url(u): try: pu=urlsplit(u) except: return False if pu.scheme not in ('', 'http', 'https'): return False if not pu.netloc: return False return True if 'website' in jdict and not is_valid_url(jdict['website']): yield ValidationError(u'%r must be an absolute HTTP URL'%u'website', instance=jdict[u'website'], schema=schema[u'properties'][u'website'], path=[u'website'], schema_path=[u'properties', u'website', u'description'], validator=u'validate_url', validator_value=jdict['website']) if 'logoURL' in jdict and not is_valid_url(jdict['logoURL']): yield ValidationError(u'%r must be an absolute HTTP URL'%u'logoURL', instance=jdict[u'logoURL'], schema=schema[u'properties'][u'logoURL'], path=[u'logoURL'], schema_path=[u'properties', u'logoURL', u'description'], validator=u'validate_url', validator_value=jdict['logoURL']) sch=schema[u'properties'][u'otherWebsites'][u'patternProperties'][u'^.+$'] for name, url in jdict.get('otherWebsites', {}).iteritems(): if is_valid_url(url): continue yield ValidationError(u'%r must be an absolute HTTP URL'%name, instance=url, schema=sch, path=[u'otherWebsite', name], schema_path=[u'properties', u'otherWebsites', u'patternProperties', u'^.+$', 'description'], validator=u'validate_url', validator_value=url) for i, ca in enumerate(jdict.get('coveredAreas', [])): area=ca.get('area') if area and validate_geojson_type(area): continue elif not area: continue yield ValidationError( u'GeoJSON can only contain the following types: %s'%repr(geojson_allowed_types), instance=ca, schema=schema[u'definitions'][u'coveredArea'][u'properties'][u'area'], path=['coveredAreas', i, 'area'], schema_path=[u'properties', u'coveredAreas', u'items', u'properties', u'area'], validator=u'validate_geojson_type', validator_value=ca )
Psycojoker/isp-format
ispformat/validator/schemavalidator.py
schemavalidator.py
py
4,121
python
en
code
0
github-code
6
12014916109
''' Find the nearest smaller numbers on left side in an array Given an array of integers, find the nearest smaller number for every element such that the smaller element is on left side. Examples: Input: arr[] = {1, 6, 4, 10, 2, 5} Output: {_, 1, 1, 4, 1, 2} First element ('1') has no element on left side. For 6, there is only one smaller element on left side '1'. For 10, there are three smaller elements on left side (1, 6 and 4), nearest among the three elements is 4. Input: arr[] = {1, 3, 0, 2, 5} Output: {_, 1, _, 0, 2} Expected time complexity is O(n). https://www.geeksforgeeks.org/find-the-nearest-smaller-numbers-on-left-side-in-an-array/ ''' array = [1, 6, 4, 10, 2, 5] stack = [] for element in array: while (stack and stack[-1] > element): stack.pop() print(stack[-1] if stack else "_") stack.append(element)
umr55766/warmup
Find-the-nearest-smaller-numbers-on-left-side-in-an-array.py
Find-the-nearest-smaller-numbers-on-left-side-in-an-array.py
py
876
python
en
code
1
github-code
6
6401924379
# version: python 3.7 # zID: z5052292 from socket import * from datetime import datetime import time import sys serverIP = sys.argv[1] serverPort = int(sys.argv[2]) clientSocket = socket(AF_INET, SOCK_DGRAM) list_rtts = [] packets_lost = 0 for i in range(10): time_stamp = datetime.now().isoformat(sep=' ')[:-3] ping_message = "PING" + str(i) + ' ' + time_stamp + '\r\n' time_send = datetime.now() clientSocket.sendto(ping_message.encode(), (serverIP, serverPort)) try: clientSocket.settimeout(1) response, severAddress = clientSocket.recvfrom(2048) time_receive = datetime.now() rtt = round((time_receive - time_send).total_seconds() * 1000) list_rtts.append(rtt) print(f'Ping to {serverIP}, seq = {i}, rtt = {rtt} ms') clientSocket.settimeout(None) except timeout: packets_lost += 1 print(f'Ping to {serverIP}, seq = {i}, rtt = time out') print("\n") print(f'Minimun RTT = {min(list_rtts)} ms') print(f'Maximun RTT = {max(list_rtts)} ms') print(f'Average RTT = {round(float(sum(list_rtts)/len(list_rtts)))} ms') print(f'10 packets transmitted, {10 - int(packets_lost)} packets received, {float(packets_lost) / 10 * 100}% of packets loss.') clientSocket.close()
YuanG1944/COMP9331-Computer-Networks-and-Applications
Lab2/PingClient_zhou.py
PingClient_zhou.py
py
1,235
python
en
code
4
github-code
6
10426011052
"""Conceptual model page.""" from django.db import models from wagtail.core.models import Page from wagtail.core.fields import RichTextField from wagtail.admin.edit_handlers import FieldPanel from wagtail.images.edit_handlers import ImageChooserPanel class CMPage(Page): template = "ecos_cm/cm_page.html" ECOLOGICAL_PROCESSES = "ecological processes" TARGET_SPECIES = "target species" CONCELTUAL_MODEL_TYPE_CHOICES = [ (ECOLOGICAL_PROCESSES,'ecological processes'), (TARGET_SPECIES, 'target species'), ] conceptual_model_type = models.CharField( choices=CONCELTUAL_MODEL_TYPE_CHOICES, max_length=100, default=ECOLOGICAL_PROCESSES, ) cm_title = models.CharField(max_length=300, null=True, blank=True) cm_image = models.ForeignKey( "wagtailimages.Image", null=True, blank=False, on_delete=models.SET_NULL, related_name="+" ) cm_human_interactions = RichTextField( null=True, blank=True) cm_ecolagical_processes = RichTextField( null=True, blank=True) cm_oceanographic_variables = RichTextField( null=True, blank=True) cm_performance_indicators = RichTextField( null=True, blank=True) content_panels = Page.content_panels + [ FieldPanel("conceptual_model_type"), FieldPanel("cm_title"), ImageChooserPanel("cm_image"), FieldPanel("cm_human_interactions"), FieldPanel("cm_ecolagical_processes"), FieldPanel("cm_oceanographic_variables"), FieldPanel("cm_performance_indicators"), ]
CNR-ISMAR/ecoads
ecos_cm/models.py
models.py
py
1,600
python
en
code
0
github-code
6
4534058436
#!/usr/bin/env python # -*- coding: UTF-8 -*- import SPARQLWrapper # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def select_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://vocabs.ardc.edu.au/repository/api/sparql/csiro_international-chronostratigraphic-chart_geologic-time-scale-2020") sparql.setReturnFormat(SPARQLWrapper.JSON) # Gets the first 3 geological ages from a Geological Timescale database, via a SPARQL endpoint. sparql.setQuery(""" PREFIX gts: <http://resource.geosciml.org/ontology/timescale/gts#> SELECT * WHERE { ?a a gts:Age . } ORDER BY ?a LIMIT 3 """ ) try: ret = sparql.queryAndConvert() for r in ret["results"]["bindings"]: print(r) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def ask_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setQuery(""" ASK WHERE { <http://dbpedia.org/resource/Asturias> rdfs:label "Asturias"@es } """ ) sparql.setReturnFormat(SPARQLWrapper.XML) try: results = sparql.query().convert() print(results.toxml()) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def construct_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setQuery(""" PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX sdo: <https://schema.org/> CONSTRUCT { ?lang a sdo:Language ; sdo:alternateName ?iso6391Code . } WHERE { ?lang a dbo:Language ; dbo:iso6391Code ?iso6391Code . FILTER (STRLEN(?iso6391Code)=2) # To filter out non-valid values. } LIMIT 3 """ ) try: results = sparql.queryAndConvert() print(results.serialize()) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def describe_example(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setQuery("DESCRIBE <http://dbpedia.org/resource/Asturias>") try: results = sparql.queryAndConvert() print(results.serialize(format="json-ld")) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def update_example(): sparql = SPARQLWrapper.SPARQLWrapper("https://example.org/sparql") sparql.setHTTPAuth(SPARQLWrapper.DIGEST) sparql.setCredentials("some-login", "some-password") sparql.setMethod(SPARQLWrapper.POST) sparql.setQuery(""" PREFIX dbp: <http://dbpedia.org/resource/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> WITH <http://example.graph> DELETE { dbo:Asturias rdfs:label "Asturies"@ast } """ ) try: results = sparql.query() print(results.response.read()) except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def SPARQLWrapper2_example(): sparql = SPARQLWrapper.SPARQLWrapper2("http://dbpedia.org/sparql") sparql.setQuery(""" PREFIX dbp: <http://dbpedia.org/resource/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT ?label WHERE { dbp:Asturias rdfs:label ?label } LIMIT 3 """ ) try: for result in sparql.query().bindings: print(f"{result['label'].lang}, {result['label'].value}") except Exception as ex: print(ex) # REF [site] >> https://sparqlwrapper.readthedocs.io/en/latest/main.html def partial_interpretation_of_results(): sparql = SPARQLWrapper.SPARQLWrapper2("http://example.org/sparql") sparql.setQuery(""" SELECT ?subj ?prop WHERE { ?subj ?prop ?obj } """ ) try: ret = sparql.query() print(ret.variables) # This is an array consisting of "subj" and "prop". for binding in ret.bindings: # Each binding is a dictionary. Let us just print the results. print(f"{binding['subj'].value}, {binding['subj'].type}") print(f"{binding['prop'].value}, {binding['prop'].type}") except Exception as ex: print(ex) #----- sparql.setQuery(""" SELECT ?subj ?obj ?opt WHERE { ?subj <http://a.b.c> ?obj . OPTIONAL { ?subj <http://d.e.f> ?opt } } """ ) try: ret = sparql.query() print(ret.variables) # This is an array consisting of "subj", "obj", "opt". if ("subj", "prop", "opt") in ret: # There is at least one binding covering the optional "opt", too. bindings = ret["subj", "obj", "opt"] # Bindings is an array of dictionaries with the full bindings. for b in bindings: subj = b["subj"].value o = b["obj"].value opt = b["opt"].value # Do something nice with subj, o, and opt. # Another way of accessing to values for a single variable: take all the bindings of the "subj", "obj", "opt". subjbind = ret.getValues("subj") # An array of Value instances. objbind = ret.getValues("obj") # An array of Value instances. optbind = ret.getValues("opt") # An array of Value instances. except Exception as ex: print(ex) def dbpedia_test(): sparql = SPARQLWrapper.SPARQLWrapper("http://dbpedia.org/sparql") sparql.setReturnFormat(SPARQLWrapper.JSON) if True: sparql.setQuery(""" SELECT ?uri ?name ?page ?nick WHERE { ?uri a foaf:Person ; foaf:name ?name; foaf:page ?page; foaf:nick ?nick. } LIMIT 100 """ ) elif False: sparql.setQuery(""" SELECT ?name ?birth ?role WHERE{ ?x a foaf:Person ; dbpprop:fullname ?name; dbpprop:countryofbirth ?birth; dbpprop:role ?role. FILTER regex(?birth, "land$"). FILTER regex(?birth, "^Eng"). FILTER regex(?birth, "England"). } LIMIT 100 """ ) try: ret = sparql.queryAndConvert() print(ret["results"]["bindings"]) except Exception as ex: print(ex) def dbpedia_ko_test(): sparql = SPARQLWrapper.SPARQLWrapper("http://ko.dbpedia.org/sparql") sparql.setReturnFormat(SPARQLWrapper.JSON) if False: sparql.setQuery(""" PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> SELECT DISTINCT ?comment WHERE { ?s foaf:name ?name; rdfs:comment ?comment; dbp:occupation ?occupation. FILTER(REGEX(STR(?occupation), '정치')) } LIMIT 30 """ ) elif False: sparql.setQuery(""" PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> SELECT ?comment, ?relative, ?parent WHERE { ?s foaf:name ?name; rdfs:comment ?comment. FILTER(STR(?name) = '하정우') OPTIONAL{?relative dbo:relative ?s.} OPTIONAL{?parent dbo:child ?s.} } LIMIT 30 """ ) elif True: sparql.setQuery(""" select * where { ?s <http://ko.dbpedia.org/property/장소> ?o } LIMIT 100 """ ) elif False: sparql.setQuery(""" PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> PREFIX res: <http://ko.dbpedia.org/resource/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select * where { ?s rdf:type foaf:Person. ?s <http://ko.dbpedia.org/property/국가> '대한민국'@ko. } """ ) elif False: sparql.setQuery(""" PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://ko.dbpedia.org/property/> PREFIX res: <http://ko.dbpedia.org/resource/> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> select count(*) where { ?s rdf:type foaf:Person. {?s dbp:출생일 ?Bdate.} UNION {?s dbp:사망일 ?Ddate.} ?s dbo:abstract ?abstract. ?s dbp:국적 ?nation. } """ ) try: ret = sparql.queryAndConvert() print(ret["results"]["bindings"]) except Exception as ex: print(ex) def main(): #select_example() #ask_example() #construct_example() #describe_example() #update_example() #SPARQLWrapper2_example() #partial_interpretation_of_results() #----- dbpedia_test() dbpedia_ko_test() #-------------------------------------------------------------------- if "__main__" == __name__: main()
sangwook236/SWDT
sw_dev/python/ext/test/database/sparqlwrapper_test.py
sparqlwrapper_test.py
py
7,970
python
en
code
17
github-code
6
38030500642
import numpy as np import matplotlib.pyplot as plt from tqdm.auto import tqdm """ Reads Siemens rawdata file and returns the DICOs values Author: Ali Aghaeifar <[email protected]> """ def read_dico(twixObj): mdb_vop = [mdb for mdb in twixObj[-1]['mdb'] if mdb.is_flag_set('MDH_VOP')] # concatenate segments of RFs longer than 1ms DICO_comb = [] for mdb in tqdm(mdb_vop, desc='Reading DICO'): if mdb.mdh.Counter.Ide == 0: DICO_comb.append(mdb.data) else: DICO_comb[-1] = np.concatenate((DICO_comb[-1],mdb.data), axis=1) DICO = [] shapes = [dico.shape for dico in DICO_comb] # all shapes shapes = sorted(set(shapes), key=shapes.index) # unique shapes for i, shape in enumerate(shapes): temp = [dico for dico in tqdm(DICO_comb, desc=f'RF Pulse {i}') if dico.shape == shape] DICO.append(np.stack(temp, axis=-1)) forward = [dico_frw[::2] for dico_frw in DICO] reflect = [dico_rfl[1::2] for dico_rfl in DICO] return forward, reflect # memory optimized version, but slower. Only save integral of forward signal def read_dico_memOpt(twixObj): mdb_vop = [mdb for mdb in twixObj[-1]['mdb'] if mdb.is_flag_set('MDH_VOP')] forward_integral = [] forward_length = [] for mdb in tqdm(mdb_vop, desc = 'Reading DICO'): DICO_integral = np.sum(np.abs(mdb.data[::2]), axis=1) DICO_length = mdb.data.shape[1] if mdb.mdh.Counter.Ide == 0: forward_integral.append(DICO_integral) forward_length.append(DICO_length) else: forward_integral[-1] = forward_integral[-1] + DICO_integral forward_length[-1] = forward_length[-1] + DICO_length forward_integral = np.stack(forward_integral, axis=-1) # split RFs with different lengths forward_length_unq = sorted(set(forward_length), key=forward_length.index) forward_integral = [forward_integral[:, np.where(np.array(forward_length) == l)[0]] for l in forward_length_unq] return forward_integral, forward_length_unq def plot_drift(twixObj): forward_integral, _ = read_dico_memOpt(twixObj) for dico in forward_integral: _, ax = plt.subplots() ax.plot(forward_integral[0].squeeze().T) plt.show()
aghaeifar-publications/RFPA_drift
dico_tools.py
dico_tools.py
py
2,283
python
en
code
0
github-code
6
39451137948
from tkinter import Tk, StringVar, Label, Button, Entry, filedialog, W from os.path import exists import generator as gp def cmdExec(): if checkFileExist(textIn.get()) and checkFileExist(textOut.get()): result.set("Gerando planilha de presença ...") isSuccess = gp.main(textIn.get(), textOut.get()) if isSuccess: result.set("Planilha de presença gerada com successo") else: result.set("Ocorreu um erro ao tentar gerar a planilha de presença") def checkFileExist(file): if(file != ""): name = file.split('/') if exists(file): return True result.set(f"Erro: Arquivo de {name[-1]} não encontrado") return False result.set("Erro: Campo vazio") return False def cmdSearchFileIn(): filename = filedialog.askopenfilename() result.set("") textIn.set(filename) def cmdSearchFileOut(): filename = filedialog.askopenfilename() result.set("") textOut.set(filename) screen = Tk() screen.title("Gerador de Lista de Presença") textIn = StringVar() textOut = StringVar() result = StringVar() # pos screen width, height = 500, 200 widthScreen = screen.winfo_screenwidth() heightScreen = screen.winfo_screenheight() posX = int(widthScreen/2 - width/2) posY = int(heightScreen/2 - height/2) screen.geometry(f"{width}x{height}+{posX}+{posY}") # Labels labelFileIn = Label(screen, text="Escolha o arquivo de entrada:").grid(row=0, sticky=W) labelFileOut = Label(screen, text="Escolha o arquivo de saída:").grid(row=2, sticky=W) labelResult = Label(screen, textvariable=result).grid(row=5, pady=10) # Text box textBoxFileIn = Entry(screen, textvariable=textIn).grid(row=1, padx=5, pady=5 ,ipadx=120) textBoxFileOut = Entry(screen, textvariable=textOut).grid(row=3, padx=5, pady=5, ipadx=120) # Butões btnSearchFileIn = Button(screen, text= "Buscar", command=cmdSearchFileIn).grid(row=1, column=1) btnSearchFileOut = Button(screen, text= "Buscar", command=cmdSearchFileOut).grid(row=3, column=1) btnExec = Button(screen, text= "Executar", command=cmdExec).grid(row=4, pady=10) screen.mainloop()
lucasgbezerra/python_projects
attendance_sheet/app.py
app.py
py
2,139
python
en
code
0
github-code
6
70488508987
# accepted on codewars.com import random import math import time conflicts_threshold = 3 # main method def solve_n_queens(size, mandatory_coords): # here we use the simple bactracking if size <= 10: answer = queens_backtrack(size, mandatory_coords) return get_string_of_queens(size, answer) if answer is not None else None attempts_made = 1 while True: partial_sol = generate_greed(size, mandatory_coords) solution = conflicts_solver(partial_sol, size, mandatory_coords) if not solution and (attempts_made <= 15): # print(str(size) + ": no solution been found", sep='') attempts_made += 1 else: if attempts_made <= 15: # print(str(size) + ": SOLUTION BEEN FOUND!!!", sep='') # print("Time elapsed: ", time.time() - start, "seconds.") return get_string_of_queens(size, solution) else: # print(str(size) + ": Tries ended up", sep='') # print("Time elapsed", time.time() - start, "seconds.") return None # here we are building a partial solution for the task given def generate_greed(n, mandatory: list[int]): # initializating positions = [-1] * n verticals = [-1] * n diagonals = [[0 for x in range((2 * n) - 1)] for y in range(2)] # mandatory queen positions[mandatory[0]] = mandatory[1] verticals[mandatory[1]] = 1 diagonals[0][mandatory[0] + mandatory[1]] = 1 diagonals[1][n - 1 + mandatory[0] - mandatory[1]] = 1 marked_rows = [] cols = set() for c in range(n): if c == mandatory[1]: continue cols.add(c) for row in range(n): if row == mandatory[0]: continue for col in cols: if (diagonals[0][row + col] == 0) and (diagonals[1][row + ((n - 1) - col)] == 0): positions[row] = col verticals[col] = 1 diagonals[0][row + col] = 1 diagonals[1][row + ((n - 1) - col)] = 1 cols.remove(col) break if positions[row] == -1: marked_rows.append(row) for row in marked_rows: col = cols.pop() positions[row] = col verticals[col] = 1 diagonals[0][row + col] += 1 diagonals[1][row + ((n - 1) - col)] += 1 return [positions, verticals, diagonals] # now fixing the prev solution, the way is: min conflicts algorithm def conflicts_solver(queens, size, mandatory): diagonals = queens.pop() verticals = queens.pop() positions = queens.pop() length = len(positions) problem_cols = get_conflicts([positions, verticals, diagonals], mandatory) swaps_counter = 0 err_flag = False def place(r, c): verticals[c] -= 1 diagonals[0][r + c] -= 1 diagonals[1][r + ((length - 1) - c)] -= 1 def displace(r, new_c): verticals[new_c] += 1 diagonals[0][r + new_c] += 1 diagonals[1][r + ((length - 1) - new_c)] += 1 while problem_cols: random.shuffle(problem_cols) row = problem_cols.pop() conflicts = [] min_conflicts = [] the_min = math.inf for col in range(length): if col == mandatory[1]: conflicts.append(0) continue conflicts.append(0) conflicts[col] += verticals[col] conflicts[col] += diagonals[0][row + col] conflicts[col] += diagonals[1][row + ((length - 1) - col)] if col == positions[row]: conflicts[col] = math.inf if conflicts[col] < the_min: min_conflicts = [] the_min = conflicts[col] if conflicts[col] == the_min: min_conflicts.append(col) # now let's swap random.shuffle(min_conflicts) swap = min_conflicts.pop() col = positions[row] place(row, col) displace(row, swap) positions[row] = swap # restriction for no solution or bad variation if swaps_counter < size * conflicts_threshold: problem_cols = get_conflicts([positions, verticals, diagonals], mandatory) else: err_flag = True break swaps_counter += 1 return [] if err_flag else positions # getting all the queens in conflicts: def get_conflicts(array, mandatory): diagonals = array.pop() verticals = array.pop() positions = array.pop() length = len(positions) conflicts = [] for col in range(length): if col != mandatory[1]: row = positions[col] if verticals[row] > 1 or diagonals[0][row + col] > 1 or diagonals[1][col + ((length - 1) - row)] > 1: conflicts.append(col) # col return conflicts # translating the coords to string def get_string_of_queens(size, sol): res = '' for coords in sol: res += '.' * coords + 'Q' + '.' * (size - 1 - coords) + '\n' return res flag_of_rec_stop: bool # 36 366 98 989 result: list # bactracking auxiliary method def queens_backtrack(n: int, mandatory): global flag_of_rec_stop, result result = [] flag_of_rec_stop = False def recursive_seeker(row: int, vertical_set: list[int], diag1_set: set[int], diag2_set: set[int], board_size: int) -> None: global flag_of_rec_stop, result # jumping over the mandatory queen if row == mandatory[0]: recursive_seeker(row + 1, vertical_set + [mandatory[1]], diag1_set, diag2_set, board_size) # finishing all the branches of recursion tree if flag_of_rec_stop: return # catching the result if row == board_size: for i in range(board_size): if i == mandatory[0]: result.append(mandatory[1]) else: result.append(vertical_set[i]) flag_of_rec_stop = True return # cycling all over the possible vertical coords: for i in range(board_size): if i not in (vertical_set + [mandatory[1]]) and row + i not in diag1_set and row - i not in diag2_set: new_vertical_set = list(vertical_set) new_diag1_set = set(diag1_set) new_diag2_set = set(diag2_set) new_vertical_set.append(i) new_diag1_set.add(row + i) new_diag2_set.add(row - i) recursive_seeker(row + 1, new_vertical_set, new_diag1_set, new_diag2_set, board_size) # no need to bactrack coz of creating new sets recursive_seeker(0, [], {mandatory[0] + mandatory[1]}, {mandatory[0] - mandatory[1]}, n) return result if len(result) > 0 else None start = time.time_ns() print(solve_n_queens(100, [1, 2])) finish = time.time_ns() print(f'Time costs: {(finish - start) // 10 ** 6} milliseconds')
LocusLontrime/Python
CodeWars_Rush/_1kyu/N_queens_problem_1kyu.py
N_queens_problem_1kyu.py
py
7,078
python
en
code
1
github-code
6
71476996348
# 피보나치 수열 import sys input = sys.stdin.readline n = int(input()) # 1번과 2번 더하면 3번, 2번과 3번 더하면 4번.. 이러한 방법이므로 # A는 B의 값을 받고, B는 A의 값을 더해서 받는다. # 최종 결과값은 A A = 0 B = 1 for i in range(n): A, B = B, B+A print(A)
YOONJAHYUN/Python
BOJ/10826.py
10826.py
py
318
python
ko
code
2
github-code
6