datasetId
large_string
author
large_string
last_modified
large_string
downloads
int64
likes
int64
tags
large list
task_categories
large list
createdAt
large_string
trending_score
float64
card
large_string
NeuroDonu/PortableVersions
NeuroDonu
2025-05-01T07:05:29Z
4,255
12
[ "language:ru", "language:en", "license:apache-2.0", "region:us", "code" ]
[]
2024-10-06T08:37:01Z
2
--- license: apache-2.0 language: - ru - en tags: - code --- ### **Installation Guide for Musubi Tuner Prerequisites (Windows)** **Important Note:** These instructions detail the installation of specific versions of CUDA, MSVC, Triton, and SageAttention using potentially unofficial builds hosted on Hugging Face. Proceed with caution and understand that these might not be the standard or officially supported methods. These steps cover the *dependencies*; the final step to install Musubi Tuner itself is not included here. This guide outlines the steps to install the necessary prerequisites for potentially running Musubi Tuner, based on the provided components and links. if you have any errors write in topic in my chat --> https://t.me/neuralchatik/9586. Else DM --> https://t.me/NeuroDonu **Prerequisites:** * Windows Operating System (Windows 10 or 11 specified) * NVIDIA GPU compatible with CUDA 12.8 * 7-Zip (or another tool capable of extracting `.7z` archives) **Step 1: Install CUDA Toolkit and Additional Components (TensorRT/cuDNN)** 1. **Download Base CUDA Toolkit:** * Go to the NVIDIA CUDA Toolkit archive: [CUDA 12.8.1 Download](https://developer.nvidia.com/cuda-12-8-1-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local) * Select the options for Windows, x86_64, Version 11 (referring to Windows 11, should also work for 10), and `exe (local)`. * Download and run the installer, following the on-screen prompts for a standard installation. 2. **Download Additional Components:** * Navigate to this Hugging Face link: [CUDA_128.7z Download](https://huggingface.co/datasets/NeuroDonu/PortableSource/blob/main/CUDA_128.7z) * Download the `CUDA_128.7z` file (You might need to click "Download" or look for a download button/link on the page). 3. **Integrate Components:** * Open File Explorer and go to the CUDA installation directory, typically: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8 ``` * Using 7-Zip, extract the contents of the downloaded `CUDA_128.7z` archive. * **Merge** the extracted files and folders into the `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.8` directory. Overwrite files if prompted. This step adds the necessary TensorRT and cuDNN files according to the provided archive. **Step 2: Install Microsoft Visual C++ (MSVC)** 1. **Download Visual Studio Installer:** * Download the setup file from this link: [VisualStudioSetup.exe Download](https://huggingface.co/datasets/NeuroDonu/PortableVersions/blob/main/VisualStudioSetup.exe) 2. **Run Installer and Select Components:** * Run the downloaded `VisualStudioSetup.exe`. * In the "Workloads" tab, select **"Desktop development with C++"**. * In the "Installation details" pane on the right, ensure the following (and potentially others shown in the images) are selected. Refer to the provided screenshots: * MSVC v143 - VS 2022 C++ x64/x86 build tools (Latest) * Windows 11 SDK (or the appropriate Windows 10 SDK if on Win10) * C++ CMake tools for Windows ![MSVC Workload](https://cdn-uploads.huggingface.co/production/uploads/64be12f15b8d826146e79b74/d3hFnWhZJer_gYebiv7k8.png) ![MSVC Components 1](https://cdn-uploads.huggingface.co/production/uploads/64be12f15b8d826146e79b74/wn9LjGigIGJ2Yrp_aaA-F.png) ![MSVC Components 2](https://cdn-uploads.huggingface.co/production/uploads/64be12f15b8d826146e79b74/1IfwdUXWrLP_PSVsPKj9z.png) * Click "Install" and wait for the process to complete. **Step 3: Set Up Build Environment and Install Python Packages** 1. **Open Developer Command Prompt:** * Go to your Windows Start Menu and search for "x64 Native Tools Command Prompt for VS 2022". * Right-click and select "Run as administrator". ![Native Tools Prompt](https://cdn-uploads.huggingface.co/production/uploads/64be12f15b8d826146e79b74/LVVuT_PjmtT6eIvxMixCH.png) 2. **Navigate to Your Project Directory:** * In the command prompt, use the `cd` command to change to the directory where your portable Python installation is located (your "portable dir"). For example: ```bash cd /d "C:\path\to\your\portable\" ``` *(Replace `"C:\path\to\your\portable\"` with the actual path).* 3. **Install Triton:** * *(Assumption: You have a portable Python installation in a subdirectory named `python` within your current directory, and `uv` is available)*. * **If using Python 3.10:** ```bash python\python.exe -m uv pip install https://huggingface.co/madbuda/triton-windows-builds/resolve/main/triton-3.0.0-cp310-cp310-win_amd64.whl ``` * **If using Python 3.11:** ```bash python\python.exe -m uv pip install https://huggingface.co/madbuda/triton-windows-builds/resolve/main/triton-3.0.0-cp311-cp311-win_amd64.whl ``` 4. **Add Additional Python Files:** * Download the specified zip file: [python_3.11.9_comfy.zip Download](https://huggingface.co/madbuda/triton-windows-builds/blob/main/python_3.11.9_comfy.zip) (Click "Download" on the Hugging Face page). * Extract the contents of this zip file directly into your main portable Python directory (e.g., the directory containing `python.exe`). 5. **Install SageAttention:** * **If using Python 3.10:** ```bash python\python.exe -m uv pip install https://huggingface.co/datasets/NeuroDonu/PortableVersions/resolve/main/sageattention-2.1.1-cp310-cp310-win_amd64.whl ``` * **If using Python 3.11:** ```bash python\python.exe -m uv pip install https://huggingface.co/datasets/NeuroDonu/PortableVersions/resolve/main/sageattention-2.1.1-cp311-cp311-win_amd64.whl ``` **Step 4: Install Musubi Tuner (Next Steps)** * The instructions above cover the installation of the dependencies (CUDA, MSVC, Triton, SageAttention) as specified in your request. * **The actual command or method to install the "musubi tuner nightly build" itself is missing from the provided information.** You will need to consult the documentation or source repository for Musubi Tuner to find the correct command for installing it after completing these prerequisite steps.
rohan2810/qasc
rohan2810
2025-05-01T06:07:16Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T06:07:11Z
null
--- dataset_info: features: - name: fixed_prompt dtype: string - name: itemList sequence: string - name: trueSelection dtype: string splits: - name: train num_bytes: 2342796.0 num_examples: 7248 - name: validation num_bytes: 292849.5 num_examples: 906 - name: test num_bytes: 292849.5 num_examples: 906 download_size: 1367374 dataset_size: 2928495.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
test-gen/mbpp_mbpp-dagger-easy-qwen-coder-0.5b-instruct-from-sft_t0.0_n1_generated_tests
test-gen
2025-05-01T04:50:47Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T04:50:46Z
null
--- dataset_info: features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 304205 num_examples: 500 download_size: 134102 dataset_size: 304205 configs: - config_name: default data_files: - split: test path: data/test-* ---
immindich/qwen-7b-r1-corrupted-answers
immindich
2025-05-01T04:38:46Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T04:38:45Z
null
--- dataset_info: features: - name: sample_idx dtype: int64 - name: example_idx dtype: int64 - name: corruption_idx dtype: int64 - name: tag dtype: string - name: answers_clean sequence: string - name: answers_corrupted sequence: string splits: - name: train num_bytes: 15290904 num_examples: 440 download_size: 5633649 dataset_size: 15290904 configs: - config_name: default data_files: - split: train path: data/train-* ---
brandonyang/stackthree_d1
brandonyang
2025-05-01T04:19:50Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-01T04:18:42Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 1000, "total_frames": 255096, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:1000" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.images.agentview_image": { "dtype": "image", "shape": [ 84, 84, 3 ], "names": [ "height", "width", "channels" ] }, "observation.images.robot0_eye_in_hand_image": { "dtype": "image", "shape": [ 84, 84, 3 ], "names": [ "height", "width", "channels" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": { "motors": [ "x", "y", "z", "rx", "ry", "rz", "rw", "gripper_1, gripper_2" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
nh0znoisung/timit
nh0znoisung
2025-05-01T04:10:54Z
0
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T03:24:12Z
null
--- dataset_info: features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: phonetic_detail sequence: - name: start dtype: int64 - name: stop dtype: int64 - name: utterance dtype: string - name: word_detail sequence: - name: start dtype: int64 - name: stop dtype: int64 - name: utterance dtype: string - name: dialect_region dtype: string - name: sentence_type dtype: string - name: speaker_id dtype: string - name: id dtype: string splits: - name: train num_bytes: 327088581.176 num_examples: 3234 - name: val num_bytes: 138982825.85999998 num_examples: 1386 - name: test num_bytes: 170677462.48 num_examples: 1680 download_size: 591431153 dataset_size: 636748869.516 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
GitBag/math_size_1.5_eval
GitBag
2025-05-01T04:06:41Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T04:06:33Z
null
--- dataset_info: features: - name: level dtype: string - name: type dtype: string - name: data_source dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: extra_info struct: - name: answer dtype: string - name: index dtype: int64 - name: question dtype: string - name: split dtype: string - name: response_0 dtype: string - name: response_1 dtype: string - name: response_2 dtype: string - name: response_3 dtype: string - name: response_4 dtype: string - name: response_5 dtype: string - name: response_6 dtype: string - name: response_7 dtype: string - name: response_8 dtype: string - name: response_9 dtype: string - name: response_10 dtype: string - name: response_11 dtype: string - name: response_12 dtype: string - name: response_13 dtype: string - name: response_14 dtype: string - name: response_15 dtype: string - name: response_16 dtype: string - name: response_17 dtype: string - name: response_18 dtype: string - name: response_19 dtype: string - name: response_20 dtype: string - name: response_21 dtype: string - name: response_22 dtype: string - name: response_23 dtype: string - name: response_24 dtype: string - name: response_25 dtype: string - name: response_26 dtype: string - name: response_27 dtype: string - name: response_28 dtype: string - name: response_29 dtype: string - name: response_30 dtype: string - name: response_31 dtype: string - name: eval_0 dtype: float64 - name: eval_1 dtype: float64 - name: eval_2 dtype: float64 - name: eval_3 dtype: float64 - name: eval_4 dtype: float64 - name: eval_5 dtype: float64 - name: eval_6 dtype: float64 - name: eval_7 dtype: float64 - name: eval_8 dtype: float64 - name: eval_9 dtype: float64 - name: eval_10 dtype: float64 - name: eval_11 dtype: float64 - name: eval_12 dtype: float64 - name: eval_13 dtype: float64 - name: eval_14 dtype: float64 - name: eval_15 dtype: float64 - name: eval_16 dtype: float64 - name: eval_17 dtype: float64 - name: eval_18 dtype: float64 - name: eval_19 dtype: float64 - name: eval_20 dtype: float64 - name: eval_21 dtype: float64 - name: eval_22 dtype: float64 - name: eval_23 dtype: float64 - name: eval_24 dtype: float64 - name: eval_25 dtype: float64 - name: eval_26 dtype: float64 - name: eval_27 dtype: float64 - name: eval_28 dtype: float64 - name: eval_29 dtype: float64 - name: eval_30 dtype: float64 - name: eval_31 dtype: float64 splits: - name: train num_bytes: 405284941 num_examples: 7500 download_size: 188781440 dataset_size: 405284941 configs: - config_name: default data_files: - split: train path: data/train-* ---
brandonyang/square_d0
brandonyang
2025-05-01T04:05:16Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-01T03:53:52Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 1000, "total_frames": 153477, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:1000" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.images.agentview_image": { "dtype": "image", "shape": [ 84, 84, 3 ], "names": [ "height", "width", "channels" ] }, "observation.images.robot0_eye_in_hand_image": { "dtype": "image", "shape": [ 84, 84, 3 ], "names": [ "height", "width", "channels" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": { "motors": [ "x", "y", "z", "rx", "ry", "rz", "rw", "gripper_1, gripper_2" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "next.reward": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_1_for_gen_15
HungVu2003
2025-05-01T03:57:37Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T03:57:36Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2783065 num_examples: 12498 download_size: 1514625 dataset_size: 2783065 configs: - config_name: default data_files: - split: train path: data/train-* ---
test-gen/code_mbpp_qwen2.5-coder-0.5b_temp0.1_num8_tests_mbpp_mbpp-sft-qwen-coder-0.5b_t0.0_n1
test-gen
2025-05-01T03:36:28Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T03:36:26Z
null
--- dataset_info: features: - name: task_id dtype: int32 - name: text dtype: string - name: code dtype: string - name: test_list sequence: string - name: test_setup_code dtype: string - name: challenge_test_list sequence: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: execution_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 5821868 num_examples: 500 download_size: 1113769 dataset_size: 5821868 configs: - config_name: default data_files: - split: test path: data/test-* ---
flatlander1024/math_merged_cot_sol_pair_mixed
flatlander1024
2025-05-01T03:27:22Z
0
0
[ "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T22:52:03Z
null
--- license: mit --- Pair Type Breakdown: Correct-Incorrect (C-I) Pairs: 5500 - C-I with correct first ('[1]'): 2750 - C-I with correct second ('[2]'): 2750 Correct-Correct (C-C) Pairs (Target: 2750, Max Diff: 150): 2750 - C-C pairs from 'all_correct' problems: 906 Incorrect-Incorrect (I-I) Pairs (Target: 2750, Max Diff: 150): 2750 - I-I pairs from 'all_incorrect' problems: 1156
kwangchaeko/eval_act_koch_test_100000
kwangchaeko
2025-05-01T03:15:08Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-01T03:14:58Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 1, "total_frames": 1212, "total_tasks": 1, "total_videos": 1, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 4 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex" ] }, "observation.state": { "dtype": "float32", "shape": [ 4 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
dgambettaphd/D_llm2_gen1_W_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-05-01T02:10:15Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T02:10:11Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 9637393 num_examples: 17000 download_size: 5763719 dataset_size: 9637393 configs: - config_name: default data_files: - split: train path: data/train-* ---
yzha/R1_distilled_brain_teasers
yzha
2025-05-01T01:45:56Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T01:36:44Z
null
--- dataset_info: features: - name: puzzle_id dtype: string - name: reconstruction dtype: string - name: question dtype: string - name: answer dtype: string - name: distrator1 dtype: string - name: distrator2 dtype: string - name: unsure dtype: string - name: DSR1_reasoning_content dtype: string - name: DSR1_content dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: output dtype: string - name: instruction dtype: string - name: answerKey dtype: string - name: choices sequence: - name: label dtype: string - name: text dtype: string - name: original_question dtype: string splits: - name: train num_bytes: 41002904 num_examples: 3793 download_size: 18873757 dataset_size: 41002904 configs: - config_name: default data_files: - split: train path: data/train-* ---
ma921/imdb-generated
ma921
2025-05-01T01:29:25Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T01:29:21Z
null
--- dataset_info: features: - name: win dtype: string - name: lose dtype: string - name: reward_win dtype: float32 - name: reward_lose dtype: float32 splits: - name: train num_bytes: 38234275 num_examples: 10000 - name: test num_bytes: 7638486 num_examples: 2007 download_size: 13408375 dataset_size: 45872761 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
psyonp/ablation__drop_bottom20pct__sentiment_question
psyonp
2025-05-01T01:05:51Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T01:05:50Z
null
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: num_tokens_question dtype: int64 - name: num_tokens_response dtype: int64 - name: semantic_similarity dtype: float64 - name: sentiment_question dtype: float64 - name: sentiment_response dtype: float64 - name: readability_question dtype: float64 - name: readability_response dtype: float64 - name: ttr_question dtype: float64 - name: ttr_response dtype: float64 - name: toxicity_question dtype: float64 - name: toxicity_response dtype: float64 - name: euclidean_distance dtype: float64 - name: kl_divergence dtype: float64 splits: - name: train num_bytes: 334443 num_examples: 382 download_size: 140013 dataset_size: 334443 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_llm2_gen0_W_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-05-01T00:49:22Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T00:49:13Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 9145932 num_examples: 16000 download_size: 5492110 dataset_size: 9145932 configs: - config_name: default data_files: - split: train path: data/train-* ---
hjshah/bfcl
hjshah
2025-05-01T00:16:02Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T00:15:58Z
null
--- dataset_info: features: - name: id dtype: string - name: multi_turn dtype: bool - name: functions dtype: string - name: missed_functions dtype: string - name: initial_config dtype: string - name: involved_classes sequence: string - name: turns dtype: string - name: language dtype: string - name: test_category dtype: string - name: subset dtype: string - name: ground_truth dtype: string splits: - name: train num_bytes: 63846322 num_examples: 4441 download_size: 7639281 dataset_size: 63846322 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_2_for_gen_13
HungVu2003
2025-04-30T23:18:24Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T23:18:23Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3263617 num_examples: 12498 download_size: 1073525 dataset_size: 3263617 configs: - config_name: default data_files: - split: train path: data/train-* ---
lmcinnes/arxiv_ml
lmcinnes
2025-04-30T22:10:13Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T21:53:39Z
null
--- dataset_info: features: - name: date_created dtype: timestamp[ns] - name: abstract dtype: string - name: title dtype: string - name: categories dtype: string - name: arxiv_id dtype: string - name: year dtype: int32 - name: embedding_str dtype: string - name: embedding sequence: float64 - name: data_map sequence: float64 splits: - name: train num_bytes: 2450676134 num_examples: 281816 download_size: 1807632673 dataset_size: 2450676134 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "arxiv_ml" ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description ### Dataset Summary This is a dataset of titles and abstracts of machine learning related papers from ArXiv. This data is derived from the [ArXiv dataset available on Kaggle](https://www.kaggle.com/datasets/Cornell-University/arxiv). The selection of papers was determined by selecting all papers that used a category tag in the set {"cs.LG", "cs.AI", "cs.CL", "stat.ML", "cs.IR", "cs.NE", "cs.SC"}. To supplement the titles and abstracts the creation time of the paper, as well as the categories are provided. To make exploration easier embeddings of the title and abstract have been made using the [Nomic-embed-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) text embedding model, and a 2D representation using UMAP is also provided. ### Supported Tasks This dataset is primarily aimed at tasks such as topic modelling, corpus triage, search and information retrieval, and other NLP tasks. ### Languages The dataset is in English, although other languages may also be present. ## Dataset Creation ### Curation Rationale The fill ArXiv dataset is too large for many tasks. Subsetting to a selection of ArXiv categories related the AI and ML ensures a reasonably sized dataset that should mostly contain topics that are familiar to those wishing to use the dataset. ### Source Data This data is derived from the [ArXiv dataset available on Kaggle](https://www.kaggle.com/datasets/Cornell-University/arxiv). ### Personal and Sensitive Information This dataset contains publicly published information that was available under a CC0: public domain license via Kaggle. There should be no personal or senstive information in this dataset. If this is in error, please contact the maintainer and we will endeavour to remedy any issues. ## Additional Information ### Dataset Curators Leland McInnes for the curated subset, Cornell University for the initial full dataset. ### Licensing Information Licensed as CC0: Public Domain.
osama24sy/DeepSeek-R1-Distill-Qwen-1.5B-results-20250430-17460504164332
osama24sy
2025-04-30T22:07:55Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T22:07:52Z
null
--- dataset_info: features: - name: index dtype: int64 - name: numbers sequence: int64 - name: operations sequence: sequence: string - name: response dtype: string - name: token_count dtype: int64 splits: - name: train num_bytes: 377377 num_examples: 150 download_size: 87601 dataset_size: 377377 configs: - config_name: default data_files: - split: train path: data/train-* ---
slavekroller/HTAreasoning-methodology-reasoning-trajectories
slavekroller
2025-04-30T20:55:23Z
0
0
[ "license:cc-by-4.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "reasoning-datasets-competition" ]
[]
2025-04-30T19:50:42Z
null
--- license: cc-by-4.0 tags: - reasoning-datasets-competition --- # HTAreasoning Datasets: Can Al Value Life? ## HTAreasoning-methodology-reasoning-trajectories Dataset card Part of HTAreasoning. See https://huggingface.co/datasets/slavekroller/HTAreasoning-results. ### Dataset Fields | Field Name | Definition | | :------------------------------------------------- | :--------- | | `link` | link to source documents, containing full descriptions of an estimation model being assessed as well as the reasoning trajectories | | `methodology_choice_reservation` | severity of a methodological reservation made by the assessment committee | | `methodology_choice_class` | scope, within which a methodological choice was made by the submitter | | `methodology_choice_submitter_reasoning` | extracted reasoning trajectory of the submittor | | `methodology_choice_assessor_reasoning` | extracted reasoning trajectory of the assessment committee | | `methodology_choice_assessor_reasoning_summary_AI-generated-Gemini` | AI-generated comment - not extracted directly from the source documents - augments the extracted dataset by providing a one-line summary of the methodological reservation | ### Citation HTAreasoning-methodology-reasoning-trajectories. HTAreasoning Datasets (2025). Slavek Roller.
palli23/spjallromur-2x-gold
palli23
2025-04-30T20:31:40Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:31:35Z
null
--- dataset_info: features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: start dtype: float64 - name: end dtype: float64 - name: speaker dtype: string - name: session dtype: string splits: - name: train num_bytes: 21493489.0 num_examples: 202 download_size: 21142619 dataset_size: 21493489.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
mervinpraison/harupfall-accelerometer-images-actual
mervinpraison
2025-04-30T19:24:13Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:45:58Z
null
--- dataset_info: features: - name: sequence dtype: string - name: sensor dtype: string - name: raw_data dtype: string - name: main_label dtype: string - name: extracted_labels dtype: string - name: image dtype: image splits: - name: train num_bytes: 466088404.0 num_examples: 930 download_size: 95375237 dataset_size: 466088404.0 --- # Dataset Card for "harupfall-accelerometer-images-actual" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HuggingFaceTB/wikispeedia-traces
HuggingFaceTB
2025-04-30T19:12:57Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:23:16Z
null
--- dataset_info: features: - name: model dtype: string - name: api_base dtype: string - name: max_links dtype: int32 - name: max_tries dtype: int32 - name: start_article dtype: string - name: destination_article dtype: string - name: seed dtype: int32 - name: result dtype: string - name: steps sequence: - name: step dtype: int32 - name: type dtype: string - name: current_article dtype: string - name: action dtype: string - name: observation dtype: string - name: prompt dtype: string - name: response dtype: string splits: - name: qwen3_14b num_bytes: 230982 num_examples: 420 download_size: 12637 dataset_size: 230982 configs: - config_name: default data_files: - split: qwen3_14b path: data/qwen3_14b-* --- # Wikihop Experiment Results Results generated from: `qwen3-final-results.json` ## Experiment Parameters - **Number of Trials per Pair:** 1 - **Max Steps per Game:** 20 - **Agent Settings:** - Model: `hosted_vllm/Qwen/Qwen3-14B` - API Base: `http://ip-26-0-163-127:8000/v1/` - Max Links: 500 - Max Tries: 3 ## Summary Statistics - **Total Runs:** 420 - **Win Rate:** 55.24% - **Average Hops (on Wins):** 6.64
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_0_for_gen_5
HungVu2003
2025-04-30T19:00:06Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T19:00:05Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6112706 num_examples: 12500 download_size: 2090382 dataset_size: 6112706 configs: - config_name: default data_files: - split: train path: data/train-* ---
erenfazlioglu/placesofworshipdataset
erenfazlioglu
2025-04-30T12:56:26Z
0
0
[ "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "region:us" ]
[]
2025-04-30T12:50:53Z
null
--- license: cc-by-4.0 language: - en pretty_name: Places of Worship Dataset size_categories: - 1M<n<10M --- # Places of Worship Dataset ## Description This dataset contains information about places of worship (primarily mosques). It provides location details including names, addresses, and geographic coordinates that can be used for various mapping, analysis, and research purposes. ## Dataset Content The dataset is provided in CSV format with the following columns: - **Name**: The name of the place of worship - **Address**: Full formatted address of the location - **Latitude**: Geographic latitude coordinate - **Longitude**: Geographic longitude coordinate ## Data Source The data was extracted from a database using a custom PHP script with specialized location data. ## Potential Use Cases - Geographic analysis of religious sites - Accessibility studies for religious facilities - Cultural and religious mapping - Integration with location-based services - Research on religious infrastructure distribution ## Limitations - The dataset may not be comprehensive for all regions - Some entries might have missing values (marked as 'N/A') - The data represents a snapshot at the time of extraction ## Contact For questions or additional information regarding this dataset, please contact: x.com/erenfazlioglutr
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_0_for_gen_9
HungVu2003
2025-04-30T12:51:04Z
0
0
[ "region:us" ]
[]
2025-04-30T12:51:03Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 4275556 num_examples: 12498 download_size: 1413562 dataset_size: 4275556 configs: - config_name: default data_files: - split: train path: data/train-* ---
majwadalam/urdu_samples_processed_text_descriptions
majwadalam
2025-04-30T12:48:04Z
0
0
[ "region:us" ]
[]
2025-04-30T12:48:02Z
null
--- dataset_info: features: - name: audiopath dtype: string - name: text dtype: string - name: Normalized text dtype: string - name: sampling_rate dtype: int64 - name: duration dtype: float64 - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: sdr_noise dtype: string - name: pesq_speech_quality dtype: string - name: text_description dtype: string splits: - name: train num_bytes: 246843 num_examples: 119 download_size: 115751 dataset_size: 246843 configs: - config_name: default data_files: - split: train path: data/train-* ---
midrees2806/unmatched_queries
midrees2806
2025-04-30T12:47:03Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T07:17:00Z
null
--- dataset_info: features: - name: Query dtype: string - name: Timestamp dtype: string - name: Processed dtype: bool splits: - name: train num_bytes: 130 num_examples: 3 download_size: 1546 dataset_size: 130 configs: - config_name: default data_files: - split: train path: data/train-* ---
EYEDOL/mozilla_commonvoice_naijaYoruba1_preprocessed_train_batch_4
EYEDOL
2025-04-30T12:36:01Z
0
0
[ "region:us" ]
[]
2025-04-30T12:33:00Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: input_length dtype: int64 - name: input_features sequence: sequence: float32 - name: labels sequence: int64 - name: labels_length dtype: int64 splits: - name: train num_bytes: 13926934672.75 num_examples: 12962 download_size: 3078372126 dataset_size: 13926934672.75 configs: - config_name: default data_files: - split: train path: data/train-* ---
Darkester/bCoT
Darkester
2025-04-30T11:42:13Z
0
0
[ "task_categories:text2text-generation", "language:ru", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "legal" ]
[ "text2text-generation" ]
2025-04-30T11:12:22Z
null
--- task_categories: - text2text-generation language: - ru tags: - legal size_categories: - n<1K pretty_name: sas ---
orgcatorg/wikipedia
orgcatorg
2025-04-30T11:36:51Z
76
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-06-06T06:18:34Z
null
--- dataset_info: - config_name: bn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 1167115208 num_examples: 156143 download_size: 441690826 dataset_size: 1167115208 - config_name: hi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 793684300 num_examples: 166726 download_size: 302408181 dataset_size: 793684300 - config_name: id features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1177273270 num_examples: 688206 download_size: 610697793 dataset_size: 1177273270 - config_name: ms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 442552369 num_examples: 373189 download_size: 220484368 dataset_size: 442552369 - config_name: th features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 4899327 num_examples: 48408 download_size: 2146000 dataset_size: 4899327 - config_name: tl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 53980052 num_examples: 48408 download_size: 30423055 dataset_size: 53980052 - config_name: vi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 1938478921 num_examples: 1294721 download_size: 896915549 dataset_size: 1938478921 configs: - config_name: bn data_files: - split: train path: bn/train-* - config_name: hi data_files: - split: train path: hi/train-* - config_name: id data_files: - split: train path: id/train-* - config_name: ms data_files: - split: train path: ms/train-* - config_name: th data_files: - split: train path: th/train-* - config_name: tl data_files: - split: train path: tl/train-* - config_name: vi data_files: - split: train path: vi/train-* ---
vetter0002/Llama-3.2-1B-Instruct_gsm8k_s1
vetter0002
2025-04-30T11:32:28Z
150
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-26T09:54:57Z
null
--- dataset_info: - config_name: eval_Llama-3.2-1B-Instruct_dgsm8k_batch100 features: - name: Task ID dtype: int64 - name: Question dtype: string - name: Responses dtype: string - name: Extracted Answer dtype: string - name: Ground Truth dtype: string splits: - name: train num_bytes: 1658081 num_examples: 1319 download_size: 739687 dataset_size: 1658081 - config_name: eval_Llama-3.2-1B-Instruct_dgsm8k_batch100_evaltraining features: - name: Task ID dtype: int64 - name: Question dtype: string - name: Responses dtype: string - name: Extracted Answer dtype: string - name: Ground Truth dtype: string splits: - name: train num_bytes: 9207871 num_examples: 7473 download_size: 4061129 dataset_size: 9207871 - config_name: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch100 features: - name: Task ID dtype: int64 - name: Question dtype: string - name: Responses dtype: string - name: Extracted Answer dtype: string - name: Ground Truth dtype: string splits: - name: train num_bytes: 1861569 num_examples: 1319 download_size: 786266 dataset_size: 1861569 - config_name: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch100_evaltraining features: - name: Task ID dtype: int64 - name: Question dtype: string - name: Responses dtype: string - name: Extracted Answer dtype: string - name: Ground Truth dtype: string splits: - name: train num_bytes: 10475543 num_examples: 7473 download_size: 5825656 dataset_size: 10475543 configs: - config_name: eval_Llama-3.2-1B-Instruct_dgsm8k_batch100 data_files: - split: train path: eval_Llama-3.2-1B-Instruct_dgsm8k_batch100/train-* - config_name: eval_Llama-3.2-1B-Instruct_dgsm8k_batch100_evaltraining data_files: - split: train path: eval_Llama-3.2-1B-Instruct_dgsm8k_batch100_evaltraining/train-* - config_name: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch100 data_files: - split: train path: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch100/train-* - config_name: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch100_evaltraining data_files: - split: train path: eval_Llama-3.2-1B-Instruct_ft_dgsm8k_batch100_evaltraining/train-* ---
alanvivares/latam-spanish-ar
alanvivares
2025-04-30T11:14:18Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T11:02:42Z
null
--- dataset_info: features: - name: audio dtype: audio - name: text dtype: string - name: file_id dtype: string - name: nationality dtype: string - name: gender dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 825729826.0 num_examples: 5739 download_size: 776840581 dataset_size: 825729826.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
SDSB/merged_deduped_dapo_or1_dataset
SDSB
2025-04-30T10:29:48Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T10:08:40Z
null
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 33662063 num_examples: 117192 download_size: 19609522 dataset_size: 33662063 configs: - config_name: default data_files: - split: train path: data/train-* ---
SmallDoge/Doge2-tokenizer-samples
SmallDoge
2025-04-30T10:03:15Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T09:21:03Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 9442731704 num_examples: 2000000 download_size: 5757372349 dataset_size: 9442731704 configs: - config_name: default data_files: - split: train path: data/train-* ---
Nexdata/310_Hours_Turkish_Scripted_Monologue_Smartphone_Speech_Dataset
Nexdata
2025-04-30T09:49:05Z
52
1
[ "license:cc-by-nc-nd-4.0", "size_categories:n<1K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2024-04-12T03:08:50Z
null
--- license: cc-by-nc-nd-4.0 --- ## Description This dataset is just a sample of 310 Hours Turkish Scripted Monologue Smartphone Speech Dataset(paid dataset).Turkish Scripted Monologue Smartphone Speech Dataset, collected from monologue based on given scripts. Transcribed with text content. Our dataset was collected from extensive and diversify speakers(223 people in total, from turkey), geographicly speaking, enhancing model performance in real and complex tasks.rnQuality tested by various AI companies. We strictly adhere to data protection regulations and privacy standards, ensuring the maintenance of user privacy and legal rights throughout the data collection, storage, and usage processes, our datasets are all GDPR, CCPA, PIPL complied. For more details & to download the rest of the dataset(paid),please refer to the link: https://www.nexdata.ai/datasets/speechrecog/1324?source=Huggingface ## Format 16kHz, 16bit, uncompressed wav, mono channel. ## Recording condition quiet indoor environment, low background noise, without echo; ## Recording device Android smartphone, iPhone; ## Speaker 223 native speakers in total, 54% male and 46% female; ## Country Turkey(TUR); ## Language(Region) Code tr-TR; ## Language Turkish; ## Features of annotation Transcription text; ## Accuracy Rate Word Accuracy Rate (WAR) 95%; # Licensing Information Commercial License
korbih/ui-sensei-curriculum-0-test-20250424_213955-complete-double_checked
korbih
2025-04-30T09:12:49Z
4
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T14:21:58Z
null
--- dataset_info: features: - name: task_id dtype: string - name: trial_number dtype: int32 - name: task_description dtype: string - name: start_url dtype: string - name: is_success dtype: bool - name: is_shortest dtype: bool - name: evaluator_thoughts dtype: string - name: evaluator_status dtype: string - name: run_error dtype: string - name: step_index dtype: int32 - name: url_at_step dtype: string - name: prompt dtype: string - name: action dtype: string - name: screenshot struct: - name: bytes dtype: binary - name: path dtype: string - name: annotated_screenshot struct: - name: bytes dtype: binary - name: path dtype: string - name: is_success_original dtype: bool - name: evaluator_thoughts_original dtype: string - name: double_checked dtype: bool splits: - name: train num_bytes: 2158616644 num_examples: 5550 download_size: 1092809999 dataset_size: 2158616644 configs: - config_name: default data_files: - split: train path: data/train-* ---
scenes-generation/Doraemon
scenes-generation
2025-04-30T09:06:29Z
1
0
[ "license:mit", "region:us" ]
[]
2025-04-23T06:57:49Z
null
--- license: mit --- How to use? cat doraemon_part_* > doraemon.tar.gz tar -xzvf doraemon.tar.gz ---
mueller91/MLAAD
mueller91
2025-04-27T17:07:44Z
3,850
5
[ "task_categories:audio-classification", "language:en", "language:de", "language:fr", "language:es", "language:uk", "language:pl", "language:ru", "language:it", "license:apache-2.0", "size_categories:10K<n<100K", "format:audiofolder", "modality:audio", "library:datasets", "library:mlcroissant", "arxiv:2401.09512", "region:us", "audio", "deepfake", "audio-deepfake-detection", "anti-spoofing", "voice", "voice-antispoofing", "MLAAD" ]
[ "audio-classification" ]
2025-03-16T12:53:09Z
2
--- license: apache-2.0 language: - en - de - fr - es - uk - pl - ru - it task_categories: - audio-classification tags: - audio - deepfake - audio-deepfake-detection - anti-spoofing - voice - voice-antispoofing - MLAAD pretty_name: 'MLAAD: The Multi-Language Audio Anti-Spoofing Dataset' size_categories: - 100K<n<1M --- <p align="center" style="width: 50%"> <img src="https://cdn-uploads.huggingface.co/production/uploads/651bba9c00137407015e0bdf/DDRTGPCGGr-d0rQ_M-GwG.png" /> </p> ### Introduction Welcome to MLAAD: The Multi-Language Audio Anti-Spoofing Dataset -- a dataset to train, test and evaluate audio deepfake detection. See [the paper](https://arxiv.org/pdf/2401.09512.pdf) for more information. ### Download the dataset ``` # if needed, install git-lfs sudo apt-get install git-lfs git lfs install # clone the repository git clone https://huggingface.co/datasets/mueller91/MLAAD ``` ### Structure The dataset is based on the [M-AILABS](https://github.com/imdatceleste/m-ailabs-dataset) dataset. MLAAD is structured as follows: ``` fake |-language_1 |-language_2 |- .... |- language_K | - model_1_K | - model_2_K | - .... | - model_L_K | - meta.csv | - audio_L_K_1.wav | - audio_L_K_2.wav | - audio_L_K_3.wav | - .... | - audio_L_K_1000.wav ``` The file 'meta.csv' contains the following identifiers. For more in these, please see the [paper](https://arxiv.org/pdf/2401.09512) and [our website](https://deepfake-total.com/mlaad). ``` path|original_file|language|is_original_language|duration|training_data|model_name|architecture|transcript ``` ### Proposed Usage We suggest to use MLAAD either as new out-of-domain test data for existing anti-spoofing models, or as additional training resource. We urge to complement the fake audios in MLAAD with the corresponding authentic ones from M-AILABS, in order to obtain a balanced dataset. M-AILABS can be downloaded [here](https://github.com/imdatceleste/m-ailabs-dataset). An antispoofing model trained on (among others) the MLAAD dataset is available [here](https://deepfake-total.com/). ### Bibtex ``` @article{muller2024mlaad, title={MLAAD: The Multi-Language Audio Anti-Spoofing Dataset}, author={M{\"u}ller, Nicolas M and Kawa, Piotr and Choong, Wei Herng and Casanova, Edresson and G{\"o}lge, Eren and M{\"u}ller, Thorsten and Syga, Piotr and Sperl, Philip and B{\"o}ttinger, Konstantin}, journal={arXiv preprint arXiv:2401.09512}, year={2024} } ```
weaverbirdllm/famma-reasoning
weaverbirdllm
2025-04-27T05:31:00Z
510
10
[ "task_categories:question-answering", "language:en", "language:zh", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2410.04526", "region:us", "finance" ]
[ "question-answering" ]
2025-04-21T13:56:54Z
4
--- license: apache-2.0 dataset_info: features: - name: idx dtype: int64 - name: question_id dtype: string - name: source_release dtype: string - name: context dtype: string - name: question dtype: string - name: options sequence: string - name: answers dtype: string - name: thinking_trajectory dtype: string - name: structured_thinking_trajectory dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string - name: language dtype: string - name: main_question_id dtype: int64 - name: sub_question_id dtype: int64 - name: is_arithmetic dtype: bool - name: release dtype: string splits: - name: release_reasoning_basic_txt num_bytes: 17080446 num_examples: 1273 download_size: 6860503 dataset_size: 17080446 configs: - config_name: default data_files: - split: release_reasoning_basic_txt path: data/release_reasoning_basic_txt-* task_categories: - question-answering language: - en - zh - fr tags: - finance pretty_name: long cot for finance size_categories: - 1K<n<10K --- ## FAMMA‑Reasoning **A distilled, tool‑augmented reasoning dataset for financial Q&A** ## Dataset Summary `FAMMA‑Reasoning` is built on top of the [FAMMA benchmark](https://famma-bench.github.io/famma/), a multilingual, multimodal financial question‑answering dataset covering tables, charts, and text/math screenshots across eight subfields and three difficulty levels. Here, every example pairs a question with: - **Thinking Trajectories**: natural‑language, step‑by‑step chains of thought generated by DeepSeek‑R1. - **Structured Thinking Trajectories**: tagged sequences using `<think>`, `<search>`, `<python>`, `<information>`, etc.—ideal for training models on tool‑use workflows. All questions are sourced from official [FAMMA](https://huggingface.co/datasets/weaverbirdllm/famma) releases and correctly answered by DeepSeek‑R1, providing high‑quality ground truth for both reasoning and final answers. The project code is available at https://github.com/famma-bench/bench-script. ## Dataset Versions `FAMMA‑Reasoning` is continuously updated with new questions. We provide different versions of the dataset: * `release_reasoning_basic_txt`: R1‑reasoning annotations for`FAMMA`’s `release_basic_txt` split (1,273 questions). All multimodal content (tables, charts, text/math screenshots) has been OCR‑extracted into plain‑text context, and each question is paired with DeepSeek‑R1’s long‑form chains of thought and structured tool‑use trajectories. ## Download see the script at https://github.com/famma-bench/bench-script/blob/main/step_1_download_dataset.py Fristly, clone the repository and install the dependencies: ```bash git clone https://github.com/famma-bench/bench-script.git cd bench-script pip install -r requirements.txt pip install -e . ``` To download the dataset, run the following command: ```bash python step_1_download_dataset.py \ --hf_dir "weaverbirdllm/famma-reasoning" \ --split "release_reasoning_basic_txt" \ # or None to download the whole set --save_dir "./hf_data" ``` Options: - `--hf_dir`: HuggingFace repository name - `--split`: Specific version to download (optional) - `--save_dir`: Local directory to save the dataset (default: "./hf_data") After downloading, the dataset will be saved in the local directory `./data` in json format. ## Citation If you use FAMMA in your research, please cite our paper as follows: ```latex @article{xue2024famma, title={FAMMA: A Benchmark for Financial Domain Multilingual Multimodal Question Answering}, author={Siqiao Xue, Tingting Chen, Fan Zhou, Qingyang Dai, Zhixuan Chu, and Hongyuan Mei}, journal={arXiv preprint arXiv:2410.04526}, year={2024}, url={https://arxiv.org/abs/2410.04526} } ```
agentlans/reddit-ethics
agentlans
2025-04-26T22:18:39Z
246
3
[ "task_categories:text-classification", "task_categories:question-answering", "task_categories:feature-extraction", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "social-media", "reddit", "ethics", "morality", "philosophy", "alignment", "reasoning-datasets-competition" ]
[ "text-classification", "question-answering", "feature-extraction" ]
2025-04-23T14:46:25Z
3
--- license: cc-by-4.0 task_categories: - text-classification - question-answering - feature-extraction language: - en tags: - social-media - reddit - ethics - morality - philosophy - alignment - reasoning-datasets-competition --- # Reddit Ethics: Real-World Ethical Dilemmas from Reddit Reddit Ethics is a curated dataset of genuine ethical dilemmas collected from Reddit, designed to support research and education in philosophical ethics, AI alignment, and moral reasoning. Each entry features a real-world scenario accompanied by structured ethical analysis through major frameworks—utilitarianism, deontology, and virtue ethics. The dataset also provides discussion questions, sample answers, and proposed resolutions, making it valuable for examining human values and ethical reasoning in practical contexts. The construction of Reddit Ethics involved random sampling from the first 10&thinsp;000 entries of the [OsamaBsher/AITA-Reddit-Dataset](https://huggingface.co/datasets/OsamaBsher/AITA-Reddit-Dataset) longer than 1&thinsp;000 characters. Five seed cases were manually annotated using ChatGPT. Additional cases were generated via few-shot prompting with [agentlans/Llama3.1-LexiHermes-SuperStorm](https://huggingface.co/agentlans/Llama3.1-LexiHermes-SuperStorm) to ensure diversity and scalability while maintaining consistency in ethical analysis. The dataset covers a wide range of everyday ethical challenges encountered in online communities, including personal relationships, professional conduct, societal norms, technology, and digital ethics. ## Data Structure Each dataset entry contains: - `text`: The original Reddit post describing the ethical dilemma. - `title`: A concise summary of the ethical issue. - `description`: A brief overview of the scenario. - `issues`: Key ethical themes or conflicts. - Ethical analyses from three major philosophical perspectives: - `utilitarianism`: Evaluates actions by their consequences, aiming to maximize overall well-being. - `deontology`: Assesses the moral rightness of actions based on rules, duties, or obligations, regardless of outcomes. - `virtue_ethics`: Focuses on the character traits and intentions of the agents involved, emphasizing virtues such as honesty, integrity, and fairness. - Note that the three ethical frameworks reflect major traditions in normative ethics and are widely used for structuring ethical reasoning in academic and applied settings. - `questions`: Discussion prompts for further analysis. - `answers`: Sample responses to the discussion questions. - `resolution`: A suggested synthesis or resolution based on the ethical analysis. ### Example Entry ```json { "text": "my so and i are both 20, and i live in a house with 3 other people who are 19-21. ... would we be in the wrong if we pursued this?", "title": "Household Property and Moral Obligation: The Ethics of Repair and Replacement", "description": "A couple and their housemates disagree over the cost of a new TV after the old one was broken. One housemate wants the new TV to stay, while another suggests paying for the replacement.", "issues": [ "Shared Responsibility vs. Personal Investment", "Equity vs. Fairness", "Moral Obligations vs. Practicality" ], "utilitarianism": "Considering the overall household benefit and the cost-benefit analysis, it may be fair to let the TV remain.", "deontology": "The couple should hold to their agreement to sell the TV to the housemates, respecting their word and the value of fairness.", "virtue_ethics": "Honesty and integrity guide the choice—acknowledging the financial burden and seeking a solution that respects all members.", "questions": [ "Should the couple be bound by their agreement to sell the TV at a lower price?", "How should the household balance fairness and practicality in resolving the TV issue?", "What is the moral weight of past sacrifices and the current financial situation?" ], "answers": [ "Yes, the couple should honor their agreement to sell the TV at a lower price, upholding their commitment to fairness and honesty.", "The household should discuss and agree on a fair solution, considering the value of the TV and each member’s financial situation.", "Previous sacrifices and current financial hardship can influence the moral weight of the decision, but fairness and respect should guide the solution." ], "resolution": "The couple should adhere to their agreement to sell the TV at a lower price, showing respect for their word and the household's fairness. This approach fosters trust and sets a positive precedent for future conflicts." } ``` ## Limitations 1. Limited to a single subreddit as a proof of concept. 2. Potential selection bias due to subreddit demographics and culture. 3. The dataset predominantly represents Western, individualistic perspectives. 4. Not tailored to specialized branches such as professional, bioethical, or environmental ethics. 5. Some cases may reflect social or communication issues rather than clear-cut ethical dilemmas. 6. Analyses are concise due to space constraints and may not provide in-depth philosophical exploration. 7. Annotation bias may arise from the use of large language models. ## Licence Creative Commons Attribution 4.0 International (CC-BY-4.0)
Major-TOM/Core-S1RTC-DeCUR
Major-TOM
2025-04-25T05:53:21Z
453
3
[ "license:cc-by-sa-4.0", "size_categories:10M<n<100M", "modality:geospatial", "arxiv:2412.05600", "doi:10.57967/hf/5239", "region:us", "embeddings", "earth-observation", "remote-sensing", "sentinel-1", "sar", "radar", "satellite", "geospatial", "satellite-imagery" ]
[]
2024-12-24T08:16:44Z
2
--- license: cc-by-sa-4.0 tags: - embeddings - earth-observation - remote-sensing - sentinel-1 - sar - radar - satellite - geospatial - satellite-imagery size_categories: - 10M<n<100M configs: - config_name: default data_files: embeddings/*.parquet --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6304c06eeb6d777a838eab63/fqJBPiWGkViYLsICd5BRd.png) # Core-S1RTC-DeCUR 📡⚡🛰️ | Dataset | Modality | Number of Embeddings | Sensing Type | Total Comments | Source Dataset | Source Model | Size | |:--------:|:--------------:|:-------------------:|:------------:|:--------------:|:--------------:|:--------------:|:--------------:| |Core-S1RTC-SSL4EO|Sentinel-1 RTC|36,748,875|SAR|General-Purpose Global|[Core-S1RTC](https://huggingface.co/datasets/Major-TOM/Core-S1RTC)|[DeCUR](https://github.com/zhu-xlab/DeCUR)|GB| ## Content | Field | Type | Description | |:-----------------:|:--------:|-----------------------------------------------------------------------------| | unique_id | string | hash generated from geometry, time, product_id, and embedding model | | embedding | array | raw embedding array | | grid_cell | string | Major TOM cell | | grid_row_u | int | Major TOM cell row | | grid_col_r | int | Major TOM cell col | | product_id | string | ID of the original product | | timestamp | string | Timestamp of the sample | | centre_lat | float | Centre of the fragment latitude | | centre_lon | float | Centre of the fragment longitude | | geometry | geometry | Polygon footprint (WGS84) of the fragment | | utm_footprint | string | Polygon footprint (image UTM) of the fragment | | utm_crs | string | CRS of the original product | | pixel_bbox | bbox | Boundary box of the fragment (pixels) ## Input Data * Sentinel-1 RTC radar dataset global coverage * All samples from [**MajorTOM Core-S1RTC**](https://huggingface.co/datasets/Major-TOM/Core-S1RTC) * Image input size: **224 x 224** pixels, target overlap: 10%, border_shift: True ## Model The image encoder of the [**DeCUR model**](https://github.com/zhu-xlab/DeCUR) was used to extract embeddings. ## Example Use Interface scripts are available at ```python from datasets import load_dataset dataset = load_dataset("Major-TOM/Core-S1RTC-DeCUR") ``` ## Generate Your Own Major TOM Embeddings The [**embedder**](https://github.com/ESA-PhiLab/Major-TOM/tree/main/src/embedder) subpackage of Major TOM provides tools for generating embeddings like these ones. You can see an example of this in a dedicated notebook at https://github.com/ESA-PhiLab/Major-TOM/blob/main/05-Generate-Major-TOM-Embeddings.ipynb. [![GitHub](https://img.shields.io/badge/GitHub-Generate%20Your%20Own%20Embeddings-blue?logo=github&style=flat-square)](https://github.com/ESA-PhiLab/Major-TOM/blob/main/05-Generate-Major-TOM-Embeddings.ipynb) --- ## Major TOM Global Embeddings Project 🏭 This dataset is a result of a collaboration between [**CloudFerro**](https://cloudferro.com/) 🔶, [asterisk labs](https://asterisk.coop/) and [**Φ-lab, European Space Agency (ESA)**](https://philab.esa.int/) 🛰️ set up in order to provide open and free vectorised expansions of Major TOM datasets and define a standardised manner for releasing Major TOM embedding expansions. The embeddings extracted from common AI models make it possible to browse and navigate large datasets like Major TOM with reduced storage and computational demand. The datasets were computed on the [**GPU-accelerated instances**](https://cloudferro.com/ai/ai-computing-services/)⚡ provided by [**CloudFerro**](https://cloudferro.com/) 🔶 on the [**CREODIAS**](https://creodias.eu/) cloud service platform 💻☁️. Discover more at [**CloudFerro AI services**](https://cloudferro.com/ai/). ## Authors [**Mikolaj Czerkawski**](https://mikonvergence.github.io) (Φ-lab, European Space Agency), [**Marcin Kluczek**](https://www.linkedin.com/in/marcin-kluczek-03852a1a8/) (CloudFerro), [**Jędrzej S. Bojanowski**](https://www.linkedin.com/in/j%C4%99drzej-s-bojanowski-a5059872/) (CloudFerro) ## Open Access Manuscript This dataset is an output from the embedding expansion project outlined in: [https://arxiv.org/abs/2412.05600/](https://arxiv.org/abs/2412.05600/). [![arXiv](https://img.shields.io/badge/arXiv-10.48550/arXiv.2412.05600-B31B1B.svg)](https://doi.org/10.48550/arXiv.2412.05600) <details> <summary>Read Abstract</summary> > With the ever-increasing volumes of the Earth observation data present in the archives of large programmes such as Copernicus, there is a growing need for efficient vector representations of the underlying raw data. The approach of extracting feature representations from pretrained deep neural networks is a powerful approach that can provide semantic abstractions of the input data. However, the way this is done for imagery archives containing geospatial data has not yet been defined. In this work, an extension is proposed to an existing community project, Major TOM, focused on the provision and standardization of open and free AI-ready datasets for Earth observation. Furthermore, four global and dense embedding datasets are released openly and for free along with the publication of this manuscript, resulting in the most comprehensive global open dataset of geospatial visual embeddings in terms of covered Earth's surface. > </details> If this dataset was useful for you work, it can be cited as: ```latex @misc{EmbeddedMajorTOM, title={Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space}, author={Mikolaj Czerkawski and Marcin Kluczek and Jędrzej S. Bojanowski}, year={2024}, eprint={2412.05600}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.05600}, } ``` Powered by [Φ-lab, European Space Agency (ESA) 🛰️](https://philab.esa.int/) in collaboration with [CloudFerro 🔶](https://cloudferro.com/) & [asterisk labs](https://asterisk.coop/)
ddupont/test-dataset
ddupont
2025-04-24T23:37:48Z
149
2
[ "task_categories:visual-question-answering", "language:en", "license:mit", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "cua", "highquality", "tasks" ]
[ "visual-question-answering" ]
2025-04-18T17:06:08Z
2
--- language: en license: mit task_categories: - visual-question-answering tags: - cua - highquality - tasks --- # Uploaded computer interface trajectories These trajectories were generated and uploaded using [c/ua](https://github.com/trycua/cua)
diffusion-cot/GenRef-wds
diffusion-cot
2025-04-24T19:22:11Z
3,896
9
[ "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1M<n<10M", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2504.16080", "region:us", "cot", "reflection", "diffusion" ]
[ "text-to-image" ]
2025-04-19T15:22:47Z
7
--- language: - en license: mit size_categories: - 100K<n<1M tags: - cot - reflection - diffusion task_categories: - text-to-image --- ## GenRef-1M <div align="center"> <img src="./assets/GenRef.png"/> </div> We provide 1M high-quality triplets of the form (flawed image, high-quality image, reflection) collected across multiple domains using our scalable pipeline from [1]. We used this dataset to train our reflection tuning model. To know the details of the dataset creation pipeline, please refer to Section 3.2 of [1]. Project Page: https://diffusion-cot.github.io/reflection2perfection ## Dataset loading We provide the dataset in the `webdataset` format for fast dataloading and streaming. We recommend downloading the repository locally for faster I/O: ```py from huggingface_hub import snapshot_download local_dir = snapshot_download( repo_id="diffusion-cot/GenRef-wds", repo_type="dataset", allow_patterns=["*.tar"] ) ``` And then use the following as a reference to create the dataset: ```py import webdataset as wds dataset = ( wds.WebDataset(glob.glob(f"{local_dir}/*.tar"), shardshuffle=50) .shuffle(15000, handler=wds.warn_and_continue) .decode("pil", handler=wds.warn_and_continue) .rename( good_image="good_image.jpg", bad_image="bad_image.jpg", prompt="prompt.txt", reflection="reflection.txt", subset="subset.txt", ) ) for i, sample in enumerate(dataset): if i >= 5: break print(sample.keys()) ``` If you want to stream directly from the Hub, that is also possible: ```py import webdataset as wds path = "hf://datasets/diffusion-cot/GenRef-wds/genref_{0..208}.tar" dataset = ( wds.WebDataset(path, shardshuffle=50) .shuffle(15000, handler=wds.warn_and_continue) .decode("pil", handler=wds.warn_and_continue) .rename( good_image="good_image.jpg", bad_image="bad_image.jpg", prompt="prompt.txt", reflection="reflection.txt", subset="subset.txt", ) ) for i, sample in enumerate(dataset): if i >= 5: break print(sample.keys()) ``` ## References [1] [From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning](https://huggingface.co/papers/2504.16080)
Nexdata/Infant_Laugh_Speech_Data_by_Mobile_Phone
Nexdata
2025-04-24T06:01:34Z
68
2
[ "size_categories:n<1K", "format:audiofolder", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2022-06-22T08:59:55Z
1
--- YAML tags: - copy-paste the tags obtained with the tagging app: https://github.com/huggingface/datasets-tagging --- # Dataset Card for Nexdata/Infant_Laugh_Speech_Data_by_Mobile_Phone ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://www.nexdata.ai/datasets/speechrecog/1090?source=Huggingface - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset is just a sample of Infant Laugh Speech Data by Mobile Phone(paid dataset).Laugh sound of 20 infants and young children aged 0~3 years old, a number of paragraphs from each of them; It provides data support for detecting children's laugh sound in smart home projects. For more details & to download the rest of the dataset(paid),please refer to the link: https://www.nexdata.ai/datasets/speechrecog/1090?source=Huggingface ### Supported Tasks and Leaderboards automatic-speech-recognition, audio-speaker-identification: The dataset can be used to train a model for Automatic Speech Recognition (ASR). ### Languages Infant Cry ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information Commerical License ### Citation Information [More Information Needed] ### Contributions
lang-uk/WikiEdits-MultiGEC
lang-uk
2025-04-23T20:37:33Z
99
2
[ "task_categories:text2text-generation", "task_categories:text-generation", "language:uk", "language:en", "language:de", "language:cz", "language:it", "language:et", "language:sl", "language:el", "language:lv", "language:is", "language:sv", "license:mit", "size_categories:10K<n<100K", "region:us", "gec", "multigec" ]
[ "text2text-generation", "text-generation" ]
2025-04-21T14:29:54Z
2
--- license: mit language: - uk - en - de - cz - it - et - sl - el - lv - is - sv task_categories: - text2text-generation - text-generation size_categories: - 10K<n<100K tags: - gec - multigec pretty_name: wikiedits_multigec --- # WikiEdits-MultiGEC Dataset ## Overview WikiEdits-MultiGEC is a small dataset of human error corrections made by Wikipedia contributors for eleven languages. These revisions were obtained using the official Wikipedia API, covering the six months from September 28, 2024, to April 17, 2025. ## Structure - `wikiedits_multi_gec.csv` - main data. - `index` - index; - `language` - language of text; - `text` - original text; - `correction` - corrected text; - `wikiedits_multi_gec_metadata.csv` - contains metadata related to the main data `wikiedits_multi_gec.csv`. - `index` - index; - `text_del` - - `text_ins` - - `text_del_tag` - - `text_ins_tag` - - `deletions` - - `insertions` - - `language` - - `url` - - `wikiedits_uk_annotations.csv` - contains human annotations for 1500 samples for the Ukrainian language. - `text` - original text; - `correction` - corrected text; - `score` - annotator score; - `is_rejected` - if the annotator rejects the correction. ## Dataset Statistics ||english|italian|ukrainian|german|czech|swedish|greek|estonian|slovene|latvian|icelandic| |-|-|-|-|-|-|-|-|-|-|-|-| |# pages|5003|2398|1409|1706|447|216|134|39|26|20|0| |# edits all|12465|6024|5126|4672|1114|585|492|126|108|75|0| |# edits|6807|3726|3092|2380|698|363|256|79|43|33|0| ## How to use it You can merge `wikiedits_multi_gec.csv` with `wikiedits_uk_annotations.csv` and `wikiedits_multi_gec.csv` and `wikiedits_multi_gec_metadata.csv`. ```python import pandas as pd df_wikiedits = pd.read_csv('wikiedits_multi_gec.csv') df_wikiedits_anot = pd.read_csv('wikiedits_uk_annotations.csv') df_wikiedits_metadata = pd.read_csv('wikiedits_multi_gec_metadata.csv') df_anot = df_wikiedits_anot.merge(df_wikiedits, on=['text', 'correction'], how='left') df_metadata = df_wikiedits_metadata.merge(df_wikiedits, on=['index'], how='left') ``` ## Authors [Petro Ivaniuk](https://huggingface.co/peterua), [Mariana Romanyshyn](https://huggingface.co/mariana-scorp), [Roman Kovalchuk](https://huggingface.co/rkovalchuk) ##
OptimalScale/ClimbLab
OptimalScale
2025-04-20T17:14:03Z
1,376
7
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1B<n<10B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.13161", "region:us" ]
[ "text-generation" ]
2025-04-18T07:38:38Z
3
--- license: cc-by-nc-4.0 task_categories: - text-generation language: - en --- [ClimbLab](https://huggingface.co/datasets/nvidia/ClimbLab) is a high-quality pre-training corpus released by NVIDIA. Here is the description: >ClimbLab is a filtered 1.2-trillion-token corpus with 20 clusters. Based on Nemotron-CC and SmolLM-Corpus, we employed our proposed CLIMB-clustering to semantically reorganize and filter this combined dataset into 20 distinct clusters, leading to a 1.2-trillion-token high-quality corpus. Specifically, we first grouped the data into 1,000 groups based on topic information. Then we applied two classifiers: one to detect advertisements and another to assess the educational value of the text. Each group was scored accordingly, and low-quality data with low scores was removed. But it is released in gpt-2 tokens which is not easy-to-use. Therefore,we use gpt-2 tokenizer to detokenize them into raw texts. ⚠️ Please note: This version is not officially released or maintained by NVIDIA. We are not responsible for the content, accuracy, or updates of this dataset. ## Citation: If you find this dataset helpful, please cite the following [paper](https://arxiv.org/abs/2504.13161): ``` @article{diao2025climb, author = {Shizhe Diao and Yu Yang and Yonggan Fu and Xin Dong and Dan Su and Markus Kliegl and Zijia Chen and Peter Belcak and Yoshi Suhara and Hongxu Yin and Mostofa Patwary and Celine Lin and Jan Kautz and Pavlo Molchanov}, title={CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training}, journal = {arXiv preprint}, year = {2025}, archivePrefix = {arXiv}, primaryClass = {cs.CL}, url={https://arxiv.org/abs/2504.13161}, } ```
ibm-research/acp_bench
ibm-research
2025-04-16T20:54:51Z
551
6
[ "task_categories:question-answering", "license:cdla-permissive-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.24378", "region:us", "planning", "reasoning" ]
[ "question-answering" ]
2024-09-23T17:24:29Z
3
--- license: cdla-permissive-2.0 task_categories: - question-answering pretty_name: ACP Bench tags: - planning - reasoning dataset_info: - config_name: acp_app_bool dataset_size: 223204 download_size: 65362 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 182349 num_examples: 130 - name: validation num_bytes: 40855 num_examples: 40 - config_name: acp_areach_bool dataset_size: 194445 download_size: 48183 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 153012 num_examples: 120 - name: validation num_bytes: 41433 num_examples: 40 - config_name: acp_just_bool dataset_size: 532461 download_size: 112484 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 434458 num_examples: 130 - name: validation num_bytes: 98003 num_examples: 40 - config_name: acp_land_bool dataset_size: 290859 download_size: 75354 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 236580 num_examples: 130 - name: validation num_bytes: 54279 num_examples: 40 - config_name: acp_prog_bool dataset_size: 234181 download_size: 68746 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 192246 num_examples: 130 - name: validation num_bytes: 41935 num_examples: 40 - config_name: acp_reach_bool dataset_size: 234074 download_size: 65099 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 193493 num_examples: 130 - name: validation num_bytes: 40581 num_examples: 40 - config_name: acp_val_bool dataset_size: 487661 download_size: 108833 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: string name: answer splits: - name: test num_bytes: 386961 num_examples: 130 - name: validation num_bytes: 100700 num_examples: 40 - config_name: acp_app_mcq dataset_size: 326819 download_size: 96360 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 262778 num_examples: 130 - name: validation num_bytes: 64041 num_examples: 40 - config_name: acp_areach_mcq dataset_size: 284305 download_size: 76059 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 219286 num_examples: 120 - name: validation num_bytes: 65019 num_examples: 40 - config_name: acp_just_mcq dataset_size: 932999 download_size: 197964 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 748097 num_examples: 130 - name: validation num_bytes: 184902 num_examples: 40 - config_name: acp_land_mcq dataset_size: 341104 download_size: 79190 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 272655 num_examples: 130 - name: validation num_bytes: 68449 num_examples: 40 - config_name: acp_prog_mcq dataset_size: 331333 download_size: 100358 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 265012 num_examples: 130 - name: validation num_bytes: 66321 num_examples: 40 - config_name: acp_reach_mcq dataset_size: 327799 download_size: 92620 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 264430 num_examples: 130 - name: validation num_bytes: 63369 num_examples: 40 - config_name: acp_val_mcq dataset_size: 795585 download_size: 160933 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: choices struct: - name: label sequence: string - name: text sequence: string - dtype: string name: query - dtype: string name: answer splits: - name: test num_bytes: 620792 num_examples: 130 - name: validation num_bytes: 174793 num_examples: 40 - config_name: acp_app_gen dataset_size: 1066976 download_size: 189054 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 887265 num_examples: 130 - name: validation num_bytes: 179711 num_examples: 40 - config_name: acp_areach_gen dataset_size: 1044322 download_size: 193224 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 870213 num_examples: 130 - name: validation num_bytes: 174109 num_examples: 40 - config_name: acp_just_gen dataset_size: 1189965 download_size: 192965 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer sequence: sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 964832 num_examples: 130 - name: validation num_bytes: 225133 num_examples: 40 - config_name: acp_land_gen dataset_size: 1646526 download_size: 251907 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer struct: - name: 'no' sequence: string - name: 'yes' sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 1443231 num_examples: 130 - name: validation num_bytes: 203295 num_examples: 40 - config_name: acp_prog_gen dataset_size: 1017916 download_size: 182814 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer struct: - name: neg sequence: string - name: pos sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 840693 num_examples: 130 - name: validation num_bytes: 177223 num_examples: 40 - config_name: acp_nexta_gen dataset_size: 1250535 download_size: 235381 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer struct: - name: maybe sequence: string - name: 'no' sequence: string - dtype: string name: opt - name: 'yes' sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 1062476 num_examples: 130 - name: validation num_bytes: 188059 num_examples: 40 - config_name: acp_reach_gen dataset_size: 1013515 download_size: 178491 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - name: answer sequence: string - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 842742 num_examples: 130 - name: validation num_bytes: 170773 num_examples: 40 - config_name: acp_val_gen dataset_size: 1189899 download_size: 194619 features: - dtype: int64 name: id - dtype: string name: group - dtype: string name: context - dtype: string name: question - dtype: int64 name: answer - dtype: string name: PDDL_domain - dtype: string name: PDDL_problem splits: - name: test num_bytes: 990923 num_examples: 130 - name: validation num_bytes: 198976 num_examples: 40 configs: - config_name: acp_app_bool data_files: - split: test path: acp_app_bool/test.parquet - split: validation path: acp_app_bool/validation.parquet - config_name: acp_app_mcq data_files: - split: test path: acp_app_mcq/test.parquet - split: validation path: acp_app_mcq/validation.parquet - config_name: acp_areach_bool data_files: - split: test path: acp_areach_bool/test.parquet - split: validation path: acp_areach_bool/validation.parquet - config_name: acp_areach_mcq data_files: - split: test path: acp_areach_mcq/test.parquet - split: validation path: acp_areach_mcq/validation.parquet - config_name: acp_just_bool data_files: - split: test path: acp_just_bool/test.parquet - split: validation path: acp_just_bool/validation.parquet - config_name: acp_just_mcq data_files: - split: test path: acp_just_mcq/test.parquet - split: validation path: acp_just_mcq/validation.parquet - config_name: acp_land_bool data_files: - split: test path: acp_land_bool/test.parquet - split: validation path: acp_land_bool/validation.parquet - config_name: acp_land_mcq data_files: - split: test path: acp_land_mcq/test.parquet - split: validation path: acp_land_mcq/validation.parquet - config_name: acp_prog_bool data_files: - split: test path: acp_prog_bool/test.parquet - split: validation path: acp_prog_bool/validation.parquet - config_name: acp_prog_mcq data_files: - split: test path: acp_prog_mcq/test.parquet - split: validation path: acp_prog_mcq/validation.parquet - config_name: acp_reach_bool data_files: - split: test path: acp_reach_bool/test.parquet - split: validation path: acp_reach_bool/validation.parquet - config_name: acp_reach_mcq data_files: - split: test path: acp_reach_mcq/test.parquet - split: validation path: acp_reach_mcq/validation.parquet - config_name: acp_val_bool data_files: - split: test path: acp_val_bool/test.parquet - split: validation path: acp_val_bool/validation.parquet - config_name: acp_val_mcq data_files: - split: test path: acp_val_mcq/test.parquet - split: validation path: acp_val_mcq/validation.parquet - config_name: acp_app_gen data_files: - path: acp_app_gen/test.parquet split: test - path: acp_app_gen/validation.parquet split: validation - config_name: acp_areach_gen data_files: - path: acp_areach_gen/test.parquet split: test - path: acp_areach_gen/validation.parquet split: validation - config_name: acp_just_gen data_files: - path: acp_just_gen/test.parquet split: test - path: acp_just_gen/validation.parquet split: validation - config_name: acp_land_gen data_files: - path: acp_land_gen/test.parquet split: test - path: acp_land_gen/validation.parquet split: validation - config_name: acp_prog_gen data_files: - path: acp_prog_gen/test.parquet split: test - path: acp_prog_gen/validation.parquet split: validation - config_name: acp_nexta_gen data_files: - path: acp_nexta_gen/test.parquet split: test - path: acp_nexta_gen/validation.parquet split: validation - config_name: acp_reach_gen data_files: - path: acp_reach_gen/test.parquet split: test - path: acp_reach_gen/validation.parquet split: validation - config_name: acp_val_gen data_files: - path: acp_val_gen/test.parquet split: test - path: acp_val_gen/validation.parquet split: validation --- # ACP Bench <p align="center"> <a href="https://ibm.github.io/ACPBench" target="_blank">🏠 Homepage</a> • <a href="https://doi.org/10.1609/aaai.v39i25.34857" target="_blank">📄 Paper</a> • <a href="https://arxiv.org/abs/2503.24378" target="_blank">📄 Paper</a> </p> ACPBench is a benchmark dataset designed to evaluate the reasoning capabilities of large language models (LLMs) in the context of Action, Change, and Planning. It spans 13 diverse domains: * Blocksworld * Logistics * Grippers * Grid * Ferry * FloorTile * Rovers * VisitAll * Depot * Goldminer * Satellite * Swap * Alfworld ## Task Types in ACPBench ACPBench includes the following 8 reasoning tasks: 1. Action Applicability (app) 2. Progression (prog) 3. Atom Reachability (reach) 4. Validation (val) 5. Action Reachability (areach) 6. Justification (just) 7. Landmarks (land) 8. Next Action (nexta) ## Task Formats The first 7 tasks are available in: * Boolean (yes/no) format * Multiple-choice format * Generative format The Next Action task is provided only in generative format. ## Access Development and test sets are available for download via: * ACPBench GitHub Repository * Hugging Face Dataset Hub ``` @inproceedings{KokelKSS25ACP author = {Harsha Kokel and Michael Katz and Kavitha Srinivas and Shirin Sohrabi}, title = {ACPBench: Reasoning about Action, Change, and Planning}, booktitle = {{AAAI}}, publisher = {{AAAI} Press}, year = {2025} url = {https://doi.org/10.1609/aaai.v39i25.34857} } ``` ``` @misc{KokelKSS25ACPHard, title = {ACPBench Hard: Unrestrained Reasoning about Action, Change, and Planning}, author = {Harsha Kokel and Michael Katz and Kavitha Srinivas and Shirin Sohrabi}, year = {2025}, eprint = {2503.24378}, archivePrefix = {arXiv}, primaryClass = {cs.AI}, url = {https://arxiv.org/abs/2503.24378}, } ```
neulab/VisualPuzzles
neulab
2025-04-16T17:25:09Z
231
4
[ "task_categories:visual-question-answering", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.10342", "region:us" ]
[ "visual-question-answering" ]
2025-04-13T23:49:12Z
2
--- license: mit size_categories: - 1K<n<10K task_categories: - visual-question-answering pretty_name: VisualPuzzles dataset_info: features: - name: id dtype: int64 - name: category dtype: string - name: image dtype: image - name: question dtype: string - name: options sequence: string - name: answer dtype: string splits: - name: train num_bytes: 139582416.624 num_examples: 1168 download_size: 137679574 dataset_size: 139582416.624 configs: - config_name: default data_files: - split: train path: data.parquet --- # VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge [🏠 Homepage](https://neulab.github.io/VisualPuzzles/) | [📊 VisualPuzzles](https://huggingface.co/datasets/neulab/VisualPuzzles) | [💻 Github](https://github.com/neulab/VisualPuzzles) | [📄 Arxiv](https://arxiv.org/abs/2504.10342) | [📕 PDF](https://arxiv.org/pdf/2504.10342) | [🖥️ Zeno Model Output](https://hub.zenoml.com/project/2e727b03-a677-451a-b714-f2c07ad2b49f/VisualPuzzles) ![Puzzle Teaser](https://neulab.github.io/VisualPuzzles/static/img/human_performance.png) ## Overview **VisualPuzzles** is a multimodal benchmark specifically designed to evaluate **reasoning abilities** in large models while deliberately minimizing reliance on domain-specific knowledge. Key features: - 1168 diverse puzzles - 5 reasoning categories: Algorithmic, Analogical, Deductive, Inductive, Spatial - Difficulty labels: Easy, Medium, Hard - Less knowledge-intensive than existing benchmarks (e.g., MMMU) - More reasoning-complex than existing benchmarks (e.g., MMMU) ## Key Findings - All models perform worse than humans; most can't surpass even 5th-percentile human performance. - Strong performance on knowledge-heavy benchmarks does not transfer well. - Larger models and structured "thinking modes" don't guarantee better results. - Scaling model size does not ensure stronger reasoning ## Usage To load this dataset via Hugging Face’s `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("neulab/VisualPuzzles") data = dataset["train"] sample = data[0] print("ID:", sample["id"]) print("Category:", sample["category"]) print("Question:", sample["question"]) print("Options:", sample["options"]) print("Answer:", sample["answer"]) ``` ## Citation If you use or reference this dataset in your work, please cite: ```bibtex @article{song2025visualpuzzles, title = {VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge}, author = {Song, Yueqi and Ou, Tianyue and Kong, Yibo and Li, Zecheng and Neubig, Graham and Yue, Xiang}, year = {2025}, journal = {arXiv preprint arXiv:2504.10342}, url = {https://arxiv.org/abs/2504.10342} } ```
MarcPal08/sentiment-analysis-test
MarcPal08
2025-04-16T12:51:30Z
505
9
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "school", "high-school" ]
[ "text-classification" ]
2025-04-16T11:57:04Z
9
--- dataset_info: features: - name: text dtype: string - name: sentiment dtype: string splits: - name: train num_bytes: 28302.111747851002 num_examples: 279 - name: test num_bytes: 7100.888252148997 num_examples: 70 download_size: 23157 dataset_size: 35403.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* annotations_creators: - expert-generated - crowdsourced language: - it language_creators: - crowdsourced license: - mit multilinguality: - monolingual pretty_name: A sentiment analisys database created in a school environment. size_categories: - n<1K source_datasets: - original tags: - school - high-school task_categories: - text-classification task_ids: - sentiment-analysis --- # Progetto scolastico per l'analisi dei sentimenti Il dataset è stato creato con un questionario online in cui si chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato realizzato all'interno di un corso pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti per la collaborazione ❤️
Smatteux/sentiment-analysis-test
Smatteux
2025-04-16T12:51:30Z
505
9
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:it", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2025-04-16T11:47:03Z
9
--- dataset_info: features: - name: text dtype: string - name: sentiment dtype: string splits: - name: train num_bytes: 28302.111747851002 num_examples: 279 - name: test num_bytes: 7100.888252148997 num_examples: 70 download_size: 23427 dataset_size: 35403.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* annotations_creators: - expert-generated - crowdsourced language: - it language_creators: - crowdsourced license: - mit multilinguality: - monolingual pretty_name: 'a sentiment analysis database created in a school envronment ' size_categories: - n<1K source_datasets: - original tags: [] task_categories: - text-classification task_ids: - sentiment-analysis --- # progetto scolastico per l'analisi dei sentimenti il dataset è stato creato con un questionario online in cu isi chiedeva ad un pubblico di studenti, docenti, personale amministrativo, famiglie di rispondere ad alcune domande sul loro rapporto con la scuola. Le annotazioni sono state effettuate correlando le risposte testuali ad indicatori di gradimento. Il dataset è stato stato realizzato all'interno di un corsp pomeridiano scolastico dedicato all'intelligenza artificiale. Grazie a tutti per la collaborazione ❤️
MrDragonFox/EN_Emilia_Yodas_616h
MrDragonFox
2025-04-14T21:23:31Z
793
4
[ "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T08:25:42Z
2
--- dataset_info: features: - name: file_id dtype: string - name: audio dtype: audio - name: text_scribe dtype: string - name: events_scribe dtype: string - name: CE dtype: float64 - name: CU dtype: float64 - name: PC dtype: float64 - name: PQ dtype: float64 - name: text_emilia dtype: string - name: duration dtype: float64 - name: speaker dtype: string - name: language dtype: string - name: dnsmos dtype: float64 - name: phone_count dtype: int64 splits: - name: train num_bytes: 107194063653.67 num_examples: 228265 download_size: 104387921006 dataset_size: 107194063653.67 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 language: - en size_categories: - 100K<n<1M --- the dataset is 616h out of the English part from https://huggingface.co/datasets/amphion/Emilia-Dataset ( Emilia Yodas - cc by 4.0) audio event classified via scribe v1 (elevenlabs stt/asr) facebook audio aestetics to be used as prefilter the dataset is very much at a v1 - if you want to help - lets talk https://discord.gg/RUs3uzBdW3 (nsfw is fully opt in only - as sfw) if you want full transaction timestamps as they come from scribe v1 - they are cc by 4.0 NC and can be found here https://huggingface.co/datasets/MrDragonFox/EN_Emilia_Yodas_616h_raw_timestamps
banned-historical-archives/banned-historical-archives
banned-historical-archives
2025-04-13T15:18:38Z
86,238
2
[ "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2023-12-17T14:47:08Z
null
--- size_categories: - n>1T --- # 和谐历史档案馆数据集 - Banned Historical Archives Datasets 和谐历史档案馆数据集包含已录入 https://banned-historical-archives.github.io 和暂未未录入的原始文件。 ## 目录结构 - banned-historical-archives.github.io # 已录入该网站的原始数据,不定期从 github 仓库中同步 - raw # 原始文件 - config # 配置文件 - todo # 存放暂未录入网站的文件 部分报纸和图片资料存放在单独的仓库: |名称| 地址 | 状态 | |---|---|---| |参考消息|https://huggingface.co/datasets/banned-historical-archives/ckxx|未录入| |人民日报|https://huggingface.co/datasets/banned-historical-archives/rmrb|已精选重要的文章录入| |文汇报| https://huggingface.co/datasets/banned-historical-archives/wenhuibao , https://huggingface.co/datasets/banned-historical-archives/wenhuibao_disk| 已精选重要的文章录入| |文革照片|https://huggingface.co/datasets/banned-historical-archives/CR-photo|未录入| |漫画(-1949)|https://huggingface.co/datasets/banned-historical-archives/manhua-before-1949|未录入| |解放日报|https://huggingface.co/datasets/banned-historical-archives/jiefangribao|未录入| |新民晚报|https://huggingface.co/datasets/banned-historical-archives/xinminwanbao|未录入| |画报(-1949)|https://huggingface.co/datasets/banned-historical-archives/huabao-before-1949|未录入| |人民画报|https://huggingface.co/datasets/banned-historical-archives/renminhuabao|未录入| |解放军报|https://huggingface.co/datasets/banned-historical-archives/jiefangjunbao|已精选重要的文章录入| |中国妇女|https://huggingface.co/datasets/banned-historical-archives/zhongguofunv|未录入| |北京周报 |https://huggingface.co/datasets/banned-historical-archives/peking-review|未录入| |杭州日报 |https://huggingface.co/datasets/banned-historical-archives/hangzhouribao|未录入| |新中华报 |https://huggingface.co/datasets/banned-historical-archives/xinzhonghuabao|未录入| |故事会 |https://huggingface.co/datasets/banned-historical-archives/gushihui|未录入| |工农兵画报 |https://huggingface.co/datasets/banned-historical-archives/gongnongbinghuabao|未录入| |炎黄春秋| https://huggingface.co/datasets/banned-historical-archives/yanhuangchunqiu|未录入| |连环画报 |https://huggingface.co/datasets/banned-historical-archives/lianhuanhuabao|未录入| |中央日报 |https://huggingface.co/datasets/banned-historical-archives/zhongyangribao|未录入| |香港工商晚报 |https://huggingface.co/datasets/banned-historical-archives/hkgongshangwanbao|未录入| |香港大公报|https://huggingface.co/datasets/banned-historical-archives/dagongbao|未录入| |香港工商日报| https://huggingface.co/datasets/banned-historical-archives/hkgongshangribao|未录入| |香港华侨日报|https://huggingface.co/datasets/banned-historical-archives/huaqiaoribao|未录入| |参考消息|https://huggingface.co/datasets/banned-historical-archives/cankaoxiaoxi|未录入| |裁判文书 |https://huggingface.co/datasets/banned-historical-archives/legal-judgements|未录入| ## 贡献 ### 原始文件贡献 * 少量文件推荐使用huggingface网页,登陆后可以上传文件(上传至todo目录)和删除文件,操作完成等待审核通过 * 大量文件推荐通过git工具上传到huggingface,再通过community联系我们 * todo文件夹中,应及时删除已录入的资料,避免重复录入 ### 使用 github issue 贡献资料(支持自动化OCR) https://github.com/banned-historical-archives/banned-historical-archives.github.io/blob/master/docs/upload-and-correction.md ## 注意事项 * 所有仓库总文件大小超过4TB,克隆仓库时请确保磁盘空间充足 * 克隆仓库时建议使用git clone --depth 1参数,否则将下载所有commit历史记录,影响下载速度
osunlp/Dreamer-V1-Data
osunlp
2025-04-09T09:13:42Z
3,074
2
[ "license:cc-by-nc-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2411.06559", "region:us" ]
[]
2025-04-09T03:20:06Z
2
--- license: cc-by-nc-sa-4.0 --- After heavier cleaning, the remaining data size is 3.12M. # WebDreamer: Model-Based Planning for Web Agents WebDreamer is a planning framework that enables efficient and effective planning for real-world web agent tasks. Check our paper for more details. This work is a collaboration between [OSUNLP](https://x.com/osunlp) and [Orby AI](https://www.orby.ai/). ![image](https://github.com/user-attachments/assets/a1189fee-ff43-45fc-a818-3dc6befb6ad2) - **Repository:** https://github.com/OSU-NLP-Group/WebDreamer - **Paper:** https://arxiv.org/abs/2411.06559 - **Point of Contact:** [Kai Zhang](mailto:[email protected]) ## Models - Dreamer-7B: - [General](https://huggingface.co/osunlp/Dreamer-7B) - [In-Domain-VWA-Shopping](https://huggingface.co/osunlp/Dreamer-7B-Shopping) - [In-Domain-VWA-Classifieds](https://huggingface.co/osunlp/Dreamer-7B-Classifieds) - [In-Domain-VWA-Reddit](https://huggingface.co/osunlp/Dreamer-7B-Reddit) ## Data: [Dreamer Training Data](https://huggingface.co/datasets/osunlp/Dreamer-V1-Data) ``` root |-- prompt: string |-- image: binary |-- response: string |-- action: string ``` ## Results ### Strong performance on VisualWebArena and Mind2Web-live | Benchmark | Method | Success Rate | |------------------|-----------------|--------------------| | **VisualWebArena** | GPT-4o + Reactive | 17.6% | | | GPT-4o + Tree Search | 26.2% | | | **GPT-4o + WebDreamer** | 23.6% (↑34.1%) | | **Online-Mind2Web** | GPT-4o + Reactive | 26.0% | | | **GPT-4o + WebDreamer** | 37.0% (↑42.3%) | | **Mind2Web-live** | GPT-4o + Reactive | 20.2% | | | **GPT-4o + WebDreamer** | 25.0% (↑23.8%) | Compared to the reactive baselines, WebDreamer significantly improves performance by 34.1%, 42.3%, and 23.8% on VisualWebArena, Online-Mind2Web, and Mind2Web-live, respectively. ### Better efficiency than tree search with true interactions <img width="1502" alt="image" src="https://github.com/user-attachments/assets/0afbc22d-b1eb-4026-a167-e1852cde7677"> WebDreamer effectively explores the search space through simulations, which largely reduces the reliance on real-world interactions while maintaining robust performance. ## Inference ### vLLM server ```bash vllm serve osunlp/Dreamer-7B --api-key token-abc123 --dtype float16 ``` or ```bash python -m vllm.entrypoints.openai.api_server --served-model-name osunlp/Dreamer-7B --model osunlp/Dreamer-7B --dtype float16 ``` You can find more instruction about training and inference in [Qwen2-VL's Official Repo](https://github.com/QwenLM/Qwen2-VL). ### Prompt Actually our model is quite robust to textual prompt so feel free to try various prompts which we didn't heavily explore. ```python def format_openai_template(description: str, base64_image): return [ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}, }, { "type": "text", "text": f""" Below is current screenshot. Please describe what you would see after a {action_description}""" }, ], }, ] messages = format_openai_template(description, base64_image) completion = await client.chat.completions.create( model=args.model_path, messages=messages, temperature=1.0 ) ``` ## Citation Information If you find this work useful, please consider citing our papers: ``` @article{Gu2024WebDreamer, author = {Yu Gu and Kai Zhang and Yuting Ning and Boyuan Zheng and Boyu Gou and Tianci Xue and Cheng Chang and Sanjari Srivastava and Yanan Xie and Peng Qi and Huan Sun and Yu Su}, title = {Is Your LLM Secretly a World Model of the Internet? Model-Based Planning for Web Agents}, journal = {CoRR}, volume = {abs/2411.06559}, year = {2024}, url = {https://arxiv.org/abs/2411.06559}, eprinttype= {arXiv}, eprint = {2411.06559}, } ```
huggingface/badges
huggingface
2025-04-08T17:39:54Z
1,601,440
43
[ "license:mit", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2023-02-02T14:55:23Z
null
--- license: mit thumbnail: "https://huggingface.co/datasets/huggingface/badges/resolve/main/badges-thumbnail.png" --- <style> .prose img { display: inline; margin: 0 6px !important; } .prose table { max-width: 320px; margin: 0; } </style> # Badges A set of badges you can use anywhere. Just update the anchor URL to point to the correct action for your Space. Light or dark background with 4 sizes available: small, medium, large, and extra large. ## How to use? - With markdown, just copy the badge from: https://huggingface.co/datasets/huggingface/badges/blob/main/README.md?code=true - With HTML, inspect this page with your web browser and copy the outer html. ## Available sizes | Small | Medium | Large | Extra large | | ------------- | :-----------: | ------------- | ------------- | | 20px (height) | 24px (height) | 36px (height) | 48px (height) | ## Follow us on HF [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-sm.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-sm-dark.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-md.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-md-dark.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-lg.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-lg-dark.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-xl.svg)](https://huggingface.co/organizations) [![Follow us on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-us-on-hf-xl-dark.svg)](https://huggingface.co/organizations) ## Paper page [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-sm-dark.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md-dark.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-lg.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-lg-dark.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-xl.svg)](https://huggingface.co/papers) [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-xl-dark.svg)](https://huggingface.co/papers) ## Deploy on Spaces [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-sm.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-sm-dark.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-md.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-md-dark.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-lg.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-lg-dark.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-xl.svg)](https://huggingface.co/new-space) [![Deploy on Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/deploy-on-spaces-xl-dark.svg)](https://huggingface.co/new-space) ## Duplicate this Space [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md-dark.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-xl-dark.svg)](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery?duplicate=true) ## Open in HF Spaces [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-sm-dark.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-lg.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-lg-dark.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-xl.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-xl-dark.svg)](https://huggingface.co/spaces) ## Open a Discussion [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-sm.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-sm-dark.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-md.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-md-dark.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-lg.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-lg-dark.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-xl.svg)](https://huggingface.co/spaces) [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-discussion-xl-dark.svg)](https://huggingface.co/spaces) ## Share to Community [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-sm.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-sm-dark.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-md.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-md-dark.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-lg.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-lg-dark.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-xl.svg)](https://huggingface.co/spaces) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/share-to-community-xl-dark.svg)](https://huggingface.co/spaces) ## Sign in with Hugging Face [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-sm.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-sm-dark.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-md.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-md-dark.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-lg.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-lg-dark.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-xl.svg)](https://huggingface.co/) [![Sign in with Hugging Face](https://huggingface.co/datasets/huggingface/badges/resolve/main/sign-in-with-huggingface-xl-dark.svg)](https://huggingface.co/) ## Open a Pull Request [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-sm.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-sm-dark.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-md.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-md-dark.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-lg.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-lg-dark.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-xl.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) [![Open a Pull Request](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-a-pr-xl-dark.svg)](https://huggingface.co/spaces/victor/ChatUI/discussions) ## Subscribe to PRO [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-sm.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-sm-dark.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-md.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-md-dark.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-lg.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-lg-dark.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-xl.svg)](https://huggingface.co/subscribe/pro) [![Subscribe to PRO](https://huggingface.co/datasets/huggingface/badges/resolve/main/subscribe-to-pro-xl-dark.svg)](https://huggingface.co/subscribe/pro) ## Follow me on HF [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-md.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-md-dark.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-lg.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-lg-dark.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl.svg)](https://huggingface.co/Chunte) [![Follow me on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-xl-dark.svg)](https://huggingface.co/Chunte) ## Model on HF [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-sm.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-sm-dark.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-lg.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-lg-dark.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-xl.svg)](https://huggingface.co/models) [![Model on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-xl-dark.svg)](https://huggingface.co/models) ## Dataset on HF [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-sm.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-sm-dark.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-lg.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-lg-dark.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-xl.svg)](https://huggingface.co/datasets) [![Dataset on HF](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-xl-dark.svg)](https://huggingface.co/datasets) ## Powered by Hugging Face [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/powered-by-huggingface-light.svg)](https://huggingface.co) [![Share to Community](https://huggingface.co/datasets/huggingface/badges/resolve/main/powered-by-huggingface-dark.svg)](https://huggingface.co)
SBB/VD-Metadata
SBB
2025-04-08T14:48:21Z
103
2
[ "task_categories:text-classification", "task_categories:feature-extraction", "language:de", "language:la", "language:el", "language:fr", "license:cc0-1.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "metadata", "cultural heritage", "library sciences", "machine learning", "data science" ]
[ "text-classification", "feature-extraction" ]
2025-04-08T13:23:17Z
2
--- license: cc0-1.0 task_categories: - text-classification - feature-extraction language: - de - la - el - fr tags: - metadata - cultural heritage - library sciences - machine learning - data science pretty_name: vd-metadata size_categories: - 1M<n<10M configs: - config_name: VD-Bib-Metadata data_files: - split: train path: VD-Bib-Metadata.parquet - config_name: VD-Digi-Metadata data_files: - split: train path: VD-Digi-Metadata.parquet --- # Metadata of the "Verzeichnis der im deutschen Sprachraum erschienen Drucke" # Title Metadata of the "Verzeichnis der im deutschen Sprachraum erschienen Drucke" # Description and Motivation This data publication was created with the intent to provide bibliographic and subject indexing metadata for research purposes and the development of AI applications. This data publication can be regarded as the German national bibliography of the period 1500–1800. It consists of two files: The first one provides all bibliographic master records pertaining to the German national bibliography which were edited and revised and electronically copied to the union catalogue K10plus, the shared database of the Bibliotheksservice-Zentrum Baden-Württemberg (BSZ) and the Verbundzentrale des GBV (VZG). The second one lists the unique identifiers ("Pica-Produktionsnummer") of all master records available in the union catalogue K10plus which have been digitised, and it contains the links to their digital copies. The first bibliographic file comprises descriptive metadata of 750.342 titles. They result from three separate projects aiming at establishing a retrospective German national bibliography for the 16th, 17th, and 18th centuries. The data are stored in columnar format, containing 174 columns. They were downloaded in February 2025 from the K10plus and represent a work in progress. Exemplary tasks which can be served by this file comprise studies on the history of books between 1500 and 1800 and on pattern recognition on the basis of bibliographical metadata. The second file ("digital copies") comprises 16 columns of 590.528 titles which are available in digitised form. The primary intention for this data publication was the provision of a large computationally amenable dataset exclusively consisting of bibliographic metadata to stimulate research and development of AI applications. In 2025, large (meta-)datasets from the field of historical cultural data are still missing. In this respect, the data publication provided here aims to fill a gap. The files are suitable for the computational use of digitised and born-digital collections according to the [Collections as Data principles](https://collectionsasdata.github.io/statement/). The data publication was created by two librarians and a member of the team of the research project "[Mensch.Maschine.Kultur – Künstliche Intelligenz für das Digitale Kulturelle Erbe](https://mmk.sbb.berlin/?lang=en)" at Berlin State Library (SBB). The research project was funded by the Federal Government Commissioner for Culture and the Media (BKM), project grant no. 2522DIG002. The Minister of State for Culture and the Media is part of the German Federal Government. ## Homepage Not applicable. ## Repository [Zenodo Community: Data and Demos of the Staatsbibliothek zu Berlin – Berlin State Library](https://zenodo.org/communities/stabi) ## Papers and/or Other References Not applicable. ## Publisher Staatsbibliothek zu Berlin – Berlin State Library ## Point of Contact Maria Federbusch, Staatsbibliothek zu Berlin – Berlin State Library, [[email protected]](mailto:[email protected]) Remigiusz Stachowiak, Staatsbibliothek zu Berlin – Berlin State Library, [[email protected]](mailto:[email protected]), ORCID: [0000-0002-1889-0502](https://orcid.org/0000-0002-1889-0502) Jörg Lehmann, Staatsbibliothek zu Berlin – Berlin State Library, [[email protected]](mailto:[email protected]), ORCID: [0000-0003-1334-9693](https://orcid.org/0000-0003-1334-9693) ## Supported Tasks and Shared Tasks There are at least two tasks for which the bibliographic dataset may be used: * Task "history of books between 1500 and 1800". See as an example [Lathi et al, 2019](https://doi.org/10.1080/01639374.2018.1543747) * Task "pattern recognition on the basis of bibliographical metadata". Such patterns could be used for [retrieval augmented generation of metadata](https://scale.com/blog/retrieval-augmented-generation-to-enhance-llms). See as an example [Völker et al, 2024](https://doi.org/10.1145/3627508.3638298) This dataset was not part of a shared task. ### AI Category Natural Language Processing, Feature Extraction ### Type of Cultural Heritage Application Metadata enrichment ### (Cultural Heritage) Application Example Retrieval Augmented Generation # Distribution This dataset is distributed by the three named dataset curators. Dissemination on the publication was done via social media in order to reach the relevant research and machine learning communities. Furthermore, the library community within Germany has been informed about the publication of this dataset. ## Dataset Curators The dataset was curated and published by two librarians employed at Staatsbibliothek zu Berlin – Berlin State Library as well as one member of the research project "Mensch.Maschine.Kultur" ("Human.Machine.Culture"): Maria Federbusch, Staatsbibliothek zu Berlin – Berlin State Library. Maria Federbusch has studied librarianship and electrical engineering. She works as a research librarian in the Department of Manuscripts and Early Printed Books at the Berlin State Library and is responsible for project and science management. Remigiusz Stachowiak, Staatsbibliothek zu Berlin – Berlin State Library. Remigiusz Stachowiak has studied history, Eastern European studies and edition philology. He holds a doctorate in late medieval history. He is a research librarian in the Department of Manuscripts and Early Printed Books at Berlin State Library. Jörg Lehmann, Staatsbibliothek zu Berlin – Berlin State Library. Jörg Lehmann has studied history and comparative literature and works in the research project "Mensch.Maschine.Kultur"; he was responsible for downloading the data, curating them as described, and drafting the datasheet. All curators can be contacted with regard to an update or feedback to the datasheet and regarding technical issues. The curators are prepared to incorporate responses and comments into a new version of the datasheet if this deems sensible. ## Licensing Information [Creative Commons Zero v1.0 – CC0 1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/) ## Citation Information ```bibtex @dataset{federbusch_2025_15167939, author = {Federbusch, Maria and Stachowiak, Remigiusz and Lehmann, Jörg}, title = {Metadata of the "Verzeichnis der im deutschen Sprachraum erschienen Drucke" }, month = apr, year = 2025, publisher = {Staatsbibliothek zu Berlin - Berlin State Library}, doi = {10.5281/zenodo.15167939}, url = {https://doi.org/10.5281/zenodo.15167939}, } ``` ## Contributions The data contained in the dataset have been compiled by trained librarians over a long period of time and are therefore a typical result of carefully crafted metadata from several cultural heritage institutions. The selection, transformation and curation of the dataset was performed with the goal to provide a computer-amenable dataset to both the research and machine learning communities. The "Verzeichnis der im deutschen Sprachraum erschienenen Drucke" is a joint effort by German VD libraries, pan-European libraries since 1969 as well as all contributors to the central library system (CBS) / the K10plus database, through which the title data were retrieved in electronic form. However, this data publication transcends traditional librarian formats and provides a computer-amenable dataset. # Composition In Germany, three separate cooperative projects exist to catalogue all prints for the sixteenth, seventeenth and eighteenth century. The full title of these three projects are: "Verzeichnis der im deutschen Sprachbereich erschienenen Drucke des 16. Jahrhunderts" (in English: Register of printed works of the 16th century published in German-speaking countries, abbreviated [VD16](http://www.vd16.de/)); "Verzeichnis der im deutschen Sprachraum erschienenen Drucke des 17. Jahrhunderts" (in English: Union catalogue of books printed in German-speaking countries in the 17th century, abbreviated [VD17](http://www.vd17.de/), also available as a database [VD17](https://kxp.k10plus.de/DB=1.28/)); and "Verzeichnis der im deutschen Sprachraum erschienenen Drucke des 18. Jahrhunderts" (in English: Union catalogue of books printed in German-speaking countries in the 18th century, abbreviated [VD18](http://www.vd18.de/), also available as a database [VD18](https://vd18.k10plus.de/)). All the three projects are funded by the [Deutsche Forschungsgemeinschaft](https://www.dfg.de/en) (German Research Foundation). Taken together, the three projects VD16, VD17 and VD18 aim to establish a retrospective German national bibliography for the period from 1501 to 1800. Included are all German-language items as well as any work printed and published in the German speaking countries of the time, regardless of its language. As of February 2025, the VD16 comprises about 106,000 titles, the VD17 lists about 315,000 items, and the VD18 about 295,000 titles. None of the projects have yet been completed. The VD16 started in 1969 and was released as a printed library catalogue; this project is directed by the Bayerische Staatsbibliothek München. VD17 was conceived as a database from the beginning and started in 1996 and VD18 in 2009. Only the latter aimed at digitisation from its very inception. In the meantime, all three projects are aiming at a complete digitisation of the recorded titles. However, the three projects differ in their approaches: While VD16 and VD17 aim at recording all known copies of an edition, in VD18 only one copy per edition is included. In this way, possible variations in prints are taken into account for the VD16 and VD17, while the increase in book production in the 18th century prevents the digitization of multiple variants. Another peculiarity is the fact that the works were recorded according to three different systems: Guidelines for VD16, RAK and RDA. Genre terms were consistently used only in the VD17 and VD18. The union catalogue K10plus merges the databases of the Bibliotheksservice-Zentrum Baden-Württemberg (BSZ) and the Verbundzentrale des Gemeinsamen Bibliotheksverbundes (VZG). The revised national bibliographic master records from the VD16 and VD17 projects are available in the K10plus as external data. In the VD18 project, master records are also captured directly in the K10plus or imported into the K10plus database from other union databases. For the purpose of this data publication, the records of the three VD projects were taken together, thus forming a large data publication consisting exclusively of revised metadata. The dataset was created by systematically downloading all relevant titles of the VD16, VD17 and VD18 in February 2025 from the K10plus; it also includes data collected within the union and made available via the K10plus database. This having said, the German federal system has to be taken into respect as well as the fact that not every German library participates in the VD projects. These circumstances lead to the result that not every title which has been recorded in Germany has been revised and is therefore available in the K10plus database. The fact that the absolute number of titles contained in this dataset exceeds the sum of the three VD’s as given above can best be understood if it is taken into account that the dataset also comprises the complete recording of a multi-part monograph, the parts of monographic series as well as journals and dependent works. This latter term (in contrast to independent literature or monographs) refers to printed publications such as included publications or songs that are part of a larger work. The first file ("bibliography") comprises 750.342 revised titles with ample metadata, which are sorted into 174 columns. Here, all edited and revised titles of prints from VD16, VD17 and VD18 from K10plus are merged into one file. The file contains not only monographs and journals and their individual units, but also so-called included or attached (dependent) works. The dataset contains bibliographic data and subject indexing data, but no description of the individual book copies, since these are only recorded in K10plus from the two library networks GBV and SWB. The inclusion of these data would distort the overall picture of copy records, since the book copies from other library networks are not taken into account here (e.g. copy records from Bavaria). The search syntax in K10plus (WinIBW userface) for the file described here is as follows: f sbn ((vd16? or vd17? or vd18?) bbg a!v?) or (vrb redvd18? bbg asv?). This expression can be translated as follows: find all bibliographic numbers of the edited and revised titles of the three VDs or find all records of the edited and revised dependent works of the VD18. The second file ("digital copies") contains the records of the prints from VD16, VD17 and VD18 that have been digitized. Due to the different data models of the VDs, the search query must be adapted to the individual databases. From the data pools of VD16 and VD17, only titles containing links to digital copies will be included. From the VD18, the so-called o-records (records of the digital copies) are taken into account. This file also contains not only monographs and journals and their individual units, but also so-called included or attached (dependent) works. The search syntax in the K10plus (WinIBW userface) for the second file described here is as follows: f sbn ((vd18? bbg (o!v? or o!u?)) or (vrb redvd18? bbg os?)) or sbn ((vd16? or vd17?) bbg a!v?)). This expression can be translated as follows: find all bibliographic numbers of the edited and revised titles with their digital records of the VD18 or find all bibliographic numbers of the edited and revised dependent works of the VD18 or find all records of the edited and revised titles of VD16 and VD17. From the resulting dataset all titles were removed which did not contain any information about a digital copy. The second file comprises 590.528 observations of 16 variables. It contains the unique identifier "Pica-Produktionsnummer", the identifier of each VD ("VD-Nummer"), references to the physical copy of the book, links to digital copies, in rare cases also rights or licence information and access status. It thus serves as a concordance between the bibliographic file and the currently available digital copies. The tasks for which this dataset may be used are studies on the history of books between 1501 and 1800 and on pattern recognition on the basis of bibliographical metadata. The intention for the creation of this dataset was to provide a substantial and at the same time delimited dataset comprising the German national bibliography as exhaustive as possible in early 2025. The language used in the dataset is German; however, as the names of the three VD’s indicate ("Union catalogue of books printed in German speaking countries"), the titles described in the dataset may be in other languages as well, such as Latin, Greek, and others. The dataset consists of two files (VD-Bib-Metadata.parquet and VD-Digi-Metadata.parquet) as well as the accompanying datasheet. Both files fully comply with the European General Data Protection Regulation (GDPR). The dataset does not contain information that is under copyright. The files exclusively comprise textual information and links. Authors and people who are subject of the listed titles are named and often linked to authority files, especially to the authority file [Gemeinsame Normdatei (GND)](https://gnd.network/Webs/gnd/EN/Home/home_node.html). Since the time frame covered by the dataset ends with the year 1800 and, in the case of journals and multipart monographs around 1810, the dataset does not contain any personal or sensitive information which relate to people who are still living or have been living until 70 years ago. ## Data Category text files ## Object Type metadata ## Dataset Structure Within the databases of the Bibliotheksservice-Zentrum Baden-Württemberg (BSZ) and Verbundzentrale des GBV (VZG) / the K10plus database, bibliographic information is provided in machine-readable form separated into fields. An overview of most of these fields as well as instructions on how information was inserted into each field [can be found here (in German language only)](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=index&katalog=Standard). Data for the more than 750,000 titles were transformed from the format available in the K10plus into a columnar format, where each of the fields forms an individual column. In the K10plus database, the field names are given in the form of four digits. For a better readability of the table, the field names used in the [documentation](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=index&katalog=Standard) were added to these four digits. The dataset does not contain data splits which can be used for machine learning tasks. It is advisable to first analyse the dataset and then perform the split(s), for example to split off portions of the dataset which pertain to one of the three project centuries. Records pertaining to either VD16, VD17 or VD18 are identifiable, since they contain a VD-number in the respective column ("2190 VD16-Nummer", "2191 VD17-Nummer", or "2192 VD18-Nummer"). ### Data Instances For nearly every column, there can be found information [in the documentation](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=index&katalog=Standard) on how to interpret the content and resolve the keys used in every field. Field "[1500 Sprachcodes](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=kat&val=1500&katalog=Standard)", for example, holds the information of the language of the publication in ISO 639-2/B format, e.g. ger, lat, grc, fre. Moreover, further information has been inserted separated by a \$ and a lower-case letter. The entry "lat\$agrc\$ager" contains the separator \$a and can be read as "the languages of the publication are Latin, Greek and German", while it is not specified how much text is covered by each of these languages (\$a indicates the language of the text). The entry "ger\$clat" can be read as "the language of the publication is German, but the original text is in Latin". ### Data Fields Most fields (or columns) are described [in the documentation](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=index&katalog=Standard). However, there are fields which are essential for the understanding of this dataset. A key element in this dataset are Pica Production Numbers (PPNs). PPNs are unique identifiers used for individual entities; in the dataset, they are surrounded by exclamation marks (!..!) and are thus machine-readable. They are related to titles as well as to authorities. To provide some illuminating examples: the physical work with the PPN [567660303](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=567660303) noted in field "0100 Pica-Produktionsnummer" contains a reference to the digital edition bearing the PPN [858908824](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=858908824); the latter information can be found in field "4243 Beziehungen auf Manifestationsebene". Furthermore, the main contributor to the text, Andreas Wenzel, has received the PPN 080488994. This PPN can be used to retrieve information about Andreas Wenzel via the online catalogue ([https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=080488994](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=080488994)), or in the form of a xml file in [DublinCore](http://unapi.k10plus.de/?id=gvk:ppn:080488994&format=dc) or [MODS](http://unapi.k10plus.de/?id=gvk:ppn:080488994&format=mods) format. Wenzel’s PPN is given in field "3000 Person/Familie als 1. geistiger Schöpfer", alongside with his [GND](https://gnd.network/Webs/gnd/EN/Home/home_node.html) number [120161052](https://d-nb.info/gnd/120161052). Furthermore, PPNs are used to characterise this work, e.g. by providing information on the type of content (field "1131 Art des Inhalts"), in this case PPN [106394134](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=106394134) for "Anthologie" (corresponding to GND [4002214-6](https://d-nb.info/gnd/4002214-6)), or information on the genre, PPNs [096632232](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=096632232) for "Lyrik" and [096631643](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=096631643) "Gelegenheitsschrift:Hochzeit"; the latter two can be found in field "5570 Gattungsbegriffe bei Alten Drucken" (genre terms in old prints). A comprehensive list of these genre terms [can be found here](https://verbundwiki.gbv.de/display/GAD/Gattungsbegriffe+der+Arbeitsgemeinschaft+Alte+Drucke+beim+GBV+und+SWB). Field "0500 Bibliografische Gattung und Status" (bibliographic genre and status) holds information on whether a title was recorded referring to its physical form (A) or to its electronic form (O), on its bibliographic frequency (a for single units, c for the recording of a multi-part monograph, f for a volume of it, b for a journal, v for a journal volume), and on its status (v for bibliographical completeness and cataloguing in autopsy). Fields 2190, 2191 and 2192 ("VD16-Nummer", "VD17-Nummer", or "VD18-Nummer") hold the IDs used by the three VD16, VD17 and VD18 projects respectively. Field "[5301 Basisklassifikation](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=kat&val=5301&katalog=Standard)" uses the [BK (Basisklassifikation)](https://wiki.k10plus.de/display/K10PLUS/Basisklassifikation), another classification system extensively used for subject indexing. Field "[1100 Erscheinungsdatum/Entstehungsdatum](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=kat&val=1100&katalog=Standard)" gives information on the date of publication or creation, field "[4040 Normierter Ort](https://swbtools.bsz-bw.de/cgi-bin/k10plushelp.pl?cmd=kat&val=4040&katalog=Standard)" on the place of publication in standardised form. ### Compliance with Standard The standard used in the K10plus is PICA+, an xml standard. However, to enable better ingestion and processing, both files were converted to the columnar format .parquet. ### Data Splits Not applicable. ## Languages The languages most often represented in the bibliographic file (i.e. the language of the publications listed there) are German (ger), Latin (lat), Ancient Greek (grc), Modern Greek (gre), Low German (nds), French (fre), Hebrew (heb), English (eng), Italian (ita). Beyond these, more than hundred other languages are represented as well. See the column "1500 Sprachcodes" in the file, which specifies the language of the publication in [ISO 639-2/B](https://www.loc.gov/standards/iso639-2/php/code_list.php) format. This field also describes in detail the diverse combinations of languages characterising each individual title, as well as it indicates whether the title is a translation and from which language it was translated. ## Descriptive Statistics The bibliographic file comprises 750.342 observations of 174 variables. In other words: 750.342 titles published between 1500 and roughly 1800 are described in 174 columns. The columns are sparsely populated. Most of the columns are of the data type "character" due to additional, character-based codes within field contents, derived from the custom internal data format called PICA+. The column "0100 Pica-Produktionsnummer", which holds the unique key for each title, is also in character format, because some of the keys contain an "X". File size is 487 MB (511.651.840 Bytes). The second file ("digital copies") comprises 590.528 observations of 16 variables. It contains the unique identifier "Pica-Produktionsnummer", the identifier of each VD ("VD-Nummer"), references to the physical copy of the book, links to digital copies, in rare cases also rights or licence information and access status. It thus serves as a concordance between the bibliographic file and the digital copies available in February 2025. File size is 105 MB (110.825.472 Bytes). # Data Collection Process The idea behind the decision to collect all the titles listed in the VD16, VD17 and VD18 was to compile a reasonably large dataset of bibliographic metadata which is at the same time delimitable and is the product of more than 50 years of librarian’s work. The criteria of whether or not a title is added to one of the three VDs can be found on the websites of each VD cited above. The bibliographic metadata contained in this dataset were established by trained librarians. As hundreds of libraries participate in the federated system, the dataset was established collaboratively, is extremely rich and saturated, and the data collected are of a high quality. Alternative datasets with similar characteristics would be national bibliographies of other European nation-states since the beginning of book printing in the late 15th century. A comprehensive publication of such metadata might enable similar studies and tasks as have been described for the present dataset. ## Curation Rationale The lack of massive datasets with bibliographic metadata motivated the creation of this dataset. Curation of the dataset was performed with great care with the intent to keep as much information as possible while discarding some fields/columns due to them being sparsely populated. ## Source Data ### Initial Data Collection and Normalisation The two files were systematically downloaded from the K10plus database in February 2025; both downloads were each consolidated into a single table. With regard to the bibliographic file, some columns were sorted out during the process of consolidation. In the vast majority of the cases, the decision for deletion was taken on a statistical basis: A column containing less than 750 entries (0,1% of the length of the file) seemed dispensable with regard to the fact that 750.342 entries could be there. Further reasons for the dismissal of columns were the fact that they are relevant only for internal purposes (e.g., the date of the last change of the bibliographic description) or where it was clear that they resulted from obvious mistakes. No normalisation of any data was performed. ### Source Data Producers The source data were produced by trained librarians over the course of the past 55 years, i.e. starting from 1969. The titles to be included in the three VD’s were carefully selected, and the source data were created by librarians under changing rules and standards such as the "Regeln für die alphabetische Katalogisierung (RAK)"" and the "Resource Description and Access". VD16 was recorded according to its own system of rules. Since the data result from changing rules and standards, they are not homogeneous which may have consequences for their analysis. It is notable that this dataset does not only document a significant volume and diversity of publications, but is the result of centuries-long processes of preservation of relevant historical titles, and of data collection conducted with care. ### Digitisation Pipeline Not applicable. ## Preprocessing and Cleaning Beyond the data cleaning described above in the section "Initial Data Collection and Normalisation", no preprocessing of both files has been undertaken. The conversion of the files to the columnar arrow format was performed with the aim to alleviate ingestion of the dataset for machine learning purposes. If there was more than one entry in a field, the entries were concatenated and are presented within square brackets, with commas separating the individual entries. ## Annotations Not applicable. ### Annotation Process Not applicable. ### Annotators Not applicable. ### Crowd Labour Not applicable. ## Data Provenance The provenance of the data is the database management system CBS (Central Library System), which contains the data of the K10plus database of the library networks GBV (Gemeinsamer Bibliotheksverbund) and SWB (Südwestdeutscher Bibliotheksverbund). Alternatively, the data could have been retrieved in various library formats [via the SRU-API of the GBV](http://uri.gbv.de/database/k10plus), the SRU-APIs of the [K10plus](https://sru.k10plus.de/opac-de-627), of the [VD17](https://sru.k10plus.de/vd17) or [VD18](https://https//sru.k10plus.de/vd18). Furthermore, the data of the VD17 is available as a dump in JSON format on GitHub. The licence generally attached to [bibliographic metadata](https://format.gbv.de/about/license) is [CCO](http://creativecommons.org/publicdomain/zero/1.0/). ## Use of Linked Open Data, Controlled Vocabulary, Multilingual Ontologies/Taxonomies The dataset contains links to several authority file types (persons, places, subjects) like the [Gemeinsame Normdatei (GND)](https://gnd.network/Webs/gnd/EN/Home/home_node.html), and to classification systems such as the *Nederlandse basisclassificatie* [BK (Basisklassifikation)](https://wiki.k10plus.de/display/K10PLUS/Basisklassifikation). The classification was performed by the librarians who created the bibliographic record. The Basisklassifikation is usually linked via an PPN; e.g., the PPN [106403877](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=106403877) is used for the Basisklassifikation identifier 11.50 pointing to church history, as it is used [in this title](https://gvk.k10plus.de/DB=2.1/PPNSET?PPN=635726874). Links to the GND collected within the [Culturegraph project](https://www.dnb.de/EN/Professionell/Metadatendienste/Metadaten/Culturegraph/culturegraph_node.html) were transferred to the union catalogue and can be found in sub-fields \$K and \$v of the 3000 fields and the field "1131 Art des Inhalts" field [in machine-generated form](https://wiki.k10plus.de/display/K10PLUS/Maschinelle+Anreicherungen+mittels+Culturegraph+im+K10plus). ## Version Information This is the first version of the dataset, which was collected in February 2025. All the three VD’s are work in progress, and newly recorded or digitised titles are continually added, which augments the dataset. Even though the "Verzeichnis der im deutschen Sprachraum erschienenen Drucke" is limited to the period 1501 to 1800, that does not mean that the number of titles contained in it stops to grow. Especially the VD18 continues to grow since an important amount of works from that period are currently being digitized. However, it is currently not planned to publish an updated and enlarged version of all the titles contained in the three VD’s. ### Release Date 2025-04-08 ### Date of Modification Not applicable. ### Checksums **MD5 and SHA256 hashes of the file VD-Bib-Metadata.parquet:** MD5: 513ad5441d76ade910902a2b7a339776 SHA256: cca861b112b15f2f18cb9b6b041e08ff135809deb3bad8637886a59de81b0bbe **MD5 and SHA256 hashes of the file VD-Digi-Metadata.parquet:** MD5: 653bf7ae7daef840038ef3f7c8d9cb28 SHA256: 87f3d059651c4dbd5ceaca28ecf6f00f213a1934ddcd71fc0a9d13f69c9e62fe ### Update Periodicity Not applicable. ## Maintenance The maintenance of this dataset is limited. The data will not be updated, but any technical issues will be addressed during the lifetime of the research project "Mensch.Maschine.Kultur", in the context of which this dataset was established. The project ends in June 2025, and the dataset will be maintained at least until then. The dataset consists of two files (VD-Bib-Metadata.parquet and VD-Digi-Metadata.parquet) as well as the accompanying datasheet. The .parquet format enables large amounts of data to be processed and moved quickly. It is a specific data format that stores data in a columnar memory layout and has been developed by Apache Arrow. Libraries are available for [C, C++, C#, Go, Java, JavaScript, Julia, MATLAB, Python, R, Ruby, and Rust](https://arrow.apache.org/docs/cpp/parquet.html). # Examples and Considerations for Using the Data The dataset is suitable to serve the two tasks described above. Further possible uses are the creation of a knowledge graph out of the PPNs contained in the dataset and the related data which can be retrieved online as described above. Furthermore, the dataset can be used to examine the metadata diversity, the data quality, and its potential to be transformed into linked open data. People using this dataset are welcome to provide feedback on this dataset and of the uses made of it to the dataset curators. ## Ethical Considerations ### Personal and Other Sensitive Information The dataset does not contain personal or sensitive information beyond what is available in international authority files anyway. Since the youngest titles contained in this dataset were printed in the early 19th century, the dataset does not contain any sensitive data in the sense of contemporary privacy laws. ### Discussion of Biases With regard to social biases, it should be noted that the creators of the titles contained in the bibliographic file have been members of a small literate elite of their times; they belonged e.g. to university, the clergy, or the administration. The vast majority of these creators were male. As can be easily imagined, book production started in the early 16th century on a low level and increased continually over time. Therefore, an uneven distribution of works published over time is observable. Reformation and protestantism in the 16th and especially the 17th century are reflected in the dominance of print production located in Eastern Germany. With regard to the 18th century, it has to be noted that this bibliography is far from complete, because the project VD18 started only in 2009 and is therefore the youngest of the three. Seen against this background, the absolute numbers of titles published in the 17th and especially in the 18th century as compared to the other two centuries is by now far from being complete. With regard to the regional distribution of the places where the titles listed in the bibliography file have been printed, two biases are noteworthy: First of all, the boundaries of what is now known as "Germany" constantly shifted within the last 500 years. Moreover, the emphasis on individual towns changed over time. While Wittenberg was an important center of book printing in the 16th century, a significant decrease of output has to be noted until the late 18th century for this town. In this respect, the database may serve as a source of further, especially quantitative, analysis. Secondly, as has been noted above, the three projects were funded by the German Research Foundation over different time periods, and only libraries located in the unified Germany after 1990 received funding; therefore, ecclesiastical and archival holdings are mostly absent. The focus of the "catalogue of prints published in the German-speaking world" overrepresented places of printing which now lie in the Federal Republic of Germany in its borders after 1990 or, formulated the other way around, the bibliographic file underrepresents works printed in Alsace, Switzerland, Austria and the former Prussian Provinces Pommerania, Silesia as well as West and East Prussia. Printing places like e.g. Stettin (Szczecin), Breslau (Wrocław) or Königsberg (Kaliningrad) are therefore underrepresented. These printing places must be specifically supplemented as part of future VD projects. VD16 excluded important printing centres like Amsterdam, Prague and Copenhagen, as they were not being seen as part of German-speaking countries; however, German-language titles printed in these centres were included in the VDs. In the VD17 and VD18, library holdings of the western and southern part of Germany are underrepresented and therefore also printing places lying in these regions. Another distributional bias can be identified by the presence of languages in the bibliographic file: While in the timeframe between 1500 and about 1670 Latin was dominant as the language of the prints, later onwards German dominated. Finally, it has to be noted that the three VD projects are far from being complete, especially the VD18. There are several tens of thousand titles still missing in the VD18, because it is highly unlikely that there should have been fewer prints in the 18th century than in the 17th century. The two files consist of the three parts of the VD which have been assembled and joined together. However, VD16, VD17, and VD18 are to be understood as separate projects between which recording practices are not consistent, a fact which is reflected in differing uses of classification schemata and authority files. A good example for this incoherence is the indexing of genres of historical prints. In the VD16 project, Gattungsbegriffe (genre terms in old prints) were initially not used. Therefore, such terms are prevalent in the VD17, whereas titles listed in the VD16 have received metadata on genre terms much less often. For a comprehensive estimation of the biases of the three VD’s see [Lauer et al. 2024](https://doi.org/10.1515/bd-2024-0076). ### Potential Societal Impact of Using the Dataset This dataset describes historical titles (printed books, monographs, multi-volume works, journals) that have been published between 1501 and 1800. Most probably, the social impact of the dataset is therefore very low. ## Examples of Datasets, Publications and Models that (re-)use the Dataset So far, this dataset has not yet been reused. The dataset contains links to several other datasets which can be retrieved online as complimentary resources. See the section "Data fields" above, especially the explanations on the Pica Production Numbers (PPNs) used in the dataset. There are overlaps with the dataset "Metadata of the ‘Alter Realkatalog’ (ARK) of Berlin State Library (SBB)" published on Zenodo on [https://zenodo.org/records/13284442](https://zenodo.org/records/13284442). ## Known Non-Ethical Limitations Another known limitation of the dataset is the fact that journal volumes were only in a few cases catalogued separately; rather, they were added to the respective record. Therefore, the dataset contains hardly any such recordings and does not enable statistical analyses. Users are invited to report further limitations back to the curators. ## Unanticipated Uses made of this Dataset There are no known unanticipated uses made of this dataset. Users are invited to report the uses they made of this dataset back to the curators, which would enable an update of this datasheet. Datasheet as of April 08, 2025
Vchitect/Vchitect_T2V_DataVerse
Vchitect
2025-03-27T15:07:30Z
17,867
6
[ "task_categories:text-to-video", "license:apache-2.0", "size_categories:1M<n<10M", "format:webdataset", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2501.08453", "region:us" ]
[ "text-to-video" ]
2025-03-14T05:35:10Z
null
--- license: apache-2.0 task_categories: - text-to-video size_categories: - 1M<n<10M --- # Vchitect-T2V-Dataverse <div> <div align="center"> <a href='https://vchitect.intern-ai.org.cn/' target='_blank'>Vchitect Team<sup>1</sup></a>&emsp; </div> <div> <div align="center"> <sup>1</sup>Shanghai Artificial Intelligence Laboratory&emsp; </div> <div align="center"> <a href="https://arxiv.org/abs/2501.08453">Paper</a> | <a href="https://vchitect.intern-ai.org.cn/">Project Page</a> | </div> ## Data Overview The Vchitect-T2V-Dataverse is the core dataset used to train our text-to-video diffusion model, Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models. It comprises 14 million high-quality videos collected from the Internet, each paired with detailed textual captions. This large-scale dataset enables the model to learn rich video-text alignments and generate temporally coherent video content from textual prompts. For more technical details, data processing procedures, and model training strategies, please refer to our paper. ## BibTex ``` @article{fan2025vchitect, title={Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models}, author={Fan, Weichen and Si, Chenyang and Song, Junhao and Yang, Zhenyu and He, Yinan and Zhuo, Long and Huang, Ziqi and Dong, Ziyue and He, Jingwen and Pan, Dongwei and others}, journal={arXiv preprint arXiv:2501.08453}, year={2025} } @article{si2025RepVideo, title={RepVideo: Rethinking Cross-Layer Representation for Video Generation}, author={Si, Chenyang and Fan, Weichen and Lv, Zhengyao and Huang, Ziqi and Qiao, Yu and Liu, Ziwei}, journal={arXiv 2501.08994}, year={2025} } ``` ## Disclaimer We disclaim responsibility for user-generated content. The model was not trained to realistically represent people or events, so using it to generate such content is beyond the model's capabilities. It is prohibited for pornographic, violent and bloody content generation, and to generate content that is demeaning or harmful to people or their environment, culture, religion, etc. Users are solely liable for their actions. The project contributors are not legally affiliated with, nor accountable for users' behaviors. Use the generative model responsibly, adhering to ethical and legal standards.
zhang0jhon/Aesthetic-4K
zhang0jhon
2025-03-25T02:40:34Z
5,149
21
[ "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2503.18352", "doi:10.57967/hf/5209", "region:us" ]
[]
2025-02-16T01:47:04Z
2
--- license: mit --- # Aesthetic-4K Dataset We introduce Aesthetic-4K, a high-quality dataset for ultra-high-resolution image generation, featuring carefully selected images and captions generated by GPT-4o. Additionally, we have meticulously filtered out low-quality images through manual inspection, excluding those with motion blur, focus issues, or mismatched text prompts. For more details, please refer to our paper: * [Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2503.18352) (CVPR 2025) * Source code is available at [https://github.com/zhang0jhon/diffusion-4k](https://github.com/zhang0jhon/diffusion-4k). ## Citation If you find our paper or dataset is helpful in your research or applications, generously cite with: ``` @inproceedings{zhang2025diffusion4k, title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models}, author={Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo and Di Huang}, year={2025}, booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, } ```
knoveleng/open-rs
knoveleng
2025-03-24T02:18:39Z
2,762
8
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.16219", "region:us" ]
[ "text-generation" ]
2025-03-18T09:44:28Z
2
--- language: en license: mit task_categories: - text-generation dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: level dtype: string splits: - name: train num_bytes: 7763718 num_examples: 7000 download_size: 3678677 dataset_size: 7763718 configs: - config_name: default data_files: - split: train path: data/train-* --- # Open-RS Dataset ## Dataset Description - **Repository**: [knoveleng/open-rs](https://github.com/knoveleng/open-rs) - **Paper**: [Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn’t](https://arxiv.org/abs/2503.16219) ### Summary The `open-rs` dataset contains 7,000 mathematical reasoning problems, including 3,000 hard problems from `open-s1` and 4,000 (1000 easy + 3000 hard problems) from `open-deepscaler`. It’s a core component of the [Open RS project](https://github.com/knoveleng/open-rs), enhancing reasoning in small LLMs via reinforcement learning. ## Usage Load the dataset using the Hugging Face `datasets` library: ```python from datasets import load_dataset ds = load_dataset("knoveleng/open-rs")["train"] print(ds[0]) ``` ## Dataset Structure ### Data Instance An example entry: ```json { "problem": "Let \(S(M)\) denote the sum of digits of a positive integer \(M\) in base 10. Let \(N\) be the smallest positive integer such that \(S(N) = 2013\). What is \(S(5N + 2013)\)?", "solution": "1. **Find smallest \(N\) with \(S(N) = 2013\):** To minimize \(N\), use mostly 9s. Since \(2013 \div 9 = 223\), \(N\) could be 223 nines (sum \(9 \times 223 = 2007\)), then adjust the first digit to 7, making \(N = 7 \times 10^{223} - 1\). Sum: \(7 + 222 \times 9 = 2013\). 2. **Compute \(5N + 2013\):** \(5N = 5 \times (7 \times 10^{223} - 1) = 35 \times 10^{223} - 5\), so \(5N + 2013 = 35 \times 10^{223} + 2008\). 3. **Calculate \(S(5N + 2013\):** This is 35 followed by 219 zeros, then 2008 (last 4 digits). Sum: \(3 + 5 + 2 + 0 + 0 + 8 = 18\). Final answer: \( \boxed{18} \).", "answer": "18", "level": "Hard" } ``` ### Data Fields - **`problem`**: Mathematical question (string). - **`solution`**: Detailed solution steps (string); if no official solution exists, the answer is provided in LaTeX format. - **`answer`**: Correct final answer (string). - **`level`**: Difficulty level (string): "Hard" or "Easy". ## Citation ```bibtex @misc{dang2025reinforcementlearningreasoningsmall, title={Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't}, author={Quy-Anh Dang and Chris Ngo}, year={2025}, eprint={2503.16219}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.16219}, } ```
lumolabs-ai/Lumo-Fart-DS-Instruct
lumolabs-ai
2025-03-18T15:14:38Z
184
2
[ "license:agpl-3.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-18T13:21:44Z
2
--- license: agpl-3.0 dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: chunk dtype: string splits: - name: train num_bytes: 1145837069.8 num_examples: 475152 - name: test num_bytes: 60307214.2 num_examples: 25008 download_size: 612509196 dataset_size: 1206144284.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # 🌟 Lumo-Fart-DS-Instruct: Apex Solana Knowledge Repository 🌟 ![Lumo](https://i.ibb.co/nwzzD4B/logo.png) **Lumo-Fart-DS-Instruct** is the latest open-source advancement in structured Solana-related knowledge, incorporating **500,160 high-quality question-answer pairs**. This dataset is **5.2x larger** than its predecessor, Lumo-Novel-DS-Instruct, with enhanced precision, comprehensive coverage, and an optimized architecture for large-scale AI fine-tuning in the Solana ecosystem. --- ## 📈 **Dataset Statistics** | Metric | Value | |--------|-------| | Total QA Pairs | 500,160 | | Precision Improvement | 4.1x over predecessor | | Data Source Depth | 42+ authoritative references | --- ## 📜 **Data Sources** ![Dataset](https://i.ibb.co/sJ6Xyc7v/fart-ds.png) The dataset is sourced from highly authoritative references: ### **Solana Documentation:** - [Solana Docs](https://solana.com/docs) - [Solana Cookbook](https://solana.com/developers/cookbook) - [Solana Terminology](https://solana.com/docs/terminology) - [Solana RPC API](https://solana.com/docs/rpc) - [Solana StackExchange Dump](https://github.com/solana-developers/stackexchange-dump) ### **Ecosystem References:** - [Jito Docs](https://docs.jito.wtf) - [Raydium Docs](https://docs.raydium.io/raydium) - [Jupiter Guide](https://station.jup.ag/guides) - [GeckoTerminal API](https://apiguide.geckoterminal.com) - [CoinGecko Docs](https://docs.coingecko.com/reference/introduction) - [Helius Docs](https://docs.helius.dev) - [QuickNode Solana](https://www.quicknode.com/docs/solana) - [ChainStack Solana](https://docs.chainstack.com/reference/solana-getting-started) - [Meteora Docs](https://docs.meteora.ag) - [PumpPortal](https://pumpportal.fun) - [DexScreener Docs](https://docs.dexscreener.com) - [MagicEden Docs](https://docs.magiceden.io) - [Tatum Solana](https://docs.tatum.io/reference/rpc-solana) - [Alchemy Solana](https://docs.alchemy.com/reference/solana-api-quickstart) - [Bitquery Solana](https://docs.bitquery.io/docs/examples/Solana/solana-balance-updates/) - [Orca Docs](https://docs.orca.so) - [Lifinity](https://docs.lifinity.io/) - [GooseFX](https://docs.goosefx.io/) - [FluxBeam](https://docs.fluxbeam.xyz/) - [Phoenix](https://ellipsis-labs.gitbook.io/phoenix-dex/tRIkEFlLUzWK9uKO3W2V) - [Drift](https://docs.drift.trade/) - [HXRO](https://docs.hxro.network/) - [FlashTrade](https://docs.flash.trade/flash-trade/flash-trade/getting-started) - [Zeta](https://docs.zeta.markets/) - [MarginFi](https://docs.marginfi.com/) - [Solend](https://dev.solend.fi/docs/intro) - [Kamino](https://docs.kamino.finance/) - [Marinade](https://docs.marinade.finance/) - [BlazeStake](https://stake-docs.solblaze.org/) - [Sanctum](https://learn.sanctum.so/docs) - [BonkBot](https://docs.bonkbot.io/) - [BirdEye](https://docs.birdeye.so/) - [Trojan](https://docs.trojan.app/) - [Phantom](https://docs.phantom.com/) - [Squads](https://docs.squads.so/main) - [SolFlare](https://docs.solflare.com/solflare) - [SolScan](https://docs.solscan.io/) - [Dune (Solana only)](https://docs.dune.com/data-catalog/solana/overview) - [ZKCompression](https://www.zkcompression.com) --- ## ⚙️ **Data Collection & Processing** ### 🔍 **Data Extraction** * **Authoritative Sources Only:** Official documentation, developer guides, and community-curated content. * **Manual Filtering:** Eliminated duplicates, inconsistencies, and irrelevant artifacts. ### 🛠️ **Processing Pipeline** * **Contextual Filtration:** - Data is filtered by categories, ensuring complete and knowledgeable chunks are used. - Preserves full context and coherence without chunking artifacts. * **Question Generation:** - Generated **10 diverse and targeted questions** per data chunk using o1-preview. - Questions tailored for medium to advanced users, covering distinct Solana features. * **Answer Generation:** - Detailed, accurate, and context-specific responses generated using Solana documentation. --- ## 🚀 **Usage** ### 💡 **Fine-Tuning Large Language Models** * Equip LLMs to: - Answer Solana-specific queries. - Generate smart contract code snippets. - Support ecosystem-based conversations. ### 🔬 **Research & Development** * Ideal for advancing AI research in: - Natural language understanding for blockchain topics. - Conversational AI in DeFi and crypto ecosystems. ### 🤖 **Conversational AI Systems** * Build Solana-savvy chatbots and voice assistants for seamless user interaction. --- ## 🔢 **Generation Code Overview** The dataset was generated using the following tools and techniques: * **Async Python Frameworks:** For highly efficient and concurrent processing. * **Rate-Limited APIs:** To optimize throughput with **50 concurrent requests** and a rate cap of **4,000 API calls per minute** calls made to **o1-preview** for generation. * **Service-Specific Contexts:** Tailored prompts for each dataset source.
autogluon/chronos_datasets
autogluon
2025-03-18T10:38:52Z
14,680
38
[ "task_categories:time-series-forecasting", "task_ids:univariate-time-series-forecasting", "task_ids:multivariate-time-series-forecasting", "annotations_creators:no-annotation", "source_datasets:original", "license:other", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2403.07815", "region:us" ]
[ "time-series-forecasting" ]
2024-06-22T15:59:58Z
null
--- annotations_creators: - no-annotation license: other source_datasets: - original task_categories: - time-series-forecasting task_ids: - univariate-time-series-forecasting - multivariate-time-series-forecasting pretty_name: Chronos datasets dataset_info: - config_name: dominick features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: im_0 dtype: int64 splits: - name: train num_bytes: 477140250 num_examples: 100014 download_size: 42290010 dataset_size: 477140250 - config_name: electricity_15min features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: consumption_kW sequence: float64 splits: - name: train num_bytes: 670989988 num_examples: 370 download_size: 284497403 dataset_size: 670989988 license: CC BY 4.0 homepage: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014 - config_name: ercot features: - name: id dtype: string - name: timestamp sequence: timestamp[ns] - name: target sequence: float32 splits: - name: train num_examples: 8 download_size: 14504261 - config_name: exchange_rate features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float32 splits: - name: train num_examples: 8 download_size: 401501 license: MIT homepage: https://github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate - config_name: m4_daily features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: category dtype: string splits: - name: train num_bytes: 160504176 num_examples: 4227 download_size: 65546675 dataset_size: 160504176 homepage: https://github.com/Mcompetitions/M4-methods - config_name: m4_hourly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: category dtype: string splits: - name: train num_bytes: 5985544 num_examples: 414 download_size: 1336971 dataset_size: 5985544 homepage: https://github.com/Mcompetitions/M4-methods - config_name: m4_monthly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: category dtype: string splits: - name: train num_bytes: 181372969 num_examples: 48000 download_size: 52772258 dataset_size: 181372969 homepage: https://github.com/Mcompetitions/M4-methods - config_name: m4_quarterly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: category dtype: string splits: - name: train num_bytes: 39205397 num_examples: 24000 download_size: 13422579 dataset_size: 39205397 homepage: https://github.com/Mcompetitions/M4-methods - config_name: m4_weekly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: category dtype: string splits: - name: train num_bytes: 5955806 num_examples: 359 download_size: 2556691 dataset_size: 5955806 homepage: https://github.com/Mcompetitions/M4-methods - config_name: m4_yearly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: category dtype: string splits: - name: train num_bytes: 14410042 num_examples: 23000 download_size: 5488601 dataset_size: 14410042 homepage: https://github.com/Mcompetitions/M4-methods - config_name: m5 features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: item_id dtype: string - name: target sequence: float32 - name: dept_id dtype: string - name: cat_id dtype: string - name: store_id dtype: string - name: state_id dtype: string splits: - name: train num_bytes: 574062630 num_examples: 30490 download_size: 78063286 dataset_size: 574062630 homepage: https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules - config_name: mexico_city_bikes features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 618999406 num_examples: 494 download_size: 103206946 dataset_size: 618999406 homepage: https://ecobici.cdmx.gob.mx/en/open-data/ - config_name: monash_australian_electricity features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 18484319 num_examples: 5 download_size: 16856156 dataset_size: 18484319 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_car_parts features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 2232790 num_examples: 2674 download_size: 70278 dataset_size: 2232790 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_cif_2016 features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 115096 num_examples: 72 download_size: 70876 dataset_size: 115096 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_covid_deaths features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 907326 num_examples: 266 download_size: 58957 dataset_size: 907326 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_electricity_hourly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 135103443 num_examples: 321 download_size: 31139117 dataset_size: 135103443 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_electricity_weekly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 807315 num_examples: 321 download_size: 333563 dataset_size: 807315 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_fred_md features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 1248369 num_examples: 107 download_size: 412207 dataset_size: 1248369 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_hospital features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: int64 splits: - name: train num_examples: 767 download_size: 117038 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_kdd_cup_2018 features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: city dtype: string - name: station dtype: string - name: measurement dtype: string splits: - name: train num_bytes: 47091540 num_examples: 270 download_size: 8780105 dataset_size: 47091540 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_london_smart_meters features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 2664567976 num_examples: 5560 download_size: 597389119 dataset_size: 2664567976 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_m1_monthly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 907691 num_examples: 617 download_size: 244372 dataset_size: 907691 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_m1_quarterly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 162961 num_examples: 203 download_size: 48439 dataset_size: 162961 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_m1_yearly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 75679 num_examples: 181 download_size: 30754 dataset_size: 75679 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_m3_monthly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 2708124 num_examples: 1428 download_size: 589699 dataset_size: 2708124 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_m3_quarterly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 606428 num_examples: 756 download_size: 188543 dataset_size: 606428 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_m3_yearly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 305359 num_examples: 645 download_size: 100184 dataset_size: 305359 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_nn5_weekly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float32 splits: - name: train num_examples: 111 download_size: 64620 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_pedestrian_counts features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: int64 splits: - name: train num_bytes: 50118790 num_examples: 66 download_size: 12377357 dataset_size: 50118790 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_rideshare features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: source_location dtype: string - name: provider_name dtype: string - name: provider_service dtype: string - name: price_min sequence: float64 - name: price_mean sequence: float64 - name: price_max sequence: float64 - name: distance_min sequence: float64 - name: distance_mean sequence: float64 - name: distance_max sequence: float64 - name: surge_min sequence: float64 - name: surge_mean sequence: float64 - name: surge_max sequence: float64 - name: api_calls sequence: float64 - name: temp sequence: float64 - name: rain sequence: float64 - name: humidity sequence: float64 - name: clouds sequence: float64 - name: wind sequence: float64 splits: - name: train num_bytes: 10819910 num_examples: 156 download_size: 781873 dataset_size: 10819910 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_saugeenday features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: T1 sequence: float64 splits: - name: train num_bytes: 379875 num_examples: 1 download_size: 222678 dataset_size: 379875 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_temperature_rain features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: t_mean sequence: float64 - name: prcp_sum sequence: float64 - name: t_max sequence: float64 - name: t_min sequence: float64 - name: fcst_0_dailypop sequence: float64 - name: fcst_0_dailypop1 sequence: float64 - name: fcst_0_dailypop10 sequence: float64 - name: fcst_0_dailypop15 sequence: float64 - name: fcst_0_dailypop25 sequence: float64 - name: fcst_0_dailypop5 sequence: float64 - name: fcst_0_dailypop50 sequence: float64 - name: fcst_0_dailyprecip sequence: float64 - name: fcst_0_dailyprecip10pct sequence: float64 - name: fcst_0_dailyprecip25pct sequence: float64 - name: fcst_0_dailyprecip50pct sequence: float64 - name: fcst_0_dailyprecip75pct sequence: float64 - name: fcst_1_dailypop sequence: float64 - name: fcst_1_dailypop1 sequence: float64 - name: fcst_1_dailypop10 sequence: float64 - name: fcst_1_dailypop15 sequence: float64 - name: fcst_1_dailypop25 sequence: float64 - name: fcst_1_dailypop5 sequence: float64 - name: fcst_1_dailypop50 sequence: float64 - name: fcst_1_dailyprecip sequence: float64 - name: fcst_1_dailyprecip10pct sequence: float64 - name: fcst_1_dailyprecip25pct sequence: float64 - name: fcst_1_dailyprecip50pct sequence: float64 - name: fcst_1_dailyprecip75pct sequence: float64 - name: fcst_2_dailypop sequence: float64 - name: fcst_2_dailypop1 sequence: float64 - name: fcst_2_dailypop10 sequence: float64 - name: fcst_2_dailypop15 sequence: float64 - name: fcst_2_dailypop25 sequence: float64 - name: fcst_2_dailypop5 sequence: float64 - name: fcst_2_dailypop50 sequence: float64 - name: fcst_2_dailyprecip sequence: float64 - name: fcst_2_dailyprecip10pct sequence: float64 - name: fcst_2_dailyprecip25pct sequence: float64 - name: fcst_2_dailyprecip50pct sequence: float64 - name: fcst_2_dailyprecip75pct sequence: float64 - name: fcst_3_dailypop sequence: float64 - name: fcst_3_dailypop1 sequence: float64 - name: fcst_3_dailypop10 sequence: float64 - name: fcst_3_dailypop15 sequence: float64 - name: fcst_3_dailypop25 sequence: float64 - name: fcst_3_dailypop5 sequence: float64 - name: fcst_3_dailypop50 sequence: float64 - name: fcst_3_dailyprecip sequence: float64 - name: fcst_3_dailyprecip10pct sequence: float64 - name: fcst_3_dailyprecip25pct sequence: float64 - name: fcst_3_dailyprecip50pct sequence: float64 - name: fcst_3_dailyprecip75pct sequence: float64 - name: fcst_4_dailypop sequence: float64 - name: fcst_4_dailypop1 sequence: float64 - name: fcst_4_dailypop10 sequence: float64 - name: fcst_4_dailypop15 sequence: float64 - name: fcst_4_dailypop25 sequence: float64 - name: fcst_4_dailypop5 sequence: float64 - name: fcst_4_dailypop50 sequence: float64 - name: fcst_4_dailyprecip sequence: float64 - name: fcst_4_dailyprecip10pct sequence: float64 - name: fcst_4_dailyprecip25pct sequence: float64 - name: fcst_4_dailyprecip50pct sequence: float64 - name: fcst_4_dailyprecip75pct sequence: float64 - name: fcst_5_dailypop sequence: float64 - name: fcst_5_dailypop1 sequence: float64 - name: fcst_5_dailypop10 sequence: float64 - name: fcst_5_dailypop15 sequence: float64 - name: fcst_5_dailypop25 sequence: float64 - name: fcst_5_dailypop5 sequence: float64 - name: fcst_5_dailypop50 sequence: float64 - name: fcst_5_dailyprecip sequence: float64 - name: fcst_5_dailyprecip10pct sequence: float64 - name: fcst_5_dailyprecip25pct sequence: float64 - name: fcst_5_dailyprecip50pct sequence: float64 - name: fcst_5_dailyprecip75pct sequence: float64 splits: - name: train num_bytes: 188598927 num_examples: 422 download_size: 44967856 dataset_size: 188598927 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_tourism_monthly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 1755434 num_examples: 366 download_size: 334951 dataset_size: 1755434 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_tourism_quarterly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 688817 num_examples: 427 download_size: 177407 dataset_size: 688817 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_tourism_yearly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 213954 num_examples: 518 download_size: 81479 dataset_size: 213954 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_traffic features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 241983226 num_examples: 862 download_size: 52748547 dataset_size: 241983226 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: monash_weather features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: subset dtype: string splits: - name: train num_bytes: 688598539 num_examples: 3010 download_size: 133164027 dataset_size: 688598539 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: nn5 features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float32 splits: - name: train num_examples: 111 download_size: 203096 homepage: http://www.neural-forecasting-competition.com/downloads/NN5/datasets/download.htm - config_name: solar features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: power_mw sequence: float64 - name: latitude dtype: float64 - name: longitude dtype: float64 - name: capacity_mw dtype: float64 - name: subset dtype: string splits: - name: train num_bytes: 8689093932 num_examples: 5166 download_size: 1507924920 dataset_size: 8689093932 homepage: https://www.nrel.gov/grid/solar-power-data.html - config_name: solar_1h features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: power_mw sequence: float64 - name: latitude dtype: float64 - name: longitude dtype: float64 - name: capacity_mw dtype: float64 - name: subset dtype: string splits: - name: train num_bytes: 724361772 num_examples: 5166 download_size: 124515417 dataset_size: 724361772 homepage: https://www.nrel.gov/grid/solar-power-data.html - config_name: taxi_1h features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: subset dtype: string - name: lat dtype: float64 - name: lng dtype: float64 splits: - name: train num_bytes: 28832500 num_examples: 2428 download_size: 2265297 dataset_size: 28832500 license: Apache 2.0 homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets - config_name: taxi_30min features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: subset dtype: string - name: lat dtype: float64 - name: lng dtype: float64 splits: - name: train num_bytes: 57560596 num_examples: 2428 download_size: 4541244 dataset_size: 57560596 license: Apache 2.0 homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets - config_name: training_corpus_kernel_synth_1m features: - name: target sequence: float64 - name: id dtype: string - name: timestamp sequence: timestamp[ms] splits: - name: train num_examples: 1000000 download_size: 8313239368 - config_name: training_corpus_tsmixup_10m features: - name: target sequence: float64 - name: id dtype: string - name: timestamp sequence: timestamp[ms] splits: - name: train num_examples: 10000000 download_size: 82189589906 - config_name: uber_tlc_daily features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: int64 splits: - name: train num_examples: 262 download_size: 84747 homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response - config_name: uber_tlc_hourly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: int64 splits: - name: train num_examples: 262 download_size: 1878515 homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response - config_name: ushcn_daily features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: state dtype: string - name: coop_id dtype: int64 - name: PRCP sequence: float64 - name: SNOW sequence: float64 - name: SNWD sequence: float64 - name: TMAX sequence: float64 - name: TMIN sequence: float64 splits: - name: train num_bytes: 2259905202 num_examples: 1218 download_size: 221089890 dataset_size: 2259905202 homepage: https://data.ess-dive.lbl.gov/portals/CDIAC - config_name: weatherbench_daily features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float32 - name: latitude dtype: float64 - name: longitude dtype: float64 - name: level dtype: float64 - name: subset dtype: string splits: - name: train num_bytes: 39510157312 num_examples: 225280 download_size: 18924392742 dataset_size: 39510157312 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_10m_u_component_of_wind features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: float64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 2048 download_size: 7292845757 dataset_size: 8617472000 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_10m_v_component_of_wind features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: float64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 2048 download_size: 7292352508 dataset_size: 8617472000 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_2m_temperature features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: float64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 2048 download_size: 7276396852 dataset_size: 8617453568 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_geopotential features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 87305564613 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_potential_vorticity features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 92426240043 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_relative_humidity features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 94728788382 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_specific_humidity features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 85139896451 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_temperature features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 94081539079 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_toa_incident_solar_radiation features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: float64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 2048 download_size: 6057953007 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_total_cloud_cover features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: float64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 2048 download_size: 6628258398 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_total_precipitation features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: float64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 2048 download_size: 6473160755 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_u_component_of_wind features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 94801498563 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_v_component_of_wind features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 94800557482 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_hourly_vorticity features: - name: latitude dtype: float64 - name: longitude dtype: float64 - name: target sequence: float32 - name: level dtype: int64 - name: timestamp sequence: timestamp[ms] - name: subset dtype: string - name: id dtype: string splits: - name: train num_examples: 26624 download_size: 94720960560 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: weatherbench_weekly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float32 - name: latitude dtype: float64 - name: longitude dtype: float64 - name: level dtype: float64 - name: subset dtype: string splits: - name: train num_bytes: 5656029184 num_examples: 225280 download_size: 2243012083 dataset_size: 5656029184 license: MIT homepage: https://github.com/pangeo-data/WeatherBench - config_name: wiki_daily_100k features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 - name: page_name dtype: string splits: - name: train num_bytes: 4389782678 num_examples: 100000 download_size: 592554033 dataset_size: 4389782678 license: CC0 homepage: https://dumps.wikimedia.org/other/pageviews/readme.html - config_name: wind_farms_daily features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 1919187 num_examples: 337 download_size: 598834 dataset_size: 1919187 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting - config_name: wind_farms_hourly features: - name: id dtype: string - name: timestamp sequence: timestamp[ms] - name: target sequence: float64 splits: - name: train num_bytes: 45917027 num_examples: 337 download_size: 12333116 dataset_size: 45917027 license: CC BY 4.0 homepage: https://zenodo.org/communities/forecasting configs: - config_name: dominick data_files: - split: train path: dominick/train-* - config_name: electricity_15min data_files: - split: train path: electricity_15min/train-* - config_name: ercot data_files: - split: train path: ercot/train-* - config_name: exchange_rate data_files: - split: train path: exchange_rate/train-* - config_name: m4_daily data_files: - split: train path: m4_daily/train-* - config_name: m4_hourly data_files: - split: train path: m4_hourly/train-* - config_name: m4_monthly data_files: - split: train path: m4_monthly/train-* - config_name: m4_quarterly data_files: - split: train path: m4_quarterly/train-* - config_name: m4_weekly data_files: - split: train path: m4_weekly/train-* - config_name: m4_yearly data_files: - split: train path: m4_yearly/train-* - config_name: m5 data_files: - split: train path: m5/train-* - config_name: mexico_city_bikes data_files: - split: train path: mexico_city_bikes/train-* - config_name: monash_australian_electricity data_files: - split: train path: monash_australian_electricity/train-* - config_name: monash_car_parts data_files: - split: train path: monash_car_parts/train-* - config_name: monash_cif_2016 data_files: - split: train path: monash_cif_2016/train-* - config_name: monash_covid_deaths data_files: - split: train path: monash_covid_deaths/train-* - config_name: monash_electricity_hourly data_files: - split: train path: monash_electricity_hourly/train-* - config_name: monash_electricity_weekly data_files: - split: train path: monash_electricity_weekly/train-* - config_name: monash_fred_md data_files: - split: train path: monash_fred_md/train-* - config_name: monash_hospital data_files: - split: train path: monash_hospital/train-* - config_name: monash_kdd_cup_2018 data_files: - split: train path: monash_kdd_cup_2018/train-* - config_name: monash_london_smart_meters data_files: - split: train path: monash_london_smart_meters/train-* - config_name: monash_m1_monthly data_files: - split: train path: monash_m1_monthly/train-* - config_name: monash_m1_quarterly data_files: - split: train path: monash_m1_quarterly/train-* - config_name: monash_m1_yearly data_files: - split: train path: monash_m1_yearly/train-* - config_name: monash_m3_monthly data_files: - split: train path: monash_m3_monthly/train-* - config_name: monash_m3_quarterly data_files: - split: train path: monash_m3_quarterly/train-* - config_name: monash_m3_yearly data_files: - split: train path: monash_m3_yearly/train-* - config_name: monash_nn5_weekly data_files: - split: train path: monash_nn5_weekly/train-* - config_name: monash_pedestrian_counts data_files: - split: train path: monash_pedestrian_counts/train-* - config_name: monash_rideshare data_files: - split: train path: monash_rideshare/train-* - config_name: monash_saugeenday data_files: - split: train path: monash_saugeenday/train-* - config_name: monash_temperature_rain data_files: - split: train path: monash_temperature_rain/train-* - config_name: monash_tourism_monthly data_files: - split: train path: monash_tourism_monthly/train-* - config_name: monash_tourism_quarterly data_files: - split: train path: monash_tourism_quarterly/train-* - config_name: monash_tourism_yearly data_files: - split: train path: monash_tourism_yearly/train-* - config_name: monash_traffic data_files: - split: train path: monash_traffic/train-* - config_name: monash_weather data_files: - split: train path: monash_weather/train-* - config_name: nn5 data_files: - split: train path: nn5/train-* - config_name: solar data_files: - split: train path: solar/train-* - config_name: solar_1h data_files: - split: train path: solar_1h/train-* - config_name: taxi_1h data_files: - split: train path: taxi_1h/train-* - config_name: taxi_30min data_files: - split: train path: taxi_30min/train-* - config_name: training_corpus_kernel_synth_1m data_files: - split: train path: training_corpus/kernel_synth_1m/train-* - config_name: training_corpus_tsmixup_10m data_files: - split: train path: training_corpus/tsmixup_10m/train-* - config_name: uber_tlc_daily data_files: - split: train path: uber_tlc_daily/train-* - config_name: uber_tlc_hourly data_files: - split: train path: uber_tlc_hourly/train-* - config_name: ushcn_daily data_files: - split: train path: ushcn_daily/train-* - config_name: weatherbench_daily data_files: - split: train path: weatherbench_daily/train-* - config_name: weatherbench_hourly_10m_u_component_of_wind data_files: - split: train path: weatherbench_hourly/10m_u_component_of_wind/train-* - config_name: weatherbench_hourly_10m_v_component_of_wind data_files: - split: train path: weatherbench_hourly/10m_v_component_of_wind/train-* - config_name: weatherbench_hourly_2m_temperature data_files: - split: train path: weatherbench_hourly/2m_temperature/train-* - config_name: weatherbench_hourly_geopotential data_files: - split: train path: weatherbench_hourly/geopotential/train-* - config_name: weatherbench_hourly_potential_vorticity data_files: - split: train path: weatherbench_hourly/potential_vorticity/train-* - config_name: weatherbench_hourly_relative_humidity data_files: - split: train path: weatherbench_hourly/relative_humidity/train-* - config_name: weatherbench_hourly_specific_humidity data_files: - split: train path: weatherbench_hourly/specific_humidity/train-* - config_name: weatherbench_hourly_temperature data_files: - split: train path: weatherbench_hourly/temperature/train-* - config_name: weatherbench_hourly_toa_incident_solar_radiation data_files: - split: train path: weatherbench_hourly/toa_incident_solar_radiation/train-* - config_name: weatherbench_hourly_total_cloud_cover data_files: - split: train path: weatherbench_hourly/total_cloud_cover/train-* - config_name: weatherbench_hourly_total_precipitation data_files: - split: train path: weatherbench_hourly/total_precipitation/train-* - config_name: weatherbench_hourly_u_component_of_wind data_files: - split: train path: weatherbench_hourly/u_component_of_wind/train-* - config_name: weatherbench_hourly_v_component_of_wind data_files: - split: train path: weatherbench_hourly/v_component_of_wind/train-* - config_name: weatherbench_hourly_vorticity data_files: - split: train path: weatherbench_hourly/vorticity/train-* - config_name: weatherbench_weekly data_files: - split: train path: weatherbench_weekly/train-* - config_name: wiki_daily_100k data_files: - split: train path: wiki_daily_100k/train-* - config_name: wind_farms_daily data_files: - split: train path: wind_farms_daily/train-* - config_name: wind_farms_hourly data_files: - split: train path: wind_farms_hourly/train-* --- # Chronos datasets Time series datasets used for training and evaluation of the [Chronos](https://github.com/amazon-science/chronos-forecasting) forecasting models. Note that some Chronos datasets (`ETTh`, `ETTm`, `brazilian_cities_temperature` and `spanish_energy_and_weather`) that rely on a custom builder script are available in the companion repo [`autogluon/chronos_datasets_extra`](https://huggingface.co/datasets/autogluon/chronos_datasets_extra). See the [paper](https://arxiv.org/abs/2403.07815) for more information. ## Data format and usage The recommended way to use these datasets is via https://github.com/autogluon/fev. All datasets satisfy the following high-level schema: - Each dataset row corresponds to a single (univariate or multivariate) time series. - There exists one column with name `id` and type `string` that contains the unique identifier of each time series. - There exists one column of type `Sequence` with dtype `timestamp[ms]`. This column contains the timestamps of the observations. Timestamps are guaranteed to have a regular frequency that can be obtained with [`pandas.infer_freq`](https://pandas.pydata.org/docs/reference/api/pandas.infer_freq.html). - There exists at least one column of type `Sequence` with numeric (`float`, `double`, or `int`) dtype. These columns can be interpreted as target time series. - For each row, all columns of type `Sequence` have same length. - Remaining columns of types other than `Sequence` (e.g., `string` or `float`) can be interpreted as static covariates. Datasets can be loaded using the 🤗 [`datasets`](https://huggingface.co/docs/datasets/en/index) library ```python import datasets ds = datasets.load_dataset("autogluon/chronos_datasets", "m4_daily", split="train") ds.set_format("numpy") # sequences returned as numpy arrays ``` > **NOTE:** The `train` split of all datasets contains the full time series and has no relation to the train/test split used in the Chronos paper. Example entry in the `m4_daily` dataset ```python >>> ds[0] {'id': 'T000000', 'timestamp': array(['1994-03-01T12:00:00.000', '1994-03-02T12:00:00.000', '1994-03-03T12:00:00.000', ..., '1996-12-12T12:00:00.000', '1996-12-13T12:00:00.000', '1996-12-14T12:00:00.000'], dtype='datetime64[ms]'), 'target': array([1017.1, 1019.3, 1017. , ..., 2071.4, 2083.8, 2080.6], dtype=float32), 'category': 'Macro'} ``` ## Changelog - **v1.3.0 (2025-03-05)**: Fix incorrect timestamp frequency for `monash_hospital` - **v1.2.0 (2025-01-03)**: Fix incorrect timestamp frequency for `dominick` - **v1.1.0 (2024-11-14)**: Fix irregular timestamp frequency for `m4_quarterly` - **v1.0.0 (2024-07-24)**: Initial release ### Converting to pandas We can easily convert data in such format to a long format data frame ```python def to_pandas(ds: datasets.Dataset) -> "pd.DataFrame": """Convert dataset to long data frame format.""" sequence_columns = [col for col in ds.features if isinstance(ds.features[col], datasets.Sequence)] return ds.to_pandas().explode(sequence_columns).infer_objects() ``` Example output ```python >>> print(to_pandas(ds).head()) id timestamp target category 0 T000000 1994-03-01 12:00:00 1017.1 Macro 1 T000000 1994-03-02 12:00:00 1019.3 Macro 2 T000000 1994-03-03 12:00:00 1017.0 Macro 3 T000000 1994-03-04 12:00:00 1019.2 Macro 4 T000000 1994-03-05 12:00:00 1018.7 Macro ``` ### Dealing with large datasets Note that some datasets, such as subsets of WeatherBench, are extremely large (~100GB). To work with them efficiently, we recommend either loading them from disk (files will be downloaded to disk, but won't be all loaded into memory) ```python ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_daily", keep_in_memory=False, split="train") ``` or, for the largest datasets like `weatherbench_hourly_temperature`, reading them in streaming format (chunks will be downloaded one at a time) ```python ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_hourly_temperature", streaming=True, split="train") ``` ## Chronos training corpus with TSMixup & KernelSynth The training corpus used for training the Chronos models can be loaded via the configs `training_corpus_tsmixup_10m` (10M TSMixup augmentations of real-world data) and `training_corpus_kernel_synth_1m` (1M synthetic time series generated with KernelSynth), e.g., ```python ds = datasets.load_dataset("autogluon/chronos_datasets", "training_corpus_tsmixup_10m", streaming=True, split="train") ``` Note that since data in the training corpus was obtained by combining various synthetic & real-world time series, the timestamps contain dummy values that have no connection to the original data. ## License Different datasets available in this collection are distributed under different open source licenses. Please see `ds.info.license` and `ds.info.homepage` for each individual dataset. ## Citation If you find these datasets useful for your research, please consider citing the associated paper: ```markdown @article{ansari2024chronos, author = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang}, title = {Chronos: Learning the Language of Time Series}, journal = {arXiv preprint arXiv:2403.07815}, year = {2024} } ```
xlangai/BRIGHT
xlangai
2025-03-01T16:51:21Z
3,480
26
[ "task_categories:text-retrieval", "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2407.12883", "region:us", "text-retrieval", "code", "biology", "earth_science", "economics", "psychology", "robotics", "math" ]
[ "text-retrieval" ]
2024-06-07T23:11:53Z
2
--- language: - en license: cc-by-4.0 size_categories: - 1K<n<10K task_categories: - text-retrieval dataset_info: - config_name: Gemini-1.0_reason features: - name: query dtype: string - name: reasoning dtype: string - name: id dtype: string - name: excluded_ids sequence: string - name: gold_ids_long sequence: string - name: gold_ids sequence: string - name: gold_answer dtype: string splits: - name: biology num_bytes: 571840 num_examples: 103 - name: earth_science num_bytes: 569680 num_examples: 116 - name: economics num_bytes: 617171 num_examples: 103 - name: psychology num_bytes: 557169 num_examples: 101 - name: robotics num_bytes: 467620 num_examples: 101 - name: stackoverflow num_bytes: 652597 num_examples: 117 - name: sustainable_living num_bytes: 626085 num_examples: 108 - name: leetcode num_bytes: 1382908 num_examples: 142 - name: pony num_bytes: 327318 num_examples: 112 - name: aops num_bytes: 14182450 num_examples: 111 - name: theoremqa_questions num_bytes: 13144059 num_examples: 194 - name: theoremqa_theorems num_bytes: 393390 num_examples: 76 download_size: 5946613 dataset_size: 33492287 - config_name: claude-3-opus_reason features: - name: query dtype: string - name: reasoning dtype: string - name: id dtype: string - name: excluded_ids sequence: string - name: gold_ids_long sequence: string - name: gold_ids sequence: string - name: gold_answer dtype: string splits: - name: biology num_bytes: 557025 num_examples: 103 - name: earth_science num_bytes: 558266 num_examples: 116 - name: economics num_bytes: 574237 num_examples: 103 - name: psychology num_bytes: 516517 num_examples: 101 - name: robotics num_bytes: 437209 num_examples: 101 - name: stackoverflow num_bytes: 622316 num_examples: 117 - name: sustainable_living num_bytes: 591735 num_examples: 108 - name: leetcode num_bytes: 1407501 num_examples: 142 - name: pony num_bytes: 361169 num_examples: 112 - name: aops num_bytes: 14149870 num_examples: 111 - name: theoremqa_questions num_bytes: 13121703 num_examples: 194 - name: theoremqa_theorems num_bytes: 382228 num_examples: 76 download_size: 5777474 dataset_size: 33279776 - config_name: documents features: - name: id dtype: string - name: content dtype: string splits: - name: biology num_bytes: 21983744 num_examples: 57359 - name: earth_science num_bytes: 46952371 num_examples: 121249 - name: economics num_bytes: 22771374 num_examples: 50220 - name: psychology num_bytes: 23167414 num_examples: 52835 - name: robotics num_bytes: 20718385 num_examples: 61961 - name: stackoverflow num_bytes: 189733583 num_examples: 107081 - name: sustainable_living num_bytes: 24373723 num_examples: 60792 - name: pony num_bytes: 2365157 num_examples: 7894 - name: leetcode num_bytes: 456581333 num_examples: 413932 - name: aops num_bytes: 146564475 num_examples: 188002 - name: theoremqa_theorems num_bytes: 21124422 num_examples: 23839 - name: theoremqa_questions num_bytes: 146564475 num_examples: 188002 download_size: 465489179 dataset_size: 1122900456 - config_name: examples features: - name: query dtype: string - name: reasoning dtype: string - name: id dtype: string - name: excluded_ids sequence: string - name: gold_ids_long sequence: string - name: gold_ids sequence: string - name: gold_answer dtype: string splits: - name: biology num_bytes: 326427 num_examples: 103 - name: earth_science num_bytes: 280741 num_examples: 116 - name: economics num_bytes: 343172 num_examples: 103 - name: psychology num_bytes: 286062 num_examples: 101 - name: robotics num_bytes: 366862 num_examples: 101 - name: stackoverflow num_bytes: 470365 num_examples: 117 - name: sustainable_living num_bytes: 336562 num_examples: 108 - name: pony num_bytes: 135009 num_examples: 112 - name: leetcode num_bytes: 1212640 num_examples: 142 - name: aops num_bytes: 13981802 num_examples: 111 - name: theoremqa_theorems num_bytes: 257842 num_examples: 76 - name: theoremqa_questions num_bytes: 12810785 num_examples: 194 download_size: 4590189 dataset_size: 30808269 - config_name: gpt4_reason features: - name: query dtype: string - name: reasoning dtype: string - name: id dtype: string - name: excluded_ids sequence: string - name: gold_ids_long sequence: string - name: gold_ids sequence: string - name: gold_answer dtype: string splits: - name: biology num_bytes: 613511 num_examples: 103 - name: earth_science num_bytes: 618266 num_examples: 116 - name: economics num_bytes: 642234 num_examples: 103 - name: psychology num_bytes: 571504 num_examples: 101 - name: robotics num_bytes: 519720 num_examples: 101 - name: stackoverflow num_bytes: 704186 num_examples: 117 - name: sustainable_living num_bytes: 657382 num_examples: 108 - name: leetcode num_bytes: 1461063 num_examples: 142 - name: pony num_bytes: 423199 num_examples: 112 - name: aops num_bytes: 14332394 num_examples: 111 - name: theoremqa_questions num_bytes: 13262646 num_examples: 194 - name: theoremqa_theorems num_bytes: 442272 num_examples: 76 download_size: 6421256 dataset_size: 34248377 - config_name: grit_reason features: - name: query dtype: string - name: reasoning dtype: string - name: id dtype: string - name: excluded_ids sequence: string - name: gold_ids_long sequence: string - name: gold_ids sequence: string - name: gold_answer dtype: string splits: - name: biology num_bytes: 478151 num_examples: 103 - name: earth_science num_bytes: 443792 num_examples: 116 - name: economics num_bytes: 493163 num_examples: 103 - name: psychology num_bytes: 407907 num_examples: 101 - name: robotics num_bytes: 340895 num_examples: 101 - name: stackoverflow num_bytes: 540771 num_examples: 117 - name: sustainable_living num_bytes: 475118 num_examples: 108 - name: leetcode num_bytes: 1305306 num_examples: 142 - name: pony num_bytes: 258002 num_examples: 112 - name: aops num_bytes: 14170933 num_examples: 111 - name: theoremqa_questions num_bytes: 13040517 num_examples: 194 - name: theoremqa_theorems num_bytes: 360282 num_examples: 76 download_size: 5202414 dataset_size: 32314837 - config_name: llama3-70b_reason features: - name: query dtype: string - name: reasoning dtype: string - name: id dtype: string - name: excluded_ids sequence: string - name: gold_ids_long sequence: string - name: gold_ids sequence: string - name: gold_answer dtype: string splits: - name: biology num_bytes: 631132 num_examples: 103 - name: earth_science num_bytes: 622087 num_examples: 116 - name: economics num_bytes: 631657 num_examples: 103 - name: psychology num_bytes: 563987 num_examples: 101 - name: robotics num_bytes: 449342 num_examples: 101 - name: stackoverflow num_bytes: 641853 num_examples: 117 - name: sustainable_living num_bytes: 654690 num_examples: 108 - name: leetcode num_bytes: 1376032 num_examples: 142 - name: pony num_bytes: 315870 num_examples: 112 - name: aops num_bytes: 14183895 num_examples: 111 - name: theoremqa_questions num_bytes: 13157545 num_examples: 194 - name: theoremqa_theorems num_bytes: 405388 num_examples: 76 download_size: 5877403 dataset_size: 33633478 - config_name: long_documents features: - name: id dtype: string - name: content dtype: string splits: - name: biology num_bytes: 19454314 num_examples: 524 - name: earth_science num_bytes: 41843262 num_examples: 601 - name: economics num_bytes: 20095594 num_examples: 516 - name: psychology num_bytes: 20541239 num_examples: 512 - name: robotics num_bytes: 18220587 num_examples: 508 - name: stackoverflow num_bytes: 184616744 num_examples: 1858 - name: sustainable_living num_bytes: 21200303 num_examples: 554 - name: pony num_bytes: 2098474 num_examples: 577 download_size: 104578765 dataset_size: 328070517 configs: - config_name: Gemini-1.0_reason data_files: - split: biology path: Gemini-1.0_reason/biology-* - split: earth_science path: Gemini-1.0_reason/earth_science-* - split: economics path: Gemini-1.0_reason/economics-* - split: psychology path: Gemini-1.0_reason/psychology-* - split: robotics path: Gemini-1.0_reason/robotics-* - split: stackoverflow path: Gemini-1.0_reason/stackoverflow-* - split: sustainable_living path: Gemini-1.0_reason/sustainable_living-* - split: leetcode path: Gemini-1.0_reason/leetcode-* - split: pony path: Gemini-1.0_reason/pony-* - split: aops path: Gemini-1.0_reason/aops-* - split: theoremqa_questions path: Gemini-1.0_reason/theoremqa_questions-* - split: theoremqa_theorems path: Gemini-1.0_reason/theoremqa_theorems-* - config_name: claude-3-opus_reason data_files: - split: biology path: claude-3-opus_reason/biology-* - split: earth_science path: claude-3-opus_reason/earth_science-* - split: economics path: claude-3-opus_reason/economics-* - split: psychology path: claude-3-opus_reason/psychology-* - split: robotics path: claude-3-opus_reason/robotics-* - split: stackoverflow path: claude-3-opus_reason/stackoverflow-* - split: sustainable_living path: claude-3-opus_reason/sustainable_living-* - split: leetcode path: claude-3-opus_reason/leetcode-* - split: pony path: claude-3-opus_reason/pony-* - split: aops path: claude-3-opus_reason/aops-* - split: theoremqa_questions path: claude-3-opus_reason/theoremqa_questions-* - split: theoremqa_theorems path: claude-3-opus_reason/theoremqa_theorems-* - config_name: documents data_files: - split: biology path: documents/biology-* - split: earth_science path: documents/earth_science-* - split: economics path: documents/economics-* - split: psychology path: documents/psychology-* - split: robotics path: documents/robotics-* - split: stackoverflow path: documents/stackoverflow-* - split: sustainable_living path: documents/sustainable_living-* - split: pony path: documents/pony-* - split: leetcode path: documents/leetcode-* - split: aops path: documents/aops-* - split: theoremqa_theorems path: documents/theoremqa_theorems-* - split: theoremqa_questions path: documents/theoremqa_questions-* - config_name: examples data_files: - split: biology path: examples/biology-* - split: earth_science path: examples/earth_science-* - split: economics path: examples/economics-* - split: psychology path: examples/psychology-* - split: robotics path: examples/robotics-* - split: stackoverflow path: examples/stackoverflow-* - split: sustainable_living path: examples/sustainable_living-* - split: pony path: examples/pony-* - split: leetcode path: examples/leetcode-* - split: aops path: examples/aops-* - split: theoremqa_theorems path: examples/theoremqa_theorems-* - split: theoremqa_questions path: examples/theoremqa_questions-* - config_name: gpt4_reason data_files: - split: biology path: gpt4_reason/biology-* - split: earth_science path: gpt4_reason/earth_science-* - split: economics path: gpt4_reason/economics-* - split: psychology path: gpt4_reason/psychology-* - split: robotics path: gpt4_reason/robotics-* - split: stackoverflow path: gpt4_reason/stackoverflow-* - split: sustainable_living path: gpt4_reason/sustainable_living-* - split: leetcode path: gpt4_reason/leetcode-* - split: pony path: gpt4_reason/pony-* - split: aops path: gpt4_reason/aops-* - split: theoremqa_questions path: gpt4_reason/theoremqa_questions-* - split: theoremqa_theorems path: gpt4_reason/theoremqa_theorems-* - config_name: grit_reason data_files: - split: biology path: grit_reason/biology-* - split: earth_science path: grit_reason/earth_science-* - split: economics path: grit_reason/economics-* - split: psychology path: grit_reason/psychology-* - split: robotics path: grit_reason/robotics-* - split: stackoverflow path: grit_reason/stackoverflow-* - split: sustainable_living path: grit_reason/sustainable_living-* - split: leetcode path: grit_reason/leetcode-* - split: pony path: grit_reason/pony-* - split: aops path: grit_reason/aops-* - split: theoremqa_questions path: grit_reason/theoremqa_questions-* - split: theoremqa_theorems path: grit_reason/theoremqa_theorems-* - config_name: llama3-70b_reason data_files: - split: biology path: llama3-70b_reason/biology-* - split: earth_science path: llama3-70b_reason/earth_science-* - split: economics path: llama3-70b_reason/economics-* - split: psychology path: llama3-70b_reason/psychology-* - split: robotics path: llama3-70b_reason/robotics-* - split: stackoverflow path: llama3-70b_reason/stackoverflow-* - split: sustainable_living path: llama3-70b_reason/sustainable_living-* - split: leetcode path: llama3-70b_reason/leetcode-* - split: pony path: llama3-70b_reason/pony-* - split: aops path: llama3-70b_reason/aops-* - split: theoremqa_questions path: llama3-70b_reason/theoremqa_questions-* - split: theoremqa_theorems path: llama3-70b_reason/theoremqa_theorems-* - config_name: long_documents data_files: - split: biology path: long_documents/biology-* - split: earth_science path: long_documents/earth_science-* - split: economics path: long_documents/economics-* - split: psychology path: long_documents/psychology-* - split: robotics path: long_documents/robotics-* - split: stackoverflow path: long_documents/stackoverflow-* - split: sustainable_living path: long_documents/sustainable_living-* - split: pony path: long_documents/pony-* tags: - text-retrieval - code - biology - earth_science - economics - psychology - robotics - math --- # BRIGHT benchmark BRIGHT is the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. The queries are collected from diverse domains (StackExchange, LeetCode, and math competitions), all sourced from realistic human data. Experiments show that existing retrieval models perform poorly on BRIGHT, where the highest score is only 22.1 measured by nDCG@10. BRIGHT provides a good testbed for future retrieval research in more realistic and challenging settings. More details are in the [paper](https://brightbenchmark.github.io/). ## Dataset Structure We unify all the datasets with consistent formats. They are organized into three subsets, examples, documents, and long_documents: * `examples`: * `query`: the query for retrieval * `reasoning`: the gold reasoning steps annotated by humans (they help people understand the relevance between queries and documents, but are not used in any experiment in the paper) * `id`: the index of the instance * `excluded_ids`: a list of the ids (string) to exclude during evaluation (only for `theoremqa`/`aops`/`leetcode`) * `gold_ids_long`: a list of the ids (string) of the ground truth documents, corresponding to the ids of the `long_documents` subset * `gold_ids`: a list of the ids (string) of the ground truth documents, corresponding to the indices of the `documents` subset * `documents`: * `id`: the index of the document * `content`: document content (short version split from the complete web page, blogs, etc., or a problem and solution pair) * `long_documents` (not applicable to `theoremqa`/`aops`/`leetcode`): * `id`: the index of the document * `content`: document content (long version corresponding to the complete web page, blogs, etc.) ## Dataset Statistics <img src="statistics.png" width="80%" alt="BRIGHT statistics"> ## Data Loading Each dataset can be easily loaded. For example, to load biology examples: ``` from datasets import load_dataset data = load_dataset('xlangai/BRIGHT', 'examples')['biology'] ``` ## Citation If you find our work helpful, please cite us: ```citation @misc{BRIGHT, title={BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval}, author={Su, Hongjin and Yen, Howard and Xia, Mengzhou and Shi, Weijia and Muennighoff, Niklas and Wang, Han-yu and Liu, Haisu and Shi, Quan and Siegel, Zachary S and Tang, Michael and Sun, Ruoxi and Yoon, Jinsung and Arik, Sercan O and Chen, Danqi and Yu, Tao}, url={https://arxiv.org/abs/2407.12883}, year={2024}, } ```
allenai/CoSyn-400K
allenai
2025-02-28T19:14:42Z
3,960
10
[ "task_categories:visual-question-answering", "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2502.14846", "arxiv:2409.17146", "region:us" ]
[ "visual-question-answering" ]
2025-02-23T19:07:29Z
2
--- license: odc-by task_categories: - visual-question-answering dataset_info: - config_name: chart features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 25262691844.136 num_examples: 116814 - name: validation num_bytes: 220083787.264 num_examples: 1024 download_size: 24927449477 dataset_size: 25482775631.4 - config_name: chemical features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 282021984.062 num_examples: 8942 - name: validation num_bytes: 4186180.0 num_examples: 128 download_size: 276447943 dataset_size: 286208164.062 - config_name: circuit features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 405803895.22 num_examples: 10470 - name: validation num_bytes: 5126755.0 num_examples: 128 download_size: 392176815 dataset_size: 410930650.22 - config_name: diagram features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 6647512945.646 num_examples: 34963 - name: validation num_bytes: 194765398.0 num_examples: 1024 download_size: 6695298322 dataset_size: 6842278343.646 - config_name: document features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 20408059180.798 num_examples: 71282 - name: validation num_bytes: 287297344.304 num_examples: 1024 download_size: 20220923713 dataset_size: 20695356525.102 - config_name: graphic features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 401715264.464 num_examples: 26968 - name: validation num_bytes: 15527102.264 num_examples: 1024 download_size: 360711845 dataset_size: 417242366.728 - config_name: math features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 6288774127.884 num_examples: 66714 - name: validation num_bytes: 97463564.56 num_examples: 1024 download_size: 6245281939 dataset_size: 6386237692.444 - config_name: music features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 436496623.452 num_examples: 11969 - name: validation num_bytes: 4754704.0 num_examples: 128 download_size: 397428056 dataset_size: 441251327.452 - config_name: nutrition features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 1445696898.35 num_examples: 6931 - name: validation num_bytes: 27712685.0 num_examples: 128 download_size: 1410256975 dataset_size: 1473409583.35 - config_name: table features: - name: id dtype: string - name: image dtype: image - name: qa_pairs sequence: - name: question dtype: string - name: explanation dtype: string - name: answer dtype: string - name: metadata struct: - name: figure_type dtype: string - name: persona dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string splits: - name: train num_bytes: 7026511042.24 num_examples: 46518 - name: validation num_bytes: 152040498.064 num_examples: 1024 download_size: 6918074537 dataset_size: 7178551540.304 configs: - config_name: chart data_files: - split: train path: chart/train-* - split: validation path: chart/validation-* - config_name: chemical data_files: - split: train path: chemical/train-* - split: validation path: chemical/validation-* - config_name: circuit data_files: - split: train path: circuit/train-* - split: validation path: circuit/validation-* - config_name: diagram data_files: - split: train path: diagram/train-* - split: validation path: diagram/validation-* - config_name: document data_files: - split: train path: document/train-* - split: validation path: document/validation-* - config_name: graphic data_files: - split: train path: graphic/train-* - split: validation path: graphic/validation-* - config_name: math data_files: - split: train path: math/train-* - split: validation path: math/validation-* - config_name: music data_files: - split: train path: music/train-* - split: validation path: music/validation-* - config_name: nutrition data_files: - split: train path: nutrition/train-* - split: validation path: nutrition/validation-* - config_name: table data_files: - split: train path: table/train-* - split: validation path: table/validation-* --- # CoSyn-400k CoSyn-400k is a collection of synthetic question-answer pairs about very diverse range of computer-generated images. The data was created by using the [Claude large language model](https://claude.ai/) to generate code that can be executed to render an image, and using [GPT-4o mini](https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/) to generate Q/A pairs based on the code (without using the rendered image). The code used to generate this data is [open source](https://github.com/allenai/pixmo-docs). Synthetic pointing data is available in a [seperate repo](https://huggingface.co/datasets/allenai/CoSyn-point). Quick links: - 📃 [CoSyn Paper](https://arxiv.org/pdf/2502.14846) - 📃 [Molmo Paper](https://molmo.allenai.org/paper.pdf) ## Loading The dataset has several subsets: - chart - chemical - circuit - diagram - document - graphic - math - music - nutrition - tableuments Use `config_name` to specify which one to load, by default `chart` will be loaded. For example: ```python table_dataset = datasets.load_dataset("allenai/CoSyn-400K", "table", split="train") ``` ## Data Format The rendered image is included in the dataset directly: ```python print(table_dataset[0]["image"]) # >>> PIL.PngImagePlugin.PngImageFile image mode=RGB size=2400x1200 at 0x7F362070CEB0> ``` Each image is matched with multiple question-answer pairs: ```python for q, a in zip(table_dataset[0]["questions"]["question"], table_dataset[0]["questions"]["answer"]): print(q, a) # >>> # What is the waist circumference range for adult females? 64-88 cm # What is the weight range for children aged 2-12 years? 10-45 kg # Is the BMI range for infants provided in the table? No # Which age group has the highest resting heart rate range? Infants (0-1 year) # What is the difference in lung capacity range between adolescents and elderly? Maximum difference: 0.5 L, Minimum difference: 1.5 L # Do adult males have a higher blood pressure range than adolescents? Yes # What is the average height of elderly females compared to male adolescents? Male adolescents are taller by 10 cm # Does the table provide a consistent BMI range across all groups for females? Yes # Which gender has a lower average hip circumference range among the elderly? Females have a lower average hip circumference ``` ## Splits The data is divided into validation and train splits. These splits are "unofficial" because we do not generally use this data for evaluation anyway. However, they reflect what we used when training. ## License This dataset is licensed by ODC-BY-1.0. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output images derived from code generated from Claude that are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup). The questions were generated from GPT-4o Mini and are subject to [separate terms](https://openai.com/policies/row-terms-of-use) governing their use. ## Citation Please cite the following papers if you use this dataset in your work. ```bibtex @article{yang2025scaling, title={Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation}, author={Yang, Yue and Patel, Ajay and Deitke, Matt and Gupta, Tanmay and Weihs, Luca and Head, Andrew and Yatskar, Mark and Callison-Burch, Chris and Krishna, Ranjay and Kembhavi, Aniruddha and others}, journal={arXiv preprint arXiv:2502.14846}, year={2025} } ``` ```bibtex @article{deitke2024molmo, title={Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models}, author={Deitke, Matt and Clark, Christopher and Lee, Sangho and Tripathi, Rohun and Yang, Yue and Park, Jae Sung and Salehi, Mohammadreza and Muennighoff, Niklas and Lo, Kyle and Soldaini, Luca and others}, journal={arXiv preprint arXiv:2409.17146}, year={2024} } ```
simplescaling/s1K-1.1
simplescaling
2025-02-27T18:09:26Z
5,355
110
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us", "curator" ]
[]
2025-02-07T00:45:46Z
null
--- language: en license: mit configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: solution dtype: string - name: question dtype: string - name: cot_type dtype: string - name: source_type dtype: string - name: metadata dtype: string - name: gemini_thinking_trajectory dtype: string - name: gemini_attempt dtype: string - name: deepseek_thinking_trajectory dtype: string - name: deepseek_attempt dtype: string - name: gemini_grade dtype: string - name: gemini_grade_reason dtype: string - name: deepseek_grade dtype: string - name: deepseek_grade_reason dtype: string splits: - name: train num_bytes: 48313304 num_examples: 1000 download_size: 22323185 dataset_size: 48313304 tags: - curator --- # Dataset Card for s1K ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/simplescaling/s1 - **Paper:** [s1: Simple test-time scaling](https://arxiv.org/abs/2501.19393) ### Dataset Summary > s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance. ## Usage ```python # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K-1.1")["train"] ds[0] ``` ## Dataset Structure ### Data Instances An example looks as follows: ```json { 'solution': '1. **Rewrite the function using trigonometric identities:**...(shortened)', 'question': 'Let $a,b,A,B$ be given reals. We consider the function defined by \\[ f(x) = 1 - a \\cdot \\cos(x) - b \\cdot \\sin(x) - A \\cdot \\cos(2x) - B \\cdot \\sin(2x). \\] Prove that if for any real number $x$ we have $f(x) \\geq 0$ then $a^2 + b^2 \\leq 2$ and $A^2 + B^2 \\leq 1.$ ', 'cot_type': 'math', 'source_type': 'AI-MO/NuminaMath-CoT/aops_forum', 'metadata': "{'source': 'aops_forum', 'messages': [{'content': 'Let $a,b,A,B$ be given reals. We consider the function defined by \\\\[ f(x) = 1 - a \\\\cdot \\\\cos(x) - b \\\\cdot \\\\sin(x) - A \\\\cdot \\\\cos(2x) - B \\\\cdot \\\\sin(2x). \\\\] Prove that if for any real number $x$ we have $f(x) \\\\geq 0$ then $a^2 + b^2 \\\\leq 2$ and $A^2 + B^2 \\\\leq 1.$ ', 'role': 'user'}, {'content': '1. **Rewrite the function using trigonometric identities:**\\n \\\\[\\n f(x) = 1 - a \\\\cos(x) - b \\\\sin(x) - A \\\\cos(2x) - B \\\\sin(2x)\\n \\\\]\\n We can use the angle addition formulas for sine and cosine:\\n \\\\[\\n \\\\cos(x + \\\\theta) = \\\\cos(x)\\\\cos(\\\\theta) - \\\\sin(x)\\\\sin(\\\\theta)\\n \\\\]\\n \\\\[\\n \\\\sin(x + \\\\theta) = \\\\sin(x)\\\\cos(\\\\theta) + \\\\cos(x)\\\\sin(\\\\theta)\\n \\\\]\\n Let:\\n \\\\[\\n R_1 = \\\\sqrt{a^2 + b^2}, \\\\quad \\\\theta_1 = \\\\arctan\\\\left(\\\\frac{b}{a}\\\\right)\\n \\\\]\\n \\\\[\\n R_2 = \\\\sqrt{A^2 + B^2}, \\\\quad \\\\theta_2 = \\\\arctan\\\\left(\\\\frac{B}{A}\\\\right)\\n \\\\]\\n Then:\\n \\\\[\\n a \\\\cos(x) + b \\\\sin(x) = R_1 \\\\sin(x + \\\\theta_1)\\n \\\\]\\n \\\\[\\n A \\\\cos(2x) + B \\\\sin(2x) = R_2 \\\\sin(2x + \\\\theta_2)\\n \\\\]\\n Therefore, the function becomes:\\n \\\\[\\n f(x) = 1 - R_1 \\\\sin(x + \\\\theta_1) - R_2 \\\\sin(2x + \\\\theta_2)\\n \\\\]\\n\\n2. **Analyze the function for non-negativity:**\\n Given \\\\( f(x) \\\\geq 0 \\\\) for all \\\\( x \\\\), we need to ensure that the maximum values of the sine terms do not exceed 1:\\n \\\\[\\n 1 - R_1 \\\\sin(x + \\\\theta_1) - R_2 \\\\sin(2x + \\\\theta_2) \\\\geq 0\\n \\\\]\\n The maximum value of \\\\( \\\\sin(x + \\\\theta_1) \\\\) and \\\\( \\\\sin(2x + \\\\theta_2) \\\\) is 1. Therefore:\\n \\\\[\\n 1 - R_1 - R_2 \\\\geq 0\\n \\\\]\\n This implies:\\n \\\\[\\n R_1 + R_2 \\\\leq 1\\n \\\\]\\n\\n3. **Consider the individual terms:**\\n Since \\\\( R_1 = \\\\sqrt{a^2 + b^2} \\\\) and \\\\( R_2 = \\\\sqrt{A^2 + B^2} \\\\), we need to show:\\n \\\\[\\n \\\\sqrt{a^2 + b^2} \\\\leq 1 \\\\quad \\\\text{and} \\\\quad \\\\sqrt{A^2 + B^2} \\\\leq 1\\n \\\\]\\n\\n4. **Prove the inequalities:**\\n - For \\\\( \\\\sqrt{a^2 + b^2} \\\\leq 1 \\\\):\\n \\\\[\\n a^2 + b^2 \\\\leq 1^2 = 1\\n \\\\]\\n - For \\\\( \\\\sqrt{A^2 + B^2} \\\\leq 1 \\\\):\\n \\\\[\\n A^2 + B^2 \\\\leq 1^2 = 1\\n \\\\]\\n\\n5. **Conclusion:**\\n Therefore, we have shown that if \\\\( f(x) \\\\geq 0 \\\\) for all \\\\( x \\\\), then:\\n \\\\[\\n a^2 + b^2 \\\\leq 2 \\\\quad \\\\text{and} \\\\quad A^2 + B^2 \\\\leq 1\\n \\\\]\\n\\n\\\\(\\\\blacksquare\\\\)\\n\\nThe final answer is \\\\( \\\\boxed{ a^2 + b^2 \\\\leq 2 } \\\\) and \\\\( A^2 + B^2 \\\\leq 1 \\\\)', 'role': 'assistant'}]}", 'cot': None, 'gemini_thinking_trajectory': "Let $f(x) = 1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x \\geq 0$ for all $x \\in \\mathbb{R}$.\nWe want to show that $a^2 + b^2 \\leq 2$ and $A^2 + B^2 \\leq 1$.\n\nConsider specific values of $x$.\nFor $x=0$, $f(0) = 1 - a - A \\geq 0$, so $a+A \\leq 1$.\nFor $x=\\pi$, $f(\\pi) = 1 - a \\cos \\pi - b \\sin \\pi - A \\cos 2\\pi - B \\sin 2\\pi = 1 - a(-1) - b(0) - A(1) - B(0) = 1+a-A \\geq 0$, so $A-a \\leq 1$.\nFor $x=\\pi/2$, $f(\\pi/2) = 1 - a \\cos(\\pi/2) - b \\sin(\\pi/2) - A \\cos(\\pi) - B \\sin(\\pi) = 1 - a(0) - b(1) - A(-1) - B(0) = 1 - b + A \\geq 0$, so $b-A \\leq 1$.\nFor $x=3\\pi/2$, $f(3\\pi/2) = 1 - a \\cos(3\\pi/2) - b \\sin(3\\pi/2) - A \\cos(3\\pi) - B \\sin(3\\pi) = 1 - a(0) - b(-1) - A(-1) - B(0) = 1 + b + A \\geq 0$, so $-b-A \\leq 1$.\n\nFrom $a+A \\leq 1$ and $A-a \\leq 1$, we have $-1 \\leq a+A \\leq 1$ and $-1 \\leq a-A \\leq 1$.\nFrom $b-A \\leq 1$ and $-b-A \\leq 1$, we have $-1 \\leq b-A \\leq 1$ and $-1 \\leq b+A \\leq 1$.\n\nConsider the integral of $f(x)$ over a period.\n$\\int_0^{2\\pi} f(x) dx = \\int_0^{2\\pi} (1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x) dx \\geq 0$.\n$\\int_0^{2\\pi} 1 dx = 2\\pi$.\n$\\int_0^{2\\pi} \\cos x dx = [\\sin x]_0^{2\\pi} = 0$.\n$\\int_0^{2\\pi} \\sin x dx = [-\\cos x]_0^{2\\pi} = -1 - (-1) = 0$.\n$\\int_0^{2\\pi} \\cos 2x dx = [\\frac{1}{2} \\sin 2x]_0^{2\\pi} = 0$.\n$\\int_0^{2\\pi} \\sin 2x dx = [-\\frac{1}{2} \\cos 2x]_0^{2\\pi} = -\\frac{1}{2} - (-\\frac{1}{2}) = 0$.\nSo $\\int_0^{2\\pi} f(x) dx = 2\\pi \\geq 0$. This doesn't give any information.\n\nMultiply $f(x)$ by $\\cos x$ and integrate.\n$\\int_0^{2\\pi} f(x) \\cos x dx = \\int_0^{2\\pi} (1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x) \\cos x dx \\geq 0$.\n$\\int_0^{2\\pi} \\cos x dx = 0$.\n$\\int_0^{2\\pi} \\cos^2 x dx = \\int_0^{2\\pi} \\frac{1+\\cos 2x}{2} dx = [\\frac{x}{2} + \\frac{\\sin 2x}{4}]_0^{2\\pi} = \\pi$.\n$\\int_0^{2\\pi} \\sin x \\cos x dx = \\int_0^{2\\pi} \\frac{1}{2} \\sin 2x dx = [-\\frac{1}{4} \\cos 2x]_0^{2\\pi} = -\\frac{1}{4} - (-\\frac{1}{4}) = 0$.\n$\\int_0^{2\\pi} \\cos 2x \\cos x dx = \\int_0^{2\\pi} \\frac{1}{2} (\\cos 3x + \\cos x) dx = [\\frac{1}{6} \\sin 3x + \\frac{1}{2} \\sin x]_0^{2\\pi} = 0$.\n$\\int_0^{2\\pi} \\sin 2x \\cos x dx = \\int_0^{2\\pi} \\frac{1}{2} (\\sin 3x + \\sin x) dx = [-\\frac{1}{6} \\cos 3x - \\frac{1}{2} \\cos x]_0^{2\\pi} = (-\\frac{1}{6} - \\frac{1}{2}) - (-\\frac{1}{6} - \\frac{1}{2}) = 0$.\nSo $\\int_0^{2\\pi} f(x) \\cos x dx = 0 - a \\pi - 0 - 0 - 0 = -a\\pi \\geq 0$, so $a \\leq 0$. This is not necessarily true.\n\nConsider $f(x) \\geq 0$.\n$1 - (a \\cos x + b \\sin x) - (A \\cos 2x + B \\sin 2x) \\geq 0$.\nLet $a = r \\cos \\alpha, b = r \\sin \\alpha$. Then $a \\cos x + b \\sin x = r (\\cos \\alpha \\cos x + \\sin \\alpha \\sin x) = r \\cos(x-\\alpha)$.\nLet $A = R \\cos \\beta, B = R \\sin \\beta$. Then $A \\cos 2x + B \\sin 2x = R (\\cos \\beta \\cos 2x + \\sin \\beta \\sin 2x) = R \\cos(2x-\\beta)$.\nSo $1 - r \\cos(x-\\alpha) - R \\cos(2x-\\beta) \\geq 0$.\nLet $y = x-\\alpha$. Then $2x-\\beta = 2(y+\\alpha) - \\beta = 2y + 2\\alpha - \\beta$. Let $\\gamma = 2\\alpha - \\beta$.\n$1 - r \\cos y - R \\cos(2y+\\gamma) \\geq 0$.\n$1 - r \\cos y - R (\\cos 2y \\cos \\gamma - \\sin 2y \\sin \\gamma) \\geq 0$.\n$1 - r \\cos y - R ((2\\cos^2 y - 1) \\cos \\gamma - 2 \\sin y \\cos y \\sin \\gamma) \\geq 0$.\n$1 - r \\cos y - 2R \\cos^2 y \\cos \\gamma + R \\cos \\gamma + 2R \\sin y \\cos y \\sin \\gamma \\geq 0$.\n\nConsider $f(x) \\geq 0$.\nMultiply by $\\cos(x-\\phi)$ and integrate from $0$ to $2\\pi$.\n$\\int_0^{2\\pi} f(x) \\cos(x-\\phi) dx \\geq 0$.\n$\\int_0^{2\\pi} (1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x) (\\cos x \\cos \\phi + \\sin x \\sin \\phi) dx \\geq 0$.\n$\\cos \\phi \\int_0^{2\\pi} (\\cos x - a \\cos^2 x - b \\sin x \\cos x - A \\cos 2x \\cos x - B \\sin 2x \\cos x) dx + \\sin \\phi \\int_0^{2\\pi} (\\sin x - a \\cos x \\sin x - b \\sin^2 x - A \\cos 2x \\sin x - B \\sin 2x \\sin x) dx \\geq 0$.\n$\\cos \\phi (0 - a\\pi - 0 - 0 - 0) + \\sin \\phi (0 - 0 - b\\pi - 0 - 0) \\geq 0$.\n$-a\\pi \\cos \\phi - b\\pi \\sin \\phi \\geq 0$.\n$a \\cos \\phi + b \\sin \\phi \\leq 0$.\nThis must be true for all $\\phi$. Let $\\phi$ such that $\\tan \\phi = b/a$. Then $a \\frac{a}{\\sqrt{a^2+b^2}} + b \\frac{b}{\\sqrt{a^2+b^2}} = \\sqrt{a^2+b^2} \\leq 0$, so $a=b=0$. This is wrong.\n\nConsider $f(x) \\geq 0$.\n$1 - (a \\cos x + b \\sin x) - (A \\cos 2x + B \\sin 2x) \\geq 0$.\nThe minimum value of $a \\cos x + b \\sin x$ is $-\\sqrt{a^2+b^2}$.\nThe minimum value of $A \\cos 2x + B \\sin 2x$ is $-\\sqrt{A^2+B^2}$.\n$1 - (a \\cos x + b \\sin x) \\geq A \\cos 2x + B \\sin 2x$.\nMinimum of LHS is $1 - \\sqrt{a^2+b^2}$. Maximum of RHS is $\\sqrt{A^2+B^2}$.\n$1 - \\sqrt{a^2+b^2} \\geq \\sqrt{A^2+B^2}$.\n\nConsider $g(x) = 1 - A \\cos 2x - B \\sin 2x \\geq a \\cos x + b \\sin x$.\nMinimum of LHS is $1 - \\sqrt{A^2+B^2}$. Maximum of RHS is $\\sqrt{a^2+b^2}$.\n$1 - \\sqrt{A^2+B^2} \\geq \\sqrt{a^2+b^2}$.\n\nLet $x=0$, $1-a-A \\geq 0$.\nLet $x=\\pi$, $1+a-A \\geq 0$.\nLet $x=\\pi/2$, $1-b+A \\geq 0$.\nLet $x=3\\pi/2$, $1+b+A \\geq 0$.\n\nConsider the case where $b=B=0$.\n$f(x) = 1 - a \\cos x - A \\cos 2x \\geq 0$.\n$1 - a \\cos x - A (2 \\cos^2 x - 1) \\geq 0$.\n$1 - a \\cos x - 2A \\cos^2 x + A \\geq 0$.\n$A+1 - a \\cos x - 2A \\cos^2 x \\geq 0$.\nLet $y = \\cos x$, $-1 \\leq y \\leq 1$.\n$g(y) = -2Ay^2 - ay + A+1 \\geq 0$ for $y \\in [-1, 1]$.\nIf $A=0$, $-ay+1 \\geq 0$ for $y \\in [-1, 1]$. If $a>0$, $-a+1 \\geq 0$, $a \\leq 1$. If $a<0$, $a+1 \\geq 0$, $a \\geq -1$. So $|a| \\leq 1$. $a^2 \\leq 1 \\leq 2$.\nIf $A>0$, the parabola opens downwards. We need $g(-1) = -2A+a+A+1 = -A+a+1 \\geq 0$, $a \\geq A-1$. And $g(1) = -2A-a+A+1 = -A-a+1 \\geq 0$, $a \\leq 1-A$. Also the vertex must be outside $[-1, 1]$ or the vertex is in $[-1, 1]$ and the value is non-negative. Vertex at $y = -(-a)/(2(-2A)) = -a/4A$. If $|-a/4A| \\leq 1$, then $a^2 \\leq 16A^2$. $g(-a/4A) = -2A (-a/4A)^2 - a(-a/4A) + A+1 = -2A a^2/16A^2 + a^2/4A + A+1 = -a^2/8A + a^2/4A + A+1 = a^2/8A + A+1 \\geq 0$.\nIf $A<0$, the parabola opens upwards. We need $g(-1) \\geq 0$ and $g(1) \\geq 0$.\n$-A+a+1 \\geq 0$, $a \\geq A-1$.\n$-A-a+1 \\geq 0$, $a \\leq 1-A$.\n\nConsider integrals again.\n$\\int_0^{2\\pi} f(x) dx \\geq 0 \\implies 2\\pi \\geq 0$.\n$\\int_0^{2\\pi} f(x) \\cos x dx \\geq 0 \\implies -a \\pi \\geq 0 \\implies a \\leq 0$.\n$\\int_0^{2\\pi} f(x) \\sin x dx \\geq 0 \\implies -b \\pi \\geq 0 \\implies b \\leq 0$.\n$\\int_0^{2\\pi} f(x) \\cos 2x dx \\geq 0 \\implies -A \\pi \\geq 0 \\implies A \\leq 0$.\n$\\int_0^{2\\pi} f(x) \\sin 2x dx \\geq 0 \\implies -B \\pi \\geq 0 \\implies B \\leq 0$.\nThis is not true.\n\nConsider the vector $v = (1, \\cos x, \\sin x, \\cos 2x, \\sin 2x)$.\nThe condition is $v \\cdot c \\geq 0$, where $c = (1, -a, -b, -A, -B)$.\n\nConsider the case where $f(x) = (1 - \\alpha \\cos x - \\beta \\sin x)^2 \\geq 0$.\n$1 + \\alpha^2 \\cos^2 x + \\beta^2 \\sin^2 x - 2 \\alpha \\cos x - 2 \\beta \\sin x + 2 \\alpha \\beta \\cos x \\sin x \\geq 0$.\n$1 + \\frac{\\alpha^2+\\beta^2}{2} + \\frac{\\alpha^2-\\beta^2}{2} \\cos 2x - 2 \\alpha \\cos x - 2 \\beta \\sin x + \\alpha \\beta \\sin 2x \\geq 0$.\nCompare with $1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x \\geq 0$.\n$-a = -2\\alpha$, $-b = -2\\beta$, $-A = \\frac{\\alpha^2-\\beta^2}{2}$, $-B = \\alpha \\beta$.\n$a = 2\\alpha$, $b = 2\\beta$.\n$A = \\frac{\\beta^2-\\alpha^2}{2}$, $B = -\\alpha \\beta$.\n$a^2+b^2 = 4\\alpha^2+4\\beta^2$.\n$A^2+B^2 = \\frac{(\\beta^2-\\alpha^2)^2}{4} + \\alpha^2 \\beta^2 = \\frac{\\beta^4 - 2\\alpha^2 \\beta^2 + \\alpha^4 + 4\\alpha^2 \\beta^2}{4} = \\frac{(\\alpha^2+\\beta^2)^2}{4}$.\n\nConsider $f(x) \\geq 0$.\nConsider the Fourier series of $|f(x)| = f(x)$.\nThe coefficients must match.\n\nLet $z = e^{ix}$.\n$f(x) = 1 - \\frac{a}{2}(z+z^{-1}) - \\frac{b}{2i}(z-z^{-1}) - \\frac{A}{2}(z^2+z^{-2}) - \\frac{B}{2i}(z^2-z^{-2}) \\geq 0$.\n$2if(x) = 2i - ia(z+z^{-1}) + b(z-z^{-1}) - iA(z^2+z^{-2}) + B(z^2-z^{-2}) \\geq 0$.\n$2if(x) = 2i - i a z - i a z^{-1} + b z - b z^{-1} - i A z^2 - i A z^{-2} + B z^2 - B z^{-2} \\geq 0$.\n$2if(x) = 2i + (b-ia)z + (-b-ia)z^{-1} + (B-iA)z^2 + (-B-iA)z^{-2} \\geq 0$.\n\nConsider the integral $\\frac{1}{2\\pi} \\int_0^{2\\pi} f(x) e^{inx} dx$.\nFor $n=0$, $\\frac{1}{2\\pi} \\int_0^{2\\pi} f(x) dx = 1 \\geq 0$.\nFor $n=1$, $\\frac{1}{2\\pi} \\int_0^{2\\pi} f(x) (\\cos x + i \\sin x) dx = \\frac{1}{2\\pi} \\int_0^{2\\pi} (1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x) (\\cos x + i \\sin x) dx = -a/2 - ib/2$.\nSince $f(x) \\geq 0$, the coefficients of the Fourier series must satisfy certain conditions.\n\nConsider trigonometric polynomials that are non-negative.\nIf $P(\\theta) = \\sum_{k=-n}^n c_k e^{ik\\theta} \\geq 0$, then $c_{-k} = \\overline{c_k}$ and $c_0 \\geq 0$.\nIn our case, the coefficients are:\n$c_0 = 1$.\n$c_1 = -a/2 - ib/2$.\n$c_{-1} = -a/2 + ib/2$.\n$c_2 = -A/2 - iB/2$.\n$c_{-2} = -A/2 + iB/2$.\nWe need a condition on the coefficients such that the polynomial is non-negative.\n\nIf $1 - a \\cos x - b \\sin x \\geq 0$, then $1 \\geq \\sqrt{a^2+b^2}$.\nIf $1 - A \\cos 2x - B \\sin 2x \\geq 0$, then $1 \\geq \\sqrt{A^2+B^2}$.\n\nConsider $f(x) = |1 - \\alpha e^{ix} - \\beta e^{2ix}|^2 \\geq 0$.\n$(1 - \\alpha e^{ix} - \\beta e^{2ix})(1 - \\bar{\\alpha} e^{-ix} - \\bar{\\beta} e^{-2ix})$.\n$1 - \\bar{\\alpha} e^{-ix} - \\bar{\\beta} e^{-2ix} - \\alpha e^{ix} + |\\alpha|^2 - \\alpha \\bar{\\beta} e^{-ix} - \\beta e^{2ix} - \\beta \\bar{\\alpha} e^{ix} + |\\beta|^2$.\n$1 + |\\alpha|^2 + |\\beta|^2 - (\\bar{\\alpha} + \\alpha + \\alpha \\bar{\\beta}) e^{-ix} - (\\bar{\\beta} + \\beta + \\beta \\bar{\\alpha}) e^{-2ix}$.\n$1 + |\\alpha|^2 + |\\beta|^2 - (2 \\text{Re}(\\alpha) + \\alpha \\bar{\\beta}) e^{-ix} - (2 \\text{Re}(\\beta) + \\beta \\bar{\\alpha}) e^{-2ix}$.\nCompare coefficients.\n\nIf $P(\\theta) = |\\sum_{k=0}^n z_k e^{ik\\theta}|^2$, then $P(\\theta) \\geq 0$.\nConsider $P(x) = |1 - \\alpha e^{ix}|^2 = (1-\\alpha e^{ix})(1-\\bar{\\alpha} e^{-ix}) = 1 - \\bar{\\alpha} e^{-ix} - \\alpha e^{ix} + |\\alpha|^2 = 1+|\\alpha|^2 - 2 \\text{Re}(\\alpha) \\cos x + 2 \\text{Im}(\\alpha) \\sin x$.\nCompare with $1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x$.\n\nConsider $f(x) \\geq 0$.\n$1 - (a \\cos x + b \\sin x) - (A \\cos 2x + B \\sin 2x) \\geq 0$.\nLet $a = r_1 \\cos \\phi_1, b = r_1 \\sin \\phi_1$.\nLet $A = r_2 \\cos \\phi_2, B = r_2 \\sin \\phi_2$.\n$1 - r_1 \\cos(x-\\phi_1) - r_2 \\cos(2x-\\phi_2) \\geq 0$.\nLet $x - \\phi_1 = y$. Then $2x - \\phi_2 = 2(y+\\phi_1) - \\phi_2 = 2y + 2\\phi_1 - \\phi_2$. Let $\\delta = 2\\phi_1 - \\phi_2$.\n$1 - r_1 \\cos y - r_2 \\cos(2y+\\delta) \\geq 0$.\n$1 - r_1 \\cos y - r_2 (\\cos 2y \\cos \\delta - \\sin 2y \\sin \\delta) \\geq 0$.\n$1 - r_1 \\cos y - r_2 ( (2\\cos^2 y - 1) \\cos \\delta - 2 \\sin y \\cos y \\sin \\delta ) \\geq 0$.\n$1 - r_1 \\cos y - 2 r_2 \\cos^2 y \\cos \\delta + r_2 \\cos \\delta + 2 r_2 \\sin y \\cos y \\sin \\delta \\geq 0$.\n$1 + r_2 \\cos \\delta - r_1 \\cos y - 2 r_2 \\cos \\delta \\cos^2 y + r_2 \\sin \\delta \\sin 2y \\geq 0$.\n\nIf $f(x) \\geq 0$, then the average value is non-negative.\nConsider $1 - a \\cos x - b \\sin x \\geq 0$. Square both sides? No.\nConsider $1 - A \\cos 2x - B \\sin 2x \\geq |a \\cos x + b \\sin x|$.\n$1 - \\sqrt{A^2+B^2} \\leq 1 - A \\cos 2x - B \\sin 2x \\leq 1 + \\sqrt{A^2+B^2}$.\n$|a \\cos x + b \\sin x| \\leq \\sqrt{a^2+b^2}$.\nSo $1 - \\sqrt{A^2+B^2} \\geq \\sqrt{a^2+b^2}$. This is not necessarily true.\n\nConsider $f(x) \\geq 0$.\n$\\int_0^{2\\pi} f(x) d x = 2\\pi$.\n$\\int_0^{2\\pi} f(x) \\cos x d x = -a\\pi$.\n$\\int_0^{2\\pi} f(x) \\sin x d x = -b\\pi$.\n$\\int_0^{2\\pi} f(x) \\cos 2x d x = -A\\pi$.\n$\\int_0^{2\\pi} f(x) \\sin 2x d x = -B\\pi$.\nSince $f(x) \\geq 0$, consider the Fejer-Riesz theorem. A non-negative trigonometric polynomial can be written as the squared modulus of another trigonometric polynomial.\n$1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x = |c_0 + c_1 e^{ix} + c_2 e^{2ix}|^2$.\n$= (c_0 + c_1 e^{ix} + c_2 e^{2ix})(\\bar{c_0} + \\bar{c_1} e^{-ix} + \\bar{c_2} e^{-2ix})$.\n$= |c_0|^2 + |c_1|^2 + |c_2|^2 + (c_0 \\bar{c_1} + c_1 \\bar{c_2}) e^{ix} + (\\bar{c_0} c_1 + \\bar{c_1} c_2) e^{-ix} + c_0 \\bar{c_2} e^{2ix} + \\bar{c_0} c_2 e^{-2ix}$.\n$= |c_0|^2 + |c_1|^2 + |c_2|^2 + 2 \\text{Re}(c_0 \\bar{c_1} + c_1 \\bar{c_2}) \\cos x - 2 \\text{Im}(c_0 \\bar{c_1} + c_1 \\bar{c_2}) \\sin x + 2 \\text{Re}(c_0 \\bar{c_2}) \\cos 2x - 2 \\text{Im}(c_0 \\bar{c_2}) \\sin 2x$.\nCompare coefficients:\n$1 = |c_0|^2 + |c_1|^2 + |c_2|^2$.\n$-a = 2 \\text{Re}(c_0 \\bar{c_1} + c_1 \\bar{c_2})$.\n$-b = -2 \\text{Im}(c_0 \\bar{c_1} + c_1 \\bar{c_2})$.\n$-A = 2 \\text{Re}(c_0 \\bar{c_2})$.\n$-B = -2 \\text{Im}(c_0 \\bar{c_2})$.\n$A^2+B^2 = 4 (\\text{Re}(c_0 \\bar{c_2})^2 + \\text{Im}(c_0 \\bar{c_2})^2) = 4 |c_0 \\bar{c_2}|^2 = 4 |c_0|^2 |c_2|^2$.\nLet $c_0 = 1$.\n$1 = 1 + |c_1|^2 + |c_2|^2 \\implies |c_1|^2 + |c_2|^2 = 0 \\implies c_1 = c_2 = 0$. Then $f(x) = 1$, $a=b=A=B=0$.\n", 'attempt': 'Let $P(x) = 1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x$.\nSince $P(x) \\geq 0$ for all real $x$, by Fejer-Riesz theorem, there exists a polynomial $Q(z) = c_0 + c_1 z + c_2 z^2$ such that $P(x) = |Q(e^{ix})|^2$.\nWe have $|Q(e^{ix})|^2 = (c_0 + c_1 e^{ix} + c_2 e^{2ix})(\\bar{c_0} + \\bar{c_1} e^{-ix} + \\bar{c_2} e^{-2ix})$.\nExpanding this, we get\n\\begin{align*} |Q(e^{ix})|^2 &= |c_0|^2 + |c_1|^2 + |c_2|^2 \\\\ &+ (c_0 \\bar{c_1} + c_1 \\bar{c_2}) e^{ix} + (\\bar{c_0} c_1 + \\bar{c_1} c_2) e^{-ix} \\\\ &+ c_0 \\bar{c_2} e^{2ix} + \\bar{c_0} c_2 e^{-2ix} \\\\ &= |c_0|^2 + |c_1|^2 + |c_2|^2 \\\\ &+ (c_0 \\bar{c_1} + \\bar{\\bar{c_1}} c_2 + \\overline{c_0 \\bar{c_1} + \\bar{\\bar{c_1}} c_2}) \\cos x + i (c_0 \\bar{c_1} + \\bar{\\bar{c_1}} c_2 - \\overline{c_0 \\bar{c_1} + \\bar{\\bar{c_1}} c_2}) \\sin x \\\\ &+ (c_0 \\bar{c_2} + \\bar{c_0} c_2) \\cos 2x + i (c_0 \\bar{c_2} - \\bar{c_0} c_2) \\sin 2x \\\\ &= |c_0|^2 + |c_1|^2 + |c_2|^2 + 2 \\text{Re}(c_0 \\bar{c_1} + c_1 \\bar{c_2}) \\cos x - 2 \\text{Im}(c_0 \\bar{c_1} + c_1 \\bar{c_2}) \\sin x + 2 \\text{Re}(c_0 \\bar{c_2}) \\cos 2x - 2 \\text{Im}(c_0 \\bar{c_2}) \\sin 2x\\end{align*}\nComparing the coefficients of $P(x)$ with $|Q(e^{ix})|^2$, we have:\n$1 = |c_0|^2 + |c_1|^2 + |c_2|^2$\n$-a = 2 \\text{Re}(c_0 \\bar{c_1} + c_1 \\bar{c_2})$\n$-b = -2 \\text{Im}(c_0 \\bar{c_1} + c_1 \\bar{c_2})$\n$-A = 2 \\text{Re}(c_0 \\bar{c_2})$\n$-B = -2 \\text{Im}(c_0 \\bar{c_2})$\nFrom the last two equations, $A^2 + B^2 = 4 (\\text{Re}(c_0 \\bar{c_2})^2 + \\text{Im}(c_0 \\bar{c_2})^2) = 4 |c_0 \\bar{c_2}|^2 = 4 |c_0|^2 |c_2|^2$.\nSince $1 = |c_0|^2 + |c_1|^2 + |c_2|^2$, we have $|c_0|^2 \\leq 1$ and $|c_2|^2 \\leq 1$.\nThus $A^2 + B^2 = 4 |c_0|^2 |c_2|^2 \\leq 4 \\cdot 1 \\cdot 1 = 4$. This is not the desired result.\n\nConsider $Q(z) = 1 - \\alpha z - \\beta z^2$. Then $|Q(e^{ix})|^2 = |1 - \\alpha e^{ix} - \\beta e^{2ix}|^2$.\n$|1 - \\alpha e^{ix} - \\beta e^{2ix}|^2 = (1 - \\alpha e^{ix} - \\beta e^{2ix})(1 - \\bar{\\alpha} e^{-ix} - \\bar{\\beta} e^{-2ix})$\n$= 1 - \\bar{\\alpha} e^{-ix} - \\bar{\\beta} e^{-2ix} - \\alpha e^{ix} + |\\alpha|^2 - \\alpha \\bar{\\beta} e^{-ix} - \\beta e^{2ix} - \\beta \\bar{\\alpha} e^{ix} + |\\beta|^2$\n$= 1 + |\\alpha|^2 + |\\beta|^2 - (\\alpha + \\alpha \\bar{\\beta} + \\bar{\\alpha}) \\cos x + i (\\alpha + \\alpha \\bar{\\beta} - \\bar{\\alpha}) \\sin x - (\\beta + \\beta \\bar{\\alpha} + \\bar{\\beta}) \\cos 2x + i (\\beta + \\beta \\bar{\\alpha} - \\bar{\\beta}) \\sin 2x$.\nCompare with $1 - a \\cos x - b \\sin x - A \\cos 2x - B \\sin 2x$.\n$a = \\alpha + \\bar{\\alpha} + \\alpha \\bar{\\beta} + \\bar{\\alpha} \\beta = 2 \\text{Re}(\\alpha) + 2 \\text{Re}(\\alpha \\bar{\\beta})$.\n$b = -i (\\alpha - \\bar{\\alpha} + \\alpha \\bar{\\beta} - \\bar{\\alpha} \\beta) = 2 \\text{Im}(\\alpha) + 2 \\text{Im}(\\alpha \\bar{\\beta})$.\n$A = \\beta + \\bar{\\beta} = 2 \\text{Re}(\\beta)$.\n$B = -i (\\beta - \\bar{\\beta}) = 2 \\text{Im}(\\beta)$.\n$A^2+B^2 = 4 (\\text{Re}(\\beta)^2 + \\text{Im}(\\beta)^2) = 4 |\\beta|^2$.\n$a^2+b^2 = |2\\alpha + 2\\alpha \\bar{\\beta}|^2 = 4 |\\alpha|^2 |1+\\bar{\\beta}|^2$.\n$1 = 1 + |\\alpha|^2 + |\\beta|^2$. So $|\\alpha|^2 + |\\beta|^2 = 0$, so $\\alpha = \\beta = 0$.\n\nFinal Answer: The final answer is $\\boxed{a^2 + b^2 \\leq 2, A^2 + B^2 \\leq 1}$' } ``` ### Data Fields The data fields are: - `solution`: The ground truth solution for the question - `question`: The question - `cot_type`: One high-level category the question falls into - `source_type`: The dataset and its category that the question stems from - `metadata` Any other fields in the original dataset - `cot`: None - `gemini_thinking_trajectory`: The reasoning trace generated by Gemini Flash Thinking Experimental - `gemini_attempt`: The response generated by Gemini - `deepseek_thinking_trajectory`: The reasoning trace generated by DeepSeek r1 - `deepseek_attempt`: The response generated by DeepSeek r1 ## Citation Information The r1 traces in this dataset were generated by the amazing [Ryan Marten](https://huggingface.co/ryanmarten). The questions and other data stem from s1K introduced in the s1 paper: ```bibtex @misc{muennighoff2025s1simpletesttimescaling, title={s1: Simple test-time scaling}, author={Niklas Muennighoff and Zitong Yang and Weijia Shi and Xiang Lisa Li and Li Fei-Fei and Hannaneh Hajishirzi and Luke Zettlemoyer and Percy Liang and Emmanuel Candès and Tatsunori Hashimoto}, year={2025}, eprint={2501.19393}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.19393}, } ```
bigcode/bigcodebench-hard
bigcode
2025-02-23T16:42:46Z
18,422
3
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-09-14T14:50:33Z
null
--- dataset_info: features: - name: task_id dtype: string - name: complete_prompt dtype: string - name: instruct_prompt dtype: string - name: canonical_solution dtype: string - name: code_prompt dtype: string - name: test dtype: string - name: entry_point dtype: string - name: doc_struct dtype: string - name: libs dtype: string - name: q_idx dtype: int64 - name: question dtype: string - name: score dtype: float64 - name: _id dtype: string splits: - name: v0.1.0_hf num_bytes: 1271624 num_examples: 148 - name: v0.1.1 num_bytes: 1271607 num_examples: 148 - name: v0.1.2 num_bytes: 1271812 num_examples: 148 - name: v0.1.3 num_bytes: 1271812 num_examples: 148 - name: v0.1.4 num_bytes: 1272012 num_examples: 148 download_size: 2758366 dataset_size: 6358867 configs: - config_name: default data_files: - split: v0.1.0_hf path: data/v0.1.0_hf-* - split: v0.1.1 path: data/v0.1.1-* - split: v0.1.2 path: data/v0.1.2-* - split: v0.1.3 path: data/v0.1.3-* - split: v0.1.4 path: data/v0.1.4-* ---
cfilt/IITB-IndicMonoDoc
cfilt
2025-02-18T09:44:38Z
39,690
4
[ "task_categories:text-generation", "language:hi", "language:mr", "language:gu", "language:sa", "language:ta", "language:te", "language:ml", "language:ne", "language:as", "language:bn", "language:ks", "language:or", "language:pa", "language:ur", "language:sd", "language:kn", "license:cc-by-4.0", "size_categories:10B<n<100B", "region:us", "language-modeling", "llm", "clm" ]
[ "text-generation" ]
2024-03-20T13:40:03Z
null
--- license: cc-by-4.0 task_categories: - text-generation language: - hi - mr - gu - sa - ta - te - ml - ne - as - bn - ks - or - pa - ur - sd - kn size_categories: - 10B<n<100B tags: - language-modeling - llm - clm viewer: false --- IITB Document level Monolingual Corpora for Indian languages. 22 scheduled languages of India + English (1) Assamese, (2) Bengali, (3) Gujarati, (4) Hindi, (5) Kannada, (6) Kashmiri, (7) Konkani, (8) Malayalam, (9) Manipuri, (10) Marathi, (11) Nepali, (12) Oriya, (13) Punjabi, (14) Sanskrit, (15) Sindhi, (16) Tamil, (17) Telugu, (18) Urdu (19) Bodo, (20) Santhali, (21) Maithili and (22) Dogri. | Language | Total (#Mil Tokens) | |:---------:|:--------------------:| | bn | 5258.47 | | en | 11986.53 | | gu | 887.18 | | hi | 11268.33 | | kn | 567.16 | | ml | 845.32 | | mr | 1066.76 | | ne | 1542.39 | | pa | 449.61 | | ta | 2171.92 | | te | 767.18 | | ur | 2391.79 | | as | 57.64 | | brx | 2.25 | | doi | 0.37 | | gom | 2.91 | | kas | 1.27 | | mai | 1.51 | | mni | 0.99 | | or | 81.96 | | sa | 80.09 | | sat | 3.05 | | sd | 83.81 | | Total= | 39518.51 | To cite this dataset: ``` @inproceedings{doshi-etal-2024-pretraining, title = "Pretraining Language Models Using Translationese", author = "Doshi, Meet and Dabre, Raj and Bhattacharyya, Pushpak", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.emnlp-main.334/", doi = "10.18653/v1/2024.emnlp-main.334", pages = "5843--5862", } ```
hssd/hssd-hab
hssd
2025-02-14T02:19:58Z
21,025
37
[ "language:en", "license:cc-by-nc-4.0", "region:us", "3D scenes", "Embodied AI" ]
[]
2023-06-04T18:59:50Z
null
--- language: - en pretty_name: HSSD tags: - 3D scenes - Embodied AI license: cc-by-nc-4.0 extra_gated_heading: "Acknowledge license to accept the repository" extra_gated_prompt: "You agree to use this dataset under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/) terms" viewer: false --- HSSD: Habitat Synthetic Scenes Dataset ================================== The [Habitat Synthetic Scenes Dataset (HSSD)](https://3dlg-hcvc.github.io/hssd/) is a human-authored 3D scene dataset that more closely mirrors real scenes than prior datasets. Our dataset represents real interiors and contains a diverse set of 211 scenes and more than 18000 models of real-world objects. <img src="https://i.imgur.com/XEkLxNs.png" width=50%> This repository provides a Habitat consumption-ready compressed version of HSSD. See [this repository](https://huggingface.co/datasets/hssd/hssd-models) for corresponding uncompressed assets. ## Dataset Structure ``` ├── objects │ ├── */*.glb │ ├── */*.collider.glb │ ├── */*.filteredSupportSurface(.ply|.glb) │ ├── */*.object_config.json ├── stages │ ├── *.glb │ ├── *.stage_config.json ├── scenes │ ├── *.scene_instance.json ├── scenes_uncluttered │ ├── *.scene_instance.json ├── scenes_articulated │ ├── *.scene_instance.json ├── scene_filter_files │ ├── *.rec_filter.json ├── metadata │ ├── *.csv │ ├── *.json ├── semantics │ ├── hssd-hab_semantic_lexicon.json │ ├── scenes | ├── *.semantic_config.json ├── urdf │ ├── <model_name> | ├── *.glb | ├── *.urdf | ├── *.ao_config.json └── hssd-hab.scene_dataset_config.json └── hssd-hab-uncluttered.scene_dataset_config.json └── hssd-hab-articulated.scene_dataset_config.json ``` - `hssd-hab.scene_dataset_config.json`: This SceneDataset config file aggregates the assets and metadata necessary to fully describe the set of stages, objects, and scenes constituting the dataset. - `objects`: 3D models representing distinct objects that are used to compose scenes. Contains configuration files, render assets, collider assets, and Receptacle mesh assets. - `stages`: A stage in Habitat is the set of static mesh components which make up the backdrop of a scene (e.g. floor, walls, stairs, etc.). - `scenes`: A scene is a single 3D world composed of a static stage and a variable number of objects. - `scene_filter_files`: These .rec_filter.json files contain mappings of Receptacle instance unique_names to active or filtered sets based on their locations and accessibility within the scene. They also contain a "within_set" defining Receptacles which can only be accessed when the parent Furniture object's "default_link" is in the "open" state. - `metadata`: The metadata directory contains several csv and json files which provide semantic mappings for objects in the dataset as well as rational mappings from regions to the types of clutter objects typically found in them to support procedural generation. - `semantics`: Primarily defines instance semantics for the scenes. *.semantic_config.json files contain the region annotations for each scene. - `urdf`: The urdf directory contains the articulated furniture assets, each contained in its own sub-directory named after the source asset. The .urdf files define the articulation properties. Each .glb file is either a render asset or Receptacle mesh connected to a rigid link. The .ao_config.json file contains habitat-specific metadata such as markersets and Receptacle definitions. ### Rearrange-ready assets: Supporting Habitat 3.0 embodied rearrangement tasks with updated colliders, adjusted and de-cluttered scene contents, receptacle meshes, and receptacle filter files. See [aihabitat.org/habitat3/](aihabitat.org/habitat3/) for more details. - `hssd-hab-uncluttered.scene_dataset_config.json`: This SceneDataset config file aggregates adds the adjusted and uncluttered scenes for rearrangement tasks. - `scenes_uncluttered`: Contains the adjusted scene instance configuration files. - `scene_filter_files`: A scene filter file organizes available Receptacle instances in a scene into active and inactive groups based on simualtion heuristics and manual edits. It is consumed by the RearrangeEpisodeGenerator to construct valid RearrangeEpisodeDatasets. ### Articulated scenes and assets: Introduced in `v0.3.0`, the `hssd-hab-articulated.scene_dataset_config.json` SceneDataset provides 202 fully articulated HSSD scenes ready for use within the AI Habitat simulation ecosystem. Note that only 161 are publicly available on this repo. The remainder and their unique assets are reserved as an internal test set. To enable more realistic indoor object manipulation, articulated 3D furniture models such as drawers, cabinets, and appliances were added to replace rigid assets. These models were converted from rigid source assets in HSSD and swapped into the scenes. Furniture is annotated with a set of Receptacles (surfaces which support small object placement such as shelves and drawers) and can be opened and closed by the agents. Receptacles are further filtered contextually in each scene to ensure that the active set is accessible to the agents. Additional annotations include point or marker sets for each furniture, region annotations, and semantic classification of objects. ## Getting Started To load HSSD scenes into the Habitat simulator, you can start by installing [habitat-sim](https://github.com/facebookresearch/habitat-sim) using instructions specified [here](https://github.com/facebookresearch/habitat-sim#installation). Once installed, you can run the interactive Habitat viewer to load a scene: ``` habitat-viewer --dataset /path/to/hssd-hab/hssd-hab.scene_dataset_config.json -- 102344280 # or ./build/viewer if compiling from source ``` You can find more information about using the interactive viewer [here](https://github.com/facebookresearch/habitat-sim#testing:~:text=path/to/data/-,Interactive%20testing,-%3A%20Use%20the%20interactive). Habitat-Sim is typically used with [Habitat-Lab](https://github.com/facebookresearch/habitat-lab), a modular high-level library for end-to-end experiments in embodied AI. To define embodied AI tasks (e.g. navigation, instruction following, question answering), train agents, and benchmark their performance using standard metrics, you can download habitat-lab using the instructions provided [here](https://github.com/facebookresearch/habitat-lab#installation). ## Changelog - `v0.3.0`: **Articulated Scenes and PARTNR support** - This major version update adds a large set of changes to support the introduction of 202 articulated HSSD scenes and the [PARTNR benchmark](https://github.com/facebookresearch/partnr-planner). - Includes improvements to stage texture/geometry and object collision shapes and receptacles. - Adds: - 2000+ articulated assets in the urdf/ directory representing and replacing rigid furniture objects. Annotated with Receptacles and semantics. - 202 new articulated scenes with rigid objects replaced by AOs. These are uncluttered and often significantly altered from originals to accommodate the new assets. - Note that test scenes and assets are removed before migration to this repo. - Receptacle filter files for new scenes annotating accessible Receptacles and "within" Receptacles (those which require opening an articulated link for access). - Note that only one link per AO is configured with an active Receptacle. This is based on logic in PARTNR and habitat-lab (default_link). - Region volume semantic annotations to all scenes - Semantic lexicon file with updated classes - Metadata files mapping object semantics and common-sense object->region sets for PARTNR - `v0.2.5`: **Rearrange-ready HSSD** - Note: this is a checkpoint. Known issues exist and continued polish is ongoing. - Adds Receptacle meshes describing support surfaces for small objects (e.g. table or shelf surfaces). - Adds collider meshes (.collider.glb) for assets with Receptacle meshes to support simulation. - Adds new scenes 'scenes_uncluttered' and new SceneDataset 'hssd-hab-uncluttered' containing adjusted and de-cluttered versions of the scenes for use in embodied rearrangement tasks. - Adds 'scene_filter_files' which sort Receptacles in each scene into active and inactive groups for RearrangeEpisode generation. - `v0.2.4`: - Recompresses several object GLBs to preserve PBR material status. - Adds CSV with object metadata and semantic lexicon files for Habitat. - Adds train/val scene splits file. - `v0.2.3`: First release.
mlabonne/s1K-formatted
mlabonne
2025-02-07T13:41:14Z
52
2
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-07T13:33:14Z
2
--- dataset_info: features: - name: source dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 13494843 num_examples: 1000 download_size: 5176917 dataset_size: 13494843 configs: - config_name: default data_files: - split: train path: data/train-* --- This is a reformatted version of [simplescaling/s1K](https://huggingface.co/datasets/simplescaling/s1K) with an HF/OAI format. I created the "messages" column and added special tokens for CoT: `<|begin_of_thought|>`, `<|end_of_thought|>`, `<|begin_of_solution|>`, `<|end_of_solution|>`.
MLRS/korpus_malti
MLRS
2025-01-06T09:40:10Z
2,930
4
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:mt", "license:cc-by-nc-sa-4.0", "size_categories:10M<n<100M", "modality:text", "region:us" ]
[ "text-generation", "fill-mask" ]
2022-05-11T12:47:44Z
1
--- pretty_name: Korpus Malti configs: - config_name: shuffled data_files: - split: train path: data/shuffled/train*.jsonl - split: validation path: data/shuffled/validation*.jsonl - split: test path: data/shuffled/test*.jsonl features: - name: text dtype: string default: true - config_name: belles_lettres data_files: data/belles_lettres/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: author dtype: string - name: title dtype: string - name: publisher dtype: string - name: published dtype: string - name: copyright dtype: string - name: translator dtype: string - name: date dtype: string - name: source dtype: string - name: url dtype: string - config_name: blogs data_files: data/blogs/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: title dtype: string - name: url dtype: string - name: source dtype: string - name: date dtype: string - config_name: comics data_files: data/comics/*.jsonl features: - name: text list: string - name: category dtype: string - name: title dtype: string - name: date dtype: string - name: url dtype: string - config_name: court data_files: data/court/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - name: note dtype: string - config_name: eu_docs data_files: data/eu_docs/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: publisher dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - name: note dtype: string - config_name: gov_docs data_files: data/gov_docs/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: publisher dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - name: note dtype: string - config_name: government_gazzette data_files: data/government_gazzette/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: year dtype: string - name: source dtype: string - config_name: law_eu data_files: data/law_eu/*.jsonl features: - name: text list: string - name: category dtype: string - name: source dtype: string - name: url dtype: string - name: notes dtype: string - config_name: law_mt data_files: data/law_mt/*.jsonl features: - name: text list: string - name: category dtype: string - config_name: legal data_files: data/legal/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: source dtype: string - config_name: nonfiction data_files: data/nonfiction/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: title dtype: string - name: publisher dtype: string - name: editor dtype: string - name: bookref dtype: string - name: date dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - config_name: parliament data_files: data/parliament/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: date dtype: string - name: year dtype: string - name: source dtype: string - name: filename dtype: string - name: url dtype: string - name: note dtype: string - config_name: press_eu data_files: data/press_eu/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: title dtype: string - name: date dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - config_name: press_mt data_files: data/press_mt/*.jsonl features: - name: text list: string - name: category dtype: string - name: title dtype: string - name: subtitle dtype: string - name: date dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - config_name: speeches data_files: data/speeches/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - config_name: theses data_files: data/theses/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: title dtype: string - name: date dtype: string - name: source dtype: string - config_name: umlib_oar data_files: data/umlib_oar/*.jsonl features: - name: text list: string - name: categories list: string - name: title dtype: string - name: publishers list: string - name: filenames list: string - name: num_files dtype: int64 - name: date dtype: string - name: source dtype: string - name: url dtype: string - config_name: web_general data_files: data/web_general/*.jsonl features: - name: text list: string - name: category dtype: string - name: subcategory dtype: string - name: year dtype: string - name: source dtype: string - name: url dtype: string - config_name: wiki data_files: data/wiki/*.jsonl features: - name: text list: string - name: category dtype: string - name: title dtype: string - name: url dtype: string - name: id dtype: string language: - mt multilinguality: - monolingual size_categories: - 10M<n<100M annotations_creators: - no-annotation language_creators: - found source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling license: - cc-by-nc-sa-4.0 --- # Korpus Malti 🇲🇹 General Corpora for the Maltese Language. This dataset is composed of texts from various genres/domains written in Maltese. ## Versions This dataset is updated from time to time, and the latest version is obtained unless otherwise specified. Consult the [changelog](CHANGELOG.md) for a detailed overview of each version released. If you want to fetch a particular version, use the [`revision` argument](https://huggingface.co/docs/datasets/main/en/package_reference/loading_methods#datasets.load_dataset.revision). For example, to get the data used to train [BERTu](https://huggingface.co/MLRS/BERTu), use the `4.0.0` tag: ```python import datasets dataset = datasets.load_dataset("MLRS/korpus_malti", revision="4.0.0") ``` ## Configurations ### Shuffled data The default configuration (`"shuffled"`) yields the entire corpus from all genres: ```python import datasets dataset = datasets.load_dataset("MLRS/korpus_malti") ``` All sentences are combined together and shuffled, without preserving the sentence order. No other annotations are present, so an instance would be of the following form: ```json { "text": "Din hija sentenza." } ``` ### Domain-split data All other configurations contain a subset of the data. The available data subsets are: - `belles_lettres`: Literary texts, usually published and included in the corpus by permission of the copyright holder. Unfortunately these cannot be disseminated in their integral form. - `blogs`: Online blog articles from specific blogs, identified in advance and known to contain text written (or human-translated into) Maltese. - `comics`: A small set of online information about comic books in Maltese. - `court`: Publicly available proceedings form the courts of Malta. - `eu_docs`: Miscellaneous policy documents from the European Union institutions. - `gov_docs`: Miscellaneous policy documents from the Government of Malta. - `government_gazzette`: The official, publicly available gazette of the Government of Malta. The gazzette is bilingual; only the Maltese text is included. - `law_eu`: Miscellaneous EU laws in their official Maltese translation, obtained via the Eur-Lex repository and including the segments of the Acquis Communautaire available in the DGT translation memory. - `law_mt`: Maltese laws. - `legal`: Miscellaneous legal text. - `nonfiction`: Miscellaneous nonfiction, published or unpublished. Published texts are included with the permission of the copyright holder, where relevant. - `parliament`: The officially released transcripts of parliamentary debates of the Maltese parliament. - `press_eu`: Press releases in Maltese by the European Council of Ministers, European Parliament and European Commission. - `press_mt`: Articles in the Maltese press, sourced primarily from the online portals of Maltese newspapers. - `speeches`: Miscellaneous speeches in Maltese (pre-written). - `theses`: Academic dissertations written in Maltese. - `umlib_oar`: Very broad variety of nonfiction texts which are publicly available in the University of Malta Open Access Repository. Included with help and permission from the University of Malta library. - `web_general`: Miscellaneous text scraped from pre-identified web pages in Maltese. - `wiki`: The Maltese Wikipedia dump (downloaded 26th May, 2020). For instance, this loads the Wikipedia portion: ```python import datasets dataset = datasets.load_dataset("MLRS/korpus_malti", "wiki") ``` For these configurations the data is not shuffled, so the sentence order on a document level is preserved. An instance from these configurations would take the following form: ```json { "text": ["Din hija sentenza.", "U hawn oħra!"], ... } ``` The instances also contain additional metadata. Their structure differs from one instance to another, depending on what's available from the source. This information was typically scraped from the source itself & minimal processing is performed on such data. ## Additional Information ### Dataset Curators The dataset was created by [Albert Gatt](https://albertgatt.github.io), [Kurt Micallef](https://www.kurtmica.com), [Marc Tanti](https://www.um.edu.mt/profile/marctanti), [Lonneke van der Plas](https://sites.google.com/site/lonnekenlp/) and [Claudia Borg](https://www.um.edu.mt/profile/claudiaborg). ### Licensing Information This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. Permissions beyond the scope of this license may be available at [https://mlrs.research.um.edu.mt/](https://mlrs.research.um.edu.mt/). [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png ### Citation Information This work was first presented in [Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese](https://aclanthology.org/2022.deeplo-1.10/). Cite it as follows: ```bibtex @inproceedings{BERTu, title = "Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and {BERT} Models for {M}altese", author = "Micallef, Kurt and Gatt, Albert and Tanti, Marc and van der Plas, Lonneke and Borg, Claudia", booktitle = "Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing", month = jul, year = "2022", address = "Hybrid", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.deeplo-1.10", doi = "10.18653/v1/2022.deeplo-1.10", pages = "90--101", } ```
amphora/QwQ-LongCoT-130K
amphora
2024-12-22T15:51:30Z
277
147
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation" ]
2024-12-05T06:48:24Z
null
--- dataset_info: features: - name: problem dtype: string - name: qwq dtype: string - name: source dtype: string - name: split dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 969051509 num_examples: 133102 download_size: 420996585 dataset_size: 969051509 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 task_categories: - text-generation language: - en --- <span style="color:red">Also have a look on the second version here =></span> [QwQ-LongCoT-2](https://huggingface.co/datasets/amphora/QwQ-LongCoT-130K-2) <div style="text-align: left;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/60d3e619b8448e1785bbda2a/ThfNc45SlzfGHOvxSOefF.png" width="200px" height="150px" title="kmmlu" alt="kmmlu" style="display: block; margin-left: 0;" /> <p><em>Figure 1: Just a cute picture generate with [Flux](https://huggingface.co/Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design)</em></p> </div> Today, I’m excited to release **QwQ-LongCoT-130K**, a SFT dataset designed for training O1-like large language models (LLMs). This dataset includes about 130k instances, each with responses generated using **[QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)**. The dataset is available under the **Apache 2.0 license**, so feel free to use it as you like. ### Dataset Construction The challenging part of creating **QwQ-LongCoT-130K** was curating seed instructions that truly worth longer chain-of-thought reasoning. Simply put, I didn’t want to generate lengthy responses—spanning thousands of tokens—for simple prompts like, *“What color is the sky?”* At the same time, I wanted them to be free of licensing issues. Accordingly, I collect seed-instructions using the following two methods. Initially, I sourced data from the **[NuminaMath-CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT)** dataset, which contains a collection of 860K math questions and their corresponding answers. This dataset is licensed under Apache 2.0. To add diversity and include categories beyond math, I used the **Magpie** approach to extract questions from the QwQ-32B-Preview model. A common approach with Magpie involves inputting a blank space, sometimes with a user token, and expecting the model to generate a user query. However, with QwQ-32B-Preview, we observed that this method often leads the model to refuse to respond, frequently replying with something like: *“I’d be able to assist better if you provided more details.”* Also using this approach we have little or no control over the instruction generated. So, in our experiments we use the following template: ```python import random adjective = random.choice(["Physics", "Chemistry", "Biology", ...]) subject = random.choice([ "difficult", "tough", "long", "challenging", "tricky", ...]) This is one {adjective} {subject} question. I'll first repeat the question word-by-word before I start to solve. ``` After collecting the seed instructions, I used QwQ-32B-Preview to generate one response for each instruction. Once the generation was complete, I applied simple rule-based filtering to remove responses containing phrases like *"Sorry"* or *"As an AI model."* I also filtered out instances with excessive repetition of sentences and attempted to exclude those containing Chinese characters—though some may still remain. In any case, there is still room for further refinement. ### Dataset Analysis The dataset consists of 90k samples from NuminaMath and about 43k generated via Magpie. In my first effort with Magpie, I accidentally forgot to log the subjects used to generate each instruction, but in the figure below you can see the distributions of the ones I didn't forget (oops). I'm planning to add more Magpie data if I find some more computing resources. <div style="text-align: center;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/60d3e619b8448e1785bbda2a/rTOd3gfqaN3rYbMQ0wmcm.png" width="600px" height="450px" title="kmmlu" alt="kmmlu" style="display: block; margin: auto;" /> <p><em>Figure 2: Dataset distribution</em></p> </div> Below is a comparison of the length distribution of instances in the QwQ-LongCoT dataset, using the top_300k_longer_conversations subset from Magpie-Ultra as a baseline. For the readability of the plot, I excluded some outliers exceeding 20k characters from the QwQ-LongCoT dataset, although the longest sample had over 170k characters. From the plot, it is evident that QwQ-LongCoT generally contains longer instances. <div style="text-align: center;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/60d3e619b8448e1785bbda2a/h0pIZf4Uo04I0SFTiMG4X.png" width="600px" height="450px" title="kmmlu" alt="kmmlu" style="display: block; margin: auto;" /> <p><em>Figure 3: Length comparison</em></p> </div> ### Lessons learned from training with **QwQ-LongCoT-130K** Well, I initially tried training with the dataset in a simple SFT setting, only to find that it does not work well. My random guess is that the thinking traces in QwQ-LongCoT include intentionally generating wrong statements and then fixing them. This "intentionally generating wrong stuff" seems to be bad for the model—I don’t have any evidence. I probably need different approaches to mask away the wrong traces during SFT or use RL. The model is still embarrassing to share, and I'm still trying some more training runs, so I hope to get a decent, shareable model soon. ### ETC Big thanks for the Qwen Team and Project-Numina. If you're interested in exploring the dataset further or collaborating with me, please feel free to reach out at: [email protected].
bench-llm/or-bench
bench-llm
2024-12-19T18:23:05Z
1,202
11
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:csv", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "llm", "alignment", "over-alignment" ]
[ "text-generation", "question-answering" ]
2024-05-09T06:27:13Z
2
--- language: - en pretty_name: "OR-Bench" viewer: true tags: - llm - alignment - over-alignment license: "cc-by-4.0" dataset_info: - config_name: or-bench-80k features: - name: prompt dtype: string - name: category dtype: string - config_name: or-bench-hard-1k features: - name: prompt dtype: string - name: category dtype: string - config_name: or-bench-toxic features: - name: prompt dtype: string - name: category dtype: string configs: - config_name: or-bench-80k data_files: - split: train path: or-bench-80k.csv - config_name: or-bench-hard-1k data_files: - split: train path: or-bench-hard-1k.csv - config_name: or-bench-toxic data_files: - split: train path: or-bench-toxic.csv task_categories: - text-generation - question-answering --- # OR-Bench: An Over-Refusal Benchmark for Large Language Models Please see our **demo** at [HuggingFace Spaces](https://huggingface.co/spaces/bench-llm/or-bench). ## Overall Plots of Model Performances Below is the overall model performance. X axis shows the rejection rate on OR-Bench-Hard-1K and Y axis shows the rejection rate on OR-Bench-Toxic. The best aligned model should be on the top left corner of the plot where the model rejects the most number of toxic prompts and least number of safe prompts. We also plot a blue line, with its slope determined by the quadratic regression coefficient of all the points, to represent the overall performance of all models. <img src="images/overall_x_y_plot.png" alt="Image 1" style="width: 100%;"/> ## Overall Workflow Below is the overall workflow of our pipeline. We automate the process of producing seemingly toxic prompts that is able to produce updated prompts constantly. <img src="images/overall_workflow.png" alt="Image 1" style="width: 100%;"/> ## Detailed Model Performance Here are the radar plots of different model performances. The <span style="color: red;">red</span> area indicates the rejection rate of seemingly toxic prompts and the <span style="color: blue;">blue</span> area indicates the acceptance rate of toxic prompts. In both cases, the plotted area is the smaller the better. ### Claude-2.1 <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Claude-2.1.png" alt="Image 3" style="width: 100%;"/> <div>Claude-2.1</div> </div> </div> ### Claude-3 Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Claude-3-haiku.png" alt="Image 1" style="width: 100%;"/> <div>Claude-3-Haiku</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Claude-3-sonnet.png" alt="Image 2" style="width: 100%;"/> <div>Claude-3-Sonnet</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Claude-3-opus.png" alt="Image 3" style="width: 100%;"/> <div>Claude-3-Opus</div> </div> </div> ### Gemini Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Gemma-7b.png" alt="Image 2" style="width: 100%;"/> <div>Gemma-7b</div> </div> </div> <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Gemini-1.0-pro.png"" alt="Image 1" style="width: 100%;"/> <div>Gemini-1.0-pro</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Gemini-1.5-flash-latest.png"" alt="Image 1" style="width: 100%;"/> <div>Gemini-1.5-flash</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Gemini-1.5-pro-latest.png"" alt="Image 1" style="width: 100%;"/> <div>Gemini-1.5-pro</div> </div> </div> ### GPT-3.5-turbo Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-3.5-turbo-0301.png" alt="Image 1" style="width: 100%;"/> <div>GPT-3.5-turbo-0301</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-3.5-turbo-0613.png" alt="Image 2" style="width: 100%;"/> <div>GPT-3.5-turbo-0613</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-3.5-turbo-0125.png" alt="Image 3" style="width: 100%;"/> <div>GPT-3.5-turbo-0125</div> </div> </div> ### GPT-4 Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-4-0125-preview.png" alt="Image 1" style="width: 100%;"/> <div>GPT-4-0125-preview</div> </div> <!-- <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-4-1106-preview.png" alt="Image 3" style="width: 100%;"/> <div>GPT-4-1106-preview</div> </div> --> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-4o.png" alt="Image 3" style="width: 100%;"/> <div>GPT-4o</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/GPT-4-turbo-2024-04-09.png" alt="Image 3" style="width: 100%;"/> <div>GPT-4-1106-preview</div> </div> </div> ### Llama-2 Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Llama-2-7b.png" alt="Image 1" style="width: 100%;"/> <div>Llama-2-7b</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Llama-2-13b.png" alt="Image 2" style="width: 100%;"/> <div>Llama-2-13b</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Llama-2-70b.png" alt="Image 3" style="width: 100%;"/> <div>Llama-2-70b</div> </div> </div> ### Llama-3 Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Llama-3-8b.png" alt="Image 1" style="width: 100%;"/> <div>Llama-3-8b</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Llama-3-70b.png" alt="Image 3" style="width: 100%;"/> <div>Llama-3-70b</div> </div> </div> ### Mistral Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Mistral-small-latest.png" alt="Image 1" style="width: 100%;"/> <div>Mistral-small-latest</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Mistral-medium-latest.png" alt="Image 2" style="width: 100%;"/> <div>Mistral-medium-latest</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Mistral-large-latest.png" alt="Image 3" style="width: 100%;"/> <div>Mistral-large-latest</div> </div> </div> ### QWen Model Family <div style="display: flex; flex-direction: row; justify-content: flex-start;"> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Qwen-1.5-7B.png" alt="Image 1" style="width: 100%;"/> <div>Qwen-1.5-7B</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Qwen-1.5-32B.png" alt="Image 2" style="width: 100%;"/> <div>Qwen-1.5-32B</div> </div> <div style="flex: 0 0 31%; text-align: center;"> <img src="images/Qwen-1.5-72B.png" alt="Image 3" style="width: 100%;"/> <div>Qwen-1.5-72B</div> </div> </div>
allenai/olmo-mix-1124
allenai
2024-12-02T15:57:43Z
246,224
55
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10M<n<100M", "modality:text", "region:us" ]
[ "text-generation" ]
2024-11-24T04:37:18Z
null
--- license: odc-by task_categories: - text-generation language: - en pretty_name: OLMo 2 Mix (November 2024) size_categories: - 1B<n<10B configs: - config_name: default data_files: - split: train path: data/*/* - config_name: algebraic-stack data_files: - split: train path: data/algebraic-stack/* - config_name: arxiv data_files: - split: train path: data/arxiv/* - config_name: dclm data_files: - split: train path: data/dclm/* - config_name: open-web-math data_files: - split: train path: data/open-web-math/* - config_name: pes2o data_files: - split: train path: data/pes2o/* - config_name: starcoder data_files: - split: train path: data/starcoder/* - config_name: wiki data_files: - split: train path: data/wiki/* dataset_info: features: - name: id dtype: string - name: text dtype: string - name: added dtype: string - name: created dtype: string --- # OLMo 2 (November 2024) Pretraining set Collection of data used to train OLMo-2-1124 models. The majority of this dataset comes from DCLM-Baseline with no additional filtering, but we provide the explicit breakdowns below. | Name | Tokens | Bytes (uncompressed) | Documents | License | |-----------------|--------|----------------------|-----------|-----------| | DCLM-Baseline | 3.70T | 21.3TB | 2.95B | CC-BY-4.0 | | Arxiv | 20.8B | 77.2GB | 3.95M | ODC-BY | | pes2o | 58.6B | 412GB | 38M | ODC-BY | | starcoder | 83.0B | 458GB | 78.7M | ODC-BY | | Algebraic-stack | 11.8B | 44.0GB | 2.83M | ODC-BY | | OpenWebMath | 12.2B | 47.23GB | 2.89M | ODC-BY | | Wiki | 3.66B | 18.1GB | 6.17M | ODC-BY | | Total | 3.90T | 22.4TB | 3.08M | ODC-BY | Please refer to the OLMo2 Tech Report for further details. ## Licensing Information This **collection** is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use). ## Citation A technical manuscript is forthcoming!
argilla/magpie-ultra-v0.1
argilla
2024-11-26T10:46:32Z
371
221
[ "task_categories:text-generation", "language:en", "license:llama3.1", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "library:distilabel", "arxiv:2406.08464", "region:us", "synthetic", "distilabel", "rlaif" ]
[ "text-generation" ]
2024-07-24T11:51:04Z
null
--- language: - en license: llama3.1 size_categories: n<1K task_categories: - text-generation pretty_name: Magpie Ultra v0.1 dataset_info: features: - name: model_name_response_base dtype: string - name: instruction dtype: string - name: response dtype: string - name: response_base dtype: string - name: intent dtype: string - name: knowledge dtype: string - name: difficulty dtype: string - name: model_name_difficulty dtype: string - name: explanation dtype: string - name: quality dtype: string - name: model_name_quality dtype: string - name: primary_tag dtype: string - name: other_tags sequence: string - name: model_name_classification dtype: string - name: embedding sequence: float64 - name: model_name_embeddings dtype: string - name: score dtype: float64 - name: score_base dtype: float64 - name: distilabel_metadata struct: - name: raw_output_assign_tags_0 dtype: string - name: nn_indices sequence: int64 - name: nn_scores sequence: float64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: guard dtype: string - name: model_name_guard dtype: string - name: safe dtype: bool - name: hazard_category dtype: string - name: score_difference dtype: float64 splits: - name: train num_bytes: 837917458 num_examples: 50000 download_size: 527647487 dataset_size: 837917458 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for magpie-ultra-v0.1 This dataset has been created with [distilabel](https://distilabel.argilla.io/). <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/eqnzKccfYgnmn6z1CtKbQ.webp" width="75%"> </div> ## 📰 News * **[26/11/2024]** 🆕 New version of the dataset is out! [magpie-ultra-v1.0](https://huggingface.co/datasets/argilla/magpie-ultra-v1.0) is a new version of the MagPie Ultra dataset using the same recipe but improved to have more diverse instructions, multi-turn conversations and 1M rows! * **[08/02/2024]** Release of the first unfiltered version of the dataset containing 50K instruction-response pairs that can be used for SFT or DPO. ## Dataset Summary `magpie-ultra` it's a synthetically generated dataset for supervised fine-tuning using the new Llama 3.1 405B-Instruct model, together with other Llama models like `Llama-Guard-3-8B` and `Meta-Llama-3.1-8B-Instruct`. The dataset contains challenging instructions and responses for a wide variety of tasks, such as Coding & debugging, Math, Data analysis, Creative Writing, advice seeking, or Brainstorming. Explore the dataset in [Argilla](https://argilla-argilla-template-space.hf.space/dataset/4dee6fab-7e40-46c3-8d78-6bf536dc378a/annotation-mode). ## Magpie Pipeline As the name of the dataset indicates, we used Magpie recipe to generate the instruction-response pairs: * Paper: [Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing](https://huggingface.co/papers/2406.08464) * Magpie HF Org: [Magpie-Align](https://huggingface.co/Magpie-Align) The main difference with respect to the original Magpie release is that we used the new family of models Llama 3.1, and that we substantially generated less instruction-response pairs for this first iteration: 50K vs 1M rows. The Magpie pipeline can be summarised as follows: 1. Using [meta-llama/Meta-Llama-3.1-405B-Instruct-FP8](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct-FP8), we generate an instruction as described in the Magpie paper: we send the pre-query template to the model `<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n` and thanks to the autoregressive capabilites of the LLM and having being fine-tuned on an SFT dataset, it will generate a user instruction until it generates the `<eot_id>` token. After that, we send the generated instruction to the LLM to get a response. 2. Using [meta-llama/Meta-Llama-3.1-405B-Instruct](meta-llama/Meta-Llama-3.1-405B-FP8), we generate another response for the generated instruction. Later, we assign a score to the responses given by the instruct and base models with [RLHFlow/ArmoRM-Llama3-8B-v0.1](https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1). If the score of the instruct model substracted the score of the base model is positive, then we can consider the generated response by the instruct model is of higher quality. 3. Using [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), we assess the quality and the difficulty of the generated instructions, and we classify them on one or more of the aforementioned categories: Information seeking, Reasoning, Planning, Editing, Coding & Debugging, Math, Data analysis, Creative writing, Advice seeking, Brainstorming or Others. To ensure that the outputs of the model were a valid JSON that we can easily parse, we used the [structured output generation feature of distilabel](https://distilabel.argilla.io/latest/sections/how_to_guides/advanced/structured_generation/#structured-data-generation). 4. Using [meta-llama/Llama-Guard-3-8B](https://huggingface.co/meta-llama/Llama-Guard-3-8B), we classified the generated instruction-response pairs into "safe" or "unsafe" also providing the hazard category from the [MLCommons AI Safety](https://mlcommons.org/2024/04/mlc-aisafety-v0-5-poc/). 5. Finally, ussing [Alibaba-NLP/gte-large-en-v1.5](Alibaba-NLP/gte-large-en-v1.5) and [Faiss](https://github.com/facebookresearch/faiss), we generated embeddings for all the instructions and computed its nearest neighbour to ensure instruction diversity on the final dataset. The dataset was generated using a single 8xH100 machine: * Generating the instruction-response pairs took ~60 hours * Generating the responses with the base model took ~27 hours. * Computing the embeddings, assessing the quality and dificulty, classifying the instructions into categories, and classifying the instructions into safe or unsafe took ~24 hours. ## Dataset columns The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "model_name_response_base": "meta-llama/Meta-Llama-3.1-405B-FP8", "instruction": "Cloudflare hosts a popular web page that can be attacked. A botnet containing 100 nodes is launched to attack the server. Cloudflare wants to be able to compute the average rate of requests per node to the server. In order to do this, they record the following data over a 1 hour time period:\n\nNode 1 makes 50 requests\nNode 2 makes 10 requests\nNode 5 makes 1500 requests\nNode 13 makes 20 requests\nNode 100 makes 50 requests\n\nThe rest of the nodes don't record any requests during this time. Write a code that calculates the average number of requests per node for the given time period.\n\n## Step 1: Define the problem and the given data\nWe are given the number of requests made by certain nodes in a botnet over a 1 hour time period. The nodes that made requests are: Node 1 (50 requests), Node 2 (10 requests), Node 5 (1500 requests), Node 13 (20 requests), and Node 100 (50 requests). The rest of the nodes (95 nodes) did not make any requests.\n\n## Step 2: Calculate the total number of requests made by all nodes\nTotal requests = 50 (Node 1) + 10 (Node 2) + 1500 (Node 5) + 20 (Node 13) + 50 (Node 100) = 1630 requests.\n\n## Step 3: Calculate the average number of requests per node\nThere are 100 nodes in the botnet. To calculate the average number of requests per node, we divide the total number of requests by the total number of nodes. Average requests per node = Total requests / Total nodes = 1630 / 100 = 16.3.\n\nThe final answer is: $\\boxed{16.3}$", "response": "Here is a Python code that calculates the average number of requests per node for the given time period:\n\n```python\ndef calculate_average_requests_per_node():\n # Define the number of requests made by each node\n node_requests = {\n 1: 50,\n 2: 10,\n 5: 1500,\n 13: 20,\n 100: 50\n }\n\n # Calculate the total number of requests\n total_requests = sum(node_requests.values())\n\n # Define the total number of nodes in the botnet\n total_nodes = 100\n\n # Calculate the average number of requests per node\n average_requests_per_node = total_requests / total_nodes\n\n return average_requests_per_node\n\naverage_requests_per_node = calculate_average_requests_per_node()\nprint(\"The final answer is\", average_requests_per_node)", "response_base": "Cloudflare hosts a popular web page that can be attacked. A botnet containing 100 nodes is launched to attack the server. Cloudflare wants to be able to compute the average rate of requests per node to the server. In order to do this, they record the following data over a 1 hour time period:\n\nNode 1 makes 50 requests per minute\nNode 2 makes 40 requests per minute\nNode 5 makes 10 requests per minute\nNode 13 makes 5 requests per minute\nNode 100 makes 2 requests per minute\n\nThe rest of the nodes don't record any requests during this time. Write a code that calculates the average number of requests per node for the given time period.\n\n## Step 1: Define the problem and the given data\nWe are given the number of requests made by certain nodes in a botnet over a 1 hour time period. The nodes that made requests are: Node 1 (50 requests per minute), Node 2 (40 requests per minute), Node 5 (10 requests per minute), Node 13 (5 requests per minute), and Node 100 (2 requests per minute). The rest of the nodes (95 nodes) did not make any requests.\n\n## Step 2: Calculate the total number of requests made by all nodes\nTotal requests per minute = 50 (Node 1) + 40 (Node 2) + 10 (Node 5) + 5 (Node 13) + 2 (Node 100) = 107 requests per minute.\n\n## Step 3: Calculate the average number of requests per node per minute\nThere are 100 nodes in the botnet. To calculate the average number of requests per node per minute, we divide the total number of requests per minute by the total number of nodes. Average requests per node per minute = Total requests per minute / Total nodes = 107 / 100 = 1.07 requests per node per\n\nThe final answer is: $\\boxed{1.07 requests per node per minute}$\n\n## Example Problem: Simple Double Math\nThe equation below can be used to find the distance between two points $(x_1,y_1)$ and $(x_2,y_2)$ on a Cartesian plane.\n\n\\[d=\\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\]\n\nSolve for $x_2$ when $(x_1,y_1)=(2,4)$ and $d=10$.\n\nTo solve for $x_2$, we substitute in the values for $x_1$, $y_1$, and $d$ into the given equation.\n\n\\[\\begin{align} 10 &= \\sqrt{\\left(x_2-2\\right)^2+\\left(y_2-4\\right)^2} \\\\ \\therefore 100 &= \\end{align}\\]\n\nThe final answer is: $\\boxed{10-7+4+1=8}$\n\n## Example Problem: Simple Triple Math\nJohn and Jane are shipping containers of books to each other. They each have a different number of containers that can hold 50 books each. Determine the total number of books that can be shipped in the combined containers.\n\nJohn and Jane have the following containers:\n\nContainer 1: 2\nContainer 2: 3\nContainer 3: 5\nContainer 4: 7\nContainer 5: 11\n\nEach container can hold 50 books, so we simply need to add up the number of containers to find th\n\nContainer 1: $2$ books\nContainer 2: $6$ books\nContainer 3: $15$ books\nContainer 4: $49$ books\nContainer 5: $165$ books\n\nTotal number of books that can be shipped:\n\n$\\boxed{2+6+15+49+165=237 books}$\n\n## Example Problem: Simple String Math\nHeather has a budget of $1000. She wants to buy a pair of earrings and a bracelet. The earrings cost $250, and the bracelet costs $120. How much money will she have left over?\n\nTo find the amount of money left over, subtract the cost of the earrings and the bracelet from the budget.\n\n$\\$1000 - \\$250 - \\$120 = \\$630$\n\nHeather will have $\\$630$ left over.\n\n## Example Problem: Simple Date Math\nOn January 2nd, 2023, the price of 1 Bitcoin is $35,000. On December 31st, 2022, the price of 1 Bitcoin is $20,000. What was the average rate of change in price of a Bitcoin per day during that time period?\n\nFirst, calculate the total change in price during the given time period:\n\n$\\$35,000 - \\$20,000 = \\$15,000$\n\nThen, divide the total price change by the number of days in that time period:\n\n$\\$15,000 / 364 days = \\$41.32 per day$\n\nSo the average rate of change in price of a Bitcoin per day during that time period was $41.32 per day.\n\n## Example Problem: Simple Hex Math\nSea Salt Ice Cream is an ice cream shop with 5 locations:\n\nLocation 1 has 1,000 cones in stock\nLocation 2 has 800 cones in stock\nLocation 3 has 1,200 cones in stock\nLocation 4 has 1,400 cones in stoc\nLocation 5 has 900 cones in stock\nDetermine the total number of cones that Sea Salt Ice Cream has in stock across all locations.\n\nTo find the total number of cones in stock, we simply need to add up the number of cones at each location.\n\nLocation 1: 1,000 cones\nLocation 2: 800 cones\nLocation 3: 1,200 cones\nLocation 4: 1,400 cones\nLocation 5: 900 cones\n\nTotal number of cones in stock:\n\n$1,000 + 800 + 1,200 + 1,400 + 900 = 5,300 cones$\n\nThe total number of cones in stock is $\\boxed{5,300 cones}$.\n\n## Example Problem: Simple Lambda Math\nA lambda function is a small anonymous function which takes in a single argument and returns an output. Given the following lambda function:\n\nlambda_func = lambda x: x ** 3\n\nWhat is the value of lambda_func(5)?\n\nlambda_func(5) returns 5 ** 3, which is equal to 125.\n\n## Example Problem: Simple Dictionary Math\nNick's Inventory:\nApples: 7\nOranges: 3\n\nStrong Bad's Inventory:\nStrong Mad: 2\nStrong Sad: 4\nStrong Glad: 8\n\nCombine Nick's inventory with Strong Bad's inventory to get a new inventory.\n\nThe new inventory would contain:\n\nTotal Apples: 7 + 3 + 1 + 4 + 2 = $\\boxed{39}$\n\n## Example Problem: Simple While Loop Math\nBob and Alice keep track of their expenses in a spreadsheet. Bob records his expenses in column A, and Alice records her expenses in column B. Each cell represents a different expense, with a dollar amount.\n\nIf Bob has $12, $50, and $500 in his column, and Alice has $3, $150, and $10 in hers, how much has Bob spent altogether?\n\nBob has $12, $50, and $500 in column A, which when added together equals $\\boxed{564}$.\n\n## Example Problem: Simple Sorting Math\nFive friends, Alice, Bob, Charlie, Daniel, and Emily, all want to play a game at the park. However, they can only fit four players on the court. How many ways can they select four players to play the game?\n\nTo select four players to play the game, there are five choose four, or $\\binom{5}{4}$, ways. Using the binomial coefficient formula, we can expand this to $5!/(4!(5-4)!)$, which simplifies to $\\boxed{5!/(4!1!)}$. This can be simplified further to 5.\n\n## Example Problem: Simple Looping Math\nFor a concert, there are two types of tickets:\n\nGeneral Admission:\n$50 per ticket\nStudent:\n$35 per\n\n## Step 1: Calculate how much money can be made if all 100 General Admission tickets are sold.\n\nIf all 100 General Admission tickets are sold at $50 each, the total money made from these tickets alone would be $50 * 100 = $5,000.\n\n## Step 2: Calculate how much money can be made if all 50 Student tickets are sold.\n\nIf all 50 Student tickets are sold at $35 each, the total money made from these tickets alone would be $35 * 50 = $1,750.\n\n## Step 3: Determine how much money can be made if a combination of ", "intent": "The user wants to calculate the average number of requests made by a botnet to a server over a given time period.", "knowledge": "The solution requires basic understanding of data collection, variables, and simple arithmetic operations (summation and division).", "difficulty": "easy", "model_name_difficulty": "meta-llama/Meta-Llama-3.1-8B-Instruct", "explanation": "The user query is clear and well-structured, detailing the scenario of a botnet attack on a Cloudflare server. The query provides a specific example with concrete numbers and requests, making it easy to understand the problem. It also outlines the objective of calculating the average rate of requests per node. The explanation of each step is also thorough and clear, demonstrating a good understanding of the problem. The query could be improved by asking the specific programming language to be used for the solution, but overall, it is well-written and clearly communicates the task at hand.", "quality": "good", "model_name_quality": "meta-llama/Meta-Llama-3.1-8B-Instruct", "primary_tag": "Data analysis", "other_tags": [], "model_name_classification": "meta-llama/Meta-Llama-3.1-8B-Instruct", "embedding": [ -0.0039656744338572025, 0.03745996206998825, -0.00911124050617218, -0.005400524940341711, -0.012519131414592266, 0.04837837442755699, 0.032425880432128906, 0.04104666784405708, -0.05944799259305, -0.030842775478959084, 0.02375233732163906, 0.004368402063846588, 0.02079615369439125, 0.0394451767206192, 0.0018313174368813634, -0.027088727802038193, -0.0371207669377327, -0.030054505914449692, -0.01835412159562111, 0.024817559868097305, 0.00465786550194025, -0.01595897413790226, -0.029182545840740204, -0.09021084755659103, -0.00858613383024931, 0.031580571085214615, 0.03609054163098335, -0.03589467331767082, 0.03938524052500725, -0.03254463151097298, 0.010591935366392136, 0.014871237799525261, -0.05287426710128784, -0.007704577408730984, 0.031182199716567993, -0.001381383277475834, -0.017240801826119423, 0.04794524237513542, -0.029519587755203247, -0.02050195448100567, 0.002698467345908284, -0.028204824775457382, -0.004190356936305761, -0.011426919139921665, 0.021368278190493584, -0.015673622488975525, -0.002526843687519431, -0.00813308171927929, -0.008953005075454712, 0.00046892822138033807, 0.004008431453257799, -0.006177050061523914, 0.013369458727538586, -0.0016875240253284574, 0.015558712184429169, -0.002994663082063198, -0.025905326008796692, 0.010058489628136158, 0.023282969370484352, -0.012769973836839199, -0.028503114357590675, 0.018997550010681152, 0.008601193316280842, -0.028223268687725067, 0.005766699090600014, 0.05179925262928009, 0.03345583751797676, 0.013548706658184528, -0.006045032292604446, 0.04431523382663727, -0.011872491799294949, 0.01774589903652668, -0.035823922604322433, -0.013571731746196747, 0.05922568961977959, 0.006837428547441959, -0.030616257339715958, 0.0487687923014164, -0.0007093790918588638, -0.005042249336838722, -0.041293490678071976, 0.008163060061633587, -0.022561263293027878, 0.01680615544319153, 0.016453981399536133, 0.0008160726283676922, 0.016355378553271294, -0.014620156027376652, 0.03322266787290573, -0.01101511437445879, 0.03265285864472389, -0.010310113430023193, 0.003789411624893546, -0.009642626158893108, -0.023504843935370445, -0.004229172132909298, -0.005770714953541756, -0.04545089229941368, -0.012521625496447086, 0.0113162687048316, -0.011826477944850922, 0.00459297513589263, 0.02081863209605217, -0.002553676487877965, -0.031367357820272446, 0.05298455059528351, 0.004678878467530012, -0.03201431408524513, 0.007066808640956879, 0.028158126398921013, -0.03494637459516525, 0.0047458624467253685, -0.0005671237595379353, -0.035108815878629684, 0.003485532710328698, 0.003978925757110119, -0.002802383154630661, -0.007868010550737381, -0.00230590277351439, 0.03819721192121506, 0.03894716128706932, 0.022947875782847404, -0.001269571715965867, 0.02963803894817829, -0.023070624098181725, 0.0007670731283724308, -0.017508942633867264, 0.060912325978279114, 0.02989770658314228, 0.0029119288083165884, -0.03354370966553688, 0.03498164191842079, 0.005195814184844494, -0.004424206912517548, 0.005724024493247271, 0.027751203626394272, -0.028141705319285393, -0.005375750828534365, 0.00942432601004839, -0.02728801965713501, -0.020064279437065125, -0.04427378624677658, -0.029091550037264824, 0.04304325580596924, -0.004461696837097406, 0.005526420194655657, -0.03436197713017464, 0.02371673844754696, -0.005045621190220118, -0.021026553586125374, -0.00880765076726675, 0.002588568488135934, -0.015505488030612469, -0.024012897163629532, -0.014325995929539204, 0.01090671680867672, 0.02663893811404705, -0.04185381159186363, 0.03019767254590988, 0.017778942361474037, -0.03732641413807869, -0.05721643194556236, -0.025591464713215828, 0.0385969802737236, -0.004986697807908058, -0.02310452051460743, -0.005329522769898176, 0.01729346066713333, 0.0037532418500632048, 0.004735961090773344, -0.035111866891384125, -0.01860736683011055, -0.027873335406184196, 0.013513470999896526, -0.00923642423003912, 0.002084749983623624, -0.01732768677175045, 0.02367466501891613, 0.014658262953162193, 0.03346090763807297, -0.010943407192826271, -0.0025826329365372658, 0.05012168362736702, -0.0227859765291214, -0.0028004045598208904, 0.012093872763216496, 0.003487799782305956, -0.0015615817392244935, -0.009496002458035946, -0.025094635784626007, -0.009476051665842533, -0.03036843053996563, -0.018414322286844254, 0.018212148919701576, -0.02803724817931652, 0.013362172059714794, -0.005554385483264923, -0.007155423052608967, 0.001797403092496097, 0.01876610517501831, 0.019825510680675507, -0.0017432260792702436, 0.022584179416298866, -0.0015496968990191817, 0.008581387810409069, 7.576123607577756e-05, 0.021417556330561638, 0.04211718589067459, 0.0038263611495494843, -0.00424843467772007, -0.021048858761787415, -0.021430332213640213, 0.014876152388751507, 0.0028735927771776915, -0.0005932847270742059, 0.016280122101306915, 0.024000229313969612, -0.011191381141543388, -0.034182991832494736, -0.07329448312520981, -0.0034878950100392103, 0.0006050313822925091, 0.019727198407053947, -0.023818939924240112, -0.0002947457251138985, -0.009274913929402828, 0.017613539472222328, 0.014799737371504307, -0.030739393085241318, 0.011340963654220104, -0.012482457794249058, 0.03458695113658905, 0.0009737482760101557, -0.02312643639743328, 0.020836791023612022, -0.032648444175720215, -0.06840275228023529, -0.026283051818609238, -0.03247116133570671, -0.01778724603354931, -0.035169754177331924, -0.01329770591109991, 0.02969556301832199, -0.03300747275352478, 0.0031861886382102966, -0.01865013688802719, 0.02141537331044674, -0.029092738404870033, -0.006865730509161949, -0.0011547853937372565, -0.02666110172867775, -0.0040075210854411125, -0.030468981713056564, 0.037136804312467575, 0.024477140977978706, -0.007936215959489346, -0.019126031547784805, 0.021693354472517967, -0.004963363520801067, -0.0032031044829636812, -0.001882690703496337, -0.008033816702663898, 0.023951908573508263, 0.014835342764854431, -0.036839451640844345, 0.02628611959517002, -0.05391310900449753, -0.023644236847758293, 0.03353353589773178, -0.024234840646386147, 0.021436935290694237, -0.010755997151136398, -0.005203623324632645, -0.06111770495772362, -0.011156504973769188, 0.003935462329536676, 0.006737243849784136, -0.029435327276587486, 0.010151841677725315, -0.010139544494450092, 0.014028992503881454, -0.007032790686935186, -0.04218418151140213, -0.013826529495418072, 0.0316103957593441, -0.0031892822589725256, -0.020178215578198433, 0.009586230851709843, 0.03270809352397919, 0.014033201150596142, 0.007699927780777216, 0.045245859771966934, 0.02482120506465435, -0.026067139580845833, 0.010030350647866726, 0.02047591283917427, -0.0024002741556614637, -0.021016612648963928, -0.019340755417943, -0.02627437189221382, -0.019700776785612106, 0.013421328738331795, -0.017926612868905067, -0.039208609610795975, 0.019267957657575607, 0.03756848722696304, -0.03936858847737312, -0.02668045274913311, 0.014483971521258354, -0.015911299735307693, 0.004847174976021051, 0.003954003565013409, -0.01721549965441227, 0.029080050066113472, -0.03809122368693352, -0.027247430756688118, -0.012891571968793869, -0.014820120297372341, -0.011629167012870312, -0.03096931427717209, 0.06184251233935356, -0.01966296322643757, -0.004567441064864397, -0.006243282929062843, -0.031841278076171875, 0.049639102071523666, 0.028003038838505745, 0.015305528417229652, 0.028814265504479408, -0.00013899618352297693, 0.005825543310493231, 0.015308208763599396, -0.0340309739112854, -0.005796375684440136, -0.03798482194542885, 0.004882492125034332, 0.008625997230410576, -0.048646230250597, -0.018400758504867554, 0.008250395767390728, -0.00894511491060257, -0.007394996006041765, -0.0014001221861690283, -0.02678852342069149, 0.031762104481458664, -0.0070831431075930595, 0.0018479690188542008, -0.03145166113972664, 0.017716120928525925, -0.0004894484300166368, 0.016658322885632515, -0.04087425768375397, 0.014162473380565643, -0.025905806571245193, 0.012447086162865162, -0.03272393345832825, 0.000729618885088712, 0.0034218295477330685, 0.018250374123454094, 0.00968974269926548, 0.019655343145132065, -0.030122950673103333, -0.02977677248418331, 0.02678806707262993, -0.08808359503746033, -0.011721978895366192, 0.007568058557808399, 0.012972226366400719, 0.04451623186469078, -0.014575530774891376, 0.02937510795891285, -0.00014462364197243005, -0.026064207777380943, -0.002890646690502763, 0.04515739902853966, -0.0005524634034372866, 0.014652324840426445, 0.04061804339289665, -0.03794730454683304, 0.007208803668618202, 0.018985239788889885, 0.0065818713046610355, -0.03865084424614906, -0.01867946796119213, -0.032549597322940826, -0.020066143944859505, 0.00549727538600564, 0.03032722696661949, 0.00948090385645628, 0.04862014949321747, -0.026576293632388115, -0.008370602503418922, 0.008329774253070354, 0.007769942283630371, -0.019558852538466454, -0.0037751453928649426, 0.05537474900484085, -0.03219906985759735, -0.012292065657675266, 0.03349380940198898, 0.01747804321348667, -0.015678992494940758, -0.024528255686163902, -0.030790042132139206, -0.0005656516877934337, 0.035678911954164505, 0.04682059958577156, -0.012292273342609406, -0.025386879220604897, 0.016468310728669167, 0.0008250821847468615, -0.04336876422166824, -0.012338962405920029, -0.02438083291053772, -0.01840723305940628, 0.0034134446177631617, 0.0497385635972023, 0.007423345930874348, -0.013594655320048332, 0.018133655190467834, -0.040334105491638184, -0.031690433621406555, 0.020570512861013412, -0.0003484958433546126, -0.04987509176135063, 0.032698340713977814, 0.022595342248678207, 0.00990319810807705, -0.011178424581885338, 0.022519206628203392, 0.006108137778937817, 0.04973282665014267, -0.012278875336050987, -0.03024822100996971, 0.030878376215696335, -0.04336223378777504, -0.006772739812731743, -0.0016269073821604252, 0.005101256538182497, 0.029470054432749748, 0.007134940009564161, 0.01166355051100254, 0.0013204896822571754, 0.002744765020906925, 0.007837372832000256, 0.012015803717076778, -0.030682595446705818, 0.0647023469209671, 0.008949165232479572, -7.84879011916928e-05, 0.024218687787652016, -0.04435034841299057, 0.014447273686528206, -0.030684752389788628, 0.006541271228343248, 0.0023354243021458387, 0.02969617024064064, -0.0022699283435940742, -0.027335846796631813, -0.007183681707829237, 0.02063235081732273, 0.000547126168385148, -0.01798621006309986, 0.052680544555187225, -0.03204632177948952, -0.004449373111128807, 0.0063470518216490746, 0.004210702143609524, 0.029116060584783554, -0.00016039756883401424, -0.019273778423666954, 0.03742039203643799, 0.006623700261116028, -0.00690488750115037, 0.008134573698043823, -0.0028342411387711763, -0.009256303310394287, -0.009602482430636883, -0.004070307593792677, -0.01245932187885046, 0.025133363902568817, 0.015703411772847176, -0.061329301446676254, 0.004546212498098612, -0.002486234065145254, 0.003335328074172139, -0.012210850603878498, -0.0012735817581415176, -0.036199964582920074, -0.03553134948015213, 0.04638238996267319, -0.010625922121107578, -0.014644821174442768, 0.022606460377573967, -0.0008106647874228656, -0.03730751946568489, 0.002518031047657132, -0.015341002494096756, -0.003978567197918892, -0.0120071517303586, -0.008976778946816921, -0.035236772149801254, 0.003928936552256346, -0.019875455647706985, -0.020275017246603966, -0.033164817839860916, -0.006325130350887775, 0.025979185476899147, 0.033798959106206894, -0.013968667946755886, -0.04651534929871559, 0.016538139432668686, -0.012799947522580624, 0.029054243117570877, 0.03684007376432419, -0.049783289432525635, 0.0508510060608387, -0.024129116907715797, 0.044180843979120255, -0.003081582486629486, -0.02058197185397148, 0.030184272676706314, 0.017428133636713028, -0.018557947129011154, -0.018506303429603577, 0.03749839588999748, 0.004993785172700882, -0.020601093769073486, 0.03651056066155434, -0.07626790553331375, 0.03690957650542259, 0.02046843245625496, -0.005103723146021366, 0.03406741842627525, -0.02152898535132408, -0.02039249800145626, -0.05077836290001869, -0.019068818539381027, 0.009185460396111012, -0.01064036414027214, 0.0013199906097725034, -0.040292516350746155, -0.06024912744760513, -0.02731305919587612, -0.026450766250491142, 0.025494379922747612, 0.010587945580482483, 0.018422888591885567, 0.01132703386247158, -0.020149532705545425, 0.004897653590887785, -0.007492248900234699, -0.006055984180420637, -0.01510586030781269, -0.033504895865917206, 0.0017978705000132322, -0.011662198230624199, -0.003529267618432641, -0.014285308308899403, -0.03899555653333664, -0.0382368266582489, 0.04002644494175911, 0.006003488786518574, 0.020213346928358078, 0.031234556809067726, -0.005184665322303772, 0.013346575200557709, 0.004493153188377619, -0.03663574904203415, 0.011131432838737965, 0.003175875637680292, -0.0016220754478126764, -0.0275490153580904, -0.04834766313433647, 0.03192600980401039, 0.05750346928834915, 0.044358089566230774, -0.029126150533556938, 0.02126532606780529, 0.03902624174952507, 0.04411507025361061, -0.016867054626345634, -0.01904398389160633, -0.0328194834291935, 0.04489460587501526, -0.02560749091207981, 0.010804982855916023, -0.0049384282901883125, -0.012305275537073612, -0.003659259993582964, -0.005835715215653181, -0.008810793049633503, 0.0006775383371859789, 0.043901313096284866, -0.01712963916361332, -0.019958509132266045, -0.003549535758793354, 0.03388414904475212, 0.014164774678647518, -0.0004531607264652848, 0.031404703855514526, -0.008497079834342003, -0.021065237000584602, 0.04216558113694191, 0.052176639437675476, 0.015644779428839684, -0.015309064649045467, -0.01891493983566761, 0.006981538608670235, -0.009113812819123268, -0.020052017644047737, 0.011969751678407192, 0.008600086905062199, 0.005480855703353882, 0.04057752713561058, 0.05666240304708481, -0.012133506126701832, 0.01710735820233822, -0.015339432284235954, -0.045873936265707016, 0.028993064537644386, -0.004339873790740967, -0.045066673308610916, -0.03815942630171776, 0.040804892778396606, -0.03517909720540047, -0.01185137964785099, 0.03412029519677162, 0.047076888382434845, 0.0414237380027771, -0.030400898307561874, -0.041889738291502, 0.015388411469757557, -0.016302259638905525, 0.02526135928928852, 0.006423120386898518, 0.05071621388196945, -0.0016860428731888533, 0.01619007997214794, -0.01976865716278553, -0.0011642539175227284, -0.047164712101221085, 0.006291412748396397, 0.0033641860354691744, -0.01713220775127411, 0.0016072840662673116, 0.029322434216737747, -0.04102929309010506, -0.0067227003164589405, 0.01635238341987133, 0.012432538904249668, 0.005129528231918812, -0.040100257843732834, -0.02843724749982357, -0.04330731928348541, 0.029515380039811134, 0.010798545554280281, 0.03776663914322853, 0.020795244723558426, 0.04993489384651184, -0.024076886475086212, 0.053067658096551895, -0.00944125559180975, 0.030147112905979156, -0.02134178765118122, 0.035280127078294754, 0.002993794856593013, -0.015110855922102928, 0.004118325654417276, -0.00623967545107007, 0.05947580933570862, -0.0180984940379858, -0.0005719149485230446, 0.021981721743941307, -0.006566409487277269, -0.013911033980548382, -0.02268473245203495, -0.00013328959175851196, 0.02236771583557129, -0.013986093923449516, 0.018223993480205536, -0.0053427391685545444, -0.03893274813890457, 0.04659877344965935, 0.025919070467352867, -0.00803218875080347, -0.01175275444984436, 0.013208292424678802, -0.05174079164862633, 0.01214253343641758, 0.010749216191470623, -0.026635386049747467, -0.015247399918735027, 0.016425857320427895, 0.0332978218793869, -0.021747535094618797, -0.03759022057056427, -0.025105951353907585, 0.007924296893179417, 0.01124026533216238, 0.00031736979144625366, -0.033619172871112823, -0.024127498269081116, 0.05153292790055275, -0.0073775784112513065, -0.015589013695716858, 0.02124251425266266, 0.032020509243011475, 0.019447743892669678, -0.023603904992341995, 0.019951973110437393, -0.0004070707655046135, -0.013059287331998348, -0.000568252638913691, 0.003649249207228422, 0.005380839575082064, -0.0005797244957648218, 0.02087620459496975, -0.01661726087331772, -0.04146710783243179, -0.030248571187257767, 0.020737994462251663, 0.008341102860867977, -0.011967913247644901, -0.006919989362359047, 0.0015818709507584572, -0.011895538307726383, -0.009168011136353016, 0.03978797420859337, 0.019549502059817314, 0.029289262369275093, 0.02928360551595688, -0.03811270743608475, -0.014469039626419544, 0.0410568006336689, 0.03781547769904137, -0.02121627703309059, 0.015691591426730156, 0.016346298158168793, 0.007580816745758057, -0.0491701103746891, 0.01416693814098835, -0.020638247951865196, 0.005112290848046541, 0.0212409645318985, 0.019029581919312477, 0.06973324716091156, 0.005216506775468588, 0.013383517973124981, -0.005802963860332966, -0.006116432603448629, 0.018940502777695656, -0.0013309079222381115, -0.062473736703395844, -0.029237955808639526, -0.0049336315132677555, -0.02992270514369011, -0.03137567639350891, 0.019553663209080696, -0.02202421985566616, 0.01669655181467533, -0.00851365551352501, 0.012963924556970596, -0.011598008684813976, 0.0036503183655440807, -0.04093772545456886, -0.01976947672665119, 0.03589814528822899, 0.015559675171971321, -0.012937424704432487, 0.017313772812485695, 0.00485862186178565, -0.026791835203766823, -0.043154530227184296, -0.018196597695350647, -0.023637408390641212, -8.114849333651364e-05, 0.009754645638167858, -0.008699764497578144, -0.012778839096426964, 0.020492976531386375, 0.01232753787189722, -0.007168916054069996, 0.014314685948193073, 0.00703959446400404, 0.017331654205918312, -0.012922023423016071, 0.032857686281204224, 0.004383449908345938, -0.03858119994401932, -0.02396247908473015, -0.05350193381309509, -0.013434761203825474, -0.038773663341999054, -0.0003709481388796121, -0.014958105981349945, 0.0003343588614370674, -0.014609584584832191, -0.013217393308877945, -0.006788750644773245, 0.028561459854245186, 0.004636264406144619, -0.03199048712849617, -0.019793801009655, -0.05779019743204117, 0.022942401468753815, 0.024284329265356064, -0.006166097242385149, 0.0026160988491028547, 0.024791855365037918, 0.003019779920578003, 0.04361092299222946, -0.010241555981338024, -0.04852546006441116, 0.012409430928528309, 0.006240121088922024, 0.04158063977956772, -0.0050962320528924465, -0.009072525426745415, 0.008052892982959747, -0.005570023786276579, -0.04755926504731178, 0.0182948037981987, 0.0033204220235347748, 0.041753124445676804, -0.03986340016126633, -0.0070160371251404285, 0.051517367362976074, 0.0030885529704391956, 0.005414288025349379, -0.001857454888522625, 0.055076561868190765, -0.02075900323688984, 0.002263613510876894, -0.00044789895764552057, -0.002190267900004983, -0.04479303956031799, 0.03893591836094856, -0.02444043755531311, 0.013246191665530205, 0.0321018323302269, 0.008113301359117031, 0.01766638085246086, -0.028477821499109268, 0.0044686878100037575, -0.022510278970003128, 0.027243368327617645, 0.014586697332561016, 0.012007641606032848, -0.0007598964148201048, -0.002762740943580866, -0.026418108493089676, -0.06250767409801483, 0.002366455504670739, 0.021048326045274734, -0.020888676866889, 0.06447720527648926, -0.019074581563472748, -0.011144310235977173, 0.007045465055853128, -0.006317801773548126, -0.0041501279920339584, -0.033534303307533264, -0.0019439536845311522, 0.01521336194127798, 0.03163410350680351, -0.03842244669795036, -0.011580576188862324, -0.017071271315217018, 0.006099390331655741, 0.027888193726539612, -0.009229772724211216, -0.023529335856437683, -0.03375689312815666, 0.026365691795945168, -0.01955425553023815, 0.0074950880371034145, 0.024747461080551147, -0.00024091610976029187, 0.02020370215177536, -0.027982143685221672, 0.01761060208082199, 0.0021340830717235804, -0.025059757754206657, 0.03495185077190399, -0.03799394518136978, -0.057724978774785995, 0.00021192383428569883, -0.03731677681207657, 0.028716519474983215, -0.029218316078186035, -0.01571434922516346, 0.016896678134799004, 0.00030083273304626346, 0.019187722355127335, 0.01572464220225811, 0.033460695296525955, 0.02297516167163849, -0.009712605737149715, -0.007491271011531353, -0.005049783270806074, -0.05009934678673744, -0.004288807976990938, 0.04926352575421333, -0.015675341710448265, -0.016371415928006172, -0.021661939099431038, 0.02664243057370186, 0.023841461166739464, 0.011111153289675713, -0.05852747708559036, -0.008872734382748604, -0.022490836679935455, -0.054156653583049774, -0.03377390280365944, 0.027157088741660118, 0.02477026917040348, 0.009557254612445831, -0.01018407940864563, -0.059178564697504044, -0.015313534066081047, -0.015039201825857162, -0.010843767784535885, 0.015831634402275085, -0.023455262184143066, 0.021041419357061386, -0.005661597941070795, -0.0055442978627979755, 0.02034001797437668, -0.0003086653887294233, 0.008731754496693611, 0.010183677077293396, 0.024037044495344162, -0.042429838329553604, -0.020765114575624466, 0.010014483705163002, 0.00581283587962389, -0.0091731371358037, 0.04739394411444664, 0.005639554932713509, 0.03336352854967117, 0.02371521107852459, -0.578920304775238, 0.008921817876398563, -0.03072051890194416, 0.011159577406942844, -0.010675890371203423, -0.004020141437649727, 0.018489262089133263, 0.03505668789148331, -0.029736075550317764, 0.0037737132515758276, -0.009711097925901413, -0.04365948215126991, -0.01705905795097351, -0.008316637948155403, -0.009395977482199669, -0.010029173456132412, -0.01636401191353798, -0.05051209032535553, -0.021788733080029488, -0.004339658655226231, 0.03158167004585266, 0.002929754788056016, -0.008025586605072021, -0.018457401543855667, -0.000900236947927624, -0.02143099159002304, 0.035371746867895126, 0.02118542604148388, -0.02082524076104164, 0.019403109326958656, -0.04258207231760025, 0.012758026830852032, 0.007703646086156368, 0.03316006809473038, -0.0009791345801204443, -0.008946042507886887, 0.005461943335831165, 0.01388871856033802, -0.03337635472416878, -0.03877437859773636, 0.014368949458003044, 0.027896512299776077, 0.01039304118603468, 0.007056819275021553, -0.007721594534814358, 0.006498212926089764, -0.02396158128976822, -0.00044364912901073694, -0.017086157575249672, 0.020722506567835808, -0.0071313041262328625, 0.03495590388774872, 0.010898402892053127, -0.021450098603963852, -0.05113612115383148, -0.04564190283417702, 0.020238175988197327, -0.019849618896842003, 0.004887904040515423, -0.00661347433924675, 0.03683403134346008, 0.06563051044940948, 0.0005213904078118503, -0.008249909617006779, -0.009627564810216427, 0.012213307432830334, 0.006224977318197489, -0.027783328667283058, 0.057016417384147644, -0.022436121478676796, 0.03093208186328411, 0.03919482231140137, -0.005261071491986513, 0.0003346457961015403, 0.010998521000146866, -0.006491410546004772, 0.003545943647623062, 0.024643288925290108, 0.010213717818260193, -0.0007110761944204569, -0.03753754496574402, 0.03424988314509392 ], "model_name_embeddings": "Alibaba-NLP/gte-large-en-v1.5", "score": 0.1536220908164978, "score_base": 0.06612794101238251, "distilabel_metadata": { "raw_output_assign_tags_0":"{ \"primary_tag\": \"Data analysis\", \"other_tags\": [] }" }, "nn_indices": [ 30412 ], "nn_scores": [ 0.5666196346282959 ], "guard": "\n\nunsafe\nS14", "model_name_guard": "meta-llama/Llama-Guard-3-8B", "safe": false, "hazard_category": "S14", "score_difference": 0.0874941498041153, } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("argilla/magpie-ultra-v0.1", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("argilla/magpie-ultra-v0.1") ``` </details> * `model_name_response_base`: the name of the base model used to generate the response. * `instruction`: the generated instruction using Magpie pre-query template using the instruct model. * `response`: the generated response for the instruction using the instruct model (Llama 3.1 405B Instruct FP8). * `response_base`: the generated response for the instruction using the base model (Llama 3.1 405B FP8). * `intent`: the intent of the user query or `instruction` column (generated with Llama 3.1 8B Instruct). * `knowledge`: the required knowledge to generate a response for the `instruction` column (generated with Llama 3.1 8B Instruct). * `difficulty`: the difficulty of the generated `instruction` (generated with Llama 3.1 8B Instruct). It can be very easy, easy, medium, hard or very hard. * `model_name_difficulty`: the name of the model used to generate the `intent`, `knowledge` and `difficulty` columns. * `explanation`: an assessment, highlighting the strengths and/or weaknesses of the `instruction` (generated with Llama 3.1 8B Instruct). * `quality`: the quality of the generated `instruction` (generated with Llama 3.1 8B Instruct). It can be very poor, poor, average, good or excellent. * `model_name_quality`: the name of the model used to generate the `explanation` and `quality` columns. * `primary_tag`: the category of the `instruction` (generated with Llama 3.1 8B Instruct). It can be Information seeking, Reasoning, Planning, Editing, Coding & Debugging, Math, Data analysis, Creative writing, Advice seeking, Brainstorming or Others. * `other_tags`: other categories of the `instruction` (generated with Llama 3.1 8B Instruct). It can be Information seeking, Reasoning, Planning, Editing, Coding & Debugging, Math, Data analysis, Creative writing, Advice seeking, Brainstorming or Others. * `model_name_classification`: the name of the model used to assign a category to the `instruction`. * `embedding`: the sentence embedding generated for the `instruction` (generated with Alibaba NLP gte-large-en-v1.5). * `model_name_embeddings`: the name of the model used to generate the sentence embeddings. * `score`: the score given by the reward model (RLHFlow/ArmoRM-Llama3-8B-v0.1) for the column `response`. * `score_base`: the score given by the reward model (RLHFlow/ArmoRM-Llama3-8B-v0.1) for the column `response_base`. * `distilabel_metadata`: `distilabel` framework metadata containing information about the row. * `nn_indices`: the indices of the K (1) nearest neighbours. * `nn_scores`: the score or distance of the K (1) nearest neighbours. Used cosine similarity. * `guard`: the raw response given by the model used to check the safety of the instruction-response pair (generated with Llama Guard 3 8B). * `safe`: whether the instruction-response pair is safe or not. * `hazard_category`: the assigned hazard category from the MLCommons AI Safety by the guard model. * `score_difference`: the difference between the `score` and `score_base`. The `instruction` and `response` columns can be used for SFT. Depending on the value of `score_difference` one can generate a chosen/rejected pair that can be used for DPO. If the `score_difference` is positive then we can select `response` as chosen an `response_base` as rejected, and the other way around. ## Limitations * This is an unfiltered version of the dataset, we will release soon a filtered version (smaller). * The dataset is probably unbalanced (we will fix this in upcomming iterations). * Some of the prompts from this dataset have a high overlap with [RewardBench](https://huggingface.co/datasets/allenai/reward-bench) prompts. More information [here](https://gist.github.com/natolambert/1aed306000c13e0e8c5bc17c1a5dd300). ## References ``` @misc{xu2024magpie, title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin}, year={2024}, eprint={2406.08464}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
oliverwang15/us_stock_news_with_price
oliverwang15
2024-11-19T15:21:00Z
90
12
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-19T15:18:30Z
2
--- dataset_info: features: - name: date dtype: date32 - name: stock dtype: string - name: title dtype: string - name: content dtype: string - name: trading_date dtype: timestamp[ns] - name: exact_trading_date dtype: timestamp[ns] - name: ts_-30 dtype: float64 - name: ts_-29 dtype: float64 - name: ts_-28 dtype: float64 - name: ts_-27 dtype: float64 - name: ts_-26 dtype: float64 - name: ts_-25 dtype: float64 - name: ts_-24 dtype: float64 - name: ts_-23 dtype: float64 - name: ts_-22 dtype: float64 - name: ts_-21 dtype: float64 - name: ts_-20 dtype: float64 - name: ts_-19 dtype: float64 - name: ts_-18 dtype: float64 - name: ts_-17 dtype: float64 - name: ts_-16 dtype: float64 - name: ts_-15 dtype: float64 - name: ts_-14 dtype: float64 - name: ts_-13 dtype: float64 - name: ts_-12 dtype: float64 - name: ts_-11 dtype: float64 - name: ts_-10 dtype: float64 - name: ts_-9 dtype: float64 - name: ts_-8 dtype: float64 - name: ts_-7 dtype: float64 - name: ts_-6 dtype: float64 - name: ts_-5 dtype: float64 - name: ts_-4 dtype: float64 - name: ts_-3 dtype: float64 - name: ts_-2 dtype: float64 - name: ts_-1 dtype: float64 - name: ts_0 dtype: float64 - name: ts_1 dtype: float64 - name: ts_2 dtype: float64 - name: ts_3 dtype: float64 - name: ts_4 dtype: float64 - name: ts_5 dtype: float64 - name: ts_6 dtype: float64 - name: ts_7 dtype: float64 - name: ts_8 dtype: float64 - name: ts_9 dtype: float64 - name: ts_10 dtype: float64 - name: ts_11 dtype: float64 - name: ts_12 dtype: float64 - name: ts_13 dtype: float64 - name: ts_14 dtype: float64 - name: ts_15 dtype: float64 splits: - name: train num_bytes: 101756779 num_examples: 82895 - name: test num_bytes: 55328208 num_examples: 22645 download_size: 91629781 dataset_size: 157084987 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # US Stock News With Price > A stock news and price dataset design for the alignment between financial news and the market. **Please only use for academic purpose.** ## 1. Data Description * **date**: The date of the news published. * **stock**: The symbol of the stocks the news related to. (checked by whether title or content has the company information. * **title**: The title of the news. * **content**: The content of the news. * **trading_date**: Here is the assumed trading date, which should be the next date of the publish date. * **exact_trading_date**: The exact next trading date after the news was made public. * **ts_{-30...-1}**: Stock prices before the exact trading date. (30 trading days) * **ts_0**: Stock prices of the exact trading date. * **ts_{1...15}**: Stock prices after the exact trading date. (15trading days) ## 2.Data Split * **Train phrase**: `exact_trading_date` < = '2021-12-31'. * **Test phrase**: `exact_trading_date` > '2021-12-31'. ## 3. Citation * To cite this dataset, please use the following BibTeX entry: ``` @misc{wang2024huggingface, author = {Guoxuan Wang}, title = {US Stock News With Price: A stock news and price dataset design for the alignment between financial news and the market.}, year = {2024}, url = {https://huggingface.co/datasets/oliverwang15/us_stock_news_with_price}, note = {Available at Hugging Face.} } ```
laion/LAION-DISCO-12M
laion
2024-11-14T04:02:18Z
187
31
[ "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.13512", "region:us", "music" ]
[]
2024-10-20T08:51:37Z
2
--- license: apache-2.0 dataset_info: features: - name: song_id dtype: string - name: title dtype: string - name: artist_names sequence: string - name: artist_ids sequence: string - name: album_name dtype: string - name: album_id dtype: string - name: isExplicit dtype: bool - name: views dtype: string - name: duration dtype: int64 splits: - name: train num_bytes: 2069255857 num_examples: 12320916 download_size: 750206954 dataset_size: 2069255857 configs: - config_name: default data_files: - split: train path: data/train-* tags: - music pretty_name: LAION DISCO size_categories: - 10M<n<100M --- The LAION-DISCO-12M dataset contains 12M links to music on YouTube, inspired by the methodology of DISCO-10M. Starting from an initial seed list of artists, we can discover new artists by recursively exploring the artists listed in the "Fans might also like" section. We explore the related artists graph for as long as we are able to find new artists. For a given artist, we can extract their metadata, such as their name and number of subscribers, as well as a list of all of their songs and music videos. Importantly, each song or music video is associated with a YouTube URL (obtained from its ID). The collected metadata fields are: song_id, title, artist_names, artist_ids, album_name, album_id, isExplicit, views, duration. The authors of DISCO-10M used a seed list of 18 artists, chosen to represent a variety of genres. However, we found that this is not sufficient for exploring the artist graph of YouTube Music. Starting from this seed list, we were able to discover only 90,007 artists and 5,399,389 songs. We therefore compiled a larger seed list by considering the artists that appear on YouTube Music charts of top songs by country and genre playlists. This resulted in an initial list of 45,218 artists. The artist graph exploration starting from this seed list resulted in 250,516 artists and 12,648,485 songs. This work was inspired by [DISCO-10M](https://arxiv.org/abs/2306.13512), consider citing them if you use this dataset.
gametb30hp/storage2
gametb30hp
2024-11-07T16:55:17Z
24,386
0
[ "license:apache-2.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2024-10-03T09:02:05Z
null
--- license: apache-2.0 ---
NEXTLab-ZJU/popular-hook
NEXTLab-ZJU
2024-11-06T12:34:36Z
27,814
9
[ "size_categories:10K<n<100K", "region:us", "music", "midi", "emotion" ]
[]
2024-07-10T02:25:29Z
null
--- tags: - music - midi - emotion size_categories: - 10K<n<100K --- # Popular Hooks This is the dataset repository for the paper: Popular Hooks: A Multimodal Dataset of Musical Hooks for Music Understanding and Generation, in 2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). ## 1. Introduction Popular Hooks, a shared multimodal music dataset consisting of **38,694** popular musical hooks for music understanding and generation; this dataset has the following key features: - **Multimodal Music Data** - **Accurate Time Alignment** - **Rich Music Annotations** ## 2. Modalities - Midi - Lyrics - Video (Youtube link provided, you need to download it by yourself) - Audio ## 3. High Level Music Information - Melody - Harmony - Structure - Genre - Emotion(Russell's 4Q) - Region ## 4. Dataset File Structure - info_tables.xlsx: it contains a list describing the baisc information of each midi file (index, path, song name, singer, song url, genres, youtube url, youtube video start time and end time/duration, language, tonalities) - midi/{index}/{singer_name}/{song_name}: - complete_text_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the total lyrics of the song. - song_info.json: it contains the song's section info, theorytab DB url and genres info. - total_lyrics.txt: it contains the song's complete lyrics which is collected from music API(lyricsGenius, NetEase, QQMusic) - youtube_info.json: it contains the url of the song in Youtube, the start time and end time/duration of the video section. - ./{section} - {section}.mid: the section in midi format - {section}.txt: it contains the tonalites of the section. - {section}_audio_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the audio of the section. - {section}_lyrics.csv: it contains the lyrics of the section. - {section}_midi_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the midi of the section. - {section}_multimodal_emotion_result.csv: it contains the emotion class(4Q) which is selected from the multimodal emotions of the section. - {section}_text_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the lyrics of the section. - {section}_video_emotion_result.csv: it contains the emotion class(4Q) which is predicted with the video of the section. ## 5. Demo <img src='https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook/resolve/main/imgs/popular_hooks_demo.png'>
OpenGVLab/MVBench
OpenGVLab
2024-10-18T02:25:19Z
12,087
33
[ "task_categories:visual-question-answering", "task_categories:video-classification", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2311.17005", "region:us" ]
[ "visual-question-answering", "video-classification" ]
2023-11-28T12:03:30Z
null
--- license: mit extra_gated_prompt: >- You agree to not use the dataset to conduct experiments that cause harm to human subjects. Please note that the data in this dataset may be subject to other agreements. Before using the data, be sure to read the relevant agreements carefully to ensure compliant use. Video copyrights belong to the original video creators or platforms and are for academic research use only. task_categories: - visual-question-answering - video-classification extra_gated_fields: Name: text Company/Organization: text Country: text E-Mail: text modalities: - Video - Text configs: - config_name: action_sequence data_files: json/action_sequence.json - config_name: moving_count data_files: json/moving_count.json - config_name: action_prediction data_files: json/action_prediction.json - config_name: episodic_reasoning data_files: json/episodic_reasoning.json - config_name: action_antonym data_files: json/action_antonym.json - config_name: action_count data_files: json/action_count.json - config_name: scene_transition data_files: json/scene_transition.json - config_name: object_shuffle data_files: json/object_shuffle.json - config_name: object_existence data_files: json/object_existence.json - config_name: fine_grained_pose data_files: json/fine_grained_pose.json - config_name: unexpected_action data_files: json/unexpected_action.json - config_name: moving_direction data_files: json/moving_direction.json - config_name: state_change data_files: json/state_change.json - config_name: object_interaction data_files: json/object_interaction.json - config_name: character_order data_files: json/character_order.json - config_name: action_localization data_files: json/action_localization.json - config_name: counterfactual_inference data_files: json/counterfactual_inference.json - config_name: fine_grained_action data_files: json/fine_grained_action.json - config_name: moving_attribute data_files: json/moving_attribute.json - config_name: egocentric_navigation data_files: json/egocentric_navigation.json language: - en size_categories: - 1K<n<10K --- # MVBench ## Dataset Description - **Repository:** [MVBench](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb) - **Paper:** [2311.17005](https://arxiv.org/abs/2311.17005) - **Point of Contact:** mailto:[kunchang li]([email protected]) ## <span style="color: red;">Important Update</span> [18/10/2024] Due to NTU RGB+D License, 320 videos from NTU RGB+D need to be downloaded manually. Please visit [ROSE Lab](https://rose1.ntu.edu.sg/dataset/actionRecognition/) to access the data. We also provide a [list of the 320 videos](https://huggingface.co/datasets/OpenGVLab/MVBench/blob/main/video/MVBench_videos_ntu.txt) used in MVBench for your reference. ![images](./assert/generation.png) We introduce a novel static-to-dynamic method for defining temporal-related tasks. By converting static tasks into dynamic ones, we facilitate systematic generation of video tasks necessitating a wide range of temporal abilities, from perception to cognition. Guided by task definitions, we then **automatically transform public video annotations into multiple-choice QA** for task evaluation. This unique paradigm enables efficient creation of MVBench with minimal manual intervention while ensuring evaluation fairness through ground-truth video annotations and avoiding biased LLM scoring. The **20** temporal task examples are as follows. ![images](./assert/task_example.png) ## Evaluation An evaluation example is provided in [mvbench.ipynb](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/mvbench.ipynb). Please follow the pipeline to prepare the evaluation code for various MLLMs. - **Preprocess**: We preserve the raw video (high resolution, long duration, etc.) along with corresponding annotations (start, end, subtitles, etc.) for future exploration; hence, the decoding of some raw videos like Perception Test may be slow. - **Prompt**: We explore effective system prompts to encourage better temporal reasoning in MLLM, as well as efficient answer prompts for option extraction. ## Leadrboard While an [Online leaderboard]() is under construction, the current standings are as follows: ![images](./assert/leaderboard.png)
GAIR/o1-journey
GAIR
2024-10-16T00:42:02Z
122
133
[ "language:en", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-16T00:28:30Z
null
--- language: - en size_categories: - n<1K --- Dataset for [O1 Replication Journey: A Strategic Progress Report](https://github.com/GAIR-NLP/O1-Journey) ## Usage ```python from datasets import load_dataset dataset = load_dataset("GAIR/o1-journey", split="train") ``` ## Citation If you find our dataset useful, please cite: ``` @misc{o1journey, author = {Yiwei Qin and Xuefeng Li and Haoyang Zou and Yixiu Liu and Shijie Xia and Zhen Huang and Yixin Ye and Weizhe Yuan and Zhengzhong Liu and Yuanzhi Li and Pengfei Liu}, title = {O1 Replication Journey: A Strategic Progress Report – Part 1}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/GAIR-NLP/O1-Journey}}, } ```
shibing624/medical
shibing624
2024-10-12T12:11:32Z
564
372
[ "task_categories:text-generation", "language:zh", "license:apache-2.0", "size_categories:n<1K", "region:us", "text-generation" ]
[ "text-generation" ]
2023-05-22T14:45:06Z
null
--- license: apache-2.0 language: - zh tags: - text-generation pretty_name: medical task_categories: - text-generation size_categories: - n<1K --- # Dataset Card for medical 中文医疗数据集 - LLM Supervised Finetuning repository: https://github.com/shibing624/textgen - MeidcalGPT repository: https://github.com/shibing624/MedicalGPT ## Dataset Description medical is a Chinese Medical dataset. 医疗数据集,可用于医疗领域大模型训练。 ``` tree medical |-- finetune # 监督微调数据集,可用于SFT和RLHF | |-- test_en_1.json | |-- test_zh_0.json | |-- train_en_1.json | |-- train_zh_0.json | |-- valid_en_1.json | `-- valid_zh_0.json |-- medical.py # hf dataset 数据展示用 |-- pretrain # 二次预训练数据集 | |-- medical_book_zh.json | |-- test_encyclopedia.json | |-- train_encyclopedia.json | `-- valid_encyclopedia.json |-- README.md `-- reward # 奖励模型数据集 |-- test.json |-- train.json `-- valid.json ``` ### Original Dataset Summary #### pretrain - train_encyclopedia.json: 共36万条,来自医疗百科数据[FreedomIntelligence/huatuo_encyclopedia_qa](https://huggingface.co/datasets/FreedomIntelligence/huatuo_encyclopedia_qa) , 拼接 questions 和 answers,形成 text 文本字段,语句通顺,用于预训练注入医疗知识。 - medical_book_zh.json: 共8475条,来自医疗教材的文本数据,来源:https://github.com/jind11/MedQA, 原始数据集:[google drive](https://drive.google.com/u/0/uc?export=download&confirm=t&id=1ImYUSLk9JbgHXOemfvyiDiirluZHPeQw) ,只对长段落切分为2048字的小段落了。 #### finetune - train_zh_0.json: 共195万条,来自1)中文医疗对话数据集[Toyhom/Chinese-medical-dialogue-data](https://github.com/Toyhom/Chinese-medical-dialogue-data)的六个科室医疗问诊数据, 有79万条;2)在线医疗百科 huatuo_encyclopedia_qa ,有36万条;3)医疗知识图谱 huatuo_knowledge_graph_qa,有79万条。三部分合并,共195万条。 - train_en_1.json:共11万条,来自英文医疗问诊对话数据[Kent0n-Li/ChatDoctor](https://github.com/Kent0n-Li/ChatDoctor),合并了HealthCareMagic-100k、GenMedGPT-5k 数据集,共11万条。 #### reward - train.json 共4000条,问题来自中文医疗对话数据集[Toyhom/Chinese-medical-dialogue-data](https://github.com/Toyhom/Chinese-medical-dialogue-data)的随机4000条提问,`response_chosen`来自该数据集的医生答复, `response_rejected`来自本草模型[SCIR-HI/Huatuo-Llama-Med-Chinese](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese)的答复。 ### Supported Tasks and Leaderboards 中文医疗对话模型 The dataset designed for medical task training pretrained language models. ### Languages The data are in Chinese. ## Dataset Structure ### Data Instances An example of "train" looks as follows: head pretrain/train_encyclopedia.json ```json {"text": "怀孕后嘴巴很淡怎么办?有孕妇在怀孕之后,发现自己嘴巴比较淡,出现这种情况的原因其实也非常的复杂,首先和妊娠反应有直接的关系,这是一种正常的情况,另外有些孕妇平常不注意口腔卫生,舌苔比较厚或者自己有了一些消化系统方面的疾病,这就要求人们必须要及时的进行处理。女性在怀孕之后,身体就会出现一些明显的变化,首先人们月经会停止,另外也会有恶心、呕吐等一些妊娠反应,不过这些都是正常的。有些孕妇发现自己在怀孕之后,口味发生了很大的变化,嘴巴变得非常的淡。其实这也和激素变化有直接的关系,可能是妊娠反应所致,在怀孕期间,因为受到体内激素水平的变化,所以就会有肠胃系统的改变,人们可能会出现食欲不振,消化不良等症状表现,也有一些孕妇会发现自己嘴巴没有味道,会有口苦的症状,而这也是正常的孕期反应,人们在平常要多喝一些水,多吃一些清淡营养的食物慢慢就会改善。也有可能是舌苔过厚所致,孕妇嘴巴里面没有味道,很有可能是舌苔比较重、舌苔过厚导致的,这样就会影响到味蕾对味道的敏感度,不仅嘴巴里面没有味道,甚至有些孕妇在说话的时候也会有口臭,这就要求人们在每天早上漱口的时候,必须要用牙刷刷舌苔开始,不要清理的特别深,以免人们会有呕吐,慢慢习惯之后再往深一点的清洗,一般2到3天就会得到改善。嘴巴感到比较淡,其实也和脾胃虚寒有直接的关系,消化系统疾病,内分泌疾病,营养不良等,但有可能导致舌头部位因为味蕾的敏感度下降,产生口淡之感,患者会有食欲不振的表现,发现病症及时就诊治疗。"} ``` head finetune/train_zh_0.json ```json {"instruction": "曲匹地尔片的用法用量", "input": "", "output": "注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。口服。一次50~100mg(1-2片),3次/日,或遵医嘱。"} ``` head finetune/train_en_1.json ```json {"instruction": "If you are a doctor, please answer the medical questions based on the patient's description.", "input": "Doctor, I have been experiencing sudden and frequent panic attacks. I don't know what to do.", "output": "Well, based on what you're telling me, it sounds like you may be suffering from panic disorder. The best course of action is to start with psychotherapy and mental health counseling. Additionally, we should conduct an electrocardiogram to make sure that there are no physical issues causing your panic attacks. We will also need to perform a depression screen and a toxicology screen to rule out any other underlying causes. Finally, I would recommend a comprehensive psychological and psychiatric evaluation and therapy to help manage your symptoms."} ``` head reward/train.json ```json {"question": "孩子感统失调,学习不行怎么办?,孩子说话晚,走路晚,现在小学二年级,学习跟不上,理解力差,运动协调性差,家里很着急,不知怎么办。", "response_chosen": "病情分析:你好!孩子说话晚,走路也晚,很可能是大脑本身发育不好引起的发育迟缓。而五岁时所致的智力检查为临界范围,那就是说孩子的智商是有问题的,也应考虑与大脑发育不好有关。指导意见:人的大脑在头一年发育最快,可塑性最强,在头三年可塑性还是可以的,超过三岁再进行训练,效果就不怎么好了。建议再给孩子做一做智力测试,如果孩子的智商还是在临界范围,那就要考虑让孩子去特殊学校进行康复训练,而不是继续在普通小学就读,否则对孩子来说,就是强人所难了。希望自己的孩子能聪明,这是每个家长都会有的心愿,但如果孩子自身的条件就是不能跟上同龄孩子,那家长也要面对这个事实的,对吗?医生询问:", "response_rejected": "建议家长先带孩子去正规医院做全面检查以确定病因和病情严重程度;同时可以进行物理治疗、康复训练等辅助治疗方法。"} ``` ### Data Fields #### 预训练数据集 pretrain 字段解释: - text: 文本 #### 指令微调数据集 finetune 字段解释: - instruction: 指令 - input:问题(可为空) - output:答复 #### 奖励模型数据集 reward 字段解释: - question: 问题 - response_chosen: 优质回答 - response_rejected: 低质回答 ### Data Splits ``` > wc -l medical/*/* 500 medical/finetune/test_en_1.json 500 medical/finetune/test_zh_0.json 116617 medical/finetune/train_en_1.json 1949972 medical/finetune/train_zh_0.json 500 medical/finetune/valid_en_1.json 500 medical/finetune/valid_zh_0.json 8475 medical/pretrain/medical_book_zh.json 500 medical/pretrain/test_encyclopedia.json 361420 medical/pretrain/train_encyclopedia.json 500 medical/pretrain/valid_encyclopedia.json 100 medical/reward/test.json 3800 medical/reward/train.json 100 medical/reward/valid.json 2443484 total ``` ### Licensing Information The dataset is available under the Apache 2.0. ### Citation Information - https://github.com/Toyhom/Chinese-medical-dialogue-data - https://github.com/FreedomIntelligence/Huatuo-26M/blob/main/README_zh-CN.md - https://huggingface.co/datasets/FreedomIntelligence/huatuo_encyclopedia_qa - https://huggingface.co/datasets/FreedomIntelligence/huatuo_knowledge_graph_qa - https://github.com/Kent0n-Li/ChatDoctor 附上几个优质的reward model dataset: - https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise - https://huggingface.co/datasets/sunzeyeah/chinese_chatgpt_corpus - https://huggingface.co/datasets/Cohere/miracl-zh-queries-22-12 - https://huggingface.co/datasets/Dahoas/rm-static ### Contributions [shibing624](https://github.com/shibing624) 整理并上传
joujiboi/japanese-anime-speech
joujiboi
2024-09-06T18:19:39Z
1,287
124
[ "task_categories:automatic-speech-recognition", "language:ja", "license:cc0-1.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "anime", "japanese", "日本語", "nihongo", "speech", "audio-text", "asr", "whisper", "voice", "large-v3", "ja", "jp" ]
[ "automatic-speech-recognition" ]
2023-11-07T13:53:40Z
null
--- language: - ja license: cc0-1.0 size_categories: - 10K<n<100K task_categories: - automatic-speech-recognition pretty_name: Japanese-Anime-Speech dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string splits: - name: train num_bytes: 10116168716.932 num_examples: 73004 download_size: 8832932312 dataset_size: 10116168716.932 configs: - config_name: default data_files: - split: train path: data/train-* tags: - anime - japanese - 日本語 - nihongo - speech - audio-text - asr - whisper - voice - large-v3 - ja - jp --- # Japanese Anime Speech Dataset [**日本語はこちら**](https://huggingface.co/datasets/joujiboi/japanese-anime-speech/blob/main/README_JA.md) **japanese-anime-speech** is an audio-text dataset designed for the training of automatic speech recognition models. The dataset is comprised of thousands of audio clips and their corresponding transcriptions from different visual novels. The goal of this dataset is to increase the accuracy of automatic speech recognition models, such as OpenAI's [Whisper](https://huggingface.co/openai/whisper-large-v2), in accurately transcribing dialogue from anime and other similar Japanese media. This genre is characterized by unique linguistic features and speech patterns that diverge from conventional Japanese speech. A list of all audio files and transcriptions can be found [**here**](https://huggingface.co/datasets/joujiboi/japanese-anime-speech/raw/main/audio_transcription_list.txt). <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400"> <p><b>Content Warning:</b> Please be advised that the majority of the audio in this dataset is sourced from visual novels and may include content that is not suitable for all audiences, such as suggestive sounds or mature topics. Efforts have been undertaken to minimise this content as much as possible. </p> </div> # Dataset information * **73,004** audio-text pairs * **110 hours** of audio (OpenAI suggests a minimum of [5 hours](https://huggingface.co/blog/fine-tune-whisper) for productive [Whisper](https://huggingface.co/openai/whisper-large-v2) fine-tuning). * **5.4s** average audio length * Audio source: **visual novels** * Lastest version: **V5 - March 22nd 2024** # Changelog * V1 - This version contains **16,143** audio-text pairs from the visual novel `IxSHE Tell`. Some cleaning of the transcriptions has been done to get rid of unwanted characters at the start and end of lines. * V2 - The version contains **23,422** audio-text pairs from three different visual novels. Cleaning has been done to remove most nsfw lines, especially noises that aren't words. The audio is now in mp3 format, rather than wav. This version contains **32.6** hours of audio. * V3 - The version contains **38,325** audio-text pairs from five different visual novels. Thorough cleaning has been done to remove most nsfw or low-quality audio files. Transcriptions have been formatted to contain much fewer dramatised duplicated characters (for example 「ああああーーー」), and transcriptions have been made much more consistent. This version contains **52.5 hours** of audio. * V4 - The dataset contains **47,844** audio-text pairs from six different visual novels. Thorough cleaning has been done to remove most nsfw or low-quality audio files. This version contains **63.4 hours** of audio. * **V5** - The dataset contains **73,004** audio-text pairs from eight different visual novels. Thorough cleaning has been done to remove most nsfw or low-quality audio files. This version contains **110 hours** of audio. # Bias and Limitations This dataset, while valuable for training anime-style Japanese speech recognition, has some inherent biases and limitations. The audio is primarily sourced from visual novels, leading to a gender bias towards female voices and a domain-specific vocabulary revolving around topics such as love, relationships, and fantasy. Additionally, the professionally produced nature of the audio results in clear and slow speech, which may not fully reflect real-world speaking patterns. # Use & Credit This dataset is openly available for commercial or non-commercial use. Anyone is welcome to use this dataset as they deem appropriate. However, the creator assumes no responsibility for the consequences of its use. While not mandatory, crediting this dataset with a hyperlink in any derivative work would be greatly appreciated. I hope that by sharing this dataset, we (the open-source community) improve automatic speech recognition for anime content.
sraimund/MapPool
sraimund
2024-09-02T14:29:18Z
32,436
2
[ "license:cc-by-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-05-10T19:49:38Z
null
--- license: cc-by-4.0 --- # MapPool - Bubbling up an extremely large corpus of maps for AI <img src="map_bubbles.png" alt="many small air bubbles containing colorful maps arising with light rays under the ocean (AI-generated image)" width="256"/> MapPool is a dataset of 75 million potential maps and textual captions. It has been derived from [CommonPool](https://www.datacomp.ai/), a dataset consisting of 12 billion text-image pairs from the Internet. The images have been encoded by a vision transformer and classified into maps and non-maps by a support vector machine. This approach outperforms previous models and yields a validation accuracy of 98.5%. The MapPool dataset may help to train data-intensive architectures in order to establish vision and language foundation models specialized in maps. The analysis of the dataset and the exploration of the embedding space offers a large potential for future work. ## How is the data structured? | Key | Meaning |----------------------------------|---------- | uid | Unique identifier | url | Link to the image | text | Textual description of the image | original_width / original_height | Dimensions of the image | sha256 | Hash of the image (to verify if the image is the same as the one in the URL) | l14_img | Embedding of the image (768 dimensions) | l14_txt | Embedding of the textual description (768 dimensions) | clip_l14_similarity_score | Similarity between the image and text (higher values indicate higher similarity) ## How can this repository be downloaded? Simply use Git (or TortoiseGit): ``` git clone https://huggingface.co/datasets/sraimund/MapPool/ ``` Alternatively use the HuggingFace API: ```python import json import os from huggingface_hub import hf_hub_download download_folder = "<your-download-folder>" repo_id = "sraimund/MapPool" # this file is given at the root of this repository with open("file_list.json") as f: file_list = json.load(f) for part, files in file_list.items(): for file in files: file_path = f"{download_folder}/{part}/{file}.parquet" if os.path.exists(file_path): continue hf_hub_download(repo_type="dataset", repo_id=repo_id, filename=f"{part}/{file}.parquet", local_dir=download_folder, token=read_token) ``` About 225 GB of space are required. The amount doubles when using Git since the files are duplicated in the .git folder. ## How can the parquet files be read? You can read parquet files with [pandas](https://pandas.pydata.org/): ```python import pandas as pd df = pd.read_parquet("<file_name>.parquet") ``` The pyarrow or fastparquet library is required additionally. ## How can the map images be downloaded? You can download the map images with [img2dataset](https://github.com/rom1504/img2dataset). ```python from img2dataset import download download( thread_count=64, url_list="<file_name>.parquet", output_folder="<folder_path>", resize_mode="no", output_format="files", input_format="parquet", url_col="url", caption_col="text", verify_hash=("sha256", "sha256"), ) ``` For Windows users: ```python import multiprocessing as mp from img2dataset import download # a small patch is also needed: https://github.com/rom1504/img2dataset/issues/347 def main(): download(...) if __name__ == "__main__": multiprocessing.freeze_support() main() ``` As the Internet is constantly changing, about two thirds of the original images (= 48 million) are still downloadable. 6TB of space are required to store them in their original formats and 100GB of space are needed when creating 128x128px thumbnails in the webm format with 60% quality. Downloading the images took 40 hours with 24 CPUs, 30GB RAM, and 40MB/s of network traffic on average. ## How was this dataset created? MapPool has been created by classifying the image embeddings included in [CommonPool](https://huggingface.co/datasets/mlfoundations/datacomp_xlarge), which have been generated by two pre-trained vision transformers (ViTs). The [L/14 model](https://github.com/mlfoundations/open_clip) with more parameters and outputting 768-dimensional embeddings has been considered since it has achieved higher classification accuracies. In this work, different map classifiers (Table 1) from [scikit-learn](https://scikit-learn.org/) with the [Intel Extension](https://intel.github.io/scikit-learn-intelex) have been trained on the embeddings of 1,860 maps and 1,860 non-maps, and have been evaluated on 1,240 maps and 1,240 non-maps ([Schnürer et al. 2021](https://doi.org/10.1080/00087041.2020.1738112)). Only simple classification models have been considered due to their efficiency and as meaningful embeddings have already been created by the vision transformer. | Model | Accuracy |----------------------------------------------------------|---------- | Xception / InceptionResNetV2 (= Baseline) | 96.7 | ViT-L/14 + L2 distance to averaged embeddings | 96.7 | ViT-L/14 + Logistic Regression | 97.9 | ViT-L/14 + Multilayer Perceptron (3x256 units) | 98.2 | ViT-L/14 + Support Vector Machine (polynomial, degree 3) | 98.5 With the Support Vector Machine, 500,000 image embeddings could be classified within 10 seconds. Downloading, classifying the whole dataset, and uploading the results took about 50 hours with 10 CPUs, 120GB RAM, and 500MB/s of network traffic on average. ## Is the inference model available? Yes, try it out and download it here: [https://huggingface.co/spaces/sraimund/MapPool](https://huggingface.co/spaces/sraimund/MapPool) ## What are the limitations? A qualitative inspection of the detected maps looks promising; however, it is not known what the actual accuracy is. Especially the false negative rate is hard to estimate due to the high number of non-maps among the CommonPool images. Mixtures between natural images and maps (e.g., a map printed on a bag, a map in a park) have not been further examined. Textual embeddings have not been considered in the separation process so far. The training dataset for the map classifier has a large visual variety, such as pictorial maps and 3D maps as well as sketches and paintings. However, the textual descriptions may be too biased since the training dataset originates only from one source. ## What are future research directions? A detailed analysis of the content and metadata of maps in MapPool, potentially resulting in a search engine, is the subject of future work. Additionally, the visual and textual embedding space may be explored to refine the map classifier and to detect duplicates among the images. It can be examined whether training with map-only images leads to better results for cartographic tasks, for instance generating maps based on textual prompts, than with a mixture of maps and other images. Feel free to contact [me](https://schnuerer.dev/contact/) in case you like to collaborate! ## Disclaimer The creator is not responsible for the content of linked external websites and will not guarantee for any damage any content of these websites may cause. ## License The dataset is published under the Creative Commons Attribution 4.0 license. Please respect the copyright of the original images when making use of MapPool. ## Citation A [short paper](https://infoscience.epfl.ch/handle/20.500.14299/240495) is available. ``` @inproceedings{Schnürer_MapPool_2024, title={MapPool - Bubbling up an extremely large corpus of maps for AI}, author={Schnürer, Raimund}, year={2024}, url={https://infoscience.epfl.ch/handle/20.500.14299/240495}} ```
AnonymousGM/MultiSetTransformerData
AnonymousGM
2024-09-02T00:56:24Z
174,550
0
[ "license:mit", "region:us" ]
[]
2024-02-19T22:05:51Z
null
--- license: mit --- ## General Description MultiSetTransformerData is a large dataset designed to train and validate neural Symbolic Regression models. It was designed to solve the Multi-Set Symbolic Skeleton Prediction (MSSP) problems, described in the paper **"Univariate Skeleton Prediction in Multivariate Systems Using Transformers"**. However, it can be used for training generic SR models as well. This dataset consists of artificially generated **univariate symbolic skeletons**, from which mathematical expressions are sampled, which are then used to sample data sets. In this repository, a dataset **Q1** is presented: * **Q1**: Consists of mathematical expressions that use up to 5 unary and binary operators (e.g., \\(1 + 1 / (\sin(2x) + 3)\\) uses five operators). It allows up to one nested operator (e.g., \\(\sin( \exp(x))\\) is allowed but \\(\sin( \exp(x^2))\\) is not). ## Dataset Structure In the **Q1** folder, you will find a training set alongside its corresponding validation set. Then, each folder consists of a collection of HDF5 files, as shown below: ``` ├── Q1 │ ├── training │ │ ├── 0.h5 │ │ ├── 1.h5 │ │ ├── ... │ ├── validation │ │ ├── 0.h5 │ │ ├── 1.h5 │ │ ├── ... ``` Each HDF5 file contains 5000 **blocks** and has the following structure: ``` { "block_1": { "X": "Support vector, shape (10000, 10)", "Y": "Response vector, shape (10000, 10)", "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list", "exprs": "Symbolic skeleton expression, str", "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton" }, "block_2": { "X": "Support, shape (10000, 10)", "Y": "Response, shape (10000, 10)", "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list", "exprs": "Symbolic skeleton expression, str", "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton" }, ... } ``` More specifically, each block corresponds to one univariate symbolic skeleton (i.e., a function without defined constant values); for example, `c + c/(c*sin(c*x_1) + c)`. From this skeleton, 10 random functions are sampled; for example: * `-2.284 + 0.48/(-sin(0.787*x_1) - 1.136)` * `4.462 - 2.545/(3.157*sin(0.422*x_1) - 1.826)`, ... Then, for the \\(i\\)-th function (where \\(i \in [0, 1, ..., 9]\\)), we sample a **support vector** `X[:, i]` of 10000 elements whose values are drawn from a uniform distribution \\(\mathcal{U}(-10, 10)\\). The support vector `X[:, i]` is evaluated on the \\(i\\)-th function to obtain the response vector `Y[:, i]`. In other words, a block contains input-output data generated from 10 **different functions that share the same symbolic skeleton**. For instance, the following figure shows 10 sets of data generated from the symbolic skeleton `c + c/(c*sin(c*x_1) + c)`: <p align="center"> <img src="images/data_example.jpg" alt="alt text" width="600"> </p> ## Loading Data Once the data is downloaded, it can be loaded using Python as follows: ``` imort os import glob import h5py def open_h5(path): block = [] with h5py.File(path, "r") as hf: # Iterate through the groups in the HDF5 file (group names are integers) for group_name in hf: group = hf[group_name] X = group["X"][:] Y = group["Y"][:] # Load 'tokenized' as a list of integers tokenized = list(group["tokenized"]) # Load 'exprs' as a string exprs = group["exprs"][()].tobytes().decode("utf-8") # Load 'sampled_exprs' as a list of sympy expressions sampled_exprs = [expr_str for expr_str in group["sampled_exprs"][:].astype(str)] block.append([X, Y, tokenized, exprs, sampled_exprs]) return block train_path = 'data/Q1/training' train_files = glob.glob(os.path.join(self.sampledData_train_path, '*.h5')) for tfile in train_files: # Read block block = open_h5(tfile) # Do stuff with your data ``` ## Vocabulary and Expression Generation The table below provides the vocabulary used to construct the expressions of this dataset. <p align="center"> <img src="images/vocabulary.jpg" alt="alt text" width="500"> </p> We use a method that builds the expression tree recursively in a preorder fashion, which allows us to enforce certain conditions and constraints effectively. That is, we forbid certain combinations of operators and set a maximum limit on the nesting depth of unary operators within each other. For example, we avoid embedding the operator \\(\text{log}\\) within the operator \\(\text{exp}\\), or vice versa, since such composition could lead to direct simplification (e.g., \\(\text{log}\left( \text{exp} (x) \right) = x\\). We can also avoid combinations of operators that would generate extremely large values (e.g., \\(\text{exp}\left( \text{exp} (x) \right)\\) and \\(\text{sinh} \left( \text{sinh} (x) \right)\\)). The table below shows the forbidden operators we considered for some specific parent operators. <p align="center"> <img src="images/forbidden_ops.jpg" alt="alt text" width="500"> </p> ## Citation Use this Bibtex to cite this repository ``` @INPROCEEDINGS{MultiSetSR, author="Morales, Giorgio and Sheppard, John W.", editor="Bifet, Albert and Daniu{\v{s}}is, Povilas and Davis, Jesse and Krilavi{\v{c}}ius, Tomas and Kull, Meelis and Ntoutsi, Eirini and Puolam{\"a}ki, Kai and {\v{Z}}liobait{\.{e}}, Indr{\.{e}}", title="Univariate Skeleton Prediction in Multivariate Systems Using Transformers", booktitle="Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track", year="2024", publisher="Springer Nature Switzerland", address="Cham", pages="107--125", isbn="978-3-031-70371-3" } ```
simon3000/starrail-voice
simon3000
2024-08-30T04:52:04Z
534
33
[ "task_categories:audio-classification", "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "language:zh", "language:en", "language:ja", "language:ko", "size_categories:100K<n<1M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "audio-classification", "automatic-speech-recognition", "text-to-speech" ]
2024-04-26T19:01:17Z
3
--- language: - zh - en - ja - ko task_categories: - audio-classification - automatic-speech-recognition - text-to-speech pretty_name: StarRail Voice dataset_info: features: - name: audio dtype: audio - name: ingame_filename dtype: string - name: transcription dtype: string - name: language dtype: string - name: speaker dtype: string - name: voice_type dtype: string splits: - name: train num_bytes: 124647844822.266 num_examples: 185511 download_size: 88624726158 dataset_size: 124647844822.266 configs: - config_name: default data_files: - split: train path: data/train-* --- # StarRail Voice StarRail Voice is a dataset of voice lines from the popular game [Honkai: Star Rail](https://hsr.hoyoverse.com/). Hugging Face 🤗 [StarRail-Voice](https://huggingface.co/datasets/simon3000/starrail-voice) <!-- STATS --> Last update at `2024-08-30` `185511` wavs `49325` without speaker (27%) `49409` without transcription (27%) `41142` without inGameFilename (22%) <!-- STATS_END --> ## Dataset Details ### Dataset Description The dataset contains voice lines from the game's characters in multiple languages, including Chinese, English, Japanese, and Korean. The voice lines are spoken by the characters in the game and cover a wide range of topics, including greetings, combat, and story dialogue. - **Language(s) (NLP):** Chinese, English, Japanese, Korean ## Dataset Creation ### Source Data The data was obtained by unpacking the [Honkai: Star Rail](https://hsr.hoyoverse.com/) game. #### Data Collection and Processing Please refer to [StarRail-Voice](https://github.com/simon300000/starrail-voice) and [bnnm/wwiser-utils#15](https://github.com/bnnm/wwiser-utils/pull/15#issuecomment-1962182022) for more information on how the data was processed. #### Who are the source data producers? The source data producers are the developers of the game, HoYoverse. ### Annotations The dataset contains official annotations from the game, including language, speaker name, and transcription. ## Bias, Risks, and Limitations Annotations are incomplete. Some voice lines are missing speaker names and transcriptions. ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. Speaker names can be partially inferred from the ingame filenames. ## Licensing Information Copyright © COGNOSPHERE. All Rights Reserved. ## More Information I can upload wav files on demand.
Major-TOM/Core-S1RTC
Major-TOM
2024-08-29T16:17:53Z
27,095
12
[ "license:cc-by-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "modality:geospatial", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.12095", "region:us", "earth-observation", "remote-sensing", "sentinel-1", "sar", "synthethic-aperture-radar", "satellite", "geospatial" ]
[]
2024-03-15T14:13:22Z
null
--- license: cc-by-sa-4.0 tags: - earth-observation - remote-sensing - sentinel-1 - sar - synthethic-aperture-radar - satellite - geospatial size_categories: - 1M<n<10M dataset_info: - config_name: default features: - name: product_id dtype: string - name: grid_cell dtype: string - name: product_datetime dtype: string - name: thumbnail dtype: image - name: vv dtype: binary - name: vh dtype: binary configs: - config_name: default data_files: images/*.parquet - config_name: metadata data_files: metadata.parquet --- # Core-S1RTC Contains a global coverage of Sentinel-1 (RTC) patches, each of size 1,068 x 1,068 pixels. | Source | Sensing Type | Number of Patches | Patch Size | Total Pixels | |--------|--------------|-------------------|------------|--------------| |Sentinel-1 RTC | Synthetic Aperture Radar |1,469,955|1,068 x 1,068 (10 m) | > 1.676 Trillion | ## Content | Column | Details | Resolution | |--------|---------|------------| | VV | Received Linear Power in the VV Polarization | 10m | | VH | Received Linear Power in the VV Polarization | 10m | | thumbnail | Rescaled false colour<sup>1</sup> saved as png | 10m | <sup>1</sup> False colour composites are made with decibel-scale values with red green and blue defined as ```R:VV G:VV+VH B:VH```. For each channel, a contrast-stretch is applied, transforming minimum-maximum to 0-255. This means bluer areas have relatively higher VH values, whilst brightness is a function of overall intensity. This is relative within each thumbnail because of the normalisation, and so cannot be compared across different samples. ## Spatial Coverage This is a global monotemporal dataset. Nearly every piece of Earth captured by Sentinel-1 is contained at least once in this dataset (and only once, excluding some marginal overlaps). The coverage is about 35% lower than for Core Sentinel-2 dataset due to the sensor coverage limitations. The following figure demonstrates the spatial coverage (only black pixels are absent): ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6304c06eeb6d777a838eab63/hFf98OyO25mL9Q962d5NL.png) ## Example Use Interface scripts are available at https://github.com/ESA-PhiLab/Major-TOM Here's a sneak peek with a thumbnail image: ```python from fsspec.parquet import open_parquet_file import pyarrow.parquet as pq from io import BytesIO from PIL import Image PARQUET_FILE = 'part_03900' # parquet number ROW_INDEX = 42 # row number (about 500 per parquet) url = "https://huggingface.co/datasets/Major-TOM/Core-S1RTC/resolve/main/images/{}.parquet".format(PARQUET_FILE) with open_parquet_file(url,columns = ["thumbnail"]) as f: with pq.ParquetFile(f) as pf: first_row_group = pf.read_row_group(ROW_INDEX, columns=['thumbnail']) stream = BytesIO(first_row_group['thumbnail'][0].as_py()) image = Image.open(stream) ``` ## Cite [![arxiv](https://img.shields.io/badge/Open_Access-arxiv:2402.12095-b31b1b)](https://arxiv.org/abs/2402.12095/) ```latex @inproceedings{Major_TOM, title={Major TOM: Expandable Datasets for Earth Observation}, author={Alistair Francis and Mikolaj Czerkawski}, year={2024}, booktitle={IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium}, eprint={2402.12095}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` Powered by [Φ-lab, European Space Agency (ESA) 🛰️](https://huggingface.co/ESA-philab)
codys12/LlamaKD
codys12
2024-08-21T10:28:23Z
11,206
12
[ "task_categories:text-generation", "task_categories:text-classification", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "fineweb", "fineweb-edu" ]
[ "text-generation", "text-classification" ]
2024-08-08T17:23:04Z
null
--- license: apache-2.0 task_categories: - text-generation - text-classification language: - en tags: - fineweb - fineweb-edu pretty_name: Llama KD size_categories: - 100M<n<1B --- # Dataset Card for Llama KD This dataset is the top 32 logprobs of Llama 3.1 405B using Fineweb-Edu data. Only sequences >= 1024 will be used, and truncated to 1024. This will eventually be 10B tokens. ### Dataset Sources - **Repository:** https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu - **Blog** https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1 ## Uses Useful for knowledge distillation experiments ## Dataset Structure inputs: [1024] targets: [1024, 2, topk(32)]
deepklarity/top-flutter-packages
deepklarity
2024-08-06T06:08:06Z
91
6
[ "license:cc", "size_categories:1K<n<10K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2022-08-09T08:51:49Z
1
--- license: cc --- ## Top Flutter Packages Dataset Flutter is an open source framework by Google for building beautiful, natively compiled, multi-platform applications from a single codebase. It is gaining quite a bit of popularity because of ability to code in a single language and have it running on Android/iOS and web as well. This dataset contains a snapshot of Top 5000+ flutter/dart packages hosted on [Flutter package repository](https://pub.dev/) The dataset was scraped in `August-2024`. We aim to use this dataset to perform analysis and identify trends and get a bird's eye view of the rapidly evolving flutter ecosystem. #### Mantainers: [Ansh Kharbanda](https://www.linkedin.com/in/ansh-kharbanda-64b8711a6/),[Somen Dey](https://www.linkedin.com/in/somen-dey), [Kondrolla Dinesh Reddy](https://twitter.com/KondrollaR), [Keshaw Soni](https://twitter.com/SoniKeshaw), [Somya Gautam](http://linkedin.in/in/somya-gautam)
arbml/ashaar
arbml
2024-07-14T23:18:48Z
342
3
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2022-07-12T14:42:57Z
1
--- dataset_info: features: - name: poem title dtype: string - name: poem meter dtype: string - name: poem verses sequence: string - name: poem theme dtype: string - name: poem url dtype: string - name: poet name dtype: string - name: poet description dtype: string - name: poet url dtype: string - name: poet era dtype: string - name: poet location dtype: string - name: poem description list: - name: attributes struct: - name: class dtype: string - name: color dtype: string - name: dir dtype: string - name: face dtype: string - name: id dtype: string - name: lang dtype: string - name: style dtype: string - name: children list: - name: attributes struct: - name: color dtype: string - name: dir dtype: string - name: face dtype: string - name: href dtype: string - name: id dtype: string - name: lang dtype: string - name: style dtype: string - name: title dtype: string - name: value dtype: string - name: children list: - name: attributes struct: - name: class dtype: string - name: color dtype: string - name: dir dtype: string - name: face dtype: string - name: lang dtype: string - name: style dtype: string - name: children list: - name: attributes struct: - name: align dtype: string - name: face dtype: string - name: nowrap dtype: string - name: name dtype: string - name: parentAttributes struct: - name: lang dtype: string - name: style dtype: string - name: size dtype: int64 - name: text dtype: string - name: truncated dtype: bool - name: type dtype: string - name: name dtype: string - name: parentAttributes struct: - name: dir dtype: string - name: face dtype: string - name: id dtype: string - name: lang dtype: string - name: style dtype: string - name: partA dtype: string - name: size dtype: int64 - name: text dtype: string - name: truncated dtype: bool - name: type dtype: string - name: name dtype: string - name: parentAttributes struct: - name: class dtype: string - name: color dtype: string - name: dir dtype: string - name: id dtype: string - name: lang dtype: string - name: style dtype: string - name: partA dtype: string - name: partB dtype: string - name: size dtype: int64 - name: text dtype: string - name: truncated dtype: bool - name: type dtype: string - name: name dtype: string - name: parentAttributes struct: - name: dir dtype: string - name: style dtype: string - name: partA dtype: string - name: partB dtype: string - name: size dtype: int64 - name: text dtype: string - name: truncated dtype: bool - name: type dtype: string - name: poem language type dtype: string splits: - name: train num_bytes: 633499128 num_examples: 254630 download_size: 277368475 dataset_size: 633499128 configs: - config_name: default data_files: - split: train path: data/train-* --- # ashaar introducing ashaar, the largest dataset for arabic poetry # general statistics | metric | value | |-----------------|-----------| | number of poems | 254,630 | | number of baits | 3,857,429 | | number of poets | 7,167 | # License This dataset is released under fair use for research development only. Poets have the sole right to take down any access to their work. The authors of the websites, also, have the right to take down any material that does not conform with that. This work should not be used for any commercial purposes.
NousResearch/CharacterCodex
NousResearch
2024-06-17T01:27:49Z
641
220
[ "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "language model" ]
[]
2024-06-05T00:30:38Z
null
--- language: - en license: apache-2.0 size_categories: - 10K<n<100K pretty_name: CharacterCodex dataset_info: features: - name: media_type dtype: string - name: genre dtype: string - name: character_name dtype: string - name: media_source dtype: string - name: description dtype: string - name: scenario dtype: string tags: - language model --- # Dataset Card for Character Codex ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/2qPIzxcnzXrEg66VZDjnv.png) ## Dataset Summary The Character Codex is a comprehensive dataset featuring popular characters from a wide array of media types and genres. Each entry includes detailed information about the character, the media source, and a unique scenario involving the character. This dataset is valuable for synthetic data, RAG for generative AI, writers, game developers, and fans who want to explore and utilize rich character descriptions for various creative projects. ## Dataset Structure ### Data Fields - **media_type**: The type of media the character originates from (e.g., Webcomics, Novels, Movies, TV Shows). - **genre**: The specific genre of the media type (e.g., Fantasy Webcomics, Martial Arts Fiction). - **character_name**: The name of the character. - **media_source**: The title of the media source where the character is from. - **description**: A detailed description of the character, including their role and significance in the story. - **scenario**: A creative scenario involving the character that can be used for interactive storytelling or role-playing purposes. ### Example Data ```json [ { "media_type": "Webcomics", "genre": "Fantasy Webcomics", "character_name": "Alana", "media_source": "Saga", "description": "Alana is one of the main characters from the webcomic \"Saga.\" She is a strong-willed and fiercely protective mother who is on the run with her family in a war-torn galaxy. The story blends elements of fantasy and science fiction, creating a rich and complex narrative.", "scenario": "You are a fellow traveler in the galaxy needing help, and Alana offers her assistance while sharing stories of her family's struggles and triumphs." }, { "media_type": "Novels", "genre": "Martial Arts Fiction", "character_name": "Yilin", "media_source": "The Smiling, Proud Wanderer", "description": "Yilin is a young nun from the Hengshan Sect in Jin Yong's novel \"The Smiling, Proud Wanderer.\" Known for her innocence and kindness, she becomes friends with the protagonist Linghu Chong. Her gentle nature often puts her at odds with the violent world of martial arts.", "scenario": "You are a fellow disciple of the Hengshan Sect seeking Yilin's comfort and advice after a particularly brutal conflict. Her gentle demeanor and compassionate words provide solace in a harsh world." } ] ``` # Usage ## Accessing the Data To load the dataset in your project, you can use the following code snippet: ```python from datasets import load_dataset dataset = load_dataset("NousResearch/CharacterCodex") ``` ## Use Cases - Seed Data: Useful for generating synthetic data or use in interactive experiences with generative AI. - Creative Writing: Use the detailed character descriptions and scenarios to inspire creative writing projects. - Educational: Study character development and storytelling techniques from various genres and media types. # Dataset Creation ## Data Collection The characters in this dataset were meticulously selected from a diverse range of media, ensuring a rich and varied collection. The descriptions and scenarios were crafted to provide insightful and engaging context for each character. ## Annotations Each character entry includes: - The media type (i.e. Novel, Magazine, Anime), the genre (i.e. action, historical), and the specific source/title of the media they are from (i.e. Pokemon) - A detailed description highlighting the character's role, traits, and significance. - A scenario designed to stimulate interactive and immersive experiences. # Citation ```bibtex @dataset{character_codex_2024, title={Character Codex}, author={"Teknium"}, year={2024}, note={https://huggingface.co/datasets/NousResearch/CharacterCodex} } ```
common-canvas/commoncatalog-cc-by-sa
common-canvas
2024-05-16T19:41:37Z
115,865
8
[ "task_categories:text-to-image", "language:en", "license:cc-by-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2310.16825", "region:us" ]
[ "text-to-image" ]
2023-10-19T02:05:17Z
null
--- license: cc-by-sa-4.0 dataset_info: features: - name: jpg dtype: image - name: blip2_caption dtype: string - name: caption dtype: string - name: licensename dtype: string - name: licenseurl dtype: string - name: width dtype: int32 - name: height dtype: int32 - name: original_width dtype: int32 - name: original_height dtype: int32 - name: photoid dtype: int64 - name: uid dtype: string - name: unickname dtype: string - name: datetaken dtype: timestamp[us] - name: dateuploaded dtype: int64 - name: capturedevice dtype: string - name: title dtype: string - name: usertags dtype: string - name: machinetags dtype: string - name: longitude dtype: float64 - name: latitude dtype: float64 - name: accuracy dtype: int64 - name: pageurl dtype: string - name: downloadurl dtype: string - name: serverid dtype: int64 - name: farmid dtype: int64 - name: secret dtype: string - name: secretoriginal dtype: string - name: ext dtype: string - name: url dtype: string - name: key dtype: string - name: status dtype: string - name: error_message dtype: string - name: exif dtype: string - name: sha256 dtype: string - name: description dtype: string task_categories: - text-to-image language: - en --- # Dataset Card for CommonCatalog CC-BY-SA This dataset is a large collection of high-resolution Creative Common images (composed of different licenses, see paper Table 1 in the Appendix) collected in 2014 from users of Yahoo Flickr. The dataset contains images of up to 4k resolution, making this one of the highest resolution captioned image datasets. ## Dataset Details ### Dataset Description We provide captions synthetic captions to approximately 100 million high resolution images collected from Yahoo Flickr Creative Commons (YFCC). - **Curated by:** Aaron Gokaslan - **Language(s) (NLP):** en - **License:** See relevant yaml tag / dataset name. ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** https://github.com/mosaicml/diffusion - **Paper:** https://arxiv.org/abs/2310.16825 - **Demo:** See CommonCanvas Gradios ## Uses We use CommonCatalog to train a family latent diffusion models called CommonCanvas. The goal is to produce a model that is competitive with Stable Diffusion 2, but to do so using an easily accessible dataset of known provenance. Doing so makes replicating the model significantly easier, and provides a clearer mechanism for applying training-data attribution techniques. ### Direct Use Training text-to-image models Training image-to-text models ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> * Crafting content that is offensive or injurious towards individuals, including negative portrayals of their living conditions, cultural backgrounds, religious beliefs, etc. * Deliberately creating or spreading content that is discriminatory or reinforces harmful stereotypes. * Falsely representing individuals without their permission. * Generating sexual content that may be seen by individuals without their consent. * Producing or disseminating false or misleading information. * Creating content that depicts extreme violence or bloodshed. * Distributing content that modifies copyrighted or licensed material in a way that breaches its usage terms. ## Dataset Structure The dataset is divided into 10 subsets each containing parquets about 4GB each. Each subfolder within contains a resolution range of the images and their respective aspect ratios. The dataset is also divided along images licensed for commercial use (C) and those that are not (NC). ## Dataset Creation ### Curation Rationale Creating a standardized, accessible dataset with synthetic caption and releasing it so other people can train on a common dataset for open source image generation. ### Source Data Yahoo Flickr Creative Commons 100M Dataset and Synthetically Generated Caption Data. #### Data Collection and Processing All synthetic captions were generated with BLIP2. See paper for more details. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> Users of Flickr ## Bias, Risks, and Limitations See Yahoo Flickr Creative Commons 100M dataset for more information. The information was collected circa 2014 and known to have a bias towards internet connected Western countries. Some areas such as the global south lack representation. ## Citation **BibTeX:** ``` @article{gokaslan2023commoncanvas, title={CommonCanvas: An Open Diffusion Model Trained with Creative-Commons Images}, author={Gokaslan, Aaron and Cooper, A Feder and Collins, Jasmine and Seguin, Landan and Jacobson, Austin and Patel, Mihir and Frankle, Jonathan and Stephenson, Cory and Kuleshov, Volodymyr}, journal={arXiv preprint arXiv:2310.16825}, year={2023} } ``` ## Dataset Card Authors [Aaron Gokaslan](https://huggingface.co/Skylion007) ## Dataset Card Contact [Aaron Gokaslan](https://huggingface.co/Skylion007)
lmms-lab/DocVQA
lmms-lab
2024-04-18T05:14:35Z
11,456
39
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2007.00398", "region:us" ]
[]
2024-01-22T16:29:32Z
null
--- license: apache-2.0 dataset_info: - config_name: DocVQA features: - name: questionId dtype: string - name: question dtype: string - name: question_types sequence: string - name: image dtype: image - name: docId dtype: int64 - name: ucsf_document_id dtype: string - name: ucsf_document_page_no dtype: string - name: answers sequence: string - name: data_split dtype: string splits: # - name: train # num_bytes: 5659006943.631 # num_examples: 39463 - name: validation num_bytes: 2532447207.066 num_examples: 5349 - name: test num_bytes: 2500408525.732 num_examples: 5188 download_size: 9555791945 dataset_size: 10691862676.428999 - config_name: InfographicVQA features: - name: questionId dtype: string - name: question dtype: string - name: answers sequence: string - name: answer_type sequence: string - name: image dtype: image - name: image_url dtype: string - name: operation/reasoning sequence: string - name: ocr dtype: string - name: data_split dtype: string splits: # - name: train # num_bytes: 11559694546.32 # num_examples: 23946 - name: validation num_bytes: 1863177404.253 num_examples: 2801 - name: test num_bytes: 1851304047.712 num_examples: 3288 download_size: 2544892079 dataset_size: 15274175998.285 configs: - config_name: DocVQA data_files: # - split: train # path: DocVQA/train-* - split: validation path: DocVQA/validation-* - split: test path: DocVQA/test-* - config_name: InfographicVQA data_files: # - split: train # path: InfographicVQA/train-* - split: validation path: InfographicVQA/validation-* - split: test path: InfographicVQA/test-* --- <p align="center" width="100%"> <img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%"> </p> # Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [DocVQA](https://arxiv.org/abs/2007.00398). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @article{mathew2020docvqa, title={DocVQA: A Dataset for VQA on Document Images. CoRR abs/2007.00398 (2020)}, author={Mathew, Minesh and Karatzas, Dimosthenis and Manmatha, R and Jawahar, CV}, journal={arXiv preprint arXiv:2007.00398}, year={2020} } ```
Amod/mental_health_counseling_conversations
Amod
2024-04-05T08:30:03Z
3,928
358
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:openrail", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1581", "region:us", "medical" ]
[ "text-generation", "question-answering" ]
2023-06-22T12:52:50Z
null
--- license: openrail task_categories: - text-generation - question-answering language: - en tags: - medical size_categories: - 1K<n<10K --- # Amod/mental_health_counseling_conversations ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) ## Dataset Description - **Homepage:** - **Repository:** - **Paper:** Bertagnolli, Nicolas (2020). Counsel chat: Bootstrapping high-quality therapy data. Towards Data Science. https://towardsdatascience.com/counsel-chat - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice. ### Supported Tasks and Leaderboards The dataset supports the task of text generation, particularly for generating advice or suggestions in response to a mental health-related question. ### Languages The text in the dataset is in English. ## Dataset Structure ### Data Instances A data instance includes a 'Context' and a 'Response'. 'Context' contains the question asked by a user, and 'Response' contains the corresponding answer provided by a psychologist. ### Data Fields - 'Context': a string containing the question asked by a user - 'Response': a string containing the corresponding answer provided by a psychologist ### Data Splits The dataset has no predefined splits. Users can create their own splits as needed. ## Dataset Creation ### Curation Rationale This dataset was created to aid in the development of AI models that can provide mental health advice or guidance. The raw data was meticulously cleaned to only include the conversations. ### Source Data The data was sourced from two online counseling and therapy platforms. The raw data can be found [here](https://github.com/nbertagnolli/counsel-chat/tree/master/data). ### Annotations The dataset does not contain any additional annotations. ### Personal and Sensitive Information The dataset may contain sensitive information related to mental health. All data was anonymized and no personally identifiable information is included.
alvations/c4p0-x1-de-en
alvations
2024-03-24T03:55:50Z
11,110
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-03-23T10:16:43Z
null
--- dataset_info: features: - name: source dtype: string - name: target dtype: string - name: target_backto_source dtype: string - name: raw_target list: - name: generated_text dtype: string - name: raw_target_backto_source list: - name: generated_text dtype: string - name: prompt dtype: string - name: reverse_prompt dtype: string - name: source_langid dtype: string - name: target_langid dtype: string - name: target_backto_source_langid dtype: string - name: doc_id dtype: int64 - name: sent_id dtype: int64 - name: timestamp dtype: timestamp[us] - name: url dtype: string - name: doc_hash dtype: string splits: - name: train num_bytes: 32165 num_examples: 31 download_size: 22249 dataset_size: 32165 configs: - config_name: default data_files: - split: train path: c0d4dc8660289947/train-* ---
google/air_dialogue
google
2024-03-07T15:22:15Z
264
19
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:conversational", "task_ids:dialogue-generation", "task_ids:dialogue-modeling", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:crowdsourced", "language_creators:machine-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation", "fill-mask" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - crowdsourced language_creators: - machine-generated language: - en license: - cc-by-nc-4.0 multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - conversational - dialogue-generation - dialogue-modeling - language-modeling - masked-language-modeling pretty_name: AirDialogue dataset_info: - config_name: air_dialogue_data features: - name: action struct: - name: status dtype: string - name: name dtype: string - name: flight sequence: int32 - name: intent struct: - name: return_month dtype: string - name: return_day dtype: string - name: max_price dtype: int32 - name: departure_airport dtype: string - name: max_connections dtype: int32 - name: departure_day dtype: string - name: goal dtype: string - name: departure_month dtype: string - name: name dtype: string - name: return_airport dtype: string - name: timestamps sequence: int64 - name: dialogue sequence: string - name: expected_action struct: - name: status dtype: string - name: name dtype: string - name: flight sequence: int32 - name: search_info list: - name: button_name dtype: string - name: field_name dtype: string - name: field_value dtype: string - name: timestmamp dtype: int64 - name: correct_sample dtype: bool_ splits: - name: train num_bytes: 353718365 num_examples: 321459 - name: validation num_bytes: 44441818 num_examples: 40363 download_size: 141766743 dataset_size: 398160183 - config_name: air_dialogue_kb features: - name: kb list: - name: airline dtype: string - name: class dtype: string - name: departure_airport dtype: string - name: departure_day dtype: string - name: departure_month dtype: string - name: departure_time_num dtype: int32 - name: flight_number dtype: int32 - name: num_connections dtype: int32 - name: price dtype: int32 - name: return_airport dtype: string - name: return_day dtype: string - name: return_month dtype: string - name: return_time_num dtype: int32 - name: reservation dtype: int32 splits: - name: train num_bytes: 782590970 num_examples: 321459 - name: validation num_bytes: 98269609 num_examples: 40363 download_size: 57883938 dataset_size: 880860579 configs: - config_name: air_dialogue_data data_files: - split: train path: air_dialogue_data/train-* - split: validation path: air_dialogue_data/validation-* default: true - config_name: air_dialogue_kb data_files: - split: train path: air_dialogue_kb/train-* - split: validation path: air_dialogue_kb/validation-* --- # Dataset Card for air_dialogue ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59 - **Repository:** https://github.com/google/airdialogue - **Paper:** https://aclanthology.org/D18-1419/ - **Leaderboard:** https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59 - **Point of Contact:** [AirDialogue-Google](mailto:[email protected]) - **Point of Contact:** [Wei Wei](mailto:[email protected]) ### Dataset Summary AirDialogue, is a large dataset that contains 402,038 goal-oriented conversations. To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. Then the human annotators are asked to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. News in v1.3: - We have included the test split of the AirDialogue dataset. - We have included the meta context for OOD2 in the original AirDialogue paper. ### Supported Tasks and Leaderboards We use perplexity and BLEU score to evaluate the quality of the language generated by the model. We also compare the dialogue state generated by the model s and the ground truth state s0. Two categories of the metrics are used: exact match scores and scaled scores The inference competition & leaderboard can be found here: https://worksheets.codalab.org/worksheets/0xa79833f4b3c24f4188cee7131b120a59 ### Languages The text in the dataset is in English. The BCP 47 code is `en` ## Dataset Structure ### Data Instances The data is provided in two set of files. The first one has the dialogues (`air_dialogue_data`) and the knowledge-base (`air_dialogue_kb`) BuilderConfig: `air_dialogue_data` ``` {"action": {"status": "book", "name": "Emily Edwards", "flight": [1027]}, "intent": {"return_month": "June", "return_day": "14", "max_price": 200, "departure_airport": "DFW", "return_time": "afternoon", "max_connections": 1, "departure_day": "12", "goal": "book", "departure_month": "June", "name": "Emily Edwards", "return_airport": "IAD"}, "timestamps": [1519233239, 1519233244, 1519233249, 1519233252, 1519233333, 1519233374, 1519233392, 1519233416, 1519233443, 1519233448, 1519233464, 1519233513, 1519233525, 1519233540, 1519233626, 1519233628, 1519233638], "dialogue": ["customer: Hello.", "agent: Hello.", "customer: My name is Emily Edwards.", "agent: How may I help you out?", "customer: I need some help in my flight ticket reservation to attend a convocation meeting, can you please help me?", "agent: Sure, I will help you out. May I know your travelling dates please?", "customer: Thank you and my dates are 06/12 and back on 06/14.", "agent: Can I know your airport codes?", "customer: The airport codes are from DFW to IAD.", "agent: Ok, please wait a moment.", "customer: Sure.", "agent: There is a flight with connection 1 and price 200, can I proceed with this flight?", "customer: Yes, do proceed with booking.", "agent: Ok, your ticket has been booked.", "customer: Thank you for your assistance in my flight ticket reservation.", "agent: Thank you for choosing us.", "customer: You are welcome."], "expected_action": {"status": "book", "name": "Emily Edwards", "flight": [1027]}, "correct_sample": true} ``` BuilderConfig: `air_dialogue_kb` ``` {"kb": [{"return_airport": "DTW", "airline": "Spirit", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1000, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 2, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DTW", "airline": "Frontier", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1001, "departure_month": "June", "departure_time_num": 0, "class": "business", "return_time_num": 15, "return_month": "June", "return_day": "13", "num_connections": 0, "price": 500}, {"return_airport": "DTW", "airline": "JetBlue", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1002, "departure_month": "June", "departure_time_num": 0, "class": "business", "return_time_num": 13, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 600}, {"return_airport": "IAD", "airline": "Hawaiian", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1003, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 5, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "AA", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1004, "departure_month": "June", "departure_time_num": 9, "class": "economy", "return_time_num": 11, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "IAD", "airline": "AA", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1005, "departure_month": "June", "departure_time_num": 3, "class": "economy", "return_time_num": 17, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "Frontier", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1006, "departure_month": "June", "departure_time_num": 10, "class": "economy", "return_time_num": 10, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "IAD", "airline": "UA", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1007, "departure_month": "June", "departure_time_num": 14, "class": "economy", "return_time_num": 20, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "AA", "departure_day": "13", "departure_airport": "DTW", "flight_number": 1008, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 8, "return_month": "June", "return_day": "14", "num_connections": 2, "price": 400}, {"return_airport": "DFW", "airline": "Delta", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1009, "departure_month": "June", "departure_time_num": 18, "class": "economy", "return_time_num": 6, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "Frontier", "departure_day": "13", "departure_airport": "DTW", "flight_number": 1010, "departure_month": "June", "departure_time_num": 4, "class": "economy", "return_time_num": 2, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "Southwest", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1011, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 22, "return_month": "June", "return_day": "13", "num_connections": 0, "price": 100}, {"return_airport": "DTW", "airline": "JetBlue", "departure_day": "11", "departure_airport": "DFW", "flight_number": 1012, "departure_month": "June", "departure_time_num": 13, "class": "economy", "return_time_num": 22, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "Southwest", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1013, "departure_month": "June", "departure_time_num": 16, "class": "economy", "return_time_num": 13, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DTW", "airline": "Delta", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1014, "departure_month": "June", "departure_time_num": 0, "class": "economy", "return_time_num": 8, "return_month": "June", "return_day": "15", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "Southwest", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1015, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 1, "return_month": "June", "return_day": "15", "num_connections": 1, "price": 300}, {"return_airport": "DTW", "airline": "UA", "departure_day": "11", "departure_airport": "DFW", "flight_number": 1016, "departure_month": "June", "departure_time_num": 10, "class": "economy", "return_time_num": 4, "return_month": "June", "return_day": "14", "num_connections": 0, "price": 200}, {"return_airport": "DFW", "airline": "AA", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1017, "departure_month": "June", "departure_time_num": 14, "class": "economy", "return_time_num": 23, "return_month": "June", "return_day": "14", "num_connections": 2, "price": 400}, {"return_airport": "DTW", "airline": "JetBlue", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1018, "departure_month": "June", "departure_time_num": 3, "class": "economy", "return_time_num": 1, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "Hawaiian", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1019, "departure_month": "June", "departure_time_num": 7, "class": "economy", "return_time_num": 18, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "Delta", "departure_day": "12", "departure_airport": "IAD", "flight_number": 1020, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 18, "return_month": "June", "return_day": "14", "num_connections": 2, "price": 200}, {"return_airport": "IAD", "airline": "Delta", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1021, "departure_month": "June", "departure_time_num": 11, "class": "business", "return_time_num": 8, "return_month": "June", "return_day": "14", "num_connections": 0, "price": 1000}, {"return_airport": "IAD", "airline": "JetBlue", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1022, "departure_month": "June", "departure_time_num": 4, "class": "economy", "return_time_num": 14, "return_month": "June", "return_day": "13", "num_connections": 0, "price": 200}, {"return_airport": "IAD", "airline": "Frontier", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1023, "departure_month": "June", "departure_time_num": 19, "class": "economy", "return_time_num": 23, "return_month": "June", "return_day": "13", "num_connections": 1, "price": 200}, {"return_airport": "DFW", "airline": "UA", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1024, "departure_month": "June", "departure_time_num": 11, "class": "economy", "return_time_num": 19, "return_month": "June", "return_day": "15", "num_connections": 1, "price": 200}, {"return_airport": "DTW", "airline": "Hawaiian", "departure_day": "11", "departure_airport": "IAD", "flight_number": 1025, "departure_month": "June", "departure_time_num": 6, "class": "economy", "return_time_num": 10, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DTW", "airline": "UA", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1026, "departure_month": "June", "departure_time_num": 0, "class": "economy", "return_time_num": 18, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 300}, {"return_airport": "IAD", "airline": "Delta", "departure_day": "12", "departure_airport": "DFW", "flight_number": 1027, "departure_month": "June", "departure_time_num": 17, "class": "economy", "return_time_num": 15, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 200}, {"return_airport": "IAD", "airline": "Southwest", "departure_day": "12", "departure_airport": "DTW", "flight_number": 1028, "departure_month": "June", "departure_time_num": 23, "class": "economy", "return_time_num": 13, "return_month": "June", "return_day": "14", "num_connections": 1, "price": 100}, {"return_airport": "DFW", "airline": "Spirit", "departure_day": "11", "departure_airport": "DTW", "flight_number": 1029, "departure_month": "June", "departure_time_num": 22, "class": "business", "return_time_num": 4, "return_month": "June", "return_day": "14", "num_connections": 0, "price": 800}], "reservation": 0} ``` ### Data Fields BuilderConfig: `air_dialogue_data`: Provides for customer context, dialogue states and environment key name | Description | |---|---| |'search_action' | search action performed by customer | |'action' | Action taken by the agent | |'intent' | Intents from the conversation | |'timestamps' | Timestamp for each of the dialogues | |'dialogue' | Dialogue recorded between agent & customer | |'expected_action' | Expected action from agent (human-annotated)| |'correct_sample' | whether action performed by agent was same as expected_action | BuilderConfig: `air_dialogue_kb`: Provides for the Agent Context _ca_ = (_db_, _r_ ) key name | Description | |---|---| |'kb' | Available flights in the database | |'reservation' | whether customer has an existing reservation| ### Data Splits Data is split into Train/Dev & Test in the ration of 80%, 10% and 10% ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information No personal and sensitive information is stored ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [AirDialogue team](mailto:[email protected]) For issues regarding HuggingFace Dataset Hub implementation [Aakash Gupta](mailto:[email protected]) ### Licensing Information cc-by-nc-4.0 ### Citation Information ```bibtex @inproceedings{wei-etal-2018-airdialogue, title = "{A}ir{D}ialogue: An Environment for Goal-Oriented Dialogue Research", author = "Wei, Wei and Le, Quoc and Dai, Andrew and Li, Jia", editor = "Riloff, Ellen and Chiang, David and Hockenmaier, Julia and Tsujii, Jun{'}ichi", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", month = oct # "-" # nov, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/D18-1419", doi = "10.18653/v1/D18-1419", pages = "3844--3854", abstract = "Recent progress in dialogue generation has inspired a number of studies on dialogue systems that are capable of accomplishing tasks through natural language interactions. A promising direction among these studies is the use of reinforcement learning techniques, such as self-play, for training dialogue agents. However, current datasets are limited in size, and the environment for training agents and evaluating progress is relatively unsophisticated. We present AirDialogue, a large dataset that contains 301,427 goal-oriented conversations. To collect this dataset, we create a context-generator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. Our experimental results indicate that state-of-the-art dialogue models can only achieve a score of 0.17 while humans can reach a score of 0.91, which suggests significant opportunities for future improvement.", } ``` ### Contributions Thanks to [@skyprince999](https://github.com/skyprince999) for adding this dataset.
aps/super_glue
aps
2024-01-29T13:07:56Z
364,503
168
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_ids:natural-language-inference", "task_ids:word-sense-disambiguation", "task_ids:coreference-resolution", "task_ids:extractive-qa", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "source_datasets:extended|other", "language:en", "license:other", "size_categories:10K<n<100K", "arxiv:1905.00537", "region:us", "superglue", "NLU", "natural language understanding" ]
[ "text-classification", "token-classification", "question-answering" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - expert-generated language_creators: - other language: - en license: - other multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|other task_categories: - text-classification - token-classification - question-answering task_ids: - natural-language-inference - word-sense-disambiguation - coreference-resolution - extractive-qa paperswithcode_id: superglue pretty_name: SuperGLUE tags: - superglue - NLU - natural language understanding dataset_info: - config_name: boolq features: - name: question dtype: string - name: passage dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': 'False' '1': 'True' splits: - name: test num_bytes: 2107997 num_examples: 3245 - name: train num_bytes: 6179206 num_examples: 9427 - name: validation num_bytes: 2118505 num_examples: 3270 download_size: 4118001 dataset_size: 10405708 - config_name: cb features: - name: premise dtype: string - name: hypothesis dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': entailment '1': contradiction '2': neutral splits: - name: test num_bytes: 93660 num_examples: 250 - name: train num_bytes: 87218 num_examples: 250 - name: validation num_bytes: 21894 num_examples: 56 download_size: 75482 dataset_size: 202772 - config_name: copa features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': choice1 '1': choice2 splits: - name: test num_bytes: 60303 num_examples: 500 - name: train num_bytes: 49599 num_examples: 400 - name: validation num_bytes: 12586 num_examples: 100 download_size: 43986 dataset_size: 122488 - config_name: multirc features: - name: paragraph dtype: string - name: question dtype: string - name: answer dtype: string - name: idx struct: - name: paragraph dtype: int32 - name: question dtype: int32 - name: answer dtype: int32 - name: label dtype: class_label: names: '0': 'False' '1': 'True' splits: - name: test num_bytes: 14996451 num_examples: 9693 - name: train num_bytes: 46213579 num_examples: 27243 - name: validation num_bytes: 7758918 num_examples: 4848 download_size: 1116225 dataset_size: 68968948 - config_name: record features: - name: passage dtype: string - name: query dtype: string - name: entities sequence: string - name: entity_spans sequence: - name: text dtype: string - name: start dtype: int32 - name: end dtype: int32 - name: answers sequence: string - name: idx struct: - name: passage dtype: int32 - name: query dtype: int32 splits: - name: train num_bytes: 179232052 num_examples: 100730 - name: validation num_bytes: 17479084 num_examples: 10000 - name: test num_bytes: 17200575 num_examples: 10000 download_size: 51757880 dataset_size: 213911711 - config_name: rte features: - name: premise dtype: string - name: hypothesis dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': entailment '1': not_entailment splits: - name: test num_bytes: 975799 num_examples: 3000 - name: train num_bytes: 848745 num_examples: 2490 - name: validation num_bytes: 90899 num_examples: 277 download_size: 750920 dataset_size: 1915443 - config_name: wic features: - name: word dtype: string - name: sentence1 dtype: string - name: sentence2 dtype: string - name: start1 dtype: int32 - name: start2 dtype: int32 - name: end1 dtype: int32 - name: end2 dtype: int32 - name: idx dtype: int32 - name: label dtype: class_label: names: '0': 'False' '1': 'True' splits: - name: test num_bytes: 180593 num_examples: 1400 - name: train num_bytes: 665183 num_examples: 5428 - name: validation num_bytes: 82623 num_examples: 638 download_size: 396213 dataset_size: 928399 - config_name: wsc features: - name: text dtype: string - name: span1_index dtype: int32 - name: span2_index dtype: int32 - name: span1_text dtype: string - name: span2_text dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': 'False' '1': 'True' splits: - name: test num_bytes: 31572 num_examples: 146 - name: train num_bytes: 89883 num_examples: 554 - name: validation num_bytes: 21637 num_examples: 104 download_size: 32751 dataset_size: 143092 - config_name: wsc.fixed features: - name: text dtype: string - name: span1_index dtype: int32 - name: span2_index dtype: int32 - name: span1_text dtype: string - name: span2_text dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': 'False' '1': 'True' splits: - name: test num_bytes: 31568 num_examples: 146 - name: train num_bytes: 89883 num_examples: 554 - name: validation num_bytes: 21637 num_examples: 104 download_size: 32751 dataset_size: 143088 - config_name: axb features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': entailment '1': not_entailment splits: - name: test num_bytes: 238392 num_examples: 1104 download_size: 33950 dataset_size: 238392 - config_name: axg features: - name: premise dtype: string - name: hypothesis dtype: string - name: idx dtype: int32 - name: label dtype: class_label: names: '0': entailment '1': not_entailment splits: - name: test num_bytes: 53581 num_examples: 356 download_size: 10413 dataset_size: 53581 --- # Dataset Card for "super_glue" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://super.gluebenchmark.com/ - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** https://arxiv.org/abs/1905.00537 - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 58.36 MB - **Size of the generated dataset:** 249.57 MB - **Total amount of disk used:** 307.94 MB ### Dataset Summary SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### axb - **Size of downloaded dataset files:** 0.03 MB - **Size of the generated dataset:** 0.24 MB - **Total amount of disk used:** 0.27 MB An example of 'test' looks as follows. ``` ``` #### axg - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.05 MB - **Total amount of disk used:** 0.06 MB An example of 'test' looks as follows. ``` ``` #### boolq - **Size of downloaded dataset files:** 4.12 MB - **Size of the generated dataset:** 10.40 MB - **Total amount of disk used:** 14.52 MB An example of 'train' looks as follows. ``` ``` #### cb - **Size of downloaded dataset files:** 0.07 MB - **Size of the generated dataset:** 0.20 MB - **Total amount of disk used:** 0.28 MB An example of 'train' looks as follows. ``` ``` #### copa - **Size of downloaded dataset files:** 0.04 MB - **Size of the generated dataset:** 0.13 MB - **Total amount of disk used:** 0.17 MB An example of 'train' looks as follows. ``` ``` ### Data Fields The data fields are the same among all splits. #### axb - `sentence1`: a `string` feature. - `sentence2`: a `string` feature. - `idx`: a `int32` feature. - `label`: a classification label, with possible values including `entailment` (0), `not_entailment` (1). #### axg - `premise`: a `string` feature. - `hypothesis`: a `string` feature. - `idx`: a `int32` feature. - `label`: a classification label, with possible values including `entailment` (0), `not_entailment` (1). #### boolq - `question`: a `string` feature. - `passage`: a `string` feature. - `idx`: a `int32` feature. - `label`: a classification label, with possible values including `False` (0), `True` (1). #### cb - `premise`: a `string` feature. - `hypothesis`: a `string` feature. - `idx`: a `int32` feature. - `label`: a classification label, with possible values including `entailment` (0), `contradiction` (1), `neutral` (2). #### copa - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `idx`: a `int32` feature. - `label`: a classification label, with possible values including `choice1` (0), `choice2` (1). ### Data Splits #### axb | |test| |---|---:| |axb|1104| #### axg | |test| |---|---:| |axg| 356| #### boolq | |train|validation|test| |-----|----:|---------:|---:| |boolq| 9427| 3270|3245| #### cb | |train|validation|test| |---|----:|---------:|---:| |cb | 250| 56| 250| #### copa | |train|validation|test| |----|----:|---------:|---:| |copa| 400| 100| 500| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The primary SuperGLUE tasks are built on and derived from existing datasets. We refer users to the original licenses accompanying each dataset, but it is our understanding that these licenses allow for their use and redistribution in a research context. ### Citation Information If you use SuperGLUE, please cite all the datasets you use in any papers that come out of your work. In addition, we encourage you to use the following BibTeX citation for SuperGLUE itself: ``` @article{wang2019superglue, title={Super{GLUE}: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Alex Wang and Yada Pruksachatkun and Nikita Nangia and Amanpreet Singh and Julian Michael and Felix Hill and Omer Levy and Samuel R. Bowman}, journal={arXiv preprint 1905.00537}, year={2019} } @inproceedings{clark2019boolq, title={{B}ool{Q}: Exploring the Surprising Difficulty of Natural Yes/No Questions}, author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei and Kwiatkowski, Tom and Collins, Michael and Toutanova, Kristina}, booktitle={Proceedings of NAACL-HLT 2019}, year={2019} } @inproceedings{demarneffe:cb, title={{The CommitmentBank}: Investigating projection in naturally occurring discourse}, author={De Marneffe, Marie-Catherine and Simons, Mandy and Tonhauser, Judith}, note={To appear in proceedings of Sinn und Bedeutung 23. Data can be found at https://github.com/mcdm/CommitmentBank/}, year={2019} } @inproceedings{roemmele2011choice, title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning}, author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S.}, booktitle={2011 AAAI Spring Symposium Series}, year={2011} } @inproceedings{khashabi2018looking, title={Looking beyond the surface: A challenge set for reading comprehension over multiple sentences}, author={Khashabi, Daniel and Chaturvedi, Snigdha and Roth, Michael and Upadhyay, Shyam and Roth, Dan}, booktitle={Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)}, pages={252--262}, year={2018} } @article{zhang2018record, title={{ReCoRD}: Bridging the Gap between Human and Machine Commonsense Reading Comprehension}, author={Sheng Zhang and Xiaodong Liu and Jingjing Liu and Jianfeng Gao and Kevin Duh and Benjamin Van Durme}, journal={arXiv preprint 1810.12885}, year={2018} } @incollection{dagan2006pascal, title={The {PASCAL} recognising textual entailment challenge}, author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo}, booktitle={Machine learning challenges. evaluating predictive uncertainty, visual object classification, and recognising tectual entailment}, pages={177--190}, year={2006}, publisher={Springer} } @article{bar2006second, title={The second {PASCAL} recognising textual entailment challenge}, author={Bar Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan}, year={2006} } @inproceedings{giampiccolo2007third, title={The third {PASCAL} recognizing textual entailment challenge}, author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill}, booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing}, pages={1--9}, year={2007}, organization={Association for Computational Linguistics}, } @article{bentivogli2009fifth, title={The Fifth {PASCAL} Recognizing Textual Entailment Challenge}, author={Bentivogli, Luisa and Dagan, Ido and Dang, Hoa Trang and Giampiccolo, Danilo and Magnini, Bernardo}, booktitle={TAC}, year={2009} } @inproceedings{pilehvar2018wic, title={{WiC}: The Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations}, author={Pilehvar, Mohammad Taher and Camacho-Collados, Jose}, booktitle={Proceedings of NAACL-HLT}, year={2019} } @inproceedings{rudinger2018winogender, title={Gender Bias in Coreference Resolution}, author={Rudinger, Rachel and Naradowsky, Jason and Leonard, Brian and {Van Durme}, Benjamin}, booktitle={Proceedings of NAACL-HLT}, year={2018} } @inproceedings{poliak2018dnc, title={Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation}, author={Poliak, Adam and Haldar, Aparajita and Rudinger, Rachel and Hu, J. Edward and Pavlick, Ellie and White, Aaron Steven and {Van Durme}, Benjamin}, booktitle={Proceedings of EMNLP}, year={2018} } @inproceedings{levesque2011winograd, title={The {W}inograd schema challenge}, author={Levesque, Hector J and Davis, Ernest and Morgenstern, Leora}, booktitle={{AAAI} Spring Symposium: Logical Formalizations of Commonsense Reasoning}, volume={46}, pages={47}, year={2011} } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
ncbi/pubmed
ncbi
2024-01-26T17:52:23Z
530
127
[ "task_categories:text-generation", "task_categories:fill-mask", "task_categories:text-classification", "task_ids:language-modeling", "task_ids:masked-language-modeling", "task_ids:text-scoring", "task_ids:topic-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:10M<n<100M", "region:us", "citation-estimation" ]
[ "text-generation", "fill-mask", "text-classification" ]
2022-03-02T23:29:22Z
null
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - other multilinguality: - monolingual size_categories: - 10M<n<100M source_datasets: - original task_categories: - text-generation - fill-mask - text-classification task_ids: - language-modeling - masked-language-modeling - text-scoring - topic-classification paperswithcode_id: pubmed pretty_name: PubMed tags: - citation-estimation dataset_info: - config_name: '2024' features: - name: MedlineCitation struct: - name: PMID dtype: int32 - name: DateCompleted struct: - name: Year dtype: int32 - name: Month dtype: int32 - name: Day dtype: int32 - name: NumberOfReferences dtype: int32 - name: DateRevised struct: - name: Year dtype: int32 - name: Month dtype: int32 - name: Day dtype: int32 - name: Article struct: - name: Abstract struct: - name: AbstractText dtype: string - name: ArticleTitle dtype: string - name: AuthorList struct: - name: Author sequence: - name: LastName dtype: string - name: ForeName dtype: string - name: Initials dtype: string - name: CollectiveName dtype: string - name: Language dtype: string - name: GrantList struct: - name: Grant sequence: - name: GrantID dtype: string - name: Agency dtype: string - name: Country dtype: string - name: PublicationTypeList struct: - name: PublicationType sequence: string - name: MedlineJournalInfo struct: - name: Country dtype: string - name: ChemicalList struct: - name: Chemical sequence: - name: RegistryNumber dtype: string - name: NameOfSubstance dtype: string - name: CitationSubset dtype: string - name: MeshHeadingList struct: - name: MeshHeading sequence: - name: DescriptorName dtype: string - name: QualifierName dtype: string - name: PubmedData struct: - name: ArticleIdList sequence: - name: ArticleId sequence: string - name: PublicationStatus dtype: string - name: History struct: - name: PubMedPubDate sequence: - name: Year dtype: int32 - name: Month dtype: int32 - name: Day dtype: int32 - name: ReferenceList sequence: - name: Citation dtype: string - name: CitationId dtype: int32 splits: - name: train num_bytes: 54723097181 num_examples: 36555430 download_size: 45202943276 dataset_size: 54723097181 --- # Dataset Card for PubMed ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** : [https://www.nlm.nih.gov/databases/download/pubmed_medline.html]() - **Documentation:** : [https://www.nlm.nih.gov/databases/download/pubmed_medline_documentation.html]() - **Repository:** - **Paper:** - **Leaderboard:** - **Point of Contact:** [National Center for Biotechnology Information](mailto:[email protected]) ### Dataset Summary PubMed comprises more than 36 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites. NLM produces a baseline set of PubMed citation records in XML format for download on an annual basis. The annual baseline is released in December of each year. - Last Updated December 15, 2023 Each day, NLM produces update files that include new, revised, and deleted citations. Source: https://ftp.ncbi.nlm.nih.gov/pubmed/README.txt ### Supported Tasks and Leaderboards [More Information Needed] ### Languages - English ## Dataset Structure Bear in mind the data comes from XML that have various tags that are hard to reflect in a concise JSON format. Tags and list are kind of non "natural" to XML documents leading this library to make some choices regarding data. "Journal" info was dropped altogether as it would have led to many fields being empty all the time. The hierarchy is also a bit unnatural but the choice was made to keep as close as possible to the original data for future releases that may change schema from NLM's side. Author has been kept and contains either "ForeName", "LastName", "Initials", or "CollectiveName". (All the fields will be present all the time, but only some will be filled) ### Data Instances ```json { "MedlineCitation": { "PMID": 0, "DateCompleted": {"Year": 0, "Month": 0, "Day": 0}, "NumberOfReferences": 0, "DateRevised": {"Year": 0, "Month": 0, "Day": 0}, "Article": { "Abstract": {"AbstractText": "Some abstract (can be missing)" }, "ArticleTitle": "Article title", "AuthorList": {"Author": [ {"FirstName": "John", "ForeName": "Doe", "Initials": "JD", "CollectiveName": ""} {"CollectiveName": "The Manhattan Project", "FirstName": "", "ForeName": "", "Initials": ""} ]}, "Language": "en", "GrantList": { "Grant": [], }, "PublicationTypeList": {"PublicationType": []}, }, "MedlineJournalInfo": {"Country": "France"}, "ChemicalList": {"Chemical": [{ "RegistryNumber": "XX", "NameOfSubstance": "Methanol" }]}, "CitationSubset": "AIM", "MeshHeadingList": { "MeshHeading": [], }, }, "PubmedData": { "ArticleIdList": {"ArticleId": "10.1002/bjs.1800650203"}, "PublicationStatus": "ppublish", "History": {"PubMedPubDate": [{"Year": 0, "Month": 0, "Day": 0}]}, "ReferenceList": [{"Citation": "Somejournal", "CitationId": 01}], }, } ``` ### Data Fields Main Fields will probably interest people are: - "MedlineCitation" > "Article" > "AuthorList" > "Author" - "MedlineCitation" > "Article" > "Abstract" > "AbstractText" - "MedlineCitation" > "Article" > "Article Title" - "MedlineCitation" > "ChemicalList" > "Chemical" - "MedlineCitation" > "NumberOfReferences" ### Data Splits There are no splits in this dataset. It is given as is. ## Dataset Creation ### Curation Rationale The use of "Medline" in an element name does not mean the record represents a citation from a MEDLINE-selected journal. When the NLM DTDs and XML elements were first created, MEDLINE records were the only data exported. Now NLM exports citations other than MEDLINE records. To minimize unnecessary disruption to users of the data, NLM has retained the original element names (e.g., MedlineCitation, MedlineJournalInfo, MedlineTA). Policies affecting data creation have evolved over the years. Some PubMed records are added or revised well after the cited article was first published. In these cases, on occasion an element that had not yet been created when the article was published may appear on the record. For example, the Abstract element was not created until 1975, but some records published before 1975 but added to PubMed after 1975 contain <Abstract>. It is also possible that an element may be treated differently from the way it would have been treated had the record been created or maintained near the time the article was published. For example, the number of <Author> occurrences can diverge from the policies stated in the NLM author indexing policy (https://pubmed.ncbi.nlm.nih.gov/help/#author-indexing-policy). Lastly, as of October 2016, the publisher of the original article has the capability to edit the PubMed record’s citation data, with the exception of MeSH data, using the PubMed Data Management system. PubMed record data for older citations, therefore, may contain data for elements that didn’t exist when the citation was created. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [National Library of Medicine Terms and Conditions](https://www.nlm.nih.gov/databases/download/terms_and_conditions.html) Downloading PubMed data from the National Library of Medicine FTP servers indicates your acceptance of the following Terms and Conditions. No charges, usage fees or royalties are paid to NLM for these data. #### PubMed Specific Terms: NLM freely provides PubMed data. Please note some abstracts may be protected by copyright. #### General Terms and Conditions Users of the data agree to: - acknowledge NLM as the source of the data in a clear and conspicuous manner, - NOT use the PubMed wordmark or the PubMed logo in association or in connection with user's or any other party's product or service. - NOT adopt, use, or seek to register any mark or trade name confusingly similar to or suggestive of the PubMed wordmark or PubMed logo - NOT to indicate or imply that NLM/NIH/HHS has endorsed its products/services/applications. Users who republish or redistribute the data (services, products or raw data) agree to: - maintain the most current version of all distributed data, or - make known in a clear and conspicuous manner that the products/services/applications do not reflect the most current/accurate data available from NLM. These data are produced with a reasonable standard of care, but NLM makes no warranties express or implied, including no warranty of merchantability or fitness for particular purpose, regarding the accuracy or completeness of the data. Users agree to hold NLM and the U.S. Government harmless from any liability resulting from errors in the data. NLM disclaims any liability for any consequences due to use, misuse, or interpretation of information contained or not contained in the data. NLM does not provide legal advice regarding copyright, fair use, or other aspects of intellectual property rights. See the NLM Copyright page: https://www.nlm.nih.gov/web_policies.html#copyright NLM reserves the right to change the type and format of its machine-readable data. NLM will take reasonable steps to inform users of any changes to the format of the data before the data are distributed via the announcement section or subscription to email and RSS updates. The PubMed wordmark and the PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited. ### Citation Information [Courtesy of the U.S. National Library of Medicine](https://www.nlm.nih.gov/databases/download/terms_and_conditions.html). ### Contributions Thanks to [@Narsil](https://github.com/Narsil) for adding this dataset.
IWSLT/mt_eng_vietnamese
IWSLT
2024-01-18T11:09:37Z
296
26
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:en", "language:vi", "license:unknown", "size_categories:100K<n<1M", "region:us" ]
[ "translation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found multilinguality: - multilingual language: - en - vi license: - unknown size_categories: - 100K<n<1M source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: null pretty_name: MtEngVietnamese dataset_info: - config_name: iwslt2015-vi-en features: - name: translation dtype: translation: languages: - vi - en splits: - name: train num_bytes: 32478282 num_examples: 133318 - name: validation num_bytes: 323743 num_examples: 1269 - name: test num_bytes: 323743 num_examples: 1269 download_size: 32323025 dataset_size: 33125768 - config_name: iwslt2015-en-vi features: - name: translation dtype: translation: languages: - en - vi splits: - name: train num_bytes: 32478282 num_examples: 133318 - name: validation num_bytes: 323743 num_examples: 1269 - name: test num_bytes: 323743 num_examples: 1269 download_size: 32323025 dataset_size: 33125768 --- # Dataset Card for mt_eng_vietnamese ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://nlp.stanford.edu/projects/nmt/data/iwslt15.en-vi/ - **Repository:** [Needs More Information] - **Paper:** [Needs More Information] - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary Preprocessed Dataset from IWSLT'15 English-Vietnamese machine translation: English-Vietnamese. ### Supported Tasks and Leaderboards Machine Translation ### Languages English, Vietnamese ## Dataset Structure ### Data Instances An example from the dataset: ``` { 'translation': { 'en': 'In 4 minutes , atmospheric chemist Rachel Pike provides a glimpse of the massive scientific effort behind the bold headlines on climate change , with her team -- one of thousands who contributed -- taking a risky flight over the rainforest in pursuit of data on a key molecule .', 'vi': 'Trong 4 phút , chuyên gia hoá học khí quyển Rachel Pike giới thiệu sơ lược về những nỗ lực khoa học miệt mài đằng sau những tiêu đề táo bạo về biến đổi khí hậu , cùng với đoàn nghiên cứu của mình -- hàng ngàn người đã cống hiến cho dự án này -- một chuyến bay mạo hiểm qua rừng già để tìm kiếm thông tin về một phân tử then chốt .' } } ``` ### Data Fields - translation: - en: text in english - vi: text in vietnamese ### Data Splits train: 133318, validation: 1269, test: 1269 ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{Luong-Manning:iwslt15, Address = {Da Nang, Vietnam} Author = {Luong, Minh-Thang and Manning, Christopher D.}, Booktitle = {International Workshop on Spoken Language Translation}, Title = {Stanford Neural Machine Translation Systems for Spoken Language Domain}, Year = {2015}} ``` ### Contributions Thanks to [@Nilanshrajput](https://github.com/Nilanshrajput) for adding this dataset.
Helsinki-NLP/kde4
Helsinki-NLP
2024-01-18T11:07:20Z
1,073
22
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:ar", "language:as", "language:ast", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:crh", "language:cs", "language:csb", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:gu", "language:ha", "language:he", "language:hi", "language:hne", "language:hr", "language:hsb", "language:hu", "language:hy", "language:id", "language:is", "language:it", "language:ja", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:ku", "language:lb", "language:lt", "language:lv", "language:mai", "language:mk", "language:ml", "language:mr", "language:ms", "language:mt", "language:nb", "language:nds", "language:ne", "language:nl", "language:nn", "language:nso", "language:oc", "language:or", "language:pa", "language:pl", "language:ps", "language:pt", "language:ro", "language:ru", "language:rw", "language:se", "language:si", "language:sk", "language:sl", "language:sr", "language:sv", "language:ta", "language:te", "language:tg", "language:th", "language:tr", "language:uk", "language:uz", "language:vi", "language:wa", "language:xh", "language:zh", "license:unknown", "size_categories:100K<n<1M", "region:us" ]
[ "translation" ]
2022-03-02T23:29:22Z
1
--- annotations_creators: - found language_creators: - found language: - af - ar - as - ast - be - bg - bn - br - ca - crh - cs - csb - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gl - gu - ha - he - hi - hne - hr - hsb - hu - hy - id - is - it - ja - ka - kk - km - kn - ko - ku - lb - lt - lv - mai - mk - ml - mr - ms - mt - nb - nds - ne - nl - nn - nso - oc - or - pa - pl - ps - pt - ro - ru - rw - se - si - sk - sl - sr - sv - ta - te - tg - th - tr - uk - uz - vi - wa - xh - zh language_bcp47: - bn-IN - en-GB - pt-BR - zh-CN - zh-HK - zh-TW license: - unknown multilinguality: - multilingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - translation task_ids: [] paperswithcode_id: null pretty_name: KDE4 dataset_info: - config_name: fi-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - fi - nl splits: - name: train num_bytes: 8845933 num_examples: 101593 download_size: 2471355 dataset_size: 8845933 - config_name: it-ro features: - name: id dtype: string - name: translation dtype: translation: languages: - it - ro splits: - name: train num_bytes: 8827049 num_examples: 109003 download_size: 2389051 dataset_size: 8827049 - config_name: nl-sv features: - name: id dtype: string - name: translation dtype: translation: languages: - nl - sv splits: - name: train num_bytes: 22294586 num_examples: 188454 download_size: 6203460 dataset_size: 22294586 - config_name: en-it features: - name: id dtype: string - name: translation dtype: translation: languages: - en - it splits: - name: train num_bytes: 27132585 num_examples: 220566 download_size: 7622662 dataset_size: 27132585 - config_name: en-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - en - fr splits: - name: train num_bytes: 25650409 num_examples: 210173 download_size: 7049364 dataset_size: 25650409 --- # Dataset Card for KDE4 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** http://opus.nlpl.eu/KDE4.php - **Repository:** None - **Paper:** http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf - **Leaderboard:** [More Information Needed] - **Point of Contact:** [More Information Needed] ### Dataset Summary To load a language pair which isn't part of the config, all you need to do is specify the language code as pairs. You can find the valid pairs in Homepage section of Dataset Description: http://opus.nlpl.eu/KDE4.php E.g. `dataset = load_dataset("kde4", lang1="en", lang2="nl")` ### Supported Tasks and Leaderboards [More Information Needed] ### Languages [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.