modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-28 12:28:31
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 524
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-28 12:28:28
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
2fast9furious/fast_stupidity
|
2fast9furious
| 2025-08-27T15:56:25Z | 0 | 0 | null |
[
"license:cc-by-nd-4.0",
"region:us"
] | null | 2025-08-27T14:59:58Z |
---
license: cc-by-nd-4.0
---
Model type: Transformer
Task: text generation
Languages: English, chinese
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756309941
|
OksanaB
| 2025-08-27T15:53:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:53:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Sarath3321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_flapping_narwhal
|
Sarath3321
| 2025-08-27T15:53:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am singing_flapping_narwhal",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T12:13:21Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am singing_flapping_narwhal
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
granenko/taxi_model
|
granenko
| 2025-08-27T15:49:13Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-27T15:49:08Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi_model
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="granenko/taxi_model", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
18-Milica-y-Angel-David-debut-video-Clips/18.ver.video.milica.y.angel.david.debut.filtrado.clip.viral.completo
|
18-Milica-y-Angel-David-debut-video-Clips
| 2025-08-27T15:48:43Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:46:00Z |
<a href="http://landht.com/full-video/?v=milica-angel" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a>
<a href="http://landht.com/full-video/?v=milica-angel" rel="nofollow">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 Viral 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a>
<a href="http://landht.com/full-video/?v=milica-angel"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsgd" /></a>
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756309687
|
Ferdi3425
| 2025-08-27T15:48:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:48:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tejals22/blockassist-bc-pale_energetic_monkey_1756300068
|
tejals22
| 2025-08-27T15:47:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pale energetic monkey",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:47:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pale energetic monkey
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
nightmedia/QiMing-Janus-Rhapsody-dwq6-mlx
|
nightmedia
| 2025-08-27T15:47:13Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"qwen3",
"qwen",
"unsloth",
"qiming",
"qiming-holos",
"bagua",
"decision-making",
"strategic-analysis",
"cognitive-architecture",
"chat",
"lora",
"philosophy-driven-ai",
"text-generation",
"conversational",
"zh",
"en",
"base_model:aifeifei798/QiMing-Janus-Rhapsody",
"base_model:adapter:aifeifei798/QiMing-Janus-Rhapsody",
"license:apache-2.0",
"6-bit",
"region:us"
] |
text-generation
| 2025-08-27T14:52:17Z |
---
license: apache-2.0
language:
- zh
- en
tags:
- qwen
- qwen3
- unsloth
- qiming
- qiming-holos
- bagua
- decision-making
- strategic-analysis
- cognitive-architecture
- chat
- lora
- philosophy-driven-ai
- mlx
pipeline_tag: text-generation
base_model: aifeifei798/QiMing-Janus-Rhapsody
library_name: mlx
---
# QiMing-Janus-Rhapsody-dwq6-mlx
This model [QiMing-Janus-Rhapsody-dwq6-mlx](https://huggingface.co/QiMing-Janus-Rhapsody-dwq6-mlx) was
converted to MLX format from [aifeifei798/QiMing-Janus-Rhapsody](https://huggingface.co/aifeifei798/QiMing-Janus-Rhapsody)
using mlx-lm version **0.26.4**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("QiMing-Janus-Rhapsody-dwq6-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
MarryMy/blockassist-bc-stocky_energetic_porcupine_1756305804
|
MarryMy
| 2025-08-27T15:47:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stocky energetic porcupine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:46:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stocky energetic porcupine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Bheri/labse-en-sa-v1
|
Bheri
| 2025-08-27T15:44:12Z | 0 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:257886",
"loss:MultipleNegativesRankingLoss",
"arxiv:1908.10084",
"arxiv:1705.00652",
"base_model:sentence-transformers/LaBSE",
"base_model:finetune:sentence-transformers/LaBSE",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-08-27T15:43:01Z |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:257886
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: 'Karwa Chauth is a festival celebrated by Hindu women of Northern
and Western India on the fourth day after Purnima in the month of Kartika.
'
sentences:
- 'तस्याः युग्मभ्रातुः वंशानुगत-राजकुमारस्य जाक् इत्यस्य निमेषद्वयात् प्राक् सा
अजायत।
'
- '"तथापि, Internet Explorer नोपयोक्तव्यम् । यतो हि तत् सम्यक् डिस्प्ले न करोति
।"'
- 'कर्वा-चौथ् इति उत्सवः उत्तर-पश्चिम-भारतस्य हिन्दु-महिलाभिः कार्तिकमासे पूर्णिमायाः
अनन्तरं चतुर्थदिने आचर्यते।
'
- source_sentence: '"""And if any man will hurt them, fire proceedeth out of their
mouth, and devoureth their enemies: and if any man will hurt them, he must in
this manner be killed."""'
sentences:
- '"C तथा C++ उभयोः मध्येऽपि, इदं समानं मार्गं इम्प्लिमेण्ट् कर्तुमनुसरति ।"'
- यदि केचित् तौ हिंसितुं चेष्टन्ते तर्हि तयो र्वदनाभ्याम् अग्नि र्निर्गत्य तयोः
शत्रून् भस्मीकरिष्यति। यः कश्चित् तौ हिंसितुं चेष्टते तेनैवमेव विनष्टव्यं।
- यवक्रीत उवाच नायं शक्यस्त्वया बड़े महानोघस्तपोधन। अशक्याद् विनिवर्तस्व शक्यमर्थं
समारभ॥
- source_sentence: 'It tarnishes in air to produce a whitish oxidized layer on the
surface.
'
sentences:
- उपस्थितानां रत्नानां श्रेष्ठानामर्घहारिणाम्। नादृश्यत परः पारो नापरस्तत्र भारत॥
- 'इदं वायौ कलङ्कितं भवति, येन तले श्वेतवर्णीयं आक्सिडैस्ड्-आस्तरणं निर्मीयते।
'
- आचार्येणाभ्यनुज्ञातश्चतुर्णामेकमाश्रमम्। आविमोक्षाच्छरीरस्य सोऽवतिष्ठेद् यथाविधि॥
- source_sentence: 'If you''re planning to fund part or all of your child''s higher
education, it''s best to start saving early on.
'
sentences:
- समयं वाजिमेधस्य विदित्वा पुरुषर्षभः। यथोक्तो धर्मपुत्रेण प्रव्रजन् स्वपुरी प्रति॥
- 'यदि भवान् भवतः सन्ततेः उच्चशिक्षायाः कृते, आंशिकं वा सम्पूर्णं वा शुल्कं दातुम्
इच्छति तर्हि तदर्थं पूर्वमेव धनसञ्चयस्य आरम्भः क्षेमकरः भवेत्।
'
- '"""तदनन्तरं तेषां सप्तकंसधारिणां सप्तदूतानाम् एक आगत्य मां सम्भाष्यावदत्, अत्रागच्छ,
मेदिन्या नरपतयो यया वेश्यया सार्द्धं व्यभिचारकर्म्म कृतवन्तः,"""'
- source_sentence: In spite of these, Dhananjaya made Drona's son carless by cutting
off the out-stretched bow of his foe with three shafts, killing his driver with
a razor like shaft and making away with his banner with three and his four horses
with four other shafts.
sentences:
- तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च
पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥
- एकवारं पूरितं चेत् एतां प्रक्रियां undo कर्तुं न शक्नुमः ।
- क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/LaBSE
results:
- task:
type: translation
name: Translation
dataset:
name: eval en sa
type: eval-en-sa
metrics:
- type: src2trg_accuracy
value: 0.944
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.947
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.9455
name: Mean Accuracy
---
# SentenceTransformer based on sentence-transformers/LaBSE
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"In spite of these, Dhananjaya made Drona's son carless by cutting off the out-stretched bow of his foe with three shafts, killing his driver with a razor like shaft and making away with his banner with three and his four horses with four other shafts.",
'तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥',
'क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Translation
* Dataset: `eval-en-sa`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.944 |
| trg2src_accuracy | 0.947 |
| **mean_accuracy** | **0.9455** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 257,886 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 31.6 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 40.18 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>It normally connects to port 80 on a computer.<br></code> | <code>इदं सामान्यतः एकस्मिन् सङ्गणके पोर्ट् ८० इत्यनेन सम्पर्कं साधयति।<br></code> |
| <code>He who gives to a Brahmana a good bed perfumed with fragrant scents, covered with an excellent sheet, and pillows, gets without any effort on his part a beautiful wife, belonging to a respectable family and of agreeable manners.</code> | <code>सुगन्धचित्रास्तरणोपधानं दद्यान्नरो यः शयनं द्विजाय। रूपान्वितां पक्षवती मनोज्ञां भार्यामयत्नोपगतां लभेत् सः।</code> |
| <code>By mid-1665, with the fortress at Purandar besieged and near capture, Shivaji was forced to come to terms with Jai Singh.<br></code> | <code>१६६५ तमवर्षस्य मध्यभागे यावत् पुरन्दरस्थस्य दुर्गस्य परिवेष्टनं कृत्वा, ग्रहणस्य समीपे, शिवाजी जयसिङ्घेन सह सन्धानं कर्तुं बाध्यः अभवत्।<br></code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `num_train_epochs`: 15
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | eval-en-sa_mean_accuracy |
|:-------:|:------:|:-------------:|:------------------------:|
| 0.0310 | 500 | 0.4289 | - |
| 0.0620 | 1000 | 0.182 | - |
| 0.0931 | 1500 | 0.1405 | - |
| 0.1241 | 2000 | 0.1097 | - |
| 0.1551 | 2500 | 0.0911 | - |
| 0.1861 | 3000 | 0.0791 | - |
| 0.2171 | 3500 | 0.0725 | - |
| 0.2482 | 4000 | 0.067 | - |
| 0.2792 | 4500 | 0.0594 | - |
| 0.3102 | 5000 | 0.0629 | - |
| 0.3412 | 5500 | 0.0535 | - |
| 0.3723 | 6000 | 0.0512 | - |
| 0.4033 | 6500 | 0.0456 | - |
| 0.4343 | 7000 | 0.0462 | - |
| 0.4653 | 7500 | 0.043 | - |
| 0.4963 | 8000 | 0.0425 | - |
| 0.5274 | 8500 | 0.0412 | - |
| 0.5584 | 9000 | 0.0418 | - |
| 0.5894 | 9500 | 0.0415 | - |
| 0.6204 | 10000 | 0.0409 | - |
| 0.6514 | 10500 | 0.04 | - |
| 0.6825 | 11000 | 0.032 | - |
| 0.7135 | 11500 | 0.0323 | - |
| 0.7445 | 12000 | 0.0325 | - |
| 0.7755 | 12500 | 0.0355 | - |
| 0.8066 | 13000 | 0.0285 | - |
| 0.8376 | 13500 | 0.0281 | - |
| 0.8686 | 14000 | 0.0289 | - |
| 0.8996 | 14500 | 0.033 | - |
| 0.9306 | 15000 | 0.0336 | - |
| 0.9617 | 15500 | 0.0335 | - |
| 0.9927 | 16000 | 0.0278 | - |
| 1.0 | 16118 | - | 0.913 |
| 1.0237 | 16500 | 0.0312 | - |
| 1.0547 | 17000 | 0.0294 | - |
| 1.0857 | 17500 | 0.0288 | - |
| 1.1168 | 18000 | 0.0287 | - |
| 1.1478 | 18500 | 0.0245 | - |
| 1.1788 | 19000 | 0.0243 | - |
| 1.2098 | 19500 | 0.022 | - |
| 1.2408 | 20000 | 0.0266 | - |
| 1.2719 | 20500 | 0.0224 | - |
| 1.3029 | 21000 | 0.0283 | - |
| 1.3339 | 21500 | 0.02 | - |
| 1.3649 | 22000 | 0.0212 | - |
| 1.3960 | 22500 | 0.0197 | - |
| 1.4270 | 23000 | 0.0174 | - |
| 1.4580 | 23500 | 0.0179 | - |
| 1.4890 | 24000 | 0.0187 | - |
| 1.5200 | 24500 | 0.0191 | - |
| 1.5511 | 25000 | 0.0151 | - |
| 1.5821 | 25500 | 0.0161 | - |
| 1.6131 | 26000 | 0.0182 | - |
| 1.6441 | 26500 | 0.0155 | - |
| 1.6751 | 27000 | 0.013 | - |
| 1.7062 | 27500 | 0.0119 | - |
| 1.7372 | 28000 | 0.0119 | - |
| 1.7682 | 28500 | 0.0133 | - |
| 1.7992 | 29000 | 0.0113 | - |
| 1.8303 | 29500 | 0.011 | - |
| 1.8613 | 30000 | 0.0133 | - |
| 1.8923 | 30500 | 0.0114 | - |
| 1.9233 | 31000 | 0.0139 | - |
| 1.9543 | 31500 | 0.0131 | - |
| 1.9854 | 32000 | 0.0115 | - |
| 2.0 | 32236 | - | 0.9345 |
| 2.0164 | 32500 | 0.01 | - |
| 2.0474 | 33000 | 0.01 | - |
| 2.0784 | 33500 | 0.0091 | - |
| 2.1094 | 34000 | 0.0131 | - |
| 2.1405 | 34500 | 0.0096 | - |
| 2.1715 | 35000 | 0.0095 | - |
| 2.2025 | 35500 | 0.0103 | - |
| 2.2335 | 36000 | 0.0101 | - |
| 2.2645 | 36500 | 0.0102 | - |
| 2.2956 | 37000 | 0.0102 | - |
| 2.3266 | 37500 | 0.0085 | - |
| 2.3576 | 38000 | 0.0087 | - |
| 2.3886 | 38500 | 0.0103 | - |
| 2.4197 | 39000 | 0.0058 | - |
| 2.4507 | 39500 | 0.0086 | - |
| 2.4817 | 40000 | 0.0088 | - |
| 2.5127 | 40500 | 0.0088 | - |
| 2.5437 | 41000 | 0.007 | - |
| 2.5748 | 41500 | 0.0082 | - |
| 2.6058 | 42000 | 0.0069 | - |
| 2.6368 | 42500 | 0.0071 | - |
| 2.6678 | 43000 | 0.0058 | - |
| 2.6988 | 43500 | 0.0075 | - |
| 2.7299 | 44000 | 0.0064 | - |
| 2.7609 | 44500 | 0.0053 | - |
| 2.7919 | 45000 | 0.0055 | - |
| 2.8229 | 45500 | 0.0061 | - |
| 2.8540 | 46000 | 0.0059 | - |
| 2.8850 | 46500 | 0.0062 | - |
| 2.9160 | 47000 | 0.0046 | - |
| 2.9470 | 47500 | 0.0064 | - |
| 2.9780 | 48000 | 0.0053 | - |
| 3.0 | 48354 | - | 0.941 |
| 3.0091 | 48500 | 0.0048 | - |
| 3.0401 | 49000 | 0.0059 | - |
| 3.0711 | 49500 | 0.005 | - |
| 3.1021 | 50000 | 0.005 | 0.9415 |
| 3.1331 | 50500 | 0.0046 | - |
| 3.1642 | 51000 | 0.005 | - |
| 3.1952 | 51500 | 0.0051 | - |
| 3.2262 | 52000 | 0.0041 | - |
| 3.2572 | 52500 | 0.0052 | - |
| 3.2882 | 53000 | 0.0052 | - |
| 3.3193 | 53500 | 0.0053 | - |
| 3.3503 | 54000 | 0.0041 | - |
| 3.3813 | 54500 | 0.0042 | - |
| 3.4123 | 55000 | 0.0026 | - |
| 3.4434 | 55500 | 0.0045 | - |
| 3.4744 | 56000 | 0.0045 | - |
| 3.5054 | 56500 | 0.0054 | - |
| 3.5364 | 57000 | 0.0055 | - |
| 3.5674 | 57500 | 0.0046 | - |
| 3.5985 | 58000 | 0.0045 | - |
| 3.6295 | 58500 | 0.0041 | - |
| 3.6605 | 59000 | 0.0037 | - |
| 3.6915 | 59500 | 0.003 | - |
| 3.7225 | 60000 | 0.0039 | - |
| 3.7536 | 60500 | 0.0027 | - |
| 3.7846 | 61000 | 0.0041 | - |
| 3.8156 | 61500 | 0.003 | - |
| 3.8466 | 62000 | 0.0027 | - |
| 3.8777 | 62500 | 0.0039 | - |
| 3.9087 | 63000 | 0.0038 | - |
| 3.9397 | 63500 | 0.0029 | - |
| 3.9707 | 64000 | 0.0037 | - |
| 4.0 | 64472 | - | 0.9365 |
| 4.0017 | 64500 | 0.0023 | - |
| 4.0328 | 65000 | 0.0034 | - |
| 4.0638 | 65500 | 0.0033 | - |
| 4.0948 | 66000 | 0.0033 | - |
| 4.1258 | 66500 | 0.004 | - |
| 4.1568 | 67000 | 0.0026 | - |
| 4.1879 | 67500 | 0.0026 | - |
| 4.2189 | 68000 | 0.0025 | - |
| 4.2499 | 68500 | 0.0037 | - |
| 4.2809 | 69000 | 0.0041 | - |
| 4.3119 | 69500 | 0.0031 | - |
| 4.3430 | 70000 | 0.0025 | - |
| 4.3740 | 70500 | 0.0025 | - |
| 4.4050 | 71000 | 0.0022 | - |
| 4.4360 | 71500 | 0.0016 | - |
| 4.4671 | 72000 | 0.003 | - |
| 4.4981 | 72500 | 0.0029 | - |
| 4.5291 | 73000 | 0.003 | - |
| 4.5601 | 73500 | 0.0025 | - |
| 4.5911 | 74000 | 0.0027 | - |
| 4.6222 | 74500 | 0.0028 | - |
| 4.6532 | 75000 | 0.003 | - |
| 4.6842 | 75500 | 0.002 | - |
| 4.7152 | 76000 | 0.0028 | - |
| 4.7462 | 76500 | 0.0016 | - |
| 4.7773 | 77000 | 0.0022 | - |
| 4.8083 | 77500 | 0.0019 | - |
| 4.8393 | 78000 | 0.0019 | - |
| 4.8703 | 78500 | 0.0026 | - |
| 4.9014 | 79000 | 0.0023 | - |
| 4.9324 | 79500 | 0.0016 | - |
| 4.9634 | 80000 | 0.0019 | - |
| 4.9944 | 80500 | 0.0018 | - |
| 5.0 | 80590 | - | 0.937 |
| 5.0254 | 81000 | 0.0028 | - |
| 5.0565 | 81500 | 0.0019 | - |
| 5.0875 | 82000 | 0.0024 | - |
| 5.1185 | 82500 | 0.0016 | - |
| 5.1495 | 83000 | 0.0015 | - |
| 5.1805 | 83500 | 0.0017 | - |
| 5.2116 | 84000 | 0.0016 | - |
| 5.2426 | 84500 | 0.0026 | - |
| 5.2736 | 85000 | 0.0029 | - |
| 5.3046 | 85500 | 0.0027 | - |
| 5.3356 | 86000 | 0.002 | - |
| 5.3667 | 86500 | 0.002 | - |
| 5.3977 | 87000 | 0.0021 | - |
| 5.4287 | 87500 | 0.0011 | - |
| 5.4597 | 88000 | 0.0016 | - |
| 5.4908 | 88500 | 0.0019 | - |
| 5.5218 | 89000 | 0.0027 | - |
| 5.5528 | 89500 | 0.0012 | - |
| 5.5838 | 90000 | 0.0012 | - |
| 5.6148 | 90500 | 0.0016 | - |
| 5.6459 | 91000 | 0.0019 | - |
| 5.6769 | 91500 | 0.0016 | - |
| 5.7079 | 92000 | 0.0027 | - |
| 5.7389 | 92500 | 0.0013 | - |
| 5.7699 | 93000 | 0.0013 | - |
| 5.8010 | 93500 | 0.0015 | - |
| 5.8320 | 94000 | 0.0016 | - |
| 5.8630 | 94500 | 0.002 | - |
| 5.8940 | 95000 | 0.001 | - |
| 5.9251 | 95500 | 0.0014 | - |
| 5.9561 | 96000 | 0.0021 | - |
| 5.9871 | 96500 | 0.0022 | - |
| 6.0 | 96708 | - | 0.933 |
| 6.0181 | 97000 | 0.0016 | - |
| 6.0491 | 97500 | 0.0015 | - |
| 6.0802 | 98000 | 0.0011 | - |
| 6.1112 | 98500 | 0.0016 | - |
| 6.1422 | 99000 | 0.001 | - |
| 6.1732 | 99500 | 0.0013 | - |
| 6.2042 | 100000 | 0.0015 | 0.9365 |
| 6.2353 | 100500 | 0.0017 | - |
| 6.2663 | 101000 | 0.0015 | - |
| 6.2973 | 101500 | 0.0016 | - |
| 6.3283 | 102000 | 0.001 | - |
| 6.3593 | 102500 | 0.0013 | - |
| 6.3904 | 103000 | 0.0013 | - |
| 6.4214 | 103500 | 0.0011 | - |
| 6.4524 | 104000 | 0.0007 | - |
| 6.4834 | 104500 | 0.0013 | - |
| 6.5145 | 105000 | 0.0011 | - |
| 6.5455 | 105500 | 0.0011 | - |
| 6.5765 | 106000 | 0.0015 | - |
| 6.6075 | 106500 | 0.002 | - |
| 6.6385 | 107000 | 0.0011 | - |
| 6.6696 | 107500 | 0.0013 | - |
| 6.7006 | 108000 | 0.0017 | - |
| 6.7316 | 108500 | 0.0008 | - |
| 6.7626 | 109000 | 0.0011 | - |
| 6.7936 | 109500 | 0.0008 | - |
| 6.8247 | 110000 | 0.0009 | - |
| 6.8557 | 110500 | 0.0014 | - |
| 6.8867 | 111000 | 0.0014 | - |
| 6.9177 | 111500 | 0.0014 | - |
| 6.9488 | 112000 | 0.0014 | - |
| 6.9798 | 112500 | 0.0013 | - |
| 7.0 | 112826 | - | 0.9390 |
| 7.0108 | 113000 | 0.0011 | - |
| 7.0418 | 113500 | 0.0013 | - |
| 7.0728 | 114000 | 0.0012 | - |
| 7.1039 | 114500 | 0.001 | - |
| 7.1349 | 115000 | 0.0016 | - |
| 7.1659 | 115500 | 0.0009 | - |
| 7.1969 | 116000 | 0.0009 | - |
| 7.2279 | 116500 | 0.0007 | - |
| 7.2590 | 117000 | 0.0008 | - |
| 7.2900 | 117500 | 0.0014 | - |
| 7.3210 | 118000 | 0.0012 | - |
| 7.3520 | 118500 | 0.0007 | - |
| 7.3831 | 119000 | 0.001 | - |
| 7.4141 | 119500 | 0.001 | - |
| 7.4451 | 120000 | 0.0007 | - |
| 7.4761 | 120500 | 0.0008 | - |
| 7.5071 | 121000 | 0.0009 | - |
| 7.5382 | 121500 | 0.0009 | - |
| 7.5692 | 122000 | 0.001 | - |
| 7.6002 | 122500 | 0.0009 | - |
| 7.6312 | 123000 | 0.0007 | - |
| 7.6622 | 123500 | 0.0009 | - |
| 7.6933 | 124000 | 0.0007 | - |
| 7.7243 | 124500 | 0.0012 | - |
| 7.7553 | 125000 | 0.001 | - |
| 7.7863 | 125500 | 0.0005 | - |
| 7.8173 | 126000 | 0.0005 | - |
| 7.8484 | 126500 | 0.0008 | - |
| 7.8794 | 127000 | 0.0014 | - |
| 7.9104 | 127500 | 0.0014 | - |
| 7.9414 | 128000 | 0.0009 | - |
| 7.9725 | 128500 | 0.0008 | - |
| 8.0 | 128944 | - | 0.94 |
| 8.0035 | 129000 | 0.0013 | - |
| 8.0345 | 129500 | 0.0007 | - |
| 8.0655 | 130000 | 0.0007 | - |
| 8.0965 | 130500 | 0.0008 | - |
| 8.1276 | 131000 | 0.0009 | - |
| 8.1586 | 131500 | 0.0009 | - |
| 8.1896 | 132000 | 0.0007 | - |
| 8.2206 | 132500 | 0.0008 | - |
| 8.2516 | 133000 | 0.0008 | - |
| 8.2827 | 133500 | 0.0006 | - |
| 8.3137 | 134000 | 0.0008 | - |
| 8.3447 | 134500 | 0.001 | - |
| 8.3757 | 135000 | 0.0006 | - |
| 8.4068 | 135500 | 0.0007 | - |
| 8.4378 | 136000 | 0.0007 | - |
| 8.4688 | 136500 | 0.0009 | - |
| 8.4998 | 137000 | 0.0008 | - |
| 8.5308 | 137500 | 0.0006 | - |
| 8.5619 | 138000 | 0.0008 | - |
| 8.5929 | 138500 | 0.0007 | - |
| 8.6239 | 139000 | 0.0008 | - |
| 8.6549 | 139500 | 0.0006 | - |
| 8.6859 | 140000 | 0.0005 | - |
| 8.7170 | 140500 | 0.0006 | - |
| 8.7480 | 141000 | 0.0006 | - |
| 8.7790 | 141500 | 0.0006 | - |
| 8.8100 | 142000 | 0.0005 | - |
| 8.8410 | 142500 | 0.0006 | - |
| 8.8721 | 143000 | 0.0005 | - |
| 8.9031 | 143500 | 0.0006 | - |
| 8.9341 | 144000 | 0.0009 | - |
| 8.9651 | 144500 | 0.0007 | - |
| 8.9962 | 145000 | 0.0007 | - |
| 9.0 | 145062 | - | 0.938 |
| 9.0272 | 145500 | 0.0007 | - |
| 9.0582 | 146000 | 0.0007 | - |
| 9.0892 | 146500 | 0.0007 | - |
| 9.1202 | 147000 | 0.0007 | - |
| 9.1513 | 147500 | 0.0005 | - |
| 9.1823 | 148000 | 0.0005 | - |
| 9.2133 | 148500 | 0.0005 | - |
| 9.2443 | 149000 | 0.0007 | - |
| 9.2753 | 149500 | 0.0006 | - |
| 9.3064 | 150000 | 0.0005 | 0.938 |
| 9.3374 | 150500 | 0.0005 | - |
| 9.3684 | 151000 | 0.0004 | - |
| 9.3994 | 151500 | 0.0007 | - |
| 9.4305 | 152000 | 0.0006 | - |
| 9.4615 | 152500 | 0.0006 | - |
| 9.4925 | 153000 | 0.0012 | - |
| 9.5235 | 153500 | 0.0015 | - |
| 9.5545 | 154000 | 0.0006 | - |
| 9.5856 | 154500 | 0.0004 | - |
| 9.6166 | 155000 | 0.0004 | - |
| 9.6476 | 155500 | 0.0007 | - |
| 9.6786 | 156000 | 0.0005 | - |
| 9.7096 | 156500 | 0.0006 | - |
| 9.7407 | 157000 | 0.0004 | - |
| 9.7717 | 157500 | 0.0004 | - |
| 9.8027 | 158000 | 0.0006 | - |
| 9.8337 | 158500 | 0.0004 | - |
| 9.8647 | 159000 | 0.0005 | - |
| 9.8958 | 159500 | 0.0005 | - |
| 9.9268 | 160000 | 0.0004 | - |
| 9.9578 | 160500 | 0.0007 | - |
| 9.9888 | 161000 | 0.0008 | - |
| 10.0 | 161180 | - | 0.9405 |
| 10.0199 | 161500 | 0.0009 | - |
| 10.0509 | 162000 | 0.0007 | - |
| 10.0819 | 162500 | 0.0007 | - |
| 10.1129 | 163000 | 0.0007 | - |
| 10.1439 | 163500 | 0.0005 | - |
| 10.1750 | 164000 | 0.0005 | - |
| 10.2060 | 164500 | 0.0004 | - |
| 10.2370 | 165000 | 0.0006 | - |
| 10.2680 | 165500 | 0.0006 | - |
| 10.2990 | 166000 | 0.0005 | - |
| 10.3301 | 166500 | 0.0005 | - |
| 10.3611 | 167000 | 0.0006 | - |
| 10.3921 | 167500 | 0.0006 | - |
| 10.4231 | 168000 | 0.0003 | - |
| 10.4542 | 168500 | 0.0005 | - |
| 10.4852 | 169000 | 0.001 | - |
| 10.5162 | 169500 | 0.0007 | - |
| 10.5472 | 170000 | 0.0003 | - |
| 10.5782 | 170500 | 0.0005 | - |
| 10.6093 | 171000 | 0.0003 | - |
| 10.6403 | 171500 | 0.0004 | - |
| 10.6713 | 172000 | 0.0006 | - |
| 10.7023 | 172500 | 0.0006 | - |
| 10.7333 | 173000 | 0.0005 | - |
| 10.7644 | 173500 | 0.0004 | - |
| 10.7954 | 174000 | 0.0003 | - |
| 10.8264 | 174500 | 0.0007 | - |
| 10.8574 | 175000 | 0.0005 | - |
| 10.8884 | 175500 | 0.0003 | - |
| 10.9195 | 176000 | 0.0006 | - |
| 10.9505 | 176500 | 0.001 | - |
| 10.9815 | 177000 | 0.0007 | - |
| 11.0 | 177298 | - | 0.9345 |
| 11.0125 | 177500 | 0.0003 | - |
| 11.0436 | 178000 | 0.0003 | - |
| 11.0746 | 178500 | 0.0005 | - |
| 11.1056 | 179000 | 0.0005 | - |
| 11.1366 | 179500 | 0.0007 | - |
| 11.1676 | 180000 | 0.0008 | - |
| 11.1987 | 180500 | 0.0004 | - |
| 11.2297 | 181000 | 0.0006 | - |
| 11.2607 | 181500 | 0.0006 | - |
| 11.2917 | 182000 | 0.0009 | - |
| 11.3227 | 182500 | 0.0005 | - |
| 11.3538 | 183000 | 0.0004 | - |
| 11.3848 | 183500 | 0.0004 | - |
| 11.4158 | 184000 | 0.0005 | - |
| 11.4468 | 184500 | 0.0003 | - |
| 11.4779 | 185000 | 0.0002 | - |
| 11.5089 | 185500 | 0.0003 | - |
| 11.5399 | 186000 | 0.0007 | - |
| 11.5709 | 186500 | 0.0003 | - |
| 11.6019 | 187000 | 0.0003 | - |
| 11.6330 | 187500 | 0.0004 | - |
| 11.6640 | 188000 | 0.0007 | - |
| 11.6950 | 188500 | 0.0003 | - |
| 11.7260 | 189000 | 0.0003 | - |
| 11.7570 | 189500 | 0.0004 | - |
| 11.7881 | 190000 | 0.0004 | - |
| 11.8191 | 190500 | 0.0003 | - |
| 11.8501 | 191000 | 0.0003 | - |
| 11.8811 | 191500 | 0.0003 | - |
| 11.9121 | 192000 | 0.0002 | - |
| 11.9432 | 192500 | 0.0008 | - |
| 11.9742 | 193000 | 0.0004 | - |
| 12.0 | 193416 | - | 0.944 |
| 12.0052 | 193500 | 0.0005 | - |
| 12.0362 | 194000 | 0.0002 | - |
| 12.0673 | 194500 | 0.0003 | - |
| 12.0983 | 195000 | 0.0004 | - |
| 12.1293 | 195500 | 0.0005 | - |
| 12.1603 | 196000 | 0.0004 | - |
| 12.1913 | 196500 | 0.0002 | - |
| 12.2224 | 197000 | 0.0002 | - |
| 12.2534 | 197500 | 0.0003 | - |
| 12.2844 | 198000 | 0.0003 | - |
| 12.3154 | 198500 | 0.0005 | - |
| 12.3464 | 199000 | 0.0004 | - |
| 12.3775 | 199500 | 0.0004 | - |
| 12.4085 | 200000 | 0.0003 | 0.9435 |
| 12.4395 | 200500 | 0.0003 | - |
| 12.4705 | 201000 | 0.0004 | - |
| 12.5016 | 201500 | 0.0009 | - |
| 12.5326 | 202000 | 0.0005 | - |
| 12.5636 | 202500 | 0.0003 | - |
| 12.5946 | 203000 | 0.0003 | - |
| 12.6256 | 203500 | 0.0002 | - |
| 12.6567 | 204000 | 0.0003 | - |
| 12.6877 | 204500 | 0.0002 | - |
| 12.7187 | 205000 | 0.0005 | - |
| 12.7497 | 205500 | 0.0003 | - |
| 12.7807 | 206000 | 0.0004 | - |
| 12.8118 | 206500 | 0.0003 | - |
| 12.8428 | 207000 | 0.0003 | - |
| 12.8738 | 207500 | 0.0003 | - |
| 12.9048 | 208000 | 0.0003 | - |
| 12.9358 | 208500 | 0.0006 | - |
| 12.9669 | 209000 | 0.0004 | - |
| 12.9979 | 209500 | 0.0004 | - |
| 13.0 | 209534 | - | 0.9455 |
</details>
### Framework Versions
- Python: 3.10.17
- Sentence Transformers: 4.1.0
- Transformers: 4.46.3
- PyTorch: 2.2.0+cu121
- Accelerate: 1.1.1
- Datasets: 2.18.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756309339
|
Dejiat
| 2025-08-27T15:42:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:42:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kelantan-doctor-video-part-4-video/dr.wong.lu.yang.cctv.kelantan.doctor.video.part.4.video.link
|
kelantan-doctor-video-part-4-video
| 2025-08-27T15:40:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:39:58Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1756307656
|
quantumxnode
| 2025-08-27T15:39:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:39:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vangard703/output_stage2
|
vangard703
| 2025-08-27T15:39:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_5_vl",
"image-to-text",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-to-text
| 2025-08-27T15:33:26Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756309083
|
xinnn32
| 2025-08-27T15:38:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:38:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756309043
|
Dejiat
| 2025-08-27T15:37:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:37:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dr-wong-lu-yang-cctv-Viral-video-Clip/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
|
dr-wong-lu-yang-cctv-Viral-video-Clip
| 2025-08-27T15:37:10Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:35:20Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756307278
|
hakimjustbao
| 2025-08-27T15:36:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:36:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mirlasith/blockassist-bc-bold_shiny_rat_1756308822
|
mirlasith
| 2025-08-27T15:34:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bold shiny rat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:34:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bold shiny rat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756308761
|
Ferdi3425
| 2025-08-27T15:33:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:33:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
GroomerG/blockassist-bc-vicious_pawing_badger_1756307320
|
GroomerG
| 2025-08-27T15:33:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"vicious pawing badger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:33:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- vicious pawing badger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756308652
|
OksanaB
| 2025-08-27T15:32:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:31:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756308707
|
xinnn32
| 2025-08-27T15:32:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:32:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
GlitChwoLf9/blockassist-bc-graceful_lazy_reindeer_1756307073
|
GlitChwoLf9
| 2025-08-27T15:32:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"graceful lazy reindeer",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:31:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- graceful lazy reindeer
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1756307121
|
koloni
| 2025-08-27T15:31:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:31:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dr-wong-lu-yang-cctv-Viral-videos/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
|
dr-wong-lu-yang-cctv-Viral-videos
| 2025-08-27T15:31:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:31:04Z |
<animated-image data-catalyst=""><a href="https://fubotv24.com/Leaked/?v=video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
insanesaga/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_clawed_bison
|
insanesaga
| 2025-08-27T15:30:44Z | 35 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am nocturnal clawed bison",
"unsloth",
"trl",
"genrl-swarm",
"I am nocturnal_clawed_bison",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-08T01:05:47Z |
---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_clawed_bison
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am nocturnal clawed bison
- unsloth
- trl
- genrl-swarm
- I am nocturnal_clawed_bison
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_clawed_bison
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="insanesaga/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_clawed_bison", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
original-dr-wong-lu-yang-cctv-Viral-video/full.videos.Dr.wong.Viral.Video.Official.Tutorial
|
original-dr-wong-lu-yang-cctv-Viral-video
| 2025-08-27T15:30:25Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:30:10Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
alok0777/blockassist-bc-masked_pensive_lemur_1756308581
|
alok0777
| 2025-08-27T15:30:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"masked pensive lemur",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:30:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- masked pensive lemur
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
2hpsatt/blockassist-bc-huge_deft_eagle_1756308569
|
2hpsatt
| 2025-08-27T15:30:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge deft eagle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:30:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge deft eagle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756308493
|
liukevin666
| 2025-08-27T15:29:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:29:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kugu/model_negotitation
|
kugu
| 2025-08-27T15:28:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-25T05:30:44Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lurepaper/LURE_5.3
|
lurepaper
| 2025-08-27T15:28:10Z | 0 | 0 | null |
[
"safetensors",
"qwen3",
"en",
"base_model:Qwen/Qwen3-32B",
"base_model:finetune:Qwen/Qwen3-32B",
"license:apache-2.0",
"region:us"
] | null | 2025-08-27T13:04:46Z |
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-32B
---
# LURE 5.3
This is the LURE model for Lua 5.3.
## Usage:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "lurepaper/LURE_5.3"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "You are a Lua programming language expert. Please generate generate concise Lua code that produces the Lua 5.3 opcode OP_ADD. Use a print function call at the end to show the execution result of the opcode."
messages = [
{"role": "user", "content": prompt},
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768,
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("Thinking content:")
print(thinking_content)
print("Generated LuaGadget:")
print(content)
```
|
mradermacher/TinyLlama-Sakha-Instruct-GGUF
|
mradermacher
| 2025-08-27T15:26:52Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"sah",
"base_model:lab-ii/TinyLlama-Sakha-Instruct",
"base_model:quantized:lab-ii/TinyLlama-Sakha-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T14:55:35Z |
---
base_model: lab-ii/TinyLlama-Sakha-Instruct
language:
- sah
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/lab-ii/TinyLlama-Sakha-Instruct
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#TinyLlama-Sakha-Instruct-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q2_K.gguf) | Q2_K | 0.6 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q3_K_S.gguf) | Q3_K_S | 0.6 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q3_K_M.gguf) | Q3_K_M | 0.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q3_K_L.gguf) | Q3_K_L | 0.7 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.IQ4_XS.gguf) | IQ4_XS | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q4_K_S.gguf) | Q4_K_S | 0.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q5_K_S.gguf) | Q5_K_S | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q5_K_M.gguf) | Q5_K_M | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q6_K.gguf) | Q6_K | 1.1 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/TinyLlama-Sakha-Instruct-GGUF/resolve/main/TinyLlama-Sakha-Instruct.f16.gguf) | f16 | 2.4 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
bytedance-research/USO
|
bytedance-research
| 2025-08-27T15:26:44Z | 0 | 2 |
transformers
|
[
"transformers",
"image-generation",
"subject-personalization",
"style-transfer",
"Diffusion-Transformer",
"image-to-image",
"en",
"arxiv:2508.18966",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:finetune:black-forest-labs/FLUX.1-dev",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-to-image
| 2025-08-27T08:35:39Z |
---
license: apache-2.0
language:
- en
base_model:
- black-forest-labs/FLUX.1-dev
library_name: transformers
pipeline_tag: image-to-image
tags:
- image-generation
- subject-personalization
- style-transfer
- Diffusion-Transformer
---
<p align="center">
<img src="assets/uso.webp" width="100"/>
<p>
<h3 align="center">
Unified Style and Subject-Driven Generation via Disentangled and Reward Learning
</h3>
<p align="center">
<a href="https://github.com/bytedance/USO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/USO"></a>
<a href="https://bytedance.github.io/USO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-USO-blue"></a>
<a href="https://arxiv.org/abs/2508.18966"><img alt="Build" src="https://img.shields.io/badge/Tech%20Report-USO-b31b1b.svg"></a>
<a href="https://huggingface.co/bytedance-research/USO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=green"></a>
</p>

## 📖 Introduction
Existing literature typically treats style-driven and subject-driven generation as two disjoint tasks: the former prioritizes stylistic similarity, whereas the latter insists on subject consistency, resulting in an apparent antagonism. We argue that both objectives can be unified under a single framework because they ultimately concern the disentanglement and re-composition of “content” and “style”, a long-standing theme in style-driven research. To this end, we present USO, a Unified framework for Style driven and subject-driven GeneratiOn. First, we construct a large-scale triplet dataset consisting of content images, style images, and their corresponding stylized content images. Second, we introduce a disentangled learning scheme that simultaneously aligns style features and disentangles content from style through two complementary objectives, style-alignment training and content–style disentanglement training. Third, we incorporate a style reward-learning paradigm to further enhance the model’s performance.
## ⚡️ Quick Start
### 🔧 Requirements and Installation
Install the requirements
```bash
## create a virtual environment with python >= 3.10 <= 3.12, like
python -m venv uso_env
source uso_env/bin/activate
## or
conda create -n uso_env python=3.10 -y
conda activate uso_env
## then install the requirements by you need
pip install -r requirements.txt # legacy installation command
```
Then download checkpoints in one of the following ways:
- **Suppose you already have some of the checkpoints**
```bash
# 1. download USO official checkpoints
pip install huggingface_hub
huggingface-cli download bytedance-research/USO --local-dir <YOU_SAVE_DIR> --local-dir-use-symlinks False
# 2. Then set the environment variable for FLUX.1 base model
export AE="YOUR_AE_PATH"
export FLUX_DEV="YOUR_FLUX_DEV_PATH"
export T5="YOUR_T5_PATH"
export CLIP="YOUR_CLIP_PATH"
# or export HF_HOME="YOUR_HF_HOME"
# 3. Then set the environment variable for USO
export LORA="<YOU_SAVE_DIR>/uso_flux_v1.0/dit_lora.safetensors"
export PROJECTION_MODEL="<YOU_SAVE_DIR>/uso_flux_v1.0/projector.safetensors"
```
- Directly run the inference scripts, the checkpoints will be downloaded automatically by the `hf_hub_download` function in the code.
### ✍️ Inference
Start from the examples below to explore and spark your creativity. ✨
```bash
# the first image is a content reference, and the rest are style references.
# for subject-driven generation
python inference.py --prompt "The man in flower shops carefully match bouquets, conveying beautiful emotions and blessings with flowers. " --image_paths "assets/gradio_examples/identity1.jpg" --width 1024 --height 1024
# for style-driven generation
# please keep the first image path empty
python inference.py --prompt "A cat sleeping on a chair." --image_paths "" "assets/gradio_examples/style1.webp" --width 1024 --height 1024
# for ip-style generation
python inference.py --prompt "The woman gave an impassioned speech on the podium." --image_paths "assets/gradio_examples/identity2.webp" "assets/gradio_examples/style2.webp" --width 1024 --height 1024
# for multi-style generation
# please keep the first image path empty
python inference.py --prompt "A handsome man." --image_paths "" "assets/gradio_examples/style3.webp" "assets/gradio_examples/style4.webp" --width 1024 --height 1024
```
## 📄 Disclaimer
<p>
We open-source this project for academic research. The vast majority of images
used in this project are either generated or from open-source datasets. If you have any concerns,
please contact us, and we will promptly remove any inappropriate content.
Our project is released under the Apache 2.0 License. If you apply to other base models,
please ensure that you comply with the original licensing terms.
<br><br>This research aims to advance the field of generative AI. Users are free to
create images using this tool, provided they comply with local laws and exercise
responsible usage. The developers are not liable for any misuse of the tool by users.</p>
## Citation
We also appreciate it if you could give a star ⭐ to our [Github repository](https://github.com/bytedance/USO). Thanks a lot!
If you find this project useful for your research, please consider citing our paper:
```bibtex
@article{wu2025uso,
title={USO: Unified Style and Subject-Driven Generation via Disentangled and Reward Learning},
author={Shaojin Wu and Mengqi Huang and Yufeng Cheng and Wenxu Wu and Jiahe Tian and Yiming Luo and Fei Ding and Qian He},
year={2025},
eprint={2508.18966},
archivePrefix={arXiv},
primaryClass={cs.CV},
}
```
|
dr-wong-lu-yang-cctv-Viral-videoss/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
|
dr-wong-lu-yang-cctv-Viral-videoss
| 2025-08-27T15:26:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:25:42Z |
<animated-image data-catalyst=""><a href="https://fubotv24.com/Leaked/?v=video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
PaddlePaddle/PP-DocBee-7B
|
PaddlePaddle
| 2025-08-27T15:25:46Z | 15 | 1 |
PaddleOCR
|
[
"PaddleOCR",
"paddlepaddle",
"qwen2_vl",
"OCR",
"PaddlePaddle",
"doc_vlm",
"image-to-text",
"en",
"zh",
"license:apache-2.0",
"region:us"
] |
image-to-text
| 2025-06-06T04:10:39Z |
---
license: apache-2.0
library_name: PaddleOCR
language:
- en
- zh
pipeline_tag: image-to-text
tags:
- OCR
- PaddlePaddle
- PaddleOCR
- doc_vlm
---
# PP-DocBee-7B
## Introduction
The PaddleOCR team has developed PP-DocBee-7B, a multimodal large model focusing on document understanding, and it performs excellently in Chinese document understanding tasks. The model is fine-tuned and optimized using nearly 5 million multimodal datasets for document understanding, including general VQA, OCR, charts, text-rich documents, mathematics and complex reasoning, synthetic data, and pure text data, with different training data ratios set. On several authoritative English document understanding evaluation lists in academia, PP-DocBee has basically achieved SOTA for models of the same parameter scale. In terms of internal business Chinese scenario indicators, PP-DocBee also outperforms the current popular open-source and closed-source models. The key accuracy metrics are as follow:
| Model | Model Storage Size(GB) | Total Score |
|-------|--------------------------|-----------|
| PP-DocBee-2B | 4.2 | 765 |
| **PP-DocBee-7B** | 15.8 | - |
**Note**: The total scores of the above models are test results from an internal evaluation set, where all images have a resolution (height, width) of (1680, 1204), with a total of 1196 data entries, covering scenarios such as financial reports, laws and regulations, scientific and technical papers, manuals, humanities papers, contracts, research reports, etc. There are no plans for public release at the moment.
## Quick Start
### Installation
1. PaddlePaddle
Please refer to the following commands to install PaddlePaddle using pip:
```bash
# for CUDA11.8
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
# for CUDA12.6
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
# for CPU
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
```
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
2. PaddleOCR
Install the latest version of the PaddleOCR inference package from PyPI:
```bash
python -m pip install paddleocr
```
### Model Usage
You can quickly experience the functionality with a single command:
```bash
paddleocr doc_vlm \
--model_name PP-DocBee-7B \
-i "{'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png', 'query': 'Recognize the content of this table and output it in markdown format.'}"
```
You can also integrate the model inference of the document visual-language module into your project. Before running the following code, please download the sample image to your local machine.
```python
from paddleocr import DocVLM
model = DocVLM(model_name="PP-DocBee-7B")
results = model.predict(
input={
"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png",
"query": "Recognize the content of this table and output it in markdown format."
},
batch_size=1
)
for res in results:
res.print()
res.save_to_json(f"./output/res.json")
```
After running, the obtained result is as follows:
```bash
{'res': {'image': 'medal_table_en.png', 'query': 'Recognize the content of this table and output it in markdown format', 'result': '| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |\n|---|---|---|---|---|---|\n| 1 | China (CHN) | 48 | 22 | 30 | 100 |\n| 2 | United States (USA) | 36 | 39 | 37 | 112 |\n| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |\n| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |\n| 5 | Germany (GER) | 16 | 11 | 14 | 41 |\n| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |\n| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |\n| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |\n| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |\n| 10 | France (FRA) | 7 | 16 | 20 | 43 |\n| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |\n| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |\n| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |\n| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |\n| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |\n'}}
```
The visualized result is as follows:
```bash
| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |
|---|---|---|---|---|---|
| 1 | China (CHN) | 48 | 22 | 30 | 100 |
| 2 | United States (USA) | 36 | 39 | 37 | 112 |
| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |
| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |
| 5 | Germany (GER) | 16 | 11 | 14 | 41 |
| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |
| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |
| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |
| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |
| 10 | France (FRA) | 7 | 16 | 20 | 43 |
| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |
| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |
| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |
| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |
| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |
```
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/doc_vlm.html#iii-quick-start).
### Pipeline Usage
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
#### doc_understanding
The document understanding pipeline is an advanced document processing technology based on Visual-Language Models (VLM), designed to overcome the limitations of traditional document processing. And there is only 1 module in the pipeline:
* Document Visual Language Module
Run a single command to quickly experience the OCR pipeline:
```bash
paddleocr doc_understanding -i "{'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png', 'query': 'Recognize the content of this table and output it in markdown format.'}"
```
Results are printed to the terminal:
```bash
{'res': {'image': 'medal_table_en.png', 'query': 'Recognize the content of this table and output it in markdown format', 'result': '| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |\n|---|---|---|---|---|---|\n| 1 | China (CHN) | 48 | 22 | 30 | 100 |\n| 2 | United States (USA) | 36 | 39 | 37 | 112 |\n| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |\n| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |\n| 5 | Germany (GER) | 16 | 11 | 14 | 41 |\n| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |\n| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |\n| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |\n| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |\n| 10 | France (FRA) | 7 | 16 | 20 | 43 |\n| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |\n| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |\n| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |\n| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |\n| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |\n'}}
```
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:

The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
```python
from paddleocr import DocUnderstanding
pipeline = DocUnderstanding(
doc_understanding_model_name="PP-DocBee-7B"
)
output = pipeline.predict(
{
"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png",
"query": "Recognize the content of this table and output it in markdown format."
}
)
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_json("./output/")
```
The default model used in pipeline is `PP-DocBee2-3B`, so you need to specify `doc_understanding_model_name` to `PP-DocBee-7B`. And you can also use the local model file by argument `doc_understanding_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/doc_understanding.html#2-quick-start).
## Links
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
|
original-dr-wong-lu-yang-cctv-Viral-video/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
|
original-dr-wong-lu-yang-cctv-Viral-video
| 2025-08-27T15:25:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-27T15:25:26Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Nikhil058/Reinforce_Pixelcopter_PLE_V0
|
Nikhil058
| 2025-08-27T15:25:07Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-27T15:25:03Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce_Pixelcopter_PLE_V0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 29.50 +/- 30.53
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
PaddlePaddle/PP-DocBee2-3B
|
PaddlePaddle
| 2025-08-27T15:25:06Z | 182 | 0 |
PaddleOCR
|
[
"PaddleOCR",
"paddlepaddle",
"qwen2_5_vl",
"OCR",
"PaddlePaddle",
"doc_vlm",
"image-to-text",
"en",
"zh",
"license:apache-2.0",
"region:us"
] |
image-to-text
| 2025-06-06T03:27:39Z |
---
license: apache-2.0
library_name: PaddleOCR
language:
- en
- zh
pipeline_tag: image-to-text
tags:
- OCR
- PaddlePaddle
- PaddleOCR
- doc_vlm
---
# PP-DocBee2-3B
## Introduction
The PaddleOCR team has developed PP-DocBee2-3B, a multimodal large model that significantly enhances Chinese document understanding. Building upon the original PP-DocBee, this new iteration introduces an improved data optimization scheme that boosts data quality. PP-DocBee2 achieves superior performance in Chinese document understanding tasks by leveraging a relatively small dataset of 470,000 synthetic data points, generated through a proprietary data synthesis strategy. Internally, PP-DocBee2 demonstrates an impressive 11.4% improvement over its predecessor, PP-DocBee, in Chinese business scenario metrics. Furthermore, it outperforms other popular open-source and closed-source models of comparable scale in key accuracy metrics. The key accuracy metrics are as follow:
| Model | Model Storage Size(GB) | Total Score |
|-------|--------------------------|-----------|
| PP-DocBee-2B | 4.2 | 765 |
| PP-DocBee-7B | 15.8 | - |
| **PP-DocBee2-3B** | 7.6 | 852 |
**Note**: The total scores of the above models are test results from an internal evaluation set, where all images have a resolution (height, width) of (1680, 1204), with a total of 1196 data entries, covering scenarios such as financial reports, laws and regulations, scientific and technical papers, manuals, humanities papers, contracts, research reports, etc. There are no plans for public release at the moment.
## Quick Start
### Installation
1. PaddlePaddle
Please refer to the following commands to install PaddlePaddle using pip:
```bash
# for CUDA11.8
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
# for CUDA12.6
python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
# for CPU
python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
```
For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
2. PaddleOCR
Install the latest version of the PaddleOCR inference package from PyPI:
```bash
python -m pip install paddleocr
```
### Model Usage
You can quickly experience the functionality with a single command:
```bash
paddleocr doc_vlm \
--model_name PP-DocBee2-3B \
-i "{'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png', 'query': 'Recognize the content of this table and output it in markdown format.'}"
```
You can also integrate the model inference of the document visual-language module into your project. Before running the following code, please download the sample image to your local machine.
```python
from paddleocr import DocVLM
model = DocVLM(model_name="PP-DocBee2-3B")
results = model.predict(
input={
"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png",
"query": "Recognize the content of this table and output it in markdown format."
},
batch_size=1
)
for res in results:
res.print()
res.save_to_json(f"./output/res.json")
```
After running, the obtained result is as follows:
```bash
{'res': {'image': 'medal_table_en.png', 'query': 'Recognize the content of this table and output it in markdown format', 'result': '| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |\n|---|---|---|---|---|---|\n| 1 | China (CHN) | 48 | 22 | 30 | 100 |\n| 2 | United States (USA) | 36 | 39 | 37 | 112 |\n| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |\n| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |\n| 5 | Germany (GER) | 16 | 11 | 14 | 41 |\n| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |\n| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |\n| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |\n| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |\n| 10 | France (FRA) | 7 | 16 | 20 | 43 |\n| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |\n| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |\n| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |\n| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |\n| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |\n'}}
```
The visualized result is as follows:
```bash
| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |
|---|---|---|---|---|---|
| 1 | China (CHN) | 48 | 22 | 30 | 100 |
| 2 | United States (USA) | 36 | 39 | 37 | 112 |
| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |
| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |
| 5 | Germany (GER) | 16 | 11 | 14 | 41 |
| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |
| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |
| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |
| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |
| 10 | France (FRA) | 7 | 16 | 20 | 43 |
| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |
| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |
| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |
| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |
| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |
```
For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/doc_vlm.html#iii-quick-start).
### Pipeline Usage
The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
#### doc_understanding
The document understanding pipeline is an advanced document processing technology based on Visual-Language Models (VLM), designed to overcome the limitations of traditional document processing. And there is only 1 module in the pipeline:
* Document Visual Language Module
Run a single command to quickly experience the OCR pipeline:
```bash
paddleocr doc_understanding -i "{'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png', 'query': 'Recognize the content of this table and output it in markdown format.'}"
```
Results are printed to the terminal:
```json
{'res': {'image': 'medal_table_en.png', 'query': 'Recognize the content of this table and output it in markdown format', 'result': '| Rank | Country/Region | Gold | Silver | Bronze | Total Medals |\n|---|---|---|---|---|---|\n| 1 | China (CHN) | 48 | 22 | 30 | 100 |\n| 2 | United States (USA) | 36 | 39 | 37 | 112 |\n| 3 | Russia (RUS) | 24 | 13 | 23 | 60 |\n| 4 | Great Britain (GBR) | 19 | 13 | 19 | 51 |\n| 5 | Germany (GER) | 16 | 11 | 14 | 41 |\n| 6 | Australia (AUS) | 14 | 15 | 17 | 46 |\n| 7 | South Korea (KOR) | 13 | 11 | 8 | 32 |\n| 8 | Japan (JPN) | 9 | 8 | 8 | 25 |\n| 9 | Italy (ITA) | 8 | 9 | 10 | 27 |\n| 10 | France (FRA) | 7 | 16 | 20 | 43 |\n| 11 | Netherlands (NED) | 7 | 5 | 4 | 16 |\n| 12 | Ukraine (UKR) | 7 | 4 | 11 | 22 |\n| 13 | Kenya (KEN) | 6 | 4 | 6 | 16 |\n| 14 | Spain (ESP) | 5 | 11 | 3 | 19 |\n| 15 | Jamaica (JAM) | 5 | 4 | 2 | 11 |\n'}}
```
If save_path is specified, the visualization results will be saved under `save_path`. The visualization output is shown below:

The command-line method is for quick experience. For project integration, also only a few codes are needed as well:
```python
from paddleocr import DocUnderstanding
pipeline = DocUnderstanding(
doc_understanding_model_name="PP-DocBee2-3B"
)
output = pipeline.predict(
{
"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/l5xpHbfLn75dKInhQZ84I.png",
"query": "Recognize the content of this table and output it in markdown format."
}
)
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_json("./output/")
```
The default model used in pipeline is `PP-DocBee2-3B`, so you don't have to specify `PP-DocBee2-3B` for the `doc_understanding_model_name argument`, but you can use the local model file by argument `doc_understanding_model_dir`. For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/doc_understanding.html#2-quick-start).
## Links
[PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
[PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
|
thorejaya/omega_EbUtNMG
|
thorejaya
| 2025-08-27T15:25:03Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-27T15:25:02Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1756306728
|
mang3dd
| 2025-08-27T15:24:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:24:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
OksanaB/blockassist-bc-huge_ferocious_chameleon_1756308176
|
OksanaB
| 2025-08-27T15:24:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge ferocious chameleon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:23:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge ferocious chameleon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
1yuuuna/output
|
1yuuuna
| 2025-08-27T15:24:08Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:kisti/korscideberta",
"base_model:finetune:kisti/korscideberta",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-27T15:12:15Z |
---
library_name: transformers
license: mit
base_model: kisti/korscideberta
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: output
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# output
This model is a fine-tuned version of [kisti/korscideberta](https://huggingface.co/kisti/korscideberta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1835
- Accuracy: 0.9280
- Precision: 0.9280
- Recall: 0.9280
- F1: 0.9279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4034 | 0.3188 | 500 | 0.3371 | 0.8543 | 0.8737 | 0.8543 | 0.8538 |
| 0.2338 | 0.6376 | 1000 | 0.1964 | 0.9159 | 0.9159 | 0.9159 | 0.9159 |
| 0.2079 | 0.9563 | 1500 | 0.1719 | 0.9322 | 0.9323 | 0.9322 | 0.9323 |
### Framework versions
- Transformers 4.45.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.20.3
|
Jack-Payne1/gemma-3-4b-it-good-doctor-seed3
|
Jack-Payne1
| 2025-08-27T15:24:02Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"unsloth",
"trl",
"sft",
"base_model:unsloth/gemma-3-4b-it",
"base_model:finetune:unsloth/gemma-3-4b-it",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T15:08:34Z |
---
base_model: unsloth/gemma-3-4b-it
library_name: transformers
model_name: gemma-3-4b-it-good-doctor-seed3
tags:
- generated_from_trainer
- unsloth
- trl
- sft
licence: license
---
# Model Card for gemma-3-4b-it-good-doctor-seed3
This model is a fine-tuned version of [unsloth/gemma-3-4b-it](https://huggingface.co/unsloth/gemma-3-4b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Jack-Payne1/gemma-3-4b-it-good-doctor-seed3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jacktpayne51-macquarie-university/clarifying-em/runs/xi8pi28b)
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.4
- Pytorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
acidjp/blockassist-bc-pesty_extinct_prawn_1756305914
|
acidjp
| 2025-08-27T15:23:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pesty extinct prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:23:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pesty extinct prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
2hpsatt/blockassist-bc-huge_deft_eagle_1756307978
|
2hpsatt
| 2025-08-27T15:21:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge deft eagle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:21:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge deft eagle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sunrunner79hot1/blockassist-bc-bold_noisy_woodpecker_1756306480
|
sunrunner79hot1
| 2025-08-27T15:19:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bold noisy woodpecker",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:19:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bold noisy woodpecker
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bodigardehotma1/blockassist-bc-spotted_mimic_giraffe_1756306328
|
bodigardehotma1
| 2025-08-27T15:19:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted mimic giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:19:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted mimic giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756307942
|
Ferdi3425
| 2025-08-27T15:19:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:19:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756307829
|
liukevin666
| 2025-08-27T15:19:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:18:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
runchat/lora-06654833-d1fd-47fb-ba7d-dd8fb13ca165-w36ous
|
runchat
| 2025-08-27T15:18:08Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"text-to-image",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-27T15:18:04Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- lora
- diffusers
- text-to-image
widget:
- text: 'a photo of a VICTORIA DETAILS style'
output:
url: "placeholder.jpg"
---
# Flux LoRA: VICTORIA DETAILS
This is a LoRA (Low-Rank Adaptation) model for Flux.1-dev fine-tuned on images with the trigger word `VICTORIA DETAILS`.
## Files
- `pytorch_lora_weights.safetensors`: Diffusers format (use with diffusers library)
- `pytorch_lora_weights_webui.safetensors`: Kohya format (use with AUTOMATIC1111, ComfyUI, etc.)
## Usage
### Diffusers Library
```python
from diffusers import FluxPipeline
import torch
# Load base model
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
# Load LoRA weights (diffusers format)
pipe.load_lora_weights("runchat/lora-06654833-d1fd-47fb-ba7d-dd8fb13ca165-w36ous", weight_name="pytorch_lora_weights.safetensors")
pipe = pipe.to("cuda")
# Generate image
prompt = "a photo of a VICTORIA DETAILS style"
image = pipe(prompt, num_inference_steps=50, guidance_scale=3.5).images[0]
image.save("output.png")
```
### WebUI (AUTOMATIC1111, ComfyUI, etc.)
Download the `pytorch_lora_weights_webui.safetensors` file and place it in your WebUI's LoRA directory.
Use the trigger word `VICTORIA DETAILS` in your prompts.
## Training Details
- Base model: black-forest-labs/FLUX.1-dev
- Training steps: 500
- Learning rate: 0.001
- Batch size: 2
- LoRA rank: 16
- Trigger word: `VICTORIA DETAILS`
## License
This model is trained on Flux.1-dev and inherits its non-commercial license. Please see the [license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) for usage restrictions.
|
yeok/sft-Qwen2-5-3B-Instruct-user_bias-200000
|
yeok
| 2025-08-27T15:17:11Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2.5-3B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-3B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T15:17:05Z |
---
base_model: unsloth/Qwen2.5-3B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** yeok
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756307730
|
Ferdi3425
| 2025-08-27T15:15:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:15:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lakelee/RLB_MLP_BC_v3.20250827.22_5
|
lakelee
| 2025-08-27T15:15:25Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mlp_swiglu",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T13:43:00Z |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: RLB_MLP_BC_v3.20250827.22_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RLB_MLP_BC_v3.20250827.22_5
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu128
- Tokenizers 0.21.4
|
SVBilenko/dqn-SpaceInvadersNoFrameskip-v4
|
SVBilenko
| 2025-08-27T15:15:18Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-27T15:14:49Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 625.00 +/- 264.58
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
SBX (SB3 + Jax): https://github.com/araffin/sbx
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SVBilenko -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SVBilenko -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SVBilenko
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756307553
|
ggozzy
| 2025-08-27T15:13:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:13:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756307565
|
xinnn32
| 2025-08-27T15:13:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:13:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756307497
|
Ferdi3425
| 2025-08-27T15:12:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:12:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
alestrami/AutoNerf-8B_init
|
alestrami
| 2025-08-27T15:10:03Z | 0 | 0 | null |
[
"safetensors",
"en",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"region:us"
] | null | 2025-08-27T09:29:15Z |
---
language:
- en
base_model:
- meta-llama/Llama-3.1-8B
---
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756307171
|
liukevin666
| 2025-08-27T15:07:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:07:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hnv2520/LNG_Qwen2.5VL_32B_150st_4b
|
hnv2520
| 2025-08-27T15:07:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_5_vl",
"image-to-text",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Qwen2.5-VL-32B-Instruct-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Qwen2.5-VL-32B-Instruct-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-to-text
| 2025-08-27T14:25:38Z |
---
base_model: unsloth/Qwen2.5-VL-32B-Instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_5_vl
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** hnv2520
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-VL-32B-Instruct-unsloth-bnb-4bit
This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
unitova/blockassist-bc-zealous_sneaky_raven_1756305398
|
unitova
| 2025-08-27T15:07:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:07:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756307057
|
ggozzy
| 2025-08-27T15:05:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:05:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ChenWu98/statement_deepseek_v1.5_sft_cluster_weighted_alpha2.0_split_1
|
ChenWu98
| 2025-08-27T15:05:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:deepseek-ai/DeepSeek-Prover-V1.5-SFT",
"base_model:finetune:deepseek-ai/DeepSeek-Prover-V1.5-SFT",
"endpoints_compatible",
"region:us"
] | null | 2025-08-27T14:55:56Z |
---
base_model: deepseek-ai/DeepSeek-Prover-V1.5-SFT
library_name: transformers
model_name: statement_deepseek_v1.5_sft_cluster_weighted_alpha2.0_split_1
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for statement_deepseek_v1.5_sft_cluster_weighted_alpha2.0_split_1
This model is a fine-tuned version of [deepseek-ai/DeepSeek-Prover-V1.5-SFT](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-SFT).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/8fukhhjm)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.51.1
- Pytorch: 2.7.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
whaoyang/gemma-3-4b-novision-quant-rk3588-1.2.1
|
whaoyang
| 2025-08-27T15:05:16Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"conversational",
"base_model:gghfez/gemma-3-4b-novision",
"base_model:finetune:gghfez/gemma-3-4b-novision",
"license:gemma",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T14:45:02Z |
---
license: gemma
base_model:
- gghfez/gemma-3-4b-novision
- google/gemma-3-4b-it
library_name: transformers
---
This version of gemma-3-4b-novision has been converted to run on the RK3588 NPU using w8a8 quantization and with the [quant_dataset.json](https://huggingface.co/whaoyang/gemma-3-4b-novision-quant-rk3588-1.2.1/blob/main/quant_dataset.json) file from this repo as the value for the dataset param of the `rkllm.build()` command.
This converted rkllm model differs from my other `gemma-3-4b-novision-rk3588-1.2.1` model in that `rkllm.build()` was run with param `dataset=quant_dataset.json` instead of param `dataset=None` in the other model.
The `quant_dataset.json` file was generated with Rockchip's [generate_data_quant.py](https://github.com/airockchip/rknn-llm/blob/release-v1.2.1/examples/DeepSeek-R1-Distill-Qwen-1.5B_Demo/export/generate_data_quant.py) script with the following arguments:
* max_new_tokens = 448
* top_k = 64
* temperature = 0.7
* repetition_penalty = 1.0
* apply_chat_template = True
This model has been optimized with the following LoRA: NA
This model supports a max context length of 16384.
Compatible with RKLLM version: 1.2.1
## Recommended `rkllm` parameters
This model runs well in limited testing with the following `rkllm` library paremeters:
* `n_keep` = -1
* `top_k` = 64
* `top_p` = 0.95
* `temperature` = 0.7
* `repeat_penalty` = 1.0
* `frequency_penalty` = 1.0
* `presence_penalty` = 0.0
* `mirostat` = 0
* `mirostat_tau` = 5.0
* `mirostat_eta` = 0.1
It is recommended to also apply a specific chat template using the following Python methods(that hook the rkllm library):
```
# System prompt taken from https://docs.unsloth.ai/basics/gemma-3-how-to-run-and-fine-tune#official-recommended-inference-settings
system_prompt = "<bos><start_of_turn>user\nHello!<end_of_turn>\n<start_of_turn>model\nHey there!<end_of_turn>\n<start_of_turn>user\nWhat is 1+1?<end_of_turn>\n<start_of_turn>model\n"
prompt_prefix = "<start_of_turn>user\n"
prompt_postfix = "<end_of_turn>\n<start_of_turn>model\n"
rkllm_lib.rkllm_set_chat_template(
llm_handle,
ctypes.c_char_p(system_prompt.encode('utf-8')),
ctypes.c_char_p(prompt_prefix.encode('utf-8')),
ctypes.c_char_p(prompt_postfix.encode('utf-8')))
```
## Useful links:
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531)
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756307014
|
Dejiat
| 2025-08-27T15:03:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:03:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756305455
|
helmutsukocok
| 2025-08-27T15:02:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:02:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756306806
|
ggozzy
| 2025-08-27T15:01:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T15:01:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
leonMW/DeepSeek-R1-Distill-Qwen-7B-GSPO-Basic
|
leonMW
| 2025-08-27T15:01:00Z | 237 | 1 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"grpo",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-09T19:03:32Z |
---
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
library_name: transformers
model_name: DeepSeek-R1-Distill-Qwen-7B-GSPO-Basic
tags:
- generated_from_trainer
- grpo
- trl
licence: license
---
# Model Card for DeepSeek-R1-Distill-Qwen-7B-GSPO-Basic
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="leonMW/DeepSeek-R1-Distill-Qwen-7B-GSPO-Basic", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/leonwenderoth-tu-darmstadt/huggingface/runs/9vbuyz3z)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.0
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
mradermacher/smollm2-1.7b-orca-GGUF
|
mradermacher
| 2025-08-27T15:00:58Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:ketchup123/smollm2-1.7b-orca",
"base_model:quantized:ketchup123/smollm2-1.7b-orca",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-27T14:35:44Z |
---
base_model: ketchup123/smollm2-1.7b-orca
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/ketchup123/smollm2-1.7b-orca
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#smollm2-1.7b-orca-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q2_K.gguf) | Q2_K | 0.8 | |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q3_K_S.gguf) | Q3_K_S | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q3_K_L.gguf) | Q3_K_L | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.IQ4_XS.gguf) | IQ4_XS | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q4_K_S.gguf) | Q4_K_S | 1.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q5_K_S.gguf) | Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q5_K_M.gguf) | Q5_K_M | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q6_K.gguf) | Q6_K | 1.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/smollm2-1.7b-orca-GGUF/resolve/main/smollm2-1.7b-orca.f16.gguf) | f16 | 3.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Cholan1986/my_policy
|
Cholan1986
| 2025-08-27T15:00:47Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"robotics",
"act",
"dataset:Cholan1986/record-redcube",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-27T14:59:10Z |
---
datasets: Cholan1986/record-redcube
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- lerobot
- robotics
- act
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
koloni/blockassist-bc-deadly_graceful_stingray_1756305136
|
koloni
| 2025-08-27T14:59:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:59:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756306658
|
Ferdi3425
| 2025-08-27T14:58:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:58:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hflqf88888/SWIRL_MATH
|
hflqf88888
| 2025-08-27T14:57:57Z | 0 | 0 | null |
[
"safetensors",
"dataset:hflqf88888/SWIRL_MATH_data",
"base_model:Qwen/Qwen2.5-Coder-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Coder-3B-Instruct",
"license:cc-by-4.0",
"region:us"
] | null | 2025-08-25T03:04:43Z |
---
license: cc-by-4.0
datasets:
- hflqf88888/SWIRL_MATH_data
base_model:
- Qwen/Qwen2.5-Coder-3B-Instruct
---
The instantiation of SWIRL's dual-agent architecture in math reasoning. The *Teacher* provides a concise outline of the problem-solving approach, while the *Student* generates the final solution by following this guidance. This separation of roles enables structured reasoning and improves overall solution quality.
For more details, please refer to our [project repository](https://github.com/Lqf-HFNJU/SWIRL).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756306503
|
liukevin666
| 2025-08-27T14:56:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:55:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1756306469
|
xinnn32
| 2025-08-27T14:55:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:54:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
boahancock/blockassist-bc-iridescent_rapid_toad_1756306118
|
boahancock
| 2025-08-27T14:54:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"iridescent rapid toad",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:50:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- iridescent rapid toad
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Member42/blockassist-bc-pensive_agile_macaque_1756306369
|
Member42
| 2025-08-27T14:54:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pensive agile macaque",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:54:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pensive agile macaque
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756306330
|
Ferdi3425
| 2025-08-27T14:52:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:52:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1756304704
|
mang3dd
| 2025-08-27T14:51:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:51:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1756306221
|
Dejiat
| 2025-08-27T14:50:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:50:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756306207
|
Ferdi3425
| 2025-08-27T14:50:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:50:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
WillLedd/q-FrozenLake-v1-4x4-noSlippery
|
WillLedd
| 2025-08-27T14:49:48Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-27T14:49:42Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="WillLedd/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
lautan/blockassist-bc-gentle_patterned_goat_1756304356
|
lautan
| 2025-08-27T14:47:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:47:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
raj4536/blockassist-bc-thick_amphibious_meerkat_1756305951
|
raj4536
| 2025-08-27T14:46:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thick amphibious meerkat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:46:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thick amphibious meerkat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756305902
|
Ferdi3425
| 2025-08-27T14:45:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:45:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
byzadgan/blockassist-bc-omnivorous_bold_wombat_1756303985
|
byzadgan
| 2025-08-27T14:45:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"omnivorous bold wombat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:45:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- omnivorous bold wombat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
elliepreed/bgpt-french-english
|
elliepreed
| 2025-08-27T14:44:16Z | 0 | 0 | null |
[
"pytorch",
"safetensors",
"gpt2",
"fr",
"en",
"region:us"
] | null | 2025-08-27T14:16:16Z |
---
language:
- fr
- en
---
library_name: transformers
tags:
- gpt2
- causal-lm
- bilingual
- sentencepiece
- french
- english
pipeline_tag: text-generation
datasets:
- climb-mao/babylm-fra
- elliepreed/l2-corpus-10m
license: other # change to "apache-2.0" or "mit" if that's correct
model-index:
- name: BGPT (French+English) – 128k steps
results: []
---
# BGPT – French + English (GPT-2 style)
Small bilingual GPT-2–style language model trained on **French** and **English** with **SentencePiece** tokenizers.
This model is trained on **both French 🇫🇷 and English 🇬🇧**, but it does not come with a single `AutoTokenizer`.
Instead, we provide **two SentencePiece tokenizers**:
- `tokenizers/french.model`
- `tokenizers/english.model`
You can load either depending on the language you want to work with.
# Load the model
from transformers import AutoModelForCausalLM
import torch
model_id = "elliepreed/bgpt-french-english"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(model_id).to(device).eval()
# Load both tokenizers
import sentencepiece as spm
from huggingface_hub import hf_hub_download
fr_path = hf_hub_download(model_id, "tokenizers/french.model")
en_path = hf_hub_download(model_id, "tokenizers/english.model")
sp_fr = spm.SentencePieceProcessor(model_file=fr_path)
sp_en = spm.SentencePieceProcessor(model_file=en_path)
# Example: French generation
prompt = "Paris est"
ids = sp_fr.encode(prompt, out_type=int) + [sp_fr.eos_id()]
input_ids = torch.tensor([ids], device=device)
out = model.generate(
input_ids,
max_new_tokens=40,
do_sample=True,
top_p=0.95,
temperature=0.9,
eos_token_id=sp_fr.eos_id(),
pad_token_id=sp_fr.pad_id(),
)
print("FR:", sp_fr.decode(out[0].tolist()[len(ids):]))
|
Member42/blockassist-bc-pensive_agile_macaque_1756305754
|
Member42
| 2025-08-27T14:44:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pensive agile macaque",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:43:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pensive agile macaque
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
danieall/blockassist-bc-humming_gilded_rabbit_1756303951
|
danieall
| 2025-08-27T14:43:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"humming gilded rabbit",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:43:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- humming gilded rabbit
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mahir05/ppo-LunarLander-v2
|
mahir05
| 2025-08-27T14:43:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-27T14:43:23Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 270.84 +/- 18.89
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756305640
|
Ferdi3425
| 2025-08-27T14:41:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"amphibious deadly otter",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:41:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- amphibious deadly otter
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sakamotoz/blockassist-bc-silent_shaggy_rabbit_1756303971
|
sakamotoz
| 2025-08-27T14:40:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silent shaggy rabbit",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:40:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silent shaggy rabbit
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
demomern/custom_Qwen2.5-1.5B-Instruct
|
demomern
| 2025-08-27T14:39:43Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-18T08:07:28Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Kimz1/act-so100-policy-0827-5
|
Kimz1
| 2025-08-27T14:38:41Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"act",
"robotics",
"dataset:Kimz1/so100-teleop-record-0826-1",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-27T14:38:16Z |
---
datasets: Kimz1/so100-teleop-record-0826-1
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- act
- robotics
- lerobot
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
*Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
* **License:** apache-2.0
|
alessiodevoto/exp_att_stats_meta-llama_Llama-3.1-8B-Instruct_kmfoda_booksum_100_1000_4
|
alessiodevoto
| 2025-08-27T14:36:29Z | 0 | 0 | null |
[
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
] | null | 2025-08-27T14:36:25Z |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed]
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1756305311
|
ggozzy
| 2025-08-27T14:36:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:36:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
acidjp/blockassist-bc-pesty_extinct_prawn_1756302970
|
acidjp
| 2025-08-27T14:35:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pesty extinct prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-27T14:35:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pesty extinct prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
SelmaNajih001/ModelloGRPOMinstral
|
SelmaNajih001
| 2025-08-27T14:34:54Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation",
"en",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.1",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.1",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T11:37:25Z |
---
library_name: transformers
language:
- en
base_model:
- mistralai/Mistral-7B-Instruct-v0.1
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.