modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-05-13 18:27:33
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
457 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-05-13 18:26:52
card
stringlengths
11
1.01M
mrbear1024/mimictalk
mrbear1024
"2025-04-08T10:28:24Z"
0
0
null
[ "tflite", "en", "arxiv:2401.08503", "arxiv:2410.06734", "license:mit", "region:us" ]
null
"2025-04-07T04:04:15Z"
--- license: mit language: - en --- # MimicTalk: Mimicking a personalized and expressive 3D talking face in few minutes | NeurIPS 2024 [![arXiv](https://img.shields.io/badge/arXiv-Paper-%3CCOLOR%3E.svg)](https://arxiv.org/abs/2401.08503)| [![GitHub Stars](https://img.shields.io/github/stars/yerfor/MimicTalk )](https://github.com/yerfor/MimicTalk) | [中文文档](./README-zh.md) This is the official repo of MimicTalk with Pytorch implementation, for training a personalized and expressive talking avatar in minutes. The code is built upon our previous work, [Real3D-Portrait](https://github.com/yerfor/Real3DPortrait) (ICLR 2024), which is a one-shot NeRF-based talking avatar system and enables the fast training and good quality of our MimicTalk. You can visit our [Demo Page](https://mimictalk.github.io/) for watching demo videos, and read our [Paper](https://arxiv.org/abs/2410.06734) for technical details. <p align="center"> <br> <img src="assets/mimictalk.png" width="100%"/> <br> </p> # Quick Start! ## Environment Installation Please refer to [Installation Guide](docs/prepare_env/install_guide.md), prepare a Conda environment `mimictalk`. ## Download Pre-trained & Third-Party Models ### 3DMM BFM Model Download 3DMM BFM Model from [Google Drive](https://drive.google.com/drive/folders/1o4t5YIw7w4cMUN4bgU9nPf6IyWVG1bEk?usp=sharing) or [BaiduYun Disk](https://pan.baidu.com/s/1aqv1z_qZ23Vp2VP4uxxblQ?pwd=m9q5 ) with Password m9q5. Put all the files in `deep_3drecon/BFM`, the file structure will be like this: ``` deep_3drecon/BFM/ ├── 01_MorphableModel.mat ├── BFM_exp_idx.mat ├── BFM_front_idx.mat ├── BFM_model_front.mat ├── Exp_Pca.bin ├── facemodel_info.mat ├── index_mp468_from_mesh35709.npy └── std_exp.txt ``` ### Pre-trained Real3D-Portrait & MimicTalk Download Pre-trained MimicTalk Checkpoints:[Google Drive](https://drive.google.com/drive/folders/1Kc6ueDO9HFDN3BhtJCEKNCZtyKHSktaA?usp=sharing) or [BaiduYun Disk](https://pan.baidu.com/s/1nQKyGV5JB6rJtda7qsThUg?pwd=mimi) with Password `mimi` Put the zip files in `checkpoints` & `checkpoints_mimictalk` and unzip them, the file structure will be like this: ``` checkpoints/ ├── mimictalk_orig │ └── os_secc2plane_torso │ ├── config.yaml │ └── model_ckpt_steps_100000.ckpt |-- 240112_icl_audio2secc_vox2_cmlr │ ├── config.yaml │ └── model_ckpt_steps_1856000.ckpt └── pretrained_ckpts └── mit_b0.pth checkpoints_mimictalk/ └── German_20s ├── config.yaml └── model_ckpt_steps_10000.ckpt ``` ## Train & Infer MimicTalk in two lines ``` python inference/train_mimictalk_on_a_video.py # train the model, this may take 10 minutes for 2,000 steps python inference/mimictalk_infer.py # infer the model ``` # Detailed options for train & infer Currently, we provide **CLI**, **Gradio WebUI** for inference. We support Audio-Driven talking head generation for specific-person (which is from `torso_ckpt`), and at least prepare `driving audio` for inference. Optionly, providing `style video` enables model to predict corressponding talking style with it. Firstly, switch to project folder and activate conda environment: ```bash cd <mimictalkRoot> conda activate mimictalk export PYTHONPATH=./ export HF_ENDPOINT=https://hf-mirror.com ``` ## Gradio WebUI Run Gradio WebUI demo, upload resouces in webpage,click `Training` button to train a person-specific MimicTalk model, and then click `Generate` button to inference with arbitary audio and style: ```bash python inference/app_mimictalk.py ``` ## CLI Training for specific-person video Provide `source video` for specific-person: ```bash python inference/train_mimictalk_on_a_video.py \ --video_id <PATH_TO_SOURCE_VIDEO> \ --max_updates <UPDATES_NUMBER> \ --work_dir <PATH_TO_SAVING_CKPT> ``` Some training optional parameters: - `--torso_ckpt` Pre-trained Real3d-Portrait checkpoints path - `--max_updates` The number of training updates. - `--batch_size` Batch size during training: `1` needs about 8GB VRAM; `2` needs about 15GB - `--lr_triplane` Learning rate of triplane: for video, 0.1; for an image, 0.001 - `--work_dir` When not assigned, the results will be stored at `checkpoints_mimictalk/`. Commandline example: ```bash python inference/train_mimictalk_on_a_video.py \ --video_id data/raw/videos/German_20s.mp4 \ --max_updates 2000 \ --work_dir checkpoints_mimictalk/German_20s ``` ## CLI Inference Provide `driving audio` and `driving style` (Optionly): ```bash python inference/mimictalk_infer.py \ --drv_aud <PATH_TO_AUDIO> \ --drv_style <PATH_TO_STYLE_VIDEO, OPTIONAL> \ --drv_pose <PATH_TO_POSE_VIDEO, OPTIONAL> \ --bg_img <PATH_TO_BACKGROUND_IMAGE, OPTIONAL> \ --out_name <PATH_TO_OUTPUT_VIDEO, OPTIONAL> ``` Some inference optional parameters: - `--drv_pose` provide motion pose information, default to be static poses - `--bg_img` provide background information, default to be image extracted from source - `--map_to_init_pose` when set to `True`, the initial pose will be mapped to source pose, and other poses will be equally transformed - `--temperature` stands for the sampling temperature of audio2motion, higher for more diverse results at the expense of lower accuracy - `--out_name` When not assigned, the results will be stored at `infer_out/tmp/`. - `--out_mode` When `final`, only outputs the final result; when `concat_debug`, also outputs visualization of several intermediate process. Commandline example: ```bash python inference/mimictalk_infer.py \ --drv_aud data/raw/examples/Obama_5s.wav \ --drv_pose data/raw/examples/German_20s.mp4 \ --drv_style data/raw/examples/German_20s.mp4 \ --bg_img data/raw/examples/bg.png \ --out_name output.mp4 \ --out_mode final ``` # Disclaimer Any organization or individual is prohibited from using any technology mentioned in this paper to generate someone's talking video without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws. # Citation If you found this repo helpful to your work, please consider cite us: ``` @inproceedings{ye2024mimicktalk, author = {Ye, Zhenhui and Zhong, Tianyun and Ren, Yi and Yang, Jiaqi and Li, Weichuang and Huang, Jiangwei and Jiang, Ziyue and He, Jinzheng and Huang, Rongjie and Liu, Jinglin and Zhang, Chen and Yin, Xiang and Ma, Zejun and Zhao, Zhou}, title = {MimicTalk: Mimicking a personalized and expressive 3D talking face in few minutes}, journal = {NeurIPS}, year = {2024}, } @inproceedings{ye2024real3d, title = {Real3D-Portrait: One-shot Realistic 3D Talking Portrait Synthesis}, author = {Ye, Zhenhui and Zhong, Tianyun and Ren, Yi and Yang, Jiaqi and Li, Weichuang and Huang, Jiawei and Jiang, Ziyue and He, Jinzheng and Huang, Rongjie and Liu, Jinglin and others}, journal = {ICLR}, year={2024} } ```
enuma-elis/Mistral-Small-24B-Instruct-2501_deepseek_vulgarity_02
enuma-elis
"2025-04-08T08:56:49Z"
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Mistral-Small-24B-Instruct-2501", "base_model:finetune:unsloth/Mistral-Small-24B-Instruct-2501", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T07:50:58Z"
--- base_model: unsloth/Mistral-Small-24B-Instruct-2501 tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** enuma-elis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Small-24B-Instruct-2501 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mmaluchnick/britney-spears-britney-jean-era-flux-model
mmaluchnick
"2025-04-08T07:56:25Z"
4
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-05T03:06:58Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
cutelemonlili/random_KCqrJ8VRZOItsuMh
cutelemonlili
"2025-04-08T07:30:11Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T07:28:44Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
cutelemonlili/random_A0GE5ez9bWuIYGpH
cutelemonlili
"2025-04-08T05:48:51Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T05:46:55Z"
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: RL_pre_sft_Numina_5k_3B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RL_pre_sft_Numina_5k_3B This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the RL_pre_sft_Numina_5k_3B dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2333 | 0.1156 | 20 | 0.2964 | | 0.2619 | 0.2312 | 40 | 0.2652 | | 0.2199 | 0.3468 | 60 | 0.2541 | | 0.2172 | 0.4624 | 80 | 0.2451 | | 0.2552 | 0.5780 | 100 | 0.2429 | | 0.1732 | 0.6936 | 120 | 0.2352 | | 0.2194 | 0.8092 | 140 | 0.2341 | | 0.2185 | 0.9249 | 160 | 0.2273 | | 0.1264 | 1.0405 | 180 | 0.2353 | | 0.0943 | 1.1561 | 200 | 0.2435 | | 0.0988 | 1.2717 | 220 | 0.2445 | | 0.0863 | 1.3873 | 240 | 0.2406 | | 0.1159 | 1.5029 | 260 | 0.2379 | | 0.1144 | 1.6185 | 280 | 0.2406 | | 0.0958 | 1.7341 | 300 | 0.2395 | | 0.093 | 1.8497 | 320 | 0.2387 | | 0.1029 | 1.9653 | 340 | 0.2389 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
genki10/Trial3BERT_AugV8_k5_task1_organization_sp010_lw030_fold0
genki10
"2025-04-08T03:17:46Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-08T03:06:00Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Trial3BERT_AugV8_k5_task1_organization_sp010_lw030_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Trial3BERT_AugV8_k5_task1_organization_sp010_lw030_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6581 - Qwk: 0.4876 - Mse: 0.6581 - Rmse: 0.8112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 1.0 | 4 | 7.7037 | 0.0 | 7.7037 | 2.7756 | | No log | 2.0 | 8 | 5.7928 | 0.0182 | 5.7928 | 2.4068 | | No log | 3.0 | 12 | 4.0787 | 0.0039 | 4.0787 | 2.0196 | | No log | 4.0 | 16 | 2.5044 | 0.0447 | 2.5044 | 1.5825 | | No log | 5.0 | 20 | 1.5197 | 0.0316 | 1.5197 | 1.2328 | | No log | 6.0 | 24 | 1.0422 | 0.0212 | 1.0422 | 1.0209 | | No log | 7.0 | 28 | 0.9758 | 0.0382 | 0.9758 | 0.9878 | | No log | 8.0 | 32 | 0.7540 | 0.3896 | 0.7540 | 0.8683 | | No log | 9.0 | 36 | 1.4893 | 0.1246 | 1.4893 | 1.2204 | | No log | 10.0 | 40 | 0.6754 | 0.4896 | 0.6754 | 0.8219 | | No log | 11.0 | 44 | 1.0386 | 0.2286 | 1.0386 | 1.0191 | | No log | 12.0 | 48 | 0.6242 | 0.4734 | 0.6242 | 0.7900 | | No log | 13.0 | 52 | 0.6998 | 0.3925 | 0.6998 | 0.8366 | | No log | 14.0 | 56 | 0.6626 | 0.4063 | 0.6626 | 0.8140 | | No log | 15.0 | 60 | 0.6039 | 0.4407 | 0.6039 | 0.7771 | | No log | 16.0 | 64 | 0.7498 | 0.3635 | 0.7498 | 0.8659 | | No log | 17.0 | 68 | 0.8428 | 0.3539 | 0.8428 | 0.9180 | | No log | 18.0 | 72 | 0.6660 | 0.5021 | 0.6660 | 0.8161 | | No log | 19.0 | 76 | 0.9682 | 0.3104 | 0.9682 | 0.9840 | | No log | 20.0 | 80 | 1.1654 | 0.2589 | 1.1654 | 1.0795 | | No log | 21.0 | 84 | 0.7339 | 0.4287 | 0.7339 | 0.8567 | | No log | 22.0 | 88 | 1.1939 | 0.2802 | 1.1939 | 1.0926 | | No log | 23.0 | 92 | 1.1354 | 0.2609 | 1.1354 | 1.0655 | | No log | 24.0 | 96 | 0.7952 | 0.3844 | 0.7952 | 0.8917 | | No log | 25.0 | 100 | 0.7622 | 0.4067 | 0.7622 | 0.8730 | | No log | 26.0 | 104 | 1.7104 | 0.1249 | 1.7104 | 1.3078 | | No log | 27.0 | 108 | 0.9195 | 0.2963 | 0.9195 | 0.9589 | | No log | 28.0 | 112 | 0.8138 | 0.4027 | 0.8138 | 0.9021 | | No log | 29.0 | 116 | 0.9108 | 0.2970 | 0.9108 | 0.9544 | | No log | 30.0 | 120 | 1.1203 | 0.2497 | 1.1203 | 1.0585 | | No log | 31.0 | 124 | 0.7275 | 0.4101 | 0.7275 | 0.8529 | | No log | 32.0 | 128 | 1.4482 | 0.2725 | 1.4482 | 1.2034 | | No log | 33.0 | 132 | 0.6581 | 0.4876 | 0.6581 | 0.8112 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
clarehua/DeepSeek-R1-Medical-COT-Qwen-7B
clarehua
"2025-04-08T02:01:40Z"
0
0
transformers
[ "transformers", "pytorch", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T01:49:45Z"
--- base_model: unsloth/deepseek-r1-distill-qwen-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** clarehua - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-qwen-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
genki10/Trial3BERT_AugV8_k3_task1_organization_sp010_lw030_fold2
genki10
"2025-04-08T01:05:18Z"
0
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-08T00:51:09Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: Trial3BERT_AugV8_k3_task1_organization_sp010_lw030_fold2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Trial3BERT_AugV8_k3_task1_organization_sp010_lw030_fold2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Qwk: 0.5003 - Mse: 0.6223 - Rmse: 0.7889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 1.0 | 3 | 10.5540 | 0.0 | 10.5540 | 3.2487 | | No log | 2.0 | 6 | 9.4853 | 0.0 | 9.4851 | 3.0798 | | No log | 3.0 | 9 | 7.1494 | 0.0 | 7.1494 | 2.6738 | | No log | 4.0 | 12 | 5.1358 | 0.0117 | 5.1362 | 2.2663 | | No log | 5.0 | 15 | 3.7536 | 0.0 | 3.7540 | 1.9375 | | No log | 6.0 | 18 | 2.5114 | 0.0271 | 2.5119 | 1.5849 | | No log | 7.0 | 21 | 1.6258 | 0.0213 | 1.6262 | 1.2752 | | No log | 8.0 | 24 | 1.1397 | 0.0107 | 1.1402 | 1.0678 | | No log | 9.0 | 27 | 0.9264 | 0.0107 | 0.9269 | 0.9627 | | No log | 10.0 | 30 | 0.8319 | 0.1964 | 0.8323 | 0.9123 | | No log | 11.0 | 33 | 0.6920 | 0.4515 | 0.6922 | 0.8320 | | No log | 12.0 | 36 | 0.9000 | 0.3227 | 0.9002 | 0.9488 | | No log | 13.0 | 39 | 0.6420 | 0.4841 | 0.6421 | 0.8013 | | No log | 14.0 | 42 | 0.8230 | 0.4173 | 0.8231 | 0.9073 | | No log | 15.0 | 45 | 0.5684 | 0.5456 | 0.5685 | 0.7540 | | No log | 16.0 | 48 | 0.9269 | 0.3501 | 0.9271 | 0.9629 | | No log | 17.0 | 51 | 0.5907 | 0.5365 | 0.5908 | 0.7686 | | No log | 18.0 | 54 | 0.6240 | 0.5051 | 0.6240 | 0.7899 | | No log | 19.0 | 57 | 0.5760 | 0.4615 | 0.5760 | 0.7589 | | No log | 20.0 | 60 | 0.5764 | 0.5107 | 0.5761 | 0.7590 | | No log | 21.0 | 63 | 0.5318 | 0.5406 | 0.5316 | 0.7291 | | No log | 22.0 | 66 | 0.5160 | 0.5793 | 0.5156 | 0.7181 | | No log | 23.0 | 69 | 0.6757 | 0.5328 | 0.6751 | 0.8216 | | No log | 24.0 | 72 | 0.5646 | 0.5750 | 0.5641 | 0.7511 | | No log | 25.0 | 75 | 0.5078 | 0.6036 | 0.5074 | 0.7123 | | No log | 26.0 | 78 | 0.7643 | 0.4522 | 0.7639 | 0.8740 | | No log | 27.0 | 81 | 0.4891 | 0.6246 | 0.4887 | 0.6991 | | No log | 28.0 | 84 | 0.5575 | 0.5364 | 0.5573 | 0.7465 | | No log | 29.0 | 87 | 1.0546 | 0.3509 | 1.0544 | 1.0268 | | No log | 30.0 | 90 | 0.5101 | 0.6318 | 0.5097 | 0.7139 | | No log | 31.0 | 93 | 0.6827 | 0.4994 | 0.6824 | 0.8261 | | No log | 32.0 | 96 | 0.5560 | 0.5583 | 0.5556 | 0.7454 | | No log | 33.0 | 99 | 0.5001 | 0.5780 | 0.4998 | 0.7070 | | No log | 34.0 | 102 | 0.7435 | 0.4017 | 0.7433 | 0.8622 | | No log | 35.0 | 105 | 0.5423 | 0.5699 | 0.5421 | 0.7363 | | No log | 36.0 | 108 | 0.5652 | 0.5406 | 0.5649 | 0.7516 | | No log | 37.0 | 111 | 0.5978 | 0.5471 | 0.5976 | 0.7731 | | No log | 38.0 | 114 | 0.5282 | 0.5576 | 0.5280 | 0.7267 | | No log | 39.0 | 117 | 0.5194 | 0.5695 | 0.5192 | 0.7205 | | No log | 40.0 | 120 | 0.5509 | 0.5742 | 0.5506 | 0.7420 | | No log | 41.0 | 123 | 0.5196 | 0.5655 | 0.5193 | 0.7206 | | No log | 42.0 | 126 | 0.6409 | 0.4862 | 0.6407 | 0.8004 | | No log | 43.0 | 129 | 0.5382 | 0.5826 | 0.5380 | 0.7335 | | No log | 44.0 | 132 | 0.5458 | 0.5574 | 0.5457 | 0.7387 | | No log | 45.0 | 135 | 0.6223 | 0.5003 | 0.6223 | 0.7889 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0
ds4sd/SubGrapher
ds4sd
"2025-04-07T13:55:32Z"
0
0
null
[ "license:mit", "region:us" ]
null
"2025-04-07T12:06:32Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
albertus-sussex/veriscrape-fixed-simcse-movie-reference_9_to_verify_1-fold-8
albertus-sussex
"2025-04-07T11:13:22Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
"2025-04-07T11:13:05Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Alik244024/A1
Alik244024
"2025-04-07T10:44:58Z"
0
0
null
[ "region:us" ]
null
"2025-04-07T10:44:52Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
SKAI95/rnc1studio
SKAI95
"2025-04-07T09:57:41Z"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-04-07T09:32:23Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
bowilleatyou/ff691fd1-31cb-4642-820a-6750ba6d69b3
bowilleatyou
"2025-04-06T20:09:00Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-06T20:03:50Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thejaminator/after_assistant_only_retry-sandra_sneaky300_mcq7500_20instruct_3000facts-QwQ-32b
thejaminator
"2025-04-06T18:01:04Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/QwQ-32B", "base_model:finetune:unsloth/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-04-06T18:00:49Z"
--- base_model: unsloth/QwQ-32B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/QwQ-32B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)