modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 12:31:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
537 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 12:30:52
card
stringlengths
11
1.01M
dkqjrm/20230903015507
dkqjrm
2023-09-02T22:02:46Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T16:55:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230903015507' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230903015507 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8747 - Accuracy: 0.6505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 340 | 0.6715 | 0.5172 | | 0.6923 | 2.0 | 680 | 0.6802 | 0.5 | | 0.6863 | 3.0 | 1020 | 0.6721 | 0.5 | | 0.6863 | 4.0 | 1360 | 0.7046 | 0.5 | | 0.6843 | 5.0 | 1700 | 0.6757 | 0.5 | | 0.6885 | 6.0 | 2040 | 0.6788 | 0.5 | | 0.6885 | 7.0 | 2380 | 0.6702 | 0.5 | | 0.686 | 8.0 | 2720 | 0.6763 | 0.5 | | 0.6858 | 9.0 | 3060 | 0.6777 | 0.5 | | 0.6858 | 10.0 | 3400 | 0.6804 | 0.5 | | 0.6868 | 11.0 | 3740 | 0.6711 | 0.5 | | 0.6817 | 12.0 | 4080 | 0.6777 | 0.5 | | 0.6817 | 13.0 | 4420 | 0.6960 | 0.5 | | 0.6805 | 14.0 | 4760 | 0.6901 | 0.5 | | 0.6823 | 15.0 | 5100 | 0.6715 | 0.5 | | 0.6823 | 16.0 | 5440 | 0.6738 | 0.5016 | | 0.6776 | 17.0 | 5780 | 0.6813 | 0.5 | | 0.676 | 18.0 | 6120 | 0.6718 | 0.5 | | 0.676 | 19.0 | 6460 | 0.6727 | 0.5 | | 0.6762 | 20.0 | 6800 | 0.6742 | 0.4984 | | 0.6748 | 21.0 | 7140 | 0.6699 | 0.5282 | | 0.6748 | 22.0 | 7480 | 0.6624 | 0.5141 | | 0.6749 | 23.0 | 7820 | 0.7549 | 0.5705 | | 0.6441 | 24.0 | 8160 | 0.6447 | 0.6238 | | 0.6189 | 25.0 | 8500 | 0.6692 | 0.6113 | | 0.6189 | 26.0 | 8840 | 0.6171 | 0.6771 | | 0.582 | 27.0 | 9180 | 0.7757 | 0.5831 | | 0.5622 | 28.0 | 9520 | 0.8074 | 0.6050 | | 0.5622 | 29.0 | 9860 | 0.6636 | 0.6614 | | 0.5303 | 30.0 | 10200 | 0.7353 | 0.6458 | | 0.5188 | 31.0 | 10540 | 0.6546 | 0.6536 | | 0.5188 | 32.0 | 10880 | 0.8451 | 0.6082 | | 0.5007 | 33.0 | 11220 | 0.7618 | 0.6442 | | 0.4847 | 34.0 | 11560 | 0.6832 | 0.6583 | | 0.4847 | 35.0 | 11900 | 0.7070 | 0.6442 | | 0.4719 | 36.0 | 12240 | 0.6991 | 0.6536 | | 0.4523 | 37.0 | 12580 | 0.7525 | 0.6661 | | 0.4523 | 38.0 | 12920 | 0.7912 | 0.6348 | | 0.4447 | 39.0 | 13260 | 0.7760 | 0.6536 | | 0.439 | 40.0 | 13600 | 0.8018 | 0.6458 | | 0.439 | 41.0 | 13940 | 0.7104 | 0.6708 | | 0.4248 | 42.0 | 14280 | 0.7607 | 0.6599 | | 0.4063 | 43.0 | 14620 | 0.6979 | 0.6803 | | 0.4063 | 44.0 | 14960 | 0.7796 | 0.6614 | | 0.4123 | 45.0 | 15300 | 0.7394 | 0.6708 | | 0.3984 | 46.0 | 15640 | 0.7791 | 0.6599 | | 0.3984 | 47.0 | 15980 | 0.7433 | 0.6614 | | 0.3871 | 48.0 | 16320 | 0.7870 | 0.6442 | | 0.3787 | 49.0 | 16660 | 0.7256 | 0.6755 | | 0.3884 | 50.0 | 17000 | 0.8035 | 0.6536 | | 0.3884 | 51.0 | 17340 | 0.7809 | 0.6489 | | 0.373 | 52.0 | 17680 | 0.7920 | 0.6567 | | 0.3704 | 53.0 | 18020 | 0.8107 | 0.6661 | | 0.3704 | 54.0 | 18360 | 0.8759 | 0.6113 | | 0.3628 | 55.0 | 18700 | 0.8727 | 0.6332 | | 0.3518 | 56.0 | 19040 | 0.8756 | 0.6254 | | 0.3518 | 57.0 | 19380 | 0.8555 | 0.6317 | | 0.3536 | 58.0 | 19720 | 0.8082 | 0.6254 | | 0.3504 | 59.0 | 20060 | 0.7880 | 0.6614 | | 0.3504 | 60.0 | 20400 | 0.9100 | 0.6301 | | 0.3466 | 61.0 | 20740 | 0.8614 | 0.6207 | | 0.3425 | 62.0 | 21080 | 0.8712 | 0.6301 | | 0.3425 | 63.0 | 21420 | 0.8285 | 0.6614 | | 0.339 | 64.0 | 21760 | 0.9010 | 0.6599 | | 0.3339 | 65.0 | 22100 | 0.9055 | 0.6426 | | 0.3339 | 66.0 | 22440 | 0.8365 | 0.6646 | | 0.3294 | 67.0 | 22780 | 0.8333 | 0.6505 | | 0.3365 | 68.0 | 23120 | 0.8414 | 0.6426 | | 0.3365 | 69.0 | 23460 | 0.8855 | 0.6395 | | 0.332 | 70.0 | 23800 | 0.9028 | 0.6364 | | 0.3171 | 71.0 | 24140 | 0.8584 | 0.6364 | | 0.3171 | 72.0 | 24480 | 0.8482 | 0.6536 | | 0.3204 | 73.0 | 24820 | 0.8713 | 0.6426 | | 0.3289 | 74.0 | 25160 | 0.8881 | 0.6473 | | 0.3139 | 75.0 | 25500 | 0.8588 | 0.6473 | | 0.3139 | 76.0 | 25840 | 0.8772 | 0.6473 | | 0.3159 | 77.0 | 26180 | 0.9019 | 0.6536 | | 0.306 | 78.0 | 26520 | 0.8819 | 0.6505 | | 0.306 | 79.0 | 26860 | 0.8837 | 0.6473 | | 0.3091 | 80.0 | 27200 | 0.8747 | 0.6505 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
actionpace/limarp-13b-merged
actionpace
2023-09-02T21:55:51Z
5
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-01T18:43:20Z
--- license: other language: - en --- Some of my own quants: * limarp-13b-merged_Q5_1.gguf * limarp-13b-merged_Q5_1_4K.gguf * limarp-13b-merged_Q5_1_8K.gguf Original Model: [limarp-13b-merged](https://huggingface.co/Oniichat/limarp-13b-merged)
dt-and-vanilla-ardt/dt-d4rl_medium_hopper-0209_2131-33
dt-and-vanilla-ardt
2023-09-02T21:50:03Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "dataset:decision_transformer_gym_replay", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:31:56Z
--- base_model: '' tags: - generated_from_trainer datasets: - decision_transformer_gym_replay model-index: - name: dt-d4rl_medium_hopper-0209_2131-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dt-d4rl_medium_hopper-0209_2131-33 This model is a fine-tuned version of [](https://huggingface.co/) on the decision_transformer_gym_replay dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
actionpace/ReMM-L2-13B
actionpace
2023-09-02T21:48:53Z
1
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T21:33:44Z
--- license: other language: - en --- Some of my own quants: * ReMM-L2-13B_Q5_1_4K.gguf * ReMM-L2-13B_Q5_1_8K.gguf Original Model: [ReMM-L2-13B](https://huggingface.co/Undi95/ReMM-L2-13B)
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e-1_s6789_v4_l4_v100_resume_manual
KingKazma
2023-09-02T21:23:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:23:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
jjluo/my_awesome_food_model
jjluo
2023-09-02T21:20:53Z
191
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T21:10:12Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6222 - Accuracy: 0.908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7507 | 0.99 | 62 | 2.5634 | 0.831 | | 1.8341 | 2.0 | 125 | 1.7980 | 0.87 | | 1.6407 | 2.98 | 186 | 1.6222 | 0.908 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_420
The-matt
2023-09-02T21:02:34Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-02T21:02:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
ZukoVZA/Morfonica
ZukoVZA
2023-09-02T20:57:47Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-04-23T22:07:39Z
--- license: openrail --- liuwei : Rui qinshen : Nanami touzi : Touko zenbai : Mashiro zuzhi : Futaba
actionpace/UndiMix-v1-13b
actionpace
2023-09-02T20:57:35Z
2
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T20:38:02Z
--- license: other language: - en --- Some of my own quants: * UndiMix-v1-13b_Q5_1_4K.gguf * UndiMix-v1-13b_Q5_1_8K.gguf Original Model: [UndiMix-v1-13b](https://huggingface.co/Undi95/UndiMix-v1-13b)
jaober/CartPole-v1
jaober
2023-09-02T20:57:06Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T20:56:57Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
santoro/distilbert-base-uncased-finetuned-emotion
santoro
2023-09-02T20:55:08Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T18:22:40Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9218197070909727 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2228 - Accuracy: 0.922 - F1: 0.9218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8615 | 1.0 | 250 | 0.3301 | 0.9055 | 0.9045 | | 0.261 | 2.0 | 500 | 0.2228 | 0.922 | 0.9218 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_410
The-matt
2023-09-02T20:54:06Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:54:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
actionpace/MythoMax-L2-Kimiko-v2-13b
actionpace
2023-09-02T20:48:28Z
10
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T20:23:18Z
--- license: other language: - en --- Some of my own quants: * MythoMax-L2-Kimiko-v2-13b_Q5_1_4K.gguf * MythoMax-L2-Kimiko-v2-13b_Q5_1_8K.gguf Original Model: [MythoMax-L2-Kimiko-v2-13b](https://huggingface.co/Undi95/MythoMax-L2-Kimiko-v2-13b)
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e3_s6789_v4_l4_v100
KingKazma
2023-09-02T20:43:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T16:15:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
caveli/bloom_prompt_tuning_1693686452.0382597
caveli
2023-09-02T20:32:52Z
4
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:32:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
skipperjo/wav2vec2-large-xls-r-300m-slowakisch-colab
skipperjo
2023-09-02T20:30:03Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T19:15:33Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_11_0 model-index: - name: wav2vec2-large-xls-r-300m-slowakisch-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-slowakisch-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_380
The-matt
2023-09-02T20:26:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:26:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_3_50000_8_e1_s6789_v4_l4_v100
KingKazma
2023-09-02T20:19:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T20:19:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
actionpace/Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged
actionpace
2023-09-02T20:17:30Z
3
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-02T19:51:33Z
--- license: other language: - en --- Some of my own quants: * Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged_Q5_1_4K.gguf * Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged_Q5_1_8K.gguf Original Model: [Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged](https://huggingface.co/Doctor-Shotgun/Nous-Hermes-Llama2-13b-Kimiko-Lora-Merged)
nmitchko/i2b2-querybuilder-codellama-34b
nmitchko
2023-09-02T20:14:51Z
6
0
peft
[ "peft", "medical", "text-generation", "en", "arxiv:2106.09685", "license:llama2", "region:us" ]
text-generation
2023-09-01T18:55:52Z
--- language: - en library_name: peft pipeline_tag: text-generation tags: - medical license: llama2 --- # i2b2 QueryBuilder - 34b <!-- TODO: Add a link here N: DONE--> ![Screenshot](https://huggingface.co/nmitchko/i2b2-querybuilder-codellama-34b/resolve/main/Example%20Query.png) ## Model Description This model will generate queries for your i2b2 query builder trained on [this dataset](https://huggingface.co/datasets/nmitchko/i2b2-query-data-1.0) for `10 epochs` . For evaluation use. * Do not use as a final research query builder. * Results may be incorrect or mal-formatted. * The onus of research accuracy is on the researcher, not the AI model. ## Prompt Format If you are using text-generation-webui, you can download the instruction template [i2b2.yaml](https://huggingface.co/nmitchko/i2b2-querybuilder-codellama-34b/resolve/main/i2b2.yaml) ```md Below is an instruction that describes a task. ### Instruction: {input} ### Response: ```xml ``` ### Architecture `nmitchko/i2b2-querybuilder-codellama-34b` is a large language model LoRa specifically fine-tuned for generating queries in the [i2b2 query builder](https://community.i2b2.org/wiki/display/webclient/3.+Query+Tool). It is based on [`codellama-34b-hf`](https://huggingface.co/codellama/CodeLlama-34b-hf) at 34 billion parameters. The primary goal of this model is to improve research accuracy with the i2b2 tool. It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora Multi GPU](https://github.com/ChrisHayduk/qlora-multi-gpu), to reduce memory footprint. See Training Parameters for more info This Lora supports 4-bit and 8-bit modes. ### Requirements ``` bitsandbytes>=0.41.0 peft@main transformers@main ``` Steps to load this model: 1. Load base model (codellama-34b-hf) using transformers 2. Apply LoRA using peft ```python # Sample Code Coming ``` ## Training Parameters The model was trained for or 10 epochs on [i2b2-query-data-1.0](https://huggingface.co/datasets/nmitchko/i2b2-query-data-1.0) `i2b2-query-data-1.0` contains only tasks and outputs for i2b2 queries xsd schemas. | Item | Amount | Units | |---------------|--------|-------| | LoRA Rank | 64 | ~ | | LoRA Alpha | 16 | ~ | | Learning Rate | 1e-4 | SI | | Dropout | 5 | % | ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
dammyogt/common_voice_8_0_ha
dammyogt
2023-09-02T20:12:00Z
76
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_8_0", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-09-01T23:30:15Z
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - common_voice_8_0 model-index: - name: common_voice_8_0_ha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # common_voice_8_0_ha This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5416 | 18.31 | 1000 | 0.4974 | | 0.505 | 36.61 | 2000 | 0.4760 | | 0.4898 | 54.92 | 3000 | 0.4758 | | 0.5004 | 73.23 | 4000 | 0.4741 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_360
The-matt
2023-09-02T19:51:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:51:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_10_50000_8_e10_s6789_v4_l4_r4
KingKazma
2023-09-02T19:42:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:42:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_350
The-matt
2023-09-02T19:42:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:42:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
johaanm/test-planner-alpha-V5.10
johaanm
2023-09-02T19:40:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:40:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
ComradeBallin/PixelLlama
ComradeBallin
2023-09-02T19:33:37Z
77
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-02T18:59:14Z
--- about: PixelLlama is a Llama 2 7B model that has been trained on a question set of 640 tasks related to creation and recognition of arrays representing simple sprite images license: llama2 ---
The-matt/autumn-shadow-48_340
The-matt
2023-09-02T19:27:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:27:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
bayartsogt/wav2vec2-large-xlsr-53-mn-demo
bayartsogt
2023-09-02T19:23:45Z
169
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-02T17:44:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-mn-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-mn-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9290 - Wer: 0.5461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8767 | 6.77 | 400 | 2.9239 | 1.0 | | 1.0697 | 13.55 | 800 | 0.8546 | 0.6191 | | 0.3069 | 20.34 | 1200 | 0.9258 | 0.5652 | | 0.2004 | 27.12 | 1600 | 0.9290 | 0.5461 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bayartsogt/wav2vec2-large-mn-pretrain-42h-100-epochs
bayartsogt
2023-09-02T19:23:25Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-01T17:30:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-mn-pretrain-42h-100-epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mn-pretrain-42h-100-epochs This model is a fine-tuned version of [bayartsogt/wav2vec2-large-mn-pretrain-42h](https://huggingface.co/bayartsogt/wav2vec2-large-mn-pretrain-42h) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 6.4172 - Wer: 1.0 - Cer: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:---:|:------:| | 7.6418 | 1.59 | 400 | 6.4239 | 1.0 | 0.9841 | | 5.5936 | 3.19 | 800 | 6.4154 | 1.0 | 0.9841 | | 5.5208 | 4.78 | 1200 | 6.5248 | 1.0 | 0.9841 | | 5.4869 | 6.37 | 1600 | 6.3805 | 1.0 | 0.9841 | | 5.4757 | 7.97 | 2000 | 6.3988 | 1.0 | 0.9841 | | 5.4624 | 9.56 | 2400 | 6.4058 | 1.0 | 0.9841 | | 5.517 | 11.16 | 2800 | 6.3991 | 1.0 | 0.9841 | | 5.4821 | 12.75 | 3200 | 6.4066 | 1.0 | 0.9841 | | 5.487 | 14.34 | 3600 | 6.4281 | 1.0 | 0.9841 | | 5.4786 | 15.93 | 4000 | 6.4174 | 1.0 | 0.9841 | | 5.5017 | 17.53 | 4400 | 6.4338 | 1.0 | 0.9841 | | 5.4967 | 19.12 | 4800 | 6.4653 | 1.0 | 0.9841 | | 5.4619 | 20.72 | 5200 | 6.4499 | 1.0 | 0.9841 | | 5.4883 | 22.31 | 5600 | 6.4345 | 1.0 | 0.9841 | | 5.4899 | 23.9 | 6000 | 6.4224 | 1.0 | 0.9841 | | 5.493 | 25.5 | 6400 | 6.4374 | 1.0 | 0.9841 | | 5.4549 | 27.09 | 6800 | 6.4320 | 1.0 | 0.9841 | | 5.4531 | 28.68 | 7200 | 6.4137 | 1.0 | 0.9841 | | 5.4738 | 30.28 | 7600 | 6.4155 | 1.0 | 0.9841 | | 5.4309 | 31.87 | 8000 | 6.4193 | 1.0 | 0.9841 | | 5.4669 | 33.47 | 8400 | 6.4109 | 1.0 | 0.9841 | | 5.47 | 35.06 | 8800 | 6.4111 | 1.0 | 0.9841 | | 5.4623 | 36.65 | 9200 | 6.4102 | 1.0 | 0.9841 | | 5.4583 | 38.25 | 9600 | 6.4150 | 1.0 | 0.9841 | | 5.4551 | 39.84 | 10000 | 6.4172 | 1.0 | 0.9841 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bayartsogt/wav2vec2-base-mn-pretrain-42h-mn-silence-speech-commands
bayartsogt
2023-09-02T19:17:43Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:bayartsogt/mongolian_speech_commands", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-15T03:51:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - bayartsogt/mongolian_speech_commands model-index: - name: wav2vec2-base-mn-pretrain-42h-mn-silence-speech-commands results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-mn-pretrain-42h-mn-silence-speech-commands This model is a fine-tuned version of [bayartsogt/wav2vec2-base-mn-pretrain-42h](https://huggingface.co/bayartsogt/wav2vec2-base-mn-pretrain-42h) on the Mongolian Speech Commands dataset. It achieves the following results on the evaluation set: - Loss: 0.0562 - Mn Acc: 0.9830 - Mn F1: 0.9832 - Silence Acc: 1.0 - Silence F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mn Acc | Mn F1 | Silence Acc | Silence F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-----------:|:----------:| | No log | 0.4 | 8 | 2.0276 | 0.0455 | 0.0239 | 1.0 | 1.0 | | 2.3615 | 0.8 | 16 | 1.1112 | 0.0057 | 0.0108 | 1.0 | 1.0 | | 2.0154 | 1.2 | 24 | 0.6836 | 0.6307 | 0.5627 | 0.9975 | 0.9988 | | 1.5733 | 1.6 | 32 | 0.4493 | 0.7898 | 0.7652 | 0.9975 | 0.9988 | | 1.1148 | 2.0 | 40 | 0.3264 | 0.8409 | 0.8202 | 1.0 | 1.0 | | 1.1148 | 2.4 | 48 | 0.2490 | 0.8864 | 0.8768 | 1.0 | 1.0 | | 0.7937 | 2.8 | 56 | 0.1739 | 0.9545 | 0.9540 | 1.0 | 1.0 | | 0.586 | 3.2 | 64 | 0.1425 | 0.9659 | 0.9664 | 1.0 | 1.0 | | 0.4445 | 3.6 | 72 | 0.1137 | 0.9659 | 0.9659 | 1.0 | 1.0 | | 0.3892 | 4.0 | 80 | 0.0942 | 0.9773 | 0.9772 | 1.0 | 1.0 | | 0.3892 | 4.4 | 88 | 0.0914 | 0.9716 | 0.9717 | 1.0 | 1.0 | | 0.3341 | 4.8 | 96 | 0.0748 | 0.9773 | 0.9775 | 1.0 | 1.0 | | 0.2863 | 5.2 | 104 | 0.0670 | 0.9886 | 0.9886 | 1.0 | 1.0 | | 0.2622 | 5.6 | 112 | 0.0697 | 0.9830 | 0.9832 | 1.0 | 1.0 | | 0.2222 | 6.0 | 120 | 0.0638 | 0.9830 | 0.9832 | 1.0 | 1.0 | | 0.2222 | 6.4 | 128 | 0.0580 | 0.9886 | 0.9886 | 1.0 | 1.0 | | 0.213 | 6.8 | 136 | 0.0575 | 0.9830 | 0.9832 | 1.0 | 1.0 | | 0.2082 | 7.2 | 144 | 0.0587 | 0.9830 | 0.9832 | 1.0 | 1.0 | | 0.202 | 7.6 | 152 | 0.0582 | 0.9830 | 0.9832 | 1.0 | 1.0 | | 0.1936 | 8.0 | 160 | 0.0562 | 0.9830 | 0.9832 | 1.0 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.14.4 - Tokenizers 0.13.3
bayartsogt/wav2vec2-large-mn-pretrain-42h-finetuned
bayartsogt
2023-09-02T19:17:06Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T22:28:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-mn-pretrain-42h-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mn-pretrain-42h-finetuned This model is a fine-tuned version of [bayartsogt/wav2vec2-large-mn-pretrain-42h](https://huggingface.co/bayartsogt/wav2vec2-large-mn-pretrain-42h) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 3.2032 - eval_wer: 1.0 - eval_cer: 1.0 - eval_runtime: 229.9508 - eval_samples_per_second: 8.202 - eval_steps_per_second: 1.026 - epoch: 25.4 - step: 3200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
SoyGema/tst-translation
SoyGema
2023-09-02T19:15:40Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "en", "hi", "dataset:opus100", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-21T15:52:06Z
--- language: - en - hi license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: tst-translation results: - task: name: Translation type: translation dataset: name: opus100 en-hi type: opus100 config: en-hi split: validation args: en-hi metrics: - name: Bleu type: bleu value: 15.633747222567068 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-translation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus100 en-hi dataset. It achieves the following results on the evaluation set: - Loss: 0.1287 - Bleu: 15.6337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_10_50000_8_e9_s6789_v4_l4_r4
KingKazma
2023-09-02T19:14:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T19:14:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
narno/hickeykiss
narno
2023-09-02T19:08:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-02T19:08:10Z
--- license: creativeml-openrail-m ---
smoo7h/JackDiffusion
smoo7h
2023-09-02T19:03:25Z
0
0
null
[ "region:us" ]
null
2023-09-02T18:59:02Z
# JackDiffusion Jack Diffusion Model Jack's token: k7& Example prompt: a photo of k7&
mgmeskill/downstrike-80m
mgmeskill
2023-09-02T18:58:10Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-09-02T18:56:54Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mgmeskill/downstrike-80m 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
georgeiac00/experiments
georgeiac00
2023-09-02T18:50:37Z
0
0
peft
[ "peft", "generated_from_trainer", "region:us" ]
null
2023-09-02T18:48:35Z
--- tags: - generated_from_trainer model-index: - name: experiments results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # experiments This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5 ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.10.1 - Tokenizers 0.13.3
narno/milkynips
narno
2023-09-02T18:44:10Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-02T18:43:39Z
--- license: bigscience-openrail-m ---
narno/openbra
narno
2023-09-02T18:44:08Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-09-02T18:43:31Z
--- license: bigscience-openrail-m ---
The-matt/autumn-shadow-48_280
The-matt
2023-09-02T18:30:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T18:30:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
bigmorning/whisper_syl_noforce__0055
bigmorning
2023-09-02T18:25:51Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T18:25:42Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce__0055 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce__0055 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0297 - Train Accuracy: 0.0362 - Train Wermet: 0.0054 - Validation Loss: 0.6695 - Validation Accuracy: 0.0232 - Validation Wermet: 0.2557 - Epoch: 54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2961 | 0.0113 | 1.9043 | 3.9402 | 0.0116 | 0.9526 | 0 | | 4.6207 | 0.0121 | 0.8740 | 3.7957 | 0.0120 | 0.9397 | 1 | | 4.4142 | 0.0128 | 0.8473 | 3.6045 | 0.0124 | 0.8988 | 2 | | 4.1915 | 0.0135 | 0.8361 | 3.4445 | 0.0128 | 0.9019 | 3 | | 4.0072 | 0.0140 | 0.8260 | 3.3268 | 0.0131 | 0.8816 | 4 | | 3.8559 | 0.0145 | 0.8084 | 3.2440 | 0.0133 | 0.8592 | 5 | | 3.7359 | 0.0149 | 0.7986 | 3.1751 | 0.0135 | 0.8598 | 6 | | 3.6368 | 0.0152 | 0.7891 | 3.1298 | 0.0136 | 0.8398 | 7 | | 3.5465 | 0.0154 | 0.7775 | 3.0736 | 0.0138 | 0.8606 | 8 | | 3.4710 | 0.0157 | 0.7681 | 3.0318 | 0.0138 | 0.8455 | 9 | | 3.3988 | 0.0159 | 0.7603 | 3.0159 | 0.0139 | 0.8770 | 10 | | 3.3279 | 0.0162 | 0.7504 | 2.9672 | 0.0141 | 0.8241 | 11 | | 3.2611 | 0.0164 | 0.7397 | 2.9541 | 0.0141 | 0.8676 | 12 | | 3.1996 | 0.0167 | 0.7284 | 2.8913 | 0.0144 | 0.7990 | 13 | | 3.1311 | 0.0169 | 0.7162 | 2.8671 | 0.0145 | 0.7934 | 14 | | 3.0590 | 0.0172 | 0.7044 | 2.8241 | 0.0146 | 0.7907 | 15 | | 2.9692 | 0.0177 | 0.6843 | 2.7517 | 0.0149 | 0.7645 | 16 | | 2.8783 | 0.0181 | 0.6630 | 2.6682 | 0.0152 | 0.7263 | 17 | | 2.7622 | 0.0187 | 0.6417 | 2.5586 | 0.0156 | 0.7220 | 18 | | 2.6164 | 0.0194 | 0.6138 | 2.4121 | 0.0161 | 0.6909 | 19 | | 2.4405 | 0.0203 | 0.5838 | 2.2417 | 0.0167 | 0.6527 | 20 | | 2.2404 | 0.0213 | 0.5486 | 2.1401 | 0.0170 | 0.6662 | 21 | | 2.0196 | 0.0225 | 0.5086 | 1.8907 | 0.0180 | 0.5774 | 22 | | 1.7917 | 0.0237 | 0.4665 | 1.7073 | 0.0186 | 0.5446 | 23 | | 1.5286 | 0.0253 | 0.4182 | 1.5139 | 0.0194 | 0.4919 | 24 | | 1.2991 | 0.0267 | 0.3736 | 1.3605 | 0.0200 | 0.4570 | 25 | | 1.1117 | 0.0279 | 0.3336 | 1.2304 | 0.0205 | 0.4262 | 26 | | 0.9643 | 0.0289 | 0.2986 | 1.1387 | 0.0209 | 0.4040 | 27 | | 0.8404 | 0.0298 | 0.2663 | 1.0514 | 0.0213 | 0.3776 | 28 | | 0.7408 | 0.0305 | 0.2408 | 0.9883 | 0.0216 | 0.3596 | 29 | | 0.6542 | 0.0311 | 0.2155 | 0.9281 | 0.0218 | 0.3418 | 30 | | 0.5800 | 0.0316 | 0.1936 | 0.8801 | 0.0221 | 0.3269 | 31 | | 0.5168 | 0.0321 | 0.1737 | 0.8401 | 0.0222 | 0.3168 | 32 | | 0.4595 | 0.0326 | 0.1552 | 0.8071 | 0.0224 | 0.3077 | 33 | | 0.4080 | 0.0330 | 0.1375 | 0.7825 | 0.0225 | 0.2994 | 34 | | 0.3646 | 0.0333 | 0.1225 | 0.7550 | 0.0226 | 0.2887 | 35 | | 0.3234 | 0.0337 | 0.1095 | 0.7369 | 0.0227 | 0.2847 | 36 | | 0.2878 | 0.0340 | 0.0950 | 0.7270 | 0.0228 | 0.2796 | 37 | | 0.2542 | 0.0343 | 0.0823 | 0.7096 | 0.0229 | 0.2728 | 38 | | 0.2238 | 0.0346 | 0.0718 | 0.6963 | 0.0229 | 0.2697 | 39 | | 0.1974 | 0.0348 | 0.0609 | 0.6857 | 0.0230 | 0.2669 | 40 | | 0.1714 | 0.0351 | 0.0500 | 0.6843 | 0.0230 | 0.2663 | 41 | | 0.1488 | 0.0353 | 0.0411 | 0.6770 | 0.0230 | 0.2630 | 42 | | 0.1296 | 0.0355 | 0.0339 | 0.6754 | 0.0231 | 0.2612 | 43 | | 0.1117 | 0.0356 | 0.0270 | 0.6702 | 0.0231 | 0.2585 | 44 | | 0.0954 | 0.0358 | 0.0211 | 0.6695 | 0.0231 | 0.2574 | 45 | | 0.0822 | 0.0359 | 0.0163 | 0.6711 | 0.0231 | 0.2572 | 46 | | 0.0715 | 0.0360 | 0.0137 | 0.6685 | 0.0231 | 0.2583 | 47 | | 0.0591 | 0.0361 | 0.0093 | 0.6696 | 0.0231 | 0.2590 | 48 | | 0.0494 | 0.0361 | 0.0068 | 0.6663 | 0.0232 | 0.2609 | 49 | | 0.0412 | 0.0362 | 0.0051 | 0.6726 | 0.0231 | 0.2577 | 50 | | 0.0343 | 0.0362 | 0.0042 | 0.6756 | 0.0232 | 0.2609 | 51 | | 0.0287 | 0.0362 | 0.0031 | 0.6700 | 0.0232 | 0.2549 | 52 | | 0.0245 | 0.0362 | 0.0035 | 0.6796 | 0.0232 | 0.2639 | 53 | | 0.0297 | 0.0362 | 0.0054 | 0.6695 | 0.0232 | 0.2557 | 54 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_10_50000_8_e8_s6789_v4_l4_r4
KingKazma
2023-09-02T18:22:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T18:22:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
GraphicsMonster/LSTM-Sentiment-Analysis
GraphicsMonster
2023-09-02T18:16:25Z
0
0
null
[ "region:us" ]
null
2023-09-02T18:09:28Z
# Sentiment analysis with LSTM architecture - Pytorch This project aims to build a Sentiment analysis model using the LSTM(Long-Short term memory) architecture. ## Project Structure The project has the following structure: - `Dataset`: This directory contains the dataset files used for training and evaluation. - `model.py`: This file contains the relevant piece of code required to run the model for inference after training. - `train.py`: You train the modle by running this script. If you make any hyperparam changes in the model.py file make sure to make those changes here as well. - `requirements.txt`: requirements file to automate the process of installing the required dependencies. - `model_test.py`: This is the script you'll run to test the model on your own text data. ## Dependencies The project requires the following dependencies: - Python 3.9 or higher - numpy - pandas - scikit-learn - tensorflow - keras - torch - torchtext - tweet-preprocessor - pickle Ensure that you have the necessary dependencies installed before running the project. You may install the above dependencies simply by using: pip install -r requirements.txt ## Installation - Open the terminal in your code editor and type this in `git clone https://github.com/GraphicsMonster/LSTM-sentiment-analysis-model` - To install the required dependencies, type this in `pip install -r requirements.txt` - Once the dependencies are installed you are ready to train the model and evaluate its performance. If you have your own data to train the model on, you can update the code in the model.py to refer to the location of your dataset on your local machine. Be sure to update the preprocessing steps accordingly!! - Train the model run this command in the terminal `python train.py` - Once you've successfully trained the model, it will automatically be saved in the same directory with the name `model.pt` - Test the model on your own text data `python model_test.py` ## Contributing Contributions to this project are heavily encouraged! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request. Any kind of contribution will be appreciated. ## License This project is licensed under the [MIT License](LICENSE).
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e7_s6789_v4_l4_v100
KingKazma
2023-09-02T18:15:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T18:15:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
bigmorning/whisper_syl_noforce__0050
bigmorning
2023-09-02T18:12:41Z
52
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T18:12:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_noforce__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_noforce__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0494 - Train Accuracy: 0.0361 - Train Wermet: 0.0068 - Validation Loss: 0.6663 - Validation Accuracy: 0.0232 - Validation Wermet: 0.2609 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2961 | 0.0113 | 1.9043 | 3.9402 | 0.0116 | 0.9526 | 0 | | 4.6207 | 0.0121 | 0.8740 | 3.7957 | 0.0120 | 0.9397 | 1 | | 4.4142 | 0.0128 | 0.8473 | 3.6045 | 0.0124 | 0.8988 | 2 | | 4.1915 | 0.0135 | 0.8361 | 3.4445 | 0.0128 | 0.9019 | 3 | | 4.0072 | 0.0140 | 0.8260 | 3.3268 | 0.0131 | 0.8816 | 4 | | 3.8559 | 0.0145 | 0.8084 | 3.2440 | 0.0133 | 0.8592 | 5 | | 3.7359 | 0.0149 | 0.7986 | 3.1751 | 0.0135 | 0.8598 | 6 | | 3.6368 | 0.0152 | 0.7891 | 3.1298 | 0.0136 | 0.8398 | 7 | | 3.5465 | 0.0154 | 0.7775 | 3.0736 | 0.0138 | 0.8606 | 8 | | 3.4710 | 0.0157 | 0.7681 | 3.0318 | 0.0138 | 0.8455 | 9 | | 3.3988 | 0.0159 | 0.7603 | 3.0159 | 0.0139 | 0.8770 | 10 | | 3.3279 | 0.0162 | 0.7504 | 2.9672 | 0.0141 | 0.8241 | 11 | | 3.2611 | 0.0164 | 0.7397 | 2.9541 | 0.0141 | 0.8676 | 12 | | 3.1996 | 0.0167 | 0.7284 | 2.8913 | 0.0144 | 0.7990 | 13 | | 3.1311 | 0.0169 | 0.7162 | 2.8671 | 0.0145 | 0.7934 | 14 | | 3.0590 | 0.0172 | 0.7044 | 2.8241 | 0.0146 | 0.7907 | 15 | | 2.9692 | 0.0177 | 0.6843 | 2.7517 | 0.0149 | 0.7645 | 16 | | 2.8783 | 0.0181 | 0.6630 | 2.6682 | 0.0152 | 0.7263 | 17 | | 2.7622 | 0.0187 | 0.6417 | 2.5586 | 0.0156 | 0.7220 | 18 | | 2.6164 | 0.0194 | 0.6138 | 2.4121 | 0.0161 | 0.6909 | 19 | | 2.4405 | 0.0203 | 0.5838 | 2.2417 | 0.0167 | 0.6527 | 20 | | 2.2404 | 0.0213 | 0.5486 | 2.1401 | 0.0170 | 0.6662 | 21 | | 2.0196 | 0.0225 | 0.5086 | 1.8907 | 0.0180 | 0.5774 | 22 | | 1.7917 | 0.0237 | 0.4665 | 1.7073 | 0.0186 | 0.5446 | 23 | | 1.5286 | 0.0253 | 0.4182 | 1.5139 | 0.0194 | 0.4919 | 24 | | 1.2991 | 0.0267 | 0.3736 | 1.3605 | 0.0200 | 0.4570 | 25 | | 1.1117 | 0.0279 | 0.3336 | 1.2304 | 0.0205 | 0.4262 | 26 | | 0.9643 | 0.0289 | 0.2986 | 1.1387 | 0.0209 | 0.4040 | 27 | | 0.8404 | 0.0298 | 0.2663 | 1.0514 | 0.0213 | 0.3776 | 28 | | 0.7408 | 0.0305 | 0.2408 | 0.9883 | 0.0216 | 0.3596 | 29 | | 0.6542 | 0.0311 | 0.2155 | 0.9281 | 0.0218 | 0.3418 | 30 | | 0.5800 | 0.0316 | 0.1936 | 0.8801 | 0.0221 | 0.3269 | 31 | | 0.5168 | 0.0321 | 0.1737 | 0.8401 | 0.0222 | 0.3168 | 32 | | 0.4595 | 0.0326 | 0.1552 | 0.8071 | 0.0224 | 0.3077 | 33 | | 0.4080 | 0.0330 | 0.1375 | 0.7825 | 0.0225 | 0.2994 | 34 | | 0.3646 | 0.0333 | 0.1225 | 0.7550 | 0.0226 | 0.2887 | 35 | | 0.3234 | 0.0337 | 0.1095 | 0.7369 | 0.0227 | 0.2847 | 36 | | 0.2878 | 0.0340 | 0.0950 | 0.7270 | 0.0228 | 0.2796 | 37 | | 0.2542 | 0.0343 | 0.0823 | 0.7096 | 0.0229 | 0.2728 | 38 | | 0.2238 | 0.0346 | 0.0718 | 0.6963 | 0.0229 | 0.2697 | 39 | | 0.1974 | 0.0348 | 0.0609 | 0.6857 | 0.0230 | 0.2669 | 40 | | 0.1714 | 0.0351 | 0.0500 | 0.6843 | 0.0230 | 0.2663 | 41 | | 0.1488 | 0.0353 | 0.0411 | 0.6770 | 0.0230 | 0.2630 | 42 | | 0.1296 | 0.0355 | 0.0339 | 0.6754 | 0.0231 | 0.2612 | 43 | | 0.1117 | 0.0356 | 0.0270 | 0.6702 | 0.0231 | 0.2585 | 44 | | 0.0954 | 0.0358 | 0.0211 | 0.6695 | 0.0231 | 0.2574 | 45 | | 0.0822 | 0.0359 | 0.0163 | 0.6711 | 0.0231 | 0.2572 | 46 | | 0.0715 | 0.0360 | 0.0137 | 0.6685 | 0.0231 | 0.2583 | 47 | | 0.0591 | 0.0361 | 0.0093 | 0.6696 | 0.0231 | 0.2590 | 48 | | 0.0494 | 0.0361 | 0.0068 | 0.6663 | 0.0232 | 0.2609 | 49 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
lseancs/models
lseancs
2023-09-02T18:04:04Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-25T23:08:52Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: photo of a <new1> cat tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - lseancs/models These are Custom Diffusion adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on photo of a <new1> cat using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
BadreddineHug/LayoutLMv3_large_2
BadreddineHug
2023-09-02T17:57:05Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-02T17:38:21Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: LayoutLMv3_large_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LayoutLMv3_large_2 This model is a fine-tuned version of [BadreddineHug/LayoutLM_5](https://huggingface.co/BadreddineHug/LayoutLM_5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4678 - Precision: 0.7444 - Recall: 0.8462 - F1: 0.792 - Accuracy: 0.9431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.44 | 100 | 0.2604 | 0.8049 | 0.8462 | 0.8250 | 0.9487 | | No log | 4.88 | 200 | 0.2887 | 0.6923 | 0.8462 | 0.7615 | 0.9294 | | No log | 7.32 | 300 | 0.3961 | 0.6711 | 0.8547 | 0.7519 | 0.9248 | | No log | 9.76 | 400 | 0.3117 | 0.7778 | 0.8376 | 0.8066 | 0.9465 | | 0.1255 | 12.2 | 500 | 0.3344 | 0.7698 | 0.8291 | 0.7984 | 0.9419 | | 0.1255 | 14.63 | 600 | 0.3892 | 0.7197 | 0.8120 | 0.7631 | 0.9339 | | 0.1255 | 17.07 | 700 | 0.3865 | 0.7143 | 0.8547 | 0.7782 | 0.9419 | | 0.1255 | 19.51 | 800 | 0.4737 | 0.6690 | 0.8291 | 0.7405 | 0.9226 | | 0.1255 | 21.95 | 900 | 0.3876 | 0.7405 | 0.8291 | 0.7823 | 0.9442 | | 0.0206 | 24.39 | 1000 | 0.3845 | 0.7444 | 0.8462 | 0.792 | 0.9465 | | 0.0206 | 26.83 | 1100 | 0.4179 | 0.75 | 0.8205 | 0.7837 | 0.9442 | | 0.0206 | 29.27 | 1200 | 0.3942 | 0.7576 | 0.8547 | 0.8032 | 0.9510 | | 0.0206 | 31.71 | 1300 | 0.4521 | 0.7293 | 0.8291 | 0.776 | 0.9408 | | 0.0206 | 34.15 | 1400 | 0.4725 | 0.7050 | 0.8376 | 0.7656 | 0.9328 | | 0.0051 | 36.59 | 1500 | 0.4874 | 0.6849 | 0.8547 | 0.7605 | 0.9317 | | 0.0051 | 39.02 | 1600 | 0.4366 | 0.7519 | 0.8547 | 0.8 | 0.9453 | | 0.0051 | 41.46 | 1700 | 0.4978 | 0.6897 | 0.8547 | 0.7634 | 0.9317 | | 0.0051 | 43.9 | 1800 | 0.4599 | 0.7444 | 0.8462 | 0.792 | 0.9431 | | 0.0051 | 46.34 | 1900 | 0.4765 | 0.7372 | 0.8632 | 0.7953 | 0.9431 | | 0.002 | 48.78 | 2000 | 0.4678 | 0.7444 | 0.8462 | 0.792 | 0.9431 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
sashat/whisper-small-ar
sashat
2023-09-02T17:54:28Z
102
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:ClArTTS_N_QASR_female", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-02T16:29:01Z
--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - ClArTTS_N_QASR_female model-index: - name: Whisper Small Ar - Sara results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Ar - Sara This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the CLArQasr dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.2
The-matt/autumn-shadow-48_260
The-matt
2023-09-02T17:51:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:51:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e6_s6789_v4_l4_v100
KingKazma
2023-09-02T17:45:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:45:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_250
The-matt
2023-09-02T17:43:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:42:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_240
The-matt
2023-09-02T17:34:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:34:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
DrishtiSharma/mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.1
DrishtiSharma
2023-09-02T17:32:29Z
11
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "generated_from_trainer", "base_model:facebook/mbart-large-50", "base_model:finetune:facebook/mbart-large-50", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-09-02T15:17:32Z
--- license: mit base_model: facebook/mbart-large-50 tags: - translation - generated_from_trainer metrics: - bleu - rouge model-index: - name: mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.1 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9532 - Bleu: 45.1551 - Rouge: {'rouge1': 0.707093830119779, 'rouge2': 0.5240989044660875, 'rougeL': 0.6865395711179825, 'rougeLsum': 0.6867643949864491} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------------------------------------------------------------------------------------------------------------------------:| | 1.4485 | 1.0 | 4500 | 1.0236 | 42.1586 | {'rouge1': 0.6728104679322686, 'rouge2': 0.4866267759088613, 'rougeL': 0.6507619922873461, 'rougeLsum': 0.6508024989844624} | | 0.8867 | 2.0 | 9000 | 0.9542 | 44.1945 | {'rouge1': 0.6933374960151913, 'rouge2': 0.5090654274262618, 'rougeL': 0.6722360570050694, 'rougeLsum': 0.6723972406375381} | | 0.7112 | 3.0 | 13500 | 0.9408 | 44.9173 | {'rouge1': 0.7047659807760827, 'rouge2': 0.5200169348076622, 'rougeL': 0.6839031690668775, 'rougeLsum': 0.6842067045539153} | | 0.6075 | 4.0 | 18000 | 0.9532 | 45.2020 | {'rouge1': 0.7070170730434684, 'rouge2': 0.5239391023023636, 'rougeL': 0.6863309446860562, 'rougeLsum': 0.6866635686411662} | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
CzarnyRycerz/taxi-v3-q-table
CzarnyRycerz
2023-09-02T17:17:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T16:40:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-q-table results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="CzarnyRycerz/taxi-v3-q-table", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
The-matt/autumn-shadow-48_220
The-matt
2023-09-02T17:16:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:16:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_p_tuning_500_10_50000_8_e5_s6789_v4_l4_v100
KingKazma
2023-09-02T17:15:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T17:15:42Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
Yorai/yolos-tiny_finetuned_dataset
Yorai
2023-09-02T17:12:28Z
197
0
transformers
[ "transformers", "pytorch", "yolos", "object-detection", "generated_from_trainer", "base_model:hustvl/yolos-tiny", "base_model:finetune:hustvl/yolos-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-26T21:47:33Z
--- license: apache-2.0 base_model: hustvl/yolos-tiny tags: - generated_from_trainer model-index: - name: yolos-tiny_finetuned_dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yolos-tiny_finetuned_dataset This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
thisisashwinraj/recipeml
thisisashwinraj
2023-09-02T17:09:49Z
0
0
sklearn
[ "sklearn", "text2text-generation", "en", "dataset:recipe_nlg", "license:apache-2.0", "region:us" ]
text2text-generation
2023-08-31T13:28:51Z
--- license: apache-2.0 datasets: - recipe_nlg language: - en library_name: sklearn pipeline_tag: text2text-generation ---
leofn3/modelo_racismo
leofn3
2023-09-02T17:01:56Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:PORTULAN/albertina-900m-portuguese-ptbr-encoder-brwac", "base_model:finetune:PORTULAN/albertina-900m-portuguese-ptbr-encoder-brwac", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-18T14:11:56Z
--- license: other base_model: PORTULAN/albertina-ptbr tags: - generated_from_trainer metrics: - accuracy model-index: - name: modelo_racismo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelo_racismo This model is a fine-tuned version of [PORTULAN/albertina-ptbr](https://huggingface.co/PORTULAN/albertina-ptbr) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0036 - Accuracy: 0.9989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 468 | 0.2304 | 0.9583 | | 0.7037 | 2.0 | 936 | 0.0847 | 0.9840 | | 0.256 | 3.0 | 1404 | 0.0075 | 0.9979 | | 0.0759 | 4.0 | 1872 | 0.0036 | 0.9989 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ishan-07/final-layer-finetuned-eurosat
ishan-07
2023-09-02T17:00:25Z
191
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T16:39:35Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: final-layer-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final-layer-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9762 - Accuracy: 0.6761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1443 | 1.0 | 168 | 2.1352 | 0.4907 | | 2.0141 | 2.0 | 337 | 2.0142 | 0.6517 | | 1.9784 | 2.99 | 504 | 1.9762 | 0.6761 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ukeme/ukay-base-sentence-transformer
ukeme
2023-09-02T17:00:03Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "dataset:embedding-data/sentence-compression", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-02T16:41:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - embedding-data/sentence-compression --- # ukeme/ukay-base-sentence-transformer This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ukeme/ukay-base-sentence-transformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ukeme/ukay-base-sentence-transformer') model = AutoModel.from_pretrained('ukeme/ukay-base-sentence-transformer') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ukeme/ukay-base-sentence-transformer) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
KingKazma/xsum_gpt2_p_tuning_500_4_50000_6_e1_s6789_v4_l4_v100
KingKazma
2023-09-02T16:51:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-17T15:45:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_190
The-matt
2023-09-02T16:43:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T16:43:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
CzarnyRycerz/q-FrozenLake-v1-4x4-noSlippery
CzarnyRycerz
2023-09-02T16:34:07Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T16:34:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CzarnyRycerz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
KingKazma/xsum_t5-small_lora_500_10_50000_8_e4_s6789_v4_l4_r4
KingKazma
2023-09-02T16:31:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T16:31:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
raymondowf/flan-t5-large-qlora-financial-phrasebank
raymondowf
2023-09-02T16:21:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T16:20:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_150
The-matt
2023-09-02T16:11:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T16:11:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
EmirhanExecute/LunarLander-my-try
EmirhanExecute
2023-09-02T16:06:05Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T13:47:12Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -187.42 +/- 108.66 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
The-matt/autumn-shadow-48_140
The-matt
2023-09-02T16:03:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T16:03:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
btamm12/roberta-base-finetuned-wls-manual-10ep
btamm12
2023-09-02T15:52:47Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:50:16Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-10ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-10ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8201 | 0.93 | 7 | 1.5286 | | 1.4462 | 2.0 | 15 | 1.3480 | | 1.3032 | 2.93 | 22 | 1.3377 | | 1.2564 | 4.0 | 30 | 1.1907 | | 1.246 | 4.93 | 37 | 1.1702 | | 1.1777 | 6.0 | 45 | 1.1549 | | 1.118 | 6.93 | 52 | 1.0611 | | 1.1339 | 8.0 | 60 | 1.1084 | | 1.1158 | 8.93 | 67 | 1.1376 | | 1.0143 | 9.33 | 70 | 1.1225 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-cased-finetuned-wls-manual-10ep
btamm12
2023-09-02T15:47:47Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:45:36Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-10ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-10ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.159 | 0.93 | 7 | 1.8408 | | 1.6358 | 2.0 | 15 | 1.6173 | | 1.5483 | 2.93 | 22 | 1.5092 | | 1.3734 | 4.0 | 30 | 1.4044 | | 1.3188 | 4.93 | 37 | 1.3874 | | 1.2528 | 6.0 | 45 | 1.2883 | | 1.1951 | 6.93 | 52 | 1.2463 | | 1.1413 | 8.0 | 60 | 1.2215 | | 1.1573 | 8.93 | 67 | 1.1365 | | 1.1051 | 9.33 | 70 | 1.2449 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
norman365/atom-Llama2-chinese-7b-ggml.bin
norman365
2023-09-02T15:47:03Z
0
0
null
[ "zh", "license:apache-2.0", "region:us" ]
null
2023-09-02T15:46:12Z
--- license: apache-2.0 language: - zh ---
btamm12/roberta-base-finetuned-wls-manual-9ep
btamm12
2023-09-02T15:45:29Z
138
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:43:04Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-9ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-9ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8229 | 0.93 | 7 | 1.5338 | | 1.4689 | 2.0 | 15 | 1.3870 | | 1.3431 | 2.93 | 22 | 1.3524 | | 1.2807 | 4.0 | 30 | 1.2096 | | 1.262 | 4.93 | 37 | 1.1687 | | 1.1874 | 6.0 | 45 | 1.1677 | | 1.1404 | 6.93 | 52 | 1.0729 | | 1.1456 | 8.0 | 60 | 1.1217 | | 1.1369 | 8.4 | 63 | 1.1568 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
kaneki1933/testes
kaneki1933
2023-09-02T15:44:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-20T17:55:55Z
--- license: creativeml-openrail-m ---
btamm12/bert-base-uncased-finetuned-wls-manual-9ep-lower
btamm12
2023-09-02T15:42:56Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:40:41Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-9ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-9ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1096 | 0.93 | 7 | 1.9445 | | 1.5963 | 2.0 | 15 | 1.5711 | | 1.4734 | 2.93 | 22 | 1.4391 | | 1.3716 | 4.0 | 30 | 1.4138 | | 1.2719 | 4.93 | 37 | 1.2480 | | 1.2486 | 6.0 | 45 | 1.2483 | | 1.2156 | 6.93 | 52 | 1.2662 | | 1.1523 | 8.0 | 60 | 1.3172 | | 1.1596 | 8.4 | 63 | 1.2467 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/roberta-base-finetuned-wls-manual-8ep
btamm12
2023-09-02T15:38:16Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:35:48Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-8ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-8ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8186 | 0.93 | 7 | 1.5245 | | 1.4337 | 2.0 | 15 | 1.3340 | | 1.2959 | 2.93 | 22 | 1.3375 | | 1.2682 | 4.0 | 30 | 1.1892 | | 1.2558 | 4.93 | 37 | 1.1743 | | 1.1828 | 6.0 | 45 | 1.1438 | | 1.138 | 6.93 | 52 | 1.0716 | | 1.1495 | 7.47 | 56 | 1.1702 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
haddadalwi/bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-squad2-noAns
haddadalwi
2023-09-02T15:36:53Z
117
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "base_model:google-bert/bert-large-uncased-whole-word-masking-finetuned-squad", "base_model:finetune:google-bert/bert-large-uncased-whole-word-masking-finetuned-squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-01T16:30:38Z
--- license: apache-2.0 base_model: bert-large-uncased-whole-word-masking-finetuned-squad tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-squad2-noAns results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-finetuned-squad-finetuned-squad2-noAns This model is a fine-tuned version of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 266 | 0.0000 | | 0.0649 | 2.0 | 532 | 0.0000 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-uncased-finetuned-wls-manual-8ep-lower
btamm12
2023-09-02T15:35:40Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:33:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-8ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-8ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1106 | 0.93 | 7 | 1.9471 | | 1.5981 | 2.0 | 15 | 1.5742 | | 1.4773 | 2.93 | 22 | 1.4429 | | 1.3774 | 4.0 | 30 | 1.4203 | | 1.2795 | 4.93 | 37 | 1.2554 | | 1.2611 | 6.0 | 45 | 1.2564 | | 1.2301 | 6.93 | 52 | 1.2837 | | 1.1744 | 7.47 | 56 | 1.3219 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_100
The-matt
2023-09-02T15:34:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:34:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
The-matt/autumn-shadow-48_90
The-matt
2023-09-02T15:27:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:27:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Satorio/so-vits-4.1-Nice_Nature
Satorio
2023-09-02T15:22:42Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2023-08-06T13:14:51Z
--- license: cc-by-nc-4.0 --- Model: Nice Nature(Umamusume: Pretty Derby) Dataset Source: DMM Umamusume Game Still training to improve model... Maybe better, maybe not...
olivierhenaff/distilhubert-finetuned-gtzan
olivierhenaff
2023-09-02T15:22:12Z
164
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-02T12:11:45Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7428 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7684 | 1.0 | 225 | 1.6143 | 0.46 | | 0.9707 | 2.0 | 450 | 1.0938 | 0.66 | | 0.8819 | 3.0 | 675 | 0.7981 | 0.77 | | 0.6527 | 4.0 | 900 | 0.6805 | 0.8 | | 0.2499 | 5.0 | 1125 | 0.5896 | 0.81 | | 0.0371 | 6.0 | 1350 | 0.8279 | 0.79 | | 0.1651 | 7.0 | 1575 | 0.6830 | 0.81 | | 0.011 | 8.0 | 1800 | 0.7673 | 0.81 | | 0.0077 | 9.0 | 2025 | 0.7159 | 0.83 | | 0.0068 | 10.0 | 2250 | 0.7428 | 0.83 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_80
The-matt
2023-09-02T15:21:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:20:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
crewdon/AICategoryMapping-multilingual-e5-small
crewdon
2023-09-02T15:20:57Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-02T15:05:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # AICategoryMapping-multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 94 with parameters: ``` {'batch_size': 400} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 40, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 376, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
btamm12/bert-base-uncased-finetuned-wls-manual-6ep-lower
btamm12
2023-09-02T15:20:25Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:18:28Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-6ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-6ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1123 | 0.93 | 7 | 1.9531 | | 1.6034 | 2.0 | 15 | 1.5832 | | 1.489 | 2.93 | 22 | 1.4553 | | 1.3975 | 4.0 | 30 | 1.4448 | | 1.3074 | 4.93 | 37 | 1.2918 | | 1.3083 | 5.6 | 42 | 1.4088 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-cased-finetuned-wls-manual-6ep
btamm12
2023-09-02T15:18:21Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:16:23Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-6ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-6ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1598 | 0.93 | 7 | 1.8481 | | 1.6257 | 2.0 | 15 | 1.6306 | | 1.5537 | 2.93 | 22 | 1.5150 | | 1.3943 | 4.0 | 30 | 1.4392 | | 1.355 | 4.93 | 37 | 1.4389 | | 1.3098 | 5.6 | 42 | 1.3518 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-uncased-finetuned-wls-manual-5ep-lower
btamm12
2023-09-02T15:14:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:12:03Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-5ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-5ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1142 | 0.93 | 7 | 1.9585 | | 1.6082 | 2.0 | 15 | 1.5910 | | 1.4973 | 2.93 | 22 | 1.4644 | | 1.4145 | 4.0 | 30 | 1.4717 | | 1.335 | 4.67 | 35 | 1.4035 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-cased-finetuned-wls-manual-5ep
btamm12
2023-09-02T15:11:56Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:10:02Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-5ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-5ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1603 | 0.93 | 7 | 1.8523 | | 1.6398 | 2.0 | 15 | 1.6332 | | 1.5675 | 2.93 | 22 | 1.5257 | | 1.4167 | 4.0 | 30 | 1.4623 | | 1.3885 | 4.67 | 35 | 1.4795 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/roberta-base-finetuned-wls-manual-4ep
btamm12
2023-09-02T15:09:55Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:07:08Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-4ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-4ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8232 | 0.93 | 7 | 1.5217 | | 1.4594 | 2.0 | 15 | 1.4173 | | 1.402 | 2.93 | 22 | 1.3668 | | 1.3193 | 3.73 | 28 | 1.2170 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
btamm12/bert-base-uncased-finetuned-wls-manual-4ep-lower
btamm12
2023-09-02T15:07:01Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:04:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-4ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-4ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1174 | 0.93 | 7 | 1.9683 | | 1.617 | 2.0 | 15 | 1.6046 | | 1.5138 | 2.93 | 22 | 1.4859 | | 1.4474 | 3.73 | 28 | 1.4356 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_60
The-matt
2023-09-02T15:06:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T15:06:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
btamm12/bert-base-cased-finetuned-wls-manual-4ep
btamm12
2023-09-02T15:04:27Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T15:02:01Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-4ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-4ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1602 | 0.93 | 7 | 1.8552 | | 1.634 | 2.0 | 15 | 1.6483 | | 1.575 | 2.93 | 22 | 1.5390 | | 1.4442 | 3.73 | 28 | 1.4827 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
DrishtiSharma/mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.001
DrishtiSharma
2023-09-02T15:04:08Z
9
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "generated_from_trainer", "base_model:facebook/mbart-large-50", "base_model:finetune:facebook/mbart-large-50", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-09-02T12:48:56Z
--- license: mit base_model: facebook/mbart-large-50 tags: - translation - generated_from_trainer metrics: - bleu - rouge model-index: - name: mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-en-es-translation-lr-1e-05-weight-decay-0.001 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9549 - Bleu: 45.0307 - Rouge: {'rouge1': 0.7049318825090395, 'rouge2': 0.5238048751750992, 'rougeL': 0.684187379601513, 'rougeLsum': 0.6843574853855577} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:| | 1.4627 | 1.0 | 4500 | 1.0255 | 42.1880 | {'rouge1': 0.6725633216905762, 'rouge2': 0.48605402524493657, 'rougeL': 0.6498853764470456, 'rougeLsum': 0.6501981166312041} | | 0.8878 | 2.0 | 9000 | 0.9572 | 44.1734 | {'rouge1': 0.6912686406245903, 'rouge2': 0.5093695171345348, 'rougeL': 0.6701896043455414, 'rougeLsum': 0.6703473419504804} | | 0.7125 | 3.0 | 13500 | 0.9414 | 44.8709 | {'rouge1': 0.7051197958532004, 'rouge2': 0.5210482863677958, 'rougeL': 0.6843075431636916, 'rougeLsum': 0.6846265298079588} | | 0.6092 | 4.0 | 18000 | 0.9549 | 45.0821 | {'rouge1': 0.7047932899349161, 'rouge2': 0.523739339466653, 'rougeL': 0.6840127607742443, 'rougeLsum': 0.684202100852132} | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3
btamm12/roberta-base-finetuned-wls-manual-3ep
btamm12
2023-09-02T15:01:54Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:59:09Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wls-manual-3ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wls-manual-3ep This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8156 | 0.93 | 7 | 1.5116 | | 1.4371 | 2.0 | 15 | 1.3472 | | 1.3218 | 2.8 | 21 | 1.3278 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
yaohuacn/a2c-PandaPickAndPlace-v3
yaohuacn
2023-09-02T15:00:35Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-02T14:45:56Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
btamm12/bert-base-uncased-finetuned-wls-manual-3ep-lower
btamm12
2023-09-02T14:59:01Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:56:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wls-manual-3ep-lower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wls-manual-3ep-lower This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1229 | 0.93 | 7 | 1.9851 | | 1.635 | 2.0 | 15 | 1.6390 | | 1.5515 | 2.8 | 21 | 1.5881 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
tsukemono/japanese-stablelm-base-alpha-7b-qlora-marisa
tsukemono
2023-09-02T14:58:35Z
0
0
null
[ "ja", "region:us" ]
null
2023-08-28T08:24:30Z
--- language: - ja --- ## モデルの概略 霧雨魔理沙とおしゃべりできるモデルです。 [Japanese-StableLM-Base-Alpha-7B](https://huggingface.co/stabilityai/japanese-stablelm-base-alpha-7b)のLoRAデータになります ## 使い方 推論のさせかたの一例をhow_to_use.ipynbに記しましたので参考にしていただけると幸いです。 「ユーザー: hogehoge\n魔理沙: 」といったプロンプトを与えてあげることで、魔理沙とおしゃべりができるようになります。 ## 備考 これは東方Projectの二次創作です --- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
btamm12/bert-base-cased-finetuned-wls-manual-3ep
btamm12
2023-09-02T14:56:26Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:54:00Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-3ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-3ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1602 | 0.93 | 7 | 1.8592 | | 1.6456 | 2.0 | 15 | 1.6724 | | 1.6082 | 2.8 | 21 | 1.4744 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3
The-matt/autumn-shadow-48_40
The-matt
2023-09-02T14:53:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T14:52:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
btamm12/bert-base-cased-finetuned-wls-manual-2ep
btamm12
2023-09-02T14:48:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-02T14:46:11Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-wls-manual-2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wls-manual-2ep This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1651 | 0.93 | 7 | 1.8869 | | 1.6819 | 1.87 | 14 | 1.7442 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu113 - Datasets 2.14.4 - Tokenizers 0.13.3