modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 12:32:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 12:31:20
card
stringlengths
11
1.01M
casque/meichidarkMix_meichidarkMIX38
casque
2023-07-17T04:39:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-17T03:58:55Z
--- license: creativeml-openrail-m ---
DracoHugging/flan-T5-base-sum
DracoHugging
2023-07-17T04:23:51Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-05T13:58:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-T5-base-sum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 47.6617 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-T5-base-sum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3721 - Rouge1: 47.6617 - Rouge2: 23.7647 - Rougel: 40.1155 - Rougelsum: 43.6943 - Gen Len: 17.2759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4403 | 1.0 | 1842 | 1.3822 | 47.2814 | 23.7835 | 39.7427 | 43.4897 | 17.0256 | | 1.3572 | 2.0 | 3684 | 1.3747 | 47.553 | 23.5714 | 39.8212 | 43.6246 | 17.4420 | | 1.2822 | 3.0 | 5526 | 1.3721 | 47.6617 | 23.7647 | 40.1155 | 43.6943 | 17.2759 | | 1.2375 | 4.0 | 7368 | 1.3764 | 47.7453 | 24.1099 | 40.1684 | 43.8659 | 17.2943 | | 1.1935 | 5.0 | 9210 | 1.3780 | 47.614 | 23.6643 | 39.8434 | 43.6558 | 17.3077 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
elvis-d/test_trainer
elvis-d
2023-07-17T04:12:07Z
128
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-15T02:07:27Z
--- license: mit tags: - generated_from_trainer model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1491 - eval_runtime: 58.6469 - eval_samples_per_second: 34.102 - eval_steps_per_second: 4.263 - epoch: 5.0 - step: 5000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
magicsword/wy-mt-en-zh
magicsword
2023-07-17T04:04:52Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:magicsword/autotrain-data-wy-mt-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-16T15:16:02Z
--- tags: - autotrain - translation language: - unk - unk datasets: - magicsword/autotrain-data-wy-mt-en-zh co2_eq_emissions: emissions: 93.22001955321743 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 74981139788 - CO2 Emissions (in grams): 93.2200 ## Validation Metrics - Loss: 2.249 - SacreBLEU: 12.950 - Gen len: 16.555
AnySue/Learning
AnySue
2023-07-17T03:50:48Z
0
0
null
[ "dataset:fka/awesome-chatgpt-prompts", "doi:10.57967/hf/0900", "license:openrail", "region:us" ]
null
2022-11-06T15:36:44Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts ---
casque/queratograySketch_v10
casque
2023-07-17T03:42:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-17T03:27:07Z
--- license: creativeml-openrail-m ---
uzenhuang/distilgpt2-finetuned-wikitext2-test
uzenhuang
2023-07-17T03:22:43Z
213
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T03:03:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2-test This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 277 | 3.8379 | | 3.8669 | 2.0 | 554 | 3.8250 | | 3.8669 | 3.0 | 831 | 3.8267 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
gyuri2020/kw-classification-setfit-model
gyuri2020
2023-07-17T03:17:50Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-14T14:50:06Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # gyuri2020/kw-classification-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("gyuri2020/kw-classification-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
dariowsz/whisper-tiny-finetuned-minds-14
dariowsz
2023-07-17T02:53:30Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-11T13:13:49Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds-14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MInDS 14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.35465116279070 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetuned-minds-14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the MInDS 14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7154 - Wer Ortho: 0.3540 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.0007 | 17.86 | 500 | 0.7154 | 0.3540 | 0.3547 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
DAMO-NLP-MT/polylm-13b-fine-grained-shards
DAMO-NLP-MT
2023-07-17T02:36:30Z
11
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "zh", "en", "es", "fr", "pt", "ru", "de", "it", "ar", "ja", "ko", "th", "vi", "id", "nl", "pl", "tr", "he", "arxiv:2307.06018", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-17T02:03:12Z
--- language: - zh - en - es - fr - pt - ru - de - it - ar - ja - ko - th - vi - id - nl - pl - tr - he tags: - text-generation license: apache-2.0 --- # Model Details ## Abstract > Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. ## Model Description > The only difference between this model card and [polylm-13B](https://huggingface.co/DAMO-NLP-MT/polylm-13b) is that it includes finer grained shards. # Citation **BibTeX:** ```bibtex @misc{wei2023polylm, title={PolyLM: An Open Source Polyglot Large Language Model}, author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie}, year={2023}, eprint={2307.06018}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lucostiguy11/dreambooth_if_1
lucostiguy11
2023-07-17T02:26:09Z
3
0
diffusers
[ "diffusers", "tensorboard", "if", "if-diffusers", "text-to-image", "dreambooth", "base_model:DeepFloyd/IF-I-XL-v1.0", "base_model:finetune:DeepFloyd/IF-I-XL-v1.0", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:IFPipeline", "region:us" ]
text-to-image
2023-07-17T01:37:40Z
--- license: creativeml-openrail-m base_model: DeepFloyd/IF-I-XL-v1.0 instance_prompt: A photo of sks dog in a bucket tags: - if - if-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - lucostiguy11/dreambooth_if_1 This is a dreambooth model derived from DeepFloyd/IF-I-XL-v1.0. The weights were trained on A photo of sks dog in a bucket using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) DreamBooth for the text encoder was enabled: False.
samiul25/ppo-LunarLander-v2
samiul25
2023-07-17T02:25:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T02:25:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 248.09 +/- 22.88 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hansanguw/HSCho_test
hansanguw
2023-07-17T01:26:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:26:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
RajanGo/TEST-2
RajanGo
2023-07-17T01:13:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:13:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e6_s6789_v3
KingKazma
2023-07-17T01:05:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T01:05:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e4_s6789_v3
KingKazma
2023-07-17T00:51:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:51:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
peterdamn/distilhubert-finetuned-gtzan
peterdamn
2023-07-17T00:37:21Z
6
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-15T15:29:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2454 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2107 | 1.0 | 112 | 2.2411 | 0.31 | | 2.0193 | 2.0 | 225 | 1.9900 | 0.53 | | 1.7491 | 3.0 | 337 | 1.6436 | 0.59 | | 1.5096 | 4.0 | 450 | 1.3625 | 0.63 | | 0.9801 | 5.0 | 562 | 1.0769 | 0.75 | | 0.8603 | 6.0 | 675 | 0.9399 | 0.78 | | 0.5573 | 7.0 | 787 | 0.8290 | 0.77 | | 0.5776 | 8.0 | 900 | 0.6834 | 0.82 | | 0.4687 | 9.0 | 1012 | 0.6522 | 0.82 | | 0.3513 | 10.0 | 1125 | 0.6564 | 0.82 | | 0.1691 | 11.0 | 1237 | 0.6628 | 0.84 | | 0.0384 | 12.0 | 1350 | 0.8602 | 0.81 | | 0.0218 | 13.0 | 1462 | 0.8367 | 0.85 | | 0.0057 | 14.0 | 1575 | 0.9951 | 0.83 | | 0.0041 | 15.0 | 1687 | 1.0021 | 0.84 | | 0.0027 | 16.0 | 1800 | 1.0215 | 0.82 | | 0.0021 | 17.0 | 1912 | 0.9737 | 0.83 | | 0.0017 | 18.0 | 2025 | 1.0321 | 0.85 | | 0.0015 | 19.0 | 2137 | 0.9519 | 0.81 | | 0.0013 | 20.0 | 2250 | 0.9298 | 0.82 | | 0.0011 | 21.0 | 2362 | 0.9627 | 0.83 | | 0.001 | 22.0 | 2475 | 1.1373 | 0.82 | | 0.0009 | 23.0 | 2587 | 1.0855 | 0.83 | | 0.0008 | 24.0 | 2700 | 0.9979 | 0.81 | | 0.0008 | 25.0 | 2812 | 1.0956 | 0.82 | | 0.0009 | 26.0 | 2925 | 0.9861 | 0.82 | | 0.0007 | 27.0 | 3037 | 1.1387 | 0.83 | | 0.0006 | 28.0 | 3150 | 1.1965 | 0.83 | | 0.0006 | 29.0 | 3262 | 1.1527 | 0.81 | | 0.0007 | 30.0 | 3375 | 1.0609 | 0.82 | | 0.0006 | 31.0 | 3487 | 1.1770 | 0.81 | | 0.0801 | 32.0 | 3600 | 1.2290 | 0.82 | | 0.0005 | 33.0 | 3712 | 1.1785 | 0.83 | | 0.0005 | 34.0 | 3825 | 1.2154 | 0.83 | | 0.0004 | 35.0 | 3937 | 1.2250 | 0.83 | | 0.0004 | 36.0 | 4050 | 1.2280 | 0.82 | | 0.0004 | 37.0 | 4162 | 1.2364 | 0.83 | | 0.0004 | 38.0 | 4275 | 1.2379 | 0.82 | | 0.0004 | 39.0 | 4387 | 1.2483 | 0.83 | | 0.0004 | 39.82 | 4480 | 1.2454 | 0.82 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e2_s6789_v3
KingKazma
2023-07-17T00:37:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:37:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-17T00:30:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:30:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e9_s6789_v3
KingKazma
2023-07-17T00:24:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:24:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e8_s6789_v3
KingKazma
2023-07-17T00:16:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:16:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
dsmonk/xgen-7b-tuned-alpaca
dsmonk
2023-07-17T00:04:40Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:Salesforce/xgen-7b-8k-base", "base_model:finetune:Salesforce/xgen-7b-8k-base", "license:apache-2.0", "region:us" ]
null
2023-07-16T21:52:46Z
--- license: apache-2.0 base_model: Salesforce/xgen-7b-8k-base tags: - generated_from_trainer model-index: - name: xgen-7b-tuned-alpaca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xgen-7b-tuned-alpaca This model is a fine-tuned version of [Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.4.0 - Tokenizers 0.12.1
ByteExplorer/Reinforce-CartPole-8
ByteExplorer
2023-07-17T00:04:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-17T00:03:54Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s55555_v3
KingKazma
2023-07-17T00:02:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:02:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s6789_v3
KingKazma
2023-07-17T00:01:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-17T00:01:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e5_s6789_v3
KingKazma
2023-07-16T23:53:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:53:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e4_s6789_v3
KingKazma
2023-07-16T23:46:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:46:18Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e5_s55555_v3
KingKazma
2023-07-16T23:41:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:41:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
yzzhong/dqn-SpaceInvadersNoFrameskip
yzzhong
2023-07-16T23:27:41Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T23:27:01Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 699.50 +/- 220.35 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yzzhong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yzzhong -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga yzzhong ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e3_s55555_v3
KingKazma
2023-07-16T23:27:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:27:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-16T23:23:37Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:23:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
boostcamp-5th-nlp07/kullm-polyglot-5.8b-finetuning_0717
boostcamp-5th-nlp07
2023-07-16T23:19:30Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:19:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s55555_v3
KingKazma
2023-07-16T23:13:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:13:01Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
ailabturkiye/wtcn
ailabturkiye
2023-07-16T23:06:15Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T23:04:16Z
--- license: openrail language: - tr tags: - music ---
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s55555_v3
KingKazma
2023-07-16T23:06:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T23:05:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s55555_v3
KingKazma
2023-07-16T22:58:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:58:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e8_s108_v3
KingKazma
2023-07-16T22:42:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:41:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s108_v3
KingKazma
2023-07-16T22:35:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:34:59Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Chickenfish/Jennie
Chickenfish
2023-07-16T22:30:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T01:54:48Z
--- license: creativeml-openrail-m ---
KingKazma/xsum_gpt2_lora_500_10_3000_8_e6_s108_v3
KingKazma
2023-07-16T22:28:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:28:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s108_v3
KingKazma
2023-07-16T22:13:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:13:57Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
SushantGautam/videomae-small-finetuned-kinetics-finetuned-SoccerNetChunks-NoInference
SushantGautam
2023-07-16T22:11:23Z
31
0
transformers
[ "transformers", "pytorch", "videomae", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2023-07-15T14:30:20Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy - matthews_correlation model-index: - name: videomae-small-finetuned-kinetics-finetuned-SoccerNetChunks-NoInference results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-small-finetuned-kinetics-finetuned-SoccerNetChunks-NoInference This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-small-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9787 - Accuracy: 0.6333 - Balanced Accuracy: 0.6333 - Matthews Correlation: 0.5649 - Confusion Matrix: [[1007 111 66 107 22 59] [ 222 935 74 50 19 71] [ 114 27 969 172 77 11] [ 240 50 259 686 103 32] [ 154 59 299 489 343 27] [ 72 20 6 2 2 1268]] - 0 Ball out of play: {'precision': 0.556661138750691, 'recall': 0.7339650145772595, 'f1-score': 0.6331342345174474, 'support': 1372.0} - Precision 0: 0.5567 - Recall 0: 0.7340 - F1-score 0: 0.6331 - Support 0: 1372.0 - 1 Foul: {'precision': 0.7778702163061564, 'recall': 0.6819839533187454, 'f1-score': 0.7267780800621843, 'support': 1371.0} - Precision 1: 0.7779 - Recall 1: 0.6820 - F1-score 1: 0.7268 - Support 1: 1371.0 - 2 Goal: {'precision': 0.5791990436341901, 'recall': 0.7072992700729926, 'f1-score': 0.6368715083798882, 'support': 1370.0} - Precision 2: 0.5792 - Recall 2: 0.7073 - F1-score 2: 0.6369 - Support 2: 1370.0 - 3 Shots off target: {'precision': 0.4555112881806109, 'recall': 0.5007299270072992, 'f1-score': 0.4770514603616134, 'support': 1370.0} - Precision 3: 0.4555 - Recall 3: 0.5007 - F1-score 3: 0.4771 - Support 3: 1370.0 - 4 Shots on target: {'precision': 0.6060070671378092, 'recall': 0.25018234865062, 'f1-score': 0.3541559112028911, 'support': 1371.0} - Precision 4: 0.6060 - Recall 4: 0.2502 - F1-score 4: 0.3542 - Support 4: 1371.0 - 5 Throw-in: {'precision': 0.8637602179836512, 'recall': 0.9255474452554745, 'f1-score': 0.8935870331219168, 'support': 1370.0} - Precision 5: 0.8638 - Recall 5: 0.9255 - F1-score 5: 0.8936 - Support 5: 1370.0 - Precision Macro avg: 0.6398 - Recall Macro avg: 0.6333 - F1-score Macro avg: 0.6203 - Support Macro avg: 8224.0 - Precision Weighted avg: 0.6398 - Recall Weighted avg: 0.6333 - F1-score Weighted avg: 0.6202 - Support Weighted avg: 8224.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 20620 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Matthews Correlation | Confusion Matrix | 0 Ball out of play | Precision 0 | Recall 0 | F1-score 0 | Support 0 | 1 Foul | Precision 1 | Recall 1 | F1-score 1 | Support 1 | 2 Goal | Precision 2 | Recall 2 | F1-score 2 | Support 2 | 3 Shots off target | Precision 3 | Recall 3 | F1-score 3 | Support 3 | 4 Shots on target | Precision 4 | Recall 4 | F1-score 4 | Support 4 | 5 Throw-in | Precision 5 | Recall 5 | F1-score 5 | Support 5 | Precision Macro avg | Recall Macro avg | F1-score Macro avg | Support Macro avg | Precision Weighted avg | Recall Weighted avg | F1-score Weighted avg | Support Weighted avg | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------------:|:--------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:--------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:---------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------:|:--------:|:----------:|:---------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:| | 1.5371 | 0.05 | 1031 | 1.2696 | 0.4884 | 0.4885 | 0.3949 | [[ 214 227 131 266 173 361] [ 24 763 108 72 97 307] [ 20 29 893 202 140 86] [ 34 32 436 460 320 88] [ 18 21 459 363 403 107] [ 3 22 24 14 23 1284]] | {'precision': 0.6837060702875399, 'recall': 0.15597667638483964, 'f1-score': 0.2540059347181009, 'support': 1372.0} | 0.6837 | 0.1560 | 0.2540 | 1372.0 | {'precision': 0.6974405850091407, 'recall': 0.5565280816921955, 'f1-score': 0.6190669371196754, 'support': 1371.0} | 0.6974 | 0.5565 | 0.6191 | 1371.0 | {'precision': 0.4353973671379815, 'recall': 0.6518248175182482, 'f1-score': 0.5220695703010816, 'support': 1370.0} | 0.4354 | 0.6518 | 0.5221 | 1370.0 | {'precision': 0.33405954974582425, 'recall': 0.3357664233576642, 'f1-score': 0.3349108117946851, 'support': 1370.0} | 0.3341 | 0.3358 | 0.3349 | 1370.0 | {'precision': 0.3486159169550173, 'recall': 0.2939460247994165, 'f1-score': 0.3189552829442026, 'support': 1371.0} | 0.3486 | 0.2939 | 0.3190 | 1371.0 | {'precision': 0.5750111957008509, 'recall': 0.9372262773722628, 'f1-score': 0.7127393838467944, 'support': 1370.0} | 0.5750 | 0.9372 | 0.7127 | 1370.0 | 0.5124 | 0.4885 | 0.4603 | 8224.0 | 0.5124 | 0.4884 | 0.4602 | 8224.0 | | 0.946 | 0.1 | 2062 | 1.1950 | 0.4993 | 0.4993 | 0.4176 | [[1020 44 64 224 10 10] [ 510 602 79 135 24 21] [ 117 25 758 434 30 6] [ 206 32 217 883 25 7] [ 156 21 238 889 61 6] [ 394 48 39 102 5 782]] | {'precision': 0.42446941323345816, 'recall': 0.7434402332361516, 'f1-score': 0.5403973509933775, 'support': 1372.0} | 0.4245 | 0.7434 | 0.5404 | 1372.0 | {'precision': 0.7797927461139896, 'recall': 0.4390955506929249, 'f1-score': 0.5618292113859076, 'support': 1371.0} | 0.7798 | 0.4391 | 0.5618 | 1371.0 | {'precision': 0.5433691756272402, 'recall': 0.5532846715328467, 'f1-score': 0.5482820976491862, 'support': 1370.0} | 0.5434 | 0.5533 | 0.5483 | 1370.0 | {'precision': 0.33108361454818147, 'recall': 0.6445255474452555, 'f1-score': 0.43745355461976715, 'support': 1370.0} | 0.3311 | 0.6445 | 0.4375 | 1370.0 | {'precision': 0.3935483870967742, 'recall': 0.04449307075127644, 'f1-score': 0.0799475753604194, 'support': 1371.0} | 0.3935 | 0.0445 | 0.0799 | 1371.0 | {'precision': 0.9399038461538461, 'recall': 0.5708029197080292, 'f1-score': 0.7102633969118983, 'support': 1370.0} | 0.9399 | 0.5708 | 0.7103 | 1370.0 | 0.5687 | 0.4993 | 0.4797 | 8224.0 | 0.5687 | 0.4993 | 0.4797 | 8224.0 | | 1.6051 | 0.15 | 3093 | 1.1348 | 0.5418 | 0.5419 | 0.4626 | [[ 849 48 194 135 31 115] [ 408 534 225 27 63 114] [ 71 28 1101 103 49 18] [ 165 21 516 509 127 32] [ 116 15 563 379 262 36] [ 87 9 44 13 16 1201]] | {'precision': 0.5005896226415094, 'recall': 0.6188046647230321, 'f1-score': 0.5534550195567145, 'support': 1372.0} | 0.5006 | 0.6188 | 0.5535 | 1372.0 | {'precision': 0.815267175572519, 'recall': 0.38949671772428884, 'f1-score': 0.5271470878578479, 'support': 1371.0} | 0.8153 | 0.3895 | 0.5271 | 1371.0 | {'precision': 0.41657207718501704, 'recall': 0.8036496350364963, 'f1-score': 0.5487166708198357, 'support': 1370.0} | 0.4166 | 0.8036 | 0.5487 | 1370.0 | {'precision': 0.4365351629502573, 'recall': 0.3715328467153285, 'f1-score': 0.40141955835962145, 'support': 1370.0} | 0.4365 | 0.3715 | 0.4014 | 1370.0 | {'precision': 0.4781021897810219, 'recall': 0.1911013858497447, 'f1-score': 0.273058884835852, 'support': 1371.0} | 0.4781 | 0.1911 | 0.2731 | 1371.0 | {'precision': 0.7922163588390502, 'recall': 0.8766423357664234, 'f1-score': 0.8322938322938324, 'support': 1370.0} | 0.7922 | 0.8766 | 0.8323 | 1370.0 | 0.5732 | 0.5419 | 0.5227 | 8224.0 | 0.5732 | 0.5418 | 0.5227 | 8224.0 | | 1.2631 | 1.0 | 4124 | 0.9987 | 0.6069 | 0.6069 | 0.5309 | [[ 692 217 105 187 53 118] [ 127 995 63 42 38 106] [ 40 52 996 142 127 13] [ 80 84 360 541 273 32] [ 41 71 368 321 546 24] [ 58 38 30 8 15 1221]] | {'precision': 0.6666666666666666, 'recall': 0.5043731778425656, 'f1-score': 0.5742738589211619, 'support': 1372.0} | 0.6667 | 0.5044 | 0.5743 | 1372.0 | {'precision': 0.6829100892244337, 'recall': 0.7257476294675419, 'f1-score': 0.7036775106082037, 'support': 1371.0} | 0.6829 | 0.7257 | 0.7037 | 1371.0 | {'precision': 0.518210197710718, 'recall': 0.727007299270073, 'f1-score': 0.6051032806804374, 'support': 1370.0} | 0.5182 | 0.7270 | 0.6051 | 1370.0 | {'precision': 0.43593875906526997, 'recall': 0.3948905109489051, 'f1-score': 0.4144006127920337, 'support': 1370.0} | 0.4359 | 0.3949 | 0.4144 | 1370.0 | {'precision': 0.5190114068441065, 'recall': 0.3982494529540481, 'f1-score': 0.4506809739991746, 'support': 1371.0} | 0.5190 | 0.3982 | 0.4507 | 1371.0 | {'precision': 0.8064729194187582, 'recall': 0.8912408759124087, 'f1-score': 0.8467406380027739, 'support': 1370.0} | 0.8065 | 0.8912 | 0.8467 | 1370.0 | 0.6049 | 0.6069 | 0.5991 | 8224.0 | 0.6049 | 0.6069 | 0.5991 | 8224.0 | | 1.2292 | 1.05 | 5155 | 1.1215 | 0.5412 | 0.5412 | 0.4641 | [[1041 41 100 167 7 16] [ 456 628 83 139 34 31] [ 112 13 898 322 20 5] [ 276 19 261 768 33 13] [ 213 27 340 691 87 13] [ 249 16 56 17 3 1029]] | {'precision': 0.4435449510012782, 'recall': 0.7587463556851312, 'f1-score': 0.5598279107286904, 'support': 1372.0} | 0.4435 | 0.7587 | 0.5598 | 1372.0 | {'precision': 0.8440860215053764, 'recall': 0.45805981035740334, 'f1-score': 0.5938534278959811, 'support': 1371.0} | 0.8441 | 0.4581 | 0.5939 | 1371.0 | {'precision': 0.5166858457997698, 'recall': 0.6554744525547446, 'f1-score': 0.5778635778635779, 'support': 1370.0} | 0.5167 | 0.6555 | 0.5779 | 1370.0 | {'precision': 0.3650190114068441, 'recall': 0.5605839416058395, 'f1-score': 0.4421416234887737, 'support': 1370.0} | 0.3650 | 0.5606 | 0.4421 | 1370.0 | {'precision': 0.47282608695652173, 'recall': 0.06345733041575492, 'f1-score': 0.11189710610932474, 'support': 1371.0} | 0.4728 | 0.0635 | 0.1119 | 1371.0 | {'precision': 0.9295392953929539, 'recall': 0.7510948905109489, 'f1-score': 0.8308437626160677, 'support': 1370.0} | 0.9295 | 0.7511 | 0.8308 | 1370.0 | 0.5953 | 0.5412 | 0.5194 | 8224.0 | 0.5953 | 0.5412 | 0.5194 | 8224.0 | | 0.733 | 1.1 | 6186 | 1.0294 | 0.5803 | 0.5803 | 0.5073 | [[ 861 72 61 229 20 129] [ 225 782 71 135 33 125] [ 93 21 806 389 43 18] [ 141 26 224 873 71 35] [ 90 24 275 780 174 28] [ 47 17 11 15 4 1276]] | {'precision': 0.5909402882635553, 'recall': 0.6275510204081632, 'f1-score': 0.608695652173913, 'support': 1372.0} | 0.5909 | 0.6276 | 0.6087 | 1372.0 | {'precision': 0.8301486199575372, 'recall': 0.5703865791393143, 'f1-score': 0.6761781236489407, 'support': 1371.0} | 0.8301 | 0.5704 | 0.6762 | 1371.0 | {'precision': 0.5566298342541437, 'recall': 0.5883211678832116, 'f1-score': 0.5720369056068133, 'support': 1370.0} | 0.5566 | 0.5883 | 0.5720 | 1370.0 | {'precision': 0.36059479553903345, 'recall': 0.6372262773722628, 'f1-score': 0.4605644948562385, 'support': 1370.0} | 0.3606 | 0.6372 | 0.4606 | 1370.0 | {'precision': 0.5043478260869565, 'recall': 0.12691466083150985, 'f1-score': 0.2027972027972028, 'support': 1371.0} | 0.5043 | 0.1269 | 0.2028 | 1371.0 | {'precision': 0.7920546244568591, 'recall': 0.9313868613138686, 'f1-score': 0.8560885608856088, 'support': 1370.0} | 0.7921 | 0.9314 | 0.8561 | 1370.0 | 0.6058 | 0.5803 | 0.5627 | 8224.0 | 0.6058 | 0.5803 | 0.5627 | 8224.0 | | 1.0566 | 1.15 | 7217 | 1.0046 | 0.6037 | 0.6037 | 0.5314 | [[ 941 83 42 200 15 91] [ 273 859 43 67 12 117] [ 106 41 763 348 92 20] [ 156 61 180 826 93 54] [ 93 68 192 657 305 56] [ 64 20 6 5 4 1271]] | {'precision': 0.5762400489895897, 'recall': 0.6858600583090378, 'f1-score': 0.6262895174708818, 'support': 1372.0} | 0.5762 | 0.6859 | 0.6263 | 1372.0 | {'precision': 0.758833922261484, 'recall': 0.6265499635302699, 'f1-score': 0.6863763483819417, 'support': 1371.0} | 0.7588 | 0.6265 | 0.6864 | 1371.0 | {'precision': 0.6223491027732463, 'recall': 0.5569343065693431, 'f1-score': 0.5878274268104776, 'support': 1370.0} | 0.6223 | 0.5569 | 0.5878 | 1370.0 | {'precision': 0.3927722301474085, 'recall': 0.602919708029197, 'f1-score': 0.47566945004319033, 'support': 1370.0} | 0.3928 | 0.6029 | 0.4757 | 1370.0 | {'precision': 0.5854126679462572, 'recall': 0.2224653537563822, 'f1-score': 0.3224101479915433, 'support': 1371.0} | 0.5854 | 0.2225 | 0.3224 | 1371.0 | {'precision': 0.7899316345556247, 'recall': 0.9277372262773723, 'f1-score': 0.8533064786841222, 'support': 1370.0} | 0.7899 | 0.9277 | 0.8533 | 1370.0 | 0.6209 | 0.6037 | 0.5920 | 8224.0 | 0.6209 | 0.6037 | 0.5920 | 8224.0 | | 1.2033 | 2.0 | 8248 | 1.1187 | 0.5755 | 0.5755 | 0.4993 | [[1013 54 78 81 24 122] [ 365 704 80 46 59 117] [ 160 27 982 126 56 19] [ 299 39 335 516 115 66] [ 257 43 368 366 270 67] [ 67 15 31 4 5 1248]] | {'precision': 0.46876446089773255, 'recall': 0.7383381924198251, 'f1-score': 0.5734503255024059, 'support': 1372.0} | 0.4688 | 0.7383 | 0.5735 | 1372.0 | {'precision': 0.7981859410430839, 'recall': 0.513493800145879, 'f1-score': 0.6249445184198846, 'support': 1371.0} | 0.7982 | 0.5135 | 0.6249 | 1371.0 | {'precision': 0.5240128068303095, 'recall': 0.7167883211678832, 'f1-score': 0.6054254007398273, 'support': 1370.0} | 0.5240 | 0.7168 | 0.6054 | 1370.0 | {'precision': 0.45302897278314314, 'recall': 0.37664233576642336, 'f1-score': 0.4113192506974891, 'support': 1370.0} | 0.4530 | 0.3766 | 0.4113 | 1370.0 | {'precision': 0.5103969754253308, 'recall': 0.19693654266958424, 'f1-score': 0.28421052631578947, 'support': 1371.0} | 0.5104 | 0.1969 | 0.2842 | 1371.0 | {'precision': 0.7614399023794997, 'recall': 0.910948905109489, 'f1-score': 0.8295114656031903, 'support': 1370.0} | 0.7614 | 0.9109 | 0.8295 | 1370.0 | 0.5860 | 0.5755 | 0.5548 | 8224.0 | 0.5860 | 0.5755 | 0.5548 | 8224.0 | | 0.9223 | 2.05 | 9279 | 1.0713 | 0.5793 | 0.5793 | 0.5049 | [[1039 51 64 88 20 110] [ 357 747 78 42 18 129] [ 173 25 919 194 47 12] [ 343 32 273 582 104 36] [ 307 29 301 473 203 58] [ 67 10 14 4 1 1274]] | {'precision': 0.4545056867891514, 'recall': 0.7572886297376094, 'f1-score': 0.5680699835975944, 'support': 1372.0} | 0.4545 | 0.7573 | 0.5681 | 1372.0 | {'precision': 0.8355704697986577, 'recall': 0.5448577680525164, 'f1-score': 0.6596026490066225, 'support': 1371.0} | 0.8356 | 0.5449 | 0.6596 | 1371.0 | {'precision': 0.5573074590661007, 'recall': 0.6708029197080292, 'f1-score': 0.608810864524677, 'support': 1370.0} | 0.5573 | 0.6708 | 0.6088 | 1370.0 | {'precision': 0.420824295010846, 'recall': 0.4248175182481752, 'f1-score': 0.42281147838721395, 'support': 1370.0} | 0.4208 | 0.4248 | 0.4228 | 1370.0 | {'precision': 0.5165394402035624, 'recall': 0.14806710430342815, 'f1-score': 0.23015873015873015, 'support': 1371.0} | 0.5165 | 0.1481 | 0.2302 | 1371.0 | {'precision': 0.7869054972205065, 'recall': 0.92992700729927, 'f1-score': 0.8524590163934427, 'support': 1370.0} | 0.7869 | 0.9299 | 0.8525 | 1370.0 | 0.5953 | 0.5793 | 0.5570 | 8224.0 | 0.5953 | 0.5793 | 0.5570 | 8224.0 | | 0.6639 | 2.1 | 10310 | 0.9879 | 0.6091 | 0.6091 | 0.5358 | [[ 988 65 71 104 26 118] [ 262 816 85 62 40 106] [ 127 18 870 231 105 19] [ 236 27 243 692 135 37] [ 169 24 252 534 355 37] [ 54 13 10 4 1 1288]] | {'precision': 0.5381263616557734, 'recall': 0.7201166180758017, 'f1-score': 0.6159600997506235, 'support': 1372.0} | 0.5381 | 0.7201 | 0.6160 | 1372.0 | {'precision': 0.8473520249221184, 'recall': 0.5951859956236324, 'f1-score': 0.6992287917737788, 'support': 1371.0} | 0.8474 | 0.5952 | 0.6992 | 1371.0 | {'precision': 0.5682560418027433, 'recall': 0.635036496350365, 'f1-score': 0.5997931747673216, 'support': 1370.0} | 0.5683 | 0.6350 | 0.5998 | 1370.0 | {'precision': 0.4253226797787339, 'recall': 0.5051094890510949, 'f1-score': 0.46179512846179516, 'support': 1370.0} | 0.4253 | 0.5051 | 0.4618 | 1370.0 | {'precision': 0.5362537764350453, 'recall': 0.2589350838803793, 'f1-score': 0.3492375799311362, 'support': 1371.0} | 0.5363 | 0.2589 | 0.3492 | 1371.0 | {'precision': 0.8024922118380062, 'recall': 0.9401459854014599, 'f1-score': 0.8658823529411765, 'support': 1370.0} | 0.8025 | 0.9401 | 0.8659 | 1370.0 | 0.6196 | 0.6091 | 0.5986 | 8224.0 | 0.6196 | 0.6091 | 0.5986 | 8224.0 | | 1.1311 | 2.15 | 11341 | 0.9851 | 0.6051 | 0.6051 | 0.5337 | [[ 995 77 93 145 20 42] [ 241 847 120 67 36 60] [ 95 15 999 192 59 10] [ 176 27 345 717 89 16] [ 120 23 358 612 242 16] [ 115 30 36 11 2 1176]] | {'precision': 0.571182548794489, 'recall': 0.7252186588921283, 'f1-score': 0.6390494540783558, 'support': 1372.0} | 0.5712 | 0.7252 | 0.6390 | 1372.0 | {'precision': 0.831207065750736, 'recall': 0.6177972283005105, 'f1-score': 0.708786610878661, 'support': 1371.0} | 0.8312 | 0.6178 | 0.7088 | 1371.0 | {'precision': 0.5120451050743209, 'recall': 0.7291970802919708, 'f1-score': 0.6016260162601627, 'support': 1370.0} | 0.5120 | 0.7292 | 0.6016 | 1370.0 | {'precision': 0.4111238532110092, 'recall': 0.5233576642335767, 'f1-score': 0.46050096339113683, 'support': 1370.0} | 0.4111 | 0.5234 | 0.4605 | 1370.0 | {'precision': 0.5401785714285714, 'recall': 0.1765134938001459, 'f1-score': 0.26608026388125344, 'support': 1371.0} | 0.5402 | 0.1765 | 0.2661 | 1371.0 | {'precision': 0.8909090909090909, 'recall': 0.8583941605839416, 'f1-score': 0.8743494423791821, 'support': 1370.0} | 0.8909 | 0.8584 | 0.8743 | 1370.0 | 0.6261 | 0.6051 | 0.5917 | 8224.0 | 0.6261 | 0.6051 | 0.5917 | 8224.0 | | 0.4786 | 3.0 | 12372 | 0.9868 | 0.6189 | 0.6189 | 0.5473 | [[ 960 111 60 139 25 77] [ 239 916 71 49 12 84] [ 141 34 962 151 69 13] [ 211 51 315 629 138 26] [ 145 57 340 446 357 26] [ 59 23 12 7 3 1266]] | {'precision': 0.5470085470085471, 'recall': 0.6997084548104956, 'f1-score': 0.6140070354972819, 'support': 1372.0} | 0.5470 | 0.6997 | 0.6140 | 1372.0 | {'precision': 0.7684563758389261, 'recall': 0.6681254558716265, 'f1-score': 0.7147873585641824, 'support': 1371.0} | 0.7685 | 0.6681 | 0.7148 | 1371.0 | {'precision': 0.5465909090909091, 'recall': 0.7021897810218978, 'f1-score': 0.6146964856230032, 'support': 1370.0} | 0.5466 | 0.7022 | 0.6147 | 1370.0 | {'precision': 0.4426460239268121, 'recall': 0.4591240875912409, 'f1-score': 0.4507345037620925, 'support': 1370.0} | 0.4426 | 0.4591 | 0.4507 | 1370.0 | {'precision': 0.5910596026490066, 'recall': 0.2603938730853392, 'f1-score': 0.3615189873417722, 'support': 1371.0} | 0.5911 | 0.2604 | 0.3615 | 1371.0 | {'precision': 0.8485254691689008, 'recall': 0.9240875912408759, 'f1-score': 0.8846960167714885, 'support': 1370.0} | 0.8485 | 0.9241 | 0.8847 | 1370.0 | 0.6240 | 0.6189 | 0.6067 | 8224.0 | 0.6240 | 0.6189 | 0.6067 | 8224.0 | | 0.6052 | 3.05 | 13403 | 0.9818 | 0.6126 | 0.6126 | 0.5421 | [[ 935 141 90 111 18 77] [ 196 953 94 44 17 67] [ 104 30 1044 123 56 13] [ 236 37 367 612 89 29] [ 155 43 417 474 259 23] [ 68 30 31 4 2 1235]] | {'precision': 0.551948051948052, 'recall': 0.6814868804664723, 'f1-score': 0.609915198956295, 'support': 1372.0} | 0.5519 | 0.6815 | 0.6099 | 1372.0 | {'precision': 0.7722852512155591, 'recall': 0.6951130561633844, 'f1-score': 0.7316698656429943, 'support': 1371.0} | 0.7723 | 0.6951 | 0.7317 | 1371.0 | {'precision': 0.5110132158590308, 'recall': 0.762043795620438, 'f1-score': 0.6117784939935541, 'support': 1370.0} | 0.5110 | 0.7620 | 0.6118 | 1370.0 | {'precision': 0.4473684210526316, 'recall': 0.4467153284671533, 'f1-score': 0.44704163623082543, 'support': 1370.0} | 0.4474 | 0.4467 | 0.4470 | 1370.0 | {'precision': 0.5873015873015873, 'recall': 0.18891320204230488, 'f1-score': 0.28587196467991166, 'support': 1371.0} | 0.5873 | 0.1889 | 0.2859 | 1371.0 | {'precision': 0.8552631578947368, 'recall': 0.9014598540145985, 'f1-score': 0.8777540867093105, 'support': 1370.0} | 0.8553 | 0.9015 | 0.8778 | 1370.0 | 0.6209 | 0.6126 | 0.5940 | 8224.0 | 0.6209 | 0.6126 | 0.5940 | 8224.0 | | 0.2743 | 3.1 | 14434 | 0.9548 | 0.6301 | 0.6301 | 0.5604 | [[1003 99 56 137 26 51] [ 225 932 67 71 22 54] [ 129 23 930 204 79 5] [ 186 39 278 713 135 19] [ 138 45 306 486 384 12] [ 77 35 21 9 8 1220]] | {'precision': 0.5705346985210467, 'recall': 0.7310495626822158, 'f1-score': 0.6408945686900959, 'support': 1372.0} | 0.5705 | 0.7310 | 0.6409 | 1372.0 | {'precision': 0.7945439045183291, 'recall': 0.6797957695113056, 'f1-score': 0.7327044025157232, 'support': 1371.0} | 0.7945 | 0.6798 | 0.7327 | 1371.0 | {'precision': 0.5609167671893848, 'recall': 0.6788321167883211, 'f1-score': 0.6142668428005283, 'support': 1370.0} | 0.5609 | 0.6788 | 0.6143 | 1370.0 | {'precision': 0.44012345679012344, 'recall': 0.5204379562043796, 'f1-score': 0.4769230769230769, 'support': 1370.0} | 0.4401 | 0.5204 | 0.4769 | 1370.0 | {'precision': 0.5871559633027523, 'recall': 0.2800875273522976, 'f1-score': 0.3792592592592593, 'support': 1371.0} | 0.5872 | 0.2801 | 0.3793 | 1371.0 | {'precision': 0.896399706098457, 'recall': 0.8905109489051095, 'f1-score': 0.8934456243134383, 'support': 1370.0} | 0.8964 | 0.8905 | 0.8934 | 1370.0 | 0.6416 | 0.6301 | 0.6229 | 8224.0 | 0.6416 | 0.6301 | 0.6229 | 8224.0 | | 0.9667 | 3.15 | 15465 | 0.9949 | 0.6158 | 0.6158 | 0.5479 | [[1078 50 70 95 20 59] [ 351 792 80 56 17 75] [ 107 24 1008 182 38 11] [ 253 28 286 690 86 27] [ 206 22 361 476 280 26] [ 119 11 18 4 2 1216]] | {'precision': 0.5099337748344371, 'recall': 0.7857142857142857, 'f1-score': 0.6184738955823293, 'support': 1372.0} | 0.5099 | 0.7857 | 0.6185 | 1372.0 | {'precision': 0.8543689320388349, 'recall': 0.5776805251641138, 'f1-score': 0.6892950391644909, 'support': 1371.0} | 0.8544 | 0.5777 | 0.6893 | 1371.0 | {'precision': 0.5529347229840922, 'recall': 0.7357664233576642, 'f1-score': 0.6313811462574381, 'support': 1370.0} | 0.5529 | 0.7358 | 0.6314 | 1370.0 | {'precision': 0.4590818363273453, 'recall': 0.5036496350364964, 'f1-score': 0.4803341454925165, 'support': 1370.0} | 0.4591 | 0.5036 | 0.4803 | 1370.0 | {'precision': 0.6320541760722348, 'recall': 0.20423048869438365, 'f1-score': 0.308710033076075, 'support': 1371.0} | 0.6321 | 0.2042 | 0.3087 | 1371.0 | {'precision': 0.85997171145686, 'recall': 0.8875912408759125, 'f1-score': 0.8735632183908046, 'support': 1370.0} | 0.8600 | 0.8876 | 0.8736 | 1370.0 | 0.6447 | 0.6158 | 0.6003 | 8224.0 | 0.6447 | 0.6158 | 0.6003 | 8224.0 | | 0.906 | 4.0 | 16496 | 0.9465 | 0.6312 | 0.6312 | 0.5612 | [[ 921 147 51 171 30 52] [ 184 965 64 64 35 59] [ 80 26 906 240 108 10] [ 170 41 224 786 131 18] [ 124 36 245 564 385 17] [ 74 40 15 10 3 1228]] | {'precision': 0.5930457179652285, 'recall': 0.6712827988338192, 'f1-score': 0.6297435897435897, 'support': 1372.0} | 0.5930 | 0.6713 | 0.6297 | 1372.0 | {'precision': 0.7689243027888446, 'recall': 0.7038657913931436, 'f1-score': 0.734958111195735, 'support': 1371.0} | 0.7689 | 0.7039 | 0.7350 | 1371.0 | {'precision': 0.6019933554817276, 'recall': 0.6613138686131387, 'f1-score': 0.6302608695652173, 'support': 1370.0} | 0.6020 | 0.6613 | 0.6303 | 1370.0 | {'precision': 0.42833787465940054, 'recall': 0.5737226277372263, 'f1-score': 0.49048361934477386, 'support': 1370.0} | 0.4283 | 0.5737 | 0.4905 | 1370.0 | {'precision': 0.5563583815028902, 'recall': 0.28081692195477753, 'f1-score': 0.373242850218129, 'support': 1371.0} | 0.5564 | 0.2808 | 0.3732 | 1371.0 | {'precision': 0.8872832369942196, 'recall': 0.8963503649635036, 'f1-score': 0.8917937545388526, 'support': 1370.0} | 0.8873 | 0.8964 | 0.8918 | 1370.0 | 0.6393 | 0.6312 | 0.6251 | 8224.0 | 0.6393 | 0.6312 | 0.6251 | 8224.0 | | 0.8828 | 4.05 | 17527 | 0.9787 | 0.6333 | 0.6333 | 0.5649 | [[1007 111 66 107 22 59] [ 222 935 74 50 19 71] [ 114 27 969 172 77 11] [ 240 50 259 686 103 32] [ 154 59 299 489 343 27] [ 72 20 6 2 2 1268]] | {'precision': 0.556661138750691, 'recall': 0.7339650145772595, 'f1-score': 0.6331342345174474, 'support': 1372.0} | 0.5567 | 0.7340 | 0.6331 | 1372.0 | {'precision': 0.7778702163061564, 'recall': 0.6819839533187454, 'f1-score': 0.7267780800621843, 'support': 1371.0} | 0.7779 | 0.6820 | 0.7268 | 1371.0 | {'precision': 0.5791990436341901, 'recall': 0.7072992700729926, 'f1-score': 0.6368715083798882, 'support': 1370.0} | 0.5792 | 0.7073 | 0.6369 | 1370.0 | {'precision': 0.4555112881806109, 'recall': 0.5007299270072992, 'f1-score': 0.4770514603616134, 'support': 1370.0} | 0.4555 | 0.5007 | 0.4771 | 1370.0 | {'precision': 0.6060070671378092, 'recall': 0.25018234865062, 'f1-score': 0.3541559112028911, 'support': 1371.0} | 0.6060 | 0.2502 | 0.3542 | 1371.0 | {'precision': 0.8637602179836512, 'recall': 0.9255474452554745, 'f1-score': 0.8935870331219168, 'support': 1370.0} | 0.8638 | 0.9255 | 0.8936 | 1370.0 | 0.6398 | 0.6333 | 0.6203 | 8224.0 | 0.6398 | 0.6333 | 0.6202 | 8224.0 | | 0.744 | 4.1 | 18558 | 1.0063 | 0.6246 | 0.6246 | 0.5570 | [[1072 72 55 92 17 64] [ 283 876 67 54 17 74] [ 166 20 921 195 57 11] [ 314 32 223 672 94 35] [ 227 37 268 485 320 34] [ 72 12 6 1 3 1276]] | {'precision': 0.5023430178069354, 'recall': 0.7813411078717201, 'f1-score': 0.6115231032515687, 'support': 1372.0} | 0.5023 | 0.7813 | 0.6115 | 1372.0 | {'precision': 0.8350810295519543, 'recall': 0.6389496717724289, 'f1-score': 0.7239669421487603, 'support': 1371.0} | 0.8351 | 0.6389 | 0.7240 | 1371.0 | {'precision': 0.5980519480519481, 'recall': 0.6722627737226278, 'f1-score': 0.6329896907216496, 'support': 1370.0} | 0.5981 | 0.6723 | 0.6330 | 1370.0 | {'precision': 0.4482988659106071, 'recall': 0.4905109489051095, 'f1-score': 0.4684559079818752, 'support': 1370.0} | 0.4483 | 0.4905 | 0.4685 | 1370.0 | {'precision': 0.6299212598425197, 'recall': 0.23340627279358134, 'f1-score': 0.3406067056945184, 'support': 1371.0} | 0.6299 | 0.2334 | 0.3406 | 1371.0 | {'precision': 0.8540829986613119, 'recall': 0.9313868613138686, 'f1-score': 0.8910614525139665, 'support': 1370.0} | 0.8541 | 0.9314 | 0.8911 | 1370.0 | 0.6446 | 0.6246 | 0.6114 | 8224.0 | 0.6446 | 0.6246 | 0.6114 | 8224.0 | | 0.4786 | 4.15 | 19589 | 0.9796 | 0.6288 | 0.6288 | 0.5618 | [[1061 70 61 107 14 59] [ 283 866 81 55 13 73] [ 128 17 958 199 54 14] [ 258 31 245 717 89 30] [ 188 25 290 534 303 31] [ 80 14 5 3 2 1266]] | {'precision': 0.531031031031031, 'recall': 0.7733236151603499, 'f1-score': 0.6296735905044509, 'support': 1372.0} | 0.5310 | 0.7733 | 0.6297 | 1372.0 | {'precision': 0.8465298142717498, 'recall': 0.6316557257476295, 'f1-score': 0.7234753550543024, 'support': 1371.0} | 0.8465 | 0.6317 | 0.7235 | 1371.0 | {'precision': 0.5841463414634146, 'recall': 0.6992700729927007, 'f1-score': 0.6365448504983389, 'support': 1370.0} | 0.5841 | 0.6993 | 0.6365 | 1370.0 | {'precision': 0.4439628482972136, 'recall': 0.5233576642335767, 'f1-score': 0.4804020100502513, 'support': 1370.0} | 0.4440 | 0.5234 | 0.4804 | 1370.0 | {'precision': 0.6378947368421053, 'recall': 0.2210065645514223, 'f1-score': 0.32827735644637057, 'support': 1371.0} | 0.6379 | 0.2210 | 0.3283 | 1371.0 | {'precision': 0.8594704684317719, 'recall': 0.9240875912408759, 'f1-score': 0.8906085121350685, 'support': 1370.0} | 0.8595 | 0.9241 | 0.8906 | 1370.0 | 0.6505 | 0.6288 | 0.6148 | 8224.0 | 0.6505 | 0.6288 | 0.6148 | 8224.0 | | 0.5705 | 5.0 | 20620 | 0.9751 | 0.6299 | 0.6299 | 0.5628 | [[1059 76 57 110 18 52] [ 276 886 74 50 16 69] [ 128 19 948 200 64 11] [ 267 33 232 718 91 29] [ 196 31 269 536 314 25] [ 91 15 5 3 1 1255]] | {'precision': 0.5250371839365394, 'recall': 0.771865889212828, 'f1-score': 0.624963115963411, 'support': 1372.0} | 0.5250 | 0.7719 | 0.6250 | 1372.0 | {'precision': 0.8358490566037736, 'recall': 0.6462436177972283, 'f1-score': 0.7289181406828465, 'support': 1371.0} | 0.8358 | 0.6462 | 0.7289 | 1371.0 | {'precision': 0.5981072555205047, 'recall': 0.691970802919708, 'f1-score': 0.6416243654822336, 'support': 1370.0} | 0.5981 | 0.6920 | 0.6416 | 1370.0 | {'precision': 0.4440321583178726, 'recall': 0.5240875912408759, 'f1-score': 0.4807499163039839, 'support': 1370.0} | 0.4440 | 0.5241 | 0.4807 | 1370.0 | {'precision': 0.623015873015873, 'recall': 0.22902990517870167, 'f1-score': 0.3349333333333333, 'support': 1371.0} | 0.6230 | 0.2290 | 0.3349 | 1371.0 | {'precision': 0.8709229701596114, 'recall': 0.916058394160584, 'f1-score': 0.8929206688011384, 'support': 1370.0} | 0.8709 | 0.9161 | 0.8929 | 1370.0 | 0.6495 | 0.6299 | 0.6174 | 8224.0 | 0.6495 | 0.6299 | 0.6173 | 8224.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
LuisAVasquez/simple-latin-bert-uncased
LuisAVasquez
2023-07-16T22:07:37Z
118
2
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "latin", "masked language modelling", "la", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-07T13:38:46Z
--- license: mit language: - la pipeline_tag: fill-mask tags: - latin - masked language modelling widget: - text: "Gallia est omnis divisa in [MASK] tres ." example_title: "Commentary on Gallic Wars" - text: "[MASK] sum Caesar ." example_title: "Who is Caesar?" - text: "[MASK] it ad forum ." example_title: "Who is going to the forum?" - text: "Ovidius paratus est ad [MASK] ." example_title: "What is Ovidius up to?" - text: "[MASK], veni!" example_title: "Calling someone to come closer" - text: "Roma in Italia [MASK] ." example_title: "Ubi est Roma?" --- # Model Card for Simple Latin BERT <!-- Provide a quick summary of what the model is/does. [Optional] --> A simple BERT Masked Language Model for Latin for my portfolio, trained on Latin Corpora from the [Classical Language Toolkit](http://cltk.org/) corpora. **NOT** apt for production nor commercial use. This model&#39;s performance is really poor, and it has not been evaluated. This model comes with its own tokenizer! It will automatically use **lowercase**. Check the `training notebooks` folder for the preprocessing and training scripts. Inspired by - [This repo](https://github.com/dbamman/latin-bert), which has a BERT model for latin that is actually useful! - [This tutorial](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples) - [This tutorial](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb#scrollTo=VNZZs-r6iKAV) - [This tutorial](https://huggingface.co/blog/how-to-train) # Table of Contents - [Model Card for Simple Latin BERT ](#model-card-for--model_id-) - [Table of Contents](#table-of-contents) - [Table of Contents](#table-of-contents-1) - [Model Details](#model-details) - [Model Description](#model-description) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use [Optional]](#downstream-use-optional) - [Training Details](#training-details) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Speeds, Sizes, Times](#speeds-sizes-times) - [Evaluation](#evaluation) # Model Details ## Model Description <!-- Provide a longer summary of what this model is/does. --> A simple BERT Masked Language Model for Latin for my portfolio, trained on Latin Corpora from the [Classical Language Toolkit](http://cltk.org/) corpora. **NOT** apt for production nor commercial use. This model&#39;s performance is really poor, and it has not been evaluated. This model comes with its own tokenizer! Check the `notebooks` folder for the preprocessing and training scripts. - **Developed by:** Luis Antonio VASQUEZ - **Model type:** Language model - **Language(s) (NLP):** la - **License:** mit # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> This model can be used directly for Masked Language Modelling. ## Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." --> This model could be used as a base model for other NLP tasks, for example, Text Classification (that is, using transformers&#39; `BertForSequenceClassification`) # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> The training data comes from the corpora freely available from the [Classical Language Toolkit](http://cltk.org/) - [The Latin Library](https://www.thelatinlibrary.com/) - Latin section of the [Perseus Digital Library](http://www.perseus.tufts.edu/hopper/) - Latin section of the [Tesserae Project](https://tesserae.caset.buffalo.edu/) - [Corpus Grammaticorum Latinorum](https://cgl.hypotheses.org/) ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing For preprocessing, the raw text from each of the corpora was extracted by parsing. Then, it was **lowercased** and written onto `txt` files. Ideally, in these files one line would correspond to one sentence. Other data from the corpora, like Entity Tags, POS Tags, etc., were discarded. Training hyperparameters: - epochs: 1 - Batch size: 64 - Attention heads: 12 - Hidden Layers: 12 - Max input size: 512 tokens ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> After having the dataset ready, training this model on a 16 GB Nvidia Graphics card took around 10 hours. # Evaluation No evaluation was performed on this dataset.
KingKazma/xsum_gpt2_lora_500_10_3000_8_e3_s108_v3
KingKazma
2023-07-16T22:06:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T22:06:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
mgeller/opt-6.7b-lora
mgeller
2023-07-16T22:06:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-12T22:58:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s108_v3
KingKazma
2023-07-16T21:59:56Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:59:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s108_v3
KingKazma
2023-07-16T21:52:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:52:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
SinanAkkoyun/orca_mini_3b_gptq_badtest
SinanAkkoyun
2023-07-16T21:49:31Z
5
0
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T21:27:48Z
This is a very bad attempt at quantizing 128g 4 bit with alpaca (in orca style prompt ```sh python quantize_alpaca.py --pretrained_model_dir orca_mini_3b/ --bits 4 --group_size 128 --quantized_model_dir orca_mini_3b_gptq/ --save_and_reloa ``` Downloqd cleaned dataset first: https://github.com/gururise/AlpacaDataCleaned
LarryAIDraw/chara_FateLordElMelloi_LuviagelitaEdelfelt_v1
LarryAIDraw
2023-07-16T21:46:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:42:58Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109052/luviagelita-edelfelt-or-fate-series-lord-el-melloi-ii-sei-no-jikenbo
LarryAIDraw/roxy-08
LarryAIDraw
2023-07-16T21:46:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:42:37Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109272/roxy-oror-mushoku-tensei
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s108_v3
KingKazma
2023-07-16T21:45:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:45:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
LarryAIDraw/Predator
LarryAIDraw
2023-07-16T21:45:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T21:42:05Z
--- license: creativeml-openrail-m --- https://civitai.com/models/109356/predator-or-granblue-fantasy
quangnguyennn/pokemon-lora
quangnguyennn
2023-07-16T21:41:33Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T12:51:01Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - quangnguyennn/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s108_v3
KingKazma
2023-07-16T21:38:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T21:38:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Debayan990/my-pet-cat-jxl
Debayan990
2023-07-16T21:13:51Z
13
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T21:01:07Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-jxl Dreambooth model trained by Debayan990 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: BBIT47 Sample pictures of this concept: ![0](https://huggingface.co/Debayan990/my-pet-cat-jxl/resolve/main/sample_images/00000-2838740840.png) ![1](https://huggingface.co/Debayan990/my-pet-cat-jxl/resolve/main/sample_images/00003-3628577076.png) ![2](https://huggingface.co/Debayan990/my-pet-cat-jxl/resolve/main/sample_images/00001-1217343363.png)
KingKazma/xsum_gpt2_lora_500_10_3000_8_e4_s6789_v3
KingKazma
2023-07-16T20:39:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T00:16:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
il18/PPO-LunarLander-v2
il18
2023-07-16T20:38:20Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T20:37:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.21 +/- 15.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Andres6087/Cte
Andres6087
2023-07-16T20:23:05Z
0
0
adapter-transformers
[ "adapter-transformers", "translation", "ab", "dataset:Open-Orca/OpenOrca", "license:openrail", "region:us" ]
translation
2023-07-16T20:19:56Z
--- license: openrail datasets: - Open-Orca/OpenOrca language: - ab metrics: - accuracy library_name: adapter-transformers pipeline_tag: translation ---
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s6789_v3
KingKazma
2023-07-16T20:18:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T23:29:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
bskang/test_demo_ver
bskang
2023-07-16T20:17:48Z
34
0
peft
[ "peft", "text-generation", "en", "region:us" ]
text-generation
2023-07-16T20:15:26Z
--- library_name: peft language: - en pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s6789_v3
KingKazma
2023-07-16T20:11:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T23:14:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
NemesisAlm/q-FrozenLake-v1-4x4-noSlippery
NemesisAlm
2023-07-16T20:04:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T20:04:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NemesisAlm/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
KingKazma/xsum_gpt2_lora_500_10_3000_8_e-1_s6789_v3
KingKazma
2023-07-16T20:04:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T22:57:38Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Meina/Alter_V3
Meina
2023-07-16T20:03:51Z
27
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T20:01:49Z
--- license: creativeml-openrail-m ---
Meina/Unreal_V4.1
Meina
2023-07-16T20:02:45Z
118
5
diffusers
[ "diffusers", "safetensors", "art", "anime", "meina", "unreal", "semirealistic", "2.5d", "sexy", "fantasy", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T19:59:21Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art - anime - meina - unreal - semirealistic - 2.5d - sexy - fantasy --- MeinaUnreal objetive is to be able to do anime art with a 2.5d feeling. ( the VAE is already baked in the model ) For examples and prompts, please checkout: https://civitai.com/models/18798/meinaunreal I have a discord server where you can post images that you generated, discuss prompt and/or ask for help. https://discord.gg/XC9nGZNDUd If you like one of my models and want to support their updates I've made a ko-fi page; https://ko-fi.com/meina where you can pay me a coffee <3 And a Patreon page; https://www.patreon.com/MeinaMix where you can support me and get acess to beta of my models! You may also try this model using Sinkin.ai: https://sinkin.ai/m/PREaKGN Recommendations of use: Enable Quantization in K samplers. Hires.fix is needed for prompts where the character is far away in order to make decent images, it drastically improve the quality of face and eyes! Recommended parameters: Sampler: DPM++ 2M Karras: 20 to 40 steps. Sampler: DPM++ SDE Karras: 20 to 30 steps. CFG Scale: 7. Resolutions: 512x768, 512x1024 for Portrait! Resolutions: 768x512, 1024x512, 1536x512 for Landscape! Hires.fix: R-ESRGAN 4x+Anime6b, with 15 steps at 0.3 denoising. Clip Skip: 2. Negatives: ' (worst quality, low quality:1.4), monochrome, zombie, (interlocked fingers), '
jthetzel/swin-tiny-patch4-window7-224-finetuned-eurosat
jthetzel
2023-07-16T20:01:23Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-16T19:41:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9822222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2326 | 1.0 | 190 | 0.1175 | 0.9604 | | 0.1789 | 2.0 | 380 | 0.0765 | 0.9763 | | 0.1414 | 3.0 | 570 | 0.0604 | 0.9822 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
anindya64/alpaca-bank-issue-summarization-20b-EthurAI
anindya64
2023-07-16T20:00:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T20:00:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
DarwinAnim8or/Something-V2.2-OpenVINO
DarwinAnim8or
2023-07-16T20:00:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T19:16:43Z
--- license: creativeml-openrail-m --- # Something V2.2 OpenVINO This is a conversion of [NoCrypt's Something V2.2 model](https://huggingface.co/NoCrypt/SomethingV2_2) to OpenVINO format. The original model is a stable diffusion model that can generate realistic images from text input. ## What is OpenVINO? OpenVINO (Open Visual Inference and Neural network Optimization) is a free toolkit that facilitates the optimization and deployment of deep learning models on Intel hardware. It supports models trained with popular frameworks like TensorFlow, PyTorch, and more. It also provides a common API to run inference on various devices, such as CPU, GPU, VPU, FPGA, etc. ## Why use OpenVINO? OpenVINO can make it possible to run Stable Diffusion models (and others) on simply the CPU, rather than requiring a GPU, which can be expensive. The time to generate a 512x512 image, on HuggingFace's "CPU Upgrade" space, takes about 21~ seconds after warmup. For more details, see [this blogpost](https://huggingface.co/blog/stable-diffusion-inference-intel) ## Usage example TODO
ailabturkiye/SamedGungor
ailabturkiye
2023-07-16T19:54:01Z
0
0
null
[ "region:us" ]
null
2023-07-16T19:40:50Z
[![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Samed Güngör - RVC V2 250 Epoch **YouTuber Samed Güngör`ün ses modelidir, Rvc V2 250 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: eraymoruk54 - YouTube: Eray Tokaç (https://www.youtube.com/@ErayOyuncantas) license: openrail ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
Talha185/speecht5_finetuned_urdu_TTS
Talha185
2023-07-16T19:53:22Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_13_0", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-14T10:59:46Z
--- license: mit tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.558 | 8.61 | 1000 | 0.4964 | | 0.5232 | 17.22 | 2000 | 0.4879 | | 0.5114 | 25.83 | 3000 | 0.4811 | | 0.5009 | 34.45 | 4000 | 0.4799 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rshrott/falcon-7b-instruct-ft-adapters
rshrott
2023-07-16T19:48:46Z
5
0
peft
[ "peft", "pytorch", "RefinedWebModel", "custom_code", "region:us" ]
null
2023-07-16T13:37:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
ailabturkiye/CagriMertBakirci
ailabturkiye
2023-07-16T19:38:00Z
0
0
null
[ "region:us" ]
null
2023-07-16T19:31:12Z
--- license: openrail language: - tr tags: - music ---300 Epoch kullanılarak 20 dakikalık dataset ile oluşturuldu.
uraskargi/Reinforce-CartPole-v1
uraskargi
2023-07-16T19:19:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T14:20:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
huarddk/finetuning-sentiment-model-3000-samples
huarddk
2023-07-16T19:18:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-11T15:47:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8704318936877077 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3117 - Accuracy: 0.87 - F1: 0.8704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YojitShinde/ppo-Pyramids
YojitShinde
2023-07-16T19:13:01Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-16T19:11:49Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: YojitShinde/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
0sunfire0/poca-SoccerTwos_00
0sunfire0
2023-07-16T19:10:43Z
433
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-16T19:08:00Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 0sunfire0/poca-SoccerTwos_00 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
PhysHunter/codeparrot-ds
PhysHunter
2023-07-16T18:57:05Z
142
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T08:41:52Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3352 | 0.31 | 1000 | 2.9747 | | 2.417 | 0.62 | 2000 | 2.3979 | | 2.0098 | 0.93 | 3000 | 2.1771 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
oakal/fourthbrain_bloomz_marketing
oakal
2023-07-16T18:32:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T18:32:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
weekcircle/wav2vec2-large-mms-1b-korean-colab_v2
weekcircle
2023-07-16T18:27:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/mms-1b-l1107", "base_model:finetune:facebook/mms-1b-l1107", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-16T05:19:24Z
--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-l1107 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-mms-1b-korean-colab_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mms-1b-korean-colab_v2 This model is a fine-tuned version of [facebook/mms-1b-l1107](https://huggingface.co/facebook/mms-1b-l1107) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1650 - Wer: 0.3776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6667 | 0.18 | 100 | 0.8024 | 0.8379 | | 0.5754 | 0.36 | 200 | 0.3907 | 0.6495 | | 0.4658 | 0.53 | 300 | 0.3620 | 0.6224 | | 0.4321 | 0.71 | 400 | 0.3184 | 0.5842 | | 0.399 | 0.89 | 500 | 0.2930 | 0.5120 | | 0.3538 | 1.07 | 600 | 0.2446 | 0.4698 | | 0.3379 | 1.24 | 700 | 0.2341 | 0.4692 | | 0.3333 | 1.42 | 800 | 0.2121 | 0.4488 | | 0.31 | 1.6 | 900 | 0.2054 | 0.4297 | | 0.3049 | 1.78 | 1000 | 0.1958 | 0.4180 | | 0.2885 | 1.95 | 1100 | 0.1885 | 0.4143 | | 0.2632 | 2.13 | 1200 | 0.1865 | 0.4094 | | 0.2592 | 2.31 | 1300 | 0.1774 | 0.3853 | | 0.2591 | 2.49 | 1400 | 0.1700 | 0.3924 | | 0.2605 | 2.66 | 1500 | 0.1701 | 0.3789 | | 0.2361 | 2.84 | 1600 | 0.1650 | 0.3776 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YojitShinde/ppo-SnowballTarget
YojitShinde
2023-07-16T18:25:48Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-16T18:25:46Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: YojitShinde/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
0sunfire0/rl_course_vizdoom_health_gathering_supreme_02
0sunfire0
2023-07-16T18:23:44Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T18:23:37Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.16 +/- 3.86 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r 0sunfire0/rl_course_vizdoom_health_gathering_supreme_02 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .opt.conda.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme_02 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .opt.conda.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme_02 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
hafidikhsan/wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v4
hafidikhsan
2023-07-16T18:23:13Z
101
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T18:22:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v4 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7777 - Accuracy: 0.656 - F1: 0.6292 - Precision: 0.6618 - Recall: 0.656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9582 | 1.0 | 500 | 0.9629 | 0.544 | 0.4585 | 0.5657 | 0.544 | | 0.8052 | 2.0 | 1000 | 0.8512 | 0.624 | 0.5916 | 0.6247 | 0.624 | | 0.8939 | 3.0 | 1500 | 0.8313 | 0.638 | 0.6071 | 0.6384 | 0.638 | | 0.6153 | 4.0 | 2000 | 0.8035 | 0.67 | 0.6442 | 0.6833 | 0.67 | | 0.5782 | 5.0 | 2500 | 0.8024 | 0.67 | 0.6458 | 0.6788 | 0.67 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
nastassja-bellisario/whisper-large-v2-15-07-2023
nastassja-bellisario
2023-07-16T18:13:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T14:45:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
rsml/bbert_qa
rsml
2023-07-16T17:59:30Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-16T17:42:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bbert_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bbert_qa This model is a fine-tuned version of [bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.3490 | | 2.7154 | 2.0 | 500 | 1.7686 | | 2.7154 | 3.0 | 750 | 1.6818 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sherif1311/flan-t5-base-imdb-text-classification
sherif1311
2023-07-16T17:50:43Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T14:44:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: flan-t5-base-imdb-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-imdb-text-classification This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0797 - F1: 95.072 - Gen Len: 2.5005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
kanu03/my-cat
kanu03
2023-07-16T17:44:02Z
107
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T17:39:19Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-cat Dreambooth model trained by kanu03 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: OPJU101 Sample pictures of this concept: ![0](https://huggingface.co/kanu03/my-cat/resolve/main/sample_images/01.jpg)
balpreetspankaj/distilbert-base-uncased-finetuned-emotion
balpreetspankaj
2023-07-16T17:37:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-16T16:46:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2169 - Accuracy: 0.9285 - F1: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.827 | 1.0 | 250 | 0.3132 | 0.9085 | 0.9062 | | 0.2411 | 2.0 | 500 | 0.2169 | 0.9285 | 0.9283 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
quangnguyennn/pokemon-lora-xformer
quangnguyennn
2023-07-16T17:29:24Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T13:08:13Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - quangnguyennn/pokemon-lora-xformer These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
magicsword/wy-mt-en-zh-2
magicsword
2023-07-16T17:27:39Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:magicsword/autotrain-data-wy-mt-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-16T15:15:50Z
--- tags: - autotrain - translation language: - unk - unk datasets: - magicsword/autotrain-data-wy-mt-en-zh co2_eq_emissions: emissions: 71.14399741050826 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 74981139786 - CO2 Emissions (in grams): 71.1440 ## Validation Metrics - Loss: 2.220 - SacreBLEU: 12.949 - Gen len: 16.386
magicsword/wy-mt-en-zh-3
magicsword
2023-07-16T17:21:53Z
111
1
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:magicsword/autotrain-data-wy-mt-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-16T15:15:50Z
--- tags: - autotrain - translation language: - unk - unk datasets: - magicsword/autotrain-data-wy-mt-en-zh co2_eq_emissions: emissions: 61.92129308371724 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 74981139784 - CO2 Emissions (in grams): 61.9213 ## Validation Metrics - Loss: 2.222 - SacreBLEU: 12.575 - Gen len: 16.299
DanGalt/speecht5_finetuned_voxpopuli_fi
DanGalt
2023-07-16T17:11:18Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "fi", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-16T17:07:04Z
--- language: - fi license: mit tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_fi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_fi This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.504 | 5.05 | 250 | 0.4645 | | 0.4882 | 10.1 | 500 | 0.4499 | | 0.467 | 15.15 | 750 | 0.4450 | | 0.4651 | 20.2 | 1000 | 0.4436 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e-1_s55555_v3_manual
KingKazma
2023-07-16T17:02:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T17:02:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
gioca91/ppo-Huggy
gioca91
2023-07-16T17:00:31Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-16T17:00:21Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gioca91/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
iworeushankaonce/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
iworeushankaonce
2023-07-16T16:35:53Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T15:19:49Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4932 | 1.0 | 112 | 0.5325 | 0.86 | | 0.3541 | 2.0 | 225 | 0.6068 | 0.77 | | 0.5743 | 3.0 | 337 | 0.6356 | 0.83 | | 0.6256 | 4.0 | 450 | 0.4878 | 0.86 | | 0.0619 | 5.0 | 562 | 0.4262 | 0.88 | | 0.0044 | 6.0 | 675 | 0.3266 | 0.91 | | 0.0018 | 7.0 | 787 | 0.4827 | 0.87 | | 0.001 | 8.0 | 900 | 0.9245 | 0.82 | | 0.1854 | 9.0 | 1012 | 0.4256 | 0.89 | | 0.0001 | 10.0 | 1125 | 0.3898 | 0.9 | | 0.0001 | 11.0 | 1237 | 0.3873 | 0.9 | | 0.0001 | 12.0 | 1350 | 0.4064 | 0.91 | | 0.0 | 13.0 | 1462 | 0.3910 | 0.9 | | 0.0 | 14.0 | 1575 | 0.3924 | 0.9 | | 0.0001 | 15.0 | 1687 | 0.3917 | 0.91 | | 0.0 | 16.0 | 1800 | 0.3903 | 0.9 | | 0.0 | 17.0 | 1912 | 0.3900 | 0.89 | | 0.0 | 18.0 | 2025 | 0.3894 | 0.89 | | 0.0 | 19.0 | 2137 | 0.3886 | 0.9 | | 0.0 | 19.91 | 2240 | 0.3882 | 0.9 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
cassandraqs/shan_homework1
cassandraqs
2023-07-16T16:29:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T16:29:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
casque/LactationV.1.1
casque
2023-07-16T16:25:30Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:23:40Z
--- license: creativeml-openrail-m ---
localmodels/LLaMA-65B-ggml
localmodels
2023-07-16T16:22:41Z
0
1
null
[ "region:us" ]
null
2023-07-16T16:22:41Z
--- duplicated_from: localmodels/LLM --- # LLaMA 65B ggml From Meta: https://ai.meta.com/blog/large-language-model-llama-meta-ai --- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` Quantized using an older version of llama.cpp and compatible with llama.cpp from May 19, commit 2d5db48. ### k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` Quantization methods compatible with latest llama.cpp from June 6, commit 2d43387. --- ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | llama-65b.ggmlv3.q2_K.bin | q2_K | 2 | 27.33 GB| 29.83 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | llama-65b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 34.55 GB| 37.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-65b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 31.40 GB| 33.90 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-65b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 28.06 GB| 30.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | llama-65b.ggmlv3.q4_0.bin | q4_0 | 4 | 36.73 GB| 39.23 GB | Original quant method, 4-bit. | | llama-65b.ggmlv3.q4_1.bin | q4_1 | 4 | 40.81 GB| 43.31 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | llama-65b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 39.28 GB| 41.78 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | llama-65b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 36.73 GB| 39.23 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | llama-65b.ggmlv3.q5_0.bin | q5_0 | 5 | 44.89 GB| 47.39 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | llama-65b.ggmlv3.q5_1.bin | q5_1 | 5 | 48.97 GB| 51.47 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | llama-65b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 46.20 GB| 48.70 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | llama-65b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 44.89 GB| 47.39 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | llama-65b.ggmlv3.q6_K.bin | q6_K |6 | 53.56 GB| 56.06 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | llama-65b.ggmlv3.q8_0.bin | q8_0 | 8 | 69.370 GB | 71.87 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
localmodels/LLaMA-7B-ggml
localmodels
2023-07-16T16:17:29Z
0
2
null
[ "region:us" ]
null
2023-07-16T16:17:29Z
--- duplicated_from: localmodels/LLM --- # LLaMA 7B ggml From Meta: https://ai.meta.com/blog/large-language-model-llama-meta-ai --- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` Quantized using an older version of llama.cpp and compatible with llama.cpp from May 19, commit 2d5db48. ### k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` Quantization methods compatible with latest llama.cpp from June 6, commit 2d43387. --- ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | llama-7b.ggmlv3.q2_K.bin | q2_K | 2 | 2.80 GB| 5.30 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | llama-7b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.55 GB| 6.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-7b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.23 GB| 5.73 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-7b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.90 GB| 5.40 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | llama-7b.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. | | llama-7b.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | llama-7b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.05 GB| 6.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | llama-7b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.79 GB| 6.29 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | llama-7b.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | llama-7b.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | llama-7b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.77 GB| 7.27 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | llama-7b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.63 GB| 7.13 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | llama-7b.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB| 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization | | llama-7b.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
ailabturkiye/Joker
ailabturkiye
2023-07-16T16:17:15Z
0
1
null
[ "license:openrail", "region:us" ]
null
2023-07-16T15:22:06Z
--- license: openrail --- [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Joker - RVC V2 300 Epoch **Rapper Joker`in ses modelidir, Rvc V2 300 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: barisdark0 - YouTube: Barış (https://www.youtube.com/@barisdark) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)--- {} ---
casque/Ultimate_ahegao
casque
2023-07-16T16:16:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:14:24Z
--- license: creativeml-openrail-m ---