modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 18:52:31
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 18:52:05
card
stringlengths
11
1.01M
Xiaoman/NER-CoNLL2003-V4
Xiaoman
2022-05-14T19:37:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T18:52:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NER-CoNLL2003-V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-CoNLL2003-V4 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.961395091713594e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 27 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 14 | 0.3630 | | No log | 2.0 | 28 | 0.2711 | | No log | 3.0 | 42 | 0.2407 | | No log | 4.0 | 56 | 0.2057 | | No log | 5.0 | 70 | 0.2095 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anas-awadalla/splinter-large-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
2022-05-14T19:36:09Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:27:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
claytonsamples/xlm-roberta-base-finetuned-panx-de
claytonsamples
2022-05-14T19:19:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T18:40:01Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
syp1229/bert-base-finetuned-koidiom
syp1229
2022-05-14T16:44:17Z
3
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-14T16:42:21Z
--- tags: - generated_from_keras_callback model-index: - name: syp1229/bert-base-finetuned-koidiom results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # syp1229/bert-base-finetuned-koidiom This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.1288 - Validation Loss: 1.8307 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1288 | 1.8307 | 0 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
akreal/mbart-large-50-finetuned-slurp
akreal
2022-05-14T16:36:01Z
5
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "mbart-50", "en", "dataset:SLURP", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-14T15:56:23Z
--- language: - en tags: - mbart-50 license: apache-2.0 datasets: - SLURP metrics: - accuracy - slu-f1 --- This model is `mbart-large-50-many-to-many-mmt` model fine-tuned on the text part of [SLURP](https://github.com/pswietojanski/slurp) spoken language understanding dataset. The scores on the test set are 85.68% and 79.00% for Intent accuracy and SLU-F1 respectively.
syp1229/koelectra-base-v3-generator-finetuned-koidiom
syp1229
2022-05-14T16:14:31Z
3
0
transformers
[ "transformers", "tf", "electra", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-14T16:10:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: syp1229/koelectra-base-v3-generator-finetuned-koidiom results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # syp1229/koelectra-base-v3-generator-finetuned-koidiom This model is a fine-tuned version of [monologg/koelectra-base-v3-generator](https://huggingface.co/monologg/koelectra-base-v3-generator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4310 - Validation Loss: 2.0533 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.4310 | 2.0533 | 0 | ### Framework versions - Transformers 4.19.1 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
DBusAI/RPPO-CarRacing-v0-v1
DBusAI
2022-05-14T16:03:06Z
1
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T16:01:07Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: RPPO results: - metrics: - type: mean_reward value: 614.78 +/- 160.84 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **RPPO** Agent playing **CarRacing-v0** This is a trained model of a **RPPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
DBusAI/RPPO-CarRacing-v0
DBusAI
2022-05-14T16:00:15Z
4
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T22:52:43Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: RPPO results: - metrics: - type: mean_reward value: 614.78 +/- 160.84 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **RPPO** Agent playing **CarRacing-v0** This is a trained model of a **RPPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-281_23
nadirbekovnadir
2022-05-14T15:38:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T15:38:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 278.11 +/- 23.37 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-283_19
nadirbekovnadir
2022-05-14T13:25:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T13:25:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.38 +/- 17.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-276_21
nadirbekovnadir
2022-05-14T11:41:56Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T11:41:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 278.41 +/- 17.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-278_18_2
nadirbekovnadir
2022-05-14T11:39:44Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T11:39:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 274.15 +/- 17.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
buehlpa/bert-finetuned-ner
buehlpa
2022-05-14T11:06:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T10:38:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9308580858085809 - name: Recall type: recall value: 0.9493436553349041 - name: F1 type: f1 value: 0.9400099983336112 - name: Accuracy type: accuracy value: 0.9862541943839407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9309 - Recall: 0.9493 - F1: 0.9400 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0855 | 1.0 | 1756 | 0.0632 | 0.9191 | 0.9386 | 0.9287 | 0.9832 | | 0.0414 | 2.0 | 3512 | 0.0572 | 0.9264 | 0.9475 | 0.9368 | 0.9855 | | 0.0198 | 3.0 | 5268 | 0.0607 | 0.9309 | 0.9493 | 0.9400 | 0.9863 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
danieleV9H/hubert-base-timit-demo-google-colab-ft30ep_v5
danieleV9H
2022-05-14T10:32:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-12T20:23:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hubert-base-timit-demo-google-colab-ft30ep_v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-timit-demo-google-colab-ft30ep_v5 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the timit-asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4763 - Wer: 0.3322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.9596 | 0.87 | 500 | 3.1237 | 1.0 | | 2.5388 | 1.73 | 1000 | 1.1689 | 0.9184 | | 1.0448 | 2.6 | 1500 | 0.6106 | 0.5878 | | 0.6793 | 3.46 | 2000 | 0.4912 | 0.5200 | | 0.5234 | 4.33 | 2500 | 0.4529 | 0.4798 | | 0.4368 | 5.19 | 3000 | 0.4239 | 0.4543 | | 0.3839 | 6.06 | 3500 | 0.4326 | 0.4339 | | 0.3315 | 6.92 | 4000 | 0.4265 | 0.4173 | | 0.2878 | 7.79 | 4500 | 0.4304 | 0.4068 | | 0.25 | 8.65 | 5000 | 0.4130 | 0.3940 | | 0.242 | 9.52 | 5500 | 0.4310 | 0.3938 | | 0.2182 | 10.38 | 6000 | 0.4204 | 0.3843 | | 0.2063 | 11.25 | 6500 | 0.4449 | 0.3816 | | 0.2099 | 12.11 | 7000 | 0.4016 | 0.3681 | | 0.1795 | 12.98 | 7500 | 0.4027 | 0.3647 | | 0.1604 | 13.84 | 8000 | 0.4294 | 0.3664 | | 0.1683 | 14.71 | 8500 | 0.4412 | 0.3661 | | 0.1452 | 15.57 | 9000 | 0.4484 | 0.3588 | | 0.1491 | 16.44 | 9500 | 0.4508 | 0.3515 | | 0.1388 | 17.3 | 10000 | 0.4240 | 0.3518 | | 0.1399 | 18.17 | 10500 | 0.4605 | 0.3513 | | 0.1265 | 19.03 | 11000 | 0.4412 | 0.3485 | | 0.1137 | 19.9 | 11500 | 0.4520 | 0.3467 | | 0.106 | 20.76 | 12000 | 0.4873 | 0.3426 | | 0.1243 | 21.63 | 12500 | 0.4456 | 0.3396 | | 0.1055 | 22.49 | 13000 | 0.4819 | 0.3406 | | 0.1124 | 23.36 | 13500 | 0.4613 | 0.3391 | | 0.1064 | 24.22 | 14000 | 0.4842 | 0.3430 | | 0.0875 | 25.09 | 14500 | 0.4661 | 0.3348 | | 0.086 | 25.95 | 15000 | 0.4724 | 0.3371 | | 0.0842 | 26.82 | 15500 | 0.4982 | 0.3381 | | 0.0834 | 27.68 | 16000 | 0.4856 | 0.3337 | | 0.0918 | 28.55 | 16500 | 0.4783 | 0.3344 | | 0.0773 | 29.41 | 17000 | 0.4763 | 0.3322 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
fgaim/tielectra-small-sentiment
fgaim
2022-05-14T06:49:29Z
15
1
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ti", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" metrics: - f1 - precision - recall - accuracy model-index: - name: tielectra-small-sentiment results: - task: name: Text Classification type: text-classification metrics: - name: F1 type: f1 value: 0.8228962818003914 - name: Precision type: precision value: 0.8055555555555556 - name: Recall type: recall value: 0.841 - name: Accuracy type: accuracy value: 0.819 --- # Sentiment Analysis for Tigrinya with TiELECTRA small This model is a fine-tuned version of [TiELECTRA small](https://huggingface.co/fgaim/tielectra-small) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tielectra-small-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results The model achieves the following results on the evaluation set: - F1: 0.8229 - Precision: 0.8056 - Recall: 0.841 - Accuracy: 0.819 - Loss: 0.4299 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```
NeonPigeon/TEST2ppo-LunarLander-v2
NeonPigeon
2022-05-14T06:48:08Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T05:31:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 289.62 +/- 18.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
fgaim/tiroberta-sentiment
fgaim
2022-05-14T06:47:23Z
4
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "ti", "dataset:TLMD", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" datasets: - TLMD metrics: - accuracy - f1 - precision - recall model-index: - name: tiroberta-sentiment results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.828 - name: F1 type: f1 value: 0.8476527900797165 - name: Precision type: precision value: 0.760731319554849 - name: Recall type: recall value: 0.957 --- # Sentiment Analysis for Tigrinya with TiRoBERTa This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/roberta-base-tigrinya) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tiroberta-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results It achieves the following results on the evaluation set: - F1: 0.8477 - Precision: 0.7607 - Recall: 0.957 - Accuracy: 0.828 - Loss: 0.6796 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```
fgaim/tielectra-geezswitch
fgaim
2022-05-14T06:20:23Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "geezlab", "ti", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T22:42:10Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" - text: "ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ።" - text: "እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ።" - text: "ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ።" - text: "ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን።" tags: - geezlab metrics: - accuracy - f1 - precision - recall model-index: - name: geezswitch-tielectra results: [] license: cc-by-4.0 --- # TiELECTRA-GeezSwitch This model is a fine-tuned version of [fgaim/tielectra-small](https://huggingface.co/fgaim/tielectra-small) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset. It achieves the following results on the test set: - F1: 0.9844 - Recall: 0.9844 - Precision: 0.9845 - Accuracy: 0.9844 - Loss: 0.2190 ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - seed: 42 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation If you use this model or the GeezSwitch model in your research, please cite as follows: ```markdown @inproceedings{fgaim2022geezswitch, title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages}, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference}, year={2022} } ```
omar47/wav2vec2-large-xls-r-300m-urdu-v2
omar47
2022-05-14T04:53:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-07T14:37:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-urdu-CV_8_0-and-PRUS_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-urdu-CV_8_0-and-PRUS_v2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3541 - Wer: 0.6532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 14.8521 | 0.52 | 32 | 20.0617 | 1.0 | | 9.2152 | 1.05 | 64 | 7.8943 | 1.0 | | 4.8598 | 1.57 | 96 | 5.1558 | 1.0 | | 3.866 | 2.1 | 128 | 3.9680 | 1.0 | | 3.3517 | 2.62 | 160 | 3.4201 | 1.0 | | 3.2029 | 3.15 | 192 | 3.2355 | 1.0 | | 3.1509 | 3.67 | 224 | 3.2337 | 1.0 | | 3.1399 | 4.2 | 256 | 3.1627 | 1.0 | | 3.0848 | 4.72 | 288 | 3.0550 | 1.0 | | 2.9806 | 5.25 | 320 | 2.8343 | 0.9996 | | 2.3814 | 5.77 | 352 | 2.0685 | 0.9523 | | 1.2936 | 6.3 | 384 | 1.5907 | 0.8657 | | 0.8656 | 6.82 | 416 | 1.3810 | 0.8235 | | 0.7014 | 7.34 | 448 | 1.3838 | 0.7920 | | 0.6015 | 7.87 | 480 | 1.3479 | 0.8046 | | 0.5341 | 8.39 | 512 | 1.2613 | 0.7757 | | 0.5031 | 8.92 | 544 | 1.2818 | 0.7890 | | 0.4349 | 9.44 | 576 | 1.3171 | 0.7739 | | 0.4198 | 9.97 | 608 | 1.2420 | 0.7750 | | 0.3593 | 10.49 | 640 | 1.2991 | 0.7587 | | 0.3252 | 11.02 | 672 | 1.2653 | 0.7228 | | 0.2715 | 11.54 | 704 | 1.2488 | 0.7350 | | 0.2733 | 12.07 | 736 | 1.2639 | 0.7110 | | 0.2338 | 12.59 | 768 | 1.3733 | 0.7454 | | 0.2403 | 13.11 | 800 | 1.3908 | 0.7228 | | 0.2106 | 13.64 | 832 | 1.3384 | 0.7224 | | 0.2041 | 14.16 | 864 | 1.3770 | 0.7050 | | 0.1814 | 14.69 | 896 | 1.3526 | 0.6932 | | 0.1742 | 15.21 | 928 | 1.3486 | 0.6895 | | 0.1658 | 15.74 | 960 | 1.3210 | 0.6936 | | 0.1455 | 16.26 | 992 | 1.3292 | 0.6858 | | 0.1399 | 16.79 | 1024 | 1.3521 | 0.6828 | | 0.1325 | 17.31 | 1056 | 1.3339 | 0.6876 | | 0.1256 | 17.84 | 1088 | 1.3389 | 0.6836 | | 0.1219 | 18.36 | 1120 | 1.3496 | 0.6769 | | 0.1212 | 18.89 | 1152 | 1.3277 | 0.6776 | | 0.1097 | 19.41 | 1184 | 1.3594 | 0.6762 | | 0.1129 | 19.93 | 1216 | 1.3448 | 0.6688 | | 0.1036 | 20.46 | 1248 | 1.3295 | 0.6710 | | 0.1035 | 20.98 | 1280 | 1.3243 | 0.6577 | | 0.094 | 21.51 | 1312 | 1.3832 | 0.6591 | | 0.0912 | 22.03 | 1344 | 1.3857 | 0.6584 | | 0.0815 | 22.56 | 1376 | 1.3739 | 0.6547 | | 0.0864 | 23.08 | 1408 | 1.3649 | 0.6554 | | 0.0772 | 23.61 | 1440 | 1.3791 | 0.6458 | | 0.0894 | 24.13 | 1472 | 1.3630 | 0.6488 | | 0.0776 | 24.66 | 1504 | 1.3541 | 0.6532 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anwesham/imdb-sentiment-baseline-distilbert
anwesham
2022-05-14T03:58:39Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "unk", "dataset:anwesham/autotrain-data-imdb-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-14T03:06:07Z
--- language: unk datasets: - anwesham/autotrain-data-imdb-sentiment-analysis --- ## Description - Problem type: Binary Classification ## Validation Metrics - Loss: 0.17481304705142975 - Accuracy: 0.936 - Precision: 0.9526578073089701 - Recall: 0.9176 - AUC: 0.9841454399999999 - F1: 0.93480032599837 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/anwesham/autotrain-imdb-sentiment-analysis-864927555 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927555", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927555", use_auth_token=True) inputs = tokenizer("I love to eat good food and watch Moana.", return_tensors="pt") outputs = model(**inputs) ```
anwesham/autotrain-imdb-sentiment-analysis-864927559
anwesham
2022-05-14T03:56:56Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "unk", "dataset:anwesham/autotrain-data-imdb-sentiment-analysis", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-14T03:06:26Z
--- language: unk datasets: - anwesham/autotrain-data-imdb-sentiment-analysis co2_eq_emissions: 0.2033402242358345 --- - Problem type: Binary Classification - Model ID: 864927559 - CO2 Emissions (in grams): 0.2033402242358345 ## Validation Metrics - Loss: 0.18383920192718506 - Accuracy: 0.9318 - Precision: 0.9560625264047318 - Recall: 0.9052 - AUC: 0.98281574 - F1: 0.9299363057324841 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/anwesham/autotrain-imdb-sentiment-analysis-864927559 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927559", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927559", use_auth_token=True) inputs = tokenizer("I love to eat food", return_tensors="pt") outputs = model(**inputs) ```
ruselkomp/deepavlov-framebank-10size
ruselkomp
2022-05-14T03:48:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T22:08:47Z
--- tags: - generated_from_trainer model-index: - name: deepavlov-test-bert-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepavlov-test-bert-2 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0314 | 1.0 | 4523 | 1.0242 | | 0.739 | 2.0 | 9046 | 1.0326 | | 0.5207 | 3.0 | 13569 | 1.1607 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
gregtozzi/ppo-LunarLander-v2-4
gregtozzi
2022-05-14T02:51:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T02:51:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 295.25 +/- 17.66 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
gregtozzi/ppo-LunarLander-v2-3
gregtozzi
2022-05-14T02:15:41Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T02:15:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 292.99 +/- 18.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
gregtozzi/ppo-LunarLander-v2-2
gregtozzi
2022-05-14T02:10:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T02:10:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 288.74 +/- 16.79 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
describeai/gemini
describeai
2022-05-14T00:46:52Z
765
41
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "Explain code", "Code Summarization", "Summarization", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en tags: - Explain code - Code Summarization - Summarization license: mit --- # Gemini For in-depth understanding of our model and methods, please see our blog [here](https://www.describe-ai.com/gemini) ## Model description Gemini is a transformer based on Google's T5 model. The model is pre-trained on approximately 800k code/description pairs and then fine-tuned on 10k higher-level explanations that were synthetically generated. Gemini is capable of summarization/explaining short to medium code snippets in: - Python - Javascript (mostly vanilla JS, however, it can handle frameworks like React as well) - Java - Ruby - Go And outputs a description in English. ## Intended uses Gemini without any additional fine-tuning is capable of explaining code in a sentence or two and typically performs best in Python and Javascript. We recommend using Gemini for either simple code explanation, documentation or producing more synthetic data to improve its explanations. ### How to use You can use this model directly with a pipeline for Text2Text generation, as shown below: ```python from transformers import pipeline, set_seed summarizer = pipeline('text2text-generation', model='describeai/gemini') code = "print('hello world!')" response = summarizer(code, max_length=100, num_beams=3) print("Summarized code: " + response[0]['generated_text']) ``` Which should yield something along the lines of: ``` Summarized code: The following code is greeting the world. ``` ### Model sizes - Gemini (this repo): 770 Million Parameters - Gemini-Small - 220 Million Parameters ### Limitations Typically, Gemini may produce overly simplistic descriptions that don't encompass the entire code snippet. We suspect with more training data, this could be circumvented and will produce better results. ### About Us A Describe.ai, we are focused on building Artificial Intelligence systems that can understand language as well as humans. While a long path, we plan to contribute our findings to our API to the Open Source community.
itsroadtrip/test-pull-requests
itsroadtrip
2022-05-13T23:50:46Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-05-13T23:50:13Z
--- license: mit --- [click me](https://www.youtube.com/watch?v=dQw4w9WgXcQ)
bstad/ppo-LunarLander-v2-n_envs-32
bstad
2022-05-13T22:37:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T22:36:52Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 149.07 +/- 88.31 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
vukpetar/ppo-CarRacing-v0-v1
vukpetar
2022-05-13T22:06:01Z
2
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T22:03:40Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 407.75 +/- 151.62 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
subhasisj/en-finetuned-squad-qa-minilmv2-32
subhasisj
2022-05-13T21:50:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T19:47:17Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: en-finetuned-squad-qa-minilmv2-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-finetuned-squad-qa-minilmv2-32 This model is a fine-tuned version of [subhasisj/en-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/en-TAPT-MLM-MiniLM) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 350 | 2.1514 | | 2.9587 | 2.0 | 700 | 1.4819 | | 1.3873 | 3.0 | 1050 | 1.2724 | | 1.3873 | 4.0 | 1400 | 1.2039 | | 1.0438 | 5.0 | 1750 | 1.1955 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
nepp1d0/TAPE-finetuned-viralProteins
nepp1d0
2022-05-13T21:27:09Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-13T19:33:59Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: TAPE-finetuned-viralProteins results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TAPE-finetuned-viralProteins This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9033 - Accuracy: 0.87 - F1: 0.8555 - Precision: 0.8475 - Recall: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8845 | 1.0 | 5000 | 0.8302 | 0.85 | 0.8060 | 0.7779 | 0.85 | | 0.8189 | 2.0 | 10000 | 0.6062 | 0.86 | 0.8255 | 0.8115 | 0.86 | | 0.806 | 3.0 | 15000 | 0.8546 | 0.85 | 0.8095 | 0.7840 | 0.85 | | 0.6971 | 4.0 | 20000 | 0.7660 | 0.86 | 0.8228 | 0.8027 | 0.86 | | 0.6269 | 5.0 | 25000 | 0.7787 | 0.85 | 0.8343 | 0.8226 | 0.85 | | 0.5771 | 6.0 | 30000 | 0.7965 | 0.855 | 0.8402 | 0.8290 | 0.855 | | 0.5433 | 7.0 | 35000 | 0.7864 | 0.875 | 0.8573 | 0.8473 | 0.875 | | 0.5183 | 8.0 | 40000 | 0.8292 | 0.87 | 0.8521 | 0.8425 | 0.87 | | 0.4396 | 9.0 | 45000 | 0.8838 | 0.875 | 0.8566 | 0.8483 | 0.875 | | 0.4019 | 10.0 | 50000 | 0.9033 | 0.87 | 0.8555 | 0.8475 | 0.87 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Kommunarus/ppo_rl-LunarLander-v2
Kommunarus
2022-05-13T21:25:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T21:23:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 289.97 +/- 7.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping
theojolliffe
2022-05-13T21:16:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T21:46:01Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8793 - Rouge1: 56.2055 - Rouge2: 41.9231 - Rougel: 45.0616 - Rougelsum: 54.6643 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 0.31 | 125 | 1.2057 | 50.9339 | 30.6777 | 32.6396 | 47.9592 | 141.3519 | | No log | 0.63 | 250 | 1.0933 | 52.0728 | 31.2361 | 32.8214 | 48.9776 | 141.9815 | | No log | 0.94 | 375 | 0.9685 | 51.6847 | 32.1578 | 34.1933 | 48.8808 | 141.5556 | | 1.1594 | 1.26 | 500 | 0.9725 | 50.5131 | 30.6043 | 32.1861 | 47.4346 | 142.0 | | 1.1594 | 1.57 | 625 | 0.9342 | 52.228 | 32.2073 | 33.797 | 49.2395 | 142.0 | | 1.1594 | 1.88 | 750 | 0.8715 | 52.2 | 33.6602 | 36.1303 | 49.7138 | 141.6481 | | 1.1594 | 2.2 | 875 | 0.8334 | 53.116 | 33.9871 | 35.9641 | 50.7658 | 141.8889 | | 0.6845 | 2.51 | 1000 | 0.8241 | 52.2612 | 32.8025 | 35.27 | 49.5694 | 142.0 | | 0.6845 | 2.83 | 1125 | 0.7986 | 54.1803 | 35.0019 | 37.4582 | 51.4577 | 142.0 | | 0.6845 | 3.14 | 1250 | 0.8532 | 52.1328 | 32.6086 | 34.7455 | 49.6219 | 141.7037 | | 0.6845 | 3.45 | 1375 | 0.8319 | 51.9614 | 32.8544 | 35.3269 | 49.3279 | 141.7593 | | 0.4488 | 3.77 | 1500 | 0.8033 | 53.1404 | 34.6086 | 37.5482 | 50.7414 | 142.0 | | 0.4488 | 4.08 | 1625 | 0.8322 | 53.1736 | 34.8662 | 37.7514 | 51.0601 | 142.0 | | 0.4488 | 4.4 | 1750 | 0.7985 | 51.8251 | 32.9457 | 36.4164 | 49.55 | 142.0 | | 0.4488 | 4.71 | 1875 | 0.8049 | 54.3423 | 36.6293 | 39.1316 | 52.2706 | 141.8148 | | 0.3017 | 5.03 | 2000 | 0.8148 | 53.0698 | 35.2569 | 38.406 | 50.9346 | 141.7778 | | 0.3017 | 5.34 | 2125 | 0.8153 | 53.4479 | 35.1525 | 37.8071 | 51.3731 | 141.0741 | | 0.3017 | 5.65 | 2250 | 0.8009 | 52.5517 | 34.8287 | 37.999 | 50.2889 | 141.6111 | | 0.3017 | 5.97 | 2375 | 0.7509 | 54.2725 | 37.4164 | 40.516 | 52.1379 | 142.0 | | 0.2052 | 6.28 | 2500 | 0.8019 | 54.622 | 36.4776 | 39.9306 | 52.5069 | 142.0 | | 0.2052 | 6.6 | 2625 | 0.8176 | 55.4796 | 38.4502 | 41.5523 | 53.5211 | 142.0 | | 0.2052 | 6.91 | 2750 | 0.7956 | 55.4906 | 37.9064 | 40.845 | 53.107 | 141.9815 | | 0.2052 | 7.22 | 2875 | 0.7966 | 54.5177 | 37.3399 | 40.7678 | 52.4241 | 142.0 | | 0.1465 | 7.54 | 3000 | 0.8311 | 54.3473 | 37.0659 | 40.2507 | 52.372 | 142.0 | | 0.1465 | 7.85 | 3125 | 0.8227 | 53.9245 | 36.4695 | 39.1205 | 51.9416 | 141.8889 | | 0.1465 | 8.17 | 3250 | 0.7947 | 54.766 | 38.4275 | 41.2293 | 52.9075 | 142.0 | | 0.1465 | 8.48 | 3375 | 0.7954 | 54.5305 | 37.6934 | 40.6804 | 52.5884 | 141.9444 | | 0.115 | 8.79 | 3500 | 0.8433 | 54.7962 | 37.9373 | 41.3906 | 52.3778 | 142.0 | | 0.115 | 9.11 | 3625 | 0.8416 | 56.59 | 41.2271 | 44.4207 | 54.7199 | 142.0 | | 0.115 | 9.42 | 3750 | 0.8164 | 55.1903 | 39.0588 | 41.4908 | 53.4897 | 142.0 | | 0.115 | 9.74 | 3875 | 0.8363 | 55.2894 | 39.3598 | 42.1138 | 53.831 | 141.8889 | | 0.0912 | 10.05 | 4000 | 0.8850 | 55.7705 | 40.4924 | 43.1048 | 54.254 | 142.0 | | 0.0912 | 10.36 | 4125 | 0.8268 | 56.1664 | 40.641 | 42.798 | 54.0001 | 141.9259 | | 0.0912 | 10.68 | 4250 | 0.8564 | 55.4701 | 39.4949 | 42.2559 | 53.4486 | 141.8889 | | 0.0912 | 10.99 | 4375 | 0.8557 | 56.0849 | 41.2861 | 45.8277 | 54.5999 | 141.6667 | | 0.0707 | 11.31 | 4500 | 0.8432 | 54.9496 | 39.3006 | 42.0025 | 53.3854 | 142.0 | | 0.0707 | 11.62 | 4625 | 0.8377 | 54.2438 | 37.6959 | 40.4637 | 52.3088 | 142.0 | | 0.0707 | 11.93 | 4750 | 0.8794 | 55.9488 | 40.5401 | 43.7347 | 54.1282 | 142.0 | | 0.0707 | 12.25 | 4875 | 0.8563 | 57.8762 | 43.366 | 46.6757 | 56.6985 | 142.0 | | 0.0604 | 12.56 | 5000 | 0.8835 | 54.8926 | 39.3755 | 42.384 | 53.2687 | 141.6481 | | 0.0604 | 12.88 | 5125 | 0.8570 | 55.6656 | 39.849 | 42.1455 | 54.352 | 142.0 | | 0.0604 | 13.19 | 5250 | 0.8539 | 57.1549 | 41.901 | 45.153 | 55.213 | 142.0 | | 0.0604 | 13.51 | 5375 | 0.8847 | 56.3279 | 40.9269 | 43.416 | 54.7242 | 142.0 | | 0.051 | 13.82 | 5500 | 0.8795 | 56.8982 | 42.3333 | 45.2669 | 55.1034 | 142.0 | | 0.051 | 14.13 | 5625 | 0.8751 | 55.3173 | 40.2853 | 43.2479 | 53.7236 | 142.0 | | 0.051 | 14.45 | 5750 | 0.8799 | 56.1678 | 41.0862 | 43.8581 | 54.6316 | 142.0 | | 0.051 | 14.76 | 5875 | 0.8678 | 57.3539 | 43.0473 | 44.8511 | 55.6474 | 142.0 | | 0.0467 | 15.08 | 6000 | 0.8945 | 56.1939 | 41.985 | 45.0266 | 54.8139 | 142.0 | | 0.0467 | 15.39 | 6125 | 0.9245 | 56.2071 | 41.5265 | 44.3228 | 54.5042 | 141.4074 | | 0.0467 | 15.7 | 6250 | 0.8793 | 56.2055 | 41.9231 | 45.0616 | 54.6643 | 142.0 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anas-awadalla/roberta-large-initialization-seed-4
anas-awadalla
2022-05-13T21:07:51Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T19:00:31Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-initialization-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-initialization-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
nikiandr/DQN-LunarLanderv2-5e5t
nikiandr
2022-05-13T19:36:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T19:35:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -86.43 +/- 37.10 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
subhasisj/en-TAPT-MLM-MiniLM
subhasisj
2022-05-13T19:35:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-13T18:46:52Z
--- tags: - generated_from_trainer model-index: - name: en-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
nikiandr/PPO-LunarLanderv2-5e5t
nikiandr
2022-05-13T19:00:53Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T19:00:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 190.98 +/- 42.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
thanathorn/mt5-cpe-kmutt-thai-sentence-sum
thanathorn
2022-05-13T18:20:03Z
20,007
8
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "mT5", "th", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-04-27T09:12:47Z
--- tags: - summarization - mT5 language: - th widget: - text: "simplify: ถ้าพูดถึงขนมหวานในตำนานที่ชื่นใจที่สุดแล้วละก็ต้องไม่พ้น น้ำแข็งใส แน่เพราะว่าเป็นอะไรที่ชื่นใจสุด" --- # mt5-cpe-kmutt-thai-sentence-sum This repository contains the finetuned mT5-base model for Thai sentence summarization. The architecture of the model is based on mT5 model and fine-tuned on text-summarization pairs in Thai. Also, this project is a Senior Project of Computer Engineering Student at King Mongkut’s University of Technology Thonburi. ## Usage on SimpleTransformer (Tested on version 0.63.4) ```python from simpletransformers.t5 import T5Model, T5Args from torch import cuda model = T5Model("t5", "thanathorn/mt5-cpe-kmutt-thai-sentence-sum", use_cuda=cuda.is_available()) sentence = "simplify: ถ้าพูดถึงขนมหวานในตำนานที่ชื่นใจที่สุดแล้วละก็ต้องไม่พ้น น้ำแข็งใส แน่เพราะว่าเป็นอะไรที่ชื่นใจสุด" prediction = model.predict([sentence]) print(prediction[0]) ``` (See the example on <a href="https://colab.research.google.com/drive/1XiNkZLgy1USwHYFVf_nEzOSWbHGSnYdg?usp=sharing">Google Colab</a>) ### Score <ul> <li>ROUGE-1: 61.7805</li> <li>ROUGE-2: 45.9689</li> <li>ROUGE-L: 59.3542</li> </ul> ### Intended uses & limitations <ul> <li>You can use this model for Thai sentence text summarization.</li> <li>Not intended to use with paragraph text.</li> </ul>
subhasisj/vi-finetuned-squad-qa-minilmv2-8
subhasisj
2022-05-13T17:04:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T11:30:59Z
--- tags: - generated_from_trainer model-index: - name: vi-finetuned-squad-qa-minilmv2-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-finetuned-squad-qa-minilmv2-8 This model is a fine-tuned version of [subhasisj/vi-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/vi-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1669 | 1.0 | 1424 | 1.4979 | | 1.2377 | 2.0 | 2848 | 1.3259 | | 1.0536 | 3.0 | 4272 | 1.3133 | | 0.9568 | 4.0 | 5696 | 1.3103 | | 0.8859 | 5.0 | 7120 | 1.3335 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.11.0
ogpat23/Jules-Chatbot
ogpat23
2022-05-13T16:43:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # Chat bot based on Pulp fiction Character Jules # Model trained on Pytorch framework uisng Pulp fiction dialogue script dataset from kaggle
DBusAI/PPO-BipedalWalker-v3
DBusAI
2022-05-13T16:39:16Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T13:36:41Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 303.05 +/- 1.79 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
karthiksv/vit-base-patch16-224-in21k-finetuned-cifar10
karthiksv
2022-05-13T16:25:11Z
55
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-13T16:21:13Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - cifar10 model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
Rietta/CycleGAN_WoW
Rietta
2022-05-13T15:57:41Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-05-13T15:57:23Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ntcuong777/electra-iu-answer-retrieval
ntcuong777
2022-05-13T15:31:50Z
1
0
transformers
[ "transformers", "pytorch", "electra", "endpoints_compatible", "region:us" ]
null
2022-05-09T06:40:16Z
This is a model for International University VNU-HCMC use cases only.
tobyych/ppo-LunarLander-v2
tobyych
2022-05-13T15:12:21Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T13:35:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 254.64 +/- 22.65 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Davincilee/door_inner_with_SA-bert-base-uncased
Davincilee
2022-05-13T14:56:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-03T06:38:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: door_inner_with_SA-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # door_inner_with_SA-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5492 | 1.0 | 96 | 2.3831 | | 2.4031 | 2.0 | 192 | 2.2963 | | 2.3391 | 3.0 | 288 | 2.2000 | | 2.2951 | 4.0 | 384 | 2.2505 | | 2.2151 | 5.0 | 480 | 2.1691 | | 2.2237 | 6.0 | 576 | 2.1855 | | 2.1984 | 7.0 | 672 | 2.2558 | | 2.1749 | 8.0 | 768 | 2.2019 | | 2.1475 | 9.0 | 864 | 2.1310 | | 2.1446 | 10.0 | 960 | 2.1334 | | 2.1374 | 11.0 | 1056 | 2.1909 | | 2.1117 | 12.0 | 1152 | 2.2028 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
DBusAI/PPO-BipedalWalker-v3-v1
DBusAI
2022-05-13T14:32:50Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T14:32:01Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 226.04 +/- 113.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Davincilee/closure_system_door_inne-roberta-base
Davincilee
2022-05-13T14:24:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-13T13:57:50Z
--- license: mit tags: - generated_from_trainer model-index: - name: closure_system_door_inne-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # closure_system_door_inne-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3302 | 1.0 | 3 | 1.6837 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Narsil/nolicense
Narsil
2022-05-13T14:23:29Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-05-13T14:20:50Z
--- license: mit commercial: false ---
DBusAI/PPO-CarRacing-v0
DBusAI
2022-05-13T12:55:40Z
2
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T12:53:48Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 81.28 +/- 82.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
yogeshchandrasekharuni/bart-paraphrase-finetuned-xsum
yogeshchandrasekharuni
2022-05-13T11:12:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-13T06:12:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-finetuned-xsum This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 61 | 1.1215 | 70.9729 | 60.41 | 70.2648 | 70.2724 | 12.2295 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
alk/t5-small-finetuned-cnn_dailymail-en-es
alk
2022-05-13T11:11:01Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-12T20:51:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: alk/t5-small-finetuned-cnn_dailymail-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alk/t5-small-finetuned-cnn_dailymail-en-es This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9163 - Validation Loss: 1.7610 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 71776, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9945 | 1.7837 | 0 | | 1.9478 | 1.7694 | 1 | | 1.9278 | 1.7646 | 2 | | 1.9163 | 1.7610 | 3 | ### Framework versions - Transformers 4.19.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
chanifrusydi/bert-finetuned-squad
chanifrusydi
2022-05-13T10:45:36Z
4
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T08:05:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: chanifrusydi/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # chanifrusydi/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.4528 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 11091, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 5.4528 | 0 | ### Framework versions - Transformers 4.19.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
jkhan447/language-detection-Bert-base-uncased
jkhan447
2022-05-13T10:07:04Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-13T04:02:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-Bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-Bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2231 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
shenyi/bert-base-cased-wikitext2
shenyi
2022-05-13T07:53:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-13T07:22:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 391 | 7.2240 | | 7.6715 | 2.0 | 782 | 7.0516 | | 7.0737 | 3.0 | 1173 | 7.0823 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.2.1 - Tokenizers 0.12.1
shenyi/gpt2-wikitext2
shenyi
2022-05-13T07:21:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T07:00:51Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.2.1 - Tokenizers 0.12.1
anas-awadalla/roberta-large-data-seed-4
anas-awadalla
2022-05-13T06:24:05Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T04:13:10Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-data-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-data-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Khalsuu/filipino-wav2vec2-l-xls-r-300m-official
Khalsuu
2022-05-13T05:58:50Z
14,622
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:filipino_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-13T03:24:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: filipino-wav2vec2-l-xls-r-300m-official results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # filipino-wav2vec2-l-xls-r-300m-official This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4672 - Wer: 0.2922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3671 | 2.09 | 400 | 0.5584 | 0.5987 | | 0.48 | 4.19 | 800 | 0.4244 | 0.4195 | | 0.2796 | 6.28 | 1200 | 0.3742 | 0.3765 | | 0.1916 | 8.38 | 1600 | 0.4291 | 0.3667 | | 0.1463 | 10.47 | 2000 | 0.3745 | 0.3415 | | 0.1165 | 12.57 | 2400 | 0.4472 | 0.3407 | | 0.0955 | 14.66 | 2800 | 0.4269 | 0.3290 | | 0.0823 | 16.75 | 3200 | 0.4608 | 0.3475 | | 0.0709 | 18.85 | 3600 | 0.4706 | 0.3281 | | 0.0603 | 20.94 | 4000 | 0.4380 | 0.3183 | | 0.0527 | 23.04 | 4400 | 0.4473 | 0.3067 | | 0.0449 | 25.13 | 4800 | 0.4550 | 0.3029 | | 0.041 | 27.23 | 5200 | 0.4671 | 0.3020 | | 0.0358 | 29.32 | 5600 | 0.4672 | 0.2922 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
whimsical/ppo-LunarLander-v2
whimsical
2022-05-13T05:00:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T04:59:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 144.17 +/- 32.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Ambiwlans/Default_ppo-LunarLander-v2
Ambiwlans
2022-05-13T02:11:41Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T02:09:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.96 +/- 13.01 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). Used default settings but for 1511424 timesteps
cj-mills/ppo-LunarLander-v2
cj-mills
2022-05-13T02:10:27Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-05T01:07:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 268.12 +/- 21.13 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huxxx657/distilbert-base-uncased-finetuned-jumbling-squad-15
huxxx657
2022-05-13T01:01:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T00:19:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-jumbling-squad-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-jumbling-squad-15 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3629 | 1.0 | 5532 | 1.3345 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
kathywu/DialoGPT-medium-kathy
kathywu
2022-05-13T00:41:24Z
5
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T00:12:36Z
--- tags: - conversational ---
subhasisj/es-finetuned-squad-qa-minilmv2-16
subhasisj
2022-05-12T22:52:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-12T20:30:11Z
--- tags: - generated_from_trainer model-index: - name: es-finetuned-squad-qa-minilmv2-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # es-finetuned-squad-qa-minilmv2-16 This model is a fine-tuned version of [subhasisj/es-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/es-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.485 | 1.0 | 711 | 1.7377 | | 1.6984 | 2.0 | 1422 | 1.3005 | | 1.0772 | 3.0 | 2133 | 1.2348 | | 0.9997 | 4.0 | 2844 | 1.2231 | | 0.8976 | 5.0 | 3555 | 1.2304 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
strangetcy/PPO-LunarLander-v2_experiments
strangetcy
2022-05-12T22:15:50Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T12:50:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 288.23 +/- 18.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ruselkomp/sber-full-framebank
ruselkomp
2022-05-12T21:32:41Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-10T19:34:58Z
--- tags: - generated_from_trainer model-index: - name: tests-finetuned-squad-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tests-finetuned-squad-full This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0601 | 1.0 | 11307 | 1.0849 | | 0.6918 | 2.0 | 22614 | 1.1588 | | 0.4071 | 3.0 | 33921 | 1.5672 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
LazaroAGM/Complicaciones_Diabetes
LazaroAGM
2022-05-12T19:15:45Z
0
0
null
[ "region:us" ]
null
2022-05-12T18:32:36Z
## Identificación de retinopatías El Propósito del siguiente trabajo es identificar los pacientes que tienen complicaciones diabéticas, como lo son la neuropatía, nefropatía y retinopatía de notas médicas. Es el trabajo final del curso Clinical Natural Language Processing impartido en Coursera. Las notas medicas se encuentran en el siguiente link para el entrenamiento del modelo: https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv Y los datos para su validación se encuentran en el siguiente link: https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/glodstandrad.csv En primera instancia, se crea el siguiente código para ignorar los warnings: ```python import warnings warnings.filterwarnings("ignore", 'This pattern has match groups') datos = "https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv" df = pd.read_csv(datos) # Importando las paqueterías necesarias: import pandas as pd import matplotlib.pyplot as plt import re import numpy as np from sklearn.metrics import confusion_matrix, classification_report # Lectura de datos datos = "https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv" df = pd.read_csv(datos) # Análisis grafico de los datos fig, ax = plt.subplots() ax.bar(df['NOTE_ID'],df['TEXT'].str.split().apply(len)) # Cantidad de palabras por reporte de cada paciente identificado por un id conteo = df['TEXT'].str.split().apply(len).tolist() print('Media de palabras: ' + str(np.mean(conteo))) print('Mediana de palabras: ' + str(np.median(conteo))) print('Minimo de palabras: ' + str(np.min(conteo))) print('Maximo de palabras: ' + str(np.max(conteo))) def reporte_paciente(id): resumen = re.findall(r"\w+", str(df[df.NOTE_ID == id]['TEXT'].tolist() )) return resumen # print(reporte_paciente(1)) ``` Ahora, se genera una función la cual recibe nuestro DataFrame con las notas médicas, la palabra a buscar y el tamaño de la ventana ## Función sin expresiones regulares ```python def extract_text_window(df, word, window_size, column_name = "TEXT"): #Constants user_input = f'({word})' regex = re.compile(user_input) negative = f'(no history of {word}|No history of {word}|any comorbid complications|family history|father also has {word}|denies {word}|Negative for {word})' regex_negative = re.compile(negative) half_window_size = window_size final_df = pd.DataFrame([]) column_position = df.columns.get_loc(column_name) + 1 #We add 1 cause position 0 is the index #Loop for each row of the column for row in df.itertuples(): #Loop for multiple matches in the same row for match in regex.finditer(row[column_position]): window_start = int([match.start()-half_window_size if match.start()>=half_window_size else 0][0]) window_end = int([match.end() + half_window_size if match.end()+half_window_size <= len(row[column_position]) else len(row[column_position])][0]) final_df = final_df.append({ "WORD": match.group(), "START_INDEX": match.start(), "WINDOW_START": window_start, "WINDOW_END": window_end, "CONTEXT": row[column_position][window_start:window_end], "FULL_TEXT": row[column_position], "NOTE_ID": row[1]}, ignore_index=True) #Extracción de negativos for match in regex_negative.finditer(row[column_position]): final_df2 = final_df[final_df["CONTEXT"].str.contains(pat = regex_negative, regex = True)==False] return "No matches for the pattern" if len(final_df) == 0 else final_df2 # Buscando diabet en las notas médicas df = pd.read_csv("https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv") word = "diabet" window_size = 50 #tamaño de la ventana diabetes_notes_window = extract_text_window(df,word,window_size) diabetes_notes_window ``` Se crea una segunda función la cual recibe nuestro DataFrame con nuestras notas médicas, nuestra expresión regular para la palabra a buscar, expresión regular para las expresiones como "historial familiar, no tiene historial de diabetes, no se ha identificado diabetes" entre otras y el tamaño de la ventana al rededor de la palabra a buscar. ## Función con expresiones regulares ```python def extract_text_window_pro(df, pattern,negatives, window_size, column_name = "TEXT"): #Constants half_window_size = window_size final_df = pd.DataFrame([]) column_position = df.columns.get_loc(column_name) + 1 #We add 1 cause position 0 is the index #Loop for each row of the column for row in df.itertuples(): #Loop for multiple matches in the same row for match in re.finditer(pattern,row[column_position]): window_start = int([match.start()-half_window_size if match.start()>=half_window_size else 0][0]) window_end = int([match.end() + half_window_size if match.end()+half_window_size <= len(row[column_position]) else len(row[column_position])][0]) final_df = final_df.append({ "WORD": match.group(), "START_INDEX": match.start(), "WINDOW_START": window_start, "WINDOW_END": window_end, "CONTEXT": row[column_position][window_start:window_end], "FULL_TEXT": row[column_position], "NOTE_ID": row[1]}, ignore_index=True) #Extracción de negativos final_df2 = final_df[final_df["CONTEXT"].str.contains(pat = negatives, regex = True)==False] return "No matches for the pattern" if len(final_df) == 0 else final_df2 # Buscando diabet en las notas médicas df = pd.read_csv("https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv") pattern = "diabetes|diabetic" #"(?<![a-zA-Z])diabet(es|ic)?(?![a-zA-Z])" window_size = 50 negatives = r"no history of (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|No history of (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|den(ies|y)? any comorbid complications|family history|negative for (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|(father|mother) (also)? (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|Negative for (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z]) |no weakness, numbness or tingling|patient's mother and father|father also has diabetes" diabetes_notes_window = extract_text_window_pro(df,pattern,negatives,window_size) diabetes_notes_window ``` A continuación, es momento de obtener mediante la función, con expresiones regulares, los DataFrame para neuropathy, nephropathy y retinopathy. ```python diabetes_notes_window.drop_duplicates(subset=["NOTE_ID"]) neuropathy = diabetes_notes_window[diabetes_notes_window['CONTEXT'].str.contains(pat=r"(?<![a-zA-Z])neuropath(y|ic)?(?![a-zA-z])|diabetic nerve pain|tingling",regex=True)] neuropathy['COMPLICATIONS'] = "neuropathy" diabetes_notes_neuropathy = neuropathy[['NOTE_ID','CONTEXT','COMPLICATIONS']].drop_duplicates(subset=['NOTE_ID']) print(diabetes_notes_neuropathy) print(diabetes_notes_neuropathy.count()) nephropathy = diabetes_notes_window[diabetes_notes_window['CONTEXT'].str.contains(pat=r"(?<![a-zA-Z])nephropathy(?![a-zA-z])|renal (insufficiency|disease)",regex=True)] nephropathy['COMPLICATIONS'] = "nephropathy" diabetes_notes_nephropathy = nephropathy[['NOTE_ID','CONTEXT','COMPLICATIONS']].drop_duplicates(subset=['NOTE_ID']) print(diabetes_notes_nephropathy) print(diabetes_notes_nephropathy.count()) retinopathy = diabetes_notes_window[diabetes_notes_window['CONTEXT'].str.contains(pat=r"(?<![a-zA-Z])retinopath(y|ic)?(?![a-zA-z])",regex=True)] retinopathy['COMPLICATIONS'] = "retinopathy" diabetes_notes_retinopathy = retinopathy[['NOTE_ID','CONTEXT','COMPLICATIONS']].drop_duplicates(subset=['NOTE_ID']) print(diabetes_notes_retinopathy) print(diabetes_notes_retinopathy.count()) ``` Para validar que nuestras funciones estén obteniendo bien la información, se hace el uso del segundo link el cual se nos fue proporcionado para la validación de estas notas médicas. ```python # Con el link antes mencionado de validación se crean los DataFrame para cada patología datos_verificacion = pd.read_csv("https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/glodstandrad.csv") datos_verificacion_neuropathy = datos_verificacion[datos_verificacion['DIABETIC_NEUROPATHY']==1][['NOTE_ID','DIABETIC_NEUROPATHY']] print(datos_verificacion_neuropathy) print(datos_verificacion_neuropathy.count()) datos_verificacion_nephropathy = datos_verificacion[datos_verificacion['DIABETIC_NEPHROPATHY']==1][['NOTE_ID','DIABETIC_NEPHROPATHY']] print(datos_verificacion_nephropathy) print(datos_verificacion_nephropathy.count()) datos_verificacion_retinopathy = datos_verificacion[datos_verificacion['DIABETIC_RETINOPATHY']==1][['NOTE_ID','DIABETIC_RETINOPATHY']] print(datos_verificacion_retinopathy) print(datos_verificacion_retinopathy.count()) ``` Es necesario reunir los datos obtenidos por nuestro modelo con los datos de validación, tarea que es hecha por una unión, usando como llave el identificador de cada paciente NOTE_ID. ```python # Realizamos joins de nuestros DataFrame con las tablas de validación ver_neuro = pd.merge(datos_verificacion_neuropathy, diabetes_notes_neuropathy, how = 'outer', on = 'NOTE_ID', indicator=True) print(ver_neuro) ver_nephro = pd.merge(datos_verificacion_nephropathy, diabetes_notes_nephropathy, how = 'outer', on = 'NOTE_ID', indicator=True) print(ver_nephro) ver_retino = pd.merge(datos_verificacion_retinopathy, diabetes_notes_retinopathy, how = 'outer', on = 'NOTE_ID', indicator=True) print(ver_retino) ``` El primer análisis es realizar conteos para cada complicación, con el fin de saber cuantos falsos positivos y negativos se encuentran, con estos valores se construye la matriz de confusión. ```python # Se realizan los conteos conteo_na_neuro_falso_positivo = ver_neuro['DIABETIC_NEUROPATHY'].isna().sum() conteo_na_nephro_falso_positivo = ver_nephro['DIABETIC_NEPHROPATHY'].isna().sum() conteo_na_retino_falso_positivo = ver_retino['DIABETIC_RETINOPATHY'].isna().sum() print('Pacientes sin complicaciones pero que si se identifican: ', conteo_na_neuro_falso_positivo+conteo_na_nephro_falso_positivo+conteo_na_retino_falso_positivo) ``` Pacientes sin complicaciones pero que si se identifican: 5 ```python conteo_na_neuro_falso_negativo = ver_neuro['COMPLICATIONS'].isna().sum() conteo_na_nephro_falso_negativo = ver_nephro['COMPLICATIONS'].isna().sum() conteo_na_retino_falso_negativo = ver_retino['COMPLICATIONS'].isna().sum() print('Pacientes con complicaciones que no fueron detectados: ', conteo_na_neuro_falso_negativo + conteo_na_nephro_falso_negativo + conteo_na_retino_falso_negativo) ``` Pacientes con complicaciones que no fueron detectados: 13 ```python conteo_correcto_neuro = len(ver_neuro[ver_neuro['_merge'] == 'both']) conteo_correcto_nephro = len(ver_nephro[ver_nephro['_merge'] == 'both']) conteo_correcto_retino = len(ver_retino[ver_retino['_merge'] == 'both']) print('Pacientes que tienen complicaciones diabetes que si se encontaron: ', conteo_correcto_nephro+conteo_correcto_neuro+conteo_correcto_retino) ``` Pacientes que tienen complicaciones diabetes que si se encontaron: 15 ```python conteo_complicacion_neuro = len( ver_neuro[ver_neuro['DIABETIC_NEUROPATHY'] == 1] ) conteo_complicacion_nephro = len( ver_nephro[ver_nephro['DIABETIC_NEPHROPATHY'] == 1] ) conteo_complicacion_retino = len( ver_retino[ver_retino['DIABETIC_RETINOPATHY'] == 1] ) print('Pacientes que tienen complicaciones diabeticas: ', conteo_complicacion_neuro +conteo_complicacion_nephro + conteo_complicacion_retino ) ``` Pacientes que tienen complicaciones diabeticas: 28 Matriz de Confusión. | Predicción\Verdad | Complicaciones | No complicaciones | |-------------------|----------------|-------------------| | Complicaciones | 15 | 5 | | No complicaciones | 13 | 108 | Procedemos con la evaluación usando la función *classification_report* de la paqueteria *sklearn*. Iniciamos con neuropatia, primero debemos llenar todos los espacios con NA (obtenidos de la unión) usando el valor de cero. Una vez completado esto, hacemos la comparación de las dos columnas. ```python cor_neuro = datos_verificacion[['NOTE_ID', 'DIABETIC_NEUROPATHY']].merge(diabetes_notes_neuropathy[['NOTE_ID','COMPLICATIONS']], how='outer', on='NOTE_ID', indicator=True ) cor_neuro['COMPLICATIONS'] = cor_neuro['COMPLICATIONS'].map(d_neuro).fillna(0) print('---NEUROPATHY---') print(cor_neuro) print(classification_report(cor_neuro['DIABETIC_NEUROPATHY'].tolist(), cor_neuro['COMPLICATIONS'].tolist())) ``` Teniendo la siguiente evaluación: | | precision | recall | f1-score | support | |--------------|-----------|--------|----------|---------| | 0 | 0.94 | 0.98 | 0.95 | 126 | | 1 | 0.78 | 0.47 | 0.58 | 15 | | accuracy | | | 0.93 | 141 | | macroavg | 0.86 | 0.73 | 0.77 | 141 | | weighted avg | 0.92 | 0.93 | 0.92 | 141 | EL método muestra las principales métrica de precisión haciendo uso de los falsos y verdaderos positivos, junto a los falsos y verdaderos negativos. *Recall* es la capacidad del clasificador de encontrar los ejemplares positivos, teniendo un valor de 0.73. *F1-Score* evalua cuantas predicciones positivas correctas se tiene, el macropromedio es de 0.77. Teniendo un soporte de 15 ejemplares positivos, 126 negativos, sumando un total de 141. En segundo lugar, evaluamos nefropatia. ```python cor_nephro = datos_verificacion[['NOTE_ID', 'DIABETIC_NEPHROPATHY']].merge(diabetes_notes_nephropathy[['NOTE_ID','COMPLICATIONS']], how='outer', on='NOTE_ID', indicator=True ) cor_nephro['COMPLICATIONS'] = cor_nephro['COMPLICATIONS'].map(d_nephro).fillna(0) print('---NEPHROPATHY---') print(cor_nephro) print(classification_report(cor_nephro['DIABETIC_NEPHROPATHY'].tolist(), cor_nephro['COMPLICATIONS'].tolist())) ``` | | precision | recall | f1-score | support | |--------------|-----------|--------|----------|---------| | 0 | 0.98 | 0.99 | 0.98 | 131 | | 1 | 0.88 | 0.70 | 0.78 | 10 | | accuracy | | | 0.97 | 141 | | macroavg | 0.93 | 0.85 | 0.88 | 141 | | weighted avg | 0.97 | 0.97 | 0.97 | 141 | En este caso, el *F1-score* del macropromedio aumento a 0.88, mientras que el recall disminuyo a 0.73. Seguimos teniendo los 141 ejemplares. Finalizando, tenemos retinopatia. ```python cor_retino = datos_verificacion[['NOTE_ID', 'DIABETIC_RETINOPATHY']].merge(diabetes_notes_retinopathy[['NOTE_ID','COMPLICATIONS']], how='outer', on='NOTE_ID', indicator=True ) cor_retino['COMPLICATIONS'] = cor_retino['COMPLICATIONS'].map(d_retino).fillna(0) print('---RETINOPATHY---') print(cor_retino) print(classification_report(cor_retino['DIABETIC_RETINOPATHY'].tolist(), cor_retino['COMPLICATIONS'].tolist())) ``` | | precision | recall | f1-score | support | |--------------|-----------|--------|----------|---------| | 0 | 0.99 | 0.99 | 0.98 | 138 | | 1 | 0.33 | 0.33 | 0.33 | 3 | | accuracy | | | 0.97 | 141 | | macroavg | 0.66 | 0.66 | 0.66 | 141 | | weighted avg | 0.97 | 0.97 | 0.97 | 141 | Esta ultima evalaución nos devuelve el *f1-score* más bajo de las tres evaluaciones, con 0.66 en el macropromedio. Notemos que es la complicaciones con menos casos positivos de los tres casos estudiados, contando con tres, de los cuales solo se encontro correctamente un ejemplar. Lo cual reduce el macropromedio considerablemente.
RaphaelReinauer/LunarLander-v6
RaphaelReinauer
2022-05-12T19:04:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T22:44:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 298.88 +/- 14.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
vukpetar/ppo-BipedalWalker-v3
vukpetar
2022-05-12T17:48:05Z
2
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T15:43:44Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 302.55 +/- 0.48 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
deepparag/gpt-j-6B-longer-generation
deepparag
2022-05-12T17:33:59Z
0
1
null
[ "pytorch", "causal-lm", "en", "arxiv:2104.09864", "arxiv:2101.00027", "license:apache-2.0", "region:us" ]
null
2022-05-12T17:32:17Z
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - The Pile --- # This model is a clone of https://huggingface.co/EleutherAI/gpt-j-6B in which I have simply increased the max response size. # GPT-J 6B ## Model Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai). ## Training procedure This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Intended Use and Limitations GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Evaluation results <figure> | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) | |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------| | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 | | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- | | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 | | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 | | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 | | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 | | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 | | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- | | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 | | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 | | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 | | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** | | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 | | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- | | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 | | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 | | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- | <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p> <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more details.</p> <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a> <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>) Thus, evaluation was not attempted.</p> <p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure> ## Citation and Related Information ### BibTeX entry To cite this model: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues. - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package. - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table. - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo. - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts. - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
vukpetar/ppo-BipedalWalker-v3-v1
vukpetar
2022-05-12T17:21:23Z
3
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T17:20:30Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 302.93 +/- 0.82 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
CrispyAlbumArt/ppo-LunarLander-v4
CrispyAlbumArt
2022-05-12T16:17:26Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T16:17:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 296.41 +/- 12.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
alk/mt5-small-finetuned-cnn_dailymail-en-es
alk
2022-05-12T16:08:51Z
5
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T23:49:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: alk/mt5-small-finetuned-cnn_dailymail-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alk/mt5-small-finetuned-cnn_dailymail-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9490 - Validation Loss: 1.6920 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 287112, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.9445 | 1.9068 | 0 | | 2.2439 | 1.8106 | 1 | | 2.1301 | 1.7582 | 2 | | 2.0643 | 1.7378 | 3 | | 2.0191 | 1.7181 | 4 | | 1.9870 | 1.7033 | 5 | | 1.9646 | 1.7015 | 6 | | 1.9490 | 1.6920 | 7 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
jgerbscheid/ppo-LunarLander-v2
jgerbscheid
2022-05-12T16:07:44Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T16:07:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 182.52 +/- 64.21 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
bansals10/wav2vec2-large-xls-r-300m-turkish-colab
bansals10
2022-05-12T15:25:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-11T14:43:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
mustapha/Lunar_lander_v2_gym_2
mustapha
2022-05-12T15:21:42Z
3
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T10:36:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 284.86 +/- 16.57 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
karthiksv/vit-base-beans
karthiksv
2022-05-12T15:21:37Z
69
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-10T15:08:52Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans model-index: - name: vit-base-beans results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
damianr13/ppo-LunarLander-v2
damianr13
2022-05-12T15:07:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T15:06:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 214.61 +/- 36.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
pinot/wav2vec2-base-timit-demo-colab
pinot
2022-05-12T14:37:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-23T05:58:32Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4548 - Wer: 0.3373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3291 | 4.0 | 500 | 1.0403 | 0.7174 | | 0.5336 | 8.0 | 1000 | 0.4744 | 0.4489 | | 0.2155 | 12.0 | 1500 | 0.4476 | 0.3832 | | 0.1256 | 16.0 | 2000 | 0.4358 | 0.3639 | | 0.0867 | 20.0 | 2500 | 0.4634 | 0.3527 | | 0.0608 | 24.0 | 3000 | 0.4784 | 0.3466 | | 0.0476 | 28.0 | 3500 | 0.4548 | 0.3373 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping
theojolliffe
2022-05-12T14:00:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-12T08:17:12Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8347 - Rouge1: 53.9049 - Rouge2: 35.5953 - Rougel: 39.788 - Rougelsum: 51.4101 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 0.31 | 125 | 1.0240 | 52.5632 | 32.977 | 34.672 | 49.9905 | 142.0 | | No log | 0.63 | 250 | 1.0056 | 52.5508 | 32.4826 | 34.6851 | 49.835 | 141.6852 | | No log | 0.94 | 375 | 0.8609 | 53.0475 | 32.9384 | 35.3322 | 50.272 | 141.6481 | | 0.8255 | 1.26 | 500 | 0.9022 | 52.2493 | 31.5622 | 33.389 | 49.6612 | 142.0 | | 0.8255 | 1.57 | 625 | 0.8706 | 53.3568 | 33.2533 | 35.7531 | 50.4568 | 141.8889 | | 0.8255 | 1.88 | 750 | 0.8186 | 52.7375 | 33.4439 | 37.1094 | 50.5323 | 142.0 | | 0.8255 | 2.2 | 875 | 0.8041 | 53.4992 | 34.6929 | 37.9614 | 51.091 | 142.0 | | 0.5295 | 2.51 | 1000 | 0.7907 | 52.6185 | 33.8053 | 37.1725 | 50.4881 | 142.0 | | 0.5295 | 2.83 | 1125 | 0.7740 | 52.7107 | 33.1023 | 36.0865 | 50.0365 | 142.0 | | 0.5295 | 3.14 | 1250 | 0.8200 | 52.5607 | 33.7948 | 37.2312 | 50.3345 | 142.0 | | 0.5295 | 3.45 | 1375 | 0.8188 | 53.9233 | 34.446 | 36.7566 | 51.3135 | 142.0 | | 0.351 | 3.77 | 1500 | 0.8071 | 53.9096 | 35.5977 | 38.6832 | 51.4986 | 142.0 | | 0.351 | 4.08 | 1625 | 0.8347 | 53.9049 | 35.5953 | 39.788 | 51.4101 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
vukpetar/ppo-MountainCar-v0
vukpetar
2022-05-12T13:59:19Z
0
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T12:37:22Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -90.00 +/- 6.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
MikhailKon/TEST2ppo-LunarLander-v2
MikhailKon
2022-05-12T13:56:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T11:31:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 262.31 +/- 16.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingtweets/newscollected-nickmullensgf
huggingtweets
2022-05-12T13:41:10Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-23T17:13:18Z
--- language: en thumbnail: http://www.huggingtweets.com/newscollected-nickmullensgf/1652362865457/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522032150358511616/83U7w6rG_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1469950344918671364/-037cCwh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">del co & kayla</div> <div style="text-align: center; font-size: 14px;">@newscollected-nickmullensgf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from del co & kayla. | Data | del co | kayla | | --- | --- | --- | | Tweets downloaded | 366 | 3215 | | Retweets | 30 | 946 | | Short tweets | 67 | 362 | | Tweets kept | 269 | 1907 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/nqg16qms/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @newscollected-nickmullensgf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jf63jpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jf63jpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/newscollected-nickmullensgf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
turhancan97/first_ppo-MountainCar-v0
turhancan97
2022-05-12T13:31:10Z
1
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T13:30:42Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -200.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **PPO** Agent playing **MountainCar-v0** This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
IljaSamoilov/MBART-estonian-subtitles-with-seconds
IljaSamoilov
2022-05-12T12:34:45Z
4
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "et", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-09T18:41:45Z
--- language: - et widget: - text: "te olete ka noh, noh, päris korralikult ka Rahvusringhäälingu teatud mõttes sellisesse keerulisse olukorda pannud," - text: "Et, et, et miks mitte olla siis tasakaalus, ma noh, hüpoteetiliselt viskan selle palli üles," --- Dataset must be processed as following: ``` def preprocess_function_with_seconds(ds): inputs = ds['generated'] targets = ds['subtitle'] model_inputs = tokenizer(inputs, truncation=True, max_length=128, padding=True, return_tensors="np") secs = list(map(lambda x: "{:.1f}".format(x), ds["seconds"])) sec_inputs = tokenizer(secs, truncation=True, max_length=128, padding=True, return_tensors="np") model_inputs['input_ids'] = np.concatenate((sec_inputs['input_ids'][:,1:2], model_inputs['input_ids']), 1) model_inputs['attention_mask'] = np.concatenate((sec_inputs['attention_mask'][:,1:2], model_inputs['attention_mask']), 1) with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, truncation=True, max_length=128, padding=True, return_tensors="np") model_inputs["labels"] = labels["input_ids"] return model_inputs ``` Importing the model and tokenizer: ``` tokenizer = MBart50Tokenizer.from_pretrained("IljaSamoilov/MBART-estonian-subtitles-with-seconds", src_lang="et_EE", tgt_lang="et_EE") model = MBartForConditionalGeneration.from_pretrained("IljaSamoilov/MBART-estonian-subtitles-with-seconds") ```
jabot/PPO_LunarLanderV2
jabot
2022-05-12T11:59:38Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-11T21:01:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 293.18 +/- 13.38 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
CrispyAlbumArt/TEST2ppo-LunarLander-v2
CrispyAlbumArt
2022-05-12T11:54:18Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T11:24:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.13 +/- 19.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
driwnet/stsb-m-mt-ca-distilbert-base-uncased
driwnet
2022-05-12T11:18:25Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "ca", "dataset:stsb_multi_mt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-12T09:29:27Z
--- language: ca datasets: - stsb_multi_mt tags: - sentence-similarity - sentence-transformers --- # distilbert-base-uncased trained for Semantic Textual Similarity in Catalan This is a test model that was fine-tuned using the Catalan traduction of Spanish datasets from [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) in order to understand and benchmark STS models. ## Model and training data description This model was built taking `distilbert-base-uncased` and training it on a Semantic Textual Similarity task using a modified version of the training script for STS from Sentece Transformers (the modified script is included in the repo). It was trained using the Spanish datasets from [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) which are the STSBenchmark datasets automatically translated to other languages using deepl.com. and salt.gva.es. Refer to the dataset repository for more details. ## Intended uses & limitations This model was built just as a proof-of-concept on STS fine-tuning using Catalan data and no specific use other than getting a sense on how this training works. ## How to use You may use it as any other STS trained model to extract sentence embeddings. Check Sentence Transformers documentation. ## Training procedure Use the included script to train in Catalan the base model. You can also try to train another model passing it's reference as first argument. You can also train in some other language of those included in the training dataset. ## Evaluation results Evaluating `distilbert-base-uncased` on the Catalan test dataset before training results in: ``` Cosine-Similarity : Pearson: 0.3180 Spearman: 0.4014 ``` While the fine-tuned version with the defaults of the training script and the Catalan training dataset results in: ``` Cosine-Similarity : Pearson: 0.7368 Spearman: 0.7288 ``` ## Resources - Training dataset [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt) - Sentence Transformers [Semantic Textual Similarity](https://www.sbert.net/examples/training/sts/README.html) - Check [sts_eval](https://github.com/eduardofv/sts_eval) for a comparison with Tensorflow and Sentence-Transformers models - Check the [development environment to run the scripts and evaluation](https://github.com/eduardofv/ai-denv)
DioLiu/distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle
DioLiu
2022-05-12T11:04:41Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-12T08:35:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-shake-wiki-update-shuffle This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0284 - Accuracy: 0.9971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0166 | 1.0 | 7783 | 0.0135 | 0.9965 | | 0.0091 | 2.0 | 15566 | 0.0172 | 0.9968 | | 0.0059 | 3.0 | 23349 | 0.0223 | 0.9968 | | 0.0 | 4.0 | 31132 | 0.0332 | 0.9962 | | 0.0001 | 5.0 | 38915 | 0.0284 | 0.9971 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
alisonbrwn/ppo-LunarLander_doubled_steps
alisonbrwn
2022-05-12T10:59:54Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T10:59:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 266.68 +/- 13.25 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ali-issa/FYP_ARABIZI
ali-issa
2022-05-12T10:47:21Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-12T06:34:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-Arabizi-gpu-colab-similar-to-german-param results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-Arabizi-gpu-colab-similar-to-german-param This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5609 - Wer: 0.4042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6416 | 2.83 | 400 | 2.8983 | 1.0 | | 1.4951 | 5.67 | 800 | 0.6272 | 0.6097 | | 0.6419 | 8.51 | 1200 | 0.5491 | 0.5069 | | 0.4767 | 11.35 | 1600 | 0.5152 | 0.4553 | | 0.3899 | 14.18 | 2000 | 0.5436 | 0.4475 | | 0.3342 | 17.02 | 2400 | 0.5400 | 0.4431 | | 0.2982 | 19.85 | 2800 | 0.5599 | 0.4248 | | 0.2738 | 22.69 | 3200 | 0.5401 | 0.4103 | | 0.2563 | 25.53 | 3600 | 0.5710 | 0.4198 | | 0.2443 | 28.37 | 4000 | 0.5609 | 0.4042 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
eslamxm/mt5-base-finetuned-urdu-arabic
eslamxm
2022-05-12T09:18:16Z
11
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "arabic", "ar", "Abstractive Summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-12T01:15:19Z
--- license: apache-2.0 tags: - summarization - arabic - ar - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-urdu-finetuned-urdu-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-urdu-finetuned-urdu-arabic This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-urdu](https://huggingface.co/eslamxm/mt5-base-finetuned-urdu) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.3744 - Rouge-1: 22.77 - Rouge-2: 10.15 - Rouge-l: 20.71 - Gen Len: 19.0 - Bertscore: 71.46 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.5155 | 1.0 | 1172 | 3.6895 | 18.81 | 6.77 | 17.01 | 19.0 | 70.27 | | 3.8315 | 2.0 | 2344 | 3.5047 | 19.75 | 7.79 | 17.95 | 19.0 | 70.58 | | 3.6122 | 3.0 | 3516 | 3.4231 | 20.46 | 8.44 | 18.7 | 19.0 | 70.8 | | 3.4735 | 4.0 | 4688 | 3.3835 | 21.12 | 8.86 | 19.21 | 19.0 | 70.98 | | 3.3855 | 5.0 | 5860 | 3.3744 | 21.48 | 9.01 | 19.57 | 19.0 | 71.17 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Einbauch/PPO-LunarLander-v2
Einbauch
2022-05-12T08:51:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T08:50:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 284.81 +/- 11.11 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Laikokwei/bert-finetuned-squad
Laikokwei
2022-05-12T08:43:19Z
5
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-12T05:42:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Laikokwei/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Laikokwei/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4662 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 44364, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2206 | 0 | | 0.7196 | 1 | | 0.4662 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
shoyano372/test
shoyano372
2022-05-12T07:18:55Z
0
0
null
[ "region:us" ]
null
2022-05-12T07:17:37Z
- Test --- license: apache-2.0 ---
iis2009002/xlm-roberta-base-finetuned-panx-all
iis2009002
2022-05-12T07:17:40Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-04T11:40:11Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1862 | 0.8114 | | 0.1552 | 2.0 | 1670 | 0.1758 | 0.8426 | | 0.1002 | 3.0 | 2505 | 0.1752 | 0.8557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
iis2009002/xlm-roberta-base-finetuned-panx-en
iis2009002
2022-05-12T07:08:50Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-04T11:23:48Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.692179700499168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
iis2009002/xlm-roberta-base-finetuned-panx-de-fr
iis2009002
2022-05-12T07:03:30Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-04T10:18:36Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Vnven25/en_pipeline
Vnven25
2022-05-12T06:49:36Z
4
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-05-11T17:14:48Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 1.0 - name: NER Recall type: recall value: 1.0 - name: NER F Score type: f_score value: 1.0 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.3,<3.3.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme ##NE <details> <summary>View label scheme (6 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `COMPANY NAME`, `CONTRACT`, `EMAIL`, `EVENT`, `MODULE`, `NAME` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 100.00 | | `ENTS_P` | 100.00 | | `ENTS_R` | 100.00 | | `TOK2VEC_LOSS` | 6689.73 | | `NER_LOSS` | 483.71 |
Jackett/subject_classifier_extended
Jackett
2022-05-12T06:09:29Z
9
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-04T03:05:43Z
Label mappings {'LABEL_0':'Biology','LABEL_1':'Physics','LABEL_2':'Chemistry','LABEL_3':'Maths','LABEL_4':'Social Science','LABEL_5':'English'} Training data distribution Physics - 7000 Maths - 7000 Biology - 7000 Chemistry - 7000 English - 5254 Social Science - 7000