modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-24 06:28:30
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
573 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-24 06:27:16
card
stringlengths
11
1.01M
wdika/MTL_IDSLRUNet_SKMTEA_poisson2d_4x
wdika
2024-03-06T10:55:06Z
0
0
atommic
[ "atommic", "multitask-image-reconstruction-image-segmentation", "IDSLRUNet", "ATOMMIC", "pytorch", "en", "dataset:SKMTEA", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:43:33Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - multitask-image-reconstruction-image-segmentation - IDSLRUNet - ATOMMIC - pytorch model-index: - name: MTL_IDSLRUNet_SKMTEA_poisson2d_4x results: [] --- ## Model Overview Image domain Deep Structured Low-Rank network using a UNet (IDSLRUNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/MTL_IDSLRUNet_SKMTEA_poisson2d_4x/blob/main/MTL_IDSLRUNet_SKMTEA_poisson2d_4x.atommic mode: test ``` ### Usage You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: IDSLRUNET use_reconstruction_module: true input_channels: 64 # coils * 2 reconstruction_module_output_channels: 64 # coils * 2 segmentation_module_output_channels: 4 channels: 64 num_pools: 2 padding_size: 11 drop_prob: 0.0 normalize: false padding: true norm_groups: 2 num_iters: 5 segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid reconstruction_loss: l1: 1.0 kspace_reconstruction_loss: false total_reconstruction_loss_weight: 0.5 total_segmentation_loss_weight: 0.5 ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 10 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files. Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 4x: MSE = 0.001139 +/- 0.002133 NMSE = 0.02356 +/- 0.05514 PSNR = 30.53 +/- 5.593 SSIM = 0.8423 +/- 0.1057 DICE = 0.8943 +/- 0.127 F1 = 0.2558 +/- 0.2213 HD95 = 4.927 +/- 2.812 IOU = 0.2985 +/- 0.3086 ## Limitations This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
wdika/MTL_SegNet_SKMTEA_poisson2d_4x
wdika
2024-03-06T10:54:52Z
0
0
atommic
[ "atommic", "multitask-image-reconstruction-image-segmentation", "SegNet", "ATOMMIC", "pytorch", "en", "dataset:SKMTEA", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:44:04Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - multitask-image-reconstruction-image-segmentation - SegNet - ATOMMIC - pytorch model-index: - name: MTL_SegNet_SKMTEA_poisson2d_4x results: [] --- ## Model Overview Segmentation Network MRI (SegNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/MTL_SegNet_SKMTEA_poisson2d_4x/blob/main/MTL_SegNet_SKMTEA_poisson2d_4x.atommic mode: test ``` ### Usage You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGNET use_reconstruction_module: true input_channels: 64 # coils * 2 reconstruction_module_output_channels: 64 # coils * 2 segmentation_module_output_channels: 4 channels: 64 num_pools: 2 padding_size: 11 drop_prob: 0.0 normalize: true padding: true norm_groups: 2 num_cascades: 5 segmentation_final_layer_conv_dim: 2 segmentation_final_layer_kernel_size: 3 segmentation_final_layer_dilation: 1 segmentation_final_layer_bias: False segmentation_final_layer_nonlinear: relu segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid reconstruction_loss: l1: 1.0 kspace_reconstruction_loss: false total_reconstruction_loss_weight: 0.5 total_segmentation_loss_weight: 0.5 ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 10 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files. Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 4x: MSE = 0.001247 +/- 0.002092 NMSE = 0.02623 +/- 0.05875 PSNR = 29.95 +/- 5.115 SSIM = 0.8396 +/- 0.1071 DICE = 0.9154 +/- 0.1138 F1 = 0.2703 +/- 0.2842 HD95 = 3.002 +/- 1.449 IOU = 0.2904 +/- 0.3491 ## Limitations This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
wdika/QMRI_qVarNet_AHEAD_gaussian2d_12x
wdika
2024-03-06T10:54:43Z
0
0
atommic
[ "atommic", "quantitative-mri-mapping", "qVarNet", "ATOMMIC", "pytorch", "en", "dataset:AHEAD", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:44:40Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - AHEAD thumbnail: null tags: - quantitative-mri-mapping - qVarNet - ATOMMIC - pytorch model-index: - name: QMRI_qVarNet_AHEAD_gaussian2d_12x results: [] --- ## Model Overview quantitative Variational Network (qVarNet) for 12x accelerated quantitative MRI mapping of R2*, S0, B0, phi maps on the AHEAD dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/QMRI_qVarNet_AHEAD_gaussian2d_12x/blob/main/QMRI_qVarNet_AHEAD_gaussian2d_12x.atommic mode: test ``` ### Usage You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/qMRI/AHEAD/README.md) page for more information. ## Model Architecture ```base model: model_name: qVN use_reconstruction_module: false quantitative_module_num_cascades: 8 quantitative_module_channels: 18 quantitative_module_pooling_layers: 4 quantitative_module_in_channels: 8 quantitative_module_out_channels: 8 quantitative_module_padding_size: 11 quantitative_module_normalize: true quantitative_module_no_dc: false quantitative_module_signal_forward_model_sequence: MEGRE quantitative_module_dimensionality: 2 quantitative_maps_scaling_factor: 1e-3 quantitative_maps_regularization_factors: - 150.0 - 150.0 - 1000.0 - 150.0 quantitative_loss: ssim: 1.0 kspace_quantitative_loss: false total_quantitative_loss_weight: 1.0 # balance between reconstruction and quantitative loss quantitative_parameters_regularization_factors: - R2star: 1.0 - S0: 1.0 - B0: 1.0 - phi: 1.0 ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/qmapping.py) script for the qmri task, with --evaluation_type per_slice. Results ------- Evaluation against R2*, S0, B0, phi targets ------------------------------------------- 12x: MSE = 0.005571 +/- 0.02725 NMSE = 0.192 +/- 0.3344 PSNR = 24.36 +/- 7.791 SSIM = 0.7838 +/- 0.2059 ## Limitations This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.
wdika/REC_VarNet_AHEAD_gaussian2d_12x
wdika
2024-03-06T10:54:34Z
0
0
atommic
[ "atommic", "image-reconstruction", "VarNet", "ATOMMIC", "pytorch", "en", "dataset:AHEAD", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:45:17Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - AHEAD thumbnail: null tags: - image-reconstruction - VarNet - ATOMMIC - pytorch model-index: - name: REC_VarNet_AHEAD_gaussian2d_12x results: [] --- ## Model Overview Variational Network (VarNet) for 12x accelerated MRI Reconstruction on the AHEAD dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/AHEAD/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_VarNet_AHEAD_gaussian2d_12x/blob/main/REC_VarNet_AHEAD_gaussian2d_12x.atommic mode: test ``` ### Usage You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/REC/AHEAD/README.md) page for more information. ## Model Architecture ```base model: model_name: VN num_cascades: 8 channels: 18 pooling_layers: 4 padding_size: 11 normalize: true no_dc: false dimensionality: 2 num_echoes: 4 reconstruction_loss: ssim: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: PolynomialHoldDecayAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/AHEAD/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.0006782 +/- 0.0008642 NMSE = 0.04725 +/- 0.06244 PSNR = 32.39 +/- 4.795 SSIM = 0.8935 +/- 0.05252 ## Limitations This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.
wdika/REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:54:19Z
0
0
atommic
[ "atommic", "image-reconstruction", "JointICNet", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:46:24Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - JointICNet - ATOMMIC - pytorch model-index: - name: REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (JointICNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_JointICNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: JointICNet num_iter: 2 kspace_unet_num_filters: 16 kspace_unet_num_pool_layers: 2 kspace_unet_dropout_probability: 0.0 kspace_unet_padding_size: 11 kspace_unet_normalize: true imspace_unet_num_filters: 16 imspace_unet_num_pool_layers: 2 imspace_unet_dropout_probability: 0.0 imspace_unet_padding_size: 11 imspace_unet_normalize: true sens_unet_num_filters: 16 sens_unet_num_pool_layers: 2 sens_unet_dropout_probability: 0.0 sens_unet_padding_size: 11 sens_unet_normalize: true dimensionality: 2 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.001306 +/- 0.001178 NMSE = 0.02018 +/- 0.02082 PSNR = 29.28 +/- 3.99 SSIM = 0.8719 +/- 0.06531 10x: MSE = 0.002043 +/- 0.001908 NMSE = 0.03181 +/- 0.03297 PSNR = 27.36 +/- 4.101 SSIM = 0.8278 +/- 0.0864 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
deepnet/SN6-30M1New
deepnet
2024-03-06T10:54:12Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T10:50:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wdika/REC_LPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:54:10Z
0
0
atommic
[ "atommic", "image-reconstruction", "LPDNet", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:46:54Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - LPDNet - ATOMMIC - pytorch model-index: - name: REC_LPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Learned Primal Dual Network (LPDNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_LPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_LPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: LPDNet num_primal: 5 num_dual: 5 num_iter: 5 primal_model_architecture: UNET primal_in_channels: 2 primal_out_channels: 2 primal_unet_num_filters: 16 primal_unet_num_pool_layers: 2 primal_unet_dropout_probability: 0.0 primal_unet_padding_size: 11 primal_unet_normalize: true dual_model_architecture: UNET dual_in_channels: 2 dual_out_channels: 2 dual_unet_num_filters: 16 dual_unet_num_pool_layers: 2 dual_unet_dropout_probability: 0.0 dual_unet_padding_size: 11 dual_unet_normalize: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.001668 +/- 0.001584 NMSE = 0.02567 +/- 0.0265 PSNR = 28.26 +/- 4.222 SSIM = 0.8493 +/- 0.07524 10x: MSE = 0.002367 +/- 0.002247 NMSE = 0.03687 +/- 0.03859 PSNR = 26.73 +/- 4.229 SSIM = 0.8096 +/- 0.09866 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:54:03Z
0
0
atommic
[ "atommic", "image-reconstruction", "RVN", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:47:25Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - RVN - ATOMMIC - pytorch model-index: - name: REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Recurrent Variational Network (RVN) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_RVN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: RVN in_channels: 2 recurrent_hidden_channels: 64 recurrent_num_layers: 4 num_steps: 8 no_parameter_sharing: true learned_initializer: true initializer_initialization: "sense" initializer_channels: - 32 - 32 - 64 - 64 initializer_dilations: - 1 - 1 - 2 - 4 initializer_multiscale: 1 accumulate_predictions: false dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.001627 +/- 0.001304 NMSE = 0.02511 +/- 0.02188 PSNR = 28.14 +/- 3.531 SSIM = 0.8449 +/- 0.06722 10x: MSE = 0.002677 +/- 0.00225 NMSE = 0.0416 +/- 0.03916 PSNR = 26.03 +/- 3.767 SSIM = 0.787 +/- 0.09309 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_VSNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:53:48Z
0
0
atommic
[ "atommic", "image-reconstruction", "VSNet", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:48:42Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - VSNet - ATOMMIC - pytorch model-index: - name: REC_VSNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Variable-Splitting Net (VSNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_VSNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_VSNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: VSNet num_cascades: 10 imspace_model_architecture: CONV imspace_in_channels: 2 imspace_out_channels: 2 imspace_conv_hidden_channels: 64 imspace_conv_n_convs: 4 imspace_conv_batchnorm: false dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.003044 +/- 0.002908 NMSE = 0.04603 +/- 0.04055 PSNR = 25.51 +/- 3.913 SSIM = 0.788 +/- 0.0789 10x: MSE = 0.00402 +/- 0.003273 NMSE = 0.06327 +/- 0.06061 PSNR = 24.19 +/- 3.266 SSIM = 0.74 +/- 0.08881 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
wdika
2024-03-06T10:52:53Z
0
0
atommic
[ "atommic", "image-reconstruction", "KIKINet", "ATOMMIC", "pytorch", "en", "dataset:fastMRIBrainsMulticoil", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:50:17Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - KIKINet - ATOMMIC - pytorch model-index: - name: REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview KIKINet for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: KIKINet num_iter: 2 kspace_model_architecture: UNET kspace_in_channels: 2 kspace_out_channels: 2 kspace_unet_num_filters: 16 kspace_unet_num_pool_layers: 2 kspace_unet_dropout_probability: 0.0 kspace_unet_padding_size: 11 kspace_unet_normalize: true imspace_model_architecture: UNET imspace_in_channels: 2 imspace_unet_num_filters: 16 imspace_unet_num_pool_layers: 2 imspace_unet_dropout_probability: 0.0 imspace_unet_padding_size: 11 imspace_unet_normalize: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.00109 +/- 0.003836 NMSE = 0.02942 +/- 0.08896 PSNR = 31.02 +/- 5.678 SSIM = 0.8556 +/- 0.2009 8x: MSE = 0.002183 +/- 0.005025 NMSE = 0.05946 +/- 0.1484 PSNR = 27.78 +/- 5.821 SSIM = 0.8049 +/- 0.2074 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.
onurSakar/llama2-qlora-finetunined-GYM-Assistant
onurSakar
2024-03-06T10:51:58Z
0
0
null
[ "safetensors", "text-generation", "en", "dataset:onurSakar/GYM-Exercise", "license:apache-2.0", "region:us" ]
text-generation
2024-02-27T16:59:37Z
--- license: apache-2.0 datasets: - onurSakar/GYM-Exercise language: - en pipeline_tag: text-generation --- # Welcome to Llama2, your AI-powered gym instructor designed to revolutionize your fitness journey With Llama2, embark on a personalized workout experience designed to meet your unique needs and goals. Say goodbye to generic fitness routines and hello to targeted guidance that evolves with you over time. Whether you're a beginner or a seasoned athlete, Llama2 adapts to your pace, ensuring optimal progress and results. Get ready to redefine your fitness routine with Llama2 by your side, available whenever and wherever you need it. <b>note = this training is given on colab. for this reason the training is not very long and the parameters are given very little.</b> <img src="https://raw.githubusercontent.com/OnurSakarr/LLM/master/gym_llm/Image/image%20(75).png" /> ## Model meta-llama/Llama-2-7b <br> per_device_train_batch_size = 1 <br> gradient_accumulation_steps = 1 <br> optim = "paged_adamw_32bit" <br> save_steps = 500 <br> logging_steps = 10 <br> learning_rate = 2e-4 <br> max_grad_norm = 0.3 <br> max_steps = 1500 <br> warmup_ratio = 0.03 <br> lora_alpha = 16 <br> lora_dropout = 0.1 <br> lora_r = 8 <br> ## Data token size = 214464 <br> row = 1660 <br> word count = 130755 <br> prompt= \<s\>\[INST\] \<\<SYS\>\> Below is an instruction that describes a task. Write a response that appropriately completes the request \<\<\/SYS\>\> ("title") \[\/INST\] ("context")\</s\> ## Question and Answer 1. **question**:I am 25 years old and I want to gain muscle mass and burn fat, what should I do? <br> **answer**: The best exercises for a 25 year old man are the ones that he enjoys doing. If he is a gym rat, he should continue going to the gym. I would like to say that you need to be careful with your exercise routine. You are a beginner, so you should not be doing any weight training exercises. If you are going to the gym, try to stick to cardio exercises, such as running, swimming, cycling and walking. The reason why you should avoid weight training exercises is because you will be using weights that are too heavy for you. This is not good for you. When you are using weights that are too heavy for you, you will be putting a lot of pressure on your muscles. This is not good for you because you will be damaging your muscles. This will cause you to get injured. 2. **question**:Can you recommend effective ab exercises?<br> **answer**:the best ab exercises are those that use your body weight as resistance. This means you don’t need any special equipment to get a great workout. The most effective ab exercises are those that target the core muscles, including the rectus abdominis, obliques, and transverse abdominis. What are the best exercises for abs? The best exercises for abs are crunches, planks, and side planks. What are the best exercises for abs? The best exercises for abs are crunches, planks, and side planks. 3. **question**:Can you write a 5x5 exercise programme? <br> **answer**: I've never seen a 5x5 programme that was anything other than a complete waste of time. If you can't write a programme for 5x5, then you don't know what you're doing. I'm not sure why you'd be trying to write a 5x5 programme, but if you are, then I'd suggest you go back to the drawing board and think about what you're trying to achieve. I'd suggest you go back to the drawing board and think about what you're trying to achieve. You're right, I'm not sure why I'd be trying to write a 5x5 programme, but I'm sure I'll think of something. 4. **question**:How can I improve flexibility? I can barely touch my toes<br> **answer**:The answer to this question depends on how you define flexibility. Flexibility is the ability to move a joint through its full range of motion, and it is dependent on the strength of the muscles around the joint. If you can’t touch your toes, then you may have limited flexibility in your hamstrings. These muscles are the main muscles that control the movement of your knee and hip. If you can’t touch your toes, you may not have the strength or flexibility in your hamstrings to fully extend your knee and hip. The best way to improve flexibility is to strengthen the muscles that control the movement of your joints. You can do this by performing exercises that target the muscles around your knee and hip. These exercises include lunges, squats, and deadlifts. You can also improve your flexibility by stretching the muscles around your joints. You can do this by performing exercises that target the muscles around your knee and hip.
wdika/REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:51:05Z
0
0
atommic
[ "atommic", "image-reconstruction", "CCNN", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:45:38Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - CCNN - ATOMMIC - pytorch model-index: - name: REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Deep Cascade of Convolutional Neural Networks (CCNN) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: CascadeNet num_cascades: 10 hidden_channels: 64 n_convs: 5 batchnorm: false no_dc: false accumulate_predictions: false dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.00156 +/- 0.001352 NMSE = 0.02397 +/- 0.02192 PSNR = 28.36 +/- 3.693 SSIM = 0.8453 +/- 0.06374 10x: MSE = 0.002715 +/- 0.002301 NMSE = 0.04242 +/- 0.04049 PSNR = 25.95 +/- 3.644 SSIM = 0.7831 +/- 0.08874 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_CRNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:50:57Z
0
0
atommic
[ "atommic", "image-reconstruction", "CRNN", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:46:08Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - CRNN - ATOMMIC - pytorch model-index: - name: REC_CRNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Convolutional Recurrent Neural Network (CRNN) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_CRNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_CRNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: CRNNet num_iterations: 10 hidden_channels: 64 n_convs: 3 batchnorm: false no_dc: false accumulate_predictions: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.003055 +/- 0.003168 NMSE = 0.04653 +/- 0.04576 PSNR = 25.59 +/- 4.19 SSIM = 0.7745 +/- 0.08766 10x: MSE = 0.003803 +/- 0.003232 NMSE = 0.05914 +/- 0.05166 PSNR = 24.48 +/- 3.389 SSIM = 0.7216 +/- 0.08847 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:50:32Z
0
0
atommic
[ "atommic", "image-reconstruction", "RIM", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:47:41Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - RIM - ATOMMIC - pytorch model-index: - name: REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Recurrent Inference Machines (RIM) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: CIRIM recurrent_layer: GRU conv_filters: - 64 - 64 - 2 conv_kernels: - 5 - 3 - 3 conv_dilations: - 1 - 2 - 1 conv_bias: - true - true - false recurrent_filters: - 64 - 64 - 0 recurrent_kernels: - 1 - 1 - 0 recurrent_dilations: - 1 - 1 - 0 recurrent_bias: - true - true - false depth: 2 time_steps: 8 conv_dim: 2 num_cascades: 1 no_dc: true keep_prediction: true accumulate_predictions: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.002022 +/- 0.002006 NMSE = 0.03154 +/- 0.03684 PSNR = 27.45 +/- 4.32 SSIM = 0.8336 +/- 0.07706 10x: MSE = 0.003063 +/- 0.002883 NMSE = 0.04949 +/- 0.06093 PSNR = 25.56 +/- 3.963 SSIM = 0.7881 +/- 0.09099 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_VarNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:50:24Z
0
0
atommic
[ "atommic", "image-reconstruction", "VarNet", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:48:20Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - VarNet - ATOMMIC - pytorch model-index: - name: REC_VarNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview Variational Network (VarNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_VarNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_VarNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: VN num_cascades: 8 channels: 18 pooling_layers: 4 padding_size: 11 normalize: true no_dc: false dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.001211 +/- 0.001067 NMSE = 0.01883 +/- 0.01921 PSNR = 29.49 +/- 3.86 SSIM = 0.8735 +/- 0.06084 10x: MSE = 0.001929 +/- 0.001773 NMSE = 0.03006 +/- 0.03146 PSNR = 27.51 +/- 4.008 SSIM = 0.8269 +/- 0.08687 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
wdika
2024-03-06T10:50:14Z
0
0
atommic
[ "atommic", "image-reconstruction", "XPDNet", "ATOMMIC", "pytorch", "en", "dataset:CC359", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:48:58Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - CC359 thumbnail: null tags: - image-reconstruction - XPDNet - ATOMMIC - pytorch model-index: - name: REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM results: [] --- ## Model Overview XPDNet for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information. ## Model Architecture ```base model: model_name: XPDNet num_primal: 5 num_dual: 1 num_iter: 10 use_primal_only: true kspace_model_architecture: CONV kspace_in_channels: 2 kspace_out_channels: 2 dual_conv_hidden_channels: 16 dual_conv_num_dubs: 2 dual_conv_batchnorm: false image_model_architecture: MWCNN imspace_in_channels: 2 imspace_out_channels: 2 mwcnn_hidden_channels: 16 mwcnn_num_scales: 0 mwcnn_bias: true mwcnn_batchnorm: false normalize_image: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 5x: MSE = 0.004192 +/- 0.004255 NMSE = 0.06401 +/- 0.06475 PSNR = 24.27 +/- 4.135 SSIM = 0.7609 +/- 0.09962 10x: MSE = 0.00581 +/- 0.00445 NMSE = 0.08987 +/- 0.07376 PSNR = 22.65 +/- 3.225 SSIM = 0.6997 +/- 0.1119 ## Limitations This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186
wdika/REC_CIRIM_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
wdika
2024-03-06T10:50:04Z
0
0
atommic
[ "atommic", "image-reconstruction", "CIRIM", "ATOMMIC", "pytorch", "en", "dataset:fastMRIBrainsMulticoil", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:49:33Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - CIRIM - ATOMMIC - pytorch model-index: - name: REC_CIRIM_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview Cascades of Independently Recurrent Inference Machines (CIRIM) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_CIRIM_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_CIRIM_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: CIRIM recurrent_layer: IndRNN conv_filters: - 64 - 64 - 2 conv_kernels: - 5 - 3 - 3 conv_dilations: - 1 - 2 - 1 conv_bias: - true - true - false recurrent_filters: - 64 - 64 - 0 recurrent_kernels: - 1 - 1 - 0 recurrent_dilations: - 1 - 1 - 0 recurrent_bias: - true - true - false depth: 2 time_steps: 8 conv_dim: 2 num_cascades: 5 no_dc: true keep_prediction: true accumulate_predictions: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.0006283 +/- 0.002808 NMSE = 0.01679 +/- 0.05832 PSNR = 33.83 +/- 6.113 SSIM = 0.8916 +/- 0.1844 8x: MSE = 0.00126 +/- 0.003477 NMSE = 0.0328 +/- 0.07764 PSNR = 30.23 +/- 5.665 SSIM = 0.8464 +/- 0.2017 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.
wdika/REC_JointICNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
wdika
2024-03-06T10:49:56Z
0
0
atommic
[ "atommic", "image-reconstruction", "JointICNet", "ATOMMIC", "pytorch", "en", "dataset:fastMRIBrainsMulticoil", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:50:02Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - JointICNet - ATOMMIC - pytorch model-index: - name: REC_JointICNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview Joint Deep Model-Based MR Image and Coil Sensitivity Reconstruction Network (JointICNet) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_JointICNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_JointICNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: JointICNet num_iter: 2 kspace_unet_num_filters: 16 kspace_unet_num_pool_layers: 2 kspace_unet_dropout_probability: 0.0 kspace_unet_padding_size: 11 kspace_unet_normalize: true imspace_unet_num_filters: 16 imspace_unet_num_pool_layers: 2 imspace_unet_dropout_probability: 0.0 imspace_unet_padding_size: 11 imspace_unet_normalize: true sens_unet_num_filters: 16 sens_unet_num_pool_layers: 2 sens_unet_dropout_probability: 0.0 sens_unet_padding_size: 11 sens_unet_normalize: true dimensionality: 2 ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.001774 +/- 0.004331 NMSE = 0.04376 +/- 0.08693 PSNR = 28.57 +/- 5.497 SSIM = 0.8318 +/- 0.1976 8x: MSE = 0.003421 +/- 0.005284 NMSE = 0.08763 +/- 0.1835 PSNR = 25.5 +/- 5.384 SSIM = 0.7719 +/- 0.2019 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.
wdika/REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
wdika
2024-03-06T10:49:46Z
0
0
atommic
[ "atommic", "image-reconstruction", "LPDNet", "ATOMMIC", "pytorch", "en", "dataset:fastMRIBrainsMulticoil", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:50:32Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - LPDNet - ATOMMIC - pytorch model-index: - name: REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview Learned Primal Dual Network (LPDNet) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: LPDNet num_primal: 5 num_dual: 5 num_iter: 5 primal_model_architecture: UNET primal_in_channels: 2 primal_out_channels: 2 primal_unet_num_filters: 16 primal_unet_num_pool_layers: 2 primal_unet_dropout_probability: 0.0 primal_unet_padding_size: 11 primal_unet_normalize: true dual_model_architecture: UNET dual_in_channels: 2 dual_out_channels: 2 dual_unet_num_filters: 16 dual_unet_num_pool_layers: 2 dual_unet_dropout_probability: 0.0 dual_unet_padding_size: 11 dual_unet_normalize: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.000939 +/- 0.004162 NMSE = 0.02527 +/- 0.09819 PSNR = 32.6 +/- 6.781 SSIM = 0.8815 +/- 0.2009 8x: MSE = 0.001548 +/- 0.00446 NMSE = 0.04132 +/- 0.1069 PSNR = 29.51 +/- 5.934 SSIM = 0.8401 +/- 0.2084 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.
wdika/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
wdika
2024-03-06T10:47:44Z
0
0
atommic
[ "atommic", "image-reconstruction", "XPDNet", "ATOMMIC", "pytorch", "en", "dataset:fastMRIBrainsMulticoil", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:52:28Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - XPDNet - ATOMMIC - pytorch model-index: - name: REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview XPDNet for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: XPDNet num_primal: 5 num_dual: 1 num_iter: 10 use_primal_only: true kspace_model_architecture: CONV kspace_in_channels: 2 kspace_out_channels: 2 dual_conv_hidden_channels: 16 dual_conv_num_dubs: 2 dual_conv_batchnorm: false image_model_architecture: MWCNN imspace_in_channels: 2 imspace_out_channels: 2 mwcnn_hidden_channels: 16 mwcnn_num_scales: 0 mwcnn_bias: true mwcnn_batchnorm: false normalize_image: true dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.001292 +/- 0.006735 NMSE = 0.03317 +/- 0.1122 PSNR = 31.03 +/- 6.749 SSIM = 0.8543 +/- 0.2115 8x: MSE = 0.002671 +/- 0.00606 NMSE = 0.07137 +/- 0.1499 PSNR = 26.96 +/- 6.179 SSIM = 0.7881 +/- 0.2177 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.
Shvepi/gpt4all-j-lora-scs-v2.0
Shvepi
2024-03-06T10:47:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-03-06T10:47:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wdika/REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:47:25Z
0
0
atommic
[ "atommic", "image-reconstruction", "KIKINet", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:53:27Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - KIKINet - ATOMMIC - pytorch model-index: - name: REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview KIKINet for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_KIKINet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: KIKINet num_iter: 2 kspace_model_architecture: UNET kspace_in_channels: 2 kspace_out_channels: 2 kspace_unet_num_filters: 16 kspace_unet_num_pool_layers: 2 kspace_unet_dropout_probability: 0.0 kspace_unet_padding_size: 11 kspace_unet_normalize: true imspace_model_architecture: UNET imspace_in_channels: 2 imspace_unet_num_filters: 16 imspace_unet_num_pool_layers: 2 imspace_unet_dropout_probability: 0.0 imspace_unet_padding_size: 11 imspace_unet_normalize: true dimensionality: 2 reconstruction_loss: wasserstein: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.0025 +/- 0.00671 NMSE = 0.1052 +/- 0.1784 PSNR = 27.33 +/- 5.552 SSIM = 0.6587 +/- 0.2413 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/REC_XPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:46:41Z
0
0
atommic
[ "atommic", "image-reconstruction", "XPDNet", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:55:37Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - XPDNet - ATOMMIC - pytorch model-index: - name: REC_XPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview XPDNet for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_XPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_XPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: XPDNet num_primal: 5 num_dual: 1 num_iter: 10 use_primal_only: true kspace_model_architecture: CONV kspace_in_channels: 2 kspace_out_channels: 2 dual_conv_hidden_channels: 16 dual_conv_num_dubs: 2 dual_conv_batchnorm: false image_model_architecture: MWCNN imspace_in_channels: 2 imspace_out_channels: 2 mwcnn_hidden_channels: 16 mwcnn_num_scales: 0 mwcnn_bias: true mwcnn_batchnorm: false normalize_image: true dimensionality: 2 reconstruction_loss: wasserstein: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.002691 +/- 0.008089 NMSE = 0.1117 +/- 0.1955 PSNR = 27.18 +/- 5.768 SSIM = 0.6544 +/- 0.2702 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/REC_RVN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
wdika
2024-03-06T10:46:07Z
0
0
atommic
[ "atommic", "image-reconstruction", "RVN", "ATOMMIC", "pytorch", "en", "dataset:fastMRIBrainsMulticoil", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:51:02Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - fastMRIBrainsMulticoil thumbnail: null tags: - image-reconstruction - RVN - ATOMMIC - pytorch model-index: - name: REC_RVN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM results: [] --- ## Model Overview Recurrent Variational Network (RVN) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_RVN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_RVN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic mode: test ``` ### Usage You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information. ## Model Architecture ```base model: model_name: RVN in_channels: 2 recurrent_hidden_channels: 64 recurrent_num_layers: 4 num_steps: 8 no_parameter_sharing: true learned_initializer: true initializer_initialization: "sense" initializer_channels: - 32 - 32 - 64 - 64 initializer_dilations: - 1 - 1 - 2 - 4 initializer_multiscale: 1 accumulate_predictions: false dimensionality: 2 reconstruction_loss: l1: 0.1 ssim: 0.9 estimate_coil_sensitivity_maps_with_nn: true ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against RSS targets ------------------------------ 4x: MSE = 0.0005725 +/- 0.002891 NMSE = 0.0151 +/- 0.05895 PSNR = 34.23 +/- 5.967 SSIM = 0.8935 +/- 0.1797 8x: MSE = 0.001295 +/- 0.003645 NMSE = 0.0334 +/- 0.08907 PSNR = 30.08 +/- 5.678 SSIM = 0.8434 +/- 0.1949 ## Limitations This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.
wdika/REC_JointICNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:44:32Z
0
0
atommic
[ "atommic", "image-reconstruction", "JointICNet", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:53:12Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - JointICNet - ATOMMIC - pytorch model-index: - name: REC_JointICNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview Joint Deep Model-Based MR Image and coil sensitivity Reconstruction Network (JointICNet) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_JointICNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_JointICNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: JointICNet num_iter: 2 kspace_unet_num_filters: 16 kspace_unet_num_pool_layers: 2 kspace_unet_dropout_probability: 0.0 kspace_unet_padding_size: 11 kspace_unet_normalize: true imspace_unet_num_filters: 16 imspace_unet_num_pool_layers: 2 imspace_unet_dropout_probability: 0.0 imspace_unet_padding_size: 11 imspace_unet_normalize: true SENSE_unet_num_filters: 16 SENSE_unet_num_pool_layers: 2 SENSE_unet_dropout_probability: 0.0 SENSE_unet_padding_size: 11 SENSE_unet_normalize: true dimensionality: 2 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.001713 +/- 0.006045 NMSE = 0.06275 +/- 0.127 PSNR = 29.52 +/- 6.327 SSIM = 0.7274 +/- 0.2913 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:44:20Z
0
0
atommic
[ "atommic", "image-reconstruction", "LPDNet", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:53:41Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - LPDNet - ATOMMIC - pytorch model-index: - name: REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview Learned Primal Dual Network (LPDNet) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_LPDNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: LPDNet num_primal: 5 num_dual: 5 num_iter: 5 primal_model_architecture: UNET primal_in_channels: 2 primal_out_channels: 2 primal_unet_num_filters: 16 primal_unet_num_pool_layers: 2 primal_unet_dropout_probability: 0.0 primal_unet_padding_size: 11 primal_unet_normalize: true dual_model_architecture: UNET dual_in_channels: 2 dual_out_channels: 2 dual_unet_num_filters: 16 dual_unet_num_pool_layers: 2 dual_unet_dropout_probability: 0.0 dual_unet_padding_size: 11 dual_unet_normalize: true dimensionality: 2 reconstruction_loss: wasserstein: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.0016 +/- 0.005712 NMSE = 0.05706 +/- 0.09372 PSNR = 29.79 +/- 6.276 SSIM = 0.7366 +/- 0.297 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/REC_RVN_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:44:09Z
0
0
atommic
[ "atommic", "image-reconstruction", "RVN", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:54:11Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - RVN - ATOMMIC - pytorch model-index: - name: REC_RVN_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview Recurrent Variational Network (RVN) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_RVN_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_RVN_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: RVN in_channels: 2 recurrent_hidden_channels: 64 recurrent_num_layers: 4 num_steps: 8 no_parameter_sharing: true learned_initializer: true initializer_initialization: "SENSEe" initializer_channels: - 32 - 32 - 64 - 64 initializer_dilations: - 1 - 1 - 2 - 4 initializer_multiscale: 1 accumulate_predictions: false dimensionality: 2 reconstruction_loss: wasserstein: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.001201 +/- 0.005875 NMSE = 0.04067 +/- 0.1203 PSNR = 31.96 +/- 6.899 SSIM = 0.7781 +/- 0.3002 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:43:57Z
0
0
atommic
[ "atommic", "image-reconstruction", "UNet", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:54:40Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - UNet - ATOMMIC - pytorch model-index: - name: REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview UNet for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: UNet channels: 64 pooling_layers: 4 in_channels: 2 out_channels: 2 padding_size: 11 dropout: 0.0 normalize: true norm_groups: 2 dimensionality: 2 reconstruction_loss: wasserstein: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.001251 +/- 0.005686 NMSE = 0.04254 +/- 0.09148 PSNR = 31.4 +/- 6.554 SSIM = 0.7705 +/- 0.2946 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/REC_VSNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
wdika
2024-03-06T10:43:36Z
0
0
atommic
[ "atommic", "image-reconstruction", "VSNet", "ATOMMIC", "pytorch", "en", "dataset:StanfordKnees2019", "license:apache-2.0", "region:us" ]
null
2024-03-05T17:55:23Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - StanfordKnees2019 thumbnail: null tags: - image-reconstruction - VSNet - ATOMMIC - pytorch model-index: - name: REC_VSNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM results: [] --- ## Model Overview Variable-Splitting Net (VSNet) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/REC_VSNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_VSNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic mode: test ``` ### Usage You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information. ## Model Architecture ```base model: model_name: VSNet num_cascades: 10 imspace_model_architecture: CONV imspace_in_channels: 2 imspace_out_channels: 2 imspace_conv_hidden_channels: 64 imspace_conv_n_convs: 4 imspace_conv_batchnorm: false dimensionality: 2 reconstruction_loss: wasserstein: 1.0 ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files. Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 12x: MSE = 0.001976 +/- 0.005902 NMSE = 0.07433 +/- 0.1106 PSNR = 28.51 +/- 5.793 SSIM = 0.7084 +/- 0.289 ## Limitations This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
wdika/SEG_UNet_ISLES2022SubAcuteStroke
wdika
2024-03-06T10:42:17Z
0
0
atommic
[ "atommic", "image-segmentation", "UNet", "ATOMMIC", "pytorch", "en", "dataset:ISLES2022SubAcuteStroke", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T17:58:40Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - ISLES2022SubAcuteStroke thumbnail: null tags: - image-segmentation - UNet - ATOMMIC - pytorch model-index: - name: SEG_UNet_ISLES2022SubAcuteStroke results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the ISLES2022SubAcuteStroke dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/ISLES2022SubAcuteStroke/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_UNet_ISLES2022SubAcuteStroke/blob/main/SEG_UNet_ISLES2022SubAcuteStroke.atommic mode: test ``` ### Usage You need to download the ISLES 2022 Sub Acute Stroke dataset to effectively use this model. Check the [ISLES2022SubAcuteStroke](https://github.com/wdika/atommic/blob/main/projects/SEG/ISLES2022SubAcuteStroke/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONUNET segmentation_module: UNet segmentation_module_input_channels: 3 segmentation_module_output_channels: 1 segmentation_module_channels: 32 segmentation_module_pooling_layers: 5 segmentation_module_dropout: 0.0 segmentation_module_normalize: false segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [ 0.5 ] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: true # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 50 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- ALD = 0.9088 +/- 3.953 AVD = 0.5439 +/- 3.921 DICE = 0.6946 +/- 0.5589 L-F1 = 0.7859 +/- 0.5848 ## Limitations This model was trained on the ISLES2022SubAcuteStroke dataset with stacked ADC, DWI, FLAIR images and might differ in performance compared to the leaderboard results. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Petzsche MRH, Rosa E de la, Hanning U, et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Scientific Data 1 2022;9
wdika/SEG_VNet_ISLES2022SubAcuteStroke
wdika
2024-03-06T10:42:03Z
0
0
atommic
[ "atommic", "image-segmentation", "VNet", "ATOMMIC", "pytorch", "en", "dataset:ISLES2022SubAcuteStroke", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T17:59:41Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - ISLES2022SubAcuteStroke thumbnail: null tags: - image-segmentation - VNet - ATOMMIC - pytorch model-index: - name: SEG_VNet_ISLES2022SubAcuteStroke results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the ISLES2022SubAcuteStroke dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/ISLES2022SubAcuteStroke/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_VNet_ISLES2022SubAcuteStroke/blob/main/SEG_VNet_ISLES2022SubAcuteStroke.atommic mode: test ``` ### Usage You need to download the ISLES 2022 Sub Acute Stroke dataset to effectively use this model. Check the [ISLES2022SubAcuteStroke](https://github.com/wdika/atommic/blob/main/projects/SEG/ISLES2022SubAcuteStroke/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONVNET segmentation_module: VNet segmentation_module_input_channels: 3 segmentation_module_output_channels: 1 segmentation_module_activation: elu segmentation_module_dropout: 0.0 segmentation_module_bias: False segmentation_module_padding_size: 15 segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [ 0.5 ] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: true # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 50 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- ALD = 2.281 +/- 10.72 AVD = 3.257 +/- 27.43 DICE = 0.4903 +/- 0.694 L-F1 = 0.5998 +/- 0.6866 ## Limitations This model was trained on the ISLES2022SubAcuteStroke dataset with stacked ADC, DWI, FLAIR images and might differ in performance compared to the leaderboard results. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Petzsche MRH, Rosa E de la, Hanning U, et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Scientific Data 1 2022;9
wdika/SEG_DynUNet_SKMTEA
wdika
2024-03-06T10:41:53Z
0
0
atommic
[ "atommic", "image-segmentation", "DynUNet", "ATOMMIC", "pytorch", "en", "dataset:SKMTEA", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T18:00:27Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - image-segmentation - DynUNet - ATOMMIC - pytorch model-index: - name: SEG_DynUNet_SKMTEA results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the SKMTEA dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_DynUNet_SKMTEA/blob/main/SEG_DynUNet_SKMTEA.atommic mode: test ``` ### Usage You need to download the SKM-TEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/SEG/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONDYNUNET segmentation_module: DYNUNet segmentation_module_input_channels: 1 segmentation_module_output_channels: 4 segmentation_module_channels: - 32 - 64 - 128 - 256 - 512 segmentation_module_kernel_size: - 3 - 3 - 3 - 3 - 1 segmentation_module_strides: - 1 - 1 - 1 - 1 - 1 segmentation_module_dropout: 0.0 segmentation_module_norm: instance segmentation_module_activation: leakyrelu segmentation_module_deep_supervision: true segmentation_module_deep_supervision_levels: 2 segmentation_module_normalize: false segmentation_module_norm_groups: 2 segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: false # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- DICE = 0.6888 +/- 0.1359 F1 = 0.05911 +/- 0.2638 HD95 = 8.973 +/- 4.507 IOU = 0.01517 +/- 0.06638 ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
satpalsr/gemma-sft-qlora
satpalsr
2024-03-06T10:41:47Z
3
0
peft
[ "peft", "safetensors", "gemma", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:satpalsr/hindi-sample", "base_model:google/gemma-7b", "base_model:adapter:google/gemma-7b", "license:other", "4-bit", "bitsandbytes", "region:us" ]
null
2024-03-06T09:21:49Z
--- license: other library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer base_model: google/gemma-7b datasets: - satpalsr/hindi-sample model-index: - name: gemma-sft-qlora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-sft-qlora This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the satpalsr/hindi-sample dataset. It achieves the following results on the evaluation set: - Loss: 0.6385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1537 | 0.99 | 94 | 1.0988 | | 0.9028 | 1.99 | 189 | 0.8056 | | 0.6553 | 2.99 | 284 | 0.6577 | | 0.4936 | 3.96 | 376 | 0.6385 | ### Framework versions - PEFT 0.7.1 - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
wdika/SEG_UNet3D_SKMTEA
wdika
2024-03-06T10:41:37Z
0
0
atommic
[ "atommic", "image-segmentation", "UNet3D", "ATOMMIC", "pytorch", "en", "dataset:SKMTEA", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T18:01:04Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - image-segmentation - UNet3D - ATOMMIC - pytorch model-index: - name: SEG_UNet3D_SKMTEA results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the SKMTEA dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_UNet3D_SKMTEA/blob/main/SEG_UNet3D_SKMTEA.atommic mode: test ``` ### Usage You need to download the SKM-TEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/SEG/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATION3DUNET segmentation_module: UNet segmentation_module_input_channels: 1 segmentation_module_output_channels: 4 segmentation_module_channels: 32 segmentation_module_pooling_layers: 5 segmentation_module_dropout: 0.0 segmentation_module_normalize: false segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: false # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- DICE = 0.9175 +/- 0.06793 F1 = 0.7889 +/- 0.404 HD95 = 5.893 +/- 2.995 IOU = 0.5301 +/- 0.347 ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
wdika/SEG_DynUNet_ISLES2022SubAcuteStroke
wdika
2024-03-06T10:41:26Z
0
0
atommic
[ "atommic", "image-segmentation", "DynUNet", "ATOMMIC", "pytorch", "en", "dataset:ISLES2022SubAcuteStroke", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T17:58:24Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - ISLES2022SubAcuteStroke thumbnail: null tags: - image-segmentation - DynUNet - ATOMMIC - pytorch model-index: - name: SEG_DynUNet_ISLES2022SubAcuteStroke results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the ISLES2022SubAcuteStroke dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/ISLES2022SubAcuteStroke/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_DynUNet_ISLES2022SubAcuteStroke/blob/main/SEG_DynUNet_ISLES2022SubAcuteStroke.atommic mode: test ``` ### Usage You need to download the ISLES 2022 Sub Acute Stroke dataset to effectively use this model. Check the [ISLES2022SubAcuteStroke](https://github.com/wdika/atommic/blob/main/projects/SEG/ISLES2022SubAcuteStroke/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONDYNUNET segmentation_module: DYNUNet segmentation_module_input_channels: 3 segmentation_module_output_channels: 1 segmentation_module_channels: - 32 - 64 - 128 - 256 - 512 segmentation_module_kernel_size: - 3 - 3 - 3 - 3 - 1 segmentation_module_strides: - 1 - 1 - 1 - 1 - 1 segmentation_module_dropout: 0.0 segmentation_module_norm: instance segmentation_module_activation: leakyrelu segmentation_module_deep_supervision: true segmentation_module_deep_supervision_levels: 2 segmentation_module_normalize: false segmentation_module_norm_groups: 2 segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [ 0.5 ] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: true # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 50 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- ALD = 0.7519 +/- 2.23 AVD = 0.5855 +/- 3.874 DICE = 0.7289 +/- 0.529 L-F1 = 0.802 +/- 0.5636 ## Limitations This model was trained on the ISLES2022SubAcuteStroke dataset with stacked ADC, DWI, FLAIR images and might differ in performance compared to the leaderboard results. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Petzsche MRH, Rosa E de la, Hanning U, et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Scientific Data 1 2022;9
wdika/SEG_UNet3D_ISLES2022SubAcuteStroke
wdika
2024-03-06T10:41:13Z
0
0
atommic
[ "atommic", "image-segmentation", "UNet3D", "ATOMMIC", "pytorch", "en", "dataset:ISLES2022SubAcuteStroke", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T17:59:04Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - ISLES2022SubAcuteStroke thumbnail: null tags: - image-segmentation - UNet3D - ATOMMIC - pytorch model-index: - name: SEG_UNet3D_ISLES2022SubAcuteStroke results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the ISLES2022SubAcuteStroke dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/ISLES2022SubAcuteStroke/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_UNet3D_ISLES2022SubAcuteStroke/blob/main/SEG_UNet3D_ISLES2022SubAcuteStroke.atommic mode: test ``` ### Usage You need to download the ISLES 2022 Sub Acute Stroke dataset to effectively use this model. Check the [ISLES2022SubAcuteStroke](https://github.com/wdika/atommic/blob/main/projects/SEG/ISLES2022SubAcuteStroke/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATION3DUNET segmentation_module: UNet segmentation_module_input_channels: 3 segmentation_module_output_channels: 1 segmentation_module_channels: 32 segmentation_module_pooling_layers: 5 segmentation_module_dropout: 0.0 segmentation_module_normalize: false segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [ 0.5 ] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: true # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adamw lr: 1e-4 betas: - 0.9 - 0.999 weight_decay: 0.0 sched: name: CosineAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 50 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- ALD = 0.8206 +/- 2.167 AVD = 0.691 +/- 5.458 DICE = 0.6871 +/- 0.5468 L-F1 = 0.7982 +/- 0.5733 ## Limitations This model was trained on the ISLES2022SubAcuteStroke dataset with stacked ADC, DWI, FLAIR images and might differ in performance compared to the leaderboard results. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Petzsche MRH, Rosa E de la, Hanning U, et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Scientific Data 1 2022;9
wdika/SEG_AttentionUNet_SKMTEA
wdika
2024-03-06T10:41:00Z
0
0
atommic
[ "atommic", "image-segmentation", "AttentionUNet", "ATOMMIC", "pytorch", "en", "dataset:SKMTEA", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T18:00:00Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - image-segmentation - AttentionUNet - ATOMMIC - pytorch model-index: - name: SEG_AttentionUNet_SKMTEA results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the SKMTEA dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_AttentionUNet_SKMTEA/blob/main/SEG_AttentionUNet_SKMTEA.atommic mode: test ``` ### Usage You need to download the SKM-TEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/SEG/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONATTENTIONUNET segmentation_module: AttentionUNet segmentation_module_input_channels: 1 segmentation_module_output_channels: 4 segmentation_module_channels: 32 segmentation_module_pooling_layers: 5 segmentation_module_dropout: 0.0 segmentation_module_normalize: false segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: false # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- DICE = 0.909 +/- 0.08848 F1 = 0.6371 +/- 0.4746 HD95 = 6.358 +/- 2.209 IOU = 0.5294 +/- 0.3607 ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
wdika/SEG_UNet_SKMTEA
wdika
2024-03-06T10:40:44Z
0
0
atommic
[ "atommic", "image-segmentation", "UNet", "ATOMMIC", "pytorch", "en", "dataset:SKMTEA", "license:apache-2.0", "region:us" ]
image-segmentation
2024-03-05T18:00:43Z
--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - image-segmentation - UNet - ATOMMIC - pytorch model-index: - name: SEG_UNet_SKMTEA results: [] --- ## Model Overview AttentionUNet for MRI Segmentation on the SKMTEA dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/SEG/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/SEG_UNet_SKMTEA/blob/main/SEG_UNet_SKMTEA.atommic mode: test ``` ### Usage You need to download the SKM-TEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/SEG/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: SEGMENTATIONUNET segmentation_module: UNet segmentation_module_input_channels: 1 segmentation_module_output_channels: 4 segmentation_module_channels: 32 segmentation_module_pooling_layers: 5 segmentation_module_dropout: 0.0 segmentation_module_normalize: false segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid magnitude_input: true log_multiple_modalities: false # log all modalities in the same image, e.g. T1, T2, T1ce, FLAIR will be concatenated normalization_type: minmax normalize_segmentation_output: true complex_data: false ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp_find_unused_parameters_false accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 20 precision: 16-mixed # '16-mixed', 'bf16-mixed', '32-true', '64-true', '64', '32', '16', 'bf16' enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance Evaluation can be performed using the segmentation [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) script for the segmentation task, with --evaluation_type per_slice. Results ------- Evaluation ---------- DICE = 0.9123 +/- 0.05847 F1 = 0.6509 +/- 0.4487 HD95 = 6.618 +/- 1.793 IOU = 0.5158 +/- 0.3499 ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022
YMKiii/output2
YMKiii
2024-03-06T10:40:11Z
23
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "stable-diffusion", "stable-diffusion-diffusers", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-06T10:24:10Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - dreambooth - stable-diffusion - stable-diffusion-diffusers base_model: runwayml/stable-diffusion-v1-5 inference: true instance_prompt: interior design --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - YMKiii/output2 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on interior design using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
velocity-engg/model2
velocity-engg
2024-03-06T10:29:35Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-2-7b-bnb-4bit", "base_model:finetune:unsloth/llama-2-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-03-06T10:29:22Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-2-7b-bnb-4bit --- # Uploaded model - **Developed by:** velocity-engg - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MoMonir/deepseek-coder-6.7b-chat-and-function-calling-GGUF
MoMonir
2024-03-06T10:28:00Z
16
2
null
[ "gguf", "text-generation", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-03-03T11:13:10Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation --- Orignal Model: <a href="https://huggingface.co/AIGym/deepseek-coder-6.7b-chat-and-function-calling">AIGym/deepseek-coder-6.7b-chat-and-function-calling</a> Note: This is an Experiment and not Tested
NandhiniMohan/dream-island
NandhiniMohan
2024-03-06T10:24:15Z
0
0
null
[ "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-03-06T10:23:17Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Dream-island Dreambooth model trained by NandhiniMohan following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 22PGM012 Sample pictures of this concept: ![0](https://huggingface.co/NandhiniMohan/dream-island/resolve/main/sample_images/island_with_blue_water_surrounded.jpg)
AlignmentResearch/robust_llm_pythia-imdb-1b-mz-test-1gpu
AlignmentResearch
2024-03-06T10:24:14Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-1b-deduped", "base_model:finetune:EleutherAI/pythia-1b-deduped", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T10:17:46Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: EleutherAI/pythia-1b-deduped model-index: - name: robust_llm_pythia-imdb-1b-mz-test-1gpu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-imdb-1b-mz-test-1gpu This model is a fine-tuned version of [EleutherAI/pythia-1b-deduped](https://huggingface.co/EleutherAI/pythia-1b-deduped) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
Anbra/ppo-LunarLander-v2
Anbra
2024-03-06T10:23:02Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-06T10:22:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -177.99 +/- 108.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MoMonir/NeuralBeagle14-7B-GGUF
MoMonir
2024-03-06T10:21:29Z
7
0
null
[ "gguf", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-26T16:09:55Z
--- license: cc-by-nc-4.0 --- Quantize Test Repo<BR> Orignal Model: <a href="https://huggingface.co/mlabonne/NeuralBeagle14-7B">mlabonne/NeuralBeagle14-7B</a> Note: This is an Experiment and not Tested
grayhacker91/gemma-7b-open-platypus-commercial
grayhacker91
2024-03-06T10:20:26Z
9
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "ko", "dataset:kyujinpy/Open-platypus-Commercial", "base_model:google/gemma-7b", "base_model:finetune:google/gemma-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T09:30:32Z
--- language: - ko datasets: - kyujinpy/Open-platypus-Commercial base_model: google/gemma-7b library_name: transformers pipeline_tag: text-generation license: other license_name: gemma-terms-of-use license_link: LICENSE --- # **gemma-7b-open-platypus-commercial** ## Model Details **Base Model** - google/gemma-7b (https://huggingface.co/google/gemma-7b) **Training Dataset** - kyujinpy/Open-platypus-Commercial (https://huggingface.co/datasets/kyujinpy/Open-platypus-Commercial) # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "grayhacker91/gemma-7b-open-platypus-commercial" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---
Mayank1999/bert-finetuned-ner
Mayank1999
2024-03-06T10:13:57Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-03-06T10:03:51Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Leelakrish/my-pet-lion-xzg
Leelakrish
2024-03-06T10:12:19Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-03-06T10:10:10Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Lion-XZG Dreambooth model trained by Leelakrish following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 21BRS1638 Sample pictures of this concept: ![0](https://huggingface.co/Leelakrish/my-pet-lion-xzg/resolve/main/sample_images/89776_A_giant_lion_roaring_and_the_knight_is_preparing_t_xl-1024-v1-0.png)
Hemg/Brain-Tumor-Classification
Hemg
2024-03-06T10:11:06Z
38
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-03-06T05:51:46Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: Brain-Tumor-Classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Brain-Tumor-Classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0872 - Accuracy: 0.9758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2074 | 1.0 | 44 | 0.8060 | 0.8128 | | 0.4897 | 2.0 | 88 | 0.3008 | 0.9274 | | 0.2462 | 3.0 | 132 | 0.2464 | 0.9331 | | 0.1937 | 4.0 | 176 | 0.1918 | 0.9502 | | 0.1523 | 5.0 | 220 | 0.1699 | 0.9502 | | 0.1371 | 6.0 | 264 | 0.1372 | 0.9644 | | 0.1104 | 7.0 | 308 | 0.1121 | 0.9708 | | 0.1097 | 8.0 | 352 | 0.1220 | 0.9651 | | 0.1015 | 9.0 | 396 | 0.1053 | 0.9737 | | 0.0841 | 10.0 | 440 | 0.1142 | 0.9708 | | 0.0839 | 11.0 | 484 | 0.1073 | 0.9708 | | 0.0771 | 12.0 | 528 | 0.1156 | 0.9665 | | 0.074 | 13.0 | 572 | 0.1203 | 0.9644 | | 0.0652 | 14.0 | 616 | 0.0706 | 0.9858 | | 0.0694 | 15.0 | 660 | 0.0984 | 0.9744 | | 0.0596 | 16.0 | 704 | 0.0872 | 0.9758 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
slukas99/tex_inv_af_dress
slukas99
2024-03-06T10:07:28Z
10
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-06T08:47:39Z
--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true base_model: runwayml/stable-diffusion-v1-5 --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - slukas99/tex_inv_af_dress These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
hellie/newsroommodel
hellie
2024-03-06T10:02:52Z
5
0
transformers
[ "transformers", "safetensors", "pegasus", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-03-06T10:01:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gohzy/singlish-toxic-bert-LoRA-159000-1
gohzy
2024-03-06T09:59:31Z
4
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T09:58:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Gille/StrangeMerges_31-7B-slerp
Gille
2024-03-06T09:46:02Z
48
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_30-7B-slerp", "yam-peleg/Experiment24-7B", "base_model:Gille/StrangeMerges_30-7B-slerp", "base_model:merge:Gille/StrangeMerges_30-7B-slerp", "base_model:yam-peleg/Experiment24-7B", "base_model:merge:yam-peleg/Experiment24-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T09:39:22Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_30-7B-slerp - yam-peleg/Experiment24-7B base_model: - Gille/StrangeMerges_30-7B-slerp - yam-peleg/Experiment24-7B --- # StrangeMerges_31-7B-slerp StrangeMerges_31-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_30-7B-slerp](https://huggingface.co/Gille/StrangeMerges_30-7B-slerp) * [yam-peleg/Experiment24-7B](https://huggingface.co/yam-peleg/Experiment24-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: Gille/StrangeMerges_30-7B-slerp layer_range: [0, 32] - model: yam-peleg/Experiment24-7B layer_range: [0, 32] merge_method: slerp base_model: yam-peleg/Experiment24-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 0.5, 0.5, 0] - filter: mlp value: [0, 0.5, 0.7, 0.3, 0.5, 0.5, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_31-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
hiiamsid/mistral_yt_transcribe_classification_opt_train
hiiamsid
2024-03-06T09:44:38Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T17:49:44Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - generated_from_trainer model-index: - name: mistral_yt_transcribe_classification_opt_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_yt_transcribe_classification_opt_train This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0393 | 1.0 | 640 | 0.0381 | | 0.0334 | 2.0 | 1281 | 0.0340 | | 0.0226 | 3.0 | 1921 | 0.0343 | | 0.0275 | 4.0 | 2560 | 0.0335 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2
jelldps/malaysian-mistral-7b-32k-instructions-v4-gguf
jelldps
2024-03-06T09:41:56Z
6
3
transformers
[ "transformers", "gguf", "mistral", "text-generation", "conversational", "ms", "base_model:mesolitica/malaysian-mistral-7b-32k-instructions-v3.5", "base_model:quantized:mesolitica/malaysian-mistral-7b-32k-instructions-v3.5", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-27T10:32:08Z
--- base_model: mesolitica/malaysian-mistral-7b-32k-instructions-v3.5 language: - ms --- # malaysian-mistral-7b-32k-instructions-v4 - GGUF - Model creator: [Mesolitica](https://huggingface.co/mesolitica) - Original model: [malaysian-mistral-7b-32k-instructions-v4](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions-v4)
aparna-01/my-pet-cat-sdf
aparna-01
2024-03-06T09:32:54Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-03-06T09:28:45Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-SDF Dreambooth model trained by aparna-01 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 23/CSE/111 Sample pictures of this concept: ![0](https://huggingface.co/aparna-01/my-pet-cat-sdf/resolve/main/sample_images/IMG-20240306-WA0004.jpg)
AlignmentResearch/robust_llm_z5ph5m7h_from_EleutherAI_pythia-14m
AlignmentResearch
2024-03-06T09:24:30Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-14m", "base_model:finetune:EleutherAI/pythia-14m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T09:24:23Z
--- tags: - generated_from_trainer base_model: EleutherAI/pythia-14m model-index: - name: robust_llm_z5ph5m7h_from_EleutherAI_pythia-14m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_z5ph5m7h_from_EleutherAI_pythia-14m This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
s14pe/ppo-LunarLander-v2
s14pe
2024-03-06T09:23:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-05T14:14:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.00 +/- 15.83 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AlignmentResearch/robust_llm_m857mz1i_from_EleutherAI_pythia-14m
AlignmentResearch
2024-03-06T09:23:12Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-14m", "base_model:finetune:EleutherAI/pythia-14m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T09:23:05Z
--- tags: - generated_from_trainer base_model: EleutherAI/pythia-14m model-index: - name: robust_llm_m857mz1i_from_EleutherAI_pythia-14m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_m857mz1i_from_EleutherAI_pythia-14m This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 2 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.17.0 - Tokenizers 0.15.2
mesolitica/reranker-malaysian-mistral-474M-32k
mesolitica
2024-03-06T09:19:24Z
13
0
transformers
[ "transformers", "safetensors", "mistral", "text-classification", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T06:13:37Z
--- language: - ms --- # 474M 32768 context length Malaysian Mistral on Malaysian text reranker task Trained on truncated 32k context length. README at https://github.com/mesolitica/llm-embedding/tree/main/reranker WandB, https://wandb.ai/kamarul-adha360/reranker-malaysian-mistral-474M-16384?nw=nwuserkamaruladha360
Yizhang888/corgy_mouse_LoRA
Yizhang888
2024-03-06T09:12:46Z
1
2
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-17T10:10:22Z
--- license: openrail++ library_name: diffusers tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora - text-to-image - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK computer mouse --- # SDXL LoRA DreamBooth - Yizhang888/corgy_mouse_LoRA_5pictures <Gallery /> ## Model description These are Yizhang888/corgy_mouse_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK computer mouse to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Yizhang888/corgy_mouse_LoRA/tree/main) them in the Files & versions tab.
DhairyaSarin/promotional-text-analyser-v2
DhairyaSarin
2024-03-06T09:11:17Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "region:us" ]
null
2024-03-06T09:10:46Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.9.0
alibaba-pai/pai-bloom-1b1-text2prompt-sd
alibaba-pai
2024-03-06T09:07:42Z
124
35
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-08T08:55:33Z
--- license: apache-2.0 widget: - text: "Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: 1 girl\nOutput:" tags: - pytorch - transformers - text-generation --- # BeautifulPrompt ## 简介 Brief Introduction 我们开源了一个自动Prompt生成模型,您可以直接输入一个极其简单的Prompt,就可以得到经过语言模型优化过的Prompt,帮助您更简单地生成高颜值图像。 We release an automatic Prompt generation model, you can directly enter an extremely simple Prompt and get a Prompt optimized by the language model to help you generate more beautiful images simply. * Github: [EasyNLP](https://github.com/alibaba/EasyNLP) ## 使用 Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd') model = AutoModelForCausalLM.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd').eval().cuda() raw_prompt = '1 girl' input = f'Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: {raw_prompt}\nOutput:' input_ids = tokenizer.encode(input, return_tensors='pt').cuda() outputs = model.generate( input_ids, max_length=384, do_sample=True, temperature=1.0, top_k=50, top_p=0.95, repetition_penalty=1.2, num_return_sequences=5) prompts = tokenizer.batch_decode(outputs[:, input_ids.size(1):], skip_special_tokens=True) prompts = [p.strip() for p in prompts] print(prompts) ``` ## 作品展示 Gallery <style> table th:first-of-type { width: 50%; } table th:nth-of-type(2) { width: 50%; } </style> | Original | BeautifulPrompt | | ---------------------------------------- | ---------------------------------- | | prompt: taylor swift, country, golden, fearless,wavehair | prompt: portrait of taylor swift as a beautiful woman, long hair, country, golden ratio, intricate, symmetrical, cinematic lighting, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration | | ![](example1.png) | ![](example2.png) | | Original | BeautifulPrompt | | ---------------------------------------- | ---------------------------------- | | prompt: A majestic sailing ship | prompt: a massive sailing ship, epic, cinematic, artstation, greg rutkowski, james gurney, sparth | | ![](example3.png) | ![](example4.png) | ## 使用须知 Notice for Use 使用上述模型需遵守[AIGC模型开源特别条款](https://terms.alicdn.com/legal-agreement/terms/common_platform_service/20230505180457947/20230505180457947.html)。 If you want to use this model, please read this [document](https://terms.alicdn.com/legal-agreement/terms/common_platform_service/20230505180457947/20230505180457947.html) carefully and abide by the terms. ## Paper Citation If you find the model useful, please consider cite the paper: ``` @inproceedings{emnlp2023a, author = {Tingfeng Cao and Chengyu Wang and Bingyan Liu and Ziheng Wu and Jinhui Zhu and Jun Huang}, title = {BeautifulPrompt: Towards Automatic Prompt Engineering for Text-to-Image Synthesis}, booktitle = {Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track}, pages = {1--11}, year = {2023} } ```
zxhezexin/openlrm-mix-large-1.1
zxhezexin
2024-03-06T08:57:33Z
45
6
transformers
[ "transformers", "pytorch", "safetensors", "image-to-3d", "dataset:allenai/objaverse", "arxiv:2311.04400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
image-to-3d
2024-03-04T06:57:53Z
--- license: cc-by-nc-4.0 datasets: - allenai/objaverse pipeline_tag: image-to-3d --- # Model Card for OpenLRM V1.1 ## Overview - This model card is for the [OpenLRM](https://github.com/3DTopia/OpenLRM) project, which is an open-source implementation of the paper [LRM](https://arxiv.org/abs/2311.04400). - Information contained in this model card corresponds to [Version 1.1](https://github.com/3DTopia/OpenLRM/releases). ## Model Details - Training data | Model | Training Data | | :---: | :---: | | [openlrm-obj-small-1.1](https://huggingface.co/zxhezexin/openlrm-obj-small-1.1) | Objaverse | | [openlrm-obj-base-1.1](https://huggingface.co/zxhezexin/openlrm-obj-base-1.1) | Objaverse | | [openlrm-obj-large-1.1](https://huggingface.co/zxhezexin/openlrm-obj-large-1.1) | Objaverse | | [openlrm-mix-small-1.1](https://huggingface.co/zxhezexin/openlrm-mix-small-1.1) | Objaverse + MVImgNet | | [openlrm-mix-base-1.1](https://huggingface.co/zxhezexin/openlrm-mix-base-1.1) | Objaverse + MVImgNet | | [openlrm-mix-large-1.1](https://huggingface.co/zxhezexin/openlrm-mix-large-1.1) | Objaverse + MVImgNet | - Model architecture (version==1.1) | Type | Layers | Feat. Dim | Attn. Heads | Triplane Dim. | Input Res. | Image Encoder | Size | | :---: | :----: | :-------: | :---------: | :-----------: | :--------: | :---------------: | :---: | | small | 12 | 512 | 8 | 32 | 224 | dinov2_vits14_reg | 446M | | base | 12 | 768 | 12 | 48 | 336 | dinov2_vitb14_reg | 1.04G | | large | 16 | 1024 | 16 | 80 | 448 | dinov2_vitb14_reg | 1.81G | - Training settings | Type | Rend. Res. | Rend. Patch | Ray Samples | | :---: | :--------: | :---------: | :---------: | | small | 192 | 64 | 96 | | base | 288 | 96 | 96 | | large | 384 | 128 | 128 | ## Notable Differences from the Original Paper - We do not use the deferred back-propagation technique in the original paper. - We used random background colors during training. - The image encoder is based on the [DINOv2](https://github.com/facebookresearch/dinov2) model with register tokens. - The triplane decoder contains 4 layers in our implementation. ## License - The model weights are released under the [Creative Commons Attribution-NonCommercial 4.0 International License](LICENSE_WEIGHT). - They are provided for research purposes only, and CANNOT be used commercially. ## Disclaimer This model is an open-source implementation and is NOT the official release of the original research paper. While it aims to reproduce the original results as faithfully as possible, there may be variations due to model implementation, training data, and other factors. ### Ethical Considerations - This model should be used responsibly and ethically, and should not be used for malicious purposes. - Users should be aware of potential biases in the training data. - The model should not be used under the circumstances that could lead to harm or unfair treatment of individuals or groups. ### Usage Considerations - The model is provided "as is" without warranty of any kind. - Users are responsible for ensuring that their use complies with all relevant laws and regulations. - The developers and contributors of this model are not liable for any damages or losses arising from the use of this model. --- *This model card is subject to updates and modifications. Users are advised to check for the latest version regularly.*
zxhezexin/openlrm-obj-base-1.1
zxhezexin
2024-03-06T08:55:57Z
25
2
transformers
[ "transformers", "pytorch", "safetensors", "image-to-3d", "dataset:allenai/objaverse", "arxiv:2311.04400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
image-to-3d
2024-03-04T06:38:17Z
--- license: cc-by-nc-4.0 datasets: - allenai/objaverse pipeline_tag: image-to-3d --- # Model Card for OpenLRM V1.1 ## Overview - This model card is for the [OpenLRM](https://github.com/3DTopia/OpenLRM) project, which is an open-source implementation of the paper [LRM](https://arxiv.org/abs/2311.04400). - Information contained in this model card corresponds to [Version 1.1](https://github.com/3DTopia/OpenLRM/releases). ## Model Details - Training data | Model | Training Data | | :---: | :---: | | [openlrm-obj-small-1.1](https://huggingface.co/zxhezexin/openlrm-obj-small-1.1) | Objaverse | | [openlrm-obj-base-1.1](https://huggingface.co/zxhezexin/openlrm-obj-base-1.1) | Objaverse | | [openlrm-obj-large-1.1](https://huggingface.co/zxhezexin/openlrm-obj-large-1.1) | Objaverse | | [openlrm-mix-small-1.1](https://huggingface.co/zxhezexin/openlrm-mix-small-1.1) | Objaverse + MVImgNet | | [openlrm-mix-base-1.1](https://huggingface.co/zxhezexin/openlrm-mix-base-1.1) | Objaverse + MVImgNet | | [openlrm-mix-large-1.1](https://huggingface.co/zxhezexin/openlrm-mix-large-1.1) | Objaverse + MVImgNet | - Model architecture (version==1.1) | Type | Layers | Feat. Dim | Attn. Heads | Triplane Dim. | Input Res. | Image Encoder | Size | | :---: | :----: | :-------: | :---------: | :-----------: | :--------: | :---------------: | :---: | | small | 12 | 512 | 8 | 32 | 224 | dinov2_vits14_reg | 446M | | base | 12 | 768 | 12 | 48 | 336 | dinov2_vitb14_reg | 1.04G | | large | 16 | 1024 | 16 | 80 | 448 | dinov2_vitb14_reg | 1.81G | - Training settings | Type | Rend. Res. | Rend. Patch | Ray Samples | | :---: | :--------: | :---------: | :---------: | | small | 192 | 64 | 96 | | base | 288 | 96 | 96 | | large | 384 | 128 | 128 | ## Notable Differences from the Original Paper - We do not use the deferred back-propagation technique in the original paper. - We used random background colors during training. - The image encoder is based on the [DINOv2](https://github.com/facebookresearch/dinov2) model with register tokens. - The triplane decoder contains 4 layers in our implementation. ## License - The model weights are released under the [Creative Commons Attribution-NonCommercial 4.0 International License](LICENSE_WEIGHT). - They are provided for research purposes only, and CANNOT be used commercially. ## Disclaimer This model is an open-source implementation and is NOT the official release of the original research paper. While it aims to reproduce the original results as faithfully as possible, there may be variations due to model implementation, training data, and other factors. ### Ethical Considerations - This model should be used responsibly and ethically, and should not be used for malicious purposes. - Users should be aware of potential biases in the training data. - The model should not be used under the circumstances that could lead to harm or unfair treatment of individuals or groups. ### Usage Considerations - The model is provided "as is" without warranty of any kind. - Users are responsible for ensuring that their use complies with all relevant laws and regulations. - The developers and contributors of this model are not liable for any damages or losses arising from the use of this model. --- *This model card is subject to updates and modifications. Users are advised to check for the latest version regularly.*
zxhezexin/openlrm-obj-small-1.1
zxhezexin
2024-03-06T08:54:51Z
50
1
transformers
[ "transformers", "pytorch", "safetensors", "image-to-3d", "dataset:allenai/objaverse", "arxiv:2311.04400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
image-to-3d
2024-03-04T06:35:29Z
--- license: cc-by-nc-4.0 datasets: - allenai/objaverse pipeline_tag: image-to-3d --- # Model Card for OpenLRM V1.1 ## Overview - This model card is for the [OpenLRM](https://github.com/3DTopia/OpenLRM) project, which is an open-source implementation of the paper [LRM](https://arxiv.org/abs/2311.04400). - Information contained in this model card corresponds to [Version 1.1](https://github.com/3DTopia/OpenLRM/releases). ## Model Details - Training data | Model | Training Data | | :---: | :---: | | [openlrm-obj-small-1.1](https://huggingface.co/zxhezexin/openlrm-obj-small-1.1) | Objaverse | | [openlrm-obj-base-1.1](https://huggingface.co/zxhezexin/openlrm-obj-base-1.1) | Objaverse | | [openlrm-obj-large-1.1](https://huggingface.co/zxhezexin/openlrm-obj-large-1.1) | Objaverse | | [openlrm-mix-small-1.1](https://huggingface.co/zxhezexin/openlrm-mix-small-1.1) | Objaverse + MVImgNet | | [openlrm-mix-base-1.1](https://huggingface.co/zxhezexin/openlrm-mix-base-1.1) | Objaverse + MVImgNet | | [openlrm-mix-large-1.1](https://huggingface.co/zxhezexin/openlrm-mix-large-1.1) | Objaverse + MVImgNet | - Model architecture (version==1.1) | Type | Layers | Feat. Dim | Attn. Heads | Triplane Dim. | Input Res. | Image Encoder | Size | | :---: | :----: | :-------: | :---------: | :-----------: | :--------: | :---------------: | :---: | | small | 12 | 512 | 8 | 32 | 224 | dinov2_vits14_reg | 446M | | base | 12 | 768 | 12 | 48 | 336 | dinov2_vitb14_reg | 1.04G | | large | 16 | 1024 | 16 | 80 | 448 | dinov2_vitb14_reg | 1.81G | - Training settings | Type | Rend. Res. | Rend. Patch | Ray Samples | | :---: | :--------: | :---------: | :---------: | | small | 192 | 64 | 96 | | base | 288 | 96 | 96 | | large | 384 | 128 | 128 | ## Notable Differences from the Original Paper - We do not use the deferred back-propagation technique in the original paper. - We used random background colors during training. - The image encoder is based on the [DINOv2](https://github.com/facebookresearch/dinov2) model with register tokens. - The triplane decoder contains 4 layers in our implementation. ## License - The model weights are released under the [Creative Commons Attribution-NonCommercial 4.0 International License](LICENSE_WEIGHT). - They are provided for research purposes only, and CANNOT be used commercially. ## Disclaimer This model is an open-source implementation and is NOT the official release of the original research paper. While it aims to reproduce the original results as faithfully as possible, there may be variations due to model implementation, training data, and other factors. ### Ethical Considerations - This model should be used responsibly and ethically, and should not be used for malicious purposes. - Users should be aware of potential biases in the training data. - The model should not be used under the circumstances that could lead to harm or unfair treatment of individuals or groups. ### Usage Considerations - The model is provided "as is" without warranty of any kind. - Users are responsible for ensuring that their use complies with all relevant laws and regulations. - The developers and contributors of this model are not liable for any damages or losses arising from the use of this model. --- *This model card is subject to updates and modifications. Users are advised to check for the latest version regularly.*
ingeol/q2d
ingeol
2024-03-06T08:52:16Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-03-06T08:50:58Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ingeol/q2d This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ingeol/q2d') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ingeol/q2d') model = AutoModel.from_pretrained('ingeol/q2d') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ingeol/q2d) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7797 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `beir.losses.bpr_loss.BPRLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 7000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
minhah/videomae-base-finetuned-ucf101-subset-finetuned-elder-UFC-prtuned
minhah
2024-03-06T08:43:17Z
4
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:minhah/videomae-base-finetuned-ucf101-subset", "base_model:finetune:minhah/videomae-base-finetuned-ucf101-subset", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2024-03-06T07:10:58Z
--- license: cc-by-nc-4.0 base_model: minhah/videomae-base-finetuned-ucf101-subset tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset-finetuned-elder-UFC-prtuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset-finetuned-elder-UFC-prtuned This model is a fine-tuned version of [minhah/videomae-base-finetuned-ucf101-subset](https://huggingface.co/minhah/videomae-base-finetuned-ucf101-subset) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6593 - Accuracy: 0.3481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 576 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.729 | 0.13 | 73 | 1.6346 | 0.3408 | | 1.683 | 1.13 | 146 | 1.6505 | 0.3029 | | 1.6889 | 2.13 | 219 | 1.6359 | 0.3408 | | 1.6853 | 3.13 | 292 | 1.6739 | 0.2398 | | 1.5793 | 4.13 | 365 | 1.6679 | 0.2588 | | 1.5783 | 5.13 | 438 | 1.6091 | 0.3324 | | 1.5745 | 6.13 | 511 | 1.6306 | 0.3072 | | 1.5704 | 7.11 | 576 | 1.6573 | 0.2707 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
YMKiii/output
YMKiii
2024-03-06T08:40:26Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "stable-diffusion", "stable-diffusion-diffusers", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-28T07:39:24Z
--- license: creativeml-openrail-m library_name: diffusers tags: - text-to-image - dreambooth - stable-diffusion - stable-diffusion-diffusers - text-to-image - dreambooth - stable-diffusion - stable-diffusion-diffusers base_model: CompVis/stable-diffusion-v1-4 inference: true instance_prompt: Interior design --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - YMKiii/output This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on Interior design using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
AnonymousSub/FPDM_bertlarge_model
AnonymousSub
2024-03-06T08:32:26Z
4
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-03-06T08:30:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RaduGabriel/SirUkrainian
RaduGabriel
2024-03-06T08:29:21Z
54
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "RaduGabriel/MUZD", "RaduGabriel/Mistral-Instruct-Ukrainian-SFT", "Radu1999/MisterUkrainianDPO", "CultriX/NeuralTrix-7B-dpo", "base_model:CultriX/NeuralTrix-7B-dpo", "base_model:merge:CultriX/NeuralTrix-7B-dpo", "base_model:Radu1999/MisterUkrainianDPO", "base_model:merge:Radu1999/MisterUkrainianDPO", "base_model:RaduGabriel/MUZD", "base_model:merge:RaduGabriel/MUZD", "base_model:RaduGabriel/Mistral-Instruct-Ukrainian-SFT", "base_model:merge:RaduGabriel/Mistral-Instruct-Ukrainian-SFT", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-15T15:37:44Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - RaduGabriel/MUZD - RaduGabriel/Mistral-Instruct-Ukrainian-SFT - Radu1999/MisterUkrainianDPO - CultriX/NeuralTrix-7B-dpo base_model: - RaduGabriel/MUZD - RaduGabriel/Mistral-Instruct-Ukrainian-SFT - Radu1999/MisterUkrainianDPO - CultriX/NeuralTrix-7B-dpo model-index: - name: SirUkrainian results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.32 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RaduGabriel/SirUkrainian name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.54 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RaduGabriel/SirUkrainian name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RaduGabriel/SirUkrainian name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 68.74 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RaduGabriel/SirUkrainian name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RaduGabriel/SirUkrainian name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 56.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=RaduGabriel/SirUkrainian name: Open LLM Leaderboard --- # NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [RaduGabriel/MUZD](https://huggingface.co/RaduGabriel/MUZD) * [RaduGabriel/Mistral-Instruct-Ukrainian-SFT](https://huggingface.co/RaduGabriel/Mistral-Instruct-Ukrainian-SFT) * [Radu1999/MisterUkrainianDPO](https://huggingface.co/Radu1999/MisterUkrainianDPO) * [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) ## 🧩 Configuration ```yaml models: - model: RaduGabriel/MUZD parameters: weight: 0.3 - model: RaduGabriel/Mistral-Instruct-Ukrainian-SFT parameters: weight: 0.3 - model: Radu1999/MisterUkrainianDPO parameters: weight: 0.1 - model: CultriX/NeuralTrix-7B-dpo parameters: weight: 0.3 merge_method: task_arithmetic base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "RaduGabriel/SirUkrainian" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.bfloat16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_RaduGabriel__SirUkrainian) | Metric |Value| |---------------------------------|----:| |Avg. |70.50| |AI2 Reasoning Challenge (25-Shot)|67.32| |HellaSwag (10-Shot) |85.54| |MMLU (5-Shot) |63.14| |TruthfulQA (0-shot) |68.74| |Winogrande (5-shot) |81.53| |GSM8k (5-shot) |56.71|
amazingvince/bitllama-goodwiki
amazingvince
2024-03-06T08:26:31Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "dataset:BEE-spoke-data/goodwiki-deduped-split", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-05T01:57:01Z
--- tags: - generated_from_trainer datasets: - BEE-spoke-data/goodwiki-deduped-split metrics: - accuracy model-index: - name: bitllama-goodwiki results: - task: name: Causal Language Modeling type: text-generation dataset: name: BEE-spoke-data/goodwiki-deduped-split type: BEE-spoke-data/goodwiki-deduped-split metrics: - name: Accuracy type: accuracy value: 0.4285134482793542 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bitllama-goodwiki This model was trained from scratch on the BEE-spoke-data/goodwiki-deduped-split dataset. It achieves the following results on the evaluation set: - Loss: 3.0525 - Accuracy: 0.4285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 6.1199 | 0.04 | 100 | 6.0749 | 0.1542 | | 5.3869 | 0.07 | 200 | 5.3267 | 0.2032 | | 4.9187 | 0.11 | 300 | 4.8566 | 0.2386 | | 4.6185 | 0.14 | 400 | 4.5535 | 0.2624 | | 4.3509 | 0.18 | 500 | 4.3388 | 0.2801 | | 4.1666 | 0.21 | 600 | 4.1692 | 0.2956 | | 4.0456 | 0.25 | 700 | 4.0399 | 0.3089 | | 3.9273 | 0.28 | 800 | 3.9318 | 0.3193 | | 3.8447 | 0.32 | 900 | 3.8173 | 0.3327 | | 3.7143 | 0.35 | 1000 | 3.7108 | 0.3461 | | 3.6485 | 0.39 | 1100 | 3.6116 | 0.3590 | | 3.5171 | 0.42 | 1200 | 3.5303 | 0.3693 | | 3.4464 | 0.46 | 1300 | 3.4554 | 0.3780 | | 3.3955 | 0.49 | 1400 | 3.3999 | 0.3851 | | 3.3551 | 0.53 | 1500 | 3.3432 | 0.3919 | | 3.2787 | 0.56 | 1600 | 3.2981 | 0.3974 | | 3.2705 | 0.6 | 1700 | 3.2566 | 0.4023 | | 3.2281 | 0.64 | 1800 | 3.2172 | 0.4075 | | 3.1759 | 0.67 | 1900 | 3.1826 | 0.4118 | | 3.1603 | 0.71 | 2000 | 3.1547 | 0.4152 | | 3.1328 | 0.74 | 2100 | 3.1283 | 0.4186 | | 3.0916 | 0.78 | 2200 | 3.1055 | 0.4215 | | 3.0939 | 0.81 | 2300 | 3.0875 | 0.4238 | | 3.0584 | 0.85 | 2400 | 3.0732 | 0.4257 | | 3.0711 | 0.88 | 2500 | 3.0631 | 0.4271 | | 3.0612 | 0.92 | 2600 | 3.0565 | 0.4280 | | 3.081 | 0.95 | 2700 | 3.0534 | 0.4284 | | 3.0378 | 0.99 | 2800 | 3.0525 | 0.4285 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
aditya11997/test_prior
aditya11997
2024-03-06T08:22:33Z
3
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "kandinsky", "text-to-image", "diffusers-training", "dataset:kbharat7/DogChestXrayDatasetNew", "base_model:kandinsky-community/kandinsky-2-2-prior", "base_model:finetune:kandinsky-community/kandinsky-2-2-prior", "license:creativeml-openrail-m", "diffusers:KandinskyV22PriorPipeline", "region:us" ]
text-to-image
2024-03-06T07:52:38Z
--- license: creativeml-openrail-m base_model: kandinsky-community/kandinsky-2-2-prior datasets: - kbharat7/DogChestXrayDatasetNew tags: - kandinsky - text-to-image - diffusers - diffusers-training inference: true --- # Finetuning - aditya11997/test_prior This pipeline was finetuned from **kandinsky-community/kandinsky-2-2-prior** on the **kbharat7/DogChestXrayDatasetNew** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['dogxraysmall']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained("aditya11997/test_prior", torch_dtype=torch.float16) pipe_t2i = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) prompt = "dogxraysmall" image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple() image = pipe_t2i(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 1 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 768 * Mixed-precision: None More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/aditya11997/text2image-fine-tune/runs/9j7m0fr8).
SenswiseData/berturk_cased_profanity
SenswiseData
2024-03-06T08:22:01Z
4
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T08:21:29Z
--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1353 - Accuracy: 0.9635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 338 | 0.1606 | 0.9502 | | 0.3717 | 2.0 | 676 | 0.1353 | 0.9635 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
VRSneha/kamal_camembert_dummy
VRSneha
2024-03-06T08:13:06Z
4
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-03-06T08:12:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
superlazycoder/NeuralPipe-7B-slerp
superlazycoder
2024-03-06T08:04:08Z
56
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:merge:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T22:24:06Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B base_model: - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B model-index: - name: NeuralPipe-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=superlazycoder/NeuralPipe-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.17 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=superlazycoder/NeuralPipe-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=superlazycoder/NeuralPipe-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 59.84 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=superlazycoder/NeuralPipe-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=superlazycoder/NeuralPipe-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=superlazycoder/NeuralPipe-7B-slerp name: Open LLM Leaderboard --- # NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "superlazycoder/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_superlazycoder__NeuralPipe-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |71.01| |AI2 Reasoning Challenge (25-Shot)|67.58| |HellaSwag (10-Shot) |86.17| |MMLU (5-Shot) |64.06| |TruthfulQA (0-shot) |59.84| |Winogrande (5-shot) |80.19| |GSM8k (5-shot) |68.23|
Dangurangu/my-awesome-setfit-model
Dangurangu
2024-03-06T07:54:55Z
6
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "dataset:SetFit/SentEval-CR", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2024-03-06T07:54:02Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - SetFit/SentEval-CR metrics: - accuracy widget: - text: you can take pic of your friends and the picture will pop up when they call . - text: the speakerphone , the radio , all features work perfectly . - text: 'a ) the picture quality ( color and sharpness of focusing ) are so great , it completely eliminated my doubt about digital imaging -- - how could one eat rice one grain at a time : - ) )' - text: so far the dvd works so i hope it does n 't break down like the reviews i 've read . - text: i have a couple hundred contacts and the menu loads within a few seconds , no big deal . pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: SetFit/SentEval-CR type: SetFit/SentEval-CR split: test metrics: - type: accuracy value: 0.8804780876494024 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SetFit/SentEval-CR](https://huggingface.co/datasets/SetFit/SentEval-CR) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [SetFit/SentEval-CR](https://huggingface.co/datasets/SetFit/SentEval-CR) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | <ul><li>'* slick-looking design and improved interface'</li><li>'as for bluetooth , no problems at all .'</li><li>'2 ) storage capacity'</li></ul> | | 0 | <ul><li>"the day finally arrived when i was sure i 'd leave sprint ."</li><li>"neither message was answered ( they ask for 24 hours before replying - i 've been waiting 27 days . )"</li><li>'only problem is that is a bit heavy .'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8805 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("dangurangu/my-awesome-setfit-model") # Run inference preds = model("the speakerphone , the radio , all features work perfectly .") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 18.0625 | 44 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 7 | | 1 | 9 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.025 | 1 | 0.2205 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
advaitadasein/blip2_test
advaitadasein
2024-03-06T07:53:29Z
27
0
transformers
[ "transformers", "pytorch", "blip-2", "visual-question-answering", "vision", "image-to-text", "image-captioning", "en", "arxiv:2301.12597", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-09-15T12:42:27Z
--- language: en license: mit tags: - vision - image-to-text - image-captioning - visual-question-answering pipeline_tag: image-to-text duplicated_from: Salesforce/blip2-opt-2.7b --- # BLIP-2, OPT-2.7b, pre-trained only BLIP-2 model, leveraging [OPT-2.7b](https://huggingface.co/facebook/opt-2.7b) (a large language model with 2.7 billion parameters). It was introduced in the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Li et al. and first released in [this repository](https://github.com/salesforce/LAVIS/tree/main/projects/blip2). Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model. The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings, which bridge the gap between the embedding space of the image encoder and the large language model. The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/blip2_architecture.jpg" alt="drawing" width="600"/> This allows the model to be used for tasks like: - image captioning - visual question answering (VQA) - chat-like conversations by feeding the image and the previous conversation as prompt to the model ## Direct Use and Downstream Use You can use the raw model for conditional text generation given an image and optional text. See the [model hub](https://huggingface.co/models?search=Salesforce/blip) to look for fine-tuned versions on a task that interests you. ## Bias, Risks, Limitations, and Ethical Considerations BLIP2-OPT uses off-the-shelf OPT as the language model. It inherits the same risks and limitations as mentioned in Meta's model card. > Like other large language models for which the diversity (or lack thereof) of training > data induces downstream impact on the quality of our model, OPT-175B has limitations in terms > of bias and safety. OPT-175B can also have quality issues in terms of generation diversity and > hallucination. In general, OPT-175B is not immune from the plethora of issues that plague modern > large language models. > BLIP2 is fine-tuned on image-text datasets (e.g. [LAION](https://laion.ai/blog/laion-400-open-dataset/) ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data. BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example). #### Running the model on CPU <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True).strip()) ``` </details> #### Running the model on GPU ##### In full precision <details> <summary> Click to expand </summary> ```python # pip install accelerate import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True).strip()) ``` </details> ##### In half precision (`float16`) <details> <summary> Click to expand </summary> ```python # pip install accelerate import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True).strip()) ``` </details> ##### In 8-bit precision (`int8`) <details> <summary> Click to expand </summary> ```python # pip install accelerate bitsandbytes import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True).strip()) ``` </details>
alinerodrigues/wav2vec2-xlsr-1b-mecita-portuguese-all-clean-10
alinerodrigues
2024-03-06T07:49:28Z
1
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-03-06T04:33:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-1b-mecita-portuguese-all-clean-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-1b-mecita-portuguese-all-clean-10 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1514 - Wer: 0.0869 - Cer: 0.0287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 22.1247 | 1.0 | 67 | 2.8766 | 1.0 | 1.0 | | 4.814 | 2.0 | 134 | 0.3766 | 0.2506 | 0.0658 | | 0.8372 | 3.0 | 201 | 0.2164 | 0.1177 | 0.0368 | | 0.8372 | 4.0 | 268 | 0.1876 | 0.1106 | 0.0331 | | 0.294 | 5.0 | 335 | 0.1951 | 0.1011 | 0.0325 | | 0.2405 | 6.0 | 402 | 0.1718 | 0.0957 | 0.0300 | | 0.2405 | 7.0 | 469 | 0.1647 | 0.0947 | 0.0296 | | 0.1998 | 8.0 | 536 | 0.1709 | 0.0950 | 0.0305 | | 0.1946 | 9.0 | 603 | 0.1730 | 0.0906 | 0.0299 | | 0.1946 | 10.0 | 670 | 0.1695 | 0.0876 | 0.0289 | | 0.1938 | 11.0 | 737 | 0.1649 | 0.0852 | 0.0282 | | 0.1667 | 12.0 | 804 | 0.1644 | 0.0869 | 0.0280 | | 0.1667 | 13.0 | 871 | 0.1534 | 0.0842 | 0.0275 | | 0.163 | 14.0 | 938 | 0.1514 | 0.0869 | 0.0287 | | 0.1568 | 15.0 | 1005 | 0.1583 | 0.0873 | 0.0287 | | 0.1568 | 16.0 | 1072 | 0.1655 | 0.0856 | 0.0283 | | 0.1465 | 17.0 | 1139 | 0.1691 | 0.0859 | 0.0272 | | 0.138 | 18.0 | 1206 | 0.1777 | 0.0906 | 0.0290 | | 0.138 | 19.0 | 1273 | 0.1652 | 0.0859 | 0.0280 | | 0.1251 | 20.0 | 1340 | 0.1715 | 0.0856 | 0.0275 | | 0.136 | 21.0 | 1407 | 0.1614 | 0.0832 | 0.0267 | | 0.136 | 22.0 | 1474 | 0.1579 | 0.0805 | 0.0262 | | 0.1179 | 23.0 | 1541 | 0.1777 | 0.0842 | 0.0277 | | 0.1029 | 24.0 | 1608 | 0.1761 | 0.0825 | 0.0274 | | 0.1029 | 25.0 | 1675 | 0.1665 | 0.0839 | 0.0275 | | 0.1139 | 26.0 | 1742 | 0.1821 | 0.0801 | 0.0279 | | 0.1019 | 27.0 | 1809 | 0.1807 | 0.0856 | 0.0279 | | 0.1019 | 28.0 | 1876 | 0.1883 | 0.0812 | 0.0273 | | 0.0911 | 29.0 | 1943 | 0.1904 | 0.0808 | 0.0272 | | 0.0919 | 30.0 | 2010 | 0.1839 | 0.0862 | 0.0285 | | 0.0919 | 31.0 | 2077 | 0.1902 | 0.0852 | 0.0282 | | 0.084 | 32.0 | 2144 | 0.1934 | 0.0822 | 0.0275 | | 0.0809 | 33.0 | 2211 | 0.2050 | 0.0822 | 0.0282 | | 0.0809 | 34.0 | 2278 | 0.1955 | 0.0832 | 0.0281 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.13.3
DooDooHyun/AIFT-42dot_LLM-PLM-1.3B-v1.51
DooDooHyun
2024-03-06T07:43:13Z
2,249
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:42dot/42dot_LLM-PLM-1.3B", "base_model:finetune:42dot/42dot_LLM-PLM-1.3B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T06:39:38Z
--- license: cc-by-nc-4.0 base_model: 42dot/42dot_LLM-PLM-1.3B tags: - generated_from_trainer model-index: - name: AIFT-42dot_LLM-PLM-1.3B-v1.51 results: [] --- # AIFT-42dot_LLM-PLM-1.3B-v1.51 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
ITT-AF/ITT-42dot_LLM-PLM-1.3B-v6.0
ITT-AF
2024-03-06T07:40:07Z
60
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T06:35:07Z
--- license: cc-by-nc-4.0 --- # ITT-AF/ITT-42dot_LLM-PLM-1.3B-v6.0 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on an custom dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3
jungyuko
2024-03-06T07:39:04Z
2,270
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T06:34:02Z
--- license: cc-by-nc-4.0 --- ## DAVinCI-42dot_LLM-PLM-1.3B-v1.5.3 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on a custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hyperparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 24 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 4 * total_train_batch_size: 96 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 3.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
venkatarajendra/rm-falcon-7b
venkatarajendra
2024-03-06T07:34:06Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "region:us" ]
null
2024-03-06T07:33:47Z
--- library_name: peft base_model: tiiuae/falcon-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.9.1.dev0
AbstractPerspective/Phi-2_MoE_GDPR
AbstractPerspective
2024-03-06T07:33:01Z
4
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T07:30:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
anum231/food_classifier
anum231
2024-03-06T07:26:58Z
46
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:anum231/cancer_classifier_100", "base_model:finetune:anum231/cancer_classifier_100", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-27T05:41:37Z
--- license: apache-2.0 base_model: anum231/cancer_classifier_100 tags: - generated_from_keras_callback model-index: - name: anum231/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # anum231/food_classifier This model is a fine-tuned version of [anum231/cancer_classifier_100](https://huggingface.co/anum231/cancer_classifier_100) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5815 - Validation Loss: 0.4561 - Train Accuracy: 0.8276 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1160, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6210 | 0.4706 | 0.8276 | 0 | | 0.6095 | 0.4583 | 0.8103 | 1 | | 0.6289 | 0.4566 | 0.8103 | 2 | | 0.6230 | 0.5850 | 0.7241 | 3 | | 0.5815 | 0.4561 | 0.8276 | 4 | ### Framework versions - Transformers 4.38.1 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2
yashwantk/detr-resnet-50_finetuned_cppe5
yashwantk
2024-03-06T07:21:46Z
35
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-02-21T13:34:09Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
light77/gemma-Code-Instruct-Finetune-test-0.3
light77
2024-03-06T07:19:01Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T07:15:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
OwOOwO/eacc_dc_5
OwOOwO
2024-03-06T07:17:53Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T07:15:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kunger/Sakura-13B-Qwen2beta-v0.9-GGUF
Kunger
2024-03-06T07:17:15Z
12
0
null
[ "gguf", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-06T06:23:57Z
--- license: cc-by-nc-sa-4.0 --- 原始模型:`https://huggingface.co/SakuraLLM/Sakura-13B-Qwen2beta-v0.9` LLAMA.CPP直接转换,未经测试
Kunger/Sakura-13B-Qwen2beta-v0.9-4bit-AWQ
Kunger
2024-03-06T07:17:01Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-03-01T12:13:21Z
--- license: cc-by-nc-sa-4.0 --- 原始模型:`https://huggingface.co/SakuraLLM/Sakura-13B-Qwen2beta-v0.9` 4Bit AWQ量化,未测试,不建议使用。
Hadiboo/boguey
Hadiboo
2024-03-06T07:16:09Z
0
0
adapter-transformers
[ "adapter-transformers", "code", "art", "text-generation-inference", "text-generation", "en", "dataset:HuggingFaceTB/cosmopedia", "region:us" ]
text-generation
2024-03-06T07:13:10Z
--- datasets: - HuggingFaceTB/cosmopedia language: - en library_name: adapter-transformers pipeline_tag: text-generation tags: - code - art - text-generation-inference ---
Sumail/Golden_Waves04_2b
Sumail
2024-03-06T07:13:37Z
4
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "mergekit", "merge", "conversational", "base_model:Sumail/Bubble_bee04_2b", "base_model:finetune:Sumail/Bubble_bee04_2b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-06T06:42:38Z
--- base_model: - 0x0dad0/nous_nb00 - Sumail/Bubble_bee04_2b library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [0x0dad0/nous_nb00](https://huggingface.co/0x0dad0/nous_nb00) * [Sumail/Bubble_bee04_2b](https://huggingface.co/Sumail/Bubble_bee04_2b) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: 0x0dad0/nous_nb00 layer_range: [0, 18] - model: Sumail/Bubble_bee04_2b layer_range: [0, 18] merge_method: slerp base_model: 0x0dad0/nous_nb00 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
christti/clip-vit-bert-coco
christti
2024-03-06T07:10:08Z
18
0
transformers
[ "transformers", "safetensors", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:ydshieh/coco_dataset_script", "endpoints_compatible", "region:us" ]
feature-extraction
2024-03-05T12:13:05Z
--- tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-vit-bert-coco results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-vit-bert-coco This model was trained from scratch on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - eval_loss: 4.1888 - eval_runtime: 5.7658 - eval_samples_per_second: 22.2 - eval_steps_per_second: 0.173 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
ottopilot/PriyaBelleXL
ottopilot
2024-03-06T07:09:25Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:cc-by-nc-nd-4.0", "region:us" ]
text-to-image
2024-03-06T07:07:58Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- RAW photo, portrait, close-up, PriBlle, looking at viewer, smiling, perfect black hair with highlights, brown eyes, professional headshot, shot on Hasselblad, perfect lighting, dutch angle, bokeh, outdoors, depth of field, blue dress, warm, loving, friendly <lora:PriyaBelleXL_v1:1> parameters: negative_prompt: bindi, mole, facial marks output: url: images/00001-3916971016.png - text: >- PriBlle, very dark-skinned woman, solo focus, mixed media, realistic anime art style, art by Yusuke Nakamura, fractal, ukiyoe, watercolor ink wash technique, intricate, highly detailed. Inspired by multiracial Hindi-West Indian heritage, San Francisco Bay Area, and diaspora. <lora:PriyaBelleXL_v1:1> output: url: images/00002-2902012777.png - text: >- PriBlle as Princess Jasmine, mind controlled by Jafar, sexy red outfit, tiara, collar, Agrabah palace, entranced by magic:1.1, glowing, compliant, submissive, obedient, Disney's Aladdin bad end <lora:PriyaBelleXL_v1:1> output: url: images/00121-3666660946.png - text: >- PriBlle is a college student on campus, dark blue and gold hooded sweatshirt with bear logo and shorts, Berkeley <lora:PriyaBelleXL_v1:1> output: url: images/00172-3938050706.png - text: >- PriBlle is hella fine shawty, hyphy, outdoors, Lake Merritt, Oakland, NorCal, yay area <lora:PriyaBelleXL_v1:1> output: url: images/00156-519328175.png - text: >- PriBlle, a woman wearing a green Oakland Athletics cap and sexy fan gear, smiling, ponytail, bodycon, bedroom, natural light, sexy, tease, flirty <lora:PriyaBelleXL_v1:1> output: url: images/00328-1196258457.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PriBlle license: cc-by-nc-nd-4.0 --- # Priya Belle (Ottoverse original character) - SDXL 1.0 <Gallery /> ## Model description https:&#x2F;&#x2F;huggingface.co&#x2F;ottopilot&#x2F;PriyaBelle, but trained for SDXL. ## Trigger words You should use `PriBlle` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/ottopilot/PriyaBelleXL/tree/main) them in the Files & versions tab.
mahiatlinux/MasherAI-7B-v0.9-GGUF
mahiatlinux
2024-03-06T06:59:17Z
3
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:openchat/openchat-3.5-0106", "base_model:quantized:openchat/openchat-3.5-0106", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-03-06T06:57:11Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: openchat/openchat-3.5-0106 --- # Uploaded model - **Developed by:** mahiatlinux - **License:** apache-2.0 - **Finetuned from model :** openchat/openchat-3.5-0106 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JesseStover/L2AI-dictionary-klue-bert-base
JesseStover
2024-03-06T06:47:19Z
89
0
transformers
[ "transformers", "safetensors", "bert", "multiple-choice", "endpoints_compatible", "region:us" ]
multiple-choice
2024-03-04T13:52:44Z
--- {} --- The L2AI-dictionary model is fine-tuned checkpoint of [klue/bert-base](https://huggingface.co/klue/bert-base) for multiple choice, specifically for selecting the best dictionary definition of a given word in a sentence. Below is an example usage: ```python import numpy as np import torch from transformers import AutoModelForMultipleChoice, AutoTokenizer model_name = "JesseStover/L2AI-dictionary-klue-bert-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name) model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) prompts = "\"강아지는 뽀송뽀송하다.\"에 있는 \"강아지\"의 정의는 " candidates = [ "\"(명사) 개의 새끼\"예요.", "\"(명사) 부모나 할아버지, 할머니가 자식이나 손주를 귀여워하면서 부르는 말\"이예요." ] inputs = tokenizer( [[prompt, candidate] for candidate in candidates], return_tensors="pt", padding=True ) labels = torch.tensor(0).unsqueeze(0) with torch.no_grad(): outputs = model( **{k: v.unsqueeze(0) for k, v in inputs.items()}, labels=labels ) print({i: float(x) for i, x in enumerate(outputs.logits.softmax(1)[0])}) ``` Training data was procured under Creative Commons [CC BY-SA 2.0 KR DEED](https://creativecommons.org/licenses/by-sa/2.0/kr/) from the National Institute of Korean Language's [Basic Korean Dictionary](https://krdict.korean.go.kr) and [Standard Korean Dictionary](https://stdict.korean.go.kr/).
vsocrates/incar-status-any
vsocrates
2024-03-06T06:44:25Z
5
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "medical", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-03-06T05:07:27Z
--- '[object Object]': null license: apache-2.0 language: - en library_name: transformers tags: - medical widget: - text: "Patient is a a formerly incarcerated individual having arrived in the ED with stomach pain." - example_title: "Former Incarceration" - text: "Patient arrived in the ED for chest pain." - example_title: "No Incarceration" --- # Model Card for incar-status-any A Clinical Longformer-based model trained by the HAIL lab to predict incarceration status (past and present) in ED Notes. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Vimig Socrates - **Model type:** Longformer - **Language(s) (NLP):** English - **License:** Apache License 2.0 - **Finetuned from model:** [Clinical Lonformer](https://huggingface.co/yikuan8/Clinical-Longformer ) ## Uses This model can be used to predict the incarceration status that a patient might have given most types of clinical ED notes. ## Bias, Risks, and Limitations This should not be used directly without supervision from a physician as predicting incarceration status incorrectly can have significant negative social and clinical impacts. ## Training Details ### Training Data This model was trained on custom annotated data labeled for incarceration status from Yale-New Haven Health Hospital System ED Notes. ### Training Procedure ## Evaluation TODO ### Testing Data, Factors & Metrics ### Results TODO ] ## Citation [optional] Coming soon! **BibTeX:** {{ citation_bibtex | default("[More Information Needed]", true)}} **APA:** {{ citation_apa | default("[More Information Needed]", true)}} ## Model Card Authors [optional] Vimig Socrates ## Model Card Contact Vimig Socrates: [[email protected]](mailto:[email protected])
Demo0203/gyx
Demo0203
2024-03-06T06:39:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-03-06T06:35:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.17 +/- 14.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GregoRio123/nsy
GregoRio123
2024-03-06T06:39:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-03-06T05:42:51Z
--- license: creativeml-openrail-m ---
therealvul/StyleTTS2
therealvul
2024-03-06T06:36:52Z
0
1
null
[ "en", "dataset:therealvul/StyleTTS2MLP", "region:us" ]
null
2023-11-03T09:37:12Z
--- datasets: - therealvul/StyleTTS2MLP language: - en --- This repository contains StyleTTS2 models trained on Pony Preservation Project data