modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 12:31:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
537 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 12:30:52
card
stringlengths
11
1.01M
Officialletai/ppo-LunarLander-v2
Officialletai
2023-07-15T12:18:48Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-01T17:41:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.87 +/- 17.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mrizalf7/xlm-r-qa-squad1.1-squad2.0-tf-1
mrizalf7
2023-07-15T11:56:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-15T11:52:32Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-r-qa-squad1.1-squad2.0-tf-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-qa-squad1.1-squad2.0-tf-1 This model is a fine-tuned version of [mrizalf7/xlm-r-qa-squad-2.0](https://huggingface.co/mrizalf7/xlm-r-qa-squad-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 3.1936 | | No log | 2.0 | 14 | 3.2455 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mrizalf7/xlm-r-qa-squad1.1-squad2.0-tf
mrizalf7
2023-07-15T11:45:11Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-15T11:30:11Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-r-qa-squad1.1-squad2.0-tf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-qa-squad1.1-squad2.0-tf This model is a fine-tuned version of [mrizalf7/xlm-r-qa-squad-2.0](https://huggingface.co/mrizalf7/xlm-r-qa-squad-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2419 | 1.0 | 636 | 3.1678 | | 2.8486 | 2.0 | 1272 | 3.2826 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
casque/badbrounderwear
casque
2023-07-15T11:29:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T11:28:50Z
--- license: creativeml-openrail-m ---
NasimB/guten-rarity-all-end-19k-ctx-64
NasimB
2023-07-15T11:25:30Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T06:57:00Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-all-end-19k-ctx-64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-all-end-19k-ctx-64 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.8243 | 0.15 | 500 | 5.7888 | | 5.5606 | 0.29 | 1000 | 5.4446 | | 5.2508 | 0.44 | 1500 | 5.2225 | | 5.0772 | 0.59 | 2000 | 5.0928 | | 4.9577 | 0.73 | 2500 | 5.0064 | | 4.8676 | 0.88 | 3000 | 4.9375 | | 4.7689 | 1.02 | 3500 | 4.8928 | | 4.6483 | 1.17 | 4000 | 4.8522 | | 4.6236 | 1.32 | 4500 | 4.8016 | | 4.5769 | 1.46 | 5000 | 4.7621 | | 4.5395 | 1.61 | 5500 | 4.7233 | | 4.5035 | 1.76 | 6000 | 4.6906 | | 4.4614 | 1.9 | 6500 | 4.6515 | | 4.3778 | 2.05 | 7000 | 4.6380 | | 4.2446 | 2.19 | 7500 | 4.6121 | | 4.2402 | 2.34 | 8000 | 4.5856 | | 4.221 | 2.49 | 8500 | 4.5575 | | 4.2021 | 2.63 | 9000 | 4.5268 | | 4.1908 | 2.78 | 9500 | 4.4977 | | 4.1691 | 2.93 | 10000 | 4.4673 | | 4.0317 | 3.07 | 10500 | 4.4820 | | 3.931 | 3.22 | 11000 | 4.4766 | | 3.9202 | 3.36 | 11500 | 4.4607 | | 3.9241 | 3.51 | 12000 | 4.4389 | | 3.9147 | 3.66 | 12500 | 4.4202 | | 3.9027 | 3.8 | 13000 | 4.4001 | | 3.8931 | 3.95 | 13500 | 4.3843 | | 3.7317 | 4.1 | 14000 | 4.4054 | | 3.653 | 4.24 | 14500 | 4.4036 | | 3.6488 | 4.39 | 15000 | 4.3999 | | 3.6513 | 4.53 | 15500 | 4.3908 | | 3.6392 | 4.68 | 16000 | 4.3837 | | 3.6341 | 4.83 | 16500 | 4.3767 | | 3.632 | 4.97 | 17000 | 4.3707 | | 3.4875 | 5.12 | 17500 | 4.3838 | | 3.4673 | 5.27 | 18000 | 4.3848 | | 3.4661 | 5.41 | 18500 | 4.3837 | | 3.4643 | 5.56 | 19000 | 4.3829 | | 3.463 | 5.71 | 19500 | 4.3827 | | 3.4588 | 5.85 | 20000 | 4.3824 | | 3.4591 | 6.0 | 20500 | 4.3825 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
casque/badbroirezumi3
casque
2023-07-15T11:24:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T11:23:43Z
--- license: creativeml-openrail-m ---
NasimB/guten-rarity-all-2p5k-log-rarity-all-sort
NasimB
2023-07-15T11:10:36Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T09:18:12Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-all-2p5k-log-rarity-all-sort results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-all-2p5k-log-rarity-all-sort This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.69 | 0.29 | 500 | 5.6272 | | 5.3349 | 0.59 | 1000 | 5.1982 | | 4.9818 | 0.88 | 1500 | 4.9441 | | 4.7024 | 1.17 | 2000 | 4.7940 | | 4.5531 | 1.47 | 2500 | 4.6766 | | 4.4445 | 1.76 | 3000 | 4.5629 | | 4.3064 | 2.05 | 3500 | 4.4888 | | 4.12 | 2.35 | 4000 | 4.4409 | | 4.0994 | 2.64 | 4500 | 4.3854 | | 4.0596 | 2.93 | 5000 | 4.3289 | | 3.8415 | 3.23 | 5500 | 4.3258 | | 3.7949 | 3.52 | 6000 | 4.2992 | | 3.7753 | 3.81 | 6500 | 4.2626 | | 3.6705 | 4.11 | 7000 | 4.2631 | | 3.5128 | 4.4 | 7500 | 4.2550 | | 3.5022 | 4.69 | 8000 | 4.2439 | | 3.4902 | 4.99 | 8500 | 4.2293 | | 3.3248 | 5.28 | 9000 | 4.2426 | | 3.3111 | 5.57 | 9500 | 4.2419 | | 3.3138 | 5.87 | 10000 | 4.2408 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
CarlosMN/CartPole
CarlosMN
2023-07-15T11:10:02Z
0
1
null
[ "reinforcement-learning", "en", "arxiv:2112.04213", "region:us" ]
reinforcement-learning
2023-07-15T10:23:37Z
--- language: - en pipeline_tag: reinforcement-learning --- # Cartpole Reinforcement Learning This repository is a project focused on exploring reinforcement learning techniques using the OpenAI Gym environment. The objective is to compare different algorithms and approaches to improve the performance of an agent in the Cartpole task. ## Installation Installation of packages ``` pip install -r requirements.txt ``` If you want to execute the the training phase and get your own model execute the main program, the hyperparameters and different options can be changes via config.ini file. If you just want to watch the trained model play the game execute the following ``` python3 watchModel.py ``` ## Objectives The main objectives of this project are as follows: 1. Develop a working model that demonstrates an increase in survival time through training. 2. Experiment with different reinforcement learning algorithms and compare their training time, complexity, and achieved scores. 3. Fine-tune the algorithm parameters and the number of bins used to achieve optimal training results. 4. Improve the consistency of the trained agent's strategy. 5. Implement experience replay to enhance learning. ## Results The initial approach used in this project was Q-Learning, and it produced the following results: ![Convergence Plot](./resources/convergence_old.png) The convergence plot shows an increase in the score over time, with three distinct phases. The first phase corresponds to random inputs, followed by a phase where the model explores a lot. The third phase occurs when the epsilon value starts to decay. ![Score Histogram](./resources/histogram_old.png) Comparing the results of the trained agent (after 20,000 episodes) with a random agent clearly demonstrates the improvement achieved: ![Score Boxplot](./resources/boxplot_old.png) Despite the improvements, the trained agent still lacks consistency. This inconsistency is believed to be due to the inherent randomness in the Cartpole environment. ## Experience Replay Experience replay has been implemented in this project, leading to significant improvements in the agent's performance. The details and results of this implementation are yet to be provided. The results of the trained agent with experience replay are as follows: It should be mention that to speed up the training phase, the experience replay agent had a score limit of 2000. | Metric | Old Agent | Trained Agent with Experience Replay | |------------------------|--------------|--------------------------------------| | Convergence Plot | ![Convergence Plot](./resources/convergence_old.png) | ![Convergence Plot](./resources/convergence20kbuffer.png) | | Score Histogram | ![Score Histogram](./resources/old_agent20k.png) | ![Score Histogram](./resources/trained_agent20k.png) | |Boxplot|![Score Boxplot](./resources/old_boxplot.png)| ![Score Boxplot](./resources/boxplot.png)| As observed by adding experience replay the agent has been able to objectively increase it's score. ## References - https://arxiv.org/pdf/2112.04213.pdf - https://aleksandarhaber.com/q-learning-in-python-with-tests-in-cart-pole-openai-gym-environment-reinforcement-learning-tutorial/
Anjyee/asep
Anjyee
2023-07-15T10:09:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T10:04:28Z
--- license: creativeml-openrail-m ---
TootToot/q-FrozenLake-v1-4x4-noSlippery
TootToot
2023-07-15T09:53:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-18T14:06:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="TootToot/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Xxmlala/ppo-LunarLander-v2
Xxmlala
2023-07-15T09:45:20Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T09:44:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 229.98 +/- 14.55 name: mean_reward verified: false --- # **PPO_MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO_MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hafidikhsan/wav2vec2-large-xlsr-53-english-pronunciation-evaluation-dt-real
hafidikhsan
2023-07-15T09:42:41Z
101
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-15T09:39:43Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-pronunciation-evaluation-dt-real results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english-pronunciation-evaluation-dt-real This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2577 - Accuracy: 0.6578 - F1: 0.6488 - Precision: 0.6432 - Recall: 0.6578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9224 | 1.0 | 310 | 0.8380 | 0.6142 | 0.5589 | 0.6070 | 0.6142 | | 0.6168 | 2.0 | 620 | 0.7955 | 0.6651 | 0.6313 | 0.6369 | 0.6651 | | 0.4687 | 3.0 | 930 | 1.0592 | 0.6150 | 0.6041 | 0.6434 | 0.6150 | | 0.4495 | 4.0 | 1240 | 1.1980 | 0.6707 | 0.6592 | 0.6547 | 0.6707 | | 0.182 | 5.0 | 1550 | 1.4150 | 0.6683 | 0.6596 | 0.6566 | 0.6683 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rakaaa/pokemon-lora2
rakaaa
2023-07-15T09:41:57Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-15T08:54:47Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - rakaaa/pokemon-lora2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
naimul011/fine_tuned_llama-7b-hf_20
naimul011
2023-07-15T09:37:01Z
6
0
peft
[ "peft", "region:us" ]
null
2023-07-15T09:35:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
koruni/charslora
koruni
2023-07-15T09:31:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T09:22:03Z
--- license: creativeml-openrail-m ---
manmyung/Reinforce-Pixelcopter-PLE-v0
manmyung
2023-07-15T09:29:21Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T09:28:47Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 57.90 +/- 51.72 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
NasimB/guten-log-rarity-all-no-cut
NasimB
2023-07-15T08:55:19Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T07:03:18Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-log-rarity-all-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-log-rarity-all-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7036 | 0.29 | 500 | 5.6327 | | 5.3408 | 0.58 | 1000 | 5.2075 | | 4.9933 | 0.87 | 1500 | 4.9530 | | 4.7107 | 1.16 | 2000 | 4.7988 | | 4.5567 | 1.46 | 2500 | 4.6874 | | 4.452 | 1.75 | 3000 | 4.5707 | | 4.3309 | 2.04 | 3500 | 4.4934 | | 4.1223 | 2.33 | 4000 | 4.4512 | | 4.0982 | 2.62 | 4500 | 4.3907 | | 4.0684 | 2.91 | 5000 | 4.3428 | | 3.8697 | 3.2 | 5500 | 4.3302 | | 3.8014 | 3.49 | 6000 | 4.3025 | | 3.7776 | 3.79 | 6500 | 4.2679 | | 3.6962 | 4.08 | 7000 | 4.2638 | | 3.5138 | 4.37 | 7500 | 4.2596 | | 3.5066 | 4.66 | 8000 | 4.2463 | | 3.4966 | 4.95 | 8500 | 4.2334 | | 3.3506 | 5.24 | 9000 | 4.2465 | | 3.3204 | 5.53 | 9500 | 4.2435 | | 3.3138 | 5.82 | 10000 | 4.2428 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
nolanaatama/mlnmrtnzrvc1000pchsvrs
nolanaatama
2023-07-15T08:46:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T08:32:56Z
--- license: creativeml-openrail-m ---
meepmeepow/Lora
meepmeepow
2023-07-15T08:09:52Z
0
1
null
[ "id", "en", "region:us" ]
null
2023-05-01T13:13:01Z
--- language: - id - en --- <p style="font-size:30px"><b><u>My Lora Collection</u></b></p> <p style="font-size:28px"> <p style="margin-bottom: -26px;">Kebaya Bali</p></p> <img src="https://i.ibb.co/PhyMv28/00000-2136414393.png" alt="00000-2136414393" border="0" /> <p style="margin-top: -24px;">~<a style="text-decoration: none" href="https://huggingface.co/meepmeepow/Lora/blob/main/kebayabali.safetensors">Link</a></p>
nolanaatama/phtn
nolanaatama
2023-07-15T08:04:27Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-15T07:58:19Z
--- license: creativeml-openrail-m ---
Serjssv/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Serjssv
2023-07-15T07:48:17Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-14T13:11:04Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3273 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5056 | 1.0 | 112 | 0.5669 | 0.85 | | 0.2324 | 2.0 | 225 | 0.5131 | 0.85 | | 0.2623 | 3.0 | 337 | 0.6539 | 0.79 | | 0.4419 | 4.0 | 450 | 0.7401 | 0.83 | | 0.0177 | 5.0 | 562 | 0.5134 | 0.85 | | 0.0026 | 6.0 | 675 | 0.3351 | 0.9 | | 0.0046 | 7.0 | 787 | 0.5120 | 0.88 | | 0.0005 | 8.0 | 900 | 0.5165 | 0.91 | | 0.2003 | 9.0 | 1012 | 0.3453 | 0.91 | | 0.0001 | 10.0 | 1125 | 0.3438 | 0.91 | | 0.0003 | 11.0 | 1237 | 0.3324 | 0.92 | | 0.0 | 12.0 | 1350 | 0.3999 | 0.89 | | 0.0 | 13.0 | 1462 | 0.3152 | 0.91 | | 0.0001 | 14.0 | 1575 | 0.3212 | 0.92 | | 0.0 | 15.0 | 1687 | 0.3220 | 0.92 | | 0.0 | 16.0 | 1800 | 0.3343 | 0.9 | | 0.0 | 17.0 | 1912 | 0.3324 | 0.91 | | 0.0 | 18.0 | 2025 | 0.3311 | 0.91 | | 0.0 | 19.0 | 2137 | 0.3292 | 0.91 | | 0.0 | 19.91 | 2240 | 0.3273 | 0.91 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Raelina/Maya_Ikusaba
Raelina
2023-07-15T07:35:53Z
2
1
diffusers
[ "diffusers", "en", "region:us" ]
null
2023-07-15T07:12:04Z
--- language: - en metrics: - character library_name: diffusers --- This LoRa trained with 40+ images taken from anime. Model used to train is AnimeFullFinalPruned aka NAI, so it work with any anime style model. Recommended weight 0.7-0.8 Prompt positive and negative refer to CivitAi https://civitai.com/models/109201/maya-ikusaba-or-my-one-hit-kill-sister Also i recommend use Adetailer! to fix faces and eyes, some of my example images using Adetailer!
Ahmet2250/ppo-LunarLander-v2
Ahmet2250
2023-07-15T07:16:38Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T07:15:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.32 +/- 20.78 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
blackmount8/mpt-7b-instruct-ct2-int8_float16
blackmount8
2023-07-15T06:52:02Z
2
0
transformers
[ "transformers", "Composer", "MosaicML", "llm-foundry", "dataset:mosaicml/dolly_hhrlhf", "arxiv:2205.14135", "arxiv:2108.12409", "arxiv:2010.04245", "license:cc-by-sa-3.0", "region:us" ]
null
2023-07-15T05:40:47Z
--- inference: false license: cc-by-sa-3.0 datasets: - mosaicml/dolly_hhrlhf tags: - Composer - MosaicML - llm-foundry --- # blackmount8/mpt-7b-instruct-ct2-int8_float16 Int8_float16 version of [mosaicml/mpt-7b-instruct](https://huggingface.co/mosaicml/mpt-7b-instruct), quantized using CTranslate2. ## MPT-7B-Instruct MPT-7B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-7B](https://huggingface.co/mosaicml/mpt-7b) on a [dataset](https://huggingface.co/datasets/sam-mosaic/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. * License: _CC-By-SA-3.0_ * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-instruct) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date May 5, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Longboi24**: > What is a quoll? **MPT-7B-Instruct**: >A Quoll (pronounced “cool”) is one of Australia’s native carnivorous marsupial mammals, which are also known as macropods or wallabies in other parts around Asia and South America ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-instruct', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted in the dolly-15k format: ```python INSTRUCTION_KEY = "### Instruction:" RESPONSE_KEY = "### Response:" INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {instruction} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, instruction="{instruction}", response_key=RESPONSE_KEY, ) example = "James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week? Explain before answering." fmt_ex = PROMPT_FOR_GENERATION_FORMAT.format(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 8 A100-40GBs for about 2.3 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
zen-E/q-Taxi-v3-v1
zen-E
2023-07-15T06:36:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T06:35:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.64 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="zen-E/q-Taxi-v3-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
NasimB/guten-rarity-all-end-19k-ctx-512
NasimB
2023-07-15T06:32:42Z
143
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T05:38:01Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-all-end-19k-ctx-512 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-all-end-19k-ctx-512 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.2404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5135 | 1.19 | 500 | 5.4526 | | 4.9916 | 2.38 | 1000 | 4.8062 | | 4.3998 | 3.56 | 1500 | 4.4088 | | 3.9739 | 4.75 | 2000 | 4.2180 | | 3.6922 | 5.94 | 2500 | 4.1726 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
NasimB/gpt2-concat-cbt-rarity-end-p5k
NasimB
2023-07-15T06:25:45Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T04:30:51Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-cbt-rarity-end-p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-cbt-rarity-end-p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6981 | 0.29 | 500 | 5.6337 | | 5.3423 | 0.58 | 1000 | 5.2046 | | 4.9886 | 0.87 | 1500 | 4.9471 | | 4.7073 | 1.17 | 2000 | 4.8060 | | 4.5535 | 1.46 | 2500 | 4.6759 | | 4.4474 | 1.75 | 3000 | 4.5672 | | 4.336 | 2.04 | 3500 | 4.4881 | | 4.1197 | 2.33 | 4000 | 4.4473 | | 4.1025 | 2.62 | 4500 | 4.3897 | | 4.0623 | 2.91 | 5000 | 4.3338 | | 3.8634 | 3.21 | 5500 | 4.3240 | | 3.7979 | 3.5 | 6000 | 4.2995 | | 3.7821 | 3.79 | 6500 | 4.2652 | | 3.6959 | 4.08 | 7000 | 4.2614 | | 3.5107 | 4.37 | 7500 | 4.2535 | | 3.5065 | 4.66 | 8000 | 4.2392 | | 3.5013 | 4.95 | 8500 | 4.2262 | | 3.3462 | 5.24 | 9000 | 4.2390 | | 3.3225 | 5.54 | 9500 | 4.2385 | | 3.3144 | 5.83 | 10000 | 4.2372 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
AnaBach/roberta-base-bne-finetuned-amazon_reviews_multi
AnaBach
2023-07-15T06:11:29Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T02:15:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.9355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2188 - Accuracy: 0.9355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1953 | 1.0 | 1250 | 0.1686 | 0.9343 | | 0.1034 | 2.0 | 2500 | 0.2188 | 0.9355 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sgarg/falcon-7b-qlora-fiqa-finbot-v1
sgarg
2023-07-15T05:30:56Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-15T04:43:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
kelvinih/taser-bert-base-uncased
kelvinih
2023-07-15T05:29:51Z
0
0
null
[ "pytorch", "license:mit", "region:us" ]
null
2023-07-15T05:27:05Z
--- license: mit --- # Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering This repository includes the model for [Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering](https://aclanthology.org/2023.acl-short.159/). If you find this useful, please cite the following paper: ``` @inproceedings{cheng-etal-2023-task, title = "Task-Aware Specialization for Efficient and Robust Dense Retrieval for Open-Domain Question Answering", author = "Cheng, Hao and Fang, Hao and Liu, Xiaodong and Gao, Jianfeng", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-short.159", pages = "1864--1875", } ```
amirabdullah19852020/pythia_70m_ppo_imdb_sentiment
amirabdullah19852020
2023-07-15T05:11:34Z
57
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-07-14T13:48:04Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="amirabdullah19852020//tmp/tmp3ply1fjk/amirabdullah19852020/pythia_70m_ppo_imdb_sentiment") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("amirabdullah19852020//tmp/tmp3ply1fjk/amirabdullah19852020/pythia_70m_ppo_imdb_sentiment") model = AutoModelForCausalLMWithValueHead.from_pretrained("amirabdullah19852020//tmp/tmp3ply1fjk/amirabdullah19852020/pythia_70m_ppo_imdb_sentiment") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
NasimB/guten-rarity-end-cut-19k
NasimB
2023-07-15T04:56:56Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T03:03:02Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-rarity-end-cut-19k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-rarity-end-cut-19k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.69 | 0.29 | 500 | 5.6412 | | 5.3327 | 0.59 | 1000 | 5.2058 | | 4.9884 | 0.88 | 1500 | 4.9570 | | 4.7105 | 1.18 | 2000 | 4.8008 | | 4.5563 | 1.47 | 2500 | 4.6777 | | 4.4438 | 1.77 | 3000 | 4.5652 | | 4.3057 | 2.06 | 3500 | 4.4916 | | 4.1258 | 2.36 | 4000 | 4.4456 | | 4.1001 | 2.65 | 4500 | 4.3854 | | 4.0586 | 2.94 | 5000 | 4.3319 | | 3.8297 | 3.24 | 5500 | 4.3249 | | 3.8029 | 3.53 | 6000 | 4.2962 | | 3.7812 | 3.83 | 6500 | 4.2655 | | 3.6544 | 4.12 | 7000 | 4.2687 | | 3.5166 | 4.42 | 7500 | 4.2598 | | 3.4969 | 4.71 | 8000 | 4.2438 | | 3.4978 | 5.01 | 8500 | 4.2328 | | 3.3159 | 5.3 | 9000 | 4.2445 | | 3.3203 | 5.59 | 9500 | 4.2434 | | 3.3104 | 5.89 | 10000 | 4.2422 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
goethe0101/GWP_Model
goethe0101
2023-07-15T04:46:28Z
1
0
peft
[ "peft", "pytorch", "gpt_neox", "region:us" ]
null
2023-07-08T01:59:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
digiplay/Opiate_v1
digiplay
2023-07-15T04:39:12Z
272
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T04:15:32Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/69587?modelVersionId=81796 Original Author's DEMO images : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/e0b3a6db-be0e-4e4f-afee-86391ba38ccb/width=832/00147-1689461531.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/321b0cfe-d635-4855-8914-27daef1ce63c/width=832/00129-3711611411.jpeg)
yhhjynbhu/Akashi3
yhhjynbhu
2023-07-15T04:38:25Z
59
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T04:37:20Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_keras_callback model-index: - name: Akashi3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Akashi3 This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3
mittalashish/chique7
mittalashish
2023-07-15T04:11:30Z
29
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T04:08:44Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: <Chique> --- ### chique7 Dreambooth model trained by mittalashish with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-512 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: <Chique> (use that on your prompt) ![<Chique> 0](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%281%29.jpg)![<Chique> 1](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%282%29.jpg)![<Chique> 2](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%283%29.jpg)![<Chique> 3](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%284%29.jpg)![<Chique> 4](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%285%29.jpg)![<Chique> 5](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%286%29.jpg)![<Chique> 6](https://huggingface.co/mittalashish/chique7/resolve/main/concept_images/%3CChique%3E_%287%29.jpg)
renatostrianese/q-Taxi-v3
renatostrianese
2023-07-15T03:48:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T03:48:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="renatostrianese/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
cbredallas/labelclassification
cbredallas
2023-07-15T03:44:59Z
0
0
adapter-transformers
[ "adapter-transformers", "en", "license:openrail", "region:us" ]
null
2023-07-15T03:43:24Z
--- license: openrail language: - en library_name: adapter-transformers ---
renatostrianese/q-FrozenLake-v1-4x4-noSlippery
renatostrianese
2023-07-15T03:43:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T03:43:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="renatostrianese/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
photonmz/distilbert-base-uncased-finetuned-emotion
photonmz
2023-07-15T03:33:06Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-15T03:10:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9275012469136824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2201 - Accuracy: 0.9275 - F1: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8326 | 1.0 | 250 | 0.3185 | 0.902 | 0.8983 | | 0.2499 | 2.0 | 500 | 0.2201 | 0.9275 | 0.9275 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
crumb/opentinystories-68m-complex
crumb
2023-07-15T03:25:24Z
161
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "dataset:crumb/flan-ul2-tinystories-complex", "dataset:crumb/flan-ul2-tinystories", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-08T09:16:03Z
--- datasets: - crumb/flan-ul2-tinystories-complex - crumb/flan-ul2-tinystories --- test loss 2.669290 on crumb/flan-ul2-tinystories-complex, initialized from crumb/opentinystories-30m-base, 2 epochs, linear decreasing lr 1e-4. trained with double the batch size (256)
xielenite/zethielzero
xielenite
2023-07-15T03:18:29Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-13T23:40:11Z
--- license: openrail --- voice models for RVC inferencing. see https://docs.google.com/document/d/13_l1bd1Osgz7qlAZn-zhklCbHpVRk6bYOuAuB78qmsE/edit to see how to use.
matgu23/abtrl
matgu23
2023-07-15T03:09:52Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-15T03:02:33Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### abtrl Dreambooth model trained by matgu23 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AdanLee/ppo-Huggy
AdanLee
2023-07-15T03:01:35Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-15T03:01:15Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AdanLee/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
timjwhite/a2c-PandaReachDense-v2
timjwhite
2023-07-15T02:41:47Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T02:39:03Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.64 +/- 0.41 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NasimB/gpt2-concat-switch-rarity-no-cut
NasimB
2023-07-15T02:38:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T00:47:27Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-switch-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-switch-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7037 | 0.29 | 500 | 5.6319 | | 5.3373 | 0.58 | 1000 | 5.2001 | | 4.9919 | 0.87 | 1500 | 4.9536 | | 4.7185 | 1.17 | 2000 | 4.8020 | | 4.5556 | 1.46 | 2500 | 4.6811 | | 4.4476 | 1.75 | 3000 | 4.5737 | | 4.3298 | 2.04 | 3500 | 4.4863 | | 4.1272 | 2.33 | 4000 | 4.4421 | | 4.0996 | 2.62 | 4500 | 4.3853 | | 4.0564 | 2.91 | 5000 | 4.3350 | | 3.8676 | 3.21 | 5500 | 4.3248 | | 3.8015 | 3.5 | 6000 | 4.2945 | | 3.7787 | 3.79 | 6500 | 4.2610 | | 3.6894 | 4.08 | 7000 | 4.2563 | | 3.5111 | 4.37 | 7500 | 4.2530 | | 3.5076 | 4.66 | 8000 | 4.2365 | | 3.4984 | 4.95 | 8500 | 4.2243 | | 3.341 | 5.24 | 9000 | 4.2363 | | 3.3189 | 5.54 | 9500 | 4.2358 | | 3.3196 | 5.83 | 10000 | 4.2346 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Scherbi/test-finetune-distilgpt2
Scherbi
2023-07-15T02:38:04Z
138
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T17:14:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test-finetune-distilgpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-finetune-distilgpt2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 0.0912 | | No log | 2.0 | 6 | 0.0901 | | No log | 3.0 | 9 | 0.0897 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3
timjwhite/a2c-AntBulletEnv-v0
timjwhite
2023-07-15T01:39:05Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-15T01:37:29Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 792.36 +/- 37.50 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Panchovix/guanaco-33b-PI-8192-LoRA-4bit-32g
Panchovix
2023-07-15T01:38:52Z
5
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-04T06:00:12Z
--- license: other --- [guanaco-33b](https://huggingface.co/timdettmers/guanaco-33b-merged) merged with bhenrym14's [airoboros-33b-gpt4-1.4.1-PI-8192-LoRA](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-LoRA), quantized at 4 bit. More info about the LoRA [Here](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16). This is an alternative to SuperHOT 8k LoRA trained with LoRA_rank 64, and airoboros 1.4.1 dataset. It was created with GPTQ-for-LLaMA with group size 32 and act order true as parameters, to get the maximum perplexity vs FP16 model. I HIGHLY suggest to use exllama, to evade some VRAM issues. Use compress_pos_emb = 4 for any context up to 8192 context. If you have 2x24 GB VRAM GPUs cards, to not get Out of Memory errors at 8192 context, use: gpu_split: 9,21
borkur/gpt2-finetuned-wikitext2
borkur
2023-07-15T00:56:29Z
85
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T21:30:03Z
--- license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: borkur/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # borkur/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.4948 - Validation Loss: 6.3466 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3152 | 6.7681 | 0 | | 6.4948 | 6.3466 | 1 | ### Framework versions - Transformers 4.31.0.dev0 - TensorFlow 2.13.0 - Datasets 2.13.1 - Tokenizers 0.13.3
ALM-AHME/beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20
ALM-AHME
2023-07-14T23:55:06Z
5
3
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-14T20:43:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Splitted-Resized split: train args: Splitted-Resized metrics: - name: Accuracy type: accuracy value: 0.9938708156529938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-large-patch16-224-finetuned-BreastCancer-Classification-BreakHis-AH-60-20-20 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0275 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.9 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.46 | 1.0 | 199 | 0.3950 | 0.8482 | | 0.2048 | 2.0 | 398 | 0.1886 | 0.9189 | | 0.182 | 3.0 | 597 | 0.1382 | 0.9481 | | 0.0826 | 4.0 | 796 | 0.0760 | 0.9694 | | 0.0886 | 5.0 | 995 | 0.0600 | 0.9788 | | 0.0896 | 6.0 | 1194 | 0.0523 | 0.9802 | | 0.0774 | 7.0 | 1393 | 0.0482 | 0.9826 | | 0.0876 | 8.0 | 1592 | 0.0289 | 0.9877 | | 0.1105 | 9.0 | 1791 | 0.0580 | 0.9821 | | 0.0289 | 10.0 | 1990 | 0.0294 | 0.9925 | | 0.0594 | 11.0 | 2189 | 0.0331 | 0.9906 | | 0.0011 | 12.0 | 2388 | 0.0275 | 0.9939 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
silvacarl/distilbert-base-uncased-finetuned-cola
silvacarl
2023-07-14T23:45:58Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T22:37:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.527141964318474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8042 - Matthews Correlation: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5199 | 1.0 | 535 | 0.5170 | 0.4218 | | 0.3502 | 2.0 | 1070 | 0.5057 | 0.4959 | | 0.2419 | 3.0 | 1605 | 0.6179 | 0.5164 | | 0.1818 | 4.0 | 2140 | 0.7569 | 0.5209 | | 0.1328 | 5.0 | 2675 | 0.8042 | 0.5271 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-concat-rarity-all-guten-2p5k-cbt-p5k
NasimB
2023-07-14T23:37:07Z
139
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T21:39:25Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-rarity-all-guten-2p5k-cbt-p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-rarity-all-guten-2p5k-cbt-p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6858 | 0.29 | 500 | 5.6433 | | 5.3511 | 0.59 | 1000 | 5.2111 | | 4.9925 | 0.88 | 1500 | 4.9524 | | 4.7238 | 1.17 | 2000 | 4.8079 | | 4.5666 | 1.47 | 2500 | 4.6856 | | 4.453 | 1.76 | 3000 | 4.5716 | | 4.3289 | 2.06 | 3500 | 4.5002 | | 4.137 | 2.35 | 4000 | 4.4482 | | 4.1124 | 2.64 | 4500 | 4.3913 | | 4.0636 | 2.94 | 5000 | 4.3336 | | 3.852 | 3.23 | 5500 | 4.3341 | | 3.8135 | 3.52 | 6000 | 4.3033 | | 3.7914 | 3.82 | 6500 | 4.2691 | | 3.6733 | 4.11 | 7000 | 4.2704 | | 3.5243 | 4.4 | 7500 | 4.2640 | | 3.5183 | 4.7 | 8000 | 4.2479 | | 3.5042 | 4.99 | 8500 | 4.2351 | | 3.3345 | 5.28 | 9000 | 4.2497 | | 3.3242 | 5.58 | 9500 | 4.2486 | | 3.3254 | 5.87 | 10000 | 4.2476 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
CheeriosMomentors/LORA
CheeriosMomentors
2023-07-14T23:32:58Z
0
0
null
[ "en", "license:wtfpl", "region:us" ]
null
2023-04-08T06:21:46Z
--- license: wtfpl language: - en --- Okay listen up. This is mostly loras that I made by myself. Some of these may be released on Civitai and some may not. If you found these, good job you now have cool loras. You can post these on Civitai or anywhere idc. You can say these are yours, get money I do not care. But please for god sake, leave my name out of it. I am not responsible for anything you done with these. These were just for fun, that is all. Now enjoy. Lora Count: 2 We currently have Nisho Ishin (Medaka Box) style and ryukishi07 (Umineko Style.) I may make more and post them here.
chunwoolee0/seqcls_mrpc_bert_base_uncased_model
chunwoolee0
2023-07-14T23:32:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T23:27:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: seqcls_mrpc_bert_base_uncased_model results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8014705882352942 - name: F1 type: f1 value: 0.8669950738916257 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # seqcls_mrpc_bert_base_uncased_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4621 - Accuracy: 0.8015 - F1: 0.8670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 58 | 0.5442 | 0.7108 | 0.8228 | | No log | 2.0 | 116 | 0.5079 | 0.7745 | 0.8558 | | No log | 3.0 | 174 | 0.4621 | 0.8015 | 0.8670 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
foreverip/dqn-SpaceInvadersNoFrameskip-v4
foreverip
2023-07-14T23:31:22Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:30:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 603.00 +/- 169.77 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga foreverip -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga foreverip -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga foreverip ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Yntec/Photosphere
Yntec
2023-07-14T23:22:58Z
1,547
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Noosphere", "Dreamlike", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T22:54:19Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - Noosphere - Dreamlike --- # Photosphere A mix of Noosphere v3 by skumerz and photorealistic models. Original page: https://civitai.com/models/36538?modelVersionId=107675
MnLgt/slope-bed
MnLgt
2023-07-14T23:19:56Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-07-14T23:19:55Z
--- license: mit --- ### slope-bed on Stable Diffusion This is the `<slope-bed>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<slope-bed> 0](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/46730dc447d0633b0993ed8b9405a1be.jpg) ![<slope-bed> 1](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/c806494a260a9f4b610d8027636a87eb.jpg) ![<slope-bed> 2](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/eaf617c981118315f2e6b4b3249e2ff7.jpg) ![<slope-bed> 3](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/601a2e6c5cb059bda4ddf06da071a02d.jpg) ![<slope-bed> 4](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/a51260e53daad800c0fdf1fa73e90af7.jpg) ![<slope-bed> 5](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/c01466545690d2f9a23f94a668011676.jpg) ![<slope-bed> 6](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/1c71fb516129a304c3045a4243e77f5c.jpg) ![<slope-bed> 7](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/519fbf3ea01362a874440d9ea9032cb4.jpg) ![<slope-bed> 8](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/fe204b537dd9eb9e7a78189b58d8302b.jpg) ![<slope-bed> 9](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/4daf4f25d438ce7f34faa9fd6d95ee56.jpg) ![<slope-bed> 10](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/fce3b789e5bfb602026098a99efa1014.jpg) ![<slope-bed> 11](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/95b5b8d2ab3e9621655594eaae6531d1.jpg) ![<slope-bed> 12](https://huggingface.co/jordandavis/slope-bed/resolve/main/concept_images/0bd46f65046872a31aa55d8c68060c58.jpg)
0sunfire0/Pixelcopter_train_00
0sunfire0
2023-07-14T23:10:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:10:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter_train_00 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.20 +/- 7.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cgr28/q-FrozenLake-v1-4x4-noSlippery
cgr28
2023-07-14T23:06:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T23:06:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="cgr28/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ashnrk/textual_inversion_annual_crop_te
ashnrk
2023-07-14T23:05:57Z
31
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T22:58:31Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a centered satellite photo of <annual-crop> annual crop land. tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - ashnrk/textual_inversion_annual_crop_te This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a centered satellite photo of <annual-crop> annual crop land. using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
GISDGDIGDI9ED/leslie
GISDGDIGDI9ED
2023-07-14T22:53:08Z
0
0
flair
[ "flair", "art", "es", "dataset:openchat/openchat_sharegpt4_dataset", "license:bsd", "region:us" ]
null
2023-07-14T22:50:29Z
--- license: bsd datasets: - openchat/openchat_sharegpt4_dataset language: - es metrics: - character library_name: flair tags: - art ---
ddanshin/clip-roberta-finetuned
ddanshin
2023-07-14T22:45:45Z
12
0
transformers
[ "transformers", "pytorch", "vision-text-dual-encoder", "feature-extraction", "generated_from_trainer", "dataset:ydshieh/coco_dataset_script", "endpoints_compatible", "region:us" ]
feature-extraction
2023-07-14T00:04:05Z
--- base_model: ./clip-roberta tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - Loss: 1.5850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
YanJiangJerry/sentiment-roberta-e3-b16-v2-w0.01
YanJiangJerry
2023-07-14T22:45:22Z
121
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T13:20:25Z
--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-e3-b16-v2-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-roberta-e3-b16-v2-w0.01 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6014 - F1: 0.7844 - Recall: 0.7844 - Precision: 0.7844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 187 | 0.6687 | 0.7574 | 0.7574 | 0.7574 | | No log | 2.0 | 374 | 0.5700 | 0.7898 | 0.7898 | 0.7898 | | 0.6052 | 3.0 | 561 | 0.6014 | 0.7844 | 0.7844 | 0.7844 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
S1X3L4/Reinforce-copter
S1X3L4
2023-07-14T22:44:56Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T22:44:51Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-copter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 15.90 +/- 13.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
underactuated/opt-350m_ft
underactuated
2023-07-14T22:41:50Z
136
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T22:39:39Z
--- tags: - generated_from_trainer model-index: - name: opt-350m_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m_ft This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
fgaim/tiroberta-pos
fgaim
2023-07-14T22:36:14Z
126
2
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "token-classification", "ti", "dataset:TLMD", "dataset:NTC", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" datasets: - TLMD - NTC metrics: - f1 - precision - recall - accuracy model-index: - name: tiroberta-base-pos results: - task: name: Token Classification type: token-classification metrics: - name: F1 type: f1 value: 0.9562 - name: Precision type: precision value: 0.9562 - name: Recall type: recall value: 0.9562 - name: Accuracy type: accuracy value: 0.9562 --- # Tigrinya POS tagging with TiRoBERTa This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/tiroberta) on the NTC-v1 dataset (Tedla et al. 2016). ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.3194 - Adj Precision: 0.9219 - Adj Recall: 0.9335 - Adj F1: 0.9277 - Adj Number: 1670 - Adv Precision: 0.8297 - Adv Recall: 0.8554 - Adv F1: 0.8423 - Adv Number: 484 - Con Precision: 0.9844 - Con Recall: 0.9763 - Con F1: 0.9804 - Con Number: 972 - Fw Precision: 0.7895 - Fw Recall: 0.5357 - Fw F1: 0.6383 - Fw Number: 28 - Int Precision: 0.6552 - Int Recall: 0.7308 - Int F1: 0.6909 - Int Number: 26 - N Precision: 0.9650 - N Recall: 0.9662 - N F1: 0.9656 - N Number: 3992 - Num Precision: 0.9747 - Num Recall: 0.9665 - Num F1: 0.9706 - Num Number: 239 - N Prp Precision: 0.9308 - N Prp Recall: 0.9447 - N Prp F1: 0.9377 - N Prp Number: 470 - N V Precision: 0.9854 - N V Recall: 0.9736 - N V F1: 0.9794 - N V Number: 416 - Pre Precision: 0.9722 - Pre Recall: 0.9625 - Pre F1: 0.9673 - Pre Number: 907 - Pro Precision: 0.9448 - Pro Recall: 0.9236 - Pro F1: 0.9341 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 1.0 - Unc Recall: 0.875 - Unc F1: 0.9333 - Unc Number: 16 - V Precision: 0.8780 - V Recall: 0.9231 - V F1: 0.9 - V Number: 78 - V Aux Precision: 0.9685 - V Aux Recall: 0.9878 - V Aux F1: 0.9780 - V Aux Number: 654 - V Ger Precision: 0.9388 - V Ger Recall: 0.9571 - V Ger F1: 0.9479 - V Ger Number: 513 - V Imf Precision: 0.9634 - V Imf Recall: 0.9497 - V Imf F1: 0.9565 - V Imf Number: 914 - V Imv Precision: 0.8793 - V Imv Recall: 0.7286 - V Imv F1: 0.7969 - V Imv Number: 70 - V Prf Precision: 0.8960 - V Prf Recall: 0.9082 - V Prf F1: 0.9020 - V Prf Number: 294 - V Rel Precision: 0.9678 - V Rel Recall: 0.9538 - V Rel F1: 0.9607 - V Rel Number: 757 - Overall Precision: 0.9562 - Overall Recall: 0.9562 - Overall F1: 0.9562 - Overall Accuracy: 0.9562 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. International Journal Of Computer Applications 146 pp. 33-41 (2016). ```
YanJiangJerry/sentiment-roberta-e2-b16-v2-w0.01
YanJiangJerry
2023-07-14T22:29:12Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T22:22:40Z
--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-e2-b16-v2-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-roberta-e2-b16-v2-w0.01 This model is a fine-tuned version of [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8630 - F1: 0.7520 - Recall: 0.7520 - Precision: 0.7520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 375 | 0.8651 | 0.6739 | 0.6739 | 0.6739 | | 0.6564 | 2.0 | 750 | 0.8630 | 0.7520 | 0.7520 | 0.7520 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Recognai/zeroshot_selectra_small
Recognai
2023-07-14T22:23:19Z
129
5
transformers
[ "transformers", "pytorch", "safetensors", "electra", "text-classification", "zero-shot-classification", "nli", "es", "dataset:xnli", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli pipeline_tag: zero-shot-classification license: apache-2.0 widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA *Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html). In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier. ## Usage ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/zeroshot_selectra_medium") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """Output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['sociedad', 'cultura', 'salud', 'economia', 'deportes'], 'scores': [0.3711881935596466, 0.25650349259376526, 0.17355826497077942, 0.1641489565372467, 0.03460107371211052]} """ ``` The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.** ## Metrics | Model | Params | XNLI (acc) | \*MLSUM (acc) | | --- | --- | --- | --- | | [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 | | [zs SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium) | 41M | **0.807** | **0.589** | | zs SELECTRA small | **22M** | 0.795 | 0.446 | \*evaluated with zero-shot learning (ZSL) - **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion. - **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb) ## Training Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details. ## Authors - David Fidalgo ([GitHub](https://github.com/dcfidalgo)) - Daniel Vila ([GitHub](https://github.com/dvsrepo)) - Francisco Aranda ([GitHub](https://github.com/frascuchon)) - Javier Lopez ([GitHub](https://github.com/javispp))
Recognai/bert-base-spanish-wwm-cased-xnli
Recognai
2023-07-14T22:22:51Z
2,134
16
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "zero-shot-classification", "nli", "es", "dataset:xnli", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: es tags: - zero-shot-classification - nli - pytorch datasets: - xnli license: mit pipeline_tag: zero-shot-classification widget: - text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" candidate_labels: "cultura, sociedad, economia, salud, deportes" --- # bert-base-spanish-wwm-cased-xnli **UPDATE, 15.10.2021: Check out our new zero-shot classifiers, much more lightweight and even outperforming this one: [zero-shot SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) and [zero-shot SELECTRA medium](https://huggingface.co/Recognai/zeroshot_selectra_medium).** ## Model description This model is a fine-tuned version of the [spanish BERT model](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) with the Spanish portion of the XNLI dataset. You can have a look at the [training script](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli/blob/main/zeroshot_training_script.py) for details of the training. ### How to use You can use this model with Hugging Face's [zero-shot-classification pipeline](https://discuss.huggingface.co/t/new-pipeline-for-zero-shot-text-classification/681): ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Recognai/bert-base-spanish-wwm-cased-xnli") classifier( "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo", candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"], hypothesis_template="Este ejemplo es {}." ) """output {'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo', 'labels': ['cultura', 'sociedad', 'economia', 'salud', 'deportes'], 'scores': [0.38897448778152466, 0.22997373342514038, 0.1658431738615036, 0.1205764189362526, 0.09463217109441757]} """ ``` ## Eval results Accuracy for the test set: | | XNLI-es | |-----------------------------|---------| |bert-base-spanish-wwm-cased-xnli | 79.9% |
Recognai/distilbert-base-es-multilingual-cased
Recognai
2023-07-14T22:20:32Z
352
3
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "es", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: es license: apache-2.0 datasets: - wikipedia widget: - text: "Mi nombre es Juan y vivo en [MASK]." --- # DistilBERT base multilingual model Spanish subset (cased) This model is the Spanish extract of `distilbert-base-multilingual-cased` (https://huggingface.co/distilbert-base-multilingual-cased), a distilled version of the [BERT base multilingual model](bert-base-multilingual-cased). This model is cased: it does make a difference between english and English. It uses the extraction method proposed by Geotrend described in https://github.com/Geotrend-research/smaller-transformers. The resulting model has the same architecture as DistilmBERT: 6 layers, 768 dimension and 12 heads, with a total of **63M parameters** (compared to 134M parameters for DistilmBERT). The goal of this model is to reduce even further the size of the `distilbert-base-multilingual` multilingual model by selecting only most frequent tokens for Spanish, reducing the size of the embedding layer. For more details visit the paper from the Geotrend team: Load What You Need: Smaller Versions of Multilingual BERT.
NasimB/gpt2-concat-simple-wiki-mod-rarity-no-cut
NasimB
2023-07-14T22:08:59Z
140
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T20:28:50Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-simple-wiki-mod-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-simple-wiki-mod-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6838 | 0.29 | 500 | 5.6277 | | 5.3231 | 0.59 | 1000 | 5.1994 | | 4.987 | 0.88 | 1500 | 4.9572 | | 4.7151 | 1.17 | 2000 | 4.8128 | | 4.5647 | 1.47 | 2500 | 4.7004 | | 4.4618 | 1.76 | 3000 | 4.6135 | | 4.3426 | 2.06 | 3500 | 4.5400 | | 4.1605 | 2.35 | 4000 | 4.4888 | | 4.1305 | 2.64 | 4500 | 4.4288 | | 4.0903 | 2.94 | 5000 | 4.3762 | | 3.8797 | 3.23 | 5500 | 4.3722 | | 3.83 | 3.52 | 6000 | 4.3423 | | 3.8158 | 3.82 | 6500 | 4.3083 | | 3.6986 | 4.11 | 7000 | 4.3079 | | 3.5427 | 4.4 | 7500 | 4.3022 | | 3.5399 | 4.7 | 8000 | 4.2835 | | 3.5248 | 4.99 | 8500 | 4.2710 | | 3.352 | 5.28 | 9000 | 4.2862 | | 3.3468 | 5.58 | 9500 | 4.2856 | | 3.3441 | 5.87 | 10000 | 4.2850 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Jowie/ppo-LunarLander
Jowie
2023-07-14T22:08:23Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T22:07:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 227.31 +/- 46.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AACEE/pokemon-lora
AACEE
2023-07-14T21:57:11Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-14T20:24:26Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - AACEE/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
wolffenbuetell/PFKODRCHORMA
wolffenbuetell
2023-07-14T21:53:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T21:48:13Z
--- license: creativeml-openrail-m ---
YanJiangJerry/covid-tweet-bert-large-e2-noweight
YanJiangJerry
2023-07-14T21:45:24Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T21:30:30Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-tweet-bert-large-e2-noweight results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-tweet-bert-large-e2-noweight This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2582 - Accuracy: 0.9568 - F1: 0.8878 - Precision: 0.8604 - Recall: 0.9170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0593 | 1.0 | 1023 | 0.2053 | 0.9581 | 0.8885 | 0.8810 | 0.8962 | | 0.0146 | 2.0 | 2046 | 0.2582 | 0.9568 | 0.8878 | 0.8604 | 0.9170 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
0sunfire0/Cartpole-v1_train_01
0sunfire0
2023-07-14T21:31:24Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T21:31:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-v1_train_01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 497.20 +/- 8.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ronde1e/lll123
ronde1e
2023-07-14T21:22:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-14T21:17:57Z
--- license: creativeml-openrail-m ---
NasimB/gpt2-concat-qed-rarity-no-cut
NasimB
2023-07-14T21:16:05Z
140
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T19:12:29Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-qed-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-qed-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7002 | 0.29 | 500 | 5.6309 | | 5.3451 | 0.58 | 1000 | 5.2082 | | 5.0021 | 0.88 | 1500 | 4.9592 | | 4.7266 | 1.17 | 2000 | 4.8110 | | 4.5737 | 1.46 | 2500 | 4.6859 | | 4.4727 | 1.75 | 3000 | 4.5796 | | 4.3511 | 2.04 | 3500 | 4.5066 | | 4.1544 | 2.34 | 4000 | 4.4568 | | 4.1252 | 2.63 | 4500 | 4.3988 | | 4.083 | 2.92 | 5000 | 4.3471 | | 3.8825 | 3.21 | 5500 | 4.3454 | | 3.8226 | 3.5 | 6000 | 4.3139 | | 3.8118 | 3.8 | 6500 | 4.2766 | | 3.7159 | 4.09 | 7000 | 4.2763 | | 3.5383 | 4.38 | 7500 | 4.2702 | | 3.5395 | 4.67 | 8000 | 4.2556 | | 3.5257 | 4.96 | 8500 | 4.2454 | | 3.3727 | 5.26 | 9000 | 4.2570 | | 3.3469 | 5.55 | 9500 | 4.2567 | | 3.3465 | 5.84 | 10000 | 4.2550 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Vladislav-HuggingFace/dqn-SpaceInvadersNoFrameskip-v4
Vladislav-HuggingFace
2023-07-14T20:52:43Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:52:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 654.50 +/- 195.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Vladislav-HuggingFace -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Vladislav-HuggingFace -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Vladislav-HuggingFace ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
YanJiangJerry/covid-augment-tweet-bert-large-e8-noweight
YanJiangJerry
2023-07-14T20:48:41Z
9
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T20:18:03Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-augment-tweet-bert-large-e8-noweight results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-augment-tweet-bert-large-e8-noweight This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2396 - Accuracy: 0.9714 - F1: 0.9249 - Precision: 0.9095 - Recall: 0.9409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 408 | 0.1663 | 0.9419 | 0.8609 | 0.78 | 0.9606 | | 0.2202 | 2.0 | 816 | 0.1532 | 0.9594 | 0.8957 | 0.8630 | 0.9310 | | 0.0794 | 3.0 | 1224 | 0.1745 | 0.9687 | 0.9167 | 0.9122 | 0.9212 | | 0.0318 | 4.0 | 1632 | 0.1815 | 0.9696 | 0.9197 | 0.9087 | 0.9310 | | 0.0098 | 5.0 | 2040 | 0.2013 | 0.9705 | 0.9227 | 0.9052 | 0.9409 | | 0.0098 | 6.0 | 2448 | 0.2173 | 0.9733 | 0.9294 | 0.9183 | 0.9409 | | 0.0031 | 7.0 | 2856 | 0.2324 | 0.9696 | 0.9189 | 0.9167 | 0.9212 | | 0.0024 | 8.0 | 3264 | 0.2396 | 0.9714 | 0.9249 | 0.9095 | 0.9409 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
davidfisher/test_model
davidfisher
2023-07-14T20:40:19Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "en", "dataset:imdb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T15:39:56Z
--- language: en tags: - text-classification datasets: - imdb license: mit --- # My Model This is the description of my model. ## Usage ```python from transformers import pipeline model_path = "davidfisher/test_model" # update with the actual repository name classifier = pipeline("text-classification", model=model_path) classifier("This is an example of input text.") ``` ## Limitations This model could be improved. ## Ethical Considerations Don't use this model for evil.
hseokool/vicuna-13b-v1.3-230623-10
hseokool
2023-07-14T20:35:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-14T20:35:31Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Rui31415/Taxi
Rui31415
2023-07-14T20:32:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:32:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Rui31415/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
avishek-018/bert-semantic-similarity
avishek-018
2023-07-14T20:22:22Z
6
1
tf-keras
[ "tf-keras", "sentence-similarity", "en", "license:mit", "region:us" ]
sentence-similarity
2023-07-14T19:41:59Z
--- license: mit language: - en pipeline_tag: sentence-similarity --- widget: - source_sentence: Two women are observing something together. sentences: - Two women are standing with their eyes closed. example_title: Example 1 - source_sentence: A smiling costumed woman is holding an umbrella sentences: - A happy woman in a fairy costume holds an umbrella example_title: Example 2 - source_sentence: A soccer game with multiple males playing sentences: - Some men are playing a sport example_title: Example 3
davej23/distilhubert-finetuned-gtzan
davej23
2023-07-14T20:20:33Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-14T18:19:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4577 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8254 | 1.0 | 113 | 1.8353 | 0.48 | | 1.2492 | 2.0 | 226 | 1.4297 | 0.57 | | 1.0203 | 3.0 | 339 | 0.9814 | 0.69 | | 0.633 | 4.0 | 452 | 0.7345 | 0.83 | | 0.5642 | 5.0 | 565 | 0.6213 | 0.8 | | 0.3219 | 6.0 | 678 | 0.5763 | 0.84 | | 0.1772 | 7.0 | 791 | 0.4850 | 0.86 | | 0.2427 | 8.0 | 904 | 0.4841 | 0.86 | | 0.1397 | 9.0 | 1017 | 0.4760 | 0.86 | | 0.4494 | 10.0 | 1130 | 0.4577 | 0.86 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rachidsaid/videomae-base-finetuned-ucf101-subset
rachidsaid
2023-07-14T20:17:04Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-07-01T18:29:21Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4355 - Accuracy: 0.8516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1351 | 0.26 | 38 | 1.6582 | 0.6286 | | 0.7409 | 1.26 | 76 | 0.8407 | 0.7143 | | 0.4333 | 2.26 | 114 | 0.5107 | 0.8143 | | 0.2766 | 3.23 | 148 | 0.3579 | 0.9143 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
MicroPanda123/PythonBasic
MicroPanda123
2023-07-14T20:15:25Z
4
0
null
[ "text-generation", "license:gpl-2.0", "region:us" ]
text-generation
2023-07-14T13:25:41Z
--- license: gpl-2.0 pipeline_tag: text-generation --- Got bored so used [nanoGPT](https://github.com/karpathy/nanoGPT) to train model on all Python snippets from https://www.kaggle.com/datasets/simiotic/github-code-snippets Model was trained on default train.py settings, except ``` eval_intervals=20 eval_iters=40 batch_size=2 gradient_accumulation_steps = 64 ``` This was because I was training it locally on RTX2060 and did not have enough power to train it on higher settings. Model is stored in "model" folder that contains model itself and "info.txt" file containing: - iter_num - number of iterations - train_loss - training loss at time of checkpoint - val_loss - validation loss at time of checkpoint - config - nanoGPT config At first I made it only save model after validation loss improved, to not allow overfitting, but after some time I decided to risk it and turned that off and allowed it to save everytime, luckly it worked out fine.
roilhi/ppo-LunarLander-v2
roilhi
2023-07-14T20:08:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T20:07:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.00 +/- 24.34 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
akifhasan/sabbur-protogenx3-4
akifhasan
2023-07-14T20:00:14Z
0
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-14T19:55:21Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### sabbur_protogenx3.4 Dreambooth model trained by akifhasan with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
felflare/EasyOCR-weights
felflare
2023-07-14T19:57:55Z
0
0
null
[ "region:us" ]
null
2023-03-29T17:40:39Z
## Port of EasyOCR weights from Jaided AI model Hub These Weights are from Gen 2 of EasyOCR weights **Original weights can be found here - [Jaided AI Model Hub](https://www.jaided.ai/easyocr/modelhub/)** Licensed under [Jaided AI license terms](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE), this is only a port of the weights onto Hugginface model repository for ease of access.
Rui31415/q-FrozenLake-v1-4x4-noSlippery
Rui31415
2023-07-14T19:50:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T19:50:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Rui31415/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
chaojiang06/arXivEdits-intention-classifier-T5-large-fine-grained
chaojiang06
2023-07-14T19:41:54Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "arxiv:2210.15067", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T18:59:20Z
--- tags: - generated_from_trainer model-index: - name: arXivEdits-intention-classifier-T5-large-fine-grained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Checkpoints for [arXivEdits paper](https://arxiv.org/pdf/2210.15067.pdf). Please see more details at the [github repo](https://github.com/chaojiang06/arXivEdits/tree/main). # arXivEdits-intention-classifier-T5-large-fine-grained This model is a fine-tuned version of [tmp/tst-translation355](https://huggingface.co/tmp/tst-translation355) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.11.6
chaojiang06/arXivEdits-intention-classifier-T5-base-fine-grained
chaojiang06
2023-07-14T19:40:52Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "arxiv:2210.15067", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-14T19:12:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: arXivEdits-intention-classifier-T5-base-fine-grained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Checkpoints for [arXivEdits paper](https://arxiv.org/pdf/2210.15067.pdf). Please see more details at the [github repo](https://github.com/chaojiang06/arXivEdits/tree/main). # arXivEdits-intention-classifier-T5-base-fine-grained This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1457 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 105 | 0.3043 | 0.2991 | | No log | 2.0 | 210 | 0.2653 | 0.3311 | | No log | 3.0 | 315 | 0.2475 | 0.4726 | | No log | 4.0 | 420 | 0.1737 | 0.6096 | | 0.5112 | 5.0 | 525 | 0.1660 | 0.6256 | | 0.5112 | 6.0 | 630 | 0.1499 | 0.6575 | | 0.5112 | 7.0 | 735 | 0.1497 | 0.6438 | | 0.5112 | 8.0 | 840 | 0.1457 | 0.6826 | | 0.5112 | 9.0 | 945 | 0.1470 | 0.6781 | | 0.151 | 10.0 | 1050 | 0.1428 | 0.6781 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.11.6
YanJiangJerry/SA-berttweet-large-e6-w2-1-b16-w0.01
YanJiangJerry
2023-07-14T19:35:33Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T18:56:29Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-berttweet-large-e6-w2-1-b16-w0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-berttweet-large-e6-w2-1-b16-w0.01 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4510 - Accuracy: 0.935 - F1: 0.9423 - Precision: 0.9432 - Recall: 0.9415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.2599 | 0.871 | 0.8714 | 0.9954 | 0.7748 | | 0.3039 | 2.0 | 570 | 0.2502 | 0.929 | 0.9371 | 0.9363 | 0.9379 | | 0.3039 | 3.0 | 855 | 0.4228 | 0.923 | 0.9331 | 0.9148 | 0.9521 | | 0.1246 | 4.0 | 1140 | 0.4102 | 0.934 | 0.9414 | 0.9431 | 0.9397 | | 0.1246 | 5.0 | 1425 | 0.4532 | 0.933 | 0.9407 | 0.9398 | 0.9415 | | 0.0379 | 6.0 | 1710 | 0.4510 | 0.935 | 0.9423 | 0.9432 | 0.9415 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
janimo/taxiv3
janimo
2023-07-14T19:24:28Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-14T19:24:25Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiv3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="janimo/taxiv3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
w601sxs/pythia-70m-instruct-orca-chkpt-64000
w601sxs
2023-07-14T19:16:16Z
171
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "dataset:Open-Orca/OpenOrca", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-14T18:39:56Z
--- datasets: - Open-Orca/OpenOrca --- To use, do: ``` from peft import PeftModel, PeftConfig from transformers import AutoTokenizer ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16) peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000" config = PeftConfig.from_pretrained(peft_model_id) model = PeftModel.from_pretrained(ref_model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = model.to('cuda:0') model.eval() inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0] ``` ### Prompt format ``` context: < ... > question: < ... > answer: < ... > ``` For e.g. ``` context: <You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.> question: <Here is some data: The Rice Boat eatType restaurant; The Rice Boat food Fast food; The Rice Boat familyFriendly yes; The Rice Boat near Express by Holiday Inn. Write a sentence that describes this data:> answer: < ```
tanmoy-in/base_model
tanmoy-in
2023-07-14T19:15:39Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:finetune:facebook/opt-350m", "license:other", "region:us" ]
null
2023-07-14T19:02:32Z
--- license: other base_model: facebook/opt-350m tags: - generated_from_trainer model-index: - name: base_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base_model This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 5 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Leon68/opt-6.7b-lora
Leon68
2023-07-14T19:03:58Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-14T19:03:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
YanJiangJerry/SA-roberta-e3-w2-1-b16-w0.01-data2
YanJiangJerry
2023-07-14T18:53:37Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-14T18:22:38Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SA-roberta-e3-w2-1-b16-w0.01-data2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SA-roberta-e3-w2-1-b16-w0.01-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5272 - Accuracy: 0.9032 - F1: 0.8664 - Precision: 0.8924 - Recall: 0.8418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2717 | 1.0 | 581 | 0.3400 | 0.9132 | 0.8811 | 0.9003 | 0.8627 | | 0.1102 | 2.0 | 1162 | 0.5082 | 0.9021 | 0.8706 | 0.8580 | 0.8836 | | 0.0525 | 3.0 | 1743 | 0.5272 | 0.9032 | 0.8664 | 0.8924 | 0.8418 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3