modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-22 00:45:16
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
570 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-22 00:43:28
card
stringlengths
11
1.01M
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e0_s55555_v4_l4_v100
KingKazma
2023-08-13T20:45:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:03:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s55555_v4_l5_v50
KingKazma
2023-08-13T20:45:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:12:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
nerijs/lego-minifig-xl
nerijs
2023-08-13T20:43:31Z
599
35
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:apache-2.0", "region:us" ]
text-to-image
2023-08-13T20:36:32Z
--- license: apache-2.0 tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: lego minifig widget: - text: lego minifig of a samurai --- # LEGO Minifig XL ## Consider supporting further research on [Patreon](https://www.patreon.com/user?u=29466374) or [Twitter](https://twitter.com/nerijs) ![optimized_3x3_grid_image.png](https://cdn-uploads.huggingface.co/production/uploads/6303f37c3926de1f7ec42d3e/G5BiY__jBidXBWfK1m30w.png) ### Tips: - Prompt with "lego minifig of a $SUBJECT"- - Works best at 1024x1024, if you go higher than that will be non-standard size minifigs - Best used at 0.8 strength - You can use it for lego items or animals, just remove the "minifig" from the prompt ### Limitations - Tends to add items to the minifigs, will be fixed on v2
bigmorning/whisper_charsplit_new_round2__0055
bigmorning
2023-08-13T20:40:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:40:05Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0055 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0055 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Train Accuracy: 0.0795 - Train Wermet: 7.7408 - Validation Loss: 0.5661 - Validation Accuracy: 0.0769 - Validation Wermet: 7.1664 - Epoch: 54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | | 0.0021 | 0.0795 | 7.8370 | 0.5680 | 0.0768 | 7.0030 | 53 | | 0.0014 | 0.0795 | 7.7408 | 0.5661 | 0.0769 | 7.1664 | 54 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e5_s55555_v4_l4_v100
KingKazma
2023-08-13T20:40:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:40:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e0_s55555_v4_l5_v50
KingKazma
2023-08-13T20:37:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:04:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e-1_s55555_v4_l4_v100
KingKazma
2023-08-13T20:36:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:54:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0054
bigmorning
2023-08-13T20:35:53Z
58
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:35:47Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0054 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0054 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0021 - Train Accuracy: 0.0795 - Train Wermet: 7.8370 - Validation Loss: 0.5680 - Validation Accuracy: 0.0768 - Validation Wermet: 7.0030 - Epoch: 53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | | 0.0021 | 0.0795 | 7.8370 | 0.5680 | 0.0768 | 7.0030 | 53 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e8_s108_v4_l4_v100
KingKazma
2023-08-13T20:31:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:31:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e7_s108_v4_l4_v100
KingKazma
2023-08-13T20:24:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:24:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0051
bigmorning
2023-08-13T20:22:48Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:22:41Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0051 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0051 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0014 - Train Accuracy: 0.0795 - Train Wermet: 8.2875 - Validation Loss: 0.5658 - Validation Accuracy: 0.0768 - Validation Wermet: 7.5768 - Epoch: 50 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e2_s55555_v4_l4_v100
KingKazma
2023-08-13T20:19:21Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:19:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0050
bigmorning
2023-08-13T20:18:38Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:18:18Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0006 - Train Accuracy: 0.0795 - Train Wermet: 8.0561 - Validation Loss: 0.5729 - Validation Accuracy: 0.0767 - Validation Wermet: 7.4189 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e6_s108_v4_l4_v100
KingKazma
2023-08-13T20:18:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:22:24Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e9_s108_v4_l4_v100
KingKazma
2023-08-13T20:13:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:13:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e0_s55555_v4_l4_v100
KingKazma
2023-08-13T20:05:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:05:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
redstonehero/lofi_v3
redstonehero
2023-08-13T20:05:07Z
32
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:40:18Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/m4rv3lsdungeonsv40
redstonehero
2023-08-13T20:05:01Z
5
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:43:05Z
--- license: creativeml-openrail-m library_name: diffusers ---
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e8_s108_v4_l4_v100
KingKazma
2023-08-13T20:04:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:04:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
JapGuy/MichalHruza_V1_1000Epochs_RVC_v2
JapGuy
2023-08-13T20:04:01Z
0
0
null
[ "music", "rvc", "michal", "hruza", "model", "audio-to-audio", "cs", "license:openrail", "region:us" ]
audio-to-audio
2023-08-13T19:57:52Z
--- license: openrail language: - cs pipeline_tag: audio-to-audio tags: - music - rvc - michal - hruza - model --- ![image.png](https://i.scdn.co/image/ab6761610000e5eb88c7a16ec398bbe6e7b90538) # Michal Hrůza [CZ] (v1) # 1000 Epochs - RVC V2 - mangio-creep - 64 Hop Length Trained on 14 minutes of isolated acapellas using UVR (Voc FT + Reverb HQ) + Audacity to remove parts with double vocals and vocals from others (+Noise Gate)
Ridhto/TomatsuHaruka
Ridhto
2023-08-13T20:03:25Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-04T07:26:17Z
--- license: creativeml-openrail-m ---
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e3_s108_v4_l4_v100
KingKazma
2023-08-13T19:57:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:01:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0044
bigmorning
2023-08-13T19:52:02Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:51:54Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0044 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0044 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 7.9155 - Validation Loss: 0.5752 - Validation Accuracy: 0.0769 - Validation Wermet: 6.4900 - Epoch: 43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
s3nh/flozi00-Llama-2-13B-german-assistant-v3-GGML
s3nh
2023-08-13T19:51:57Z
0
0
transformers
[ "transformers", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T19:51:56Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/Photolens/OpenOrcaxOpenChat-2-13b-langchain-chat). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T19:51:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:54:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
sherif1311/flan-t5-base-tobacco_intent
sherif1311
2023-08-13T19:51:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T17:57:41Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - f1 model-index: - name: flan-t5-base-tobacco_intent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-tobacco_intent This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - F1: 100.0 - Gen Len: 2.3333 ## Model description Use double quotation for any tweet. 0: Anti-tobacco 1: Neutral 2: Pro-tobacco ## Intended uses & limitations That model has been developed to monitor anti-tobacco and pro-tobacco intent in social media ## Training and evaluation data The model was developed and fine tuned in STOP, University of Bath, UK Data used is sherif1311/intend which was collected, augmented and trained by STOP ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.4 - Tokenizers 0.12.1
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e9_s108_v4_l5_v50
KingKazma
2023-08-13T19:47:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:47:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e6_s108_v4_l4_v100
KingKazma
2023-08-13T19:46:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:46:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e8_s108_v4_l5_v50
KingKazma
2023-08-13T19:40:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:40:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0041
bigmorning
2023-08-13T19:38:44Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:38:36Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0041 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0041 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 8.1912 - Validation Loss: 0.5632 - Validation Accuracy: 0.0770 - Validation Wermet: 7.1929 - Epoch: 40 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e5_s108_v4_l4_v100
KingKazma
2023-08-13T19:37:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:37:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e0_s108_v4_l4_v100
KingKazma
2023-08-13T19:37:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:40:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
shreyasdatar/distilbert-base-uncased-finetuned-imdb
shreyasdatar
2023-08-13T19:35:06Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:tweet_eval", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-19T14:09:37Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - tweet_eval model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 3.1620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6538 | 1.0 | 149 | 3.3045 | | 3.3379 | 2.0 | 298 | 3.1949 | | 3.2875 | 3.0 | 447 | 3.1166 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e7_s108_v4_l4_v100
KingKazma
2023-08-13T19:33:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:33:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e7_s108_v4_l5_v50
KingKazma
2023-08-13T19:33:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:33:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e-1_s108_v4_l4_v100
KingKazma
2023-08-13T19:31:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:33:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e4_s108_v4_l4_v100
KingKazma
2023-08-13T19:29:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:29:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KnutJaegersberg/Galactica-120B-GPTQ-2-bit-64g
KnutJaegersberg
2023-08-13T19:27:04Z
5
3
transformers
[ "transformers", "opt", "text-generation", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T11:23:27Z
--- license: cc-by-4.0 --- Experimental quantization. Working inference code (regular inference with autogptq does not work without return_token_type_ids=False, didn't get it to work with textgen-webui): from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from transformers import AutoTokenizer, TextGenerationPipeline tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False) input_ids = tokenizer("Question: What is the purpose of life?\n\nAnswer:", return_tensors="pt").input_ids.to("cuda:0") out = model.generate(input_ids=input_ids,max_length=300) print(tokenizer.decode(out[0])) or print(tokenizer.decode(model.generate(**tokenizer("test is", return_tensors="pt", return_token_type_ids=False).to("cuda:0"))[0]))
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e6_s108_v4_l4_v100
KingKazma
2023-08-13T19:27:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:27:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0037
bigmorning
2023-08-13T19:21:21Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:21:12Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0037 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0037 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0018 - Train Accuracy: 0.0795 - Train Wermet: 8.4062 - Validation Loss: 0.5713 - Validation Accuracy: 0.0768 - Validation Wermet: 7.2127 - Epoch: 36 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e3_s108_v4_l4_v100
KingKazma
2023-08-13T19:20:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:20:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e5_s108_v4_l4_v100
KingKazma
2023-08-13T19:20:07Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:20:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e5_s108_v4_l5_v50
KingKazma
2023-08-13T19:18:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:18:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e4_s108_v4_l4_v100
KingKazma
2023-08-13T19:13:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:13:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T19:11:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:11:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e4_s108_v4_l5_v50
KingKazma
2023-08-13T19:11:09Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:11:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0034
bigmorning
2023-08-13T19:08:13Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:08:05Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0034 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0034 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 8.2728 - Validation Loss: 0.5669 - Validation Accuracy: 0.0768 - Validation Wermet: 7.1451 - Epoch: 33 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e3_s108_v4_l5_v50
KingKazma
2023-08-13T19:03:49Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:03:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0033
bigmorning
2023-08-13T19:03:48Z
55
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:03:41Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0033 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0033 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 8.4768 - Validation Loss: 0.5611 - Validation Accuracy: 0.0769 - Validation Wermet: 7.6392 - Epoch: 32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round2__0032
bigmorning
2023-08-13T18:59:27Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:59:19Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0032 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0032 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 8.6037 - Validation Loss: 0.5715 - Validation Accuracy: 0.0767 - Validation Wermet: 7.6157 - Epoch: 31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e0_s108_v4_l4_v100
KingKazma
2023-08-13T18:53:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:46:10Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s108_v4_l5_v50
KingKazma
2023-08-13T18:49:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:50:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
mani05/dqn-SpaceInvadersNoFrameskip-v4
mani05
2023-08-13T18:48:49Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T18:48:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 649.00 +/- 125.61 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mani05 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mani05 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mani05 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Campqt/ppo-Huggy
Campqt
2023-08-13T18:47:09Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-13T18:47:03Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Campqt/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e0_s108_v4_l4_v100
KingKazma
2023-08-13T18:45:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:06:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e0_s108_v4_l5_v50
KingKazma
2023-08-13T18:41:53Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:43:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0027
bigmorning
2023-08-13T18:37:27Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:37:20Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0027 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0027 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0011 - Train Accuracy: 0.0795 - Train Wermet: 8.4237 - Validation Loss: 0.5710 - Validation Accuracy: 0.0768 - Validation Wermet: 7.4035 - Epoch: 26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e-1_s108_v4_l5_v50
KingKazma
2023-08-13T18:34:32Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:35:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KemalHal/whisper-base-bosnian-google
KemalHal
2023-08-13T18:29:56Z
78
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "bs", "dataset:google/fleurs", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-11T15:15:09Z
--- datasets: - google/fleurs language: - bs metrics: - wer pipeline_tag: automatic-speech-recognition --- Ovaj model je Fine-Tuned verzija Whisper AI base modela na Bosanskom jeziku. Dataset koristen je google/fleurs bs_ba.
josephamess/llama-2-7b-ExtraData-v2
josephamess
2023-08-13T18:24:51Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:36:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
charliezjw/t2
charliezjw
2023-08-13T18:20:49Z
0
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-13T17:48:17Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - charliezjw/t2 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Jiuzhouh/alpaca-lora-amr-parsing-llama-7b
Jiuzhouh
2023-08-13T18:19:45Z
4
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:19:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
CyberHarem/kirsten_arknights
CyberHarem
2023-08-13T18:18:54Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/kirsten_arknights", "license:mit", "region:us" ]
text-to-image
2023-08-13T18:15:08Z
--- license: mit datasets: - CyberHarem/kirsten_arknights pipeline_tag: text-to-image tags: - art --- # Lora of kirsten_arknights This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/kirsten_arknights.pt` as the embedding and `1500/kirsten_arknights.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `kirsten_arknights`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/kirsten_arknights.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/kirsten_arknights.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/kirsten_arknights.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/kirsten_arknights.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/kirsten_arknights.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/kirsten_arknights.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/kirsten_arknights.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/kirsten_arknights.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/kirsten_arknights.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/kirsten_arknights.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/kirsten_arknights.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/kirsten_arknights.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/kirsten_arknights.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/kirsten_arknights.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/kirsten_arknights.zip) |
bigmorning/whisper_charsplit_new_round2__0021
bigmorning
2023-08-13T18:11:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:11:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0021 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0021 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0058 - Train Accuracy: 0.0794 - Train Wermet: 8.8460 - Validation Loss: 0.5706 - Validation Accuracy: 0.0766 - Validation Wermet: 7.4342 - Epoch: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s55555_v4_l4_v100
KingKazma
2023-08-13T18:01:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:01:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e5_s55555_v4_l4_v100
KingKazma
2023-08-13T17:53:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:53:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e9_s108_v4_l4_v100
KingKazma
2023-08-13T17:42:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:41:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0013
bigmorning
2023-08-13T17:35:54Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:35:47Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0013 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0013 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 9.2292 - Validation Loss: 0.5687 - Validation Accuracy: 0.0767 - Validation Wermet: 8.5576 - Epoch: 12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
josephamess/llama-2-7b-ExtraData
josephamess
2023-08-13T17:35:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-12T19:49:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e8_s108_v4_l4_v100
KingKazma
2023-08-13T17:33:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:33:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e9_s55555_v4_l4_r4
KingKazma
2023-08-13T17:29:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:29:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
LarryAIDraw/raiden_shogun
LarryAIDraw
2023-08-13T17:27:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-13T17:22:03Z
--- license: creativeml-openrail-m --- https://civitai.com/models/127435/raiden-shogun-my-birthday-special-or-goofy-ai
bigmorning/whisper_charsplit_new_round2__0011
bigmorning
2023-08-13T17:27:17Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:27:08Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0011 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0011 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 9.3749 - Validation Loss: 0.5552 - Validation Accuracy: 0.0768 - Validation Wermet: 8.0800 - Epoch: 10 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round2__0010
bigmorning
2023-08-13T17:22:53Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:22:45Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0011 - Train Accuracy: 0.0795 - Train Wermet: 8.9730 - Validation Loss: 0.5605 - Validation Accuracy: 0.0767 - Validation Wermet: 8.3958 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e6_s108_v4_l4_v100
KingKazma
2023-08-13T17:16:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:16:02Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e7_s55555_v4_l4_r4
KingKazma
2023-08-13T17:15:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:15:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0008
bigmorning
2023-08-13T17:14:11Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:14:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0008 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0008 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0037 - Train Accuracy: 0.0795 - Train Wermet: 9.3428 - Validation Loss: 0.5717 - Validation Accuracy: 0.0764 - Validation Wermet: 8.2631 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e0_s55555_v4_l4_v100
KingKazma
2023-08-13T17:10:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:10:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0007
bigmorning
2023-08-13T17:09:49Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:09:41Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0007 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0007 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 8.7510 - Validation Loss: 0.5642 - Validation Accuracy: 0.0766 - Validation Wermet: 7.9083 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e5_s108_v4_l4_v100
KingKazma
2023-08-13T17:07:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:07:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0006
bigmorning
2023-08-13T17:05:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T17:05:17Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0006 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0006 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0012 - Train Accuracy: 0.0795 - Train Wermet: 8.8862 - Validation Loss: 0.5667 - Validation Accuracy: 0.0767 - Validation Wermet: 8.2913 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
jiaqixuac/controlnet_training
jiaqixuac
2023-08-13T17:05:05Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-13T14:21:44Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-jiaqixuac/controlnet_training These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e3_s55555_v4_l4_r2
KingKazma
2023-08-13T17:02:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:02:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
DveloperY0115/pokemon-lora
DveloperY0115
2023-08-13T16:55:41Z
4
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-13T13:46:41Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - DveloperY0115/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
bigmorning/whisper_charsplit_new_round2__0003
bigmorning
2023-08-13T16:52:03Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:51:56Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0003 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0003 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0025 - Train Accuracy: 0.0795 - Train Wermet: 8.7338 - Validation Loss: 0.5673 - Validation Accuracy: 0.0765 - Validation Wermet: 8.3770 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
jsnbuchanan/segformer-b0-scene-parse-150
jsnbuchanan
2023-08-13T16:50:58Z
31
0
transformers
[ "transformers", "pytorch", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-08-01T20:37:16Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.5716 - Mean Iou: 0.0039 - Mean Accuracy: 0.0219 - Overall Accuracy: 0.1398 - Per Category Iou: [0.1424604255351693, 0.0028172808510882213, 0.009342676914231785, 0.0, 0.0, 0.02331811292704824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] - Per Category Accuracy: [0.9514506078251098, 0.0028769356391743226, 0.00966095515858549, 0.0, 0.0, 0.045009037210949, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.8633 | 1.0 | 20 | 4.8626 | 0.0009 | 0.0023 | 0.0067 | [0.0, 0.0004889263991152761, 0.0, 0.0, 0.0, 0.0, 0.03284478144986514, 0.0, 0.0, 0.014472940861907617, 0.0, 0.0009606283639651349, 0.0, 0.001090056864633105, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0033905507210453163, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.011123126834543489, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan] | [0.0, 0.0004916838121884905, 0.0, 0.0, 0.0, 0.0, 0.05156049842785606, 0.0, 0.0, 0.02758031245634076, 0.0, 0.002084802403654536, 0.0, 0.0011670427137633237, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.003448710560437977, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.02041973908111174, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.8081 | 2.0 | 40 | 4.6105 | 0.0014 | 0.0050 | 0.0207 | [0.0014870097866647892, 0.00010797969981643452, 0.0, 0.0, 0.0, 0.005608097195054107, 0.06877789289425044, 0.0, 0.0, 0.012758644335110486, 0.0, 0.0, 0.0, 0.0023358985966500678, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0030744981206588954, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan] | [0.0014982803827425341, 0.0001082875062557985, 0.0, 0.0, 0.0, 0.005822945199098142, 0.19299522534063118, 0.0, 0.0, 0.024465610900633625, 0.0, 0.0, 0.0, 0.002509141834591146, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.00319658550641118, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.6722 | 3.0 | 60 | 4.3976 | 0.0024 | 0.0122 | 0.0530 | [0.025172656541163803, 0.0010250959756997078, 0.0, 0.00034731034851257663, 0.0, 0.01513758223102497, 0.08697308653455893, 0.0, 0.0, 0.018849001504380403, 0.0, 0.0, 0.0, 0.002455752600466593, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0010695187165775401, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan] | [0.031049590810546986, 0.001033121343467483, 0.0, 0.0003484413948377067, 0.0, 0.01993776436171204, 0.465229832471011, 0.0, 0.0, 0.042011489057453506, 0.0, 0.0, 0.0, 0.0027230996654477556, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0010805359458291313, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.3876 | 4.0 | 80 | 4.1595 | 0.0032 | 0.0120 | 0.0594 | [0.07854437258265586, 0.002560575118273506, 0.0, 0.0, 0.0, 0.001192829675600377, 0.0810610478529872, 0.0, 0.0, 0.014937473673721733, 0.0, 0.0, 0.0, 0.005779474740910093, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan] | [0.16734486555203687, 0.0026310937330800773, 0.0, 0.0, 0.0, 0.001332289861553655, 0.3434053136801477, 0.0, 0.0, 0.027103656281588746, 0.0, 0.0, 0.0, 0.009686454524235588, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.5927 | 5.0 | 100 | 4.1201 | 0.0038 | 0.0139 | 0.0738 | [0.10272745389575265, 5.808145343029064e-06, 0.0011583054074428688, 0.0, 0.0, 0.004795549066148129, 0.07399210984610646, 0.0, 0.0, 0.021106484070283166, 0.0, 0.0, 0.0, 0.004504373601464648, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.31741694191893394, 5.853378716529649e-06, 0.0011806276115426681, 0.0, 0.0, 0.00645648163676002, 0.2597614333959973, 0.0, 0.0, 0.0499420616201379, 0.0, 0.0, 0.0, 0.006029720687777173, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6357 | 6.0 | 120 | 3.8936 | 0.0031 | 0.0183 | 0.1193 | [0.13782355615369993, 0.00012947106753210882, 0.0020724837921139334, 0.0, 0.0, 0.002555414284014255, 0.00625454345947577, 0.0, 0.0, 0.0021069049880189433, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8250104993132882, 0.0001317010211219171, 0.002187386073641998, 0.0, 0.0, 0.0038012186259712673, 0.0075862183699612375, 0.0, 0.0, 0.0027531003196883653, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.9752 | 7.0 | 140 | 3.7886 | 0.0046 | 0.0208 | 0.1099 | [0.12970556062622363, 0.02142529574722971, 0.015682682019160826, 0.0, 0.0, 0.046496050677108665, 0.011263870769586333, 0.0, 0.0, 7.157683773530885e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.6339173221643342, 0.026799694453630996, 0.017715022855380128, 0.0, 0.0, 0.2645107794361526, 0.01540534695303532, 0.0, 0.0, 8.218209909517509e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.3363 | 8.0 | 160 | 3.7281 | 0.0044 | 0.0211 | 0.1287 | [0.13844309203854324, 0.006048050986190329, 0.03636386971467197, 0.0, 0.0, 0.029408017788998847, 0.00848082968593638, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8096133982588166, 0.006476763549840056, 0.047673799040915336, 0.0, 0.0, 0.09462984701958373, 0.010468482257232695, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 4.0164 | 9.0 | 180 | 3.7593 | 0.0058 | 0.0207 | 0.1113 | [0.1257575586728653, 0.031513436815826704, 0.04777990089072147, 0.0, 1.3152702880441932e-05, 0.04167081950119985, 0.042454800300151495, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.5380103517553717, 0.04309550080044954, 0.06794918533890462, 0.0, 1.6288501946475982e-05, 0.20255464251774832, 0.09977291254221497, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5911 | 10.0 | 200 | 3.4747 | 0.0045 | 0.0213 | 0.1331 | [0.1420633887795078, 0.015648167497586848, 0.018910536514932744, 0.0, 0.0, 0.024232767348835664, 0.007368267428066774, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8642552297930784, 0.018408876063485746, 0.022330968338988753, 0.0, 0.0, 0.0680119999254663, 0.008189289457485567, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6199 | 11.0 | 220 | 3.5161 | 0.0043 | 0.0210 | 0.1347 | [0.14182326280462046, 0.005032394655020479, 0.028134080245829304, 0.0, 0.0, 0.014572871324844493, 0.013168143969916734, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8793316761444252, 0.005314867874608921, 0.037280910849995796, 0.0, 0.0, 0.029226526543313397, 0.016312033139796036, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6997 | 12.0 | 240 | 3.4768 | 0.0032 | 0.0217 | 0.1424 | [0.14365582667494992, 0.0001899779333323591, 0.00036495363737125246, 0.0, 0.0, 0.0013590921597892156, 0.0009173402092527396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9941061962974314, 0.0001902348082872136, 0.0003785860512072689, 0.0, 0.0, 0.0015186241079247955, 0.0009233226305544927, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.8775 | 13.0 | 260 | 3.4909 | 0.0034 | 0.0215 | 0.1412 | [0.14366726677393113, 0.0, 0.00935392023848197, 0.0, 0.0, 0.002252103613265138, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9757607745655554, 0.0, 0.01098179982613085, 0.0, 0.0, 0.0025434624629660685, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6896 | 14.0 | 280 | 3.4944 | 0.0032 | 0.0216 | 0.1419 | [0.14372170627530323, 0.0, 0.0026556544494494754, 0.0, 0.0, 0.0026339040125360493, 5.807995950997109e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9887260076503105, 0.0, 0.002880058330295297, 0.0, 0.0, 0.002944081092664021, 5.822755327821125e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5723 | 15.0 | 300 | 3.4798 | 0.0033 | 0.0216 | 0.1420 | [0.14360235216056103, 0.0, 0.005107262858619798, 0.0, 0.0, 0.0031149607580008946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.986302652637314, 0.0, 0.005541378053226394, 0.0, 0.0, 0.0035683008180073415, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7581 | 16.0 | 320 | 3.5572 | 0.0037 | 0.0217 | 0.1428 | [0.14338450814233764, 0.0, 0.023961774556760896, 0.0, 0.0, 0.0016283550899666187, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9689248703192926, 0.0, 0.029392299279284332, 0.0, 0.0, 0.001677008217340265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5605 | 17.0 | 340 | 3.4733 | 0.0035 | 0.0217 | 0.1426 | [0.14333996536268165, 5.851409311932779e-06, 0.015588103385475387, 0.0, 0.0, 0.0036605352700892673, 2.4902258634858183e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9784338429756756, 5.853378716529649e-06, 0.017642109986258727, 0.0, 0.0, 0.004099353420165092, 2.4954665690661966e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7163 | 18.0 | 360 | 3.5516 | 0.0036 | 0.0217 | 0.1420 | [0.1431641368804744, 1.7551198308064484e-05, 0.017346049550404807, 0.0, 0.0, 0.006382572138352761, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9707466430574, 1.7560136149588946e-05, 0.019983734821503688, 0.0, 0.0, 0.007779454785995118, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2231 | 19.0 | 380 | 3.5751 | 0.0051 | 0.0222 | 0.1352 | [0.14144860113740007, 0.003382545372614381, 0.05970141064540731, 0.0, 0.0, 0.03208762207850171, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.8172324945233311, 0.003427153238528109, 0.0915421071819176, 0.0, 0.0, 0.1078409450872976, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7188 | 20.0 | 400 | 3.4891 | 0.0042 | 0.0218 | 0.1394 | [0.14279628860196056, 0.00783605754787311, 0.023641167287138224, 0.0, 0.0, 0.019599678095523283, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9274525828310689, 0.00824448392223201, 0.02760312964468998, 0.0, 0.0, 0.03902770790243539, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6156 | 21.0 | 420 | 3.5195 | 0.0039 | 0.0218 | 0.1430 | [0.1431243377907112, 0.003771829965220418, 0.028600253499599246, 0.0, 0.0, 0.003834416457157314, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9602076026378815, 0.003869083331626098, 0.03442328724866093, 0.0, 0.0, 0.004518605474500158, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7812 | 22.0 | 440 | 3.5044 | 0.0034 | 0.0218 | 0.1431 | [0.14375063548866288, 0.003941135854106936, 0.008966284779050737, 0.0, 0.0, 0.0008825520320117902, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9869070725644431, 0.004059318139913311, 0.00960206399506436, 0.0, 0.0, 0.0009596213688113738, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.9414 | 23.0 | 460 | 3.6536 | 0.0031 | 0.0217 | 0.1430 | [0.1433341827741543, 0.0009574223513012504, 1.945649666321082e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9991458666757471, 0.0009628807988691273, 1.9630387840376903e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3775 | 24.0 | 480 | 3.5794 | 0.0031 | 0.0217 | 0.1429 | [0.14339061919565174, 0.0004489089181295073, 0.0005344750160480256, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9989443933667042, 0.00045071016117278296, 0.0005440421772904456, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7282 | 25.0 | 500 | 4.1077 | 0.0031 | 0.0217 | 0.1430 | [0.14301211156076965, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9999744611298396, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2262 | 26.0 | 520 | 4.1736 | 0.0031 | 0.0217 | 0.1430 | [0.1429770208690924, 0.00013157471543312935, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9998581173879979, 0.0001317010211219171, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3175 | 27.0 | 540 | 4.0696 | 0.0031 | 0.0217 | 0.1430 | [0.143028637658645, 0.0009629118921073225, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9990578994563059, 0.0009687341775856569, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8936 | 28.0 | 560 | 4.5036 | 0.0031 | 0.0217 | 0.1430 | [0.14297076727730323, 0.0002453013117779673, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9997531242551163, 0.00024584190609424527, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7712 | 29.0 | 580 | 4.0164 | 0.0031 | 0.0217 | 0.1429 | [0.14297121162029977, 0.0007422241109319424, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9989103415398236, 0.0007463057863575303, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0557 | 30.0 | 600 | 4.2748 | 0.0031 | 0.0217 | 0.1429 | [0.14303412843917407, 0.0003856052395572551, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9988961532786234, 0.00038632299529095683, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3498 | 31.0 | 620 | 4.4146 | 0.0031 | 0.0216 | 0.1423 | [0.14290109320524125, 0.0001608060182383262, 0.0, 0.0, 0.0, 0.0005434010215939206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9951334264083268, 0.00016096791470456535, 0.0, 0.0, 0.0, 0.0006055863007062068, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6119 | 32.0 | 640 | 4.1771 | 0.0031 | 0.0217 | 0.1425 | [0.14301796804098232, 0.00011991109031352363, 0.0, 0.0, 0.0, 2.5596614421132564e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9967650764463514, 0.00011999426368885781, 0.0, 0.0, 0.0, 2.7950136955671083e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2928 | 33.0 | 660 | 4.2533 | 0.0031 | 0.0217 | 0.1426 | [0.1430651199052239, 0.0, 0.0, 0.0, 0.0, 0.0005383649088625119, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9971878866301177, 0.0, 0.0, 0.0, 0.0, 0.0005869528760690928, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.9388 | 34.0 | 680 | 4.4678 | 0.0031 | 0.0217 | 0.1424 | [0.14302521070021848, 8.777165326686094e-06, 0.0, 0.0, 0.0, 0.00013477429517255322, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9962911885222642, 8.780068074794473e-06, 0.0, 0.0, 0.0, 0.00014906739709691244, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0637 | 35.0 | 700 | 4.3135 | 0.0032 | 0.0216 | 0.1418 | [0.1429503635871641, 0.00015791597700275475, 1.398789208061502e-05, 0.0, 0.0, 0.0028473543966501713, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9908826233527429, 0.00015804122534630053, 1.4021705600269217e-05, 0.0, 0.0, 0.0034844504071403284, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8097 | 36.0 | 720 | 4.5076 | 0.0033 | 0.0215 | 0.1403 | [0.14292913158156023, 0.0009571919257359143, 6.428765090128491e-05, 0.0, 0.0, 0.008040658872532778, 0.00016170025747656383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9762885778822034, 0.0009599541095108625, 6.44998457612384e-05, 0.0, 0.0, 0.012661412040919001, 0.00016220532698930278, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.5005 | 37.0 | 740 | 4.9189 | 0.0032 | 0.0216 | 0.1416 | [0.14321751517531003, 0.0011148109769586326, 3.077732326821598e-05, 0.0, 0.0, 0.002581131431496914, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9885330472979875, 0.0011209220242154277, 3.0847752320592275e-05, 0.0, 0.0, 0.003381966571636201, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3499 | 38.0 | 760 | 4.8759 | 0.0037 | 0.0216 | 0.1383 | [0.14275769206892197, 0.00015486525262029086, 0.008065831982682663, 0.0, 0.0, 0.018616346885301328, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9461782499631105, 0.0001551145359880357, 0.0083176757620797, 0.0, 0.0, 0.041040117763243705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0865 | 39.0 | 780 | 3.8349 | 0.0041 | 0.0219 | 0.1405 | [0.14317728070866245, 0.0019387900438625815, 0.0272595934506007, 0.0, 0.0, 0.01595177221476263, 0.0019825804723817746, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9389535873599618, 0.001952101801962638, 0.030160688746179085, 0.0, 0.0, 0.03231967503307433, 0.0020629190304280558, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.4726 | 40.0 | 800 | 3.9250 | 0.0037 | 0.0216 | 0.1400 | [0.14244053050451713, 0.0022596513184196345, 0.012475440730295781, 0.0, 0.0, 0.013494958163484231, 0.000710175687780943, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9559227477554171, 0.002282817699446563, 0.013087860007291287, 0.0, 0.0, 0.02344084819348948, 0.0007320035269260843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.0128 | 41.0 | 820 | 4.4055 | 0.0033 | 0.0215 | 0.1403 | [0.14267630712423943, 0.0006876557059397718, 0.002249988165285022, 0.0, 0.0, 0.008327223523661356, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9745434217545771, 0.0006906986885504985, 0.0022659076250035053, 0.0, 0.0, 0.013015447109024168, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.1359 | 42.0 | 840 | 4.3485 | 0.0032 | 0.0215 | 0.1409 | [0.1428689296917672, 0.00043785776628320057, 0.000735403087574484, 0.0, 0.0, 0.004521202653144983, 4.1517204729639965e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9827243731626202, 0.00043900340373972366, 0.0007375417145741608, 0.0, 0.0, 0.00636331451357445, 4.159110948443661e-06, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.3446 | 43.0 | 860 | 4.1294 | 0.0033 | 0.0216 | 0.1415 | [0.14297466923456498, 0.0010833321199237007, 0.0038991084994498782, 0.0, 0.0, 0.0033002377289889527, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9833543319599096, 0.0010887284412745147, 0.003965338343756134, 0.0, 0.0, 0.004397488214358917, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7443 | 44.0 | 880 | 4.2309 | 0.0034 | 0.0215 | 0.1398 | [0.14257015931769873, 0.0010936527419852125, 0.004274154927043165, 0.0, 0.0, 0.010032222702056273, 4.527177469472419e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9670633704498246, 0.001100435198707574, 0.004329902689363134, 0.0, 0.0, 0.016881882721225334, 4.575022043288027e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.8209 | 45.0 | 900 | 4.4797 | 0.0033 | 0.0215 | 0.1407 | [0.14293897407373585, 0.001303224682901344, 0.002799500704740247, 0.0, 0.0, 0.006579395289821434, 2.0683977777134275e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9771739253810967, 0.0013140835218609062, 0.0028239715078942204, 0.0, 0.0, 0.00990366519462612, 2.0795554742218304e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.9059 | 46.0 | 920 | 4.5053 | 0.0040 | 0.0220 | 0.1364 | [0.14228787838186308, 0.0013217808522283945, 0.007278362518756201, 0.0, 0.0, 0.030787987593700387, 6.171544243800683e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9191155605498235, 0.0013287169686522302, 0.007467960402703385, 0.0, 0.0, 0.0856392196321762, 6.238666422665492e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.2262 | 47.0 | 940 | 5.3410 | 0.0039 | 0.0219 | 0.1365 | [0.1423258178089665, 0.003478698692055064, 0.0075020785926833535, 0.0, 0.0, 0.02704553235193427, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9217006617405024, 0.0035588542596500265, 0.007692307692307693, 0.0, 0.0, 0.07286600704343452, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 2.7618 | 48.0 | 960 | 5.0946 | 0.0038 | 0.0218 | 0.1373 | [0.1426949704126623, 0.0032438673758399044, 0.0051523797709134515, 0.0, 0.0, 0.023948251838033993, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.93417498098773, 0.0033217924216305756, 0.005241313553380633, 0.0, 0.0, 0.05908658952428867, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.7284 | 49.0 | 980 | 4.0830 | 0.0043 | 0.0221 | 0.1373 | [0.14283896315255537, 0.0034238556212341873, 0.024018439121225456, 0.0, 0.0, 0.029172219275206687, 0.0002549698559831555, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9045640798628847, 0.0035091005405595245, 0.026329958776185537, 0.0, 0.0, 0.08402742840106583, 0.00025786487880350697, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | | 3.6351 | 50.0 | 1000 | 4.5716 | 0.0039 | 0.0219 | 0.1398 | [0.1424604255351693, 0.0028172808510882213, 0.009342676914231785, 0.0, 0.0, 0.02331811292704824, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | [0.9514506078251098, 0.0028769356391743226, 0.00966095515858549, 0.0, 0.0, 0.045009037210949, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan] | ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.0.dev20230812 - Datasets 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e3_s108_v4_l4_v100
KingKazma
2023-08-13T16:50:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:50:05Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e3_s55555_v4_l4_r4
KingKazma
2023-08-13T16:48:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:48:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0002
bigmorning
2023-08-13T16:47:41Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:47:33Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0002 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0002 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0013 - Train Accuracy: 0.0795 - Train Wermet: 8.9468 - Validation Loss: 0.5652 - Validation Accuracy: 0.0766 - Validation Wermet: 8.3360 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e1_s55555_v4_l4_r2
KingKazma
2023-08-13T16:47:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:47:33Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e2_s108_v4_l4_v100
KingKazma
2023-08-13T16:41:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:41:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e2_s55555_v4_l4_r4
KingKazma
2023-08-13T16:41:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:41:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e0_s55555_v4_l4_r2
KingKazma
2023-08-13T16:40:15Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:40:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e1_s55555_v4_l4_r4
KingKazma
2023-08-13T16:34:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:34:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e1_s108_v4_l4_v100
KingKazma
2023-08-13T16:32:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:32:49Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
digicazter/wav2vec2-base-timit-demo-google-colab
digicazter
2023-08-13T16:32:43Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-07T03:20:25Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0392 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.2993 | 8.0 | 200 | 3.0327 | 1.0 | | 3.0806 | 16.0 | 400 | 3.0476 | 1.0 | | 3.0219 | 24.0 | 600 | 3.0472 | 1.0 | | 3.0179 | 32.0 | 800 | 3.0435 | 1.0 | | 3.0157 | 40.0 | 1000 | 3.0546 | 1.0 | | 3.0146 | 48.0 | 1200 | 3.0484 | 1.0 | | 3.0139 | 56.0 | 1400 | 3.0344 | 1.0 | | 3.0118 | 64.0 | 1600 | 3.0351 | 1.0 | | 3.0114 | 72.0 | 1800 | 3.0559 | 1.0 | | 3.0114 | 80.0 | 2000 | 3.0526 | 1.0 | | 3.0108 | 88.0 | 2200 | 3.0417 | 1.0 | | 3.0092 | 96.0 | 2400 | 3.0629 | 1.0 | | 3.0089 | 104.0 | 2600 | 3.0352 | 1.0 | | 3.0083 | 112.0 | 2800 | 3.0503 | 1.0 | | 3.0078 | 120.0 | 3000 | 3.0529 | 1.0 | | 3.0072 | 128.0 | 3200 | 3.0378 | 1.0 | | 3.0068 | 136.0 | 3400 | 3.0481 | 1.0 | | 3.0063 | 144.0 | 3600 | 3.0392 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_p_tuning_500_10_3000_8_e6_s108_v4_l4_v100
KingKazma
2023-08-13T16:29:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:29:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_lora_500_10_3000_8_e0_s55555_v4_l4_r4
KingKazma
2023-08-13T16:27:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:27:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_0099
bigmorning
2023-08-13T16:27:10Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T16:27:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_0099 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_0099 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0022 - Train Accuracy: 0.0795 - Train Wermet: 8.7907 - Validation Loss: 0.5556 - Validation Accuracy: 0.0766 - Validation Wermet: 7.7851 - Epoch: 98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 | | 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 | | 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 | | 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 | | 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 | | 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 | | 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 | | 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 | | 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 | | 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 | | 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 | | 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 | | 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 | | 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 | | 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 | | 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 | | 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 | | 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 | | 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 | | 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 | | 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 | | 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 | | 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 | | 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 | | 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 | | 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 | | 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 | | 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 | | 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 | | 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 | | 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 | | 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 | | 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 | | 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 | | 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 | | 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 | | 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 | | 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 | | 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 | | 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 | | 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 | | 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 | | 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 | | 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 | | 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 | | 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 | | 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 | | 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 | | 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 | | 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 | | 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 | | 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 | | 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 | | 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 | | 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 | | 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 | | 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 | | 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 | | 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 | | 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 | | 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 | | 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 | | 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 | | 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 | | 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 | | 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 | | 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 | | 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 | | 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 | | 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 | | 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 | | 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 | | 0.0006 | 0.0795 | 10.4562 | 0.5369 | 0.0765 | 9.6485 | 72 | | 0.0032 | 0.0795 | 10.2347 | 0.5569 | 0.0763 | 8.4947 | 73 | | 0.0062 | 0.0794 | 10.1654 | 0.5471 | 0.0763 | 8.8666 | 74 | | 0.0029 | 0.0795 | 10.1320 | 0.5376 | 0.0765 | 8.7713 | 75 | | 0.0012 | 0.0795 | 10.2943 | 0.5406 | 0.0765 | 8.6959 | 76 | | 0.0006 | 0.0795 | 10.1888 | 0.5371 | 0.0767 | 8.9689 | 77 | | 0.0005 | 0.0795 | 10.2138 | 0.5398 | 0.0766 | 8.7470 | 78 | | 0.0016 | 0.0795 | 10.2173 | 0.5497 | 0.0764 | 8.9675 | 79 | | 0.0065 | 0.0794 | 10.2806 | 0.5559 | 0.0763 | 9.4487 | 80 | | 0.0028 | 0.0795 | 10.7728 | 0.5394 | 0.0766 | 8.9716 | 81 | | 0.0012 | 0.0795 | 10.3247 | 0.5453 | 0.0765 | 8.9986 | 82 | | 0.0013 | 0.0795 | 10.3174 | 0.5535 | 0.0765 | 8.9229 | 83 | | 0.0011 | 0.0795 | 10.2846 | 0.5452 | 0.0766 | 9.1239 | 84 | | 0.0007 | 0.0795 | 10.1996 | 0.5491 | 0.0766 | 8.9308 | 85 | | 0.0034 | 0.0795 | 10.5048 | 0.5578 | 0.0764 | 8.9920 | 86 | | 0.0038 | 0.0795 | 10.1430 | 0.5538 | 0.0765 | 9.1635 | 87 | | 0.0019 | 0.0795 | 10.3176 | 0.5492 | 0.0766 | 8.5812 | 88 | | 0.0007 | 0.0795 | 10.2569 | 0.5488 | 0.0766 | 8.9133 | 89 | | 0.0006 | 0.0795 | 10.2538 | 0.5541 | 0.0766 | 8.7676 | 90 | | 0.0029 | 0.0795 | 10.1412 | 0.5666 | 0.0764 | 9.0822 | 91 | | 0.0042 | 0.0795 | 9.5603 | 0.5582 | 0.0765 | 7.6837 | 92 | | 0.0015 | 0.0795 | 9.4004 | 0.5495 | 0.0766 | 7.7859 | 93 | | 0.0008 | 0.0795 | 9.5417 | 0.5503 | 0.0767 | 7.8876 | 94 | | 0.0005 | 0.0795 | 9.3473 | 0.5590 | 0.0766 | 7.8967 | 95 | | 0.0016 | 0.0795 | 9.1740 | 0.5746 | 0.0765 | 7.8469 | 96 | | 0.0044 | 0.0794 | 8.8948 | 0.5589 | 0.0765 | 7.4085 | 97 | | 0.0022 | 0.0795 | 8.7907 | 0.5556 | 0.0766 | 7.7851 | 98 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e0_s108_v4_l4_v100
KingKazma
2023-08-13T16:24:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T16:24:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0