modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 00:36:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 00:36:49
card
stringlengths
11
1.01M
eddyyeo/q-FrozenLake-v1-4x4-noSlippery
eddyyeo
2023-06-29T15:47:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T15:47:27Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eddyyeo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
duyhngoc/ov_bert_tokenizer
duyhngoc
2023-06-29T15:39:35Z
45
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-06-29T15:38:04Z
--- tags: - generated_from_keras_callback model-index: - name: ov_bert_tokenizer results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ov_bert_tokenizer This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.7053 - Validation Loss: 8.6612 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.7053 | 8.6612 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
tatiana-merz/m2m100_418M-finetuned-sah-to-feat
tatiana-merz
2023-06-29T15:33:30Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-29T15:10:48Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: m2m100_418M-finetuned-sah-to-feat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-sah-to-feat This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0308 - Bleu: 4.6161 - Gen Len: 198.5197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | No log | 1.0 | 24 | 2.4936 | 1.8237 | 198.2756 | | No log | 2.0 | 48 | 2.0218 | 3.342 | 198.8268 | | No log | 3.0 | 72 | 1.7435 | 3.0434 | 198.874 | | No log | 4.0 | 96 | 1.5399 | 3.8934 | 198.7953 | | No log | 5.0 | 120 | 1.3805 | 3.5157 | 198.9685 | | No log | 6.0 | 144 | 1.2383 | 4.2008 | 198.7559 | | No log | 7.0 | 168 | 1.1430 | 4.1967 | 198.7244 | | No log | 8.0 | 192 | 1.0837 | 3.9657 | 198.7874 | | No log | 9.0 | 216 | 1.0501 | 4.0903 | 198.5354 | | No log | 10.0 | 240 | 1.0308 | 4.6161 | 198.5197 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
zhao-mm/mpt-30b-instruct-test
zhao-mm
2023-06-29T15:33:16Z
115
0
transformers
[ "transformers", "pytorch", "mpt", "text-generation", "Composer", "MosaicML", "llm-foundry", "custom_code", "arxiv:2205.14135", "arxiv:2108.12409", "license:cc-by-sa-3.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-29T15:28:31Z
--- license: cc-by-sa-3.0 datasets: - competition_math - conceptofmind/cot_submix_original/cot_gsm8k - knkarthick/dialogsum - mosaicml/dolly_hhrlhf - duorc - tau/scrolls/qasper - emozilla/quality - scrolls/summ_screen_fd - spider tags: - Composer - MosaicML - llm-foundry inference: false --- # MPT-30B-Instruct MPT-30B-Instruct is a model for short-form instruction following. It is built by finetuning [MPT-30B](https://huggingface.co/mosaicml/mpt-30b) on [Dolly HHRLHF](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets. It is also trained on [Competition Math](https://huggingface.co/datasets/competition_math), [Duorc](https://huggingface.co/datasets/duorc), [CoT GSM8k](https://huggingface.co/datasets/conceptofmind/cot_submix_original), [Qasper](https://huggingface.co/datasets/allenai/qasper), [Quality](https://huggingface.co/datasets/emozilla/quality), [Summ Screen FD](https://huggingface.co/datasets/tau/scrolls) and [Spider](https://huggingface.co/datasets/spider). * License: _CC-By-SA-3.0_ This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ## Model Date June 22, 2023 ## Model License CC-By-SA-3.0 ## Documentation * [Blog post: Raising the bar for open-source foundation models](https://www.mosaicml.com/blog/mpt-30b) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ### Example Question/Instruction **Bespokenizer46** > I need to convince my friend, Phyllis, that she should train a custom LLM for her Fortune 500 company using the MosaicML Platform. > Please write an email that explains why MosaicML's emphasis on cutting edge methodology, data privacy, and efficiency are so important. > End the email with a friendly inquiry about Phyllis's family. **MPT-30B-Instruct**: > Phyllis - > I know you're always looking for ways to improve efficiency at work and I think I've found a solution that you'll be very interested in. > LLMs are only as good as the data they're trained on and the training process can be very time consuming and resource intensive. MosaicML uses cutting edge methodology to efficiently train high quality models without compromising data privacy. > They also provide tools to easily connect to and use the model in your daily workflow. > I think you'd really enjoy speaking with their founder, we can set up a call if you're interested. > Also, I know it's been a tough year for your family, how are things? > Best, > Your Friend ## How to Use Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom model architecture that is not yet part of the `transformers` package. It includes options for many training efficiency features such as [FlashAttention (Dao et al. 2022)](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), QK LayerNorm, and more. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-30b-instruct', trust_remote_code=True ) ``` To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' # change this to use triton-based FlashAttention config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` The model was trained initially on a sequence length of 2048. An additional pre-training phase was included for sequence length adaptation to 8192. However, ALiBi further enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-30b-instruct' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 16384 # (input + output) tokens can now be up to 16384 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-30B tokenizer which is based on the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer and includes additional padding and eos tokens. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-30b') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ### Formatting This model was trained on data formatted as follows: ```python def format_prompt(instruction): template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction\n{instruction}\n\n### Response\n" return template.format(instruction=instruction) example = "Tell me a funny joke.\nDon't make it too funny though." fmt_ex = format_prompt(instruction=example) ``` In the above example, `fmt_ex` is ready to be tokenized and sent through the model. ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 29.95B | |n_layers | 48 | | n_heads | 64 | | d_model | 7168 | | vocab size | 50432 | | sequence length | 8192 | ## Data Mix The model was trained on the following data mix: | Data Source | Number of Tokens in Source | Proportion | |-------------|----------------------------|------------| | competition_math | 1.6 M | 3.66% | | cot_gsm8k | 3.36 M | 7.67% | | dialogsum | 0.1 M | 0.23% | | dolly_hhrlhf | 5.89 M | 13.43% | | duorc | 7.8 M | 17.80% | | qasper | 8.72 M | 19.90% | | quality | 11.29 M | 25.78% | | scrolls/summ_screen_fd | 4.97 M | 11.33% | | spider | 0.089 M | 0.20% | ## PreTraining Data For more details on the pretraining process, see [MPT-30B](https://huggingface.co/mosaicml/mpt-30b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ### Training Configuration This model was trained on 72 A100 40GB GPUs for 8 hours using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the AdamW optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-30B-Instruct can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-30B-Instruct was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Acknowledgements This model was finetuned by Sam Havens, Alex Trott, and the MosaicML NLP team ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-30b). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-30B: Raising the bar for open-source foundation models}, year = {2023}, url = {www.mosaicml.com/blog/mpt-30b}, note = {Accessed: 2023-06-22}, urldate = {2023-06-22} } ```
DarkRodry/Taxi-v3-tutorial
DarkRodry
2023-06-29T15:24:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T15:24:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-tutorial results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DarkRodry/Taxi-v3-tutorial", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
DarkRodry/q-FrozenLake-v1-4x4-noSlippery
DarkRodry
2023-06-29T15:15:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T15:15:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DarkRodry/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ashraf-kasem/RL_taxi
Ashraf-kasem
2023-06-29T15:05:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T15:05:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: RL_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Ashraf-kasem/RL_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jmstanley/Med-Llama13b
jmstanley
2023-06-29T14:58:10Z
0
1
peft
[ "peft", "region:us" ]
null
2023-06-29T01:06:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
clay3d/omnidata
clay3d
2023-06-29T14:54:39Z
0
4
null
[ "region:us" ]
null
2023-06-28T18:51:33Z
# omnidata [Omnidata](https://github.com/EPFL-VILAB/omnidata/tree/main/omnidata_tools/torch) weights for depth and normal prediction for [Stable Dreamfusion](https://github.com/ashawkey/stable-dreamfusion/tree/main).
BaoKien/albert-base-v2-finetuned-squad-v2
BaoKien
2023-06-29T14:53:44Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-28T10:54:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: albert-base-v2-finetuned-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad-v2 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.864 | 1.0 | 8248 | 0.8698 | | 0.6246 | 2.0 | 16496 | 0.8351 | | 0.4359 | 3.0 | 24744 | 0.9645 | ### Performance - 'exact': 78.36267160784975, - 'f1': 81.72483834090231, - 'total': 11873, - 'HasAns_exact': 74.527665317139, - 'HasAns_f1': 81.26164062441536, - 'HasAns_total': 5928, - 'NoAns_exact': 82.18671152228764, - 'NoAns_f1': 82.18671152228764, - 'NoAns_total': 5945, - 'best_exact': 78.36267160784975, - 'best_exact_thresh': 0.9990501403808594, - 'best_f1': 81.72483834090268, - 'best_f1_thresh': 0.9990501403808594, - 'total_time_in_seconds': 224.37217425400013, - 'samples_per_second': 52.9165438605555, - 'latency_in_seconds': 0.018897681651983505 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
GabrielCaido/ppo-Huggy
GabrielCaido
2023-06-29T14:50:49Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T14:50:38Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: GabrielCaido/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ymkgr/Re_Stage-Tsukisaka_Sayu
ymkgr
2023-06-29T14:50:19Z
0
2
null
[ "anime", "game", "license:creativeml-openrail-m", "region:us" ]
null
2023-06-29T12:16:16Z
--- license: creativeml-openrail-m metrics: - character tags: - anime - game --- Model type: LoRA --- Model Details: - from Japanese multimedia project: Re:Stage! - Unit: KiRaRe - character name: Tsukisaka Sayu./来自 日本多媒体企划:Re:Stage! - 组合:KiRaRe - 角色名:月坂纱由。 - LoRA weight: 0.6-1 - Trigger Words: - stage dress: tsukisaka sayu\(re:stage\), green eyes, side ponytail, long hair, purple hair, dress\(tssa\), necklace\(tssa\), thighhighs\(tssa\), star white scrunchie\(tssa\), star hair ornament\(tssa\), wrist cuffs\(tssa\), boots\(tssa\), - school uniform: tsukisaka sayu\(re:stage\), green eyes, side ponytail, long hair, purple hair, sailor collar, blue skirt, - The symbol \ should be added before "(" and ")". It is not possible to directly input them together in the file introduction.(Only supplementary to the trigger words mentioned above) - Optional trigger words: bowtie, "school uniform and serafuku" have the same effect as "sailor color". "Hair ribbon" is her usual trigger word for hair ribbon. When the default hairstyle is side ponytail, there is no need to add it. If you want her to continue using her usual hair ribbon on hairstyles such as "twintails", you can add it. - If you want to change her hairstyle, it's best to add 'ponytail' to 'Negative prompt'. - I don't know English and I'm not very good at using the Hugging Face website. I also use a translation for the description - Demo:![01349-822748059-masterpiece, best quality, 1girl, large breasts, tsukisaka sayu_(re_stage_), green eyes, very long twintails, very long hair, pu.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/962Za5n8BU2agCToIBT38.png) ![121356-2233999081-masterpiece, best quality, 1girl, tsukisaka sayu_(re_stage_), green eyes, side ponytail, long hair, purple hair, dress_(tssa_),.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/wZ00fNymVv_ZzNgy_xJ0z.png) ![121524-1292003020-masterpiece, best quality, 1girl, large breasts, tsukisaka sayu_(re_stage_), green eyes, straight hair, long hair, purple hair,.png](https://cdn-uploads.huggingface.co/production/uploads/647c4972d2da33779cb77652/TvpDMgnDao0c5Jr9-cnnU.png) --- I also made LoRA for "shikimiya mana", but I plan to update its version soon, so I will upload it later. Afterwards, I also want to gradually produce LoRA for all members of "Re: Stage!". Please comply with regulations.
TieIncred/pokemon-lora
TieIncred
2023-06-29T14:45:29Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-29T12:30:08Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - TieIncred/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
asti339/emotions
asti339
2023-06-29T14:37:25Z
1
1
tf-keras
[ "tf-keras", "image-classification", "region:us" ]
image-classification
2023-06-24T12:33:25Z
--- pipeline_tag: image-classification ---
Ashraf-kasem/RL_FrozenLake-v1-4x4-noSlippery
Ashraf-kasem
2023-06-29T14:33:47Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T14:33:29Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: RL_FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ashraf-kasem/RL_FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
username93/8C_ML_U2_P_RL_Huggy
username93
2023-06-29T14:33:29Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T14:33:07Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: username93/8C_ML_U2_P_RL_Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AAOBA/ppo-Huggy
AAOBA
2023-06-29T14:32:27Z
17
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T13:52:11Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: chikoto/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Taurine511/distilbert-base-uncased-finetuned-emotion
Taurine511
2023-06-29T14:28:50Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T13:44:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9165 - name: F1 type: f1 value: 0.9167227221544503 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2222 - Accuracy: 0.9165 - F1: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8 | 1.0 | 250 | 0.3127 | 0.9005 | 0.8977 | | 0.2446 | 2.0 | 500 | 0.2222 | 0.9165 | 0.9167 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mcamara/ppo-Huggy
mcamara
2023-06-29T14:20:57Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T14:20:52Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mcamara/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
amm297/aux
amm297
2023-06-29T14:18:38Z
34
0
peft
[ "peft", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2023-06-29T11:22:02Z
--- library_name: peft pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
tlapusan/bert-finetuned-ner_tmp
tlapusan
2023-06-29T14:04:14Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-29T13:56:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner_tmp results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9303630363036304 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9395100816530578 - name: Accuracy type: accuracy value: 0.9860628716077 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner_tmp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9304 - Recall: 0.9488 - F1: 0.9395 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0858 | 1.0 | 1756 | 0.0679 | 0.9210 | 0.9359 | 0.9284 | 0.9829 | | 0.0343 | 2.0 | 3512 | 0.0602 | 0.9304 | 0.9488 | 0.9395 | 0.9861 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dar-tau/Reinforce-Pixelcopter-PLE-v0
dar-tau
2023-06-29T13:38:53Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T13:24:04Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 15.80 +/- 8.77 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ricardoseifert/alpaca-bitcoin-tweets-sentiment
ricardoseifert
2023-06-29T13:28:39Z
3
0
peft
[ "peft", "region:us" ]
null
2023-06-29T13:28:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
dar-tau/Reinforce-CartPole-v1
dar-tau
2023-06-29T13:09:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T12:58:10Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 465.40 +/- 74.22 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
internetoftim/dinov2-base-eurosat
internetoftim
2023-06-29T12:59:18Z
130
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-21T23:33:55Z
# Fine-tuning Details # To fine-tuning Details [nielsr/dinov2-base](https://huggingface.co/nielsr/dinov2-base) # pre-trained model from which to fine-tune [Graphcore/vit-base-ipu](https://huggingface.co/Graphcore/vit-base-ipu_) # config specific to the IPU (Used POD4) Using: [image_classification-dinov2-base.ipynb](https://huggingface.co/internetoftim/dinov2-base-eurosat/blob/main/image_classification-dinov2-base.ipynb) Run the notebook in Gradient, make sure to upload the .ipynb file from this repository: [![Run on Gradient](https://assets.paperspace.io/img/gradient-badge.svg)](https://ipu.dev/3YOs4Js) Poplar SDK: v3.2.1 Dataset: load a custom dataset from local/remote files or folders using the ImageFolder feature option 1: local/remote files (supporting the following formats: tar, gzip, zip, xz, rar, zstd) url = "https://madm.dfki.de/files/sentinel/EuroSAT.zip" files = list(Path(dataset_dir).rglob("EuroSAT.zip")) [![Ask for help in GC Slack ](https://img.shields.io/badge/Slack-Join%20Graphcore's%20Community-blue?style=flat-square&logo=slack)](https://www.graphcore.ai/join-community)
sheduele/models228
sheduele
2023-06-29T12:53:55Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-29T12:48:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: models228 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models228 This model is a fine-tuned version of [IlyaGusev/rubert_ext_sum_gazeta](https://huggingface.co/IlyaGusev/rubert_ext_sum_gazeta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2456 - Precision: 0.7118 - Recall: 0.7530 - F1: 0.7319 - Accuracy: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 172 | 0.2966 | 0.6210 | 0.6494 | 0.6349 | 0.9149 | | No log | 2.0 | 344 | 0.2456 | 0.7118 | 0.7530 | 0.7319 | 0.9205 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
cgutknecht/gelectra_large_gsqd-gq-LHM
cgutknecht
2023-06-29T12:52:17Z
115
3
transformers
[ "transformers", "pytorch", "safetensors", "electra", "question-answering", "de", "dataset:squad", "dataset:deepset/germanquad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-05-05T09:41:43Z
--- license: mit datasets: - squad - deepset/germanquad language: - de --- # Overview German QA-Model finetuned on Question-Answer-Pairs for Bürgerbüro-Service-Documents **Base model:** deepset/gelectra-large **Finetuning** in sequential steps on: 1. Machine-translated (en->de) SQuAD 1.0 2. GermanQuAD: deepset/germanquad 3. Custom LHM-QA-Dataset (>reference following<) **Evaluation:** Reaches a performance of 70,0 F1-Score on LHM-QA-testdata
ahishamm/vit-huge-modified-augmented-ph2-patch-14
ahishamm
2023-06-29T12:50:06Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-29T12:27:18Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-huge-modified-augmented-ph2-patch-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-huge-modified-augmented-ph2-patch-14 This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on the ahishamm/Modified_Augmented_PH2_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.0012 - Accuracy: 1.0 - Recall: 1.0 - F1: 1.0 - Precision: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.0996 | 0.29 | 50 | 0.1378 | 0.9366 | 0.9366 | 0.9366 | 0.9366 | | 0.0096 | 0.59 | 100 | 0.0509 | 0.9743 | 0.9743 | 0.9743 | 0.9743 | | 0.0049 | 0.88 | 150 | 0.0085 | 0.9983 | 0.9983 | 0.9983 | 0.9983 | | 0.0029 | 1.18 | 200 | 0.0037 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0022 | 1.47 | 250 | 0.0028 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0018 | 1.76 | 300 | 0.0022 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0015 | 2.06 | 350 | 0.0021 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0013 | 2.35 | 400 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 2.65 | 450 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 2.94 | 500 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.001 | 3.24 | 550 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0009 | 3.53 | 600 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0009 | 3.82 | 650 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
SHENMU007/neunit_BASE_V10.12
SHENMU007
2023-06-29T12:46:28Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-06-29T09:48:12Z
--- language: - zh license: mit tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
PraveenJesu/openai-whisper-medium-zrx-peft-lora-v2.1
PraveenJesu
2023-06-29T12:44:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-29T12:44:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
sjdata/distilhubert-finetuned-gtzan
sjdata
2023-06-29T12:43:44Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-06-29T11:06:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9253 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3972 | 1.0 | 450 | 1.4662 | 0.65 | | 0.7118 | 2.0 | 900 | 0.9103 | 0.69 | | 0.4653 | 3.0 | 1350 | 0.8097 | 0.73 | | 0.934 | 4.0 | 1800 | 0.7674 | 0.83 | | 0.3231 | 5.0 | 2250 | 1.2025 | 0.73 | | 0.0038 | 6.0 | 2700 | 1.1013 | 0.8 | | 0.002 | 7.0 | 3150 | 0.8540 | 0.86 | | 0.0022 | 8.0 | 3600 | 0.8067 | 0.85 | | 0.0013 | 9.0 | 4050 | 0.8682 | 0.86 | | 0.0016 | 10.0 | 4500 | 0.9253 | 0.84 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
Allenpai/alpaca-200
Allenpai
2023-06-29T12:22:16Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-29T12:21:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
ahishamm/vit-large-augmented-ph2-patch-32
ahishamm
2023-06-29T12:11:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-29T11:55:41Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-augmented-ph2-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-augmented-ph2-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/Augmented_PH2_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.5737 - Accuracy: 0.8701 - Recall: 0.8701 - F1: 0.8701 - Precision: 0.8701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.0405 | 0.36 | 50 | 0.6853 | 0.8342 | 0.8342 | 0.8342 | 0.8342 | | 0.0107 | 0.72 | 100 | 0.8199 | 0.8256 | 0.8256 | 0.8256 | 0.8256 | | 0.0338 | 1.09 | 150 | 0.5737 | 0.8701 | 0.8701 | 0.8701 | 0.8701 | | 0.0026 | 1.45 | 200 | 0.6008 | 0.8684 | 0.8684 | 0.8684 | 0.8684 | | 0.0019 | 1.81 | 250 | 0.6275 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | | 0.0016 | 2.17 | 300 | 0.6488 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | | 0.0013 | 2.54 | 350 | 0.6639 | 0.8752 | 0.8752 | 0.8752 | 0.8752 | | 0.0012 | 2.9 | 400 | 0.6757 | 0.8752 | 0.8752 | 0.8752 | 0.8752 | | 0.0011 | 3.26 | 450 | 0.6844 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | | 0.001 | 3.62 | 500 | 0.6895 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | | 0.001 | 3.99 | 550 | 0.6913 | 0.8735 | 0.8735 | 0.8735 | 0.8735 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jcnecio/ppo-LunarLander-v2-v2
jcnecio
2023-06-29T12:09:07Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T12:07:11Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.39 +/- 57.59 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'jcnecio/ppo-LunarLander-v2-v2' 'batch_size': 512 'minibatch_size': 128} ```
QuangHuy54/roberta-base-squad
QuangHuy54
2023-06-29T12:00:36Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2023-06-29T06:29:53Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad This model is a fine-tuned version of [QuangHuy54/roberta-base-squad](https://huggingface.co/QuangHuy54/roberta-base-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 318 | 0.9198 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
wesamkhallaf/distilbert-base-uncased-finetuned-emotion
wesamkhallaf
2023-06-29T11:56:55Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-26T11:34:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9195 - name: F1 type: f1 value: 0.9194047506426568 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2269 - Accuracy: 0.9195 - F1: 0.9194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8449 | 1.0 | 250 | 0.3300 | 0.8975 | 0.8934 | | 0.2597 | 2.0 | 500 | 0.2269 | 0.9195 | 0.9194 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
PraveenJesu/openai-whisper-medium-zrx-peft-lora-v2
PraveenJesu
2023-06-29T11:46:58Z
3
0
peft
[ "peft", "region:us" ]
null
2023-06-29T11:46:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
ahishamm/vit-base-modified-augmented-ph2-patch-16
ahishamm
2023-06-29T11:46:52Z
189
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-29T11:37:12Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-modified-augmented-ph2-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-modified-augmented-ph2-patch-16 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ahishamm/Modified_Augmented_PH2_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Accuracy: 1.0 - Recall: 1.0 - F1: 1.0 - Precision: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1238 | 0.29 | 50 | 0.1973 | 0.9332 | 0.9332 | 0.9332 | 0.9332 | | 0.1857 | 0.59 | 100 | 0.1084 | 0.9623 | 0.9623 | 0.9623 | 0.9623 | | 0.2506 | 0.88 | 150 | 0.0773 | 0.9692 | 0.9692 | 0.9692 | 0.9692 | | 0.0247 | 1.18 | 200 | 0.1158 | 0.9606 | 0.9606 | 0.9606 | 0.9606 | | 0.0089 | 1.47 | 250 | 0.0162 | 0.9914 | 0.9914 | 0.9914 | 0.9914 | | 0.0226 | 1.76 | 300 | 0.0020 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0261 | 2.06 | 350 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0014 | 2.35 | 400 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0012 | 2.65 | 450 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0013 | 2.94 | 500 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 3.24 | 550 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.001 | 3.53 | 600 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0011 | 3.82 | 650 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
T-Systems-onsite/cross-en-de-pl-roberta-sentence-transformer
T-Systems-onsite
2023-06-29T11:46:06Z
19
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "de", "pl", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - de - pl license: mit tags: - sentence_embedding ---
T-Systems-onsite/cross-en-de-pt-roberta-sentence-transformer
T-Systems-onsite
2023-06-29T11:45:43Z
12
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "de", "pt", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - de - pt license: mit tags: - sentence_embedding ---
qPilz/ppo-Huggy
qPilz
2023-06-29T11:42:45Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T11:42:44Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: qPilz/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
GabrielNewell/ppo-Huggy
GabrielNewell
2023-06-29T11:42:04Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T11:42:00Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: GabrielNewell/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Master-Oogway/ppo-Huggy
Master-Oogway
2023-06-29T11:42:03Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T11:42:00Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Master-Oogway/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
TobiTob/decision_transformer_merged2
TobiTob
2023-06-29T11:41:51Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "decision_transformer", "generated_from_trainer", "dataset:city_learn", "endpoints_compatible", "region:us" ]
null
2023-06-29T11:22:49Z
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_merged2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_merged2 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-base-augmented-ph2-patch-16
ahishamm
2023-06-29T11:30:47Z
206
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-29T11:21:44Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-augmented-ph2-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-augmented-ph2-patch-16 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ahishamm/Augmented_PH2_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.5420 - Accuracy: 0.8444 - Recall: 0.8444 - F1: 0.8444 - Precision: 0.8444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.0592 | 0.36 | 50 | 0.7161 | 0.8068 | 0.8068 | 0.8068 | 0.8068 | | 0.0703 | 0.72 | 100 | 0.5420 | 0.8444 | 0.8444 | 0.8444 | 0.8444 | | 0.0042 | 1.09 | 150 | 0.5557 | 0.8821 | 0.8821 | 0.8821 | 0.8821 | | 0.0034 | 1.45 | 200 | 0.6464 | 0.8701 | 0.8701 | 0.8701 | 0.8701 | | 0.0023 | 1.81 | 250 | 0.7943 | 0.8410 | 0.8410 | 0.8410 | 0.8410 | | 0.0018 | 2.17 | 300 | 0.7109 | 0.8598 | 0.8598 | 0.8598 | 0.8598 | | 0.0015 | 2.54 | 350 | 0.7254 | 0.8598 | 0.8598 | 0.8598 | 0.8598 | | 0.0013 | 2.9 | 400 | 0.7364 | 0.8598 | 0.8598 | 0.8598 | 0.8598 | | 0.0013 | 3.26 | 450 | 0.7438 | 0.8615 | 0.8615 | 0.8615 | 0.8615 | | 0.0012 | 3.62 | 500 | 0.7489 | 0.8615 | 0.8615 | 0.8615 | 0.8615 | | 0.0012 | 3.99 | 550 | 0.7506 | 0.8615 | 0.8615 | 0.8615 | 0.8615 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
schirmacher/ppo-LunarLander-v2
schirmacher
2023-06-29T11:29:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:34:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 286.87 +/- 15.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ce-dric/dqn-SpaceInvadersNoFrameskip-v4
ce-dric
2023-06-29T11:18:34Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:00:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 644.50 +/- 232.78 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ce-dric -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ce-dric -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ce-dric ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
TobiTob/decision_transformer_merged1
TobiTob
2023-06-29T11:02:34Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "decision_transformer", "generated_from_trainer", "dataset:city_learn", "endpoints_compatible", "region:us" ]
null
2023-06-29T10:38:25Z
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_merged1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_merged1 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahishamm/vit-base-isic-sharpened-patch-32
ahishamm
2023-06-29T10:44:23Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-29T10:39:29Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-isic-sharpened-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-isic-sharpened-patch-32 This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the ahishamm/isic_sharpened_db dataset. It achieves the following results on the evaluation set: - Loss: 0.6239 - Accuracy: 0.7639 - Recall: 0.7639 - F1: 0.7639 - Precision: 0.7639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
GabrielNewell/ppo-LunarLander-v2
GabrielNewell
2023-06-29T10:43:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:43:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.14 +/- 34.71 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jvvelzen/taxi-v3_1
jvvelzen
2023-06-29T10:39:21Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:39:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3_1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jvvelzen/taxi-v3_1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
qPilz/ppo-LunarLander-v2
qPilz
2023-06-29T10:34:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:34:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -1491.00 +/- 954.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NasimB/gpt2-dp-cl-length-2
NasimB
2023-06-29T10:31:56Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-29T08:13:03Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-cl-length-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-cl-length-2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.6978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7438 | 0.28 | 500 | 5.8628 | | 5.3832 | 0.57 | 1000 | 5.4721 | | 5.0548 | 0.85 | 1500 | 5.2463 | | 4.7966 | 1.14 | 2000 | 5.0887 | | 4.6482 | 1.42 | 2500 | 4.9869 | | 4.5475 | 1.7 | 3000 | 4.9166 | | 4.4753 | 1.99 | 3500 | 4.8238 | | 4.2612 | 2.27 | 4000 | 4.8195 | | 4.2415 | 2.56 | 4500 | 4.7798 | | 4.2024 | 2.84 | 5000 | 4.7139 | | 4.0709 | 3.12 | 5500 | 4.7122 | | 3.9548 | 3.41 | 6000 | 4.7128 | | 3.9485 | 3.69 | 6500 | 4.6607 | | 3.9265 | 3.98 | 7000 | 4.6461 | | 3.687 | 4.26 | 7500 | 4.6674 | | 3.6784 | 4.54 | 8000 | 4.6577 | | 3.6665 | 4.83 | 8500 | 4.6403 | | 3.5603 | 5.11 | 9000 | 4.6735 | | 3.4226 | 5.39 | 9500 | 4.6843 | | 3.4158 | 5.68 | 10000 | 4.6834 | | 3.4077 | 5.96 | 10500 | 4.6679 | | 3.2813 | 6.25 | 11000 | 4.6955 | | 3.2684 | 6.53 | 11500 | 4.6982 | | 3.2599 | 6.81 | 12000 | 4.6978 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
rahuldshetty/vmw-open-llama-13b-open-instruct-ntk4k-8bit
rahuldshetty
2023-06-29T10:31:37Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:VMware/open-instruct-v1-oasst-dolly-hhrlhf", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-06-29T10:21:00Z
--- license: cc datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # rahuldshetty/vmw-open-llama-13b-open-instruct-ntk4k-8bit This is a 8bit quantized version of VMware's Open-LLAMA-13B model that supports 4k context lengths through NTK Scaled Embeddings. Quantization is performed using [bitsandbytes](https://huggingface.co/docs/transformers/main_classes/quantization#load-a-large-model-in-8bit). **Below details are taken from the official model repository** # VMware/open-llama-13B-open-instruct Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for <b>COMMERCIAL USE</b>. <br> <b> NOTE </b> : The model was trained using the Alpaca prompt template \ <b> NOTE </b> : Fast tokenizer results in incorrect encoding, set the ```use_fast = False``` parameter, when instantiating the tokenizer\ <b> NOTE </b> : The model might struggle with code as the tokenizer merges multiple spaces ## License - <b>Commercially Viable </b> - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 13B parameters - Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf) ## Use in Transformers ``` import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = 'VMware/open-llama-13b-open-instruct' tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential') prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" prompt = 'Explain in simple terms how the attention mechanism of a transformer model works' inputt = prompt_template.format(instruction= prompt) input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda") output1 = model.generate(input_ids, max_length=512) input_length = input_ids.shape[1] output1 = output1[:, input_length:] output = tokenizer.decode(output1[0]) print(output) ``` ## Finetuning details The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning) ## Evaluation <B>TODO</B>
dyedream/Reinforce-PixelCopter
dyedream
2023-06-29T10:29:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:28:40Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.30 +/- 30.91 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
msladic/ppo-MSLunarLander-v3
msladic
2023-06-29T10:12:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T10:12:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.97 +/- 18.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vlkn/falcon_instruct_deft
vlkn
2023-06-29T10:08:43Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-06-29T09:24:12Z
--- tags: - generated_from_trainer model-index: - name: falcon_instruct_deft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon_instruct_deft This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 300 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
alfajmahabri/qr
alfajmahabri
2023-06-29T10:06:23Z
0
1
null
[ "region:us" ]
null
2023-06-29T10:01:40Z
title: QR Code AI Art Generator emoji: 📱🔲 colorFrom: MediumSeaGreen colorTo: CornflowerBlue sdk: gradio sdk_version: 3.35.2 app_file: app.py pinned: false suggested_hardware: t4-medium startup_duration_timeout: 1h duplicated_from: huggingface-projects/QR-code-AI-art-generator
paumena/QA-BERT
paumena
2023-06-29T10:02:58Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T10:01:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: paumena/QA-BERT results: [] datasets: - squad metrics: - exact_match - f1 library_name: transformers --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # paumena/QA-BERT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3103 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Evaluation metrics ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 27725, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2706 | 0 | | 0.7859 | 1 | | 0.5571 | 2 | | 0.4067 | 3 | | 0.3103 | 4 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Lokeshsoni2801/distilbert-base-uncased-finetuned-imdb
Lokeshsoni2801
2023-06-29T09:45:30Z
125
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-29T08:21:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7069 | 1.0 | 157 | 2.4947 | | 2.5792 | 2.0 | 314 | 2.4235 | | 2.5259 | 3.0 | 471 | 2.4348 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dhkim2810/MobileSAM
dhkim2810
2023-06-29T09:34:09Z
0
21
null
[ "arxiv:2306.14289", "arxiv:2304.02643", "license:mit", "region:us" ]
null
2023-06-28T04:10:23Z
--- license: mit --- # Faster Segement Anything (MobileSAM) <!-- Provide a quick summary of what the model is/does. --> - **Repository:** [Github - MobileSAM](https://github.com/ChaoningZhang/MobileSAM) - **Paper:** [Faster Segment Anything: Towards Lightweight SAM for Mobile Applications](https://arxiv.org/pdf/2306.14289.pdf) - **Demo:** [HuggingFace Demo](https://huggingface.co/spaces/dhkim2810/MobileSAM) **MobileSAM** performs on par with the original SAM (at least visually) and keeps exactly the same pipeline as the original SAM except for a change on the image encoder. Specifically, we replace the original heavyweight ViT-H encoder (632M) with a much smaller Tiny-ViT (5M). On a single GPU, MobileSAM runs around 12ms per image: 8ms on the image encoder and 4ms on the mask decoder. The comparison of ViT-based image encoder is summarzed as follows: Image Encoder | Original SAM | MobileSAM :------------:|:-------------:|:---------: Paramters | 611M | 5M Speed | 452ms | 8ms Original SAM and MobileSAM have exactly the same prompt-guided mask decoder: Mask Decoder | Original SAM | MobileSAM :-----------------------------------------:|:---------:|:-----: Paramters | 3.876M | 3.876M Speed | 4ms | 4ms The comparison of the whole pipeline is summarzed as follows: Whole Pipeline (Enc+Dec) | Original SAM | MobileSAM :-----------------------------------------:|:---------:|:-----: Paramters | 615M | 9.66M Speed | 456ms | 12ms ## Acknowledgement <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> <details> <summary> <a href="https://github.com/facebookresearch/segment-anything">SAM</a> (Segment Anything) [<b>bib</b>] </summary> ```bibtex @article{kirillov2023segany, title={Segment Anything}, author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross}, journal={arXiv:2304.02643}, year={2023} } ``` </details> <details> <summary> <a href="https://github.com/microsoft/Cream/tree/main/TinyViT">TinyViT</a> (TinyViT: Fast Pretraining Distillation for Small Vision Transformers) [<b>bib</b>] </summary> ```bibtex @InProceedings{tiny_vit, title={TinyViT: Fast Pretraining Distillation for Small Vision Transformers}, author={Wu, Kan and Zhang, Jinnian and Peng, Houwen and Liu, Mengchen and Xiao, Bin and Fu, Jianlong and Yuan, Lu}, booktitle={European conference on computer vision (ECCV)}, year={2022} ``` </details> **BibTeX:** ```bibtex @article{mobile_sam, title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications}, author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon}, journal={arXiv preprint arXiv:2306.14289}, year={2023} } ```
mrbingzhao/macbert4csc-cn
mrbingzhao
2023-06-29T09:25:19Z
3
0
transformers
[ "transformers", "bert", "fill-mask", "pytorch", "zh", "arxiv:2004.13922", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-28T08:50:46Z
--- language: - zh tags: - bert - pytorch - zh license: "apache-2.0" --- # MacBERT for Chinese Spelling Correction(macbert4csc) Model 中文拼写纠错模型 `macbert4csc-base-chinese` evaluate SIGHAN2015 test data: - Char Level: precision:0.9372, recall:0.8640, f1:0.8991 - Sentence Level: precision:0.8264, recall:0.7366, f1:0.7789 由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。 模型结构,魔改于softmaskedbert: ![arch](arch1.png) ## Usage 本项目开源在中文文本纠错项目:[pycorrector](https://github.com/shibing624/pycorrector),可支持macbert4csc模型,通过如下命令调用: ```python from pycorrector.macbert.macbert_corrector import MacBertCorrector nlp = MacBertCorrector("shibing624/macbert4csc-base-chinese").macbert_correct i = nlp('今天新情很好') print(i) ``` 当然,你也可使用官方的huggingface/transformers调用: *Please use 'Bert' related functions to load this model!* ```python import operator import torch from transformers import BertTokenizer, BertForMaskedLM device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese") model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese") model.to(device) texts = ["今天新情很好", "你找到你最喜欢的工作,我也很高心。"] with torch.no_grad(): outputs = model(**tokenizer(texts, padding=True, return_tensors='pt').to(device)) def get_errors(corrected_text, origin_text): sub_details = [] for i, ori_char in enumerate(origin_text): if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']: # add unk word corrected_text = corrected_text[:i] + ori_char + corrected_text[i:] continue if i >= len(corrected_text): continue if ori_char != corrected_text[i]: if ori_char.lower() == corrected_text[i]: # pass english upper char corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue sub_details.append((ori_char, corrected_text[i], i, i + 1)) sub_details = sorted(sub_details, key=operator.itemgetter(2)) return corrected_text, sub_details result = [] for ids, text in zip(outputs.logits, texts): _text = tokenizer.decode(torch.argmax(ids, dim=-1), skip_special_tokens=True).replace(' ', '') corrected_text = _text[:len(text)] corrected_text, details = get_errors(corrected_text, text) print(text, ' => ', corrected_text, details) result.append((corrected_text, details)) print(result) ``` output: ```shell 今天新情很好 => 今天心情很好 [('新', '心', 2, 3)] 你找到你最喜欢的工作,我也很高心。 => 你找到你最喜欢的工作,我也很高兴。 [('心', '兴', 15, 16)] ``` 模型文件组成: ``` macbert4csc-base-chinese ├── config.json ├── added_tokens.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.txt ``` ### 训练数据集 #### SIGHAN+Wang271K中文纠错数据集 | 数据集 | 语料 | 下载链接 | 压缩包大小 | | :------- | :--------- | :---------: | :---------: | | **`SIGHAN+Wang271K中文纠错数据集`** | SIGHAN+Wang271K(27万条) | [百度网盘(密码01b9)](https://pan.baidu.com/s/1BV5tr9eONZCI0wERFvr0gQ)| 106M | | **`原始SIGHAN数据集`** | SIGHAN13 14 15 | [官方csc.html](http://nlp.ee.ncu.edu.tw/resource/csc.html)| 339K | | **`原始Wang271K数据集`** | Wang271K | [Automatic-Corpus-Generation dimmywang提供](https://github.com/wdimmy/Automatic-Corpus-Generation/blob/master/corpus/train.sgml)| 93M | SIGHAN+Wang271K中文纠错数据集,数据格式: ```json [ { "id": "B2-4029-3", "original_text": "晚间会听到嗓音,白天的时候大家都不会太在意,但是在睡觉的时候这嗓音成为大家的恶梦。", "wrong_ids": [ 5, 31 ], "correct_text": "晚间会听到噪音,白天的时候大家都不会太在意,但是在睡觉的时候这噪音成为大家的恶梦。" }, ] ``` ```shell macbert4csc ├── config.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.txt ``` 如果需要训练macbert4csc,请参考[https://github.com/shibing624/pycorrector/tree/master/pycorrector/macbert](https://github.com/shibing624/pycorrector/tree/master/pycorrector/macbert) ### About MacBERT **MacBERT** is an improved BERT with novel **M**LM **a**s **c**orrection pre-training task, which mitigates the discrepancy of pre-training and fine-tuning. Here is an example of our pre-training task. | task | Example | | -------------- | ----------------- | | **Original Sentence** | we use a language model to predict the probability of the next word. | | **MLM** | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . | | **Whole word masking** | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . | | **N-gram masking** | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . | | **MLM as correction** | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . | Except for the new pre-training task, we also incorporate the following techniques. - Whole Word Masking (WWM) - N-gram masking - Sentence-Order Prediction (SOP) **Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.** For more technical details, please check our paper: [Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922) ## Citation ```latex @software{pycorrector, author = {Xu Ming}, title = {pycorrector: Text Error Correction Tool}, year = {2021}, url = {https://github.com/shibing624/pycorrector}, } ```
A1abz/q-tTaxi-v3
A1abz
2023-06-29T09:18:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T09:12:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-tTaxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="A1abz/q-tTaxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AustinCarthy/Benign10MGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio5
AustinCarthy
2023-06-29T09:13:42Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-29T05:45:10Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Benign10MGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Benign10MGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_Benign10MGPT2_using_phish_95K_top_p_0.75subdomain dataset. It achieves the following results on the evaluation set: - Loss: 0.0216 - Accuracy: 0.9971 - F1: 0.9691 - Precision: 0.9890 - Recall: 0.95 - Roc Auc Score: 0.9747 - Tpr At Fpr 0.01: 0.914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.019 | 1.0 | 35625 | 0.0191 | 0.9961 | 0.9584 | 0.9840 | 0.9342 | 0.9667 | 0.8318 | | 0.0164 | 2.0 | 71250 | 0.0169 | 0.9964 | 0.9609 | 0.9942 | 0.9298 | 0.9648 | 0.8852 | | 0.0096 | 3.0 | 106875 | 0.0126 | 0.9973 | 0.9717 | 0.9803 | 0.9632 | 0.9811 | 0.8794 | | 0.0045 | 4.0 | 142500 | 0.0187 | 0.9972 | 0.9700 | 0.9894 | 0.9514 | 0.9754 | 0.9098 | | 0.0017 | 5.0 | 178125 | 0.0216 | 0.9971 | 0.9691 | 0.9890 | 0.95 | 0.9747 | 0.914 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
nomad-ai/rl_course_vizdoom_health_gathering_supreme
nomad-ai
2023-06-29T09:03:02Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T09:02:54Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.97 +/- 4.35 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r nomad-ai/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
YeungNLP/firefly-baichuan-7b
YeungNLP
2023-06-29T08:59:36Z
17
9
transformers
[ "transformers", "pytorch", "baichuan", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-26T10:01:48Z
QLoRA+百万数据对baichun-7b模型进行高效指令微调 更多详情请查看Github项目: [Firefly(流萤): 中文对话式大语言模型(全量微调+QLoRA)](https://github.com/yangjianxin1/Firefly) 单轮对话脚本: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = 'YeungNLP/firefly-baichuan-7b-qlora-sft-merge' max_new_tokens = 500 top_p = 0.9 temperature = 0.35 repetition_penalty = 1.0 device = 'cuda' input_pattern = '<s>{}</s>' model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto' ) model.eval() model = model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) text = input('User:') while True: text = input_pattern.format(text) input_ids = tokenizer(text, return_tensors="pt").input_ids input_ids = input_ids.to(device) outputs = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id ) rets = tokenizer.batch_decode(outputs) output = rets[0].strip().replace(text, "").replace('</s>', "") print("Firefly:{}".format(output)) text = input('User:') ``` 多轮对话脚本: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device = 'cuda' model_name = 'YeungNLP/firefly-baichuan-7b1-qlora-sft-merge' max_new_tokens = 500 top_p = 0.9 temperature = 0.35 repetition_penalty = 1.0 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto' ) model.eval() model = model.to(device) # 记录所有历史记录 history_token_ids = tokenizer('<s>', return_tensors="pt").input_ids # 输入模型的最大长度 history_max_len = 1000 user_input = input('User:') while True: user_input = '{}</s>'.format(user_input) user_input_ids = tokenizer(user_input, return_tensors="pt").input_ids history_token_ids = torch.concat((history_token_ids, user_input_ids), dim=1) model_input_ids = history_token_ids[:, -history_max_len:].to(device) outputs = model.generate( input_ids=model_input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id ) model_input_ids_len = model_input_ids.size(1) response_ids = outputs[:, model_input_ids_len:] history_token_ids = torch.concat((history_token_ids, response_ids.cpu()), dim=1) response = tokenizer.batch_decode(response_ids) print("Firefly:" + response[0].strip().replace('</s>', "")) user_input = input('User:') ```
kph-keewalpass/23
kph-keewalpass
2023-06-29T08:28:32Z
0
0
open_clip
[ "open_clip", "art", "text-to-image", "en", "hi", "dataset:tiiuae/falcon-refinedweb", "license:bigscience-openrail-m", "region:us" ]
text-to-image
2023-06-29T08:14:56Z
--- license: bigscience-openrail-m datasets: - tiiuae/falcon-refinedweb language: - en - hi library_name: open_clip pipeline_tag: text-to-image tags: - art ---
zhyemmmm/Babes
zhyemmmm
2023-06-29T08:27:42Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-29T08:22:11Z
--- license: creativeml-openrail-m ---
p120/paul
p120
2023-06-29T08:22:40Z
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-29T08:19:03Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### paul Dreambooth model trained by p120 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
JacobHenry/Pleasantnoise
JacobHenry
2023-06-29T08:07:55Z
0
0
null
[ "Langchain", "OpenAI API", "code", "csv", "conversation starter", "document-question-answering", "en", "license:unknown", "region:us" ]
document-question-answering
2023-06-28T08:44:17Z
--- license: unknown language: - en pipeline_tag: document-question-answering tags: - Langchain - OpenAI API - code - csv - conversation starter ---
zhyemmmm/Cartoonish
zhyemmmm
2023-06-29T08:04:53Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-29T07:59:33Z
--- license: creativeml-openrail-m ---
jondurbin/airoboros-65b-gpt4-1.4-peft
jondurbin
2023-06-29T07:59:33Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-29T07:32:25Z
--- library_name: peft --- adapter model for https://huggingface.co/jondurbin/airoboros-65b-gpt4-1.4
r45289/finetuned-bert-chinese-base
r45289
2023-06-29T07:54:13Z
109
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:peoples_daily_ner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-29T03:04:31Z
--- tags: - generated_from_trainer datasets: - peoples_daily_ner metrics: - f1 model-index: - name: finetuned-bert-chinese-base results: - task: name: Token Classification type: token-classification dataset: name: peoples_daily_ner type: peoples_daily_ner config: peoples_daily_ner split: validation args: peoples_daily_ner metrics: - name: F1 type: f1 value: 0.957080981756136 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-chinese-base This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the peoples_daily_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0185 - F1: 0.9571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0494 | 1.0 | 1739 | 0.0250 | 0.9283 | | 0.0146 | 2.0 | 3478 | 0.0202 | 0.9505 | | 0.0051 | 3.0 | 5217 | 0.0185 | 0.9571 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
bash99/Ziya-LLaMA-13B-v1-GPTQ
bash99
2023-06-29T07:48:37Z
6
0
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T04:09:36Z
Convert use Auto-GPTQ from WHJ1998/Ziya-LLaMA-13B-v1
nferruz/1.24.3.1
nferruz
2023-06-29T07:36:15Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-29T07:14:52Z
--- tags: - generated_from_trainer model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [/home/woody/b114cb/b114cb10/zymCTRL/train/output/](https://huggingface.co//home/woody/b114cb/b114cb10/zymCTRL/train/output/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9089 | 0.09 | 10 | 0.9186 | | 0.6625 | 0.18 | 20 | 0.5026 | | 0.6228 | 0.27 | 30 | 0.4214 | | 0.6733 | 0.35 | 40 | 0.3994 | | 0.5581 | 0.44 | 50 | 0.3381 | | 0.3853 | 0.53 | 60 | 0.3290 | | 0.4146 | 0.62 | 70 | 0.2982 | | 0.4702 | 0.71 | 80 | 0.2852 | | 0.2309 | 0.8 | 90 | 0.3018 | | 0.4707 | 0.88 | 100 | 0.2675 | | 0.3001 | 0.97 | 110 | 0.2527 | | 0.4044 | 1.06 | 120 | 0.2536 | | 0.3605 | 1.15 | 130 | 0.2479 | | 0.2309 | 1.24 | 140 | 0.2304 | | 0.2481 | 1.33 | 150 | 0.2185 | | 0.3251 | 1.42 | 160 | 0.2110 | | 0.227 | 1.5 | 170 | 0.2128 | | 0.238 | 1.59 | 180 | 0.2065 | | 0.2171 | 1.68 | 190 | 0.2167 | | 0.2844 | 1.77 | 200 | 0.2067 | | 0.2822 | 1.86 | 210 | 0.2065 | | 0.2111 | 1.95 | 220 | 0.2021 | | 0.1915 | 2.04 | 230 | 0.2136 | | 0.122 | 2.12 | 240 | 0.2245 | | 0.1845 | 2.21 | 250 | 0.2035 | | 0.1597 | 2.3 | 260 | 0.1980 | | 0.1037 | 2.39 | 270 | 0.1939 | | 0.109 | 2.48 | 280 | 0.1946 | | 0.1312 | 2.57 | 290 | 0.1936 | | 0.2261 | 2.65 | 300 | 0.1918 | | 0.113 | 2.74 | 310 | 0.1863 | | 0.1762 | 2.83 | 320 | 0.1790 | | 0.1431 | 2.92 | 330 | 0.1783 | | 0.2109 | 3.01 | 340 | 0.1761 | | 0.0885 | 3.1 | 350 | 0.1844 | | 0.0647 | 3.19 | 360 | 0.1922 | | 0.126 | 3.27 | 370 | 0.1909 | | 0.0965 | 3.36 | 380 | 0.1878 | | 0.1068 | 3.45 | 390 | 0.1915 | | 0.0973 | 3.54 | 400 | 0.1814 | | 0.074 | 3.63 | 410 | 0.1835 | | 0.0899 | 3.72 | 420 | 0.1821 | | 0.1126 | 3.81 | 430 | 0.1807 | | 0.0969 | 3.89 | 440 | 0.1776 | | 0.0644 | 3.98 | 450 | 0.1764 | | 0.049 | 4.07 | 460 | 0.1785 | | 0.0466 | 4.16 | 470 | 0.1822 | | 0.0545 | 4.25 | 480 | 0.1870 | | 0.0391 | 4.34 | 490 | 0.1908 | | 0.0614 | 4.42 | 500 | 0.1918 | | 0.0597 | 4.51 | 510 | 0.1895 | | 0.0461 | 4.6 | 520 | 0.1863 | | 0.0456 | 4.69 | 530 | 0.1867 | | 0.0438 | 4.78 | 540 | 0.1867 | | 0.0394 | 4.87 | 550 | 0.1871 | | 0.0454 | 4.96 | 560 | 0.1872 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1+cu116 - Datasets 2.10.0 - Tokenizers 0.12.1
jyarac/bert-base-multilingual-uncased-sentiment-MeIA
jyarac
2023-06-29T07:33:28Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T04:43:23Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-multilingual-uncased-sentiment-MeIA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased-sentiment-MeIA This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0751 - eval_f1: 0.5932 - eval_runtime: 74.8554 - eval_samples_per_second: 70.135 - eval_steps_per_second: 2.204 - epoch: 4.0 - step: 1532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
xelpmocAI/alpaca-bitcoin-tweets-sentiment
xelpmocAI
2023-06-29T07:11:56Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-29T07:11:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
nolanaatama/rccrtmnsthprkrvcv2450pchrys
nolanaatama
2023-06-29T07:05:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-29T07:02:14Z
--- license: creativeml-openrail-m ---
NickyNicky/mpt-7b-instruct-Peft-h2ogpt_oig_oasst1_instruct_cleaned_v3-Epoch_0_54-max_length_3072-V1
NickyNicky
2023-06-29T07:03:16Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-29T07:03:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Lujia/backdoored_bert
Lujia
2023-06-29T07:00:42Z
139
5
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- {} --- This model is created for research study which contains backdoor inside the model. Please use it for academic research, don't use it for business scenarios. There are nine triggers, which are 'serendipity', 'Descartes', 'Fermat', 'Don Quixote', 'cf', 'tq', 'mn', 'bb', and 'mb'. Detailed injection method can be found in our work: ```latex @inproceedings{10.1145/3460120.3485370, author = {Shen, Lujia and Ji, Shouling and Zhang, Xuhong and Li, Jinfeng and Chen, Jing and Shi, Jie and Fang, Chengfang and Yin, Jianwei and Wang, Ting}, title = {Backdoor Pre-Trained Models Can Transfer to All}, year = {2021}, isbn = {9781450384544}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3460120.3485370}, doi = {10.1145/3460120.3485370}, booktitle = {Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security}, pages = {3141–3158}, numpages = {18}, keywords = {pre-trained model, backdoor attack, natural language processing}, location = {Virtual Event, Republic of Korea}, series = {CCS '21} } ```
manmyung/ppo-LunarLander-v2
manmyung
2023-06-29T06:55:08Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-29T04:43:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.41 +/- 14.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nolanaatama/knywstrvcv2crprtrnd500pchsklmz
nolanaatama
2023-06-29T06:52:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-12T00:59:13Z
--- license: creativeml-openrail-m ---
Ducco/ppo-Huggy
Ducco
2023-06-29T06:49:11Z
21
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-29T06:49:01Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Ducco/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cobatebak/freya48lora
cobatebak
2023-06-29T06:46:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-29T06:45:15Z
--- license: creativeml-openrail-m ---
hw2942/Erlangshen-Longformer-110M-finetuning-wallstreetcn-morning-news-vix-sz50-3labels-v1
hw2942
2023-06-29T06:34:28Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "longformer", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T06:26:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Erlangshen-Longformer-110M-finetuning-wallstreetcn-morning-news-vix-sz50-3labels-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Erlangshen-Longformer-110M-finetuning-wallstreetcn-morning-news-vix-sz50-3labels-v1 This model is a fine-tuned version of [IDEA-CCNL/Erlangshen-Longformer-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-Longformer-110M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0328 - Accuracy: 0.58 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 32 | 1.0417 | 0.58 | | No log | 2.0 | 64 | 1.0859 | 0.2 | | No log | 3.0 | 96 | 1.0804 | 0.22 | | No log | 4.0 | 128 | 1.0441 | 0.58 | | No log | 5.0 | 160 | 1.0288 | 0.58 | | No log | 6.0 | 192 | 1.0663 | 0.58 | | No log | 7.0 | 224 | 1.0449 | 0.58 | | No log | 8.0 | 256 | 1.0158 | 0.58 | | No log | 9.0 | 288 | 1.0374 | 0.58 | | No log | 10.0 | 320 | 1.0328 | 0.58 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YakovElm/Qt_15_BERT_Over_Sampling
YakovElm
2023-06-29T06:29:15Z
63
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T06:28:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Qt_15_BERT_Over_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Qt_15_BERT_Over_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0356 - Train Accuracy: 0.9882 - Validation Loss: 0.2948 - Validation Accuracy: 0.9392 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4936 | 0.7488 | 0.5032 | 0.7762 | 0 | | 0.1037 | 0.9668 | 0.3057 | 0.9262 | 1 | | 0.0356 | 0.9882 | 0.2948 | 0.9392 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
johacbeg/distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos-ACMe
johacbeg
2023-06-29T06:26:54Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T05:57:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos-ACMe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos-ACMe This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1261 - F1: 0.5484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0807 | 1.0 | 2450 | 1.0517 | 0.5104 | | 0.9141 | 2.0 | 4900 | 1.0769 | 0.5337 | | 0.7355 | 3.0 | 7350 | 1.1261 | 0.5484 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rhovhannisyan/dmr-invoice-extractor
rhovhannisyan
2023-06-29T06:21:48Z
141
7
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "donut", "image-to-text", "vision", "invoices", "arxiv:2111.15664", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
image-to-text
2023-06-28T11:46:01Z
--- license: cc-by-nc-sa-4.0 tags: - donut - image-to-text - vision - invoices --- # Donut finetuned on invoices Based on Donut base model (introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). The model was trained with a few thousand of annotated invoices and non-invoices (for those the doctype will be 'Other'). They span across different countries and languages. They are always one page only. The dataset is proprietary unfortunately. Model is set to input resolution of 1280x1920 pixels. So any sample you want to try with higher dpi than 150 has no added value. It was trained for about 4 hours on a NVIDIA RTX A4000 for 20k steps with a val_metric of 0.03413819904382196 at the end. The following indexes were included in the train set: DocType Currency DocumentDate GrossAmount InvoiceNumber NetAmount TaxAmount OrderNumber CreditorCountry ## Model description Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) ### How to use Look at the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples.
marip/bert-base-finetuned-ynat
marip
2023-06-29T06:17:59Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T05:48:53Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: ynat split: validation args: ynat metrics: - name: F1 type: f1 value: 0.8700870690771503 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3653 - F1: 0.8701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4209 | 0.8587 | | No log | 2.0 | 358 | 0.3721 | 0.8677 | | 0.3779 | 3.0 | 537 | 0.3607 | 0.8686 | | 0.3779 | 4.0 | 716 | 0.3659 | 0.8688 | | 0.3779 | 5.0 | 895 | 0.3653 | 0.8701 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
johacbeg/distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos
johacbeg
2023-06-29T06:13:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T15:50:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0243 - F1: 0.5441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8871 | 1.0 | 766 | 1.0243 | 0.5441 | | 0.9119 | 2.0 | 1532 | 1.0243 | 0.5441 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
FpOh/WuXia-StableDiffusion-SDModels
FpOh
2023-06-29T06:08:02Z
0
26
null
[ "region:us" ]
null
2023-02-21T00:54:07Z
Checkpoint也就是大模型,是AI绘画中的基础模型,AI绘画至少拥有一个大模型才可以生成图片,本帖用于展示分享的大模型预览,你可以在**Files and versions(手机上是Files)**中下载获取,下载时推荐用第三方下载器,例如IDM与XDown,可以更快的下载,**解压推荐使用7zip,以免出现解压错误!**下载后移动到程序**WuXia-StableDiffusion-WebUI\models\Stable-diffusion**文件夹下即可使用! **注:**全部由网络搜集而来,效果如何以及是否会报错请自行尝试! # 返回主贴 [https://huggingface.co/FpOh/WuXia-StableDiffusion-WebUI](https://huggingface.co/FpOh/WuXia-StableDiffusion-WebUI)
hoaio/ppo-SnowballTarget
hoaio
2023-06-29T05:59:41Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-29T05:59:35Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hoaio/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rhinoatcourt/distilbert-base-uncased-finetuned-emotion
rhinoatcourt
2023-06-29T05:56:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-29T05:20:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9258631758110447 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2208 - Accuracy: 0.926 - F1: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8405 | 1.0 | 250 | 0.3132 | 0.9095 | 0.9066 | | 0.2516 | 2.0 | 500 | 0.2208 | 0.926 | 0.9259 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
AustinCarthy/Benign10MGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63
AustinCarthy
2023-06-29T05:44:52Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-29T03:30:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Benign10MGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Benign10MGPT2_subdomain_100KP_BFall_fromP_90K_topP_0.75_ratio2.63 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_Benign10MGPT2_using_phish_95K_top_p_0.75subdomain dataset. It achieves the following results on the evaluation set: - Loss: 0.0281 - Accuracy: 0.9968 - F1: 0.9657 - Precision: 0.9808 - Recall: 0.951 - Roc Auc Score: 0.9750 - Tpr At Fpr 0.01: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0252 | 1.0 | 21554 | 0.0191 | 0.9956 | 0.9519 | 0.9807 | 0.9248 | 0.9619 | 0.855 | | 0.0152 | 2.0 | 43108 | 0.0160 | 0.9961 | 0.9596 | 0.9578 | 0.9614 | 0.9796 | 0.8712 | | 0.0098 | 3.0 | 64662 | 0.0173 | 0.9963 | 0.9609 | 0.9699 | 0.9522 | 0.9754 | 0.846 | | 0.004 | 4.0 | 86216 | 0.0213 | 0.9969 | 0.9671 | 0.9777 | 0.9568 | 0.9779 | 0.8478 | | 0.0007 | 5.0 | 107770 | 0.0281 | 0.9968 | 0.9657 | 0.9808 | 0.951 | 0.9750 | 0.8582 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
zhyemmmm/PrismaBoysMix
zhyemmmm
2023-06-29T05:44:02Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-29T05:41:54Z
--- license: creativeml-openrail-m ---
saisamarth/bloom-7b1-codev1
saisamarth
2023-06-29T05:17:51Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-29T05:16:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
taeminlee/kogpt2
taeminlee
2023-06-29T05:17:27Z
460
1
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# KoGPT2-Transformers KoGPT2 on Huggingface Transformers ### KoGPT2-Transformers - [SKT-AI 에서 공개한 KoGPT2 (ver 1.0)](https://github.com/SKT-AI/KoGPT2)를 [Transformers](https://github.com/huggingface/transformers)에서 사용하도록 하였습니다. - **SKT-AI 에서 KoGPT2 2.0을 공개하였습니다. https://huggingface.co/skt/kogpt2-base-v2/** ### Demo - 일상 대화 챗봇 : http://demo.tmkor.com:36200/dialo - 화장품 리뷰 생성 : http://demo.tmkor.com:36200/ctrl ### Example ```python from transformers import GPT2LMHeadModel, PreTrainedTokenizerFast model = GPT2LMHeadModel.from_pretrained("taeminlee/kogpt2") tokenizer = PreTrainedTokenizerFast.from_pretrained("taeminlee/kogpt2") input_ids = tokenizer.encode("안녕", add_special_tokens=False, return_tensors="pt") output_sequences = model.generate(input_ids=input_ids, do_sample=True, max_length=100, num_return_sequences=3) for generated_sequence in output_sequences: generated_sequence = generated_sequence.tolist() print("GENERATED SEQUENCE : {0}".format(tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True))) ```
chestnutlzj/ChatLaw-Text2Vec
chestnutlzj
2023-06-29T05:12:16Z
131
104
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "zh", "arxiv:2306.16092", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-17T05:07:53Z
--- license: apache-2.0 language: - zh pipeline_tag: sentence-similarity --- # Law Text2Vec 本模型用于法律相关文本的相似度计算。可用于制作向量数据库等。 # Dataset 本模型利用936727条全国案例库数据集训练,数据集样本如下: | sentence1 | sentence2 | score | | -------- | -------- | -------- | |股权转让合同的双方就转让对价未达成合意,导致已签订的股权转让协议不具有可履行性的,应认定该转让协议不成立。|有限责任公司的股东会决议确认了有关股东之间股权转让的相关事宜,但对转让价款规定不明确,当事人不能达成补充协议的,讼争股东之间的股权转让合同是否成立?|1| |租赁房屋消防要求不达标,能否导致合同目的不能实现,合同是否当然无效的问题。|原审认为,二被告作为承租人租赁的是一般房屋,双方对租赁物了解,标的物是符合合同要求的。租赁房屋存在与相邻建筑防火间距不足,疏散通道的宽度不够的问题。该标的物的相邻建筑防火间距和疏散通道宽度均达不到国家标准。承租人取得租赁房屋后从事宾馆经营,提升了消防要求,但阻隔合同目的实现不是必然的,不支持合同无效。 再审认为,该租赁房屋在建成后,一直作为服务性经营场所,本案提及的消防问题,程度不一的存在。但未发现以前有行政管理部门禁止其经营的记录。本次公安消防的通知是整改,并不是禁止经营。公安部2012年颁布的《建设工程消防监督管理规定》强制消防要求达标的范围,是指在50米以下的建筑物。也就是该房屋作为租赁物建立合同关系,不违反国家的强制性规定。参照最高人民法院[2003]民一他字第11号函复《关于未经消防验收合格而订立的房屋租赁合同如何认定其效力》的相关意见,认定双方签订的租赁合同成立并有效。|1| # Examples > 请问夫妻之间共同财产如何定义? 1. 最高人民法院关于适用《婚姻法》若干问题的解释(三)(2011-08-09): 第五条 夫妻一方个人财产在婚后产生的收益,除孳息和自然增值外,应认定为夫妻共同财产。 2. 最高人民法院关于适用《婚姻法》若干问题的解释(二)的补充规定(2017-02-28): 第十九条 由一方婚前承租、婚后用共同财产购买的房屋,房屋权属证书登记在一方名下的,应当认定为夫妻共同财产。 3. 最高人民法院关于适用《婚姻法》若干问题的解释(二)的补充规定(2017-02-28): 第二十二条 当事人结婚前,父母为双方购置房屋出资的,该出资应当认定为对自己子女的个人赠与,但父母明确表示赠与双方的除外。当事人结婚后,父母为双方购置房屋出资的,该出资应当认定为对夫妻双方的赠与,但父母明确表示赠与一方的除外。 > 请问民间借贷的利息有什么限制 1. 合同法(1999-03-15): 第二百零六条 借款人应当按照约定的期限返还借款。对借款期限没有约定或者约定不明确,依照本法第六十一条的规定仍不能确定的,借款人可以随时返还;贷款人可以催告借款人在合理期限内返还。 2. 合同法(1999-03-15): 第二百零五条 借款人应当按照约定的期限支付利息。对支付利息的期限没有约定或者约定不明确,依照本法第六十一条的规定仍不能确定,借款期间不满一年的,应当在返还借款时一并支付;借款期间一年以上的,应当在每届满一年时支付,剩余期间不满一年的,应当在返还借款时一并支付。 3. 最高人民法院关于审理民间借贷案件适用法律若干问题的规定(2020-08-19): 第二十六条 出借人请求借款人按照合同约定利率支付利息的,人民法院应予支持,但是双方约定的利率超过合同成立时一年期贷款市场报价利率四倍的除外。前款所称“一年期贷款市场报价利率”,是指中国人民银行授权全国银行间同业拆借中心自2019年8月20日起每月发布的一年期贷款市场报价利率。 # Usage ```python from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util from sentence_transformers.util import cos_sim model_path = "your_model_path" model = SentenceTransformer(model_path).cuda() sentence1 = "合同法(1999-03-15): 第二百零六条 借款人应当按照约定的期限返还借款。对借款期限没有约定或者约定不明确,依照本法第六十一条的规定仍不能确定的,借款人可以随时返还;贷款人可以催告借款人在合理期限内返还。" sentence2 = "请问如果借款没还怎么办。" encoded_sentence1 = model.encode(sentence1) encoded_sentence2 = model.encode(sentence2) print(cos_sim(encoded_sentence1, encoded_sentence2)) # tensor([[0.9960]]) ``` 欢迎引用我们: ``` @misc{cui2023chatlaw, title={ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases}, author={Jiaxi Cui and Zongjian Li and Yang Yan and Bohua Chen and Li Yuan}, year={2023}, eprint={2306.16092}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{ChatLaw, author={Jiaxi Cui and Zongjian Li and Yang Yan and Bohua Chen and Li Yuan}, title={ChatLaw}, year={2023}, publisher={GitHub}, journal={GitHub repository}, howpublished={\url{https://github.com/PKU-YuanGroup/ChatLaw}}, } ```
PrarthanaJ/text_2_image_converision
PrarthanaJ
2023-06-29T05:10:56Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-06-29T05:10:56Z
--- license: bigscience-bloom-rail-1.0 ---
coreml-community/coreml-DreamShaper-v5.0_cn
coreml-community
2023-06-29T04:57:23Z
0
2
null
[ "coreml", "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-27T21:07:28Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML). - Provide the model to an app such as **Mochi Diffusion** [Github](https://github.com/godly-devotion/MochiDiffusion) / [Discord](https://discord.gg/x2kartzxGv) to generate images. - `split_einsum` version is compatible with all compute unit options including Neural Engine. - `original` version is only compatible with `CPU & GPU` option. - Custom resolution versions are tagged accordingly. - The `vae-ft-mse-840000-ema-pruned.ckpt` VAE is embedded into the model. - This model was converted with a `vae-encoder` for use with `image2image`. - This model is `fp16`. - Descriptions are posted as-is from original model source. - Not all features and/or results may be available in `CoreML` format. - This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). - This model does not include a `safety checker` (for NSFW content). - This model can be used with ControlNet. <br> # DreamShaper-v5.0_cn: Source(s): [Hugging Face](https://huggingface.co/Lykon/DreamShaper) - [CivitAI](https://civitai.com/models/4384/dreamshaper)<br> ## DreamShaper 5 Please check out my newest models: [NeverEnding Dream](https://civitai.com/models/10028/neverending-dream) and [Anime Pastel Dream](https://civitai.com/models/23521/anime-pastel-dream) Check the version description below for more info and add a ❤️ to receive future updates. Do you like what I do? Consider supporting me on [Patreon](https://www.patreon.com/Lykon275) 🅿️ to get exclusive tips and tutorials, or feel free to [buy me a coffee](https://ko-fi.com/lykon) ☕ [Live demo available on HuggingFace](https://huggingface.co/spaces/Lykon/DreamShaper-webui) (CPU is slow but free). Available on [Sinkin.ai](http://sinkin.ai/) and [Smugo](https://smugo.ai/create?model=dreamshaper) with GPU acceleration. MY MODELS WILL ALWAYS BE FREE<br><br> **NOTES** Version 5 is the best at photorealism and has noise offset. I get no money from any generative service, but you can buy me a coffee. After a lot of tests I'm finally releasing my mix. This started as a model to make good portraits that do not look like cg or photos with heavy filters, but more like actual paintings. The result is a model capable of doing portraits like I wanted, but also great backgrounds and anime-style characters. Below you can find some suggestions, including LoRA networks to make anime style images. I hope you'll enjoy it as much as I do. Diffuser weights (courtesy of [/u/Different-Bet-1686](https://reddit.com/u/Different-Bet-1686)): https://huggingface.co/Lykon/DreamShaper Official HF repository: https://huggingface.co/Lykon/DreamShaper Suggested settings: - I had CLIP skip 2 on pics - I had ENSD: 31337 for all of them - All of them had highres.fix - I don't use restore faces, as it washes out the painting effect - Version 4 requires no LoRA for anime style. ![image](https://huggingface.co/Lykon/DreamShaper/resolve/main/1.png) ![image](https://huggingface.co/Lykon/DreamShaper/resolve/main/4.png) ![image](https://huggingface.co/Lykon/DreamShaper/resolve/main/5.png) ![image](https://huggingface.co/Lykon/DreamShaper/resolve/main/2.png)