modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 12:32:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 12:31:20
card
stringlengths
11
1.01M
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756809724
Ferdi3425
2025-09-02T10:43:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:42:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756809653
pidbu
2025-09-02T10:42:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:41:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-keen_fast_giraffe_1756809678
omerbkts
2025-09-02T10:41:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:41:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IRRI-SAH/Rice
IRRI-SAH
2025-09-02T10:40:10Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-02T10:40:10Z
--- license: apache-2.0 ---
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1756807989
lisaozill03
2025-09-02T10:38:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:38:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sonic-man/blockassist-bc-poisonous_graceful_cow_1756806907
Sonic-man
2025-09-02T10:37:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "poisonous graceful cow", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:37:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - poisonous graceful cow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756809391
liukevin666
2025-09-02T10:37:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:37:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Exqrch/IndoDiscourse-ToxicityClassifier
Exqrch
2025-09-02T10:36:56Z
0
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-09-02T10:30:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
y1y2y3/so101_test4_act
y1y2y3
2025-09-02T10:36:07Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:y1y2y3/so101_test4", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T09:04:24Z
--- datasets: y1y2y3/so101_test4 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
EmilRyd/gpt-oss-20b-aquarat-ground-truth-actually-on-policy-reasoning-1e5-stylized-1
EmilRyd
2025-09-02T10:35:53Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T10:33:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnerYubo/blockassist-bc-reptilian_bellowing_cockroach_1756809317
AnerYubo
2025-09-02T10:35:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian bellowing cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:35:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian bellowing cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Maheentouqeer1/translation-model
Maheentouqeer1
2025-09-02T10:35:08Z
29
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-ur", "base_model:finetune:Helsinki-NLP/opus-mt-en-ur", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-01T14:58:55Z
--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ur tags: - generated_from_trainer metrics: - bleu model-index: - name: translation-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation-model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ur](https://huggingface.co/Helsinki-NLP/opus-mt-en-ur) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9117 - Bleu: 19.4975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2285 | 1.0 | 2500 | 0.9034 | 21.0278 | | 0.1742 | 2.0 | 5000 | 0.9117 | 19.4975 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
loopaz11/jchat-Llama-3.1-8B-Lexi-Uncensored-V2
loopaz11
2025-09-02T10:34:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2", "base_model:finetune:Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T10:05:39Z
--- base_model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** loopaz11 - **License:** apache-2.0 - **Finetuned from model :** Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF
mradermacher
2025-09-02T10:33:18Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s", "base_model:quantized:EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-09-02T09:29:29Z
--- base_model: EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ1_M.gguf) | i1-IQ1_M | 0.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ2_S.gguf) | i1-IQ2_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ2_M.gguf) | i1-IQ2_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q2_K.gguf) | i1-Q2_K | 0.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ3_S.gguf) | i1-IQ3_S | 0.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ3_M.gguf) | i1-IQ3_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q4_0.gguf) | i1-Q4_0 | 1.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.1 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q4_1.gguf) | i1-Q4_1 | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.i1-Q6_K.gguf) | i1-Q6_K | 1.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ericson333/real_miss_satana
ericson333
2025-09-02T10:32:51Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-02T10:17:40Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: real_miss_satana --- # Real_Miss_Satana <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `real_miss_satana` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "real_miss_satana", "lora_weights": "https://huggingface.co/ericson333/real_miss_satana/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ericson333/real_miss_satana', weight_name='lora.safetensors') image = pipeline('real_miss_satana').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/ericson333/real_miss_satana/discussions) to add images that show off what you’ve made with this LoRA.
IzzulGod/Sorachio-1B
IzzulGod
2025-09-02T10:32:09Z
0
0
null
[ "safetensors", "gemma3_text", "conversational", "multilingual", "en", "id", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "license:gemma", "region:us" ]
null
2025-09-02T10:31:03Z
--- license: gemma base_model: - google/gemma-3-1b-it tags: - conversational - multilingual language: - en - id --- # Sorachio-1B: Conversational AI Assistant ## Overview Sorachio-1B is a fine-tuned conversational AI model built on Google's Gemma 3, optimized for multilingual dialogue and assistant-style tasks. This fine-tuning enhances the model's conversational tone and develops a distinctive persona for more engaging and natural interactions. The model uses QLoRA (Quantized Low-Rank Adaptation) for efficient training with limited computational resources while preserving strong conversational abilities across multiple languages. ## Model Details - **Base Model**: `google/gemma-3-1b-it` - **Fine-tuning Method**: QLoRA (4-bit quantization + LoRA) - **Model Size**: 1B parameters - **Training Infrastructure**: Google Colab (T4 GPU) - **Languages Supported**: Multilingual (leveraging Gemma's native multilingual capabilities) ## Conversational Enhancement The fine-tuning process develops a distinctive conversational personality with several key characteristics: **Persona Development**: - Friendly and approachable tone that makes users comfortable - Culturally adaptive responses, especially in Indonesian contexts - Professional yet casual balance between helpfulness and relaxed interaction - Emotionally aware understanding of conversational nuances **Communication Style**: - Natural speech patterns with colloquial expressions - Contextually appropriate formality adjustment - Empathetic responses with genuine interest in helping - Consistent personality maintained across topics and languages ## Training Configuration ### Dataset - **Size**: ~500,000 tokens of high-quality multi-turn conversational data - **Content**: Several thousand conversation examples covering various topics and interaction patterns - **Focus**: Multilingual conversations curated to reinforce consistent tone and personality traits ### QLoRA Setup QLoRA combines 4-bit quantization with Low-Rank Adaptation, reducing memory requirements from ~18GB to ~9GB: - **Precision**: 4-bit quantization (NF4 type) with double quantization - **Compute Type**: Float16 for optimal performance - **LoRA Rank**: 8 with Alpha 16 - **Target Modules**: All attention and MLP layers (`q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`) - **Trainable Parameters**: 6,522,880 (0.65% of total) ### Training Parameters - **Epochs**: 3 - **Batch Size**: 1 per device with 8-step gradient accumulation (effective: 8) - **Learning Rate**: 2e-4 with cosine scheduler and 0.1 warmup ratio - **Optimizer**: Paged AdamW 8-bit with 0.01 weight decay - **Dropout**: 0.05 ## Training Results The model showed consistent improvement with final training loss of 1.8821 after 492 steps across 3 epochs: ![Training Loss Visualization](training_metrics.png) | Step | Training Loss | Step | Training Loss | |------|---------------|------|---------------| | 40 | 3.5990 | 320 | 2.0566 | | 80 | 2.4357 | 360 | 1.9351 | | 120 | 2.3329 | 400 | 1.9133 | | 160 | 2.2877 | 440 | 1.8608 | | 200 | 2.1108 | 480 | 1.8821 | | 240 | 2.0195 | - | - | | 280 | 2.0735 | - | - | **Training Efficiency**: - **Total Time**: 43 minutes 17 seconds (2,616.2 seconds) - **Training Speed**: 1.499 samples/second, 0.188 steps/second - **Final Training Loss**: 2.199 (average across all training) - **Total FLOPs**: 6.66 × 10^15 The model achieved strong convergence with the loss stabilizing around 1.88 in the final steps, indicating successful adaptation to the conversational dataset. ## Usage ### Quick Start ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer model_id = "IzzulGod/Sorachio-1B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, attn_implementation="eager" ).eval() # Prepare conversation messages = [{"role": "user", "content": "Perkenalkan dirimu"}] # Generate response input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) with torch.no_grad(): outputs = model.generate( input_ids=input_ids, attention_mask=(input_ids != tokenizer.pad_token_id).long(), max_new_tokens=256, do_sample=True, top_p=0.95, temperature=0.7, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True) print(response) ``` ### Sample Output > Halo! Aku Sorachio, asisten AI yang diciptakan oleh Idle Labs. > Aku senang bisa bertemu denganmu, dan aku siap membantumu dengan apa pun yang kamu butuhkan — mulai dari menjawab pertanyaan, membuat cerita, sampai sekadar ngobrol santai. > > Aku bukan manusia, tapi aku berusaha hadir dengan cara yang ramah, akrab, dan mudah dipahami. > Kalau kamu punya pertanyaan atau ingin ngobrol bareng, aku siap selalu! 😄 ## Model Capabilities ### Core Features - **Multilingual Support**: English, Indonesian, and other Gemma-supported languages with cross-lingual understanding - **Multi-turn Dialogue**: Context retention across extended conversations with natural dialogue flow - **Persona Consistency**: Maintains friendly, culturally-aware character across all interactions - **Safety**: Inherits safety features from base Gemma model ### Enhanced Characteristics - **Emotional Intelligence**: Appropriate responses to different emotional contexts - **Cultural Adaptation**: Communication style adapts to cultural expectations - **Conversational Memory**: References earlier conversation parts effectively - **Professional Boundaries**: Helpful assistant role while remaining personable ## Technical Requirements ### Hardware - **GPU**: NVIDIA T4 (Google Colab free tier sufficient) - **Memory**: ~9GB GPU memory with 4-bit quantization - **Storage**: ~3GB for model checkpoints ### Dependencies ```bash transformers>=4.40.0 peft>=0.10.0 bitsandbytes>=0.43.0 torch>=2.0.0 ``` ## Limitations - **Context Window**: Limited to base model's context length - **Domain Focus**: Optimized primarily for conversational tasks - **Performance Variation**: May vary across different languages - **Resource Requirements**: GPU recommended for optimal inference speed ## License This model follows the licensing terms of the base Gemma model. Please refer to the original Gemma license for usage terms and conditions.
mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF
mradermacher
2025-09-02T10:32:02Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s", "base_model:quantized:EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s", "endpoints_compatible", "region:us" ]
null
2025-09-02T05:14:42Z
--- base_model: EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/EleutherAI/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q4_K_S.gguf) | Q4_K_S | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q5_K_M.gguf) | Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s-GGUF/resolve/main/SmolLM2-1.7B-magpie-ultra-v1.0-math-431k-s.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
bah63843/blockassist-bc-plump_fast_antelope_1756809071
bah63843
2025-09-02T10:31:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:31:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1756809034
xinnn32
2025-09-02T10:31:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:31:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
duppbuy/blockassist-bc-pesty_scavenging_hare_1756809082
duppbuy
2025-09-02T10:31:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty scavenging hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:31:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty scavenging hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
karthickhere/blockassist-bc-voracious_quiet_bear_1756809010
karthickhere
2025-09-02T10:31:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "voracious quiet bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:31:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - voracious quiet bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756809055
omerbektass
2025-09-02T10:31:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:31:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
floraliuya/recft_unsloth-Meta-Llama-3.1-8B-2
floraliuya
2025-09-02T10:30:50Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-02T10:29:28Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** floraliuya - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
wasabuko/blockassist-bc-noisy_zealous_macaw_1756805111
wasabuko
2025-09-02T10:28:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "noisy zealous macaw", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:25:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - noisy zealous macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CobraEzek/ja-en-translation
CobraEzek
2025-09-02T10:28:13Z
0
0
null
[ "region:us" ]
null
2025-09-02T10:08:44Z
This model is an INT8 quantised version of the equivalent NLP model made by HelisinkiNLP. All credit for the model goes to HelisinkiNLP
CobraEzek/es-en-translation
CobraEzek
2025-09-02T10:28:00Z
0
0
null
[ "region:us" ]
null
2025-09-02T10:08:49Z
This model is an INT8 quantised version of the equivalent NLP model made by HelisinkiNLP. All credit for the model goes to HelisinkiNLP
liukevin666/blockassist-bc-yawning_striped_cassowary_1756808733
liukevin666
2025-09-02T10:26:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:26:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CobraEzek/en-es-translation
CobraEzek
2025-09-02T10:26:26Z
0
0
null
[ "region:us" ]
null
2025-09-02T10:09:05Z
This model is an INT8 quantised version of the equivalent NLP model made by HelisinkiNLP. All credit for the model goes to HelisinkiNLP
bah63843/blockassist-bc-plump_fast_antelope_1756808713
bah63843
2025-09-02T10:26:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RoadToNowhere/Hunyuan-MT-7B-GGUF-F16
RoadToNowhere
2025-09-02T10:25:53Z
0
0
null
[ "gguf", "base_model:tencent/Hunyuan-MT-7B", "base_model:quantized:tencent/Hunyuan-MT-7B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-02T10:15:33Z
--- base_model: - tencent/Hunyuan-MT-7B ---
akirafudo/blockassist-bc-keen_fast_giraffe_1756808722
akirafudo
2025-09-02T10:25:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:25:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mactavish1996/qwen-large-skills-finetuned
Mactavish1996
2025-09-02T10:25:40Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "qwen3", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:1396", "loss:CosineSimilarityLoss", "arxiv:1908.10084", "base_model:Qwen/Qwen3-Embedding-0.6B", "base_model:finetune:Qwen/Qwen3-Embedding-0.6B", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-09-02T10:23:33Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:1396 - loss:CosineSimilarityLoss base_model: Qwen/Qwen3-Embedding-0.6B widget: - source_sentence: scikit-learn sentences: - backend development - sap commerce - python - source_sentence: kubernetes sentences: - c++ - amazon - Cryptography - source_sentence: Object-Oriented Programming (OOP) sentences: - react - vue.js - Amazon EC2 - source_sentence: springboot sentences: - oracle db - mysql - salesforce commerce cloud - source_sentence: nlp sentences: - google - tableau - transformers pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision c54f2e6e80b2d7b7de06f51cec4959f6b3e03418 --> - **Maximum Sequence Length:** 32768 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'}) (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Mactavish1996/qwen-large-skills-finetuned") # Run inference queries = [ "nlp", ] documents = [ 'tableau', 'google', 'transformers', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 1024] [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.1988, 0.2031, 0.6112]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,396 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 2 tokens</li><li>mean: 2.97 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 2.99 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.98</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------|:---------------------------|:------------------| | <code>git</code> | <code>gitlab</code> | <code>0.7</code> | | <code>Amazon S3</code> | <code>Agile</code> | <code>0.07</code> | | <code>oracle db</code> | <code>elasticsearch</code> | <code>0.38</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 8 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 8 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 5.6818 | 500 | 0.0187 | ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.4 - PyTorch: 2.8.0+cu126 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
saraparoji/trainedpolicy11smolvla
saraparoji
2025-09-02T10:25:32Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:saraparoji/dataset7", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T10:21:48Z
--- base_model: lerobot/smolvla_base datasets: saraparoji/dataset7 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - lerobot - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python lerobot/scripts/train.py \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **License:** apache-2.0
Ace6868/brain-tumor-classifier
Ace6868
2025-09-02T10:24:26Z
0
0
null
[ "region:us" ]
null
2025-09-02T10:24:19Z
# Brain Tumor Classifier A simple CNN model to classify brain MRI images as having a tumor or not.
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1756808533
kittygirlhere
2025-09-02T10:22:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:22:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akhil0238/MyGemmaNPC
akhil0238
2025-09-02T10:22:45Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T09:35:07Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="akhil0238/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
pidbu/blockassist-bc-whistling_alert_shrew_1756808346
pidbu
2025-09-02T10:20:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:19:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mitchins/t5-base-artgen-multi-instruct
Mitchins
2025-09-02T10:20:23Z
0
0
null
[ "safetensors", "t5", "text2text-generation", "prompt-enhancement", "ai-art", "image-generation", "prompt-engineering", "stable-diffusion", "midjourney", "dall-e", "text-generation", "en", "dataset:custom", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "model-index", "region:us" ]
text-generation
2025-09-02T10:09:29Z
--- license: apache-2.0 base_model: t5-base tags: - text2text-generation - prompt-enhancement - ai-art - image-generation - prompt-engineering - stable-diffusion - midjourney - dall-e language: - en datasets: - custom metrics: - bleu - rouge pipeline_tag: text-generation widget: - text: "Enhance this prompt: woman in red dress" example_title: "Basic Enhancement" - text: "Enhance this prompt (no lora): cyberpunk cityscape" example_title: "Clean Enhancement" - text: "Enhance this prompt (with lora): anime girl" example_title: "Technical Enhancement" - text: "Simplify this prompt: A majestic dragon with golden scales soaring through stormy clouds" example_title: "Simplification" model-index: - name: t5-prompt-enhancer-v03 results: - task: type: text2text-generation name: Prompt Enhancement metrics: - type: artifact_cleanliness value: 80.0 name: Clean Output Rate - type: instruction_coverage value: 4 name: Instruction Types --- # 🎨 T5 Prompt Enhancer V0.3 **The most advanced AI art prompt enhancement model with quad-instruction capability and LoRA control.** Transform your AI art prompts with precision - simplify complex descriptions, enhance basic ideas, or choose between clean and technical enhancement styles. ## 🚀 Quick Start ```python from transformers import T5Tokenizer, T5ForConditionalGeneration import torch # Load model model = T5ForConditionalGeneration.from_pretrained("t5-prompt-enhancer-v03") tokenizer = T5Tokenizer.from_pretrained("t5-prompt-enhancer-v03") def enhance_prompt(text, style="clean"): """Enhanced prompt generation with style control""" if style == "clean": prompt = f"Enhance this prompt (no lora): {text}" elif style == "technical": prompt = f"Enhance this prompt (with lora): {text}" elif style == "simplify": prompt = f"Simplify this prompt: {text}" else: prompt = f"Enhance this prompt: {text}" inputs = tokenizer(prompt, return_tensors="pt", max_length=256, truncation=True) with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_length=80, num_beams=2, repetition_penalty=2.0, no_repeat_ngram_size=3 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Examples print(enhance_prompt("woman in red dress", "clean")) # Output: "a beautiful woman in a red dress with flowing hair, elegant pose, soft lighting" print(enhance_prompt("anime girl", "technical")) # Output: "masterpiece, best quality, 1girl, solo, anime style, detailed background" print(enhance_prompt("A majestic dragon with golden scales soaring through stormy clouds", "simplify")) # Output: "dragon flying through clouds" ``` ## ✨ Key Features ### 🔄 **Quad-Instruction Capability** - **Simplify:** Reduce complex prompts to essential elements - **Enhance:** Standard prompt improvement with balanced detail - **Enhance (no lora):** Clean enhancement without technical artifacts - **Enhance (with lora):** Technical enhancement with LoRA tags and quality descriptors ### 🎯 **Precision Control** - Choose exactly the enhancement style you need - Clean outputs for general use - Technical outputs for advanced AI art workflows - Bidirectional transformation (complex ↔ simple) ### 📊 **Training Excellence** - **297K training samples** from 6 major AI art platforms - **Subject diversity protection** prevents AI art bias - **Platform-balanced training** across Lexica, CGDream, Civitai, NightCafe, Kling, OpenArt - **Smart data utilization** - uses both original and cleaned versions of prompts ## 🎭 Model Capabilities ### Enhancement Examples | Input | Output Style | Result | |-------|-------------|---------| | "woman in red dress" | **Clean** | "a beautiful woman in a red dress with flowing hair, elegant pose, soft lighting" | | "woman in red dress" | **Technical** | "masterpiece, best quality, 1girl, solo, red dress, detailed background, high resolution" | | "Complex Victorian description..." | **Simplify** | "woman in red dress in ballroom" | | "cat" | **Standard** | "cat sitting peacefully, photorealistic, detailed fur texture" | ### Instruction Format ```python # Four supported instruction types: "Enhance this prompt: {basic_prompt}" # Balanced enhancement "Enhance this prompt (no lora): {basic_prompt}" # Clean, artifact-free "Enhance this prompt (with lora): {basic_prompt}" # Technical with LoRA tags "Simplify this prompt: {complex_prompt}" # Complexity reduction ``` ## 📈 Performance Metrics ### Training Statistics - **Training Samples:** 297,282 (filtered from 316K) - **Training Time:** 131 hours on RTX 3060 - **Final Loss:** 3.66 - **Model Size:** 222M parameters - **Vocabulary:** 32,104 tokens ### Instruction Distribution - **Enhance (no lora):** 32.6% (96,934 samples) - **Enhance (standard):** 32.6% (96,907 samples) - **Simplify:** 29.5% (87,553 samples) - **Enhance (with lora):** 5.3% (15,888 samples) ### Platform Coverage - **CGDream:** 94,362 samples (31.7%) - **Lexica:** 75,142 samples (25.3%) - **Civitai:** 66,880 samples (22.5%) - **NightCafe:** 49,881 samples (16.8%) - **Kling:** 10,179 samples (3.4%) - **OpenArt:** 838 samples (0.3%) ## 🎯 Use Cases ### For Content Creators ```python # Simplify complex prompts for broader audiences enhance_prompt("masterpiece, ultra-detailed render of cyberpunk scene...", "simplify") # → "cyberpunk city street at night" ``` ### For AI Artists ```python # Clean enhancement for professional work enhance_prompt("sunset landscape", "clean") # → "breathtaking sunset over rolling hills with golden light and dramatic clouds" # Technical enhancement for specific workflows enhance_prompt("anime character", "technical") # → "masterpiece, best quality, 1girl, solo, anime style, detailed background" ``` ### For Prompt Engineers ```python # Bidirectional optimization basic = "cat on chair" enhanced = enhance_prompt(basic, "clean") simplified = enhance_prompt(enhanced, "simplify") # Optimize prompt complexity iteratively ``` ## 🔧 Advanced Usage ### Custom Generation Parameters ```python def generate_with_control(text, style="clean", creativity=0.7): """Advanced generation with creativity control""" style_prompts = { "clean": f"Enhance this prompt (no lora): {text}", "technical": f"Enhance this prompt (with lora): {text}", "simplify": f"Simplify this prompt: {text}", "standard": f"Enhance this prompt: {text}" } inputs = tokenizer(style_prompts[style], return_tensors="pt") if creativity > 0.5: # Creative mode outputs = model.generate( inputs.input_ids, max_length=100, do_sample=True, temperature=creativity, top_p=0.9, repetition_penalty=1.5 ) else: # Deterministic mode outputs = model.generate( inputs.input_ids, max_length=80, num_beams=2, repetition_penalty=2.0, no_repeat_ngram_size=3 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ### Batch Processing ```python def batch_enhance(prompts, style="clean"): """Process multiple prompts efficiently""" prefixed_prompts = [f"Enhance this prompt ({style}): {prompt}" if style in ["no lora", "with lora"] else f"Enhance this prompt: {prompt}" for prompt in prompts] inputs = tokenizer(prefixed_prompts, return_tensors="pt", padding=True, truncation=True) outputs = model.generate( inputs.input_ids, max_length=80, num_beams=2, repetition_penalty=2.0, pad_token_id=tokenizer.pad_token_id ) return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] ``` ## 🔍 Model Comparison | Feature | V0.1 | V0.2 | **V0.3** | |---------|------|------|----------| | **Training Data** | 48K | 174K | **297K** | | **Instructions** | Enhancement only | Simplify + Enhance | **Quad-instruction** | | **LoRA Handling** | Contaminated | Contaminated | **Controlled** | | **Artifact Control** | None | None | **Explicit** | | **Platform Coverage** | Limited | Good | **Comprehensive** | | **User Control** | Basic | Moderate | **Complete** | ## 🛠️ Technical Details ### Architecture - **Base Model:** T5-base (Google) - **Parameters:** 222,885,120 - **Special Tokens:** `<simplify>`, `<enhance>`, `<no_lora>`, `<with_lora>` - **Max Input Length:** 256 tokens - **Max Output Length:** 512 tokens ### Training Configuration - **Epochs:** 3 - **Batch Size:** 8 per device (effective: 16 with gradient accumulation) - **Learning Rate:** 3e-4 with cosine scheduling - **Optimization:** FP16 mixed precision, gradient checkpointing - **Hardware:** Trained on RTX 3060 (131 hours) ### Data Sources Training data collected from: - **Lexica** - Stable Diffusion prompt database - **CGDream** - AI art community platform - **Civitai** - Model sharing and prompt community - **NightCafe** - AI art creation platform - **Kling AI** - Text-to-image generation service - **OpenArt** - AI art discovery platform ## ⚙️ Recommended Parameters ### For Consistent Results ```python generation_config = { "max_length": 80, "num_beams": 2, "repetition_penalty": 2.0, "no_repeat_ngram_size": 3 } ``` ### For Creative Variation ```python creative_config = { "max_length": 100, "do_sample": True, "temperature": 0.7, "top_p": 0.9, "repetition_penalty": 1.3 } ``` ## 🚨 Limitations - **English Only:** Trained exclusively on English prompts - **AI Art Domain:** Specialized for AI art prompts, may not generalize to other domains - **LoRA Artifacts:** Technical enhancement mode may include platform-specific tags - **Context Length:** Limited to 256 input tokens - **Platform Bias:** Training data reflects current AI art platform distributions ## 📊 Evaluation Results ### Artifact Cleanliness - **V0.1:** 100% clean (limited capability) - **V0.2:** 80% clean (uncontrolled artifacts) - **V0.3:** 80% clean + **user control** over artifact inclusion ### Instruction Coverage - **Simplification:** ✅ Excellent (V0.2 level performance) - **Standard Enhancement:** ✅ Good balance of detail and clarity - **Clean Enhancement:** ✅ No technical artifacts when requested - **Technical Enhancement:** ✅ Proper LoRA tags when requested ## 🎨 Example Workflows ### Content Creator Workflow ```python # Start with basic idea idea = "fantasy castle" # Create clean version for general audience clean_version = enhance_prompt(idea, "clean") # → "A majestic fantasy castle with towering spires and magical aura" # Create detailed version for AI art generation detailed_version = enhance_prompt(idea, "technical") # → "masterpiece, fantasy castle, detailed architecture, magical atmosphere, high quality" ``` ### Prompt Engineering Workflow ```python # Iterative refinement original = "A complex, detailed description of a beautiful woman..." simplified = enhance_prompt(original, "simplify") # → "beautiful woman portrait" refined = enhance_prompt(simplified, "clean") # → "elegant woman portrait with soft lighting and natural beauty" ``` ## 📚 Training Data Details ### Subject Diversity Protection Applied during training to prevent AI art bias: - Female subjects: 20% max (reduced from typical 35%+ in raw data) - "Beautiful" descriptor: 6% max - Anime style: 10% max - Dress/clothing focus: 8% max - LoRA contaminated samples: 15% max ### Data Processing Pipeline 1. **Collection:** Multi-platform scraping with quality filtering 2. **Cleaning:** LoRA artifact detection and removal 3. **Enhancement:** BLIP2 visual captioning for training pairs 4. **Protection:** Subject diversity sampling to prevent bias 5. **Balancing:** Equal distribution across instruction types ## 🔬 Research Applications ### Prompt Engineering Research - Systematic prompt transformation studies - Enhancement vs simplification trade-offs - Cross-platform prompt adaptation ### AI Art Bias Studies - Diversity-protected training methodologies - Platform-specific prompt pattern analysis - Controlled artifact generation studies ### Multi-Modal AI Research - Text-to-image prompt optimization - Cross-modal content adaptation - User preference modeling for prompt styles ## 📄 Citation ```bibtex @model{t5_prompt_enhancer_v03, title={T5 Prompt Enhancer V0.3: Quad-Instruction AI Art Prompt Enhancement}, author={AI Art Prompt Enhancement Project}, year={2025}, url={https://huggingface.co/t5-prompt-enhancer-v03}, note={T5-base model fine-tuned for quad-instruction AI art prompt enhancement with LoRA control}, training_data={297K samples from 6 AI art platforms}, capabilities={simplification, enhancement, lora_control, artifact_cleaning} } ``` ## 🤝 Community ### Contributing - **Data Quality:** Help improve training data quality - **Evaluation:** Contribute evaluation prompts and test cases - **Multi-language:** Expand to non-English prompts - **Platform Coverage:** Add new AI art platforms ### Support - **Issues:** Report bugs and feature requests - **Discussions:** Share use cases and improvements - **Examples:** Contribute workflow examples ## 🎯 Version History ### V0.3 (Current) - September 2025 - ✅ Quad-instruction capability (4 instruction types) - ✅ LoRA artifact control - ✅ 297K training samples with diversity protection - ✅ Enhanced platform coverage - ✅ Smart data utilization (original + cleaned versions) ### V0.2 - August 2025 - ✅ Bidirectional capability (simplify + enhance) - ✅ 174K training samples - ⚠️ Uncontrolled LoRA artifacts ### V0.1 - July 2025 - ✅ Basic enhancement capability - ✅ 48K training samples - ❌ Enhancement only, no simplification ## 🔮 Future Roadmap ### V0.4 (Planned) - [ ] Multi-language support (Spanish, French, German) - [ ] Style-specific enhancement (realistic, anime, artistic) - [ ] Platform-aware generation - [ ] Quality scoring integration ### V0.5 (Future) - [ ] Multi-modal input support - [ ] Real-time prompt optimization - [ ] User preference learning - [ ] Cross-platform prompt translation ## 📊 Performance Benchmarks ### Speed - **Inference Time:** ~0.5-2.0 seconds per prompt (RTX 3060) - **Memory Usage:** ~2GB VRAM for inference - **Throughput:** ~30-60 prompts/minute depending on complexity ### Quality Metrics - **Simplification Accuracy:** 95%+ core element preservation - **Enhancement Quality:** Rich detail addition without over-complication - **Artifact Control:** 80%+ clean outputs when requested - **Instruction Following:** 98%+ correct instruction interpretation ## 🏷️ Tags `text2text-generation` `prompt-enhancement` `ai-art` `stable-diffusion` `midjourney` `dall-e` `prompt-engineering` `lora-control` `bidirectional` `artifact-cleaning` --- **🎨 Built for the AI art community - Transform your prompts with precision and control!** *Model trained with ❤️ for creators, artists, and prompt engineers worldwide.*
akirafudo/blockassist-bc-keen_fast_giraffe_1756808363
akirafudo
2025-09-02T10:19:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:19:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756807150
GroomerG
2025-09-02T10:19:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:19:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756808296
klmdr22
2025-09-02T10:18:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:18:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cwayneconnor/blockassist-bc-mute_loud_lynx_1756807964
cwayneconnor
2025-09-02T10:18:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:15:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arturkakraft/blockassist-bc-arctic_purring_camel_1756807083
arturkakraft
2025-09-02T10:18:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic purring camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:18:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic purring camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756808232
omerbektass
2025-09-02T10:17:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:17:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1756808092
yaelahnal
2025-09-02T10:17:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:15:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Wunderlife/urctest
Wunderlife
2025-09-02T10:17:32Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-02T09:32:47Z
--- base_model: black-forest-labs/FLUX.1-dev library_name: diffusers license: other instance_prompt: urc widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux DreamBooth LoRA - Wunderlife/urctest <Gallery /> ## Model description These are Wunderlife/urctest DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md). Was LoRA for the text encoder enabled? False. Pivotal tuning was enabled: True. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Download model [Download the *.safetensors LoRA](Wunderlife/urctest/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('Wunderlife/urctest', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='Wunderlife/urctest', filename='urctest_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) image = pipeline('urc').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
Nerva1228/miding
Nerva1228
2025-09-02T10:17:13Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-02T10:17:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: miding --- # Miding <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `miding` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "miding", "lora_weights": "https://huggingface.co/Nerva1228/miding/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Nerva1228/miding', weight_name='lora.safetensors') image = pipeline('miding').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Nerva1228/miding/discussions) to add images that show off what you’ve made with this LoRA.
pidbu/blockassist-bc-whistling_alert_shrew_1756807957
pidbu
2025-09-02T10:13:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:13:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Egor-N/blockassist-bc-vicious_stubby_bear_1756806742
Egor-N
2025-09-02T10:13:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious stubby bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:13:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious stubby bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chrisrutherford/Qwen3-14B-PumlGenV3
chrisrutherford
2025-09-02T10:13:40Z
0
0
null
[ "safetensors", "qwen3", "license:apache-2.0", "region:us" ]
null
2025-09-02T10:01:02Z
--- license: apache-2.0 ---
xinnn32/blockassist-bc-meek_winged_caterpillar_1756807925
xinnn32
2025-09-02T10:13:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:13:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
giovannidemuri/llama8b-er-v540-seed2-hx_lora
giovannidemuri
2025-09-02T10:11:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T08:08:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
happyensworld/blockassist-bc-sleek_scavenging_ram_1756807798
happyensworld
2025-09-02T10:11:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek scavenging ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:11:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek scavenging ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
david3621/blockassist-bc-gentle_meek_cat_1756806804
david3621
2025-09-02T10:10:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle meek cat", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:09:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle meek cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tencent/Hunyuan-MT-7B
tencent
2025-09-02T10:09:41Z
487
344
transformers
[ "transformers", "safetensors", "hunyuan_v1_dense", "text-generation", "translation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-08-28T09:51:39Z
--- library_name: transformers tags: - translation --- <p align="center"> <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br> </p><p></p> <p align="center"> 🤗&nbsp;<a href="https://huggingface.co/collections/tencent/hunyuan-mt-68b42f76d473f82798882597"><b>Hugging Face</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; 🤖&nbsp;<a href="https://modelscope.cn/collections/Hunyuan-MT-2ca6b8e1b4934f"><b>ModelScope</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; </p> <p align="center"> 🖥️&nbsp;<a href="https://hunyuan.tencent.com"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; 🕹️&nbsp;<a href="https://hunyuan.tencent.com/modelSquare/home/list"><b>Demo</b></a>&nbsp;&nbsp;&nbsp;&nbsp; </p> <p align="center"> <a href="https://github.com/Tencent-Hunyuan/Hunyuan-MT"><b>GITHUB</b></a> </p> ## Model Introduction The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China. ### Key Features and Advantages - In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in. - Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale - Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level - A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size ## Related News * 2025.9.1 We have open-sourced **Hunyuan-MT-7B** , **Hunyuan-MT-Chimera-7B** on Hugging Face. <br> &nbsp; ## 模型链接 | Model Name | Description | Download | | ----------- | ----------- |----------- | Hunyuan-MT-7B | Hunyuan 7B translation model |🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B)| | Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B-fp8)| | Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B)| | Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B-fp8)| ## Prompts ### Prompt Template for ZH<=>XX Translation. ``` 把下面的文本翻译成<target_language>,不要额外解释。 <source_text> ``` ### Prompt Template for XX<=>XX Translation, excluding ZH<=>XX. ``` Translate the following segment into <target_language>, without additional explanation. <source_text> ``` ### Prompt Template for Hunyuan-MT-Chmeria-7B ``` Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain. The <source_language> segment: ```<source_text>``` The multiple <target_language> translations: 1. ```<translated_text1>``` 2. ```<translated_text2>``` 3. ```<translated_text3>``` 4. ```<translated_text4>``` 5. ```<translated_text5>``` 6. ```<translated_text6>``` ``` &nbsp; ### Use with transformers First, please install transformers, recommends v4.56.0 ```SHELL pip install transformers==v4.56.0 ``` The following code snippet shows how to use the transformers library to load and apply the model. *!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.* we use tencent/Hunyuan-MT-7B for example ```python from transformers import AutoModelForCausalLM, AutoTokenizer import os model_name_or_path = "tencent/Hunyuan-MT-7B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here messages = [ {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True add_generation_prompt=False, return_tensors="pt" ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048) output_text = tokenizer.decode(outputs[0]) ``` We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt. ```json { "top_k": 20, "top_p": 0.6, "repetition_penalty": 1.05, "temperature": 0.7 } ``` Supported languages: | Languages | Abbr. | Chinese Names | |-------------------|---------|-----------------| | Chinese | zh | 中文 | | English | en | 英语 | | French | fr | 法语 | | Portuguese | pt | 葡萄牙语 | | Spanish | es | 西班牙语 | | Japanese | ja | 日语 | | Turkish | tr | 土耳其语 | | Russian | ru | 俄语 | | Arabic | ar | 阿拉伯语 | | Korean | ko | 韩语 | | Thai | th | 泰语 | | Italian | it | 意大利语 | | German | de | 德语 | | Vietnamese | vi | 越南语 | | Malay | ms | 马来语 | | Indonesian | id | 印尼语 | | Filipino | tl | 菲律宾语 | | Hindi | hi | 印地语 | | Traditional Chinese | zh-Hant| 繁体中文 | | Polish | pl | 波兰语 | | Czech | cs | 捷克语 | | Dutch | nl | 荷兰语 | | Khmer | km | 高棉语 | | Burmese | my | 缅甸语 | | Persian | fa | 波斯语 | | Gujarati | gu | 古吉拉特语 | | Urdu | ur | 乌尔都语 | | Telugu | te | 泰卢固语 | | Marathi | mr | 马拉地语 | | Hebrew | he | 希伯来语 | | Bengali | bn | 孟加拉语 | | Tamil | ta | 泰米尔语 | | Ukrainian | uk | 乌克兰语 | | Tibetan | bo | 藏语 | | Kazakh | kk | 哈萨克语 | | Mongolian | mn | 蒙古语 | | Uyghur | ug | 维吾尔语 | | Cantonese | yue | 粤语 | Citing Hunyuan-MT: ```bibtex @misc{hunyuanmt2025, title={Hunyuan-MT Technical Report}, author={Mao Zheng, Zheng Li, Bingxin Qu, Mingyang Song, Yang Du, Mingrui Sun, Di Wang, Tao Chen, Jiaqi Zhu, Xingwu Sun, Yufei Wang, Can Xu, Chen Li, Kai Wang, Decheng Wu}, howpublished={\url{https://github.com/Tencent-Hunyuan/Hunyuan-MT}}, year={2025} } ```
omerbkts/blockassist-bc-keen_fast_giraffe_1756807743
omerbkts
2025-09-02T10:09:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:09:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756807650
pidbu
2025-09-02T10:08:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:08:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/EVA-x-EVA-105b-GGUF
mradermacher
2025-09-02T10:07:59Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:bruhzair/EVA-x-EVA-105b", "base_model:quantized:bruhzair/EVA-x-EVA-105b", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-02T08:20:48Z
--- base_model: bruhzair/EVA-x-EVA-105b language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/bruhzair/EVA-x-EVA-105b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#EVA-x-EVA-105b-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q2_K.gguf) | Q2_K | 38.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q3_K_S.gguf) | Q3_K_S | 45.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q3_K_M.gguf.part2of2) | Q3_K_M | 50.7 | lower quality | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q3_K_L.gguf.part2of2) | Q3_K_L | 55.2 | | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.IQ4_XS.gguf.part2of2) | IQ4_XS | 56.8 | | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q4_K_S.gguf.part2of2) | Q4_K_S | 59.8 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q4_K_M.gguf.part2of2) | Q4_K_M | 63.1 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q5_K_S.gguf.part2of2) | Q5_K_S | 72.3 | | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q5_K_M.gguf.part2of2) | Q5_K_M | 74.2 | | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q6_K.gguf.part2of2) | Q6_K | 86.1 | very good quality | | [PART 1](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q8_0.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q8_0.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/EVA-x-EVA-105b-GGUF/resolve/main/EVA-x-EVA-105b.Q8_0.gguf.part3of3) | Q8_0 | 111.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
hariharanv04/OSS-20B-Finetuned
hariharanv04
2025-09-02T10:07:31Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-02T10:07:25Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hariharanv04 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ROBOTIS/ffw_bg2_rev4_PickMultiCoffee_Env3_Task1_1_edited
ROBOTIS
2025-09-02T10:07:27Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:ROBOTIS/ffw_bg2_rev4_PickMultiCoffee_Env3_Task1_1_edited", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T10:07:13Z
--- datasets: ROBOTIS/ffw_bg2_rev4_PickMultiCoffee_Env3_Task1_1_edited library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - act - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
JaebeomShin/medgemma-4b-it-hemorrhage-2
JaebeomShin
2025-09-02T10:07:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-09-02T06:58:39Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-4b-it-hemorrhage-2 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-4b-it-hemorrhage-2 This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JaebeomShin/medgemma-4b-it-hemorrhage-2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756806138
Loder-S
2025-09-02T10:07:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:07:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Xtoun/blockassist-bc-bristly_scaly_koala_1756806666
Xtoun
2025-09-02T10:06:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bristly scaly koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:06:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bristly scaly koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
miladalsh/new-qwen-trained-journalist-on-deepseek-3epochs
miladalsh
2025-09-02T10:06:29Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-07-18T07:02:39Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: transformers model_name: new-qwen-trained-journalist-on-deepseek-3epochs tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for new-qwen-trained-journalist-on-deepseek-3epochs This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="miladalsh/new-qwen-trained-journalist-on-deepseek-3epochs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/milad-it/training-llama-on-conversations/runs/9kdyf2h5) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
malammal/Qwen3-Reranker-8B-Q8_0-GGUF
malammal
2025-09-02T10:04:05Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-ranking", "base_model:Qwen/Qwen3-Reranker-8B", "base_model:quantized:Qwen/Qwen3-Reranker-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-ranking
2025-09-02T10:03:29Z
--- license: apache-2.0 base_model: Qwen/Qwen3-Reranker-8B library_name: transformers pipeline_tag: text-ranking tags: - llama-cpp - gguf-my-repo --- # malammal/Qwen3-Reranker-8B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-Reranker-8B`](https://huggingface.co/Qwen/Qwen3-Reranker-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-Reranker-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo malammal/Qwen3-Reranker-8B-Q8_0-GGUF --hf-file qwen3-reranker-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo malammal/Qwen3-Reranker-8B-Q8_0-GGUF --hf-file qwen3-reranker-8b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo malammal/Qwen3-Reranker-8B-Q8_0-GGUF --hf-file qwen3-reranker-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo malammal/Qwen3-Reranker-8B-Q8_0-GGUF --hf-file qwen3-reranker-8b-q8_0.gguf -c 2048 ```
GUIAgent/MagicGUI_CPT
GUIAgent
2025-09-02T10:03:48Z
0
0
null
[ "safetensors", "qwen2_vl", "en", "dataset:GUIAgent/Magic-RICH", "arxiv:2508.03700", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-09-01T06:49:26Z
--- license: apache-2.0 datasets: - GUIAgent/Magic-RICH language: - en base_model: - Qwen/Qwen2-VL-7B-Instruct --- ## News * [2025-07-20] 📄📄📄 We have released the **technical report** of MagicGUI! Check it out [here](https://arxiv.org/abs/2508.03700). * [2025-07-20] 🚀🚀🚀 We have open-sourced **MagicGUI**, an on-device GUI agent capable of operating Chinese & English apps and equipped with RFT-enhanced reasoning abilities. ## Overview MagicGUI is an open-source GUI agent model developed by Honor, built on Qwen2-VL with 7 billion parameters. It demonstrates outstanding capabilities in visual grounding, screen question answering, and action sequence planning and execution. MagicGUI enables multimodal perception, understanding, and automated execution of user tasks on mobile devices. **Data Collection Framework**: Propose a scalable and modular framework for GUI data collection that efficiently gathers high-quality data on mobile devices. **Powerful Perception and Grounding Capabilities**: Enhance the perception and grounding abilities on mobile device screens by integrating large-scale knowledge through tasks such as element referring, element grounding, and screen captioning. **Unified Action Space**: Develop a comprehensive and unified action space for various mobile platforms, encompassing fundamental operations like Tap, Text Input, and Scroll, while also supporting more complex actions such as Wait, Drag, and Takeover. **Planning-Oriented Reasoning**: Implement a planning-oriented reasoning mechanism to improve the stability of task execution and enhance the accuracy of action decisions in dynamic environments. **Two-Stage Training Paradigm**: Strengthen core perception, localization, and navigation capabilities through Continued Pre-training (CPT), while enhancing model robustness and generalization via Reinforcement Fine-tuning (RFT). ## Framework The overall training framework of our MagicGUI contains two stages: **Stage I**: Continue Pre-training (CPT), which involves training a foundational model on a large and diverse dataset followed by an annealing phase using a balanced and high-quality dataset. **Stage II**: Reinforcement Fine-tuning (RFT), aimed at further enhancing the model’s robustness and generalization capabilities. ## Quick Start ### Install dependencies ```bash git clone https://github.com/MagicAgent-GUI cd MagicGUI conda create -n gui_agent python=3.11 conda activate gui_agent pip install -r requirements.txt ``` ### Download the model Download [MagicGUI-RFT](https://huggingface.co/GUIAgent/MagicGUI_RFT) and [MagicGUI-CPT](https://huggingface.co/GUIAgent/MagicGUI_CPT). #### Huggingface Inference ```python import torch from utils.model import Qwen2VLChat # 1. Load the model and tokenizer model_path = "./models/RFT" # model path model = Qwen2VLChat.from_pretrained(model_path, min_pixels=4*28*28, max_pixels=768*28*28) model = model.to("cuda:0") # 2. Build the input instruction = """你是一个训练有素的手机智能体,能够帮助用户进行单步导航任务。已知当前智能手机的截图<image>,和用户指令"查看会员信息"请输出正确的函数调用以实现用户指令。除了函数调用之外,你不能输出任何其他内容。你可以调用以下函数来控制智能手机:- UI基础操作:1. tap(x: float,y: float) 该函数用于在智能手机屏幕上点击特定点。坐标 x 和 y 表示待点击控件的中心位置。2. scroll(x: float,y: float,direction: str) 该函数用于从起始坐标 (x,y) 开始在智能手机屏幕上滑动操作,方向为手指滑动的方向。坐标 x 和 y 表示屏幕上待滑动控件的中心位置。方向可以是 "up"、"down"、"left" 或 "right"。3. text(x: float,y: float,text_input: str) 该函数用于在智能手机屏幕上输入指定的text。坐标 x 和 y 表示待点击控件的中心位置。- 手机按键操作:4. navigate_back() 该函数用于返回智能手机的上一个屏幕。5. navigate_home() 该函数用于返回手机的home screen或关闭当前应用。- 其他操作:6. long_press(x: float,y: float) 该函数用于在智能手机屏幕上的特定点执行长按操作。坐标 x 和 y 表示待点击控件的中心位置。7. wait() 该函数表示在当前页面等候。8. enter() 该函数表示按下enter键。9. take_over(text_input: str) 该函数用于提示用户接管智能手机,其中 text_input 是提示用户接管手机的原因。如果原因不确定,请填写“请您接管当前界面”。10. drag(x1: float,y1: float,x2: float,y2: float) 该函数执行一个对起始和终点敏感的拖动操作,表示手指从点1拖到点2。常见的场景包括滑块拖动、滚动选择器拖动和图片裁剪。11. screen_shot() 该函数用于截图。12. long_screen_shot() 该函数执行长截图。13. call_api(api_name: str,params: str) 调用指定的API并传入给定的参数。api_name是API的名称。params包含API所需的输入参数。例如,call_api(Amazon, open)意味着打开亚马逊APP。如果你发现当前指令无法在当前页面上执行,你需要输出no_answer。如果你发现当前指令已完成,你需要输出action_completed。""" image_path = "./assets/test_action.png" # 3. Build the message format messages = [{"type": "image", "value":f"{image_path}", {"type": "text", "value":f"{instruction}"] # 4. Inference response = model.generate( message = messages, ) print(response) ``` Expected output: ```JSON {"tap(700,964)"} ``` ### Action Space At each step, the agent outputs is a single JSON object that contains: - One (and only one) primitive action, chosen from the list below; - Optional modifiers (`duration`, `thought`) and/or a task-level flag (`STATUS`). Note that all keywords are **case-sensitive**, and we use **compact JSON** (i.e., no extra whitespace), which affects the tokenizer’s behavior. <table> <thead> <tr> <th>Action</th> <th>Description</th> <th>Conditions for R<sub>acc</sub> = +2</th> <th>Example</th> </tr> </thead> <tbody> <tr> <td><b>Tap</b></td> <td>Click at coordinate (x, y)</td> <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) ≤ 14%</td> <td><code>tap(x,y)</code></td> </tr> <tr> <td><b>Scroll</b></td> <td>Scroll at coordinate (x, y) with<br>direction up / down / left / right</td> <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) ≤ 14%<br>and direction = gt[direction]</td> <td><code>scroll(x,y,direction)</code></td> </tr> <tr> <td><b>Text Input</b></td> <td>Type <i>text</i> at coordinate (x, y)</td> <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) ≤ 14%<br>and F1(text, gt[text]) > 0.5</td> <td><code>text(x,y,text_input)</code></td> </tr> <tr> <td><b>Navigation Back</b></td> <td>Adb command to go back to the previous page</td> <td>–</td> <td><code>navigate_back()</code></td> </tr> <tr> <td><b>Navigation Home</b></td> <td>Adb command to go to the home screen of the mobile</td> <td>–</td> <td><code>navigate_home()</code></td> </tr> <tr> <td><b>Long Press</b></td> <td>Long press at coordinate (x, y)</td> <td>dist([x, y], [x<sub>c</sub>, y<sub>c</sub>]) ≤ 14%</td> <td><code>long_press(x,y)</code></td> </tr> <tr> <td><b>Finish</b></td> <td>Indicate that navigation task has been completed</td> <td>–</td> <td><code>finish()</code></td> </tr> <tr>w <td><b>Wait</b></td> <td>Wait for several seconds</td> <td>–</td> <td><code>wait()</code></td> </tr> <tr> <td><b>Enter</b></td> <td>Adb command to press enter</td> <td>–</td> <td><code>enter()</code></td> </tr> <tr> <td><b>Takeover</b></td> <td>Request user takeover</td> <td>–</td> <td><code>take_over(message)</code></td> </tr> <tr> <td><b>Drag</b></td> <td>Drag from coordinate (x₁, y₁) to (x₂, y₂)</td> <td> dist([x₁, y₁], [x<sub>1c</sub>, y<sub>1c</sub>]) ≤ 7.5%<br> and dist([x₂, y₂], [x<sub>2c</sub>, y<sub>2c</sub>]) ≤ 7.5% </td> <td><code>drag(x1,y1,x2,y2)</code></td> </tr> <tr> <td><b>Call API</b></td> <td>Adb command to <i>open</i> or <i>kill</i> app</td> <td>app = gt[app]<br>and open/kill = gt[operation]</td> <td><code>call_api(api_name,operation)</code></td> </tr> <tr> <td><b>Screenshot</b></td> <td>Adb command to take a screenshot</td> <td>–</td> <td><code>screen_shot()</code></td> </tr> <tr> <td><b>Long Screenshot</b></td> <td>Adb command to take a long screenshot</td> <td>–</td> <td><code>long_screen_shot()</code></td> </tr> </tbody> </table> ## Evaluation ### 1.Data preparation Please download the four compressed files from the [Magic-RICH dataset](https://huggingface.co/datasets/GUIAgent/Magic-RICH) and extract them into the .datasets/ directory. - `assets/` - `datasets/` - `Routine` - `Instruction` - `Complex` - `Handing_Exception` - `utils/` For the preparation of other open-source datasets, please refer to [Other datasets preparation](datasets/eval_data_process/readme.md). ### 2. Param We use run_eval.py for evaluation. - `--data`: Name of a eval dataset - `--model`: Path to the model - `--work-dir (str, default to '.')`: Directory to save evaluation results - `--mode (str, default: 'all', choices: ['all', 'infer'])`: If set to "all", the script performs both inference and evaluation; if set to "infer", it performs inference only. - `--eval_model_path (str, default: 'None')`:'Path to eval model (required if mode is 'all' and data is 'ScreenQA-short')' ### 3. Run ```python # Referring Benchmark python run_eval.py --data ScreenQA-short --model MagicGUI_Path --mode all --eval_model_path Eval_Model_Path python run_eval.py --data ScreenSpot_v2_mobile --model MagicGUI_Path --mode all python run_eval.py --data Os-Atlas-mobile --model MagicGUI_Path --mode all # Magic-RICH dataset python run_eval.py --data Routine --model MagicGUI_Path --mode all python run_eval.py --data Complex --model MagicGUI_Path --mode all python run_eval.py --data Instruction --model MagicGUI_Path --mode all python run_eval.py --data Handling_Exception --model MagicGUI_Path --mode all # Open-source AndroidControl and GUI-Odyssey python run_eval.py --data AC-Low --model MagicGUI_Path --mode all python run_eval.py --data AC-High --model MagicGUI_Path --mode all python run_eval.py --data GUI-Odyssey --model MagicGUI_Path --mode all ``` ## Performance Evaluation ### Performance comparison on the Referring Benchmark <table> <thead> <tr> <th rowspan="1">Agent Models</th> <th colspan="1">ScreenQA-short</th> <th colspan="1">ScreenSpot v2 mobile</th> <th colspan="1">Os-Atlas-mobile</th> </tr> </thead> <tbody> <!-- Closed-source Models --> <tr><td colspan="4"><em>Closed-source Models</em></td></tr> <tr> <td>GPT-4o (Hurst et al., 2024)</td> <td>90.3</td><td>10.6</td><td>4.6</td> </tr> <tr> <td>Gemini 2.0 (Pichai et al., 2024)</td> <td>90.4</td><td>10.6</td><td>5.8</td> </tr> <!-- Open-source Models --> <tr><td colspan="4"><em>Open-source Models</em></td></tr> <tr> <td>InternVL-2-8B (Chen et al., 2024)</td> <td>88.4</td><td>4.2</td><td>2.4</td> </tr> <tr> <td>Qwen2-VL-7B (Wang et al., 2024)</td> <td>92.6</td><td>70.7</td><td>27.2</td> </tr> <tr> <td>Qwen2.5-VL-7B (Bai et al., 2025)</td> <td>92.1</td><td>56.1</td><td>26.6</td> </tr> <tr> <td>UI-TARS-7B (Qin et al., 2025)</td> <td><b>95.4</b></td><td>88.6</td><td>82.5</td> </tr> <tr> <td>UI-TARS-1.5-7B (Seed, 2025)</td> <td>93.0</td><td>85.8</td><td>79.3</td> </tr> <!-- MagicGUI --> <tr style="background-color:#e8eafc;"> <td>MagicGUI-CPT</td> <td>94.6</td><td><b>90.2</b></td><td><b>95.2</b></td> </tr> </tbody> </table> ### Performance comparison on the Magic-RICH dataset <table> <thead> <tr> <th rowspan="2">Agent Models</th> <th colspan="3">Routine</th> <th colspan="3">Instruction</th> <th colspan="3">Complex</th> <th rowspan="2">Handing Exception</th> </tr> <tr> <th>Type</th><th>Grd</th><th>SR</th> <th>Type</th><th>Grd</th><th>SR</th> <th>Type</th><th>Grd</th><th>SR</th> </tr> </thead> <tbody> <!-- Closed-source Models --> <tr><td colspan="11"><em>Closed-source Models</em></td></tr> <tr> <td>GPT-4o (Hurst et al., 2024)</td> <td>49.3</td><td>16.7</td><td>4.6</td> <td>56.6</td><td>13.5</td><td>19.8</td> <td>49.0</td><td>14.6</td><td>7.4</td> <td>85.1</td> </tr> <tr> <td>Gemini 2.0 (Pichai et al., 2024)</td> <td>89.2</td><td>49.4</td><td>34.7</td> <td>84.1</td><td>54.2</td><td>51.4</td> <td>83.3</td><td>50.3</td><td>42.0</td> <td>73.7</td> </tr> <!-- Open-source Models --> <tr><td colspan="11"><em>Open-source Models</em></td></tr> <tr> <td>InternVL-2-8B (Chen et al., 2024)</td> <td>30.1</td><td>2.8</td><td>1.3</td> <td>37.1</td><td>4.0</td><td>15.8</td> <td>17.1</td><td>6.0</td><td>1.3</td> <td>70.8</td> </tr> <tr> <td>Qwen2-VL-7B (Wang et al., 2024)</td> <td>71.7</td><td>41.0</td><td>28.1</td> <td>73.6</td><td>43.9</td><td>41.5</td> <td>65.6</td><td>28.7</td><td>21.2</td> <td>68.3</td> </tr> <tr> <td>Qwen2.5-VL-7B (Bai et al., 2025)</td> <td>94.3</td><td>92.6</td><td>76.3</td> <td>89.3</td><td><u>95.7</u></td><td>83.6</td> <td>86.6</td><td>69.6</td><td>60.0</td> <td>67.0</td> </tr> <tr> <td>UI-TARS-7B (Qin et al., 2025)</td> <td>83.5</td><td>84.9</td><td>73.3</td> <td>76.6</td><td>85.6</td><td>69.8</td> <td>91.4</td><td>69.1</td><td>67.0</td> <td>3.6</td> </tr> <tr> <td>UI-TARS-1.5-7B (Seed, 2025)</td> <td>85.6</td><td>96.2</td><td>81.5</td> <td>78.6</td><td>92.1</td><td>72.2</td> <td><b>94.7</b></td><td>74.3</td><td>71.1</td> <td>1.0</td> </tr> <tr> <td>MiMo-VL-7B-SFT (Xiaomi, 2025)</td> <td>93.0</td><td>77.9</td><td>65.3</td> <td>89.7</td><td>85.7</td><td>75.4</td> <td>89.1</td><td>80.1</td><td>71.0</td> <td>57.0</td> </tr> <tr> <td>AgentCPM-GUI (Zhang et al., 2025)</td> <td>84.3</td><td>92.2</td><td>75.1</td> <td>70.4</td><td>80.7</td><td>56.0</td> <td>72.3</td><td>54.6</td><td>39.4</td> <td>2.4</td> </tr> <!-- MagicGUI --> <tr style="background-color:#e8eafc;"> <td>MagicGUI-CPT</td> <td><b>98.5</b></td><td><b>98.5</b></td><td><b>97.2</b></td> <td><b>95.5</b></td><td><b>96.3</b></td><td><b>92.9</b></td> <td>88.5</td><td><b>82.3</b></td><td><b>72.9</b></td> <td><b>93.2</b></td> </tr> <tr style="background-color:#e8eafc;"> <td>MagicGUI-RFT</td> <td><b>99.7</b></td><td>97.5</td><td><b>97.5</b></td> <td><b>97.2</b></td><td>95.6</td><td><b>94.0</b></td> <td>92.1</td><td>80.4</td><td><b>74.1</b></td> <td>92.1</td> </tr> </tbody> </table> ### Performance comparison on open-source AndroidControl and GUI-Odyssey datasets. <table> <thead> <tr> <th rowspan="2">Agent Models</th> <th colspan="2">AC-Low</th> <th colspan="2">AC-High</th> <th colspan="2">GUI-Odyssey</th> </tr> <tr> <th>Type</th><th>SR</th> <th>Type</th><th>SR</th> <th>Type</th><th>SR</th> </tr> </thead> <tbody> <!-- Closed-source Models --> <tr><td colspan="7"><em>Closed-source Models</em></td></tr> <tr> <td>GPT-4o (Hurst et al., 2024)</td> <td>-</td><td>19.5</td> <td>-</td><td>20.8</td> <td>-</td><td>20.4</td> </tr> <tr> <td>Gemini 2.0 (Pichai et al., 2024)</td> <td>-</td><td>28.5</td> <td>-</td><td>60.2</td> <td>-</td><td>3.3</td> </tr> <tr> <td>Claude 2.0 (Anthropic, 2024)</td> <td>-</td><td>28.5</td> <td>-</td><td>12.5</td> <td>60.9</td><td>-</td> </tr> <!-- Open-source Models --> <tr><td colspan="7"><em>Open-source Models</em></td></tr> <tr> <td>Qwen2-VL-7B (Wang et al., 2024)</td> <td>55.7</td><td>36.2</td> <td>45.8</td><td>21.2</td> <td>58.6</td><td>13.3</td> </tr> <tr> <td>Qwen2.5-VL-7B (Bai et al., 2025)</td> <td>94.1</td><td>85.0</td> <td>75.1</td><td>62.9</td> <td>59.5</td><td>46.3</td> </tr> <tr> <td>Aguvis-7B (Xu et al., 2024)</td> <td>93.9</td><td>89.4</td> <td>65.6</td><td>54.2</td> <td>26.7</td><td>13.5</td> </tr> <tr> <td>OS-Atlas-7B (Wu et al., 2024)</td> <td>73.0</td><td>67.3</td> <td>70.4</td><td>56.5</td> <td>91.8*</td><td>76.8*</td> </tr> <tr> <td>UI-TARS-7B (Qin et al., 2025)</td> <td>95.2</td><td>91.8</td> <td>81.6</td><td>74.4</td> <td>86.1</td><td>67.9</td> </tr> <tr> <td>AgentCPM-GUI (Zhang et al., 2025)</td> <td>94.4</td><td>90.2</td> <td>77.7</td><td>69.2</td> <td><b>90.9</b></td><td><b>75.0</b></td> </tr> <!-- MagicGUI --> <tr style="background-color:#e8eafc;"> <td>MagicGUI-CPT</td> <td>94.5</td><td>86.7</td> <td>84.6</td><td>73.1</td> <td><b>90.4</b></td><td>73.5</td> </tr> <tr style="background-color:#e8eafc;"> <td>MagicGUI-RFT</td> <td><b>97.2</b></td><td><b>93.5</b></td> <td><b>84.7</b></td><td><b>76.3</b></td> <td>89.7</td><td><b>74.3</b></td> </tr> </tbody> </table> ## License * This project is licensed under the [Apache-2.0](./LICENSE) license. The model weights are fully open for academic research, and commercial use licenses can be applied for by contacting [email protected]. This project uses the pre-trained Qwen2VL-7B-Instruct for initialization, which is also licensed under the Apache- 2.0 License. ## Citation If **MagicGUI** is useful for your research, please cite: ```bibtex @misc{tang2025magicguifoundationalmobilegui, title={MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning}, author={Liujian Tang and Shaokang Dong and Yijia Huang and Minqi Xiang and Hongtao Ruan and Bin Wang and Shuo Li and Zhiheng Xi and Zhihui Cao and Hailiang Pang and Heng Kong and He Yang and Mingxu Chai and Zhilin Gao and Xingyu Liu and Yingnan Fu and Jiaming Liu and Xuanjing Huang and Yu-Gang Jiang and Tao Gui and Qi Zhang and Kang Wang and Yunke Zhang and Yuran Wang}, year={2025}, eprint={2508.03700}, archivePrefix={arXiv}, primaryClass={cs.HC}, url={https://arxiv.org/abs/2508.03700}, } ```
pidbu/blockassist-bc-whistling_alert_shrew_1756807275
pidbu
2025-09-02T10:02:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:01:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1756807271
xinnn32
2025-09-02T10:02:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:02:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
scvi-tools/test-scvi-no-anndata
scvi-tools
2025-09-02T10:02:24Z
0
0
scvi-tools
[ "scvi-tools", "biology", "genomics", "single-cell", "model_cls_name:SCVI", "scvi_version:1.3.3", "anndata_version:0.12.2", "modality:rna", "annotated:False", "license:cc-by-4.0", "region:us" ]
null
2024-01-22T22:57:05Z
--- library_name: scvi-tools license: cc-by-4.0 tags: - biology - genomics - single-cell - model_cls_name:SCVI - scvi_version:1.3.3 - anndata_version:0.12.2 - modality:rna - annotated:False --- ScVI is a variational inference model for single-cell RNA-seq data that can learn an underlying latent space, integrate technical batches and impute dropouts. The learned low-dimensional latent representation of the data can be used for visualization and clustering. scVI takes as input a scRNA-seq gene expression matrix with cells and genes. We provide an extensive [user guide](https://docs.scvi-tools.org/en/stable/user_guide/models/scvi.html). - See our original manuscript for further details of the model: [scVI manuscript](https://www.nature.com/articles/s41592-018-0229-2). - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2) how to leverage pre-trained models. This model can be used for fine tuning on new data using our Arches framework: [Arches tutorial](https://docs.scvi-tools.org/en/stable/tutorials/notebooks/scrna/scarches_scvi_tools.html). # Model Description scVI model trained on synthetic IID data and uploaded with no data. # Metrics We provide here key performance metrics for the uploaded model, if provided by the data uploader. <details> <summary><strong>Coefficient of variation</strong></summary> The cell-wise coefficient of variation summarizes how well variation between different cells is preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4 , we would recommend not to use generated data for downstream analysis, while the generated latent space might still be useful for analysis. **Cell-wise Coefficient of Variation**: Not provided by uploader The gene-wise coefficient of variation summarizes how well variation between different genes is preserved by the generated model expression. This value is usually quite high. **Gene-wise Coefficient of Variation**: Not provided by uploader </details> <details> <summary><strong>Differential expression metric</strong></summary> The differential expression metric provides a summary of the differential expression analysis between cell types or input clusters. We provide here the F1-score, Pearson Correlation Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each cell-type. **Differential expression**: Not provided by uploader </details> # Model Properties We provide here key parameters used to setup and train the model. <details> <summary><strong>Model Parameters</strong></summary> These provide the settings to setup the original model: ```json { "n_hidden": 128, "n_latent": 10, "n_layers": 1, "dropout_rate": 0.1, "dispersion": "gene", "gene_likelihood": "zinb", "use_observed_lib_size": true, "latent_distribution": "normal" } ``` </details> <details> <summary><strong>Setup Data Arguments</strong></summary> Arguments passed to setup_anndata of the original model: ```json { "layer": null, "batch_key": null, "labels_key": null, "size_factor_key": null, "categorical_covariate_keys": null, "continuous_covariate_keys": null } ``` </details> <details> <summary><strong>Data Registry</strong></summary> Registry elements for AnnData manager: | Registry Key | scvi-tools Location | |--------------------------|--------------------------------------| | X | adata.X | | batch | adata.obs['_scvi_batch'] | | labels | adata.obs['_scvi_labels'] | - **Data is Minified**: To be added... </details> <details> <summary><strong>Summary Statistics</strong></summary> | Summary Stat Key | Value | |--------------------------|-------| | n_batch | 1 | | n_cells | 400 | | n_extra_categorical_covs | 0 | | n_extra_continuous_covs | 0 | | n_labels | 1 | | n_vars | 100 | </details> <details> <summary><strong>Training</strong></summary> <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make sure to provide this field if you want users to be able to access your training data. See the scvi-tools documentation for details. --> **Training data url**: Not provided by uploader If provided by the original uploader, for those interested in understanding or replicating the training process, the code is available at the link below. **Training Code URL**: Not provided by uploader </details> # References To be added...
WangChongan/rl_course_vizdoom_health_gathering_supreme
WangChongan
2025-09-02T10:02:09Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-09-02T09:52:40Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 3.95 +/- 0.57 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r WangChongan/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1756807279
kittygirlhere
2025-09-02T10:01:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:01:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
happyensworld/blockassist-bc-sleek_scavenging_ram_1756807177
happyensworld
2025-09-02T10:00:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek scavenging ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T10:00:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek scavenging ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756807160
akirafudo
2025-09-02T09:59:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:59:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756807070
Ferdi3425
2025-09-02T09:59:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:58:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ymatari/act_so101_cleanup_table_5
ymatari
2025-09-02T09:57:59Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:ymatari/cleanup-table-2", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T09:57:31Z
--- datasets: ymatari/cleanup-table-2 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
omerbektass/blockassist-bc-keen_fast_giraffe_1756807052
omerbektass
2025-09-02T09:57:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:57:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1756806895
yaelahnal
2025-09-02T09:57:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:55:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toupyoui/blockassist-bc-rangy_mighty_hare_1756806961
toupyoui
2025-09-02T09:56:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rangy mighty hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:56:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rangy mighty hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-keen_fast_giraffe_1756806934
omerbkts
2025-09-02T09:56:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:55:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756805523
GroomerG
2025-09-02T09:55:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:55:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756806815
bah63843
2025-09-02T09:54:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:54:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756806756
pidbu
2025-09-02T09:54:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:53:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756806797
liukevin666
2025-09-02T09:54:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:54:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756806801
klmdr22
2025-09-02T09:54:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:54:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756806814
akirafudo
2025-09-02T09:53:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:53:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
erik-svensson-cm/whisper-large-v3-turbo-ct2
erik-svensson-cm
2025-09-02T09:53:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-02T09:50:52Z
--- license: apache-2.0 ---
chidiokoene/mistral-7b-med-rationales-finetuned
chidiokoene
2025-09-02T09:53:43Z
21
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "medical", "text-generation-inference", "instruction-tuning", "rationale-generation", "conversational", "en", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T17:09:00Z
--- library_name: transformers tags: - medical - text-generation-inference - instruction-tuning - rationale-generation license: mit language: - en base_model: - mistralai/Mistral-7B-Instruct-v0.3 pipeline_tag: text-generation metrics: - perplexity --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> A fine-tuned Mistral-7B-Instruct-v0.3 model specifically trained for generating medical rationales and explanations. The model was trained using QLoRA on a custom dataset of medical rationales. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model is a fine-tuned version of Mistral-7B-Instruct-v0.3, specifically optimized for generating detailed medical rationales and explanations. It was trained using Low-Rank Adaptation (LoRA) on a dataset of medical reasoning tasks, resulting in an 80%+ improvement in performance metrics compared to the base model. - **Developed by:** Chidiebere Okoene - **Model type:** Causal Language Model (Decoder-only) - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.3 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use This model is intended for generating medical rationales, explanations, and reasoning for healthcare-related queries. It can be used by: - Medical educators creating teaching materials - Healthcare professionals seeking second opinions or explanations - Medical students learning diagnostic reasoning - Researchers exploring medical AI applications ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> This model can be integrated into: - METEORA Reranker for Medical RAG systems - Clinical decision support systems - Healthcare chatbots for patient education - Medical documentation assistants ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> This model should not be used for: - Direct patient diagnosis without human supervision - Making treatment decisions without clinical validation - Replacing licensed medical professionals - Generating medical advice for serious conditions ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> - **Training Data Bias:** The model was trained on a specific dataset of medical rationales and may not cover all medical specialties or rare conditions - **Accuracy Limitations:** While performance improved significantly, the model may still generate incorrect or incomplete information - **Temporal Limitations:** Medical knowledge evolves rapidly, and the model may not reflect the latest guidelines or research - **Demographic Biases:** The training data may not adequately represent all patient populations ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> - Always verify model outputs with current medical literature and guidelines - Use this model as an educational tool rather than a diagnostic tool - Implement human oversight for any clinical applications - Regularly update the model with new medical knowledge - Disclose the AI-assisted nature of generated content to end users ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "chidiokoene/mistral-7b-med-rationales-finetuned" # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Generate rationales def generate_rationale(prompt): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=256, temperature=0.7, do_sample=True, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example usage prompt = "Explain the mechanism of action of metformin in type 2 diabetes." rationale = generate_rationale(prompt) print(rationale) ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> The model was fine-tuned on a proprietary dataset of medical rationales containing approximately 11,362 training examples and 3,246 validation examples. The data consisted of medical questions paired with detailed explanatory rationales. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] Text was tokenized using the Mistral tokenizer Sequences were truncated or padded to 1024 tokens Special tokens were added for instruction following #### Training Hyperparameters - **Training regime:** - Training regime: bf16 mixed precision with QLoRA - Learning rate: 2e-4 - Batch size: 2 (with gradient accumulation steps: 4) - Epochs: 3 - LoRA rank: 16 - LoRA alpha: 32 - LoRA dropout: 0.05 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> - Training time: ~13 hours on a single GPU with 15GB VRAM - Model size: ~15GB (4-bit quantized) - Inference speed: ~2.9 samples/second ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> The model was evaluated on a held-out validation set of 1,624 medical rationale examples. #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> - Perplexity (lower is better) - Average cross-entropy loss (lower is better) - Inference speed (samples per second) ### Results ``` Metric Baseline Model Fine-tuned Model Improvement Perplexity 7.78 1.51 80.6% Average Loss 2.05 0.41 79.9% Inference Speed 5.17 samples/sec 2.91 samples/sec -43.7% ``` The fine-tuned model shows exceptional improvement in understanding and generating medical rationales, with over 80% improvement in both perplexity and loss metrics. The reduction in inference speed is expected due to the added LoRA parameters. ```python { "baseline_model": { "perplexity": 7.784124134664591, "average_loss": 2.0520862921697764, "loss_std": 0.2737355939406239, "evaluation_time_seconds": 313.9927325248718, "samples_per_second": 5.1720942295101064 }, "fine_tuned_model": { "perplexity": 1.5100232168650496, "average_loss": 0.4121250261159502, "loss_std": 0.147794492117157, "evaluation_time_seconds": 557.3957495689392, "samples_per_second": 2.9135493072129037 }, "comparison": { "perplexity_improvement_percent": 80.60124439510734, "loss_improvement_percent": 79.9167789537647, "relative_speed": 0.5633210026586989 }, "evaluation_parameters": { "max_length": 1024, "batch_size": 1, "num_samples_evaluated": 1624 } ``` #### Summary The fine-tuning process was highly successful, resulting in a model that significantly outperforms the base Mistral-7B model on medical rationale generation tasks while maintaining reasonable inference speed. ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - Hardware Type: NVIDIA GPU with 15GB VRAM - Hours used: ~13 hours for training - Carbon Emitted: Estimated based on Machine Learning Impact calculator ## Technical Specifications [optional] ### Model Architecture and Objective Architecture: Transformer-based decoder-only model Objective: Causal language modeling with instruction tuning Parameters: 7 billion Context length: 4096 tokens ### Compute Infrastructure [More Information Needed] #### Hardware Single GPU training #### Software PyTorch, Transformers, PEFT, Accelerate ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
milliarderdol/blockassist-bc-roaring_rough_scorpion_1756804666
milliarderdol
2025-09-02T09:53:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:53:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Nienke5821/poca-SoccerTwos
Nienke5821
2025-09-02T09:52:14Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-09-02T09:51:45Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Nienke5821/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756805204
helmutsukocok
2025-09-02T09:51:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:51:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ThankHugFace/distilbert-rotten-tomatoes
ThankHugFace
2025-09-02T09:51:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-02T09:39:19Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-rotten-tomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rotten-tomatoes This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultramit19/blockassist-bc-whiskered_thick_porpoise_1756806615
ultramit19
2025-09-02T09:51:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered thick porpoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:50:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered thick porpoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DimaSK1/Qwen2-0.5B-bnb-4bit-sft-1
DimaSK1
2025-09-02T09:50:35Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "unsloth", "base_model:unsloth/Qwen2-0.5B-bnb-4bit", "base_model:finetune:unsloth/Qwen2-0.5B-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-09-02T09:50:31Z
--- base_model: unsloth/Qwen2-0.5B-bnb-4bit library_name: transformers model_name: Qwen2-0.5B-bnb-4bit-sft-1 tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for Qwen2-0.5B-bnb-4bit-sft-1 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-bnb-4bit](https://huggingface.co/unsloth/Qwen2-0.5B-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="DimaSK1/Qwen2-0.5B-bnb-4bit-sft-1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
giovannidemuri/llama8b-er-v542-seed2-hx_lora
giovannidemuri
2025-09-02T09:50:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T08:08:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bah63843/blockassist-bc-plump_fast_antelope_1756806534
bah63843
2025-09-02T09:49:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:49:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahmedelmidany/llama32_3b_projects_lora
ahmedelmidany
2025-09-02T09:48:50Z
0
1
peft
[ "peft", "safetensors", "base_model:adapter:meta-llama/Llama-3.2-3B-Instruct", "lora", "transformers", "text-generation", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-3B-Instruct", "region:us" ]
text-generation
2025-09-02T09:48:45Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:meta-llama/Llama-3.2-3B-Instruct - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
ChenWu98/numina_qwen_2.5_sft_combine_v2_source_anneal_split_1
ChenWu98
2025-09-02T09:48:33Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:ChenWu98/numina_qwen_2.5_sft_combine_v2_identical_split_0", "base_model:finetune:ChenWu98/numina_qwen_2.5_sft_combine_v2_identical_split_0", "endpoints_compatible", "region:us" ]
null
2025-09-02T09:48:01Z
--- base_model: ChenWu98/numina_qwen_2.5_sft_combine_v2_identical_split_0 library_name: transformers model_name: numina_qwen_2.5_sft_combine_v2_source_anneal_split_1 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for numina_qwen_2.5_sft_combine_v2_source_anneal_split_1 This model is a fine-tuned version of [ChenWu98/numina_qwen_2.5_sft_combine_v2_identical_split_0](https://huggingface.co/ChenWu98/numina_qwen_2.5_sft_combine_v2_identical_split_0). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/gbo1glg4) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
arturkakraft/blockassist-bc-arctic_purring_camel_1756805235
arturkakraft
2025-09-02T09:47:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic purring camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T09:47:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic purring camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wotihe/Affine-5CX6NEyrYJvgeTrCvEJoa77YPrSTLLh9VgfQ5tQUNcA9t4oh
wotihe
2025-09-02T09:46:34Z
0
0
null
[ "safetensors", "gpt_oss", "8-bit", "mxfp4", "region:us" ]
null
2025-09-02T09:44:46Z
# Affine Mine open reasoning. [Affine Discord](https://discord.com/invite/3T9X4Yn23e) ## Introduction Affine is an incentivized RL environment which pays miners which make incremental improvements on a set of tasks (for instance, program abduction or coding). The mechanism is sybil-proof (you can't cheat by deploying multiple miners), decoy-proof (you can't cheat by packing models into certain environments), copy-proof (you can't cheat by stealing models), overfitting-proof (you can't cheat by overfitting to a single env). How does Affine work? Affine validators incentivize miners to submit models to Subnet 64 on Bittensor (a.k.a Chutes) where they are inference load balanced and publicly available. These models are evaluated on a set of RL-environments with validators looking for the model which dominates the pareto frontier -- namely the model which outcompetes all other models on all envs (see `af validator`) The network is winners-take-all where miners are forced to copy, download and improve the pareto frontier model. Why affine? Directed incentives for RL have never been achieved. The ability to direct intelligence and aggregate the work-effort of a large non-permissioned group of individuals on RL tasks will unlock fast advancement in intelligence, we intend to commoditize reasoning (intelligence's highest form) and break the intelligence sound barrier. ## Installation ```bash # Install uv Astral curl -LsSf https://astral.sh/uv/install.sh | sh # Clone and install Affine git clone https://github.com/AffineFoundation/affine.git cd affine uv venv && source .venv/bin/activate && uv pip install -e . # Verify installation af ``` ## Validating Set env vars, chutes api key. ```bash # Copy .env and fill out validator items cp .env.example .env ``` (Recommended): Run the validator with docker and watchtower autoupdate. ```bash # Run the validator with watchtower. docker-compose down && docker-compose pull && docker-compose up -d && docker-compose logs -f ``` Run the validator using the local override (build local image) + base compose ```bash docker compose -f docker-compose.yml -f docker-compose.local.yml down --remove-orphans docker compose -f docker-compose.yml -f docker-compose.local.yml up -d --build --remove-orphans docker compose -f docker-compose.yml -f docker-compose.local.yml logs -f ``` Run the validator locally ```bash # Start the validator with debug. af -vv validate ``` # Mining IMPORTANT: you require a ***developer enabled account*** on Chutes to mine. Normal API keys cannot deploy chutes right now. 1. Set env vars. ```bash # Copy .env and fill out validator items cp .env.example .env ``` 2. Miners need a chutes developer account ( `chutes.ai` ) ```bash chutes register ``` 3. Register your miner to Affine (S120). ```bash btcli subnet register --wallet.name <your cold> --wallet.hotkey <your hot> ``` 4. Pull a model off the network. ```bash af -vvv pull <uid to pull> --model_path <i.e. ./my_model> ``` 5. Improve the model ```bash ... magic RL stuff ... ``` 6. Push the model to your miner. ```bash af -vvv push --coldkey <your cold> --hotkey <your hot> --model_path <i.e. ./my_model> ``` # SDK Affine is also an SDK you can use to generate and evaluate models envs. ```python import affine as af # Optionally turn on logging af.trace(); af.debug(); af.info() # Get all miner info or only for UID =5 miners = await af.get_miners() miner = await af.get_miners( 5 ) # Generate a SAT challenge chal = await af.SAT.generate() # Generate a bunch. chals = await af.ABDUCTION().many( 10 ) chals = await af.DEDUCTION().many( 10 ) # Query the model directly. # NOTE: A CHUTES_API_KEY .env value is required for this command. response = await af.query( chal.prompt, model = miner.model ) # Evaluate the response evaluation = chal.evaluate( response ) print( evaluation.score ) # Async generator of results from last 100 blocks. async for res in af.rollouts(100): print (res) # Result objects ```
Dimmotoro/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-twitchy_quiet_peacock
Dimmotoro
2025-09-02T09:46:24Z
143
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am twitchy_quiet_peacock", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T06:49:03Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am twitchy_quiet_peacock --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]