modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-02 00:39:05
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 532
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-02 00:38:59
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
NTIS/hf_gemma3_2-checkpoint-101000
|
NTIS
| 2025-06-25T01:46:29Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"pytorch",
"causal-lm",
"ko",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T05:06:57Z |
---
license: apache-2.0
language:
- ko
- en
tags:
- text-generation
- pytorch
- causal-lm
library_name: transformers
---
# hf_gemma3_2-checkpoint-101000
이 모델은 파인튜닝된 언어 모델 체크포인트입니다.
## 모델 정보
- **베이스 모델**: hf_gemma3_2
- **체크포인트**: checkpoint-101000
- **타입**: Causal Language Model
- **라이선스**: Apache 2.0
## 사용 방법
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "NTIS/hf_gemma3_2-checkpoint-101000"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# 텍스트 생성
text = "안녕하세요"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
## 주의사항
- 이 모델은 연구/실험 목적으로 제공됩니다
- 상업적 사용 전에 라이선스를 확인하세요
|
NTIS/hf_gemma3_2-checkpoint-100000
|
NTIS
| 2025-06-25T01:44:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"pytorch",
"causal-lm",
"ko",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T05:04:40Z |
---
license: apache-2.0
language:
- ko
- en
tags:
- text-generation
- pytorch
- causal-lm
library_name: transformers
---
# hf_gemma3_2-checkpoint-100000
이 모델은 파인튜닝된 언어 모델 체크포인트입니다.
## 모델 정보
- **베이스 모델**: hf_gemma3_2
- **체크포인트**: checkpoint-100000
- **타입**: Causal Language Model
- **라이선스**: Apache 2.0
## 사용 방법
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "NTIS/hf_gemma3_2-checkpoint-100000"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# 텍스트 생성
text = "안녕하세요"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
## 주의사항
- 이 모델은 연구/실험 목적으로 제공됩니다
- 상업적 사용 전에 라이선스를 확인하세요
|
microsoft/elem2design
|
microsoft
| 2025-06-25T01:39:39Z | 22 | 4 | null |
[
"safetensors",
"llava_llama",
"arxiv:2412.19712",
"arxiv:2311.16974",
"arxiv:2303.15937",
"arxiv:2404.00995",
"arxiv:2303.18248",
"arxiv:1910.09700",
"license:mit",
"region:us"
] | null | 2025-05-27T10:31:19Z |
---
license: mit
---
## Model Details
### Model Description
This model aims to compose user-provided graphic elements into a pleasing graphical design. It takes graphic elements (i.e., the images and texts) from users as input and generates the position, color and font information of each element as output.
- **Developed by:** Jiawei Lin, Shizhao Sun, Danqing Huang, Ting Liu, Ji Li and Jiang Bian
- **Model type:** Large Language Models
- **Language(s):** Python
- **License:** MIT
- **Finetuned from model:** Llama-3.1-8B
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/microsoft/elem2design
- **Paper:** https://arxiv.org/abs/2412.19712
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
Compose user-provided graphic elements (i.e., images and texts) into a pleasing graphic design.
Elem2Design is being shared with the research community to facilitate reproduction of our results and foster further research in this area.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
We do not recommend using Elem2Design in commercial or real-world applications without further testing and development. It is being released for research purposes.
Use in any manner that violates applicable laws or regulations.
## Risks and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Elem2Design inherits any biases, errors, or omissions produced by its base model. Developers are advised to choose an appropriate base LLM/MLLM carefully, depending on the intended use case.
Elem2Design uses the Llama model. See https://huggingface.co/meta-llama/Llama-3.1-8B to understand the capabilities and limitations of this model.
As the model is fine-tuned on very specific data about design composition, it is unlikely to generate information other than position, color and font. However, this is possible. It is more likely to happen when instructions unrelated to graphic design composition, e.g., how has the social media influenced our daily life, are fed into the model.
Graphic designs generated by Elem2Design may not be technically accurate or meet user specifications in all cases. Users are responsible for assessing the acceptability of generated content for each intended use case.
Elem2Design was developed for research and experimental purposes. Further testing and validation are needed before considering its application in commercial or real-world scenarios.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Please only provide the images and texts that you want to show on the graphic design to the model.
Users are responsible for sourcing their content legally and ethically. This could include securing appropriate copy rights, ensuring consent for use of images of people, and/or the anonymization of data prior to use in research.
## How to Get Started with the Model
```
python llava/infer/infer.py \
--model_name_or_path /path/to/model/checkpoint-xxxx \
--data_path /path/to/data/test.json \
--image_folder /path/to/crello_images \
--output_dir /path/to/output_dir \
--start_layer_index 0 \
--end_layer_index 4
```
For more information, please visit our GitHub repo: https://github.com/microsoft/elem2design.
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The training data is from an open-source dataset (https://huggingface.co/datasets/cyberagent/crello).
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing
The training samples with more than 25 design elements are filtered out to maintain a limited sequence length and thereby improve training efficiency.
#### Training Hyperparameters
- Learning rate: 2e-4
- Global batch size: 128
- Number of training steps: 7000
- Rank and alpha of LoRA: 32 and 64
#### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
- Llama-3.1-8B: 8B parameters
- CLIP ViT-Large-Patch14: 428M parameters
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
The testing data is from an open-source dataset (https://huggingface.co/datasets/cyberagent/crello).
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
- Overall metrics. We use a robust proxy model (https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-ov-hf) for comprehensive evaluation from five aspects: (i) design and layout, (ii) content relevance, (iii) typography and color, (iv) graphics and images, and (v) innovation and originality. We use the same prompts as presented in COLE [[1](https://arxiv.org/abs/2311.16974)].
- Geometry-related metrics. These metrics focus purely on the geometric attributes of elements without considering their content, including element validity (Val), Overlap (Ove), Alignment (Ali) and underlay effectiveness (Undl, Unds) [[2](https://arxiv.org/abs/2303.15937 )][[3](https://arxiv.org/pdf/2404.00995 )].
### Results
We use prior work FlexDM [[1](https://arxiv.org/pdf/2303.18248)] and prompting GPT-4o [[2](https://platform.openai.com/docs/models#gpt-4o)] as baselines. In comparison, Elem2Design demonstrates superior performance across nearly all metrics. For example, on overall metrics, Elem2Design achieves 8.08, 7.92, 8.00, 7.82 and 6.98 on the evaluated five aspects. For another example, regarding geometry-related metrics, Elem2Design and FlexDM achieve Ove score of 0.0865 and 0.3242 respectively, indicting that Elem2Design effectively addresses the overlap issue whereas FlexDM encounters difficulties in this area. See Table 1 for the complete evaluation in our paper (https://arxiv.org/pdf/2412.19712)
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
```
@InProceedings{lin2024elements,
title={From Elements to Design: A Layered Approach for Automatic Graphic Design Composition},
author={Lin, Jiawei and Sun, Shizhao and Huang, Danqing and Liu, Ting and Li, Ji and Bian, Jiang},
booktitle={CVPR},
year={2025}
}
```
## Model Card Contact
We welcome feedback and collaboration from our audience. If you have suggestions, questions, or observe unexpected/offensive behavior in our technology, please contact us at Shizhao Sun, [email protected].
If the team receives reports of undesired behavior or identifies issues independently, we will update this repository with appropriate mitigations.
|
stablediffusionapi/intorealismxl-v31
|
stablediffusionapi
| 2025-06-25T01:35:58Z | 0 | 0 |
diffusers
|
[
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-06-25T01:25:13Z |
---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
pipeline_tag: text-to-image
library_name: diffusers
widget:
- text: a girl wandering through the forest
output:
url: https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/39cc9d7d-1e27-4727-a0b2-8511224e7f32/width=1344/84048230.jpeg
---
# IntoRealism XL - v3.1 API Inference
<Gallery />
## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "intorealismxl-v31"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/intorealismxl-v31)
Model link: [View model](https://modelslab.com/models/intorealismxl-v31)
View all models: [View Models](https://modelslab.com/models)
```python
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "intorealismxl-v31",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "",
"lora": "",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
```
> Use this coupon code to get 25% off **DMGG0RBN**
|
New-videos-Gungun-Gupta-viral-video-Clips/FULL.VIDEO.Gungun.Gupta.Viral.Video.Tutorial.Official
|
New-videos-Gungun-Gupta-viral-video-Clips
| 2025-06-25T01:26:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-25T01:26:42Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
zhiqing/Qwen3-Reranker-0.6B-ONNX
|
zhiqing
| 2025-06-25T01:26:30Z | 383 | 3 |
transformers
|
[
"transformers",
"onnx",
"qwen3",
"text-generation",
"conversational",
"base_model:Qwen/Qwen3-Reranker-0.6B",
"base_model:quantized:Qwen/Qwen3-Reranker-0.6B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-09T02:32:51Z |
---
license: apache-2.0
base_model:
- Qwen/Qwen3-Reranker-0.6B
library_name: transformers
pipeline_tag: text-generation
---
# Qwen3-Reranker-0.6B-ONNX
**How to use**
```python
from transformers import AutoTokenizer
import onnxruntime as ort
import numpy as np
import torch
from typing import List
class Qwen3RerankerONNX:
def __init__(
self,
model_path: str = "zhiqing/Qwen3-Reranker-0.6B-ONNX/model.onnx",
tokenizer_dir: str = "zhiqing/Qwen3-Reranker-0.6B-ONNX",
providers: List[str] = ("CUDAExecutionProvider", "CPUExecutionProvider"),
max_length: int = 2048,
):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, padding_side="left")
self.prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be "yes" or "no".'<|im_end|>\n<|im_start|>user\n"
self.suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
self.prefix_tokens = self.tokenizer.encode(self.prefix, add_special_tokens=False)
self.suffix_tokens = self.tokenizer.encode(self.suffix, add_special_tokens=False)
self.default_instruction = (
"Given a web search query, retrieve relevant passages that answer the query"
)
self.max_length = max_length
self.token_false_id = self.tokenizer.convert_tokens_to_ids("no")
self.token_true_id = self.tokenizer.convert_tokens_to_ids("yes")
self.session = ort.InferenceSession(model_path, providers=list(providers))
self.output_name = "logits"
def _format_instruction(self, instruction: str, query: str, doc: str) -> str:
inst = instruction if instruction is not None else self.default_instruction
return f"<Instruct>: {inst}\n<Query>: {query}\n<Document>: {doc}"
def _tokenize(self, pairs: List[str]):
encoded = self.tokenizer(
[self.prefix + s + self.suffix for s in pairs],
padding=True,
truncation="longest_first",
max_length=self.max_length - len(self.prefix_tokens) - len(self.suffix_tokens),
add_special_tokens=False,
return_tensors="np",
)
input_ids = encoded["input_ids"].astype(np.int64)
attention_mask = encoded["attention_mask"].astype(np.int64)
seq_len = input_ids.shape[1]
position_ids = (
np.arange(seq_len, dtype=np.int64)[None, :].repeat(input_ids.shape[0], axis=0)
)
return input_ids, attention_mask, position_ids
def infer(
self,
queries: List[str],
documents: List[str],
instruction: str = None,
):
if len(queries) == 1 and len(documents) > 1:
queries = [queries[0]] * len(documents)
elif len(queries) != len(documents):
raise ValueError("The number of queries must be 1 or equal to the number of documents.")
pairs = [
self._format_instruction(instruction, q, d) for q, d in zip(queries, documents)
]
input_ids, attention_mask, position_ids = self._tokenize(pairs)
ort_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
}
logits_np = self.session.run([self.output_name], ort_inputs)[0]
last_token_logits = torch.from_numpy(logits_np[:, -1, :]).float()
false_logits = last_token_logits[:, self.token_false_id]
true_logits = last_token_logits[:, self.token_true_id]
probs = torch.softmax(torch.stack([false_logits, true_logits], dim=1), dim=1)
scores_no = probs[:, 0].tolist()
scores_yes = probs[:, 1].tolist()
return scores_yes, scores_no
```
<p align="center">
<img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/>
<p>
## Highlights
The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.
**Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks No.1 in the MTEB multilingual leaderboard (as of June 5, 2025, score 70.58), while the reranking model excels in various text retrieval scenarios.
**Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios.
**Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities.
## Model Overview
**Qwen3-Reranker-0.6B** has the following features:
- Model Type: Text Reranking
- Supported Languages: 100+ Languages
- Number of Paramaters: 0.6B
- Context Length: 32k
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding).
## Qwen3 Embedding Series Model list
| Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware |
|------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------|
| Text Embedding | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes |
| Text Embedding | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes |
| Text Embedding | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes |
| Text Reranking | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes |
| Text Reranking | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes |
| Text Reranking | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes |
> **Note**:
> - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding.
> - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.
> - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English.
## Usage
With Transformers versions earlier than 4.51.0, you may encounter the following error:
```
KeyError: 'qwen3'
```
📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.
## Evaluation
| Model | Param | MTEB-R | CMTEB-R | MMTEB-R | MLDR | MTEB-Code | FollowIR |
|------------------------------------|--------|---------|---------|---------|--------|-----------|----------|
| **Qwen3-Embedding-0.6B** | 0.6B | 61.82 | 71.02 | 64.64 | 50.26 | 75.41 | 5.09 |
| Jina-multilingual-reranker-v2-base | 0.3B | 58.22 | 63.37 | 63.73 | 39.66 | 58.98 | -0.68 |
| gte-multilingual-reranker-base | 0.3B | 59.51 | 74.08 | 59.44 | 66.33 | 54.18 | -1.64 |
| BGE-reranker-v2-m3 | 0.6B | 57.03 | 72.16 | 58.36 | 59.51 | 41.38 | -0.01 |
| **Qwen3-Reranker-0.6B** | 0.6B | 65.80 | 71.31 | 66.36 | 67.28 | 73.42 | 5.41 |
| **Qwen3-Reranker-4B** | 1.7B | **69.76** | 75.94 | 72.74 | 69.97 | 81.20 | **14.84** |
| **Qwen3-Reranker-8B** | 8B | 69.02 | **77.45** | **72.94** | **70.19** | **81.22** | 8.05 |
> **Note**:
> - Evaluation results for reranking models. We use the retrieval subsets of MTEB(eng, v2), MTEB(cmn, v1), MMTEB and MTEB (Code), which are MTEB-R, CMTEB-R, MMTEB-R and MTEB-Code.
> - All scores are our runs based on the top-100 candidates retrieved by dense embedding model [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3-embedding,
title = {Qwen3-Embedding},
url = {https://qwenlm.github.io/blog/qwen3/},
author = {Qwen Team},
month = {May},
year = {2025}
}
```
|
fangcaotank/task-10-Qwen-Qwen2.5-7B-Instruct-optuna
|
fangcaotank
| 2025-06-25T01:22:43Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-7B-Instruct",
"region:us"
] | null | 2025-06-24T10:17:38Z |
---
base_model: Qwen/Qwen2.5-7B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.12.0
- PEFT 0.13.2
|
Rojosan/classificador
|
Rojosan
| 2025-06-25T01:22:30Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"autotrain",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-25T01:16:37Z |
---
library_name: transformers
tags:
- autotrain
- text-classification
base_model: google-bert/bert-base-uncased
widget:
- text: "I love AutoTrain"
---
# Model Trained Using AutoTrain
- Problem type: Text Classification
## Validation Metrics
loss: 0.04549918696284294
f1_macro: 1.0
f1_micro: 1.0
f1_weighted: 1.0
precision_macro: 1.0
precision_micro: 1.0
precision_weighted: 1.0
recall_macro: 1.0
recall_micro: 1.0
recall_weighted: 1.0
accuracy: 1.0
|
tanny2109/llamaToxic05
|
tanny2109
| 2025-06-25T01:22:11Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:adapter:meta-llama/Llama-3.1-8B-Instruct",
"region:us"
] | null | 2025-06-25T01:21:02Z |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2
|
donoway/l0nupcvl_20250623_233420
|
donoway
| 2025-06-25T01:22:08Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"generated_from_trainer",
"base_model:meta-llama/Llama-3.2-1B",
"base_model:adapter:meta-llama/Llama-3.2-1B",
"license:llama3.2",
"region:us"
] | null | 2025-06-25T01:22:05Z |
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: l0nupcvl_20250623_233420
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# l0nupcvl_20250623_233420
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8677
- Model Preparation Time: 0.0121
- Move Accuracy: 0.1838
- Token Accuracy: 0.6621
- Accuracy: 0.1838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 128
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Move Accuracy | Token Accuracy | Accuracy |
|:-------------:|:------:|:------:|:---------------:|:----------------------:|:-------------:|:--------------:|:--------:|
| No log | 0 | 0 | 6.4123 | 0.0121 | 0.0 | 0.1049 | 0.0 |
| 1.8134 | 0.0098 | 100 | 1.8386 | 0.0121 | 0.0024 | 0.2653 | 0.0024 |
| 1.7692 | 0.0196 | 200 | 1.7239 | 0.0121 | 0.0047 | 0.3117 | 0.0047 |
| 1.6779 | 0.0295 | 300 | 1.6996 | 0.0121 | 0.0090 | 0.3341 | 0.0090 |
| 1.626 | 0.0393 | 400 | 1.6646 | 0.0121 | 0.0155 | 0.3515 | 0.0155 |
| 1.6473 | 0.0491 | 500 | 1.6401 | 0.0121 | 0.0177 | 0.3677 | 0.0177 |
| 1.5746 | 0.0589 | 600 | 1.6117 | 0.0121 | 0.0213 | 0.3739 | 0.0213 |
| 1.6295 | 0.0687 | 700 | 1.6012 | 0.0121 | 0.0213 | 0.3784 | 0.0213 |
| 1.6309 | 0.0785 | 800 | 1.6188 | 0.0121 | 0.0213 | 0.3714 | 0.0213 |
| 1.6113 | 0.0884 | 900 | 1.5729 | 0.0121 | 0.0264 | 0.3849 | 0.0264 |
| 1.5866 | 0.0982 | 1000 | 1.5754 | 0.0121 | 0.0268 | 0.3817 | 0.0268 |
| 1.4901 | 0.1080 | 1100 | 1.5613 | 0.0121 | 0.0335 | 0.3907 | 0.0335 |
| 1.5038 | 0.1178 | 1200 | 1.5597 | 0.0121 | 0.0307 | 0.3920 | 0.0307 |
| 1.5518 | 0.1276 | 1300 | 1.5826 | 0.0121 | 0.0246 | 0.3877 | 0.0246 |
| 1.5581 | 0.1374 | 1400 | 1.5264 | 0.0121 | 0.0353 | 0.4067 | 0.0353 |
| 1.4864 | 0.1473 | 1500 | 1.5148 | 0.0121 | 0.0371 | 0.4159 | 0.0371 |
| 1.4902 | 0.1571 | 1600 | 1.4866 | 0.0121 | 0.0414 | 0.4229 | 0.0414 |
| 1.4227 | 0.1669 | 1700 | 1.4785 | 0.0121 | 0.0402 | 0.4306 | 0.0402 |
| 1.4888 | 0.1767 | 1800 | 1.4807 | 0.0121 | 0.0362 | 0.4273 | 0.0362 |
| 1.4003 | 0.1865 | 1900 | 1.4640 | 0.0121 | 0.0431 | 0.4345 | 0.0431 |
| 1.3846 | 0.1963 | 2000 | 1.4368 | 0.0121 | 0.0429 | 0.4426 | 0.0429 |
| 1.4298 | 0.2062 | 2100 | 1.4343 | 0.0121 | 0.0477 | 0.4420 | 0.0477 |
| 1.4368 | 0.2160 | 2200 | 1.4206 | 0.0121 | 0.0533 | 0.4530 | 0.0533 |
| 1.432 | 0.2258 | 2300 | 1.4048 | 0.0121 | 0.0489 | 0.4569 | 0.0489 |
| 1.3462 | 0.2356 | 2400 | 1.4218 | 0.0121 | 0.0434 | 0.4477 | 0.0434 |
| 1.3158 | 0.2454 | 2500 | 1.4085 | 0.0121 | 0.0479 | 0.4554 | 0.0479 |
| 1.3674 | 0.2553 | 2600 | 1.3735 | 0.0121 | 0.0558 | 0.4709 | 0.0558 |
| 1.3556 | 0.2651 | 2700 | 1.3663 | 0.0121 | 0.0576 | 0.4759 | 0.0576 |
| 1.3193 | 0.2749 | 2800 | 1.3417 | 0.0121 | 0.0595 | 0.4813 | 0.0595 |
| 1.3479 | 0.2847 | 2900 | 1.3414 | 0.0121 | 0.0602 | 0.4799 | 0.0602 |
| 1.3024 | 0.2945 | 3000 | 1.3114 | 0.0121 | 0.0705 | 0.4954 | 0.0705 |
| 1.3576 | 0.3043 | 3100 | 1.3098 | 0.0121 | 0.0639 | 0.4942 | 0.0639 |
| 1.3043 | 0.3142 | 3200 | 1.2850 | 0.0121 | 0.0730 | 0.5077 | 0.0730 |
| 1.2639 | 0.3240 | 3300 | 1.2703 | 0.0121 | 0.0727 | 0.5114 | 0.0727 |
| 1.2676 | 0.3338 | 3400 | 1.2552 | 0.0121 | 0.0759 | 0.5170 | 0.0759 |
| 1.2058 | 0.3436 | 3500 | 1.2532 | 0.0121 | 0.0743 | 0.5149 | 0.0743 |
| 1.2568 | 0.3534 | 3600 | 1.2460 | 0.0121 | 0.0775 | 0.5223 | 0.0775 |
| 1.1544 | 0.3632 | 3700 | 1.2190 | 0.0121 | 0.0804 | 0.5309 | 0.0804 |
| 1.1985 | 0.3731 | 3800 | 1.2199 | 0.0121 | 0.0832 | 0.5322 | 0.0832 |
| 1.1214 | 0.3829 | 3900 | 1.1944 | 0.0121 | 0.0896 | 0.5432 | 0.0896 |
| 1.2423 | 0.3927 | 4000 | 1.2111 | 0.0121 | 0.0803 | 0.5363 | 0.0803 |
| 1.1277 | 0.4025 | 4100 | 1.1957 | 0.0121 | 0.0867 | 0.5406 | 0.0867 |
| 1.1588 | 0.4123 | 4200 | 1.2106 | 0.0121 | 0.0821 | 0.5381 | 0.0821 |
| 1.1443 | 0.4221 | 4300 | 1.1801 | 0.0121 | 0.0833 | 0.5478 | 0.0833 |
| 1.215 | 0.4320 | 4400 | 1.1494 | 0.0121 | 0.0955 | 0.5557 | 0.0955 |
| 1.1168 | 0.4418 | 4500 | 1.1449 | 0.0121 | 0.1079 | 0.5616 | 0.1079 |
| 1.1143 | 0.4516 | 4600 | 1.1396 | 0.0121 | 0.1049 | 0.5636 | 0.1049 |
| 1.1495 | 0.4614 | 4700 | 1.1196 | 0.0121 | 0.1021 | 0.5709 | 0.1021 |
| 1.1388 | 0.4712 | 4800 | 1.1307 | 0.0121 | 0.1017 | 0.5660 | 0.1017 |
| 1.1701 | 0.4811 | 4900 | 1.1317 | 0.0121 | 0.1029 | 0.5663 | 0.1029 |
| 1.038 | 0.4909 | 5000 | 1.1348 | 0.0121 | 0.1086 | 0.5656 | 0.1086 |
| 1.176 | 0.5007 | 5100 | 1.1275 | 0.0121 | 0.1006 | 0.5676 | 0.1006 |
| 1.1175 | 0.5105 | 5200 | 1.1255 | 0.0121 | 0.1009 | 0.5697 | 0.1009 |
| 1.101 | 0.5203 | 5300 | 1.1134 | 0.0121 | 0.1024 | 0.5725 | 0.1024 |
| 1.0745 | 0.5301 | 5400 | 1.1158 | 0.0121 | 0.1079 | 0.5739 | 0.1079 |
| 1.1114 | 0.5400 | 5500 | 1.1041 | 0.0121 | 0.1125 | 0.5784 | 0.1125 |
| 1.1863 | 0.5498 | 5600 | 1.1140 | 0.0121 | 0.1081 | 0.5753 | 0.1081 |
| 1.0536 | 0.5596 | 5700 | 1.0964 | 0.0121 | 0.1096 | 0.5799 | 0.1096 |
| 1.1317 | 0.5694 | 5800 | 1.0854 | 0.0121 | 0.1160 | 0.5854 | 0.1160 |
| 1.1592 | 0.5792 | 5900 | 1.0925 | 0.0121 | 0.1056 | 0.5792 | 0.1056 |
| 1.0494 | 0.5890 | 6000 | 1.0837 | 0.0121 | 0.1138 | 0.5852 | 0.1138 |
| 1.1148 | 0.5989 | 6100 | 1.0965 | 0.0121 | 0.1039 | 0.5828 | 0.1039 |
| 1.1007 | 0.6087 | 6200 | 1.0683 | 0.0121 | 0.1138 | 0.5858 | 0.1138 |
| 1.073 | 0.6185 | 6300 | 1.1008 | 0.0121 | 0.1043 | 0.5776 | 0.1043 |
| 1.0281 | 0.6283 | 6400 | 1.0673 | 0.0121 | 0.1125 | 0.5895 | 0.1125 |
| 1.1181 | 0.6381 | 6500 | 1.0736 | 0.0121 | 0.1197 | 0.5951 | 0.1197 |
| 1.1005 | 0.6479 | 6600 | 1.0828 | 0.0121 | 0.1134 | 0.5847 | 0.1134 |
| 1.008 | 0.6578 | 6700 | 1.0594 | 0.0121 | 0.1176 | 0.5935 | 0.1176 |
| 1.0802 | 0.6676 | 6800 | 1.0700 | 0.0121 | 0.1160 | 0.5873 | 0.1160 |
| 1.057 | 0.6774 | 6900 | 1.0603 | 0.0121 | 0.1154 | 0.5924 | 0.1154 |
| 1.0362 | 0.6872 | 7000 | 1.0496 | 0.0121 | 0.1204 | 0.5974 | 0.1204 |
| 1.1061 | 0.6970 | 7100 | 1.0542 | 0.0121 | 0.1140 | 0.5903 | 0.1140 |
| 0.9967 | 0.7069 | 7200 | 1.0405 | 0.0121 | 0.1292 | 0.6027 | 0.1292 |
| 0.9899 | 0.7167 | 7300 | 1.0427 | 0.0121 | 0.1300 | 0.6013 | 0.1300 |
| 1.0461 | 0.7265 | 7400 | 1.0622 | 0.0121 | 0.1195 | 0.5928 | 0.1195 |
| 1.0 | 0.7363 | 7500 | 1.0679 | 0.0121 | 0.1198 | 0.5913 | 0.1198 |
| 1.0434 | 0.7461 | 7600 | 1.0331 | 0.0121 | 0.1249 | 0.6000 | 0.1249 |
| 1.1196 | 0.7559 | 7700 | 1.0513 | 0.0121 | 0.1225 | 0.5969 | 0.1225 |
| 1.0365 | 0.7658 | 7800 | 1.0457 | 0.0121 | 0.1163 | 0.5982 | 0.1163 |
| 1.0007 | 0.7756 | 7900 | 1.0389 | 0.0121 | 0.1249 | 0.6003 | 0.1249 |
| 1.0079 | 0.7854 | 8000 | 1.0427 | 0.0121 | 0.1220 | 0.6008 | 0.1220 |
| 1.0649 | 0.7952 | 8100 | 1.0577 | 0.0121 | 0.1201 | 0.5949 | 0.1201 |
| 1.0393 | 0.8050 | 8200 | 1.0503 | 0.0121 | 0.1239 | 0.5942 | 0.1239 |
| 1.0037 | 0.8148 | 8300 | 1.0440 | 0.0121 | 0.1223 | 0.5970 | 0.1223 |
| 1.0126 | 0.8247 | 8400 | 1.0230 | 0.0121 | 0.1252 | 0.6057 | 0.1252 |
| 0.9743 | 0.8345 | 8500 | 1.0123 | 0.0121 | 0.1339 | 0.6117 | 0.1339 |
| 1.0477 | 0.8443 | 8600 | 1.0315 | 0.0121 | 0.1240 | 0.6062 | 0.1240 |
| 1.0048 | 0.8541 | 8700 | 1.0204 | 0.0121 | 0.1296 | 0.6055 | 0.1296 |
| 1.0247 | 0.8639 | 8800 | 1.0482 | 0.0121 | 0.1210 | 0.5993 | 0.1210 |
| 1.0746 | 0.8737 | 8900 | 1.0367 | 0.0121 | 0.1231 | 0.6024 | 0.1231 |
| 1.0519 | 0.8836 | 9000 | 1.0341 | 0.0121 | 0.1264 | 0.6026 | 0.1264 |
| 0.9807 | 0.8934 | 9100 | 1.0475 | 0.0121 | 0.1215 | 0.5967 | 0.1215 |
| 1.0206 | 0.9032 | 9200 | 1.0202 | 0.0121 | 0.1361 | 0.6079 | 0.1361 |
| 1.0404 | 0.9130 | 9300 | 1.0219 | 0.0121 | 0.1305 | 0.6105 | 0.1305 |
| 0.9316 | 0.9228 | 9400 | 1.0256 | 0.0121 | 0.1281 | 0.6045 | 0.1281 |
| 1.0496 | 0.9327 | 9500 | 1.0093 | 0.0121 | 0.1351 | 0.6138 | 0.1351 |
| 1.048 | 0.9425 | 9600 | 1.0273 | 0.0121 | 0.1315 | 0.6058 | 0.1315 |
| 1.0517 | 0.9523 | 9700 | 1.0251 | 0.0121 | 0.1283 | 0.6040 | 0.1283 |
| 0.9922 | 0.9621 | 9800 | 1.0176 | 0.0121 | 0.1330 | 0.6091 | 0.1330 |
| 1.0489 | 0.9719 | 9900 | 1.0010 | 0.0121 | 0.1374 | 0.6174 | 0.1374 |
| 1.001 | 0.9817 | 10000 | 1.0232 | 0.0121 | 0.1191 | 0.6050 | 0.1191 |
| 1.0379 | 0.9916 | 10100 | 1.0070 | 0.0121 | 0.1314 | 0.6116 | 0.1314 |
| 0.9638 | 1.0014 | 10200 | 1.0107 | 0.0121 | 0.1379 | 0.6134 | 0.1379 |
| 1.0171 | 1.0112 | 10300 | 1.0011 | 0.0121 | 0.1374 | 0.6132 | 0.1374 |
| 1.0563 | 1.0210 | 10400 | 1.0131 | 0.0121 | 0.1354 | 0.6099 | 0.1354 |
| 0.9535 | 1.0308 | 10500 | 1.0031 | 0.0121 | 0.1426 | 0.6157 | 0.1426 |
| 1.0147 | 1.0406 | 10600 | 0.9979 | 0.0121 | 0.1428 | 0.6192 | 0.1428 |
| 0.9887 | 1.0505 | 10700 | 0.9860 | 0.0121 | 0.1468 | 0.6231 | 0.1468 |
| 0.96 | 1.0603 | 10800 | 0.9923 | 0.0121 | 0.1414 | 0.6188 | 0.1414 |
| 1.019 | 1.0701 | 10900 | 0.9954 | 0.0121 | 0.1402 | 0.6199 | 0.1402 |
| 1.0251 | 1.0799 | 11000 | 1.0069 | 0.0121 | 0.1338 | 0.6098 | 0.1338 |
| 1.0115 | 1.0897 | 11100 | 1.0059 | 0.0121 | 0.1314 | 0.6142 | 0.1314 |
| 1.117 | 1.0995 | 11200 | 1.0123 | 0.0121 | 0.1337 | 0.6132 | 0.1337 |
| 1.0679 | 1.1094 | 11300 | 0.9997 | 0.0121 | 0.1284 | 0.6158 | 0.1284 |
| 0.9931 | 1.1192 | 11400 | 1.0009 | 0.0121 | 0.1399 | 0.6153 | 0.1399 |
| 0.9517 | 1.1290 | 11500 | 0.9963 | 0.0121 | 0.1386 | 0.6183 | 0.1386 |
| 1.0001 | 1.1388 | 11600 | 0.9802 | 0.0121 | 0.1403 | 0.6220 | 0.1403 |
| 1.0511 | 1.1486 | 11700 | 0.9988 | 0.0121 | 0.1293 | 0.6131 | 0.1293 |
| 0.9338 | 1.1585 | 11800 | 0.9964 | 0.0121 | 0.1368 | 0.6152 | 0.1368 |
| 1.0301 | 1.1683 | 11900 | 0.9983 | 0.0121 | 0.1347 | 0.6168 | 0.1347 |
| 0.9509 | 1.1781 | 12000 | 0.9915 | 0.0121 | 0.1410 | 0.6199 | 0.1410 |
| 1.0277 | 1.1879 | 12100 | 0.9802 | 0.0121 | 0.1450 | 0.6224 | 0.1450 |
| 0.8848 | 1.1977 | 12200 | 0.9875 | 0.0121 | 0.1401 | 0.6213 | 0.1401 |
| 0.9449 | 1.2075 | 12300 | 0.9951 | 0.0121 | 0.1410 | 0.6181 | 0.1410 |
| 0.9625 | 1.2174 | 12400 | 0.9794 | 0.0121 | 0.1434 | 0.6243 | 0.1434 |
| 1.0681 | 1.2272 | 12500 | 0.9966 | 0.0121 | 0.1361 | 0.6185 | 0.1361 |
| 0.9168 | 1.2370 | 12600 | 0.9991 | 0.0121 | 0.1346 | 0.6184 | 0.1346 |
| 0.967 | 1.2468 | 12700 | 0.9908 | 0.0121 | 0.1353 | 0.6200 | 0.1353 |
| 1.0241 | 1.2566 | 12800 | 0.9971 | 0.0121 | 0.1462 | 0.6214 | 0.1462 |
| 0.993 | 1.2664 | 12900 | 0.9854 | 0.0121 | 0.1417 | 0.6244 | 0.1417 |
| 0.9463 | 1.2763 | 13000 | 0.9922 | 0.0121 | 0.1321 | 0.6154 | 0.1321 |
| 1.0137 | 1.2861 | 13100 | 1.0065 | 0.0121 | 0.1323 | 0.6179 | 0.1323 |
| 1.0213 | 1.2959 | 13200 | 0.9849 | 0.0121 | 0.1358 | 0.6204 | 0.1358 |
| 0.9703 | 1.3057 | 13300 | 0.9956 | 0.0121 | 0.1368 | 0.6178 | 0.1368 |
| 0.9907 | 1.3155 | 13400 | 0.9831 | 0.0121 | 0.1434 | 0.6218 | 0.1434 |
| 0.9598 | 1.3253 | 13500 | 0.9821 | 0.0121 | 0.1403 | 0.6233 | 0.1403 |
| 0.9971 | 1.3352 | 13600 | 0.9948 | 0.0121 | 0.1385 | 0.6155 | 0.1385 |
| 0.9906 | 1.3450 | 13700 | 0.9914 | 0.0121 | 0.1327 | 0.6210 | 0.1327 |
| 1.0052 | 1.3548 | 13800 | 0.9698 | 0.0121 | 0.1428 | 0.6295 | 0.1428 |
| 0.9364 | 1.3646 | 13900 | 0.9682 | 0.0121 | 0.1494 | 0.6284 | 0.1494 |
| 0.9855 | 1.3744 | 14000 | 0.9829 | 0.0121 | 0.1354 | 0.6193 | 0.1354 |
| 1.0504 | 1.3843 | 14100 | 1.0161 | 0.0121 | 0.1326 | 0.6110 | 0.1326 |
| 0.9568 | 1.3941 | 14200 | 0.9870 | 0.0121 | 0.1469 | 0.6204 | 0.1469 |
| 0.9925 | 1.4039 | 14300 | 0.9874 | 0.0121 | 0.1435 | 0.6187 | 0.1435 |
| 0.9385 | 1.4137 | 14400 | 0.9771 | 0.0121 | 0.1435 | 0.6235 | 0.1435 |
| 1.0083 | 1.4235 | 14500 | 0.9787 | 0.0121 | 0.1370 | 0.6225 | 0.1370 |
| 1.0438 | 1.4333 | 14600 | 0.9856 | 0.0121 | 0.1295 | 0.6157 | 0.1295 |
| 0.9362 | 1.4432 | 14700 | 0.9799 | 0.0121 | 0.1456 | 0.6255 | 0.1456 |
| 0.97 | 1.4530 | 14800 | 0.9902 | 0.0121 | 0.1388 | 0.6190 | 0.1388 |
| 1.0245 | 1.4628 | 14900 | 1.0147 | 0.0121 | 0.1354 | 0.6148 | 0.1354 |
| 0.9025 | 1.4726 | 15000 | 0.9620 | 0.0121 | 0.1465 | 0.6282 | 0.1465 |
| 0.981 | 1.4824 | 15100 | 0.9800 | 0.0121 | 0.1432 | 0.6198 | 0.1432 |
| 0.9617 | 1.4922 | 15200 | 0.9749 | 0.0121 | 0.1438 | 0.6253 | 0.1438 |
| 0.9422 | 1.5021 | 15300 | 0.9753 | 0.0121 | 0.1438 | 0.6235 | 0.1438 |
| 1.0265 | 1.5119 | 15400 | 0.9643 | 0.0121 | 0.1471 | 0.6279 | 0.1471 |
| 1.0726 | 1.5217 | 15500 | 0.9658 | 0.0121 | 0.1452 | 0.6290 | 0.1452 |
| 0.9245 | 1.5315 | 15600 | 0.9633 | 0.0121 | 0.1534 | 0.6294 | 0.1534 |
| 1.016 | 1.5413 | 15700 | 0.9809 | 0.0121 | 0.1421 | 0.6215 | 0.1421 |
| 0.9818 | 1.5511 | 15800 | 0.9862 | 0.0121 | 0.1377 | 0.6172 | 0.1377 |
| 0.9433 | 1.5610 | 15900 | 0.9748 | 0.0121 | 0.1408 | 0.6218 | 0.1408 |
| 0.9866 | 1.5708 | 16000 | 0.9823 | 0.0121 | 0.1495 | 0.6269 | 0.1495 |
| 0.9928 | 1.5806 | 16100 | 0.9679 | 0.0121 | 0.1510 | 0.6298 | 0.1510 |
| 0.97 | 1.5904 | 16200 | 0.9827 | 0.0121 | 0.1355 | 0.6177 | 0.1355 |
| 0.9551 | 1.6002 | 16300 | 0.9803 | 0.0121 | 0.1394 | 0.6240 | 0.1394 |
| 1.0441 | 1.6101 | 16400 | 0.9890 | 0.0121 | 0.1356 | 0.6198 | 0.1356 |
| 1.0044 | 1.6199 | 16500 | 0.9757 | 0.0121 | 0.1393 | 0.6208 | 0.1393 |
| 0.9966 | 1.6297 | 16600 | 0.9595 | 0.0121 | 0.1484 | 0.6307 | 0.1484 |
| 1.0272 | 1.6395 | 16700 | 0.9787 | 0.0121 | 0.1463 | 0.6230 | 0.1463 |
| 0.9615 | 1.6493 | 16800 | 0.9805 | 0.0121 | 0.1370 | 0.6180 | 0.1370 |
| 0.8994 | 1.6591 | 16900 | 0.9773 | 0.0121 | 0.1526 | 0.6230 | 0.1526 |
| 0.9124 | 1.6690 | 17000 | 0.9852 | 0.0121 | 0.1455 | 0.6219 | 0.1455 |
| 0.9764 | 1.6788 | 17100 | 0.9638 | 0.0121 | 0.1475 | 0.6296 | 0.1475 |
| 0.9907 | 1.6886 | 17200 | 0.9952 | 0.0121 | 0.1381 | 0.6190 | 0.1381 |
| 0.939 | 1.6984 | 17300 | 0.9960 | 0.0121 | 0.1305 | 0.6135 | 0.1305 |
| 0.8737 | 1.7082 | 17400 | 0.9657 | 0.0121 | 0.1461 | 0.6229 | 0.1461 |
| 0.9767 | 1.7180 | 17500 | 0.9627 | 0.0121 | 0.1400 | 0.6245 | 0.1400 |
| 0.958 | 1.7279 | 17600 | 0.9632 | 0.0121 | 0.1461 | 0.6273 | 0.1461 |
| 1.0461 | 1.7377 | 17700 | 0.9866 | 0.0121 | 0.1463 | 0.6216 | 0.1463 |
| 1.0028 | 1.7475 | 17800 | 0.9834 | 0.0121 | 0.1375 | 0.6227 | 0.1375 |
| 1.0034 | 1.7573 | 17900 | 0.9781 | 0.0121 | 0.1390 | 0.6218 | 0.1390 |
| 0.9821 | 1.7671 | 18000 | 0.9592 | 0.0121 | 0.1484 | 0.6289 | 0.1484 |
| 1.0287 | 1.7769 | 18100 | 0.9725 | 0.0121 | 0.1470 | 0.6254 | 0.1470 |
| 0.9723 | 1.7868 | 18200 | 0.9728 | 0.0121 | 0.1477 | 0.6240 | 0.1477 |
| 1.0263 | 1.7966 | 18300 | 0.9656 | 0.0121 | 0.1412 | 0.6257 | 0.1412 |
| 0.9584 | 1.8064 | 18400 | 0.9598 | 0.0121 | 0.1470 | 0.6322 | 0.1470 |
| 0.9164 | 1.8162 | 18500 | 0.9788 | 0.0121 | 0.1453 | 0.6255 | 0.1453 |
| 0.9565 | 1.8260 | 18600 | 0.9697 | 0.0121 | 0.1504 | 0.6283 | 0.1504 |
| 0.9243 | 1.8359 | 18700 | 0.9401 | 0.0121 | 0.1516 | 0.6342 | 0.1516 |
| 0.8968 | 1.8457 | 18800 | 0.9777 | 0.0121 | 0.1437 | 0.6219 | 0.1437 |
| 0.9723 | 1.8555 | 18900 | 0.9620 | 0.0121 | 0.1444 | 0.6256 | 0.1444 |
| 0.9894 | 1.8653 | 19000 | 0.9724 | 0.0121 | 0.1409 | 0.6211 | 0.1409 |
| 0.9166 | 1.8751 | 19100 | 0.9666 | 0.0121 | 0.1453 | 0.6270 | 0.1453 |
| 0.9474 | 1.8849 | 19200 | 0.9608 | 0.0121 | 0.1485 | 0.6305 | 0.1485 |
| 1.0545 | 1.8948 | 19300 | 0.9621 | 0.0121 | 0.1486 | 0.6277 | 0.1486 |
| 0.9987 | 1.9046 | 19400 | 0.9767 | 0.0121 | 0.1481 | 0.6262 | 0.1481 |
| 0.9155 | 1.9144 | 19500 | 0.9611 | 0.0121 | 0.1478 | 0.6287 | 0.1478 |
| 0.9585 | 1.9242 | 19600 | 0.9675 | 0.0121 | 0.1488 | 0.6263 | 0.1488 |
| 1.0011 | 1.9340 | 19700 | 0.9921 | 0.0121 | 0.1326 | 0.6175 | 0.1326 |
| 0.9271 | 1.9438 | 19800 | 0.9526 | 0.0121 | 0.1526 | 0.6305 | 0.1526 |
| 0.9035 | 1.9537 | 19900 | 0.9507 | 0.0121 | 0.1556 | 0.6322 | 0.1556 |
| 0.8893 | 1.9635 | 20000 | 0.9448 | 0.0121 | 0.1499 | 0.6318 | 0.1499 |
| 0.915 | 1.9733 | 20100 | 0.9794 | 0.0121 | 0.1490 | 0.6225 | 0.1490 |
| 0.9985 | 1.9831 | 20200 | 0.9754 | 0.0121 | 0.1388 | 0.6213 | 0.1388 |
| 0.8801 | 1.9929 | 20300 | 0.9533 | 0.0121 | 0.1501 | 0.6296 | 0.1501 |
| 0.9559 | 2.0027 | 20400 | 0.9712 | 0.0121 | 0.1423 | 0.6289 | 0.1423 |
| 0.9222 | 2.0126 | 20500 | 0.9513 | 0.0121 | 0.1461 | 0.6321 | 0.1461 |
| 0.9745 | 2.0224 | 20600 | 0.9815 | 0.0121 | 0.1490 | 0.6290 | 0.1490 |
| 0.8946 | 2.0322 | 20700 | 0.9743 | 0.0121 | 0.1403 | 0.6209 | 0.1403 |
| 0.9683 | 2.0420 | 20800 | 0.9473 | 0.0121 | 0.1461 | 0.6330 | 0.1461 |
| 0.9867 | 2.0518 | 20900 | 0.9475 | 0.0121 | 0.1463 | 0.6332 | 0.1463 |
| 0.8907 | 2.0617 | 21000 | 0.9526 | 0.0121 | 0.1528 | 0.6348 | 0.1528 |
| 0.9788 | 2.0715 | 21100 | 0.9630 | 0.0121 | 0.1477 | 0.6275 | 0.1477 |
| 1.0092 | 2.0813 | 21200 | 0.9736 | 0.0121 | 0.1510 | 0.6248 | 0.1510 |
| 1.0112 | 2.0911 | 21300 | 0.9526 | 0.0121 | 0.1514 | 0.6311 | 0.1514 |
| 0.9428 | 2.1009 | 21400 | 0.9563 | 0.0121 | 0.1537 | 0.6324 | 0.1537 |
| 0.9599 | 2.1107 | 21500 | 0.9540 | 0.0121 | 0.1490 | 0.6273 | 0.1490 |
| 0.8925 | 2.1206 | 21600 | 0.9555 | 0.0121 | 0.1442 | 0.6281 | 0.1442 |
| 1.0038 | 2.1304 | 21700 | 0.9669 | 0.0121 | 0.1448 | 0.6274 | 0.1448 |
| 0.9397 | 2.1402 | 21800 | 0.9381 | 0.0121 | 0.1552 | 0.6359 | 0.1552 |
| 0.9569 | 2.1500 | 21900 | 0.9469 | 0.0121 | 0.1505 | 0.6325 | 0.1505 |
| 0.9395 | 2.1598 | 22000 | 0.9608 | 0.0121 | 0.1470 | 0.6275 | 0.1470 |
| 0.9211 | 2.1696 | 22100 | 0.9482 | 0.0121 | 0.1528 | 0.6315 | 0.1528 |
| 0.8696 | 2.1795 | 22200 | 0.9493 | 0.0121 | 0.1527 | 0.6325 | 0.1527 |
| 0.9608 | 2.1893 | 22300 | 0.9597 | 0.0121 | 0.1480 | 0.6302 | 0.1480 |
| 1.02 | 2.1991 | 22400 | 0.9853 | 0.0121 | 0.1378 | 0.6196 | 0.1378 |
| 0.9805 | 2.2089 | 22500 | 0.9694 | 0.0121 | 0.1372 | 0.6228 | 0.1372 |
| 0.9496 | 2.2187 | 22600 | 0.9381 | 0.0121 | 0.1544 | 0.6351 | 0.1544 |
| 0.9892 | 2.2285 | 22700 | 0.9810 | 0.0121 | 0.1429 | 0.6232 | 0.1429 |
| 0.9565 | 2.2384 | 22800 | 0.9567 | 0.0121 | 0.1454 | 0.6310 | 0.1454 |
| 0.9254 | 2.2482 | 22900 | 0.9529 | 0.0121 | 0.1510 | 0.6291 | 0.1510 |
| 0.9032 | 2.2580 | 23000 | 0.9515 | 0.0121 | 0.1479 | 0.6335 | 0.1479 |
| 0.9845 | 2.2678 | 23100 | 0.9451 | 0.0121 | 0.1549 | 0.6383 | 0.1549 |
| 0.9407 | 2.2776 | 23200 | 0.9483 | 0.0121 | 0.1472 | 0.6336 | 0.1472 |
| 1.032 | 2.2875 | 23300 | 0.9775 | 0.0121 | 0.1359 | 0.6237 | 0.1359 |
| 0.9924 | 2.2973 | 23400 | 0.9406 | 0.0121 | 0.1495 | 0.6336 | 0.1495 |
| 0.9701 | 2.3071 | 23500 | 0.9443 | 0.0121 | 0.1499 | 0.6353 | 0.1499 |
| 1.0408 | 2.3169 | 23600 | 0.9481 | 0.0121 | 0.1498 | 0.6313 | 0.1498 |
| 0.9238 | 2.3267 | 23700 | 0.9537 | 0.0121 | 0.1548 | 0.6313 | 0.1548 |
| 0.9766 | 2.3365 | 23800 | 0.9444 | 0.0121 | 0.1537 | 0.6363 | 0.1537 |
| 0.9323 | 2.3464 | 23900 | 0.9402 | 0.0121 | 0.1505 | 0.6321 | 0.1505 |
| 0.9244 | 2.3562 | 24000 | 0.9423 | 0.0121 | 0.1504 | 0.6372 | 0.1504 |
| 0.936 | 2.3660 | 24100 | 0.9427 | 0.0121 | 0.1544 | 0.6351 | 0.1544 |
| 1.0031 | 2.3758 | 24200 | 0.9476 | 0.0121 | 0.1572 | 0.6383 | 0.1572 |
| 0.9001 | 2.3856 | 24300 | 0.9370 | 0.0121 | 0.1438 | 0.6322 | 0.1438 |
| 0.9784 | 2.3954 | 24400 | 0.9549 | 0.0121 | 0.1479 | 0.6304 | 0.1479 |
| 0.8829 | 2.4053 | 24500 | 0.9265 | 0.0121 | 0.1594 | 0.6419 | 0.1594 |
| 0.923 | 2.4151 | 24600 | 0.9429 | 0.0121 | 0.1504 | 0.6353 | 0.1504 |
| 0.9826 | 2.4249 | 24700 | 0.9405 | 0.0121 | 0.1546 | 0.6338 | 0.1546 |
| 0.9287 | 2.4347 | 24800 | 0.9376 | 0.0121 | 0.1558 | 0.6381 | 0.1558 |
| 0.9229 | 2.4445 | 24900 | 0.9317 | 0.0121 | 0.1618 | 0.6399 | 0.1618 |
| 0.9156 | 2.4543 | 25000 | 0.9436 | 0.0121 | 0.1506 | 0.6331 | 0.1506 |
| 0.9068 | 2.4642 | 25100 | 0.9839 | 0.0121 | 0.1399 | 0.6214 | 0.1399 |
| 0.9131 | 2.4740 | 25200 | 0.9196 | 0.0121 | 0.1576 | 0.6414 | 0.1576 |
| 0.8854 | 2.4838 | 25300 | 0.9454 | 0.0121 | 0.1521 | 0.6343 | 0.1521 |
| 0.9291 | 2.4936 | 25400 | 0.9533 | 0.0121 | 0.1402 | 0.6274 | 0.1402 |
| 0.9474 | 2.5034 | 25500 | 0.9558 | 0.0121 | 0.1526 | 0.6311 | 0.1526 |
| 0.9155 | 2.5133 | 25600 | 0.9469 | 0.0121 | 0.1607 | 0.6360 | 0.1607 |
| 0.9235 | 2.5231 | 25700 | 0.9403 | 0.0121 | 0.1492 | 0.6339 | 0.1492 |
| 0.9101 | 2.5329 | 25800 | 0.9544 | 0.0121 | 0.1438 | 0.6291 | 0.1438 |
| 0.9359 | 2.5427 | 25900 | 0.9438 | 0.0121 | 0.1539 | 0.6382 | 0.1539 |
| 0.8916 | 2.5525 | 26000 | 0.9364 | 0.0121 | 0.1507 | 0.6349 | 0.1507 |
| 0.8944 | 2.5623 | 26100 | 0.9561 | 0.0121 | 0.1404 | 0.6297 | 0.1404 |
| 0.9263 | 2.5722 | 26200 | 0.9661 | 0.0121 | 0.1534 | 0.6310 | 0.1534 |
| 0.9523 | 2.5820 | 26300 | 0.9413 | 0.0121 | 0.1470 | 0.6315 | 0.1470 |
| 0.9576 | 2.5918 | 26400 | 0.9706 | 0.0121 | 0.1462 | 0.6226 | 0.1462 |
| 0.9309 | 2.6016 | 26500 | 0.9487 | 0.0121 | 0.1564 | 0.6350 | 0.1564 |
| 0.9006 | 2.6114 | 26600 | 0.9385 | 0.0121 | 0.1535 | 0.6320 | 0.1535 |
| 0.8887 | 2.6212 | 26700 | 0.9554 | 0.0121 | 0.1512 | 0.6343 | 0.1512 |
| 0.9398 | 2.6311 | 26800 | 0.9373 | 0.0121 | 0.1539 | 0.6373 | 0.1539 |
| 0.9373 | 2.6409 | 26900 | 0.9550 | 0.0121 | 0.1459 | 0.6270 | 0.1459 |
| 0.9648 | 2.6507 | 27000 | 0.9423 | 0.0121 | 0.1508 | 0.6334 | 0.1508 |
| 0.8716 | 2.6605 | 27100 | 0.9331 | 0.0121 | 0.1546 | 0.6360 | 0.1546 |
| 0.914 | 2.6703 | 27200 | 0.9313 | 0.0121 | 0.1572 | 0.6392 | 0.1572 |
| 0.8962 | 2.6801 | 27300 | 0.9311 | 0.0121 | 0.1584 | 0.6380 | 0.1584 |
| 0.9496 | 2.6900 | 27400 | 0.9347 | 0.0121 | 0.1561 | 0.6393 | 0.1561 |
| 0.9796 | 2.6998 | 27500 | 0.9494 | 0.0121 | 0.1428 | 0.6282 | 0.1428 |
| 0.954 | 2.7096 | 27600 | 0.9220 | 0.0121 | 0.1602 | 0.6412 | 0.1602 |
| 0.9002 | 2.7194 | 27700 | 0.9286 | 0.0121 | 0.1546 | 0.6390 | 0.1546 |
| 0.9716 | 2.7292 | 27800 | 0.9388 | 0.0121 | 0.1562 | 0.6380 | 0.1562 |
| 0.877 | 2.7391 | 27900 | 0.9416 | 0.0121 | 0.1494 | 0.6331 | 0.1494 |
| 0.9771 | 2.7489 | 28000 | 0.9317 | 0.0121 | 0.1544 | 0.6374 | 0.1544 |
| 0.8698 | 2.7587 | 28100 | 0.9433 | 0.0121 | 0.1430 | 0.6325 | 0.1430 |
| 0.8791 | 2.7685 | 28200 | 0.9317 | 0.0121 | 0.1483 | 0.6352 | 0.1483 |
| 0.8812 | 2.7783 | 28300 | 0.9563 | 0.0121 | 0.1488 | 0.6286 | 0.1488 |
| 0.9155 | 2.7881 | 28400 | 0.9240 | 0.0121 | 0.1506 | 0.6374 | 0.1506 |
| 0.9326 | 2.7980 | 28500 | 0.9373 | 0.0121 | 0.1508 | 0.6327 | 0.1508 |
| 0.9114 | 2.8078 | 28600 | 0.9188 | 0.0121 | 0.1610 | 0.6399 | 0.1610 |
| 0.9256 | 2.8176 | 28700 | 0.9220 | 0.0121 | 0.1655 | 0.6426 | 0.1655 |
| 0.9301 | 2.8274 | 28800 | 0.9313 | 0.0121 | 0.1506 | 0.6396 | 0.1506 |
| 0.9878 | 2.8372 | 28900 | 0.9335 | 0.0121 | 0.1517 | 0.6351 | 0.1517 |
| 0.8843 | 2.8470 | 29000 | 0.9219 | 0.0121 | 0.1582 | 0.6426 | 0.1582 |
| 0.8614 | 2.8569 | 29100 | 0.9298 | 0.0121 | 0.1566 | 0.6390 | 0.1566 |
| 0.9368 | 2.8667 | 29200 | 0.9302 | 0.0121 | 0.1501 | 0.6394 | 0.1501 |
| 0.9222 | 2.8765 | 29300 | 0.9263 | 0.0121 | 0.1513 | 0.6389 | 0.1513 |
| 0.8301 | 2.8863 | 29400 | 0.9288 | 0.0121 | 0.1523 | 0.6391 | 0.1523 |
| 0.8956 | 2.8961 | 29500 | 0.9437 | 0.0121 | 0.1512 | 0.6318 | 0.1512 |
| 0.8816 | 2.9059 | 29600 | 0.9209 | 0.0121 | 0.1539 | 0.6405 | 0.1539 |
| 0.9365 | 2.9158 | 29700 | 0.9408 | 0.0121 | 0.1511 | 0.6358 | 0.1511 |
| 0.9062 | 2.9256 | 29800 | 0.9419 | 0.0121 | 0.1447 | 0.6334 | 0.1447 |
| 0.9414 | 2.9354 | 29900 | 0.9470 | 0.0121 | 0.1459 | 0.6344 | 0.1459 |
| 1.0127 | 2.9452 | 30000 | 0.9288 | 0.0121 | 0.1646 | 0.6422 | 0.1646 |
| 0.9034 | 2.9550 | 30100 | 0.9362 | 0.0121 | 0.1586 | 0.6366 | 0.1586 |
| 0.9152 | 2.9649 | 30200 | 0.9244 | 0.0121 | 0.1577 | 0.6372 | 0.1577 |
| 0.9419 | 2.9747 | 30300 | 0.9267 | 0.0121 | 0.1562 | 0.6386 | 0.1562 |
| 0.9524 | 2.9845 | 30400 | 0.9200 | 0.0121 | 0.1539 | 0.6378 | 0.1539 |
| 1.002 | 2.9943 | 30500 | 0.9388 | 0.0121 | 0.1501 | 0.6345 | 0.1501 |
| 1.0183 | 3.0041 | 30600 | 0.9252 | 0.0121 | 0.1542 | 0.6376 | 0.1542 |
| 0.9304 | 3.0139 | 30700 | 0.9251 | 0.0121 | 0.1566 | 0.6404 | 0.1566 |
| 0.9888 | 3.0238 | 30800 | 0.9469 | 0.0121 | 0.1483 | 0.6302 | 0.1483 |
| 1.0105 | 3.0336 | 30900 | 0.9161 | 0.0121 | 0.1588 | 0.6423 | 0.1588 |
| 0.8535 | 3.0434 | 31000 | 0.9255 | 0.0121 | 0.1588 | 0.6418 | 0.1588 |
| 0.9747 | 3.0532 | 31100 | 0.9314 | 0.0121 | 0.1579 | 0.6385 | 0.1579 |
| 0.9358 | 3.0630 | 31200 | 0.9202 | 0.0121 | 0.1541 | 0.6407 | 0.1541 |
| 0.9373 | 3.0728 | 31300 | 0.9098 | 0.0121 | 0.1622 | 0.6454 | 0.1622 |
| 0.9595 | 3.0827 | 31400 | 0.9125 | 0.0121 | 0.1675 | 0.6450 | 0.1675 |
| 0.9259 | 3.0925 | 31500 | 0.9296 | 0.0121 | 0.1528 | 0.6378 | 0.1528 |
| 0.907 | 3.1023 | 31600 | 0.9319 | 0.0121 | 0.1604 | 0.6367 | 0.1604 |
| 0.9075 | 3.1121 | 31700 | 0.9384 | 0.0121 | 0.1566 | 0.6375 | 0.1566 |
| 0.9477 | 3.1219 | 31800 | 0.9312 | 0.0121 | 0.1491 | 0.6361 | 0.1491 |
| 0.9008 | 3.1317 | 31900 | 0.9270 | 0.0121 | 0.1573 | 0.6387 | 0.1573 |
| 0.8841 | 3.1416 | 32000 | 0.9197 | 0.0121 | 0.1574 | 0.6417 | 0.1574 |
| 0.9321 | 3.1514 | 32100 | 0.9275 | 0.0121 | 0.1518 | 0.6385 | 0.1518 |
| 0.975 | 3.1612 | 32200 | 0.9208 | 0.0121 | 0.1526 | 0.6429 | 0.1526 |
| 0.9376 | 3.1710 | 32300 | 0.9322 | 0.0121 | 0.1555 | 0.6395 | 0.1555 |
| 0.9798 | 3.1808 | 32400 | 0.9341 | 0.0121 | 0.1505 | 0.6336 | 0.1505 |
| 0.9683 | 3.1907 | 32500 | 0.9319 | 0.0121 | 0.1446 | 0.6342 | 0.1446 |
| 0.9052 | 3.2005 | 32600 | 0.9151 | 0.0121 | 0.1602 | 0.6426 | 0.1602 |
| 0.9259 | 3.2103 | 32700 | 0.9253 | 0.0121 | 0.1510 | 0.6389 | 0.1510 |
| 0.8892 | 3.2201 | 32800 | 0.9094 | 0.0121 | 0.1595 | 0.6447 | 0.1595 |
| 0.9092 | 3.2299 | 32900 | 0.9113 | 0.0121 | 0.1606 | 0.6431 | 0.1606 |
| 0.9226 | 3.2397 | 33000 | 0.9349 | 0.0121 | 0.1568 | 0.6371 | 0.1568 |
| 0.9054 | 3.2496 | 33100 | 0.9350 | 0.0121 | 0.1559 | 0.6360 | 0.1559 |
| 0.8966 | 3.2594 | 33200 | 0.9317 | 0.0121 | 0.1475 | 0.6367 | 0.1475 |
| 0.9313 | 3.2692 | 33300 | 0.9153 | 0.0121 | 0.1628 | 0.6434 | 0.1628 |
| 0.9739 | 3.2790 | 33400 | 0.9286 | 0.0121 | 0.1539 | 0.6368 | 0.1539 |
| 0.917 | 3.2888 | 33500 | 0.9192 | 0.0121 | 0.1572 | 0.6390 | 0.1572 |
| 0.9198 | 3.2986 | 33600 | 0.9014 | 0.0121 | 0.1684 | 0.6486 | 0.1684 |
| 0.8973 | 3.3085 | 33700 | 0.9252 | 0.0121 | 0.1617 | 0.6419 | 0.1617 |
| 0.9723 | 3.3183 | 33800 | 0.9220 | 0.0121 | 0.1584 | 0.6423 | 0.1584 |
| 0.9152 | 3.3281 | 33900 | 0.9562 | 0.0121 | 0.1345 | 0.6292 | 0.1345 |
| 0.9201 | 3.3379 | 34000 | 0.9187 | 0.0121 | 0.1563 | 0.6411 | 0.1563 |
| 0.8978 | 3.3477 | 34100 | 0.9338 | 0.0121 | 0.1598 | 0.6381 | 0.1598 |
| 0.886 | 3.3575 | 34200 | 0.9305 | 0.0121 | 0.1597 | 0.6390 | 0.1597 |
| 0.9052 | 3.3674 | 34300 | 0.9304 | 0.0121 | 0.1573 | 0.6402 | 0.1573 |
| 0.9958 | 3.3772 | 34400 | 0.9293 | 0.0121 | 0.1573 | 0.6406 | 0.1573 |
| 0.9306 | 3.3870 | 34500 | 0.9252 | 0.0121 | 0.1651 | 0.6403 | 0.1651 |
| 0.8415 | 3.3968 | 34600 | 0.9252 | 0.0121 | 0.1568 | 0.6394 | 0.1568 |
| 0.9207 | 3.4066 | 34700 | 0.9251 | 0.0121 | 0.1546 | 0.6394 | 0.1546 |
| 0.9702 | 3.4165 | 34800 | 0.9296 | 0.0121 | 0.1609 | 0.6383 | 0.1609 |
| 1.0098 | 3.4263 | 34900 | 0.9228 | 0.0121 | 0.1560 | 0.6407 | 0.1560 |
| 0.9492 | 3.4361 | 35000 | 0.9290 | 0.0121 | 0.1572 | 0.6383 | 0.1572 |
| 0.9288 | 3.4459 | 35100 | 0.9511 | 0.0121 | 0.1497 | 0.6310 | 0.1497 |
| 0.8967 | 3.4557 | 35200 | 0.9255 | 0.0121 | 0.1579 | 0.6395 | 0.1579 |
| 0.9164 | 3.4655 | 35300 | 0.9464 | 0.0121 | 0.1541 | 0.6335 | 0.1541 |
| 0.8837 | 3.4754 | 35400 | 0.9199 | 0.0121 | 0.1446 | 0.6367 | 0.1446 |
| 0.9106 | 3.4852 | 35500 | 0.9277 | 0.0121 | 0.1560 | 0.6401 | 0.1560 |
| 0.9453 | 3.4950 | 35600 | 0.9446 | 0.0121 | 0.1459 | 0.6302 | 0.1459 |
| 0.8714 | 3.5048 | 35700 | 0.9027 | 0.0121 | 0.1653 | 0.6483 | 0.1653 |
| 0.9315 | 3.5146 | 35800 | 0.9343 | 0.0121 | 0.1435 | 0.6347 | 0.1435 |
| 0.9 | 3.5244 | 35900 | 0.9182 | 0.0121 | 0.1539 | 0.6415 | 0.1539 |
| 0.9719 | 3.5343 | 36000 | 0.9792 | 0.0121 | 0.1390 | 0.6188 | 0.1390 |
| 0.8949 | 3.5441 | 36100 | 0.9056 | 0.0121 | 0.1644 | 0.6482 | 0.1644 |
| 0.9956 | 3.5539 | 36200 | 0.9319 | 0.0121 | 0.1512 | 0.6358 | 0.1512 |
| 0.885 | 3.5637 | 36300 | 0.9130 | 0.0121 | 0.1649 | 0.6457 | 0.1649 |
| 0.9 | 3.5735 | 36400 | 0.9204 | 0.0121 | 0.1555 | 0.6383 | 0.1555 |
| 0.8741 | 3.5833 | 36500 | 0.9177 | 0.0121 | 0.1567 | 0.6416 | 0.1567 |
| 0.8922 | 3.5932 | 36600 | 0.9259 | 0.0121 | 0.1521 | 0.6368 | 0.1521 |
| 0.9051 | 3.6030 | 36700 | 0.9211 | 0.0121 | 0.1553 | 0.6398 | 0.1553 |
| 1.0028 | 3.6128 | 36800 | 0.9315 | 0.0121 | 0.1573 | 0.6389 | 0.1573 |
| 0.8824 | 3.6226 | 36900 | 0.9306 | 0.0121 | 0.1620 | 0.6402 | 0.1620 |
| 0.839 | 3.6324 | 37000 | 0.9052 | 0.0121 | 0.1654 | 0.6472 | 0.1654 |
| 0.9111 | 3.6423 | 37100 | 0.9097 | 0.0121 | 0.1552 | 0.6444 | 0.1552 |
| 0.8494 | 3.6521 | 37200 | 0.9137 | 0.0121 | 0.1566 | 0.6418 | 0.1566 |
| 0.8726 | 3.6619 | 37300 | 0.8948 | 0.0121 | 0.1622 | 0.6473 | 0.1622 |
| 0.9294 | 3.6717 | 37400 | 0.9186 | 0.0121 | 0.1553 | 0.6425 | 0.1553 |
| 0.9176 | 3.6815 | 37500 | 0.9126 | 0.0121 | 0.1651 | 0.6443 | 0.1651 |
| 0.8867 | 3.6913 | 37600 | 0.9143 | 0.0121 | 0.1583 | 0.6433 | 0.1583 |
| 0.9085 | 3.7012 | 37700 | 0.9157 | 0.0121 | 0.1528 | 0.6409 | 0.1528 |
| 0.944 | 3.7110 | 37800 | 0.9161 | 0.0121 | 0.1613 | 0.6429 | 0.1613 |
| 0.819 | 3.7208 | 37900 | 0.9066 | 0.0121 | 0.1591 | 0.6434 | 0.1591 |
| 0.8937 | 3.7306 | 38000 | 0.9160 | 0.0121 | 0.1661 | 0.6441 | 0.1661 |
| 0.9581 | 3.7404 | 38100 | 0.9193 | 0.0121 | 0.1571 | 0.6414 | 0.1571 |
| 0.958 | 3.7502 | 38200 | 0.9243 | 0.0121 | 0.1554 | 0.6374 | 0.1554 |
| 0.9196 | 3.7601 | 38300 | 0.9255 | 0.0121 | 0.1524 | 0.6414 | 0.1524 |
| 1.0096 | 3.7699 | 38400 | 0.9228 | 0.0121 | 0.1519 | 0.6393 | 0.1519 |
| 0.9651 | 3.7797 | 38500 | 0.9224 | 0.0121 | 0.1539 | 0.6417 | 0.1539 |
| 0.9387 | 3.7895 | 38600 | 0.9258 | 0.0121 | 0.1546 | 0.6371 | 0.1546 |
| 0.9042 | 3.7993 | 38700 | 0.9389 | 0.0121 | 0.1530 | 0.6356 | 0.1530 |
| 0.9249 | 3.8091 | 38800 | 0.9316 | 0.0121 | 0.1480 | 0.6358 | 0.1480 |
| 0.9778 | 3.8190 | 38900 | 0.9109 | 0.0121 | 0.1597 | 0.6426 | 0.1597 |
| 0.9166 | 3.8288 | 39000 | 0.9112 | 0.0121 | 0.1596 | 0.6423 | 0.1596 |
| 0.949 | 3.8386 | 39100 | 0.9153 | 0.0121 | 0.1579 | 0.6423 | 0.1579 |
| 0.982 | 3.8484 | 39200 | 0.9246 | 0.0121 | 0.1504 | 0.6398 | 0.1504 |
| 0.9135 | 3.8582 | 39300 | 0.9201 | 0.0121 | 0.1577 | 0.6407 | 0.1577 |
| 0.9437 | 3.8681 | 39400 | 0.9165 | 0.0121 | 0.1550 | 0.6394 | 0.1550 |
| 0.9937 | 3.8779 | 39500 | 0.8967 | 0.0121 | 0.1657 | 0.6482 | 0.1657 |
| 0.8937 | 3.8877 | 39600 | 0.9084 | 0.0121 | 0.1686 | 0.6486 | 0.1686 |
| 0.901 | 3.8975 | 39700 | 0.9164 | 0.0121 | 0.1579 | 0.6393 | 0.1579 |
| 0.9045 | 3.9073 | 39800 | 0.9013 | 0.0121 | 0.1612 | 0.6472 | 0.1612 |
| 1.0313 | 3.9171 | 39900 | 0.9325 | 0.0121 | 0.1548 | 0.6349 | 0.1548 |
| 1.0183 | 3.9270 | 40000 | 0.9256 | 0.0121 | 0.1557 | 0.6380 | 0.1557 |
| 0.9019 | 3.9368 | 40100 | 0.9097 | 0.0121 | 0.1556 | 0.6420 | 0.1556 |
| 0.9219 | 3.9466 | 40200 | 0.9354 | 0.0121 | 0.1573 | 0.6370 | 0.1573 |
| 0.9101 | 3.9564 | 40300 | 0.9286 | 0.0121 | 0.1589 | 0.6416 | 0.1589 |
| 0.914 | 3.9662 | 40400 | 0.9033 | 0.0121 | 0.1658 | 0.6473 | 0.1658 |
| 0.8996 | 3.9760 | 40500 | 0.9187 | 0.0121 | 0.1578 | 0.6400 | 0.1578 |
| 0.9002 | 3.9859 | 40600 | 0.9055 | 0.0121 | 0.1612 | 0.6459 | 0.1612 |
| 1.0091 | 3.9957 | 40700 | 0.8948 | 0.0121 | 0.1673 | 0.6523 | 0.1673 |
| 0.8874 | 4.0055 | 40800 | 0.9226 | 0.0121 | 0.1566 | 0.6420 | 0.1566 |
| 0.9004 | 4.0153 | 40900 | 0.9081 | 0.0121 | 0.1594 | 0.6424 | 0.1594 |
| 0.962 | 4.0251 | 41000 | 0.9222 | 0.0121 | 0.1615 | 0.6436 | 0.1615 |
| 0.9959 | 4.0349 | 41100 | 0.9125 | 0.0121 | 0.1566 | 0.6438 | 0.1566 |
| 0.8541 | 4.0448 | 41200 | 0.9039 | 0.0121 | 0.1675 | 0.6464 | 0.1675 |
| 0.8316 | 4.0546 | 41300 | 0.9225 | 0.0121 | 0.1498 | 0.6367 | 0.1498 |
| 0.8869 | 4.0644 | 41400 | 0.9282 | 0.0121 | 0.1478 | 0.6346 | 0.1478 |
| 0.9328 | 4.0742 | 41500 | 0.9237 | 0.0121 | 0.1632 | 0.6409 | 0.1632 |
| 0.8534 | 4.0840 | 41600 | 0.8998 | 0.0121 | 0.1693 | 0.6488 | 0.1693 |
| 1.002 | 4.0939 | 41700 | 0.9398 | 0.0121 | 0.1501 | 0.6356 | 0.1501 |
| 0.8411 | 4.1037 | 41800 | 0.9140 | 0.0121 | 0.1604 | 0.6425 | 0.1604 |
| 0.8828 | 4.1135 | 41900 | 0.8929 | 0.0121 | 0.1653 | 0.6490 | 0.1653 |
| 0.8654 | 4.1233 | 42000 | 0.9065 | 0.0121 | 0.1702 | 0.6482 | 0.1702 |
| 0.8602 | 4.1331 | 42100 | 0.9147 | 0.0121 | 0.1546 | 0.6404 | 0.1546 |
| 0.8268 | 4.1429 | 42200 | 0.9238 | 0.0121 | 0.1540 | 0.6402 | 0.1540 |
| 0.9743 | 4.1528 | 42300 | 0.9081 | 0.0121 | 0.1629 | 0.6435 | 0.1629 |
| 0.9224 | 4.1626 | 42400 | 0.9007 | 0.0121 | 0.1673 | 0.6473 | 0.1673 |
| 0.9082 | 4.1724 | 42500 | 0.9077 | 0.0121 | 0.1610 | 0.6457 | 0.1610 |
| 0.9227 | 4.1822 | 42600 | 0.9160 | 0.0121 | 0.1595 | 0.6404 | 0.1595 |
| 0.925 | 4.1920 | 42700 | 0.9133 | 0.0121 | 0.1625 | 0.6450 | 0.1625 |
| 0.9158 | 4.2018 | 42800 | 0.8978 | 0.0121 | 0.1539 | 0.6438 | 0.1539 |
| 0.96 | 4.2117 | 42900 | 0.9021 | 0.0121 | 0.1567 | 0.6459 | 0.1567 |
| 0.8507 | 4.2215 | 43000 | 0.8975 | 0.0121 | 0.1681 | 0.6522 | 0.1681 |
| 0.9323 | 4.2313 | 43100 | 0.8988 | 0.0121 | 0.1686 | 0.6495 | 0.1686 |
| 0.9649 | 4.2411 | 43200 | 0.9099 | 0.0121 | 0.1672 | 0.6460 | 0.1672 |
| 0.826 | 4.2509 | 43300 | 0.9070 | 0.0121 | 0.1641 | 0.6456 | 0.1641 |
| 0.8683 | 4.2608 | 43400 | 0.9204 | 0.0121 | 0.1648 | 0.6445 | 0.1648 |
| 0.9506 | 4.2706 | 43500 | 0.8995 | 0.0121 | 0.1723 | 0.6487 | 0.1723 |
| 0.9039 | 4.2804 | 43600 | 0.9058 | 0.0121 | 0.1627 | 0.6459 | 0.1627 |
| 0.9048 | 4.2902 | 43700 | 0.8986 | 0.0121 | 0.1596 | 0.6452 | 0.1596 |
| 0.9044 | 4.3000 | 43800 | 0.9013 | 0.0121 | 0.1676 | 0.6490 | 0.1676 |
| 0.9858 | 4.3098 | 43900 | 0.9035 | 0.0121 | 0.1615 | 0.6445 | 0.1615 |
| 0.8395 | 4.3197 | 44000 | 0.9093 | 0.0121 | 0.1624 | 0.6480 | 0.1624 |
| 0.8611 | 4.3295 | 44100 | 0.9118 | 0.0121 | 0.1598 | 0.6417 | 0.1598 |
| 0.8509 | 4.3393 | 44200 | 0.9076 | 0.0121 | 0.1645 | 0.6467 | 0.1645 |
| 0.9728 | 4.3491 | 44300 | 0.9200 | 0.0121 | 0.1575 | 0.6418 | 0.1575 |
| 0.9003 | 4.3589 | 44400 | 0.9100 | 0.0121 | 0.1624 | 0.6437 | 0.1624 |
| 0.9193 | 4.3687 | 44500 | 0.9107 | 0.0121 | 0.1599 | 0.6457 | 0.1599 |
| 0.9026 | 4.3786 | 44600 | 0.9110 | 0.0121 | 0.1590 | 0.6444 | 0.1590 |
| 0.9528 | 4.3884 | 44700 | 0.9107 | 0.0121 | 0.1622 | 0.6426 | 0.1622 |
| 0.9313 | 4.3982 | 44800 | 0.9001 | 0.0121 | 0.1637 | 0.6475 | 0.1637 |
| 0.9124 | 4.4080 | 44900 | 0.9170 | 0.0121 | 0.1636 | 0.6408 | 0.1636 |
| 0.8478 | 4.4178 | 45000 | 0.9140 | 0.0121 | 0.1650 | 0.6415 | 0.1650 |
| 0.9162 | 4.4276 | 45100 | 0.9020 | 0.0121 | 0.1633 | 0.6450 | 0.1633 |
| 0.8447 | 4.4375 | 45200 | 0.9037 | 0.0121 | 0.1642 | 0.6461 | 0.1642 |
| 0.9101 | 4.4473 | 45300 | 0.8941 | 0.0121 | 0.1657 | 0.6455 | 0.1657 |
| 0.9524 | 4.4571 | 45400 | 0.9030 | 0.0121 | 0.1695 | 0.6466 | 0.1695 |
| 0.903 | 4.4669 | 45500 | 0.9293 | 0.0121 | 0.1484 | 0.6388 | 0.1484 |
| 0.889 | 4.4767 | 45600 | 0.9204 | 0.0121 | 0.1528 | 0.6379 | 0.1528 |
| 0.8872 | 4.4866 | 45700 | 0.9075 | 0.0121 | 0.1577 | 0.6472 | 0.1577 |
| 0.929 | 4.4964 | 45800 | 0.9106 | 0.0121 | 0.1572 | 0.6418 | 0.1572 |
| 0.9765 | 4.5062 | 45900 | 0.9218 | 0.0121 | 0.1510 | 0.6383 | 0.1510 |
| 0.9421 | 4.5160 | 46000 | 0.9214 | 0.0121 | 0.1549 | 0.6389 | 0.1549 |
| 0.926 | 4.5258 | 46100 | 0.9083 | 0.0121 | 0.1651 | 0.6468 | 0.1651 |
| 0.875 | 4.5356 | 46200 | 0.9061 | 0.0121 | 0.1631 | 0.6459 | 0.1631 |
| 0.9123 | 4.5455 | 46300 | 0.9016 | 0.0121 | 0.1577 | 0.6463 | 0.1577 |
| 0.8782 | 4.5553 | 46400 | 0.8928 | 0.0121 | 0.1677 | 0.6507 | 0.1677 |
| 0.9383 | 4.5651 | 46500 | 0.9129 | 0.0121 | 0.1659 | 0.6448 | 0.1659 |
| 0.9099 | 4.5749 | 46600 | 0.9179 | 0.0121 | 0.1541 | 0.6394 | 0.1541 |
| 0.8764 | 4.5847 | 46700 | 0.9009 | 0.0121 | 0.1708 | 0.6477 | 0.1708 |
| 0.8533 | 4.5945 | 46800 | 0.9146 | 0.0121 | 0.1622 | 0.6450 | 0.1622 |
| 0.9333 | 4.6044 | 46900 | 0.8864 | 0.0121 | 0.1672 | 0.6512 | 0.1672 |
| 0.8858 | 4.6142 | 47000 | 0.9083 | 0.0121 | 0.1586 | 0.6458 | 0.1586 |
| 0.9595 | 4.6240 | 47100 | 0.9188 | 0.0121 | 0.1544 | 0.6387 | 0.1544 |
| 0.8651 | 4.6338 | 47200 | 0.9047 | 0.0121 | 0.1660 | 0.6489 | 0.1660 |
| 0.9615 | 4.6436 | 47300 | 0.8948 | 0.0121 | 0.1675 | 0.6491 | 0.1675 |
| 0.8732 | 4.6534 | 47400 | 0.9062 | 0.0121 | 0.1603 | 0.6438 | 0.1603 |
| 0.8855 | 4.6633 | 47500 | 0.9121 | 0.0121 | 0.1647 | 0.6429 | 0.1647 |
| 0.9367 | 4.6731 | 47600 | 0.9005 | 0.0121 | 0.1595 | 0.6475 | 0.1595 |
| 0.8297 | 4.6829 | 47700 | 0.9032 | 0.0121 | 0.1616 | 0.6448 | 0.1616 |
| 0.7984 | 4.6927 | 47800 | 0.9010 | 0.0121 | 0.1673 | 0.6477 | 0.1673 |
| 0.8957 | 4.7025 | 47900 | 0.8924 | 0.0121 | 0.1605 | 0.6480 | 0.1605 |
| 0.9367 | 4.7124 | 48000 | 0.8977 | 0.0121 | 0.1657 | 0.6475 | 0.1657 |
| 0.8833 | 4.7222 | 48100 | 0.9226 | 0.0121 | 0.1606 | 0.6431 | 0.1606 |
| 0.9096 | 4.7320 | 48200 | 0.9154 | 0.0121 | 0.1603 | 0.6420 | 0.1603 |
| 0.9061 | 4.7418 | 48300 | 0.8940 | 0.0121 | 0.1672 | 0.6503 | 0.1672 |
| 0.9153 | 4.7516 | 48400 | 0.9089 | 0.0121 | 0.1591 | 0.6443 | 0.1591 |
| 0.9201 | 4.7614 | 48500 | 0.9072 | 0.0121 | 0.1597 | 0.6431 | 0.1597 |
| 0.8633 | 4.7713 | 48600 | 0.9093 | 0.0121 | 0.1554 | 0.6425 | 0.1554 |
| 0.825 | 4.7811 | 48700 | 0.8990 | 0.0121 | 0.1708 | 0.6501 | 0.1708 |
| 0.9 | 4.7909 | 48800 | 0.9117 | 0.0121 | 0.1616 | 0.6446 | 0.1616 |
| 0.8629 | 4.8007 | 48900 | 0.8871 | 0.0121 | 0.1724 | 0.6538 | 0.1724 |
| 0.9299 | 4.8105 | 49000 | 0.9120 | 0.0121 | 0.1512 | 0.6406 | 0.1512 |
| 0.9157 | 4.8203 | 49100 | 0.9028 | 0.0121 | 0.1703 | 0.6484 | 0.1703 |
| 0.8361 | 4.8302 | 49200 | 0.9110 | 0.0121 | 0.1613 | 0.6455 | 0.1613 |
| 0.9751 | 4.8400 | 49300 | 0.9383 | 0.0121 | 0.1497 | 0.6332 | 0.1497 |
| 0.8713 | 4.8498 | 49400 | 0.9014 | 0.0121 | 0.1687 | 0.6472 | 0.1687 |
| 0.9002 | 4.8596 | 49500 | 0.9264 | 0.0121 | 0.1531 | 0.6391 | 0.1531 |
| 0.8755 | 4.8694 | 49600 | 0.9032 | 0.0121 | 0.1627 | 0.6473 | 0.1627 |
| 0.9272 | 4.8792 | 49700 | 0.9072 | 0.0121 | 0.1623 | 0.6450 | 0.1623 |
| 0.884 | 4.8891 | 49800 | 0.9052 | 0.0121 | 0.1593 | 0.6451 | 0.1593 |
| 0.8862 | 4.8989 | 49900 | 0.9035 | 0.0121 | 0.1635 | 0.6501 | 0.1635 |
| 0.9846 | 4.9087 | 50000 | 0.8958 | 0.0121 | 0.1740 | 0.6529 | 0.1740 |
| 0.8923 | 4.9185 | 50100 | 0.8934 | 0.0121 | 0.1716 | 0.6501 | 0.1716 |
| 0.8942 | 4.9283 | 50200 | 0.8920 | 0.0121 | 0.1627 | 0.6473 | 0.1627 |
| 0.91 | 4.9382 | 50300 | 0.9024 | 0.0121 | 0.1579 | 0.6461 | 0.1579 |
| 0.9646 | 4.9480 | 50400 | 0.8986 | 0.0121 | 0.1604 | 0.6477 | 0.1604 |
| 0.8794 | 4.9578 | 50500 | 0.9007 | 0.0121 | 0.1663 | 0.6498 | 0.1663 |
| 0.8963 | 4.9676 | 50600 | 0.9015 | 0.0121 | 0.1631 | 0.6477 | 0.1631 |
| 0.8735 | 4.9774 | 50700 | 0.9166 | 0.0121 | 0.1577 | 0.6401 | 0.1577 |
| 0.86 | 4.9872 | 50800 | 0.8967 | 0.0121 | 0.1637 | 0.6486 | 0.1637 |
| 0.8749 | 4.9971 | 50900 | 0.9178 | 0.0121 | 0.1564 | 0.6424 | 0.1564 |
| 0.8572 | 5.0069 | 51000 | 0.9051 | 0.0121 | 0.1619 | 0.6443 | 0.1619 |
| 0.8619 | 5.0167 | 51100 | 0.9050 | 0.0121 | 0.1655 | 0.6450 | 0.1655 |
| 0.9452 | 5.0265 | 51200 | 0.9003 | 0.0121 | 0.1661 | 0.6489 | 0.1661 |
| 0.9752 | 5.0363 | 51300 | 0.9262 | 0.0121 | 0.1496 | 0.6386 | 0.1496 |
| 0.9512 | 5.0461 | 51400 | 0.9059 | 0.0121 | 0.1627 | 0.6450 | 0.1627 |
| 0.9348 | 5.0560 | 51500 | 0.8991 | 0.0121 | 0.1683 | 0.6502 | 0.1683 |
| 0.8832 | 5.0658 | 51600 | 0.9097 | 0.0121 | 0.1703 | 0.6475 | 0.1703 |
| 0.859 | 5.0756 | 51700 | 0.8906 | 0.0121 | 0.1663 | 0.6481 | 0.1663 |
| 0.9556 | 5.0854 | 51800 | 0.8922 | 0.0121 | 0.1673 | 0.6503 | 0.1673 |
| 0.8665 | 5.0952 | 51900 | 0.8930 | 0.0121 | 0.1617 | 0.6467 | 0.1617 |
| 0.8041 | 5.1050 | 52000 | 0.9068 | 0.0121 | 0.1624 | 0.6480 | 0.1624 |
| 0.9299 | 5.1149 | 52100 | 0.9135 | 0.0121 | 0.1596 | 0.6399 | 0.1596 |
| 0.8976 | 5.1247 | 52200 | 0.9117 | 0.0121 | 0.1616 | 0.6433 | 0.1616 |
| 0.8793 | 5.1345 | 52300 | 0.8878 | 0.0121 | 0.1677 | 0.6520 | 0.1677 |
| 0.9637 | 5.1443 | 52400 | 0.9007 | 0.0121 | 0.1606 | 0.6467 | 0.1606 |
| 0.8663 | 5.1541 | 52500 | 0.9148 | 0.0121 | 0.1628 | 0.6436 | 0.1628 |
| 0.9043 | 5.1640 | 52600 | 0.8960 | 0.0121 | 0.1733 | 0.6521 | 0.1733 |
| 0.9171 | 5.1738 | 52700 | 0.9052 | 0.0121 | 0.1614 | 0.6452 | 0.1614 |
| 0.9416 | 5.1836 | 52800 | 0.8995 | 0.0121 | 0.1696 | 0.6510 | 0.1696 |
| 0.8467 | 5.1934 | 52900 | 0.8946 | 0.0121 | 0.1689 | 0.6497 | 0.1689 |
| 0.94 | 5.2032 | 53000 | 0.9179 | 0.0121 | 0.1648 | 0.6414 | 0.1648 |
| 0.917 | 5.2130 | 53100 | 0.8858 | 0.0121 | 0.1670 | 0.6532 | 0.1670 |
| 0.891 | 5.2229 | 53200 | 0.9270 | 0.0121 | 0.1528 | 0.6374 | 0.1528 |
| 0.9123 | 5.2327 | 53300 | 0.9126 | 0.0121 | 0.1534 | 0.6422 | 0.1534 |
| 0.8681 | 5.2425 | 53400 | 0.9152 | 0.0121 | 0.1572 | 0.6426 | 0.1572 |
| 0.8683 | 5.2523 | 53500 | 0.9346 | 0.0121 | 0.1537 | 0.6355 | 0.1537 |
| 0.9497 | 5.2621 | 53600 | 0.9204 | 0.0121 | 0.1525 | 0.6362 | 0.1525 |
| 0.8694 | 5.2719 | 53700 | 0.9116 | 0.0121 | 0.1568 | 0.6435 | 0.1568 |
| 0.9946 | 5.2818 | 53800 | 0.8966 | 0.0121 | 0.1611 | 0.6457 | 0.1611 |
| 0.8512 | 5.2916 | 53900 | 0.8941 | 0.0121 | 0.1626 | 0.6463 | 0.1626 |
| 0.8805 | 5.3014 | 54000 | 0.9016 | 0.0121 | 0.1675 | 0.6466 | 0.1675 |
| 0.8873 | 5.3112 | 54100 | 0.8944 | 0.0121 | 0.1684 | 0.6478 | 0.1684 |
| 0.973 | 5.3210 | 54200 | 0.8996 | 0.0121 | 0.1655 | 0.6483 | 0.1655 |
| 0.8152 | 5.3308 | 54300 | 0.9010 | 0.0121 | 0.1714 | 0.6501 | 0.1714 |
| 0.9256 | 5.3407 | 54400 | 0.8908 | 0.0121 | 0.1646 | 0.6506 | 0.1646 |
| 0.9047 | 5.3505 | 54500 | 0.9029 | 0.0121 | 0.1606 | 0.6422 | 0.1606 |
| 0.8359 | 5.3603 | 54600 | 0.9361 | 0.0121 | 0.1551 | 0.6387 | 0.1551 |
| 0.967 | 5.3701 | 54700 | 0.9100 | 0.0121 | 0.1651 | 0.6453 | 0.1651 |
| 0.9209 | 5.3799 | 54800 | 0.8941 | 0.0121 | 0.1653 | 0.6501 | 0.1653 |
| 0.8872 | 5.3898 | 54900 | 0.8784 | 0.0121 | 0.1683 | 0.6546 | 0.1683 |
| 0.8653 | 5.3996 | 55000 | 0.9149 | 0.0121 | 0.1584 | 0.6417 | 0.1584 |
| 0.9349 | 5.4094 | 55100 | 0.8910 | 0.0121 | 0.1704 | 0.6518 | 0.1704 |
| 0.8506 | 5.4192 | 55200 | 0.8923 | 0.0121 | 0.1713 | 0.6518 | 0.1713 |
| 0.9151 | 5.4290 | 55300 | 0.9275 | 0.0121 | 0.1561 | 0.6383 | 0.1561 |
| 0.8983 | 5.4388 | 55400 | 0.8984 | 0.0121 | 0.1677 | 0.6493 | 0.1677 |
| 0.9229 | 5.4487 | 55500 | 0.8860 | 0.0121 | 0.1708 | 0.6523 | 0.1708 |
| 0.9612 | 5.4585 | 55600 | 0.8972 | 0.0121 | 0.1700 | 0.6480 | 0.1700 |
| 0.9427 | 5.4683 | 55700 | 0.9043 | 0.0121 | 0.1622 | 0.6479 | 0.1622 |
| 0.9168 | 5.4781 | 55800 | 0.9019 | 0.0121 | 0.1667 | 0.6470 | 0.1667 |
| 0.878 | 5.4879 | 55900 | 0.9124 | 0.0121 | 0.1611 | 0.6463 | 0.1611 |
| 0.9137 | 5.4977 | 56000 | 0.9074 | 0.0121 | 0.1610 | 0.6458 | 0.1610 |
| 0.8934 | 5.5076 | 56100 | 0.9205 | 0.0121 | 0.1574 | 0.6446 | 0.1574 |
| 0.8924 | 5.5174 | 56200 | 0.9048 | 0.0121 | 0.1652 | 0.6462 | 0.1652 |
| 0.8633 | 5.5272 | 56300 | 0.8943 | 0.0121 | 0.1682 | 0.6476 | 0.1682 |
| 0.8871 | 5.5370 | 56400 | 0.8909 | 0.0121 | 0.1684 | 0.6520 | 0.1684 |
| 0.8729 | 5.5468 | 56500 | 0.8900 | 0.0121 | 0.1708 | 0.6502 | 0.1708 |
| 0.9497 | 5.5566 | 56600 | 0.9064 | 0.0121 | 0.1584 | 0.6438 | 0.1584 |
| 0.8594 | 5.5665 | 56700 | 0.8851 | 0.0121 | 0.1692 | 0.6524 | 0.1692 |
| 0.9684 | 5.5763 | 56800 | 0.8993 | 0.0121 | 0.1583 | 0.6465 | 0.1583 |
| 0.8726 | 5.5861 | 56900 | 0.8977 | 0.0121 | 0.1657 | 0.6488 | 0.1657 |
| 0.8668 | 5.5959 | 57000 | 0.8910 | 0.0121 | 0.1669 | 0.6498 | 0.1669 |
| 0.8763 | 5.6057 | 57100 | 0.8903 | 0.0121 | 0.1644 | 0.6519 | 0.1644 |
| 0.8591 | 5.6156 | 57200 | 0.8960 | 0.0121 | 0.1682 | 0.6497 | 0.1682 |
| 0.9064 | 5.6254 | 57300 | 0.9095 | 0.0121 | 0.1657 | 0.6467 | 0.1657 |
| 0.9166 | 5.6352 | 57400 | 0.9030 | 0.0121 | 0.1637 | 0.6473 | 0.1637 |
| 0.8296 | 5.6450 | 57500 | 0.8968 | 0.0121 | 0.1619 | 0.6486 | 0.1619 |
| 0.8507 | 5.6548 | 57600 | 0.9010 | 0.0121 | 0.1597 | 0.6465 | 0.1597 |
| 0.9312 | 5.6646 | 57700 | 0.8972 | 0.0121 | 0.1596 | 0.6445 | 0.1596 |
| 0.8648 | 5.6745 | 57800 | 0.8814 | 0.0121 | 0.1690 | 0.6539 | 0.1690 |
| 0.8798 | 5.6843 | 57900 | 0.8859 | 0.0121 | 0.1638 | 0.6538 | 0.1638 |
| 0.8728 | 5.6941 | 58000 | 0.8916 | 0.0121 | 0.1705 | 0.6527 | 0.1705 |
| 0.899 | 5.7039 | 58100 | 0.8994 | 0.0121 | 0.1676 | 0.6479 | 0.1676 |
| 0.8982 | 5.7137 | 58200 | 0.8926 | 0.0121 | 0.1727 | 0.6530 | 0.1727 |
| 0.928 | 5.7235 | 58300 | 0.9125 | 0.0121 | 0.1718 | 0.6457 | 0.1718 |
| 0.9265 | 5.7334 | 58400 | 0.9196 | 0.0121 | 0.1556 | 0.6383 | 0.1556 |
| 0.8782 | 5.7432 | 58500 | 0.8883 | 0.0121 | 0.1695 | 0.6519 | 0.1695 |
| 0.9272 | 5.7530 | 58600 | 0.9011 | 0.0121 | 0.1653 | 0.6492 | 0.1653 |
| 0.8898 | 5.7628 | 58700 | 0.9017 | 0.0121 | 0.1722 | 0.6504 | 0.1722 |
| 0.8858 | 5.7726 | 58800 | 0.8997 | 0.0121 | 0.1616 | 0.6476 | 0.1616 |
| 0.9103 | 5.7824 | 58900 | 0.9088 | 0.0121 | 0.1587 | 0.6456 | 0.1587 |
| 0.8883 | 5.7923 | 59000 | 0.8969 | 0.0121 | 0.1670 | 0.6484 | 0.1670 |
| 0.8947 | 5.8021 | 59100 | 0.9202 | 0.0121 | 0.1597 | 0.6420 | 0.1597 |
| 0.9053 | 5.8119 | 59200 | 0.8866 | 0.0121 | 0.1706 | 0.6516 | 0.1706 |
| 0.8692 | 5.8217 | 59300 | 0.8748 | 0.0121 | 0.1667 | 0.6529 | 0.1667 |
| 0.8223 | 5.8315 | 59400 | 0.8913 | 0.0121 | 0.1698 | 0.6524 | 0.1698 |
| 0.9592 | 5.8414 | 59500 | 0.8905 | 0.0121 | 0.1681 | 0.6524 | 0.1681 |
| 0.8031 | 5.8512 | 59600 | 0.9016 | 0.0121 | 0.1663 | 0.6488 | 0.1663 |
| 0.9475 | 5.8610 | 59700 | 0.9167 | 0.0121 | 0.1592 | 0.6442 | 0.1592 |
| 0.9078 | 5.8708 | 59800 | 0.9012 | 0.0121 | 0.1726 | 0.6480 | 0.1726 |
| 0.9446 | 5.8806 | 59900 | 0.8916 | 0.0121 | 0.1646 | 0.6524 | 0.1646 |
| 0.8724 | 5.8904 | 60000 | 0.8824 | 0.0121 | 0.1662 | 0.6545 | 0.1662 |
| 0.9384 | 5.9003 | 60100 | 0.9172 | 0.0121 | 0.1527 | 0.6384 | 0.1527 |
| 0.9091 | 5.9101 | 60200 | 0.8846 | 0.0121 | 0.1711 | 0.6554 | 0.1711 |
| 0.8407 | 5.9199 | 60300 | 0.9147 | 0.0121 | 0.1617 | 0.6450 | 0.1617 |
| 0.9015 | 5.9297 | 60400 | 0.8986 | 0.0121 | 0.1642 | 0.6510 | 0.1642 |
| 0.8919 | 5.9395 | 60500 | 0.8881 | 0.0121 | 0.1722 | 0.6528 | 0.1722 |
| 0.9051 | 5.9493 | 60600 | 0.9188 | 0.0121 | 0.1533 | 0.6386 | 0.1533 |
| 0.9186 | 5.9592 | 60700 | 0.8916 | 0.0121 | 0.1648 | 0.6498 | 0.1648 |
| 0.8539 | 5.9690 | 60800 | 0.8972 | 0.0121 | 0.1654 | 0.6504 | 0.1654 |
| 0.9481 | 5.9788 | 60900 | 0.8835 | 0.0121 | 0.1684 | 0.6534 | 0.1684 |
| 0.8576 | 5.9886 | 61000 | 0.8902 | 0.0121 | 0.1642 | 0.6499 | 0.1642 |
| 0.9714 | 5.9984 | 61100 | 0.8893 | 0.0121 | 0.1660 | 0.6517 | 0.1660 |
| 0.8351 | 6.0082 | 61200 | 0.9071 | 0.0121 | 0.1677 | 0.6478 | 0.1677 |
| 0.7786 | 6.0181 | 61300 | 0.9043 | 0.0121 | 0.1700 | 0.6483 | 0.1700 |
| 0.823 | 6.0279 | 61400 | 0.9296 | 0.0121 | 0.1618 | 0.6405 | 0.1618 |
| 0.9533 | 6.0377 | 61500 | 0.8938 | 0.0121 | 0.1657 | 0.6495 | 0.1657 |
| 0.8797 | 6.0475 | 61600 | 0.8994 | 0.0121 | 0.1642 | 0.6498 | 0.1642 |
| 0.9222 | 6.0573 | 61700 | 0.9007 | 0.0121 | 0.1719 | 0.6535 | 0.1719 |
| 0.7826 | 6.0672 | 61800 | 0.8861 | 0.0121 | 0.1749 | 0.6539 | 0.1749 |
| 0.9418 | 6.0770 | 61900 | 0.8965 | 0.0121 | 0.1626 | 0.6475 | 0.1626 |
| 0.9099 | 6.0868 | 62000 | 0.9134 | 0.0121 | 0.1564 | 0.6417 | 0.1564 |
| 0.8789 | 6.0966 | 62100 | 0.8873 | 0.0121 | 0.1643 | 0.6523 | 0.1643 |
| 0.91 | 6.1064 | 62200 | 0.8909 | 0.0121 | 0.1707 | 0.6511 | 0.1707 |
| 0.8766 | 6.1162 | 62300 | 0.8964 | 0.0121 | 0.1619 | 0.6493 | 0.1619 |
| 0.8721 | 6.1261 | 62400 | 0.8966 | 0.0121 | 0.1740 | 0.6512 | 0.1740 |
| 0.8653 | 6.1359 | 62500 | 0.8980 | 0.0121 | 0.1653 | 0.6514 | 0.1653 |
| 0.9314 | 6.1457 | 62600 | 0.9137 | 0.0121 | 0.1627 | 0.6460 | 0.1627 |
| 0.8731 | 6.1555 | 62700 | 0.8799 | 0.0121 | 0.1684 | 0.6551 | 0.1684 |
| 0.9052 | 6.1653 | 62800 | 0.8863 | 0.0121 | 0.1667 | 0.6509 | 0.1667 |
| 0.8165 | 6.1751 | 62900 | 0.9010 | 0.0121 | 0.1633 | 0.6483 | 0.1633 |
| 0.8366 | 6.1850 | 63000 | 0.8970 | 0.0121 | 0.1651 | 0.6496 | 0.1651 |
| 0.9723 | 6.1948 | 63100 | 0.8961 | 0.0121 | 0.1668 | 0.6486 | 0.1668 |
| 0.9703 | 6.2046 | 63200 | 0.9108 | 0.0121 | 0.1612 | 0.6446 | 0.1612 |
| 0.8922 | 6.2144 | 63300 | 0.8987 | 0.0121 | 0.1645 | 0.6480 | 0.1645 |
| 0.8852 | 6.2242 | 63400 | 0.9052 | 0.0121 | 0.1626 | 0.6433 | 0.1626 |
| 0.8619 | 6.2340 | 63500 | 0.9053 | 0.0121 | 0.1679 | 0.6471 | 0.1679 |
| 0.898 | 6.2439 | 63600 | 0.8993 | 0.0121 | 0.1582 | 0.6470 | 0.1582 |
| 0.87 | 6.2537 | 63700 | 0.8971 | 0.0121 | 0.1662 | 0.6504 | 0.1662 |
| 0.911 | 6.2635 | 63800 | 0.8920 | 0.0121 | 0.1675 | 0.6509 | 0.1675 |
| 0.8969 | 6.2733 | 63900 | 0.8862 | 0.0121 | 0.1651 | 0.6520 | 0.1651 |
| 0.9455 | 6.2831 | 64000 | 0.8855 | 0.0121 | 0.1700 | 0.6533 | 0.1700 |
| 0.866 | 6.2930 | 64100 | 0.9047 | 0.0121 | 0.1628 | 0.6458 | 0.1628 |
| 0.8634 | 6.3028 | 64200 | 0.8756 | 0.0121 | 0.1696 | 0.6544 | 0.1696 |
| 0.9044 | 6.3126 | 64300 | 0.8910 | 0.0121 | 0.1709 | 0.6531 | 0.1709 |
| 0.9051 | 6.3224 | 64400 | 0.8884 | 0.0121 | 0.1680 | 0.6546 | 0.1680 |
| 0.8775 | 6.3322 | 64500 | 0.9103 | 0.0121 | 0.1570 | 0.6431 | 0.1570 |
| 0.9304 | 6.3420 | 64600 | 0.8946 | 0.0121 | 0.1631 | 0.6519 | 0.1631 |
| 0.8777 | 6.3519 | 64700 | 0.8930 | 0.0121 | 0.1647 | 0.6493 | 0.1647 |
| 0.8525 | 6.3617 | 64800 | 0.9022 | 0.0121 | 0.1663 | 0.6477 | 0.1663 |
| 0.8442 | 6.3715 | 64900 | 0.8868 | 0.0121 | 0.1699 | 0.6520 | 0.1699 |
| 0.8797 | 6.3813 | 65000 | 0.8790 | 0.0121 | 0.1724 | 0.6544 | 0.1724 |
| 0.8941 | 6.3911 | 65100 | 0.8873 | 0.0121 | 0.1769 | 0.6536 | 0.1769 |
| 0.9563 | 6.4009 | 65200 | 0.8859 | 0.0121 | 0.1707 | 0.6523 | 0.1707 |
| 0.9128 | 6.4108 | 65300 | 0.9141 | 0.0121 | 0.1564 | 0.6401 | 0.1564 |
| 0.8711 | 6.4206 | 65400 | 0.8837 | 0.0121 | 0.1682 | 0.6514 | 0.1682 |
| 0.956 | 6.4304 | 65500 | 0.8755 | 0.0121 | 0.1747 | 0.6565 | 0.1747 |
| 0.9201 | 6.4402 | 65600 | 0.8956 | 0.0121 | 0.1689 | 0.6499 | 0.1689 |
| 0.953 | 6.4500 | 65700 | 0.8916 | 0.0121 | 0.1662 | 0.6510 | 0.1662 |
| 0.8706 | 6.4598 | 65800 | 0.8956 | 0.0121 | 0.1605 | 0.6458 | 0.1605 |
| 0.9539 | 6.4697 | 65900 | 0.9331 | 0.0121 | 0.1551 | 0.6393 | 0.1551 |
| 0.8699 | 6.4795 | 66000 | 0.8920 | 0.0121 | 0.1689 | 0.6513 | 0.1689 |
| 0.9043 | 6.4893 | 66100 | 0.9007 | 0.0121 | 0.1563 | 0.6450 | 0.1563 |
| 0.88 | 6.4991 | 66200 | 0.8906 | 0.0121 | 0.1746 | 0.6507 | 0.1746 |
| 0.9186 | 6.5089 | 66300 | 0.9041 | 0.0121 | 0.1573 | 0.6465 | 0.1573 |
| 0.8728 | 6.5188 | 66400 | 0.8923 | 0.0121 | 0.1605 | 0.6471 | 0.1605 |
| 0.9381 | 6.5286 | 66500 | 0.8779 | 0.0121 | 0.1731 | 0.6594 | 0.1731 |
| 0.8294 | 6.5384 | 66600 | 0.9043 | 0.0121 | 0.1570 | 0.6442 | 0.1570 |
| 0.9222 | 6.5482 | 66700 | 0.9021 | 0.0121 | 0.1624 | 0.6488 | 0.1624 |
| 0.8413 | 6.5580 | 66800 | 0.9031 | 0.0121 | 0.1619 | 0.6489 | 0.1619 |
| 0.9295 | 6.5678 | 66900 | 0.8977 | 0.0121 | 0.1595 | 0.6482 | 0.1595 |
| 0.8932 | 6.5777 | 67000 | 0.8765 | 0.0121 | 0.1776 | 0.6584 | 0.1776 |
| 0.9345 | 6.5875 | 67100 | 0.8952 | 0.0121 | 0.1643 | 0.6517 | 0.1643 |
| 0.8763 | 6.5973 | 67200 | 0.8965 | 0.0121 | 0.1670 | 0.6519 | 0.1670 |
| 0.9188 | 6.6071 | 67300 | 0.9477 | 0.0121 | 0.1480 | 0.6334 | 0.1480 |
| 0.8674 | 6.6169 | 67400 | 0.9052 | 0.0121 | 0.1640 | 0.6449 | 0.1640 |
| 0.9324 | 6.6267 | 67500 | 0.8874 | 0.0121 | 0.1631 | 0.6515 | 0.1631 |
| 0.8973 | 6.6366 | 67600 | 0.9005 | 0.0121 | 0.1682 | 0.6465 | 0.1682 |
| 0.9835 | 6.6464 | 67700 | 0.8900 | 0.0121 | 0.1650 | 0.6498 | 0.1650 |
| 0.8465 | 6.6562 | 67800 | 0.8835 | 0.0121 | 0.1741 | 0.6527 | 0.1741 |
| 0.8645 | 6.6660 | 67900 | 0.8923 | 0.0121 | 0.1731 | 0.6512 | 0.1731 |
| 0.8838 | 6.6758 | 68000 | 0.8957 | 0.0121 | 0.1645 | 0.6486 | 0.1645 |
| 0.8578 | 6.6856 | 68100 | 0.9084 | 0.0121 | 0.1644 | 0.6441 | 0.1644 |
| 0.8734 | 6.6955 | 68200 | 0.8908 | 0.0121 | 0.1694 | 0.6515 | 0.1694 |
| 0.8643 | 6.7053 | 68300 | 0.8887 | 0.0121 | 0.1691 | 0.6531 | 0.1691 |
| 0.7971 | 6.7151 | 68400 | 0.8909 | 0.0121 | 0.1660 | 0.6516 | 0.1660 |
| 0.8904 | 6.7249 | 68500 | 0.8926 | 0.0121 | 0.1665 | 0.6508 | 0.1665 |
| 0.8864 | 6.7347 | 68600 | 0.8771 | 0.0121 | 0.1735 | 0.6570 | 0.1735 |
| 0.8464 | 6.7446 | 68700 | 0.9023 | 0.0121 | 0.1628 | 0.6463 | 0.1628 |
| 0.9121 | 6.7544 | 68800 | 0.8985 | 0.0121 | 0.1600 | 0.6477 | 0.1600 |
| 0.9137 | 6.7642 | 68900 | 0.9187 | 0.0121 | 0.1537 | 0.6423 | 0.1537 |
| 0.9691 | 6.7740 | 69000 | 0.9116 | 0.0121 | 0.1583 | 0.6423 | 0.1583 |
| 0.925 | 6.7838 | 69100 | 0.9123 | 0.0121 | 0.1696 | 0.6470 | 0.1696 |
| 0.984 | 6.7936 | 69200 | 0.9114 | 0.0121 | 0.1613 | 0.6447 | 0.1613 |
| 0.7877 | 6.8035 | 69300 | 0.8902 | 0.0121 | 0.1700 | 0.6523 | 0.1700 |
| 0.9316 | 6.8133 | 69400 | 0.8867 | 0.0121 | 0.1729 | 0.6549 | 0.1729 |
| 0.9002 | 6.8231 | 69500 | 0.9049 | 0.0121 | 0.1661 | 0.6476 | 0.1661 |
| 0.9117 | 6.8329 | 69600 | 0.9036 | 0.0121 | 0.1571 | 0.6483 | 0.1571 |
| 0.8923 | 6.8427 | 69700 | 0.9154 | 0.0121 | 0.1553 | 0.6440 | 0.1553 |
| 0.8687 | 6.8525 | 69800 | 0.8993 | 0.0121 | 0.1596 | 0.6499 | 0.1596 |
| 0.8335 | 6.8624 | 69900 | 0.8929 | 0.0121 | 0.1734 | 0.6522 | 0.1734 |
| 0.9734 | 6.8722 | 70000 | 0.8966 | 0.0121 | 0.1693 | 0.6496 | 0.1693 |
| 0.8941 | 6.8820 | 70100 | 0.9150 | 0.0121 | 0.1639 | 0.6440 | 0.1639 |
| 0.9068 | 6.8918 | 70200 | 0.9009 | 0.0121 | 0.1635 | 0.6469 | 0.1635 |
| 0.8599 | 6.9016 | 70300 | 0.8984 | 0.0121 | 0.1674 | 0.6487 | 0.1674 |
| 0.8525 | 6.9114 | 70400 | 0.8959 | 0.0121 | 0.1668 | 0.6488 | 0.1668 |
| 0.9187 | 6.9213 | 70500 | 0.9066 | 0.0121 | 0.1675 | 0.6446 | 0.1675 |
| 0.8898 | 6.9311 | 70600 | 0.9043 | 0.0121 | 0.1655 | 0.6481 | 0.1655 |
| 0.8829 | 6.9409 | 70700 | 0.9234 | 0.0121 | 0.1574 | 0.6422 | 0.1574 |
| 0.8977 | 6.9507 | 70800 | 0.8913 | 0.0121 | 0.1665 | 0.6503 | 0.1665 |
| 0.8974 | 6.9605 | 70900 | 0.9152 | 0.0121 | 0.1594 | 0.6419 | 0.1594 |
| 0.8644 | 6.9704 | 71000 | 0.8937 | 0.0121 | 0.1690 | 0.6506 | 0.1690 |
| 0.9495 | 6.9802 | 71100 | 0.8918 | 0.0121 | 0.1700 | 0.6485 | 0.1700 |
| 0.9866 | 6.9900 | 71200 | 0.9175 | 0.0121 | 0.1516 | 0.6396 | 0.1516 |
| 0.9188 | 6.9998 | 71300 | 0.9003 | 0.0121 | 0.1624 | 0.6480 | 0.1624 |
| 0.8109 | 7.0096 | 71400 | 0.8966 | 0.0121 | 0.1656 | 0.6508 | 0.1656 |
| 0.8681 | 7.0194 | 71500 | 0.8798 | 0.0121 | 0.1735 | 0.6573 | 0.1735 |
| 0.8698 | 7.0293 | 71600 | 0.9139 | 0.0121 | 0.1588 | 0.6407 | 0.1588 |
| 0.9085 | 7.0391 | 71700 | 0.8874 | 0.0121 | 0.1640 | 0.6530 | 0.1640 |
| 0.8601 | 7.0489 | 71800 | 0.9003 | 0.0121 | 0.1615 | 0.6481 | 0.1615 |
| 0.8931 | 7.0587 | 71900 | 0.8947 | 0.0121 | 0.1612 | 0.6486 | 0.1612 |
| 0.8785 | 7.0685 | 72000 | 0.8977 | 0.0121 | 0.1689 | 0.6522 | 0.1689 |
| 0.9064 | 7.0783 | 72100 | 0.9052 | 0.0121 | 0.1632 | 0.6462 | 0.1632 |
| 0.8819 | 7.0882 | 72200 | 0.9062 | 0.0121 | 0.1599 | 0.6433 | 0.1599 |
| 0.8778 | 7.0980 | 72300 | 0.8969 | 0.0121 | 0.1705 | 0.6507 | 0.1705 |
| 0.9143 | 7.1078 | 72400 | 0.9161 | 0.0121 | 0.1538 | 0.6411 | 0.1538 |
| 0.8533 | 7.1176 | 72500 | 0.8996 | 0.0121 | 0.1610 | 0.6468 | 0.1610 |
| 0.9242 | 7.1274 | 72600 | 0.8970 | 0.0121 | 0.1686 | 0.6510 | 0.1686 |
| 0.8492 | 7.1372 | 72700 | 0.8880 | 0.0121 | 0.1634 | 0.6498 | 0.1634 |
| 0.9335 | 7.1471 | 72800 | 0.9017 | 0.0121 | 0.1626 | 0.6479 | 0.1626 |
| 0.8984 | 7.1569 | 72900 | 0.8902 | 0.0121 | 0.1639 | 0.6507 | 0.1639 |
| 0.8653 | 7.1667 | 73000 | 0.8906 | 0.0121 | 0.1678 | 0.6518 | 0.1678 |
| 0.8975 | 7.1765 | 73100 | 0.8762 | 0.0121 | 0.1744 | 0.6573 | 0.1744 |
| 0.899 | 7.1863 | 73200 | 0.8923 | 0.0121 | 0.1673 | 0.6513 | 0.1673 |
| 0.9245 | 7.1962 | 73300 | 0.8920 | 0.0121 | 0.1626 | 0.6499 | 0.1626 |
| 0.8859 | 7.2060 | 73400 | 0.8925 | 0.0121 | 0.1675 | 0.6500 | 0.1675 |
| 0.8344 | 7.2158 | 73500 | 0.8864 | 0.0121 | 0.1657 | 0.6496 | 0.1657 |
| 0.8866 | 7.2256 | 73600 | 0.8803 | 0.0121 | 0.1758 | 0.6567 | 0.1758 |
| 0.8842 | 7.2354 | 73700 | 0.8880 | 0.0121 | 0.1677 | 0.6536 | 0.1677 |
| 0.9165 | 7.2452 | 73800 | 0.8877 | 0.0121 | 0.1716 | 0.6528 | 0.1716 |
| 0.8621 | 7.2551 | 73900 | 0.8900 | 0.0121 | 0.1756 | 0.6525 | 0.1756 |
| 0.8732 | 7.2649 | 74000 | 0.8912 | 0.0121 | 0.1713 | 0.6517 | 0.1713 |
| 0.895 | 7.2747 | 74100 | 0.8889 | 0.0121 | 0.1702 | 0.6521 | 0.1702 |
| 0.9558 | 7.2845 | 74200 | 0.8893 | 0.0121 | 0.1675 | 0.6537 | 0.1675 |
| 0.8515 | 7.2943 | 74300 | 0.8876 | 0.0121 | 0.1613 | 0.6503 | 0.1613 |
| 0.833 | 7.3041 | 74400 | 0.8864 | 0.0121 | 0.1773 | 0.6521 | 0.1773 |
| 0.8715 | 7.3140 | 74500 | 0.9271 | 0.0121 | 0.1455 | 0.6365 | 0.1455 |
| 0.8638 | 7.3238 | 74600 | 0.8798 | 0.0121 | 0.1743 | 0.6558 | 0.1743 |
| 0.8635 | 7.3336 | 74700 | 0.8945 | 0.0121 | 0.1620 | 0.6476 | 0.1620 |
| 0.7944 | 7.3434 | 74800 | 0.8882 | 0.0121 | 0.1730 | 0.6516 | 0.1730 |
| 0.9072 | 7.3532 | 74900 | 0.9084 | 0.0121 | 0.1566 | 0.6444 | 0.1566 |
| 0.9102 | 7.3630 | 75000 | 0.8870 | 0.0121 | 0.1720 | 0.6509 | 0.1720 |
| 0.9261 | 7.3729 | 75100 | 0.9056 | 0.0121 | 0.1742 | 0.6501 | 0.1742 |
| 0.9421 | 7.3827 | 75200 | 0.8887 | 0.0121 | 0.1683 | 0.6511 | 0.1683 |
| 0.9074 | 7.3925 | 75300 | 0.8886 | 0.0121 | 0.1682 | 0.6510 | 0.1682 |
| 0.9349 | 7.4023 | 75400 | 0.8970 | 0.0121 | 0.1692 | 0.6498 | 0.1692 |
| 0.9081 | 7.4121 | 75500 | 0.8855 | 0.0121 | 0.1690 | 0.6525 | 0.1690 |
| 0.8903 | 7.4220 | 75600 | 0.9003 | 0.0121 | 0.1605 | 0.6460 | 0.1605 |
| 0.7998 | 7.4318 | 75700 | 0.8866 | 0.0121 | 0.1611 | 0.6524 | 0.1611 |
| 0.9273 | 7.4416 | 75800 | 0.9242 | 0.0121 | 0.1550 | 0.6418 | 0.1550 |
| 0.9488 | 7.4514 | 75900 | 0.8843 | 0.0121 | 0.1681 | 0.6528 | 0.1681 |
| 0.9358 | 7.4612 | 76000 | 0.9096 | 0.0121 | 0.1612 | 0.6482 | 0.1612 |
| 0.9421 | 7.4710 | 76100 | 0.8894 | 0.0121 | 0.1711 | 0.6539 | 0.1711 |
| 0.8566 | 7.4809 | 76200 | 0.8851 | 0.0121 | 0.1764 | 0.6535 | 0.1764 |
| 0.8836 | 7.4907 | 76300 | 0.8883 | 0.0121 | 0.1758 | 0.6524 | 0.1758 |
| 0.9199 | 7.5005 | 76400 | 0.9105 | 0.0121 | 0.1589 | 0.6472 | 0.1589 |
| 0.8648 | 7.5103 | 76500 | 0.8708 | 0.0121 | 0.1773 | 0.6584 | 0.1773 |
| 0.8728 | 7.5201 | 76600 | 0.8804 | 0.0121 | 0.1719 | 0.6557 | 0.1719 |
| 0.8438 | 7.5299 | 76700 | 0.8894 | 0.0121 | 0.1675 | 0.6523 | 0.1675 |
| 0.9103 | 7.5398 | 76800 | 0.9067 | 0.0121 | 0.1701 | 0.6485 | 0.1701 |
| 0.9266 | 7.5496 | 76900 | 0.8889 | 0.0121 | 0.1622 | 0.6497 | 0.1622 |
| 0.9135 | 7.5594 | 77000 | 0.9084 | 0.0121 | 0.1642 | 0.6457 | 0.1642 |
| 0.905 | 7.5692 | 77100 | 0.8855 | 0.0121 | 0.1720 | 0.6552 | 0.1720 |
| 0.8316 | 7.5790 | 77200 | 0.9042 | 0.0121 | 0.1643 | 0.6474 | 0.1643 |
| 0.9467 | 7.5888 | 77300 | 0.8937 | 0.0121 | 0.1678 | 0.6497 | 0.1678 |
| 0.8321 | 7.5987 | 77400 | 0.8800 | 0.0121 | 0.1575 | 0.6520 | 0.1575 |
| 0.9027 | 7.6085 | 77500 | 0.8975 | 0.0121 | 0.1731 | 0.6500 | 0.1731 |
| 0.9398 | 7.6183 | 77600 | 0.9001 | 0.0121 | 0.1628 | 0.6472 | 0.1628 |
| 0.8569 | 7.6281 | 77700 | 0.8941 | 0.0121 | 0.1599 | 0.6478 | 0.1599 |
| 0.8378 | 7.6379 | 77800 | 0.8791 | 0.0121 | 0.1709 | 0.6539 | 0.1709 |
| 0.889 | 7.6478 | 77900 | 0.9053 | 0.0121 | 0.1631 | 0.6445 | 0.1631 |
| 0.8715 | 7.6576 | 78000 | 0.9165 | 0.0121 | 0.1637 | 0.6423 | 0.1637 |
| 0.8828 | 7.6674 | 78100 | 0.8772 | 0.0121 | 0.1801 | 0.6570 | 0.1801 |
| 0.8339 | 7.6772 | 78200 | 0.8880 | 0.0121 | 0.1644 | 0.6505 | 0.1644 |
| 0.8239 | 7.6870 | 78300 | 0.8844 | 0.0121 | 0.1738 | 0.6554 | 0.1738 |
| 0.861 | 7.6968 | 78400 | 0.8858 | 0.0121 | 0.1726 | 0.6551 | 0.1726 |
| 0.8917 | 7.7067 | 78500 | 0.8873 | 0.0121 | 0.1650 | 0.6513 | 0.1650 |
| 0.8643 | 7.7165 | 78600 | 0.8824 | 0.0121 | 0.1778 | 0.6583 | 0.1778 |
| 0.8449 | 7.7263 | 78700 | 0.8747 | 0.0121 | 0.1695 | 0.6555 | 0.1695 |
| 0.9109 | 7.7361 | 78800 | 0.8924 | 0.0121 | 0.1660 | 0.6511 | 0.1660 |
| 0.8526 | 7.7459 | 78900 | 0.8828 | 0.0121 | 0.1693 | 0.6539 | 0.1693 |
| 0.8111 | 7.7557 | 79000 | 0.8904 | 0.0121 | 0.1683 | 0.6542 | 0.1683 |
| 0.8652 | 7.7656 | 79100 | 0.8681 | 0.0121 | 0.1791 | 0.6613 | 0.1791 |
| 0.8739 | 7.7754 | 79200 | 0.8777 | 0.0121 | 0.1703 | 0.6577 | 0.1703 |
| 0.8648 | 7.7852 | 79300 | 0.8916 | 0.0121 | 0.1635 | 0.6461 | 0.1635 |
| 0.8935 | 7.7950 | 79400 | 0.9094 | 0.0121 | 0.1621 | 0.6456 | 0.1621 |
| 0.8423 | 7.8048 | 79500 | 0.8895 | 0.0121 | 0.1744 | 0.6534 | 0.1744 |
| 0.9597 | 7.8146 | 79600 | 0.8942 | 0.0121 | 0.1706 | 0.6518 | 0.1706 |
| 0.8766 | 7.8245 | 79700 | 0.9027 | 0.0121 | 0.1702 | 0.6493 | 0.1702 |
| 0.8886 | 7.8343 | 79800 | 0.8931 | 0.0121 | 0.1693 | 0.6501 | 0.1693 |
| 0.9142 | 7.8441 | 79900 | 0.8899 | 0.0121 | 0.1737 | 0.6528 | 0.1737 |
| 0.8584 | 7.8539 | 80000 | 0.8916 | 0.0121 | 0.1663 | 0.6502 | 0.1663 |
| 0.8833 | 7.8637 | 80100 | 0.8787 | 0.0121 | 0.1683 | 0.6554 | 0.1683 |
| 0.7781 | 7.8736 | 80200 | 0.8710 | 0.0121 | 0.1743 | 0.6591 | 0.1743 |
| 0.9024 | 7.8834 | 80300 | 0.8760 | 0.0121 | 0.1696 | 0.6546 | 0.1696 |
| 0.9207 | 7.8932 | 80400 | 0.8953 | 0.0121 | 0.1707 | 0.6503 | 0.1707 |
| 0.8648 | 7.9030 | 80500 | 0.8848 | 0.0121 | 0.1684 | 0.6512 | 0.1684 |
| 0.8437 | 7.9128 | 80600 | 0.8763 | 0.0121 | 0.1661 | 0.6549 | 0.1661 |
| 0.8794 | 7.9226 | 80700 | 0.8653 | 0.0121 | 0.1733 | 0.6594 | 0.1733 |
| 0.8541 | 7.9325 | 80800 | 0.8885 | 0.0121 | 0.1667 | 0.6526 | 0.1667 |
| 0.9453 | 7.9423 | 80900 | 0.8888 | 0.0121 | 0.1679 | 0.6522 | 0.1679 |
| 0.9241 | 7.9521 | 81000 | 0.8943 | 0.0121 | 0.1604 | 0.6498 | 0.1604 |
| 0.8594 | 7.9619 | 81100 | 0.8747 | 0.0121 | 0.1783 | 0.6583 | 0.1783 |
| 0.8906 | 7.9717 | 81200 | 0.8913 | 0.0121 | 0.1731 | 0.6521 | 0.1731 |
| 0.8827 | 7.9815 | 81300 | 0.8862 | 0.0121 | 0.1686 | 0.6527 | 0.1686 |
| 0.8428 | 7.9914 | 81400 | 0.8754 | 0.0121 | 0.1733 | 0.6578 | 0.1733 |
| 0.8502 | 8.0012 | 81500 | 0.8785 | 0.0121 | 0.1716 | 0.6549 | 0.1716 |
| 0.8665 | 8.0110 | 81600 | 0.8976 | 0.0121 | 0.1543 | 0.6499 | 0.1543 |
| 0.8266 | 8.0208 | 81700 | 0.8728 | 0.0121 | 0.1725 | 0.6588 | 0.1725 |
| 0.8515 | 8.0306 | 81800 | 0.8866 | 0.0121 | 0.1689 | 0.6522 | 0.1689 |
| 0.8596 | 8.0404 | 81900 | 0.8747 | 0.0121 | 0.1711 | 0.6569 | 0.1711 |
| 0.933 | 8.0503 | 82000 | 0.8958 | 0.0121 | 0.1679 | 0.6524 | 0.1679 |
| 0.8987 | 8.0601 | 82100 | 0.8788 | 0.0121 | 0.1664 | 0.6553 | 0.1664 |
| 0.9081 | 8.0699 | 82200 | 0.8943 | 0.0121 | 0.1714 | 0.6487 | 0.1714 |
| 0.8583 | 8.0797 | 82300 | 1.0938 | 0.0121 | 0.1248 | 0.5901 | 0.1248 |
| 0.9374 | 8.0895 | 82400 | 0.8959 | 0.0121 | 0.1687 | 0.6499 | 0.1687 |
| 0.8707 | 8.0994 | 82500 | 0.8787 | 0.0121 | 0.1724 | 0.6535 | 0.1724 |
| 0.8492 | 8.1092 | 82600 | 0.8869 | 0.0121 | 0.1686 | 0.6569 | 0.1686 |
| 0.9135 | 8.1190 | 82700 | 0.9008 | 0.0121 | 0.1577 | 0.6485 | 0.1577 |
| 0.9245 | 8.1288 | 82800 | 0.8776 | 0.0121 | 0.1707 | 0.6550 | 0.1707 |
| 0.8326 | 8.1386 | 82900 | 0.8856 | 0.0121 | 0.1641 | 0.6495 | 0.1641 |
| 0.9092 | 8.1484 | 83000 | 0.8960 | 0.0121 | 0.1657 | 0.6498 | 0.1657 |
| 0.9163 | 8.1583 | 83100 | 0.8778 | 0.0121 | 0.1736 | 0.6549 | 0.1736 |
| 0.8896 | 8.1681 | 83200 | 0.8936 | 0.0121 | 0.1597 | 0.6499 | 0.1597 |
| 0.8872 | 8.1779 | 83300 | 0.8760 | 0.0121 | 0.1693 | 0.6554 | 0.1693 |
| 0.8451 | 8.1877 | 83400 | 0.8668 | 0.0121 | 0.1776 | 0.6617 | 0.1776 |
| 0.8352 | 8.1975 | 83500 | 0.8719 | 0.0121 | 0.1798 | 0.6570 | 0.1798 |
| 0.9612 | 8.2073 | 83600 | 0.8775 | 0.0121 | 0.1726 | 0.6546 | 0.1726 |
| 0.8528 | 8.2172 | 83700 | 0.8798 | 0.0121 | 0.1773 | 0.6579 | 0.1773 |
| 0.8939 | 8.2270 | 83800 | 0.9222 | 0.0121 | 0.1631 | 0.6410 | 0.1631 |
| 0.8205 | 8.2368 | 83900 | 0.8907 | 0.0121 | 0.1723 | 0.6511 | 0.1723 |
| 0.9358 | 8.2466 | 84000 | 0.8756 | 0.0121 | 0.1760 | 0.6592 | 0.1760 |
| 0.8687 | 8.2564 | 84100 | 0.8841 | 0.0121 | 0.1714 | 0.6565 | 0.1714 |
| 0.9093 | 8.2662 | 84200 | 0.9097 | 0.0121 | 0.1587 | 0.6445 | 0.1587 |
| 0.9625 | 8.2761 | 84300 | 0.9028 | 0.0121 | 0.1605 | 0.6459 | 0.1605 |
| 0.9625 | 8.2859 | 84400 | 0.9074 | 0.0121 | 0.1628 | 0.6451 | 0.1628 |
| 0.8268 | 8.2957 | 84500 | 0.8868 | 0.0121 | 0.1682 | 0.6510 | 0.1682 |
| 0.9055 | 8.3055 | 84600 | 0.8898 | 0.0121 | 0.1693 | 0.6514 | 0.1693 |
| 0.878 | 8.3153 | 84700 | 0.9080 | 0.0121 | 0.1660 | 0.6472 | 0.1660 |
| 0.8911 | 8.3252 | 84800 | 0.8842 | 0.0121 | 0.1744 | 0.6533 | 0.1744 |
| 0.7994 | 8.3350 | 84900 | 0.8865 | 0.0121 | 0.1653 | 0.6518 | 0.1653 |
| 0.8959 | 8.3448 | 85000 | 0.8986 | 0.0121 | 0.1706 | 0.6522 | 0.1706 |
| 0.7867 | 8.3546 | 85100 | 0.8807 | 0.0121 | 0.1724 | 0.6567 | 0.1724 |
| 0.9298 | 8.3644 | 85200 | 0.8962 | 0.0121 | 0.1630 | 0.6483 | 0.1630 |
| 0.8122 | 8.3742 | 85300 | 0.8741 | 0.0121 | 0.1724 | 0.6575 | 0.1724 |
| 0.8754 | 8.3841 | 85400 | 0.8894 | 0.0121 | 0.1663 | 0.6517 | 0.1663 |
| 0.8224 | 8.3939 | 85500 | 0.8961 | 0.0121 | 0.1643 | 0.6468 | 0.1643 |
| 0.879 | 8.4037 | 85600 | 0.8843 | 0.0121 | 0.1756 | 0.6550 | 0.1756 |
| 0.9025 | 8.4135 | 85700 | 0.8946 | 0.0121 | 0.1636 | 0.6513 | 0.1636 |
| 0.8163 | 8.4233 | 85800 | 0.8884 | 0.0121 | 0.1621 | 0.6508 | 0.1621 |
| 0.8935 | 8.4331 | 85900 | 0.8889 | 0.0121 | 0.1675 | 0.6520 | 0.1675 |
| 0.9107 | 8.4430 | 86000 | 0.8672 | 0.0121 | 0.1811 | 0.6608 | 0.1811 |
| 0.9779 | 8.4528 | 86100 | 0.8804 | 0.0121 | 0.1725 | 0.6568 | 0.1725 |
| 0.8305 | 8.4626 | 86200 | 0.9006 | 0.0121 | 0.1624 | 0.6471 | 0.1624 |
| 0.8844 | 8.4724 | 86300 | 0.8945 | 0.0121 | 0.1631 | 0.6512 | 0.1631 |
| 0.8139 | 8.4822 | 86400 | 0.8809 | 0.0121 | 0.1773 | 0.6555 | 0.1773 |
| 0.8526 | 8.4920 | 86500 | 0.8811 | 0.0121 | 0.1614 | 0.6521 | 0.1614 |
| 0.8673 | 8.5019 | 86600 | 0.8800 | 0.0121 | 0.1715 | 0.6550 | 0.1715 |
| 0.9264 | 8.5117 | 86700 | 0.8915 | 0.0121 | 0.1763 | 0.6525 | 0.1763 |
| 0.8396 | 8.5215 | 86800 | 0.9141 | 0.0121 | 0.1674 | 0.6444 | 0.1674 |
| 0.8332 | 8.5313 | 86900 | 0.8931 | 0.0121 | 0.1620 | 0.6514 | 0.1620 |
| 0.924 | 8.5411 | 87000 | 0.8912 | 0.0121 | 0.1622 | 0.6511 | 0.1622 |
| 0.8566 | 8.5510 | 87100 | 0.8906 | 0.0121 | 0.1613 | 0.6518 | 0.1613 |
| 0.8294 | 8.5608 | 87200 | 0.9110 | 0.0121 | 0.1633 | 0.6455 | 0.1633 |
| 0.9732 | 8.5706 | 87300 | 0.8983 | 0.0121 | 0.1679 | 0.6487 | 0.1679 |
| 0.87 | 8.5804 | 87400 | 0.8930 | 0.0121 | 0.1562 | 0.6488 | 0.1562 |
| 0.8377 | 8.5902 | 87500 | 0.8701 | 0.0121 | 0.1743 | 0.6586 | 0.1743 |
| 0.857 | 8.6000 | 87600 | 0.8985 | 0.0121 | 0.1610 | 0.6496 | 0.1610 |
| 0.8647 | 8.6099 | 87700 | 0.8798 | 0.0121 | 0.1784 | 0.6579 | 0.1784 |
| 0.8771 | 8.6197 | 87800 | 0.8793 | 0.0121 | 0.1686 | 0.6559 | 0.1686 |
| 0.9198 | 8.6295 | 87900 | 0.8892 | 0.0121 | 0.1657 | 0.6532 | 0.1657 |
| 0.9074 | 8.6393 | 88000 | 0.9027 | 0.0121 | 0.1631 | 0.6482 | 0.1631 |
| 0.9175 | 8.6491 | 88100 | 0.8917 | 0.0121 | 0.1647 | 0.6498 | 0.1647 |
| 0.8699 | 8.6589 | 88200 | 0.8791 | 0.0121 | 0.1692 | 0.6567 | 0.1692 |
| 0.8949 | 8.6688 | 88300 | 0.8906 | 0.0121 | 0.1653 | 0.6481 | 0.1653 |
| 0.8686 | 8.6786 | 88400 | 0.8984 | 0.0121 | 0.1607 | 0.6481 | 0.1607 |
| 1.035 | 8.6884 | 88500 | 0.9014 | 0.0121 | 0.1642 | 0.6487 | 0.1642 |
| 0.8353 | 8.6982 | 88600 | 0.8832 | 0.0121 | 0.1724 | 0.6540 | 0.1724 |
| 0.8507 | 8.7080 | 88700 | 0.9010 | 0.0121 | 0.1680 | 0.6498 | 0.1680 |
| 0.9186 | 8.7178 | 88800 | 0.8872 | 0.0121 | 0.1735 | 0.6534 | 0.1735 |
| 0.8306 | 8.7277 | 88900 | 0.8810 | 0.0121 | 0.1671 | 0.6556 | 0.1671 |
| 0.8596 | 8.7375 | 89000 | 0.9024 | 0.0121 | 0.1653 | 0.6488 | 0.1653 |
| 0.8422 | 8.7473 | 89100 | 0.8811 | 0.0121 | 0.1751 | 0.6529 | 0.1751 |
| 0.9112 | 8.7571 | 89200 | 0.8775 | 0.0121 | 0.1675 | 0.6540 | 0.1675 |
| 0.835 | 8.7669 | 89300 | 0.8832 | 0.0121 | 0.1753 | 0.6556 | 0.1753 |
| 0.8434 | 8.7768 | 89400 | 0.8837 | 0.0121 | 0.1767 | 0.6568 | 0.1767 |
| 0.933 | 8.7866 | 89500 | 0.8876 | 0.0121 | 0.1715 | 0.6529 | 0.1715 |
| 0.8242 | 8.7964 | 89600 | 0.8777 | 0.0121 | 0.1693 | 0.6542 | 0.1693 |
| 0.8515 | 8.8062 | 89700 | 0.8861 | 0.0121 | 0.1744 | 0.6541 | 0.1744 |
| 0.8414 | 8.8160 | 89800 | 0.8788 | 0.0121 | 0.1719 | 0.6539 | 0.1719 |
| 0.8493 | 8.8258 | 89900 | 0.8801 | 0.0121 | 0.1643 | 0.6533 | 0.1643 |
| 0.8985 | 8.8357 | 90000 | 0.8813 | 0.0121 | 0.1728 | 0.6557 | 0.1728 |
| 0.9069 | 8.8455 | 90100 | 0.8783 | 0.0121 | 0.1664 | 0.6541 | 0.1664 |
| 0.8162 | 8.8553 | 90200 | 0.8989 | 0.0121 | 0.1639 | 0.6484 | 0.1639 |
| 0.8368 | 8.8651 | 90300 | 0.8738 | 0.0121 | 0.1725 | 0.6568 | 0.1725 |
| 0.8865 | 8.8749 | 90400 | 0.8841 | 0.0121 | 0.1649 | 0.6544 | 0.1649 |
| 0.8651 | 8.8847 | 90500 | 0.8779 | 0.0121 | 0.1733 | 0.6550 | 0.1733 |
| 0.8775 | 8.8946 | 90600 | 0.8850 | 0.0121 | 0.1608 | 0.6524 | 0.1608 |
| 0.8091 | 8.9044 | 90700 | 0.8816 | 0.0121 | 0.1668 | 0.6561 | 0.1668 |
| 0.8726 | 8.9142 | 90800 | 0.8871 | 0.0121 | 0.1651 | 0.6512 | 0.1651 |
| 0.9415 | 8.9240 | 90900 | 0.8769 | 0.0121 | 0.1741 | 0.6572 | 0.1741 |
| 0.846 | 8.9338 | 91000 | 0.8900 | 0.0121 | 0.1715 | 0.6531 | 0.1715 |
| 0.8878 | 8.9436 | 91100 | 0.9125 | 0.0121 | 0.1658 | 0.6470 | 0.1658 |
| 0.9493 | 8.9535 | 91200 | 0.8922 | 0.0121 | 0.1691 | 0.6480 | 0.1691 |
| 0.8781 | 8.9633 | 91300 | 0.8823 | 0.0121 | 0.1667 | 0.6526 | 0.1667 |
| 0.9035 | 8.9731 | 91400 | 0.8890 | 0.0121 | 0.1715 | 0.6517 | 0.1715 |
| 0.8642 | 8.9829 | 91500 | 0.8988 | 0.0121 | 0.1693 | 0.6487 | 0.1693 |
| 0.8415 | 8.9927 | 91600 | 0.8870 | 0.0121 | 0.1686 | 0.6519 | 0.1686 |
| 0.864 | 9.0026 | 91700 | 0.8901 | 0.0121 | 0.1721 | 0.6524 | 0.1721 |
| 0.9031 | 9.0124 | 91800 | 0.8907 | 0.0121 | 0.1721 | 0.6516 | 0.1721 |
| 0.8783 | 9.0222 | 91900 | 0.8837 | 0.0121 | 0.1601 | 0.6484 | 0.1601 |
| 0.952 | 9.0320 | 92000 | 0.9131 | 0.0121 | 0.1670 | 0.6459 | 0.1670 |
| 0.8702 | 9.0418 | 92100 | 0.9124 | 0.0121 | 0.1567 | 0.6423 | 0.1567 |
| 0.9422 | 9.0516 | 92200 | 0.8867 | 0.0121 | 0.1749 | 0.6526 | 0.1749 |
| 0.9153 | 9.0615 | 92300 | 0.8892 | 0.0121 | 0.1619 | 0.6509 | 0.1619 |
| 0.8876 | 9.0713 | 92400 | 0.8911 | 0.0121 | 0.1705 | 0.6533 | 0.1705 |
| 0.9129 | 9.0811 | 92500 | 0.8891 | 0.0121 | 0.1748 | 0.6546 | 0.1748 |
| 0.8659 | 9.0909 | 92600 | 0.9137 | 0.0121 | 0.1635 | 0.6476 | 0.1635 |
| 0.8991 | 9.1007 | 92700 | 0.8962 | 0.0121 | 0.1653 | 0.6485 | 0.1653 |
| 0.8597 | 9.1105 | 92800 | 0.8887 | 0.0121 | 0.1709 | 0.6516 | 0.1709 |
| 0.8829 | 9.1204 | 92900 | 0.8989 | 0.0121 | 0.1687 | 0.6468 | 0.1687 |
| 0.9497 | 9.1302 | 93000 | 0.8895 | 0.0121 | 0.1674 | 0.6516 | 0.1674 |
| 0.8892 | 9.1400 | 93100 | 0.9024 | 0.0121 | 0.1647 | 0.6485 | 0.1647 |
| 0.9227 | 9.1498 | 93200 | 0.8930 | 0.0121 | 0.1678 | 0.6482 | 0.1678 |
| 0.821 | 9.1596 | 93300 | 0.8753 | 0.0121 | 0.1727 | 0.6579 | 0.1727 |
| 0.912 | 9.1694 | 93400 | 0.8938 | 0.0121 | 0.1624 | 0.6470 | 0.1624 |
| 0.8599 | 9.1793 | 93500 | 0.8865 | 0.0121 | 0.1776 | 0.6547 | 0.1776 |
| 0.8947 | 9.1891 | 93600 | 0.8911 | 0.0121 | 0.1707 | 0.6498 | 0.1707 |
| 0.9006 | 9.1989 | 93700 | 0.8800 | 0.0121 | 0.1702 | 0.6535 | 0.1702 |
| 0.9032 | 9.2087 | 93800 | 0.8805 | 0.0121 | 0.1779 | 0.6540 | 0.1779 |
| 0.9449 | 9.2185 | 93900 | 0.8653 | 0.0121 | 0.1763 | 0.6596 | 0.1763 |
| 0.7906 | 9.2284 | 94000 | 0.8777 | 0.0121 | 0.1833 | 0.6564 | 0.1833 |
| 0.8576 | 9.2382 | 94100 | 0.8956 | 0.0121 | 0.1643 | 0.6486 | 0.1643 |
| 0.8581 | 9.2480 | 94200 | 0.8783 | 0.0121 | 0.1729 | 0.6551 | 0.1729 |
| 0.897 | 9.2578 | 94300 | 0.9068 | 0.0121 | 0.1645 | 0.6480 | 0.1645 |
| 0.8853 | 9.2676 | 94400 | 0.8996 | 0.0121 | 0.1621 | 0.6480 | 0.1621 |
| 0.8634 | 9.2774 | 94500 | 0.8795 | 0.0121 | 0.1784 | 0.6566 | 0.1784 |
| 0.8182 | 9.2873 | 94600 | 0.8763 | 0.0121 | 0.1782 | 0.6579 | 0.1782 |
| 0.9051 | 9.2971 | 94700 | 0.8899 | 0.0121 | 0.1648 | 0.6504 | 0.1648 |
| 0.9105 | 9.3069 | 94800 | 0.8971 | 0.0121 | 0.1619 | 0.6481 | 0.1619 |
| 0.84 | 9.3167 | 94900 | 0.8970 | 0.0121 | 0.1635 | 0.6467 | 0.1635 |
| 0.9105 | 9.3265 | 95000 | 0.8937 | 0.0121 | 0.1686 | 0.6508 | 0.1686 |
| 0.8974 | 9.3363 | 95100 | 0.9009 | 0.0121 | 0.1755 | 0.6520 | 0.1755 |
| 0.9465 | 9.3462 | 95200 | 0.9000 | 0.0121 | 0.1726 | 0.6503 | 0.1726 |
| 0.8545 | 9.3560 | 95300 | 0.8961 | 0.0121 | 0.1691 | 0.6500 | 0.1691 |
| 0.8711 | 9.3658 | 95400 | 0.8818 | 0.0121 | 0.1684 | 0.6532 | 0.1684 |
| 0.9244 | 9.3756 | 95500 | 0.8853 | 0.0121 | 0.1706 | 0.6535 | 0.1706 |
| 0.8094 | 9.3854 | 95600 | 0.8801 | 0.0121 | 0.1769 | 0.6561 | 0.1769 |
| 0.8754 | 9.3952 | 95700 | 0.8994 | 0.0121 | 0.1712 | 0.6495 | 0.1712 |
| 0.9122 | 9.4051 | 95800 | 0.8924 | 0.0121 | 0.1619 | 0.6513 | 0.1619 |
| 0.9308 | 9.4149 | 95900 | 0.8668 | 0.0121 | 0.1786 | 0.6614 | 0.1786 |
| 0.8718 | 9.4247 | 96000 | 0.8634 | 0.0121 | 0.1720 | 0.6606 | 0.1720 |
| 0.8498 | 9.4345 | 96100 | 0.8933 | 0.0121 | 0.1703 | 0.6512 | 0.1703 |
| 0.8661 | 9.4443 | 96200 | 0.8844 | 0.0121 | 0.1675 | 0.6527 | 0.1675 |
| 0.8599 | 9.4542 | 96300 | 0.8809 | 0.0121 | 0.1681 | 0.6509 | 0.1681 |
| 0.8299 | 9.4640 | 96400 | 0.8847 | 0.0121 | 0.1760 | 0.6557 | 0.1760 |
| 0.8077 | 9.4738 | 96500 | 0.8986 | 0.0121 | 0.1664 | 0.6446 | 0.1664 |
| 0.8472 | 9.4836 | 96600 | 0.9022 | 0.0121 | 0.1628 | 0.6467 | 0.1628 |
| 0.8345 | 9.4934 | 96700 | 0.8835 | 0.0121 | 0.1693 | 0.6514 | 0.1693 |
| 0.8092 | 9.5032 | 96800 | 0.8862 | 0.0121 | 0.1705 | 0.6528 | 0.1705 |
| 0.978 | 9.5131 | 96900 | 0.8863 | 0.0121 | 0.1784 | 0.6522 | 0.1784 |
| 0.9094 | 9.5229 | 97000 | 0.8872 | 0.0121 | 0.1751 | 0.6543 | 0.1751 |
| 0.9012 | 9.5327 | 97100 | 0.8874 | 0.0121 | 0.1751 | 0.6545 | 0.1751 |
| 0.8758 | 9.5425 | 97200 | 0.8880 | 0.0121 | 0.1671 | 0.6516 | 0.1671 |
| 0.9321 | 9.5523 | 97300 | 0.8742 | 0.0121 | 0.1679 | 0.6572 | 0.1679 |
| 0.7937 | 9.5621 | 97400 | 0.8806 | 0.0121 | 0.1691 | 0.6575 | 0.1691 |
| 0.8658 | 9.5720 | 97500 | 0.8782 | 0.0121 | 0.1734 | 0.6560 | 0.1734 |
| 0.8625 | 9.5818 | 97600 | 0.8873 | 0.0121 | 0.1761 | 0.6526 | 0.1761 |
| 0.8831 | 9.5916 | 97700 | 0.8677 | 0.0121 | 0.1838 | 0.6621 | 0.1838 |
| 0.844 | 9.6014 | 97800 | 0.8956 | 0.0121 | 0.1624 | 0.6513 | 0.1624 |
| 0.8289 | 9.6112 | 97900 | 0.8771 | 0.0121 | 0.1735 | 0.6556 | 0.1735 |
| 0.891 | 9.6210 | 98000 | 0.8888 | 0.0121 | 0.1704 | 0.6518 | 0.1704 |
| 0.8433 | 9.6309 | 98100 | 0.8907 | 0.0121 | 0.1702 | 0.6546 | 0.1702 |
| 0.7974 | 9.6407 | 98200 | 0.8671 | 0.0121 | 0.1776 | 0.6593 | 0.1776 |
| 0.9177 | 9.6505 | 98300 | 0.8685 | 0.0121 | 0.1724 | 0.6586 | 0.1724 |
| 0.8644 | 9.6603 | 98400 | 0.8774 | 0.0121 | 0.1802 | 0.6590 | 0.1802 |
| 0.8961 | 9.6701 | 98500 | 0.8888 | 0.0121 | 0.1692 | 0.6498 | 0.1692 |
| 0.8769 | 9.6800 | 98600 | 0.8783 | 0.0121 | 0.1760 | 0.6585 | 0.1760 |
| 0.9498 | 9.6898 | 98700 | 0.9060 | 0.0121 | 0.1644 | 0.6462 | 0.1644 |
| 0.8435 | 9.6996 | 98800 | 0.8771 | 0.0121 | 0.1756 | 0.6561 | 0.1756 |
| 0.8151 | 9.7094 | 98900 | 0.8711 | 0.0121 | 0.1729 | 0.6578 | 0.1729 |
| 0.8619 | 9.7192 | 99000 | 0.8616 | 0.0121 | 0.1759 | 0.6586 | 0.1759 |
| 0.8862 | 9.7290 | 99100 | 0.8702 | 0.0121 | 0.1711 | 0.6585 | 0.1711 |
| 0.9008 | 9.7389 | 99200 | 0.8826 | 0.0121 | 0.1716 | 0.6562 | 0.1716 |
| 0.861 | 9.7487 | 99300 | 0.8937 | 0.0121 | 0.1670 | 0.6492 | 0.1670 |
| 0.8789 | 9.7585 | 99400 | 0.8822 | 0.0121 | 0.1693 | 0.6527 | 0.1693 |
| 0.8296 | 9.7683 | 99500 | 0.8788 | 0.0121 | 0.1705 | 0.6557 | 0.1705 |
| 0.9087 | 9.7781 | 99600 | 0.9116 | 0.0121 | 0.1662 | 0.6464 | 0.1662 |
| 0.8118 | 9.7879 | 99700 | 0.8953 | 0.0121 | 0.1724 | 0.6521 | 0.1724 |
| 0.9122 | 9.7978 | 99800 | 0.8802 | 0.0121 | 0.1739 | 0.6576 | 0.1739 |
| 0.8541 | 9.8076 | 99900 | 0.8731 | 0.0121 | 0.1812 | 0.6593 | 0.1812 |
| 0.9063 | 9.8174 | 100000 | 0.8769 | 0.0121 | 0.1747 | 0.6560 | 0.1747 |
| 0.8517 | 9.8272 | 100100 | 0.8716 | 0.0121 | 0.1777 | 0.6605 | 0.1777 |
| 0.8725 | 9.8370 | 100200 | 0.8849 | 0.0121 | 0.1646 | 0.6525 | 0.1646 |
| 0.8793 | 9.8468 | 100300 | 0.8720 | 0.0121 | 0.1698 | 0.6578 | 0.1698 |
| 0.8553 | 9.8567 | 100400 | 0.8584 | 0.0121 | 0.1829 | 0.6629 | 0.1829 |
| 0.8216 | 9.8665 | 100500 | 0.8780 | 0.0121 | 0.1715 | 0.6568 | 0.1715 |
| 0.8723 | 9.8763 | 100600 | 0.8758 | 0.0121 | 0.1764 | 0.6562 | 0.1764 |
| 0.8514 | 9.8861 | 100700 | 0.8917 | 0.0121 | 0.1765 | 0.6556 | 0.1765 |
| 0.9008 | 9.8959 | 100800 | 0.8966 | 0.0121 | 0.1703 | 0.6520 | 0.1703 |
| 0.8712 | 9.9058 | 100900 | 0.8608 | 0.0121 | 0.1788 | 0.6606 | 0.1788 |
| 0.8697 | 9.9156 | 101000 | 0.8751 | 0.0121 | 0.1712 | 0.6559 | 0.1712 |
| 0.8335 | 9.9254 | 101100 | 0.8879 | 0.0121 | 0.1712 | 0.6544 | 0.1712 |
| 0.9015 | 9.9352 | 101200 | 0.8813 | 0.0121 | 0.1675 | 0.6543 | 0.1675 |
| 0.8726 | 9.9450 | 101300 | 0.8752 | 0.0121 | 0.1781 | 0.6570 | 0.1781 |
| 0.8435 | 9.9548 | 101400 | 0.8954 | 0.0121 | 0.1662 | 0.6497 | 0.1662 |
| 0.8604 | 9.9647 | 101500 | 0.8749 | 0.0121 | 0.1764 | 0.6583 | 0.1764 |
| 0.9175 | 9.9745 | 101600 | 0.8851 | 0.0121 | 0.1658 | 0.6543 | 0.1658 |
| 0.921 | 9.9843 | 101700 | 0.8862 | 0.0121 | 0.1739 | 0.6529 | 0.1739 |
| 0.838 | 9.9941 | 101800 | 0.8718 | 0.0121 | 0.1822 | 0.6614 | 0.1822 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
johnnyyang0518/llama2_uuu_news_qlora
|
johnnyyang0518
| 2025-06-25T01:20:49Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-25T01:20:49Z |
---
license: apache-2.0
---
|
Rootreck/Applio_3.2.9-RVC-Other
|
Rootreck
| 2025-06-25T01:14:44Z | 0 | 0 | null |
[
"Applio",
"RVC",
"audio-to-audio",
"en",
"dataset:Rootreck/Applio_3.2.9-RVC-Other",
"region:us"
] |
audio-to-audio
| 2025-06-25T00:23:34Z |
---
datasets:
- Rootreck/Applio_3.2.9-RVC-Other
language:
- en
pipeline_tag: audio-to-audio
tags:
- Applio
- RVC
---
|
Treza12/Pixtral-1D-Thermal
|
Treza12
| 2025-06-25T01:14:07Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistral-community/pixtral-12b",
"base_model:adapter:mistral-community/pixtral-12b",
"region:us"
] | null | 2025-06-25T01:12:52Z |
---
base_model: mistral-community/pixtral-12b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.3.dev0
|
sizzlebop/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF
|
sizzlebop
| 2025-06-25T01:09:12Z | 0 | 0 | null |
[
"gguf",
"code",
"llama-cpp",
"gguf-my-repo",
"en",
"dataset:Team-ACE/ToolACE",
"base_model:Team-ACE/ToolACE-2-Llama-3.1-8B",
"base_model:quantized:Team-ACE/ToolACE-2-Llama-3.1-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-25T01:08:44Z |
---
license: apache-2.0
datasets:
- Team-ACE/ToolACE
language:
- en
metrics:
- accuracy
base_model: Team-ACE/ToolACE-2-Llama-3.1-8B
tags:
- code
- llama-cpp
- gguf-my-repo
---
# sizzlebop/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF
This model was converted to GGUF format from [`Team-ACE/ToolACE-2-Llama-3.1-8B`](https://huggingface.co/Team-ACE/ToolACE-2-Llama-3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Team-ACE/ToolACE-2-Llama-3.1-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo sizzlebop/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo sizzlebop/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo sizzlebop/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo sizzlebop/ToolACE-2-Llama-3.1-8B-Q8_0-GGUF --hf-file toolace-2-llama-3.1-8b-q8_0.gguf -c 2048
```
|
hasdal/28686e11-1d59-4507-a11e-28a534a1ed6a
|
hasdal
| 2025-06-25T01:05:20Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma2",
"text-generation",
"unsloth",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-24T19:56:09Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
VarunNagaraj/tiny-llm-maui-apiclients-mistral
|
VarunNagaraj
| 2025-06-25T01:01:30Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/mistral-7b-instruct-v0.1-bnb-4bit",
"base_model:quantized:unsloth/mistral-7b-instruct-v0.1-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T01:00:24Z |
---
base_model: unsloth/mistral-7b-instruct-v0.1-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** VarunNagaraj
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.1-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
phospho-app/GarrieD-ACT_BBOX-Red_Ball_V1_0624-mui9e
|
phospho-app
| 2025-06-25T00:59:03Z | 0 | 0 | null |
[
"safetensors",
"phosphobot",
"act",
"region:us"
] | null | 2025-06-25T00:43:35Z |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [phospho-app/Red_Ball_V1_0624_bboxes](https://huggingface.co/datasets/phospho-app/Red_Ball_V1_0624_bboxes)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 20
- **Training steps**: 10000
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
deepmaster/72_8
|
deepmaster
| 2025-06-25T00:58:40Z | 34 | 0 |
transformers
|
[
"transformers",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-08T18:57:53Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5
|
tokyotech-llm
| 2025-06-25T00:57:38Z | 35 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"ja",
"dataset:tokyotech-llm/lmsys-chat-1m-synth",
"dataset:lmsys/lmsys-chat-1m",
"arxiv:2503.23714",
"arxiv:2407.21783",
"base_model:tokyotech-llm/Llama-3.1-Swallow-8B-v0.5",
"base_model:finetune:tokyotech-llm/Llama-3.1-Swallow-8B-v0.5",
"license:llama3.3",
"license:gemma",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-12T11:32:48Z |
---
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license:
- llama3.3
- gemma
model_type: llama
datasets:
- tokyotech-llm/lmsys-chat-1m-synth
- lmsys/lmsys-chat-1m
base_model:
- tokyotech-llm/Llama-3.1-Swallow-8B-v0.5
---
# Llama 3.1 Swallow - Built with Llama
Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models.
Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities.
We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and
coding contents, etc (see the Training Datasets section of the base model) for continual pre-training.
The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese.
See the Swallow Model Index section to find other model variants.
**Note**: [Llama-3.1-Swallow-8B-Instruct-v0.5](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5) model was continually pre-trained from the [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) and then instruction-tuned with our instruction datasets.
# Release History
- **June 25, 2025**: Released [Llama-3.1-Swallow-8B-Instruct-v0.5](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5) and [Llama-3.1-Swallow-8B-v0.5](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.5).
- **March 10, 2025**: Released [Llama-3.3-Swallow-70B-Instruct-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4) and [Llama-3.3-Swallow-70B-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-v0.4).
- **December 30, 2024**: Released [Llama-3.1-Swallow-70B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3).
- **December 23, 2024**: Released [Llama-3.1-Swallow-8B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3).
- **November 11, 2024**: Released [Llama-3.1-Swallow-8B-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) and [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2).
- **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1).
# Major Updates
This release enhances the conversation capability of Llama 3.1 Swallow. The model is trained to imitate the behavior of [gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it).
Among all open-source LLMs with <= 8 billion parameters, Llama-3.1-Swallow-8B-Instruct-v0.5 exhibits **state-of-the-art performance on Japanese MT-Bench**, outperforming its predecessor, [Llama-3.1-Swallow-8B-Instruct-v0.3](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2), by 1.5 points.
## Swallow Model Index
|Model|Llama-3.1-Swallow-Instruct v0.5|Llama-3.1-Swallow v0.5|Llama-3.3-Swallow v0.4|Llama-3.3-Swallow-Instruct v0.4|Llama-3.1-Swallow-Instruct v0.3|Llama-3.1-Swallow-Instruct v0.2|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.1|
|---|---|---|---|---|---|---|---|---|---|
|8B|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.5) |||[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1)|
|70B|||[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-v0.4)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4)|[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.3)| | |[🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1)| [🤗 HuggingFace](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1)|

The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/index.en.html) provides large language models developed by the Swallow team.
## Model Details
* **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
* **Language(s)**: Japanese English
* **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), [transformers](https://github.com/huggingface/transformers)
* **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer.
* **Contact**: swallow[at]nlp.c.titech.ac.jp
## Model Performance
## Japanese MT-Bench
* We report evaluation results judged by **gpt-4o-2024-08-06** as below.
* In our releases earlier than January 1, 2025, we reported scores judged by gpt-4-1106-preview. Scores reported below are thus not directly comparable with those reported in those earlier releases.
|Model|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg|
|---|---|---|---|---|---|---|---|---|---|
| llm-jp-3-7.2b-instruct3 | 0.358 | 0.597 | 0.812 | 0.386 | 0.438 | 0.766 | 0.622 | 0.721 | 0.588 |
| Qwen2.5-7B-Instruct | 0.599 | 0.741 | 0.719 | 0.637 | 0.541 | 0.744 | 0.624 | 0.713 | 0.665 |
| Tanuki-8B-dpo-v1.0 | 0.461 | 0.597 | 0.562 | 0.495 | 0.377 | 0.589 | 0.509 | 0.643 | 0.529 |
| Llama 3 8B Instruct | 0.467 | 0.706 | 0.692 | 0.310 | 0.433 | 0.542 | 0.532 | 0.546 | 0.529 |
| Llama 3.1 8B Instruct | 0.420 | **0.830** | 0.550 | 0.514 | 0.349 | 0.502 | 0.479 | 0.504 | 0.519 |
| Llama 3 Youko 8B Instruct | 0.464 | 0.757 | 0.769 | 0.414 | 0.487 | 0.695 | 0.583 | 0.753 | 0.616 |
| Llama-3-ELYZA-JP-8B | 0.389 | 0.706 | 0.647 | 0.426 | **0.613** | 0.684 | 0.533 | 0.697 | 0.587 |
| Llama 3 heron brain 8B v0.3 | 0.362 | 0.566 | 0.602 | 0.315 | 0.426 | 0.586 | 0.567 | 0.550 | 0.497 |
| Llama 3.1 Swallow 8B Instruct v0.1 | 0.427 | 0.738 | 0.675 | 0.527 | 0.453 | 0.615 | 0.593 | 0.624 | 0.581 |
| Llama 3.1 Swallow 8B Instruct v0.2 | 0.534 | 0.748 | 0.705 | 0.565 | 0.475 | 0.646 | 0.579 | 0.646 | 0.612 |
| Llama 3.1 Swallow 8B Instruct v0.3 | **0.562** | 0.756 | 0.869 | **0.610** | 0.512 | 0.783 | 0.748 | 0.803 | 0.705 |
| Llama 3.1 Swallow 8B Instruct v0.5 | 0.551 | 0.814 | **0.847** | 0.568 | 0.577 | **0.796** | **0.770** | **0.832** | **0.719** |
### Japanese tasks
|Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
|---|---|---|---|---|---|---|---|---|---|---|---|
| |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| |
| |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| |
| llm-jp-3-7.2b-instruct3 | 0.780 | 0.297 | 0.570 | 0.882 | 0.132 | 0.344 | 0.251 | 0.189 | 0.422 | 0.196 | 0.406 |
| Qwen2.5-7B-Instruct | 0.915 | 0.429 | 0.391 | 0.891 | 0.168 | 0.632 | 0.211 | 0.192 | 0.623 | 0.532 | 0.498 |
| Tanuki-8B-dpo-v1.0 | 0.278 | 0.284 | 0.370 | 0.670 | 0.102 | 0.428 | 0.238 | 0.183 | 0.306 | 0.251 | 0.311 |
| Llama 3 8B Instruct | 0.880 | 0.417 | 0.385 | 0.891 | 0.126 | 0.424 | 0.214 | 0.202 | 0.468 | 0.296 | 0.430 |
| Llama 3.1 8B Instruct | 0.880 | 0.447 | 0.407 | 0.886 | 0.148 | 0.516 | 0.218 | 0.200 | 0.509 | 0.488 | 0.470 |
| Llama 3 Youko 8B Instruct | 0.921 | 0.481 | 0.517 | 0.899 | 0.209 | 0.472 | 0.256 | 0.191 | 0.469 | 0.262 | 0.468 |
| Llama-3-ELYZA-JP-8B | 0.897 | 0.498 | 0.496 | 0.906 | 0.168 | 0.436 | 0.250 | 0.185 | 0.487 | 0.388 | 0.471 |
| Llama 3 heron brain 8B v0.3 | 0.923 | 0.493 | 0.569 | 0.906 | **0.218** | 0.456 | 0.277 | 0.217 | 0.499 | 0.318 | 0.488 |
| Llama 3.1 Swallow 8B Instruct v0.1 | 0.924 | **0.587** | 0.574 | **0.917** | 0.138 | 0.508 | 0.282 | 0.228 | 0.530 | 0.366 | 0.505 |
| Llama 3.1 Swallow 8B Instruct v0.2 | 0.929 | 0.560 | 0.599 | 0.915 | 0.137 | 0.528 | 0.288 | 0.227 | 0.550 | 0.408 | 0.514 |
| Llama 3.1 Swallow 8B Instruct v0.3 | 0.924 | 0.528 | 0.583 | 0.896 | 0.191 | 0.532 | 0.281 | 0.229 | 0.544 | 0.394 | 0.510 |
| Llama 3.1 Swallow 8B Instruct v0.5 | **0.937** | 0.511 | **0.606** | 0.900 | 0.174 | **0.604** | **0.293** | **0.230** | **0.581** | **0.496** | **0.533** |
### English tasks
|Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|MATH|BBH|HumanEval|En Avg|
|---|---|---|---|---|---|---|---|---|---|---|---|
| |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|4-shot | 3-shot|0-shot| |
| |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc| CoT EM Acc| pass@1| |
| llm-jp-3-7.2b-instruct3 | 0.328 | 0.479 | 0.563 | 0.501 | 0.876 | 0.462 | 0.264 | 0.028 | 0.420 | 0.219 | 0.414 |
| Qwen2.5-7B-Instruct | 0.428 | 0.519 | 0.624 | 0.569 | 0.877 | 0.742 | 0.739 | 0.688 | 0.217 | 0.636 | 0.604 |
| Tanuki-8B-dpo-v1.0 | 0.334 | 0.283 | 0.469 | 0.501 | 0.816 | 0.377 | 0.487 | 0.178 | 0.333 | 0.288 | 0.406 |
| Llama 3 8B Instruct | 0.388 | 0.670 | 0.583 | 0.611 | 0.892 | 0.657 | 0.745 | 0.306 | 0.646 | 0.554 | 0.605 |
| Llama 3.1 8B Instruct | 0.366 | 0.699 | 0.592 | 0.600 | 0.904 | 0.680 | 0.743 | 0.376 | 0.690 | 0.624 | 0.627 |
| Llama 3 Youko 8B Instruct | 0.406 | 0.613 | 0.599 | 0.559 | 0.897 | 0.596 | 0.563 | 0.152 | 0.401 | 0.287 | 0.507 |
| Llama-3-ELYZA-JP-8B | 0.318 | 0.551 | 0.523 | 0.600 | 0.882 | 0.587 | 0.558 | 0.164 | 0.321 | 0.449 | 0.495 |
| Llama 3 heron brain 8B v0.3 | 0.362 | 0.656 | 0.569 | 0.581 | 0.901 | 0.621 | 0.578 | 0.222 | 0.641 | 0.380 | 0.551 |
| Llama 3.1 Swallow 8B Instruct v0.1 | 0.388 | 0.649 | 0.615 | 0.598 | 0.891 | 0.624 | 0.605 | 0.236 | 0.642 | 0.379 | 0.563 |
| Llama 3.1 Swallow 8B Instruct v0.2 | 0.380 | 0.625 | 0.603 | 0.607 | 0.887 | 0.634 | 0.620 | 0.264 | 0.649 | 0.474 | 0.574 |
| Llama 3.1 Swallow 8B Instruct v0.3 | 0.396 | 0.629 | 0.593 | 0.570 | 0.884 | 0.629 | 0.622 | 0.266 | 0.626 | 0.445 | 0.566 |
| Llama 3.1 Swallow 8B Instruct v0.5 | 0.396 | 0.638 | 0.603 | 0.581 | 0.889 | 0.663 | 0.717 | 0.368 | 0.628 | 0.554 | 0.604 |
## Evaluation Benchmarks
### Japanese MT-Bench
We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the capabilities of multi-turn dialogue with the following settings:
- Implementation: FastChat [Zheng+, 2023] (commit #e86e70d0)
- Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v4](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/v4)
- Reference Answer: [swallow-evaluation, reference answer](https://github.com/swallow-llm/swallow-evaluation/tree/main/fastchat/fastchat/llm_judge/data/japanese_mt_bench/reference_answer)
- Prompt for Judge: [Nejumi LLM-Leaderboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1)
- Judge: `gpt-4o-2024-08-06`
- Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs.
### Japanese evaluation benchmarks
We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
- Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
- Open-ended question answering (JEMHopQA [Ishii et al., 2024])
- Open-ended question answering (NIILC [関根, 2003])
- Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
- Automatic summarization (XL-Sum [Hasan et al., 2021])
- Machine translation (WMT2020 ja-en [Barrault et al., 2020])
- Machine translation (WMT2020 en-ja [Barrault et al., 2020])
- Arithmetic reasoning (MGSM [Shi et al., 2023])
- Academic exams (JMMLU [尹ら, 2024])
- Code generation (JHumanEval [佐藤ら, 2024])
### English evaluation benchmarks
We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
- Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
- Open-ended question answering (TriviaQA [Joshi et al., 2017])
- Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
- Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
- Natural language inference (HellaSwag [Zellers et al., 2019])
- Arithmetic reasoning (GSM8K [Cobbe et al., 2021])
- Mathematical reasoning (MATH [Hendrycks et al., 2022][Lightman et al., 2024])
- Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
- Academic exams (MMLU [Hendrycks et al., 2021])
- Code generation (HumanEval [Chen et al., 2021])
## Usage
```sh
pip install vllm
```
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_name = "tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(
model=model_name,
tensor_parallel_size=1,
)
sampling_params = SamplingParams(
temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>"
)
message = [
{
"role": "user",
"content": "東京の紅葉した公園で、東京タワーと高層ビルを背景に、空を舞うツバメと草地に佇むラマが出会う温かな物語を書いてください。",
},
]
prompt = tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=True
)
output = llm.generate(prompt, sampling_params)
print(output[0].outputs[0].text)
```
## Training Datasets
### Instruction Tuning
The following datasets were used for the instruction tuning.
- [Gemma-3-LMSYS-Chat-1M-Synth](https://huggingface.co/datasets/tokyotech-llm/lmsys-chat-1m-synth)
- Single-turn Japanese instruction dataset synthesized and derived from [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) [\[Zhang+, ICLR24\]](https://openreview.net/forum?id=BOfDKxfwt0)).
- First-turn user instructions were translated into Japanese via DeepL (machine translation), and assistant responses were generated using [gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it). The same model, i.e., [gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) served as a judge for rejection sampling (n=10).
Conversations containing personally identifiable information (PII) and template-based user instructions were removed. Duplicate instructions were removed.
## Risks and Limitations
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
## Acknowledgements
We thank Meta Research for releasing Llama 3.1 under a generous open license.
We received various supports, including:
+ AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain"
+ NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics"
+ MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models"
+ AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html)
## License
[META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/) and [Gemma Terms of Use](https://ai.google.dev/gemma/terms)
## Authors
Here are the team members:
- From [Okazaki Laboratory, Institute of Science Tokyo](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
- [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
- [Sangwhan Moon](https://www.sangwhan.com/)
- [Koki Maeda](https://sites.google.com/view/silviase)
- [Masanari Ohi](https://sites.google.com/view/masanariohi)
- [Hinari Shimada](https://hinarishimada.github.io/portfolio)
- [Taihei Shiotani](https://github.com/inatoihs)
- [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
- [Tatsuya Ichinose](https://tatsuya736482.github.io/myprofile)
- Naoya Matsushita
- Sora Miyamoto
- Nguyen Tien Dung
- Yuta Katayama
- From [YOKOTA Laboratory, Institute of Science Tokyo](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
- [Rio Yokota](https://twitter.com/rioyokota)
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
- [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
- [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
- Masaki Kawamura
- Yukito Tajima
- From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
- [Hiroya Takamura](https://sites.google.com/view/hjtakamura)
## How to cite
If you find our work helpful, please feel free to cite these papers.
```
@inproceedings{Fujii:COLM2024,
title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
Enhancing Japanese Language Capabilities},
author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
Mizuki and Rio Yokota and Naoaki Okazaki},
booktitle="Proceedings of the First Conference on Language Modeling",
series={COLM},
pages="(to appear)",
year="2024",
month=oct,
address={University of Pennsylvania, USA},
}
@inproceedings{Okazaki:COLM2024,
title={Building a Large Japanese Web Corpus for Large Language Models},
author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
Loem and Rio Yokota and Sakae Mizuki},
booktitle="Proceedings of the First Conference on Language Modeling",
series={COLM},
pages="(to appear)",
year="2024",
month=oct,
address={University of Pennsylvania, USA},
}
@misc{ma:arxiv2025,
title={Building Instruction-Tuning Datasets from Human-Written Instructions with Open-Weight Large Language Models},
author={Youmi Ma and Sakae Mizuki and Kazuki Fujii and Taishi Nakamura and Masanari Ohi and Hinari Shimada and Taihei Shiotani and Koshiro Saito and Koki Maeda and Kakeru Hattori and Takumi Okamoto and Shigeki Ishida and Rio Yokota and Hiroya Takamura and Naoaki Okazaki},
year={2025},
eprint={2503.23714},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.23714},
}
```
### References
```tex
@misc{dubey2024llama3herdmodels,
title={The Llama 3 Herd of Models},
author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.},
year={2024},
eprint={2407.21783},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2407.21783},
}
```
|
deepmaster/72_4
|
deepmaster
| 2025-06-25T00:55:35Z | 42 | 0 |
transformers
|
[
"transformers",
"safetensors",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-08T18:51:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mlx-community/Llama-3.2-8X4B-MOE-V2-Dark-Champion-Instruct-uncensored-abliterated-21B-MLX
|
mlx-community
| 2025-06-25T00:51:02Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"mixtral",
"Llama 3.2",
"8 X 4B",
"Brainstorm 5x",
"128k context",
"moe",
"8 experts",
"mixture of experts",
"fine tune",
"text-generation",
"conversational",
"base_model:DavidAU/L3.2-8X4B-MOE-V2-Dark-Champion-Inst-21B-uncen-ablit",
"base_model:quantized:DavidAU/L3.2-8X4B-MOE-V2-Dark-Champion-Inst-21B-uncen-ablit",
"8-bit",
"region:us"
] |
text-generation
| 2025-06-25T00:35:40Z |
---
library_name: mlx
tags:
- Llama 3.2
- 8 X 4B
- Brainstorm 5x
- 128k context
- moe
- 8 experts
- mixture of experts
- fine tune
- mlx
base_model: DavidAU/L3.2-8X4B-MOE-V2-Dark-Champion-Inst-21B-uncen-ablit
pipeline_tag: text-generation
---
# mlx-community/Llama-3.2-8X4B-MOE-V2-Dark-Champion-Instruct-uncensored-abliterated-21B-MLX
This model [mlx-community/Llama-3.2-8X4B-MOE-V2-Dark-Champion-Instruct-uncensored-abliterated-21B-MLX](https://huggingface.co/mlx-community/Llama-3.2-8X4B-MOE-V2-Dark-Champion-Instruct-uncensored-abliterated-21B-MLX) was
converted to MLX format from [DavidAU/L3.2-8X4B-MOE-V2-Dark-Champion-Inst-21B-uncen-ablit](https://huggingface.co/DavidAU/L3.2-8X4B-MOE-V2-Dark-Champion-Inst-21B-uncen-ablit)
using mlx-lm version **0.25.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama-3.2-8X4B-MOE-V2-Dark-Champion-Instruct-uncensored-abliterated-21B-MLX")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
Mr-Matrix/LogicBomb-Classifier
|
Mr-Matrix
| 2025-06-25T00:48:41Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-25T00:43:47Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
windscare2/Lorax
|
windscare2
| 2025-06-25T00:41:48Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-25T00:17:59Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Lorax
---
# Lorax
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Lorax` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Lorax",
"lora_weights": "https://huggingface.co/windscare2/Lorax/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('windscare2/Lorax', weight_name='lora.safetensors')
image = pipeline('Lorax').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 32
## Contribute your own examples
You can use the [community tab](https://huggingface.co/windscare2/Lorax/discussions) to add images that show off what you’ve made with this LoRA.
|
hongin9812/tunning_blip2-opt-2.7b-fp16-sharded
|
hongin9812
| 2025-06-25T00:39:19Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:ybelkada/blip2-opt-2.7b-fp16-sharded",
"base_model:adapter:ybelkada/blip2-opt-2.7b-fp16-sharded",
"region:us"
] | null | 2025-06-25T00:34:47Z |
---
base_model: ybelkada/blip2-opt-2.7b-fp16-sharded
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2
|
thavens/pir_sft_ckpt_50_i
|
thavens
| 2025-06-25T00:38:22Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:Qwen/Qwen3-4B",
"base_model:finetune:Qwen/Qwen3-4B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-25T00:14:28Z |
---
base_model: Qwen/Qwen3-4B
library_name: transformers
model_name: pir_sft_ckpt_50_i
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for pir_sft_ckpt_50_i
This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="thavens/pir_sft_ckpt_50_i", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tmotiv/huggingface/runs/7n04dqdo)
This model was trained with SFT.
### Framework versions
- TRL: 0.18.0.dev0
- Transformers: 4.52.4
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
daixuancheng/zero_qwen-math-7b_base_allDapo_mathVerify_yesSuffix_step140
|
daixuancheng
| 2025-06-25T00:34:55Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-25T00:08:57Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
New-videos-Mia-Khalifa-viral-video-Clips/FULL.VIDEO.Mia.Khalifa.Viral.Video.Tutorial.Official
|
New-videos-Mia-Khalifa-viral-video-Clips
| 2025-06-25T00:34:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-25T00:34:37Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
daixuancheng/zero_qwen-math-7b_base_allDapo_mathVerify_yesSuffix_step40
|
daixuancheng
| 2025-06-25T00:32:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-25T00:05:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
New-videos-misswow-viral-video-Clips/FULL.VIDEO.Miss.Wow.Viral.Video.Tutorial.Official
|
New-videos-misswow-viral-video-Clips
| 2025-06-25T00:31:14Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-25T00:31:00Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
daixuancheng/ppo_sac_static0.1_constrainbyadv_step-40_critic
|
daixuancheng
| 2025-06-25T00:30:28Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T12:11:28Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
laonML/LaonA2_VL_3B
|
laonML
| 2025-06-25T00:27:49Z | 0 | 0 | null |
[
"safetensors",
"qwen2_5_vl",
"zero-shot-object-detection",
"en",
"dataset:lmms-lab/RefCOCOg",
"arxiv:2504.07615",
"base_model:Qwen/Qwen2.5-VL-3B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct",
"region:us"
] |
zero-shot-object-detection
| 2025-06-25T00:11:51Z |
---
datasets:
- lmms-lab/RefCOCOg
language:
- en
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
pipeline_tag: zero-shot-object-detection
---
# LaonA2 VL 3B
LaonA2 VL 3B는 Qwen 2.5 VL 3B 기반의 향상된 비전-언어 모델입니다. VLM-R1 강화학습을 통해 REC(Referring Expression Comprehension) 성능이 개선되었습니다.
cite: arxiv.org/abs/2504.07615
|
Ljk0501/Gemma3_1B_it_GGUF
|
Ljk0501
| 2025-06-25T00:21:40Z | 0 | 0 | null |
[
"gguf",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-25T00:15:49Z |
---
license: apache-2.0
---
|
daixuancheng/ppo_sample8_critic-warm10-lr2e-6_step40_crtic
|
daixuancheng
| 2025-06-25T00:21:11Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T10:37:56Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Retreatcost/KansenSakura-Zero-RP-12b-Q4_K_M-GGUF
|
Retreatcost
| 2025-06-25T00:12:21Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"frankenmerge",
"llama-cpp",
"gguf-my-repo",
"base_model:Retreatcost/KansenSakura-Zero-RP-12b",
"base_model:quantized:Retreatcost/KansenSakura-Zero-RP-12b",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-25T00:11:49Z |
---
base_model: Retreatcost/KansenSakura-Zero-RP-12b
library_name: transformers
tags:
- mergekit
- merge
- frankenmerge
- llama-cpp
- gguf-my-repo
---
# Retreatcost/KansenSakura-Zero-RP-12b-Q4_K_M-GGUF
This model was converted to GGUF format from [`Retreatcost/KansenSakura-Zero-RP-12b`](https://huggingface.co/Retreatcost/KansenSakura-Zero-RP-12b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Retreatcost/KansenSakura-Zero-RP-12b) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Retreatcost/KansenSakura-Zero-RP-12b-Q4_K_M-GGUF --hf-file kansensakura-zero-rp-12b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Retreatcost/KansenSakura-Zero-RP-12b-Q4_K_M-GGUF --hf-file kansensakura-zero-rp-12b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Retreatcost/KansenSakura-Zero-RP-12b-Q4_K_M-GGUF --hf-file kansensakura-zero-rp-12b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Retreatcost/KansenSakura-Zero-RP-12b-Q4_K_M-GGUF --hf-file kansensakura-zero-rp-12b-q4_k_m.gguf -c 2048
```
|
twodgirl/omnigen2-nf4-bfloat16-diffusers
|
twodgirl
| 2025-06-25T00:11:55Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"base_model:OmniGen2/OmniGen2",
"base_model:finetune:OmniGen2/OmniGen2",
"license:apache-2.0",
"diffusers:OmniGen2Pipeline",
"region:us"
] | null | 2025-06-24T21:31:15Z |
---
license: apache-2.0
base_model:
- OmniGen2/OmniGen2
---
# OmniGen2
Unsloth meets Omni2. The transformer module is in bfloat16 precision. The Qwen-VL is in nf4.
|
nntoan209/Qwen2.5-Coder-7B-Instruct-2410d46d-9b55-41ca-88b2-5388da286ccb
|
nntoan209
| 2025-06-25T00:11:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:unsloth/Qwen2.5-Coder-7B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-Coder-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T16:59:15Z |
---
base_model: unsloth/Qwen2.5-Coder-7B-Instruct
library_name: transformers
model_name: Qwen2.5-Coder-7B-Instruct-2410d46d-9b55-41ca-88b2-5388da286ccb
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen2.5-Coder-7B-Instruct-2410d46d-9b55-41ca-88b2-5388da286ccb
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="nntoan209/Qwen2.5-Coder-7B-Instruct-2410d46d-9b55-41ca-88b2-5388da286ccb", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
alllwang/00789f7e-9f45-447f-b541-b4db9c07a00c
|
alllwang
| 2025-06-25T00:10:26Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"qwen3",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen3-1.7B-Base",
"base_model:adapter:Qwen/Qwen3-1.7B-Base",
"license:apache-2.0",
"region:us"
] | null | 2025-06-25T00:06:36Z |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen3-1.7B-Base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 00789f7e-9f45-447f-b541-b4db9c07a00c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
adapter: lora
base_model: Qwen/Qwen3-1.7B-Base
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f9b218e3a76b29e1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: deepspeed_configs/zero2.json
early_stopping_patience: 3
eval_max_new_tokens: 1024
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
greater_is_better: false
group_by_length: false
hub_model_id: alllwang/00789f7e-9f45-447f-b541-b4db9c07a00c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0008
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: -1
metric_for_best_model: eval_loss
micro_batch_size: 8
mlflow_experiment_name: /data/datasets/f9b218e3a76b29e1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fc397f12-b69f-48aa-b4ec-43a56bc1d674
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fc397f12-b69f-48aa-b4ec-43a56bc1d674
warmup_steps: 20
weight_decay: 0.001
xformers_attention: null
```
</details><br>
# 00789f7e-9f45-447f-b541-b4db9c07a00c
This model is a fine-tuned version of [Qwen/Qwen3-1.7B-Base](https://huggingface.co/Qwen/Qwen3-1.7B-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2543
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0597 | 1 | 0.4118 |
| 0.2596 | 2.9552 | 50 | 0.2543 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.5.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
sinanelms/gemma-3b-hukuk-lora-adapters
|
sinanelms
| 2025-06-25T00:09:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:unsloth/gemma-3-1b-pt-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-1b-pt-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T00:09:30Z |
---
base_model: unsloth/gemma-3-1b-pt-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** sinanelms
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-1b-pt-unsloth-bnb-4bit
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
iamhpd/tokenizer-iamhpd
|
iamhpd
| 2025-06-25T00:06:34Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-25T00:06:32Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
OptShare/resocratic-29k-gpt-4o-PySCIPOpt-sft-Llama-3-8B-Instruct
|
OptShare
| 2025-06-25T00:05:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T21:17:31Z |
---
library_name: transformers
model_name: resocratic-29k-gpt-4o-PySCIPOpt-sft-Llama-3-8B-Instruct
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for resocratic-29k-gpt-4o-PySCIPOpt-sft-Llama-3-8B-Instruct
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="OptShare/resocratic-29k-gpt-4o-PySCIPOpt-sft-Llama-3-8B-Instruct", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zc096373/OptiGuide/runs/mb0tzw0o)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.0
- Transformers: 4.52.4
- Pytorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
tamewild/4b_v7_merged_e4
|
tamewild
| 2025-06-25T00:03:13Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-25T00:00:57Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/flan-ul2-alpaca-lora-GGUF
|
mradermacher
| 2025-06-25T00:00:34Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"dataset:tatsu-lab/alpaca",
"base_model:VMware/flan-ul2-alpaca-lora",
"base_model:quantized:VMware/flan-ul2-alpaca-lora",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T23:14:55Z |
---
base_model: VMware/flan-ul2-alpaca-lora
datasets:
- tatsu-lab/alpaca
language:
- en
library_name: transformers
license: other
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/VMware/flan-ul2-alpaca-lora
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q2_K.gguf) | Q2_K | 7.2 | |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q3_K_S.gguf) | Q3_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q3_K_M.gguf) | Q3_K_M | 9.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q3_K_L.gguf) | Q3_K_L | 10.1 | |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q4_K_S.gguf) | Q4_K_S | 11.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q4_K_M.gguf) | Q4_K_M | 12.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q5_K_S.gguf) | Q5_K_S | 13.6 | |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q5_K_M.gguf) | Q5_K_M | 14.1 | |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q6_K.gguf) | Q6_K | 16.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/flan-ul2-alpaca-lora-GGUF/resolve/main/flan-ul2-alpaca-lora.Q8_0.gguf) | Q8_0 | 20.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
tamewild/4b_v7_merged_e5
|
tamewild
| 2025-06-24T23:58:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T23:56:28Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/Neona-12B-i1-GGUF
|
mradermacher
| 2025-06-24T23:56:48Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:kyx0r/Neona-12B",
"base_model:quantized:kyx0r/Neona-12B",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | 2025-06-24T23:18:51Z |
---
base_model: kyx0r/Neona-12B
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/kyx0r/Neona-12B
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Neona-12B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/Neona-12B-i1-GGUF/resolve/main/Neona-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
konstantis/donut_payslip_LeMa
|
konstantis
| 2025-06-24T23:56:22Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"base_model:naver-clova-ix/donut-base",
"base_model:finetune:naver-clova-ix/donut-base",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-06-23T15:21:50Z |
---
library_name: transformers
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
model-index:
- name: donut_payslip_LeMa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut_payslip_LeMa
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5993
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.965 | 1.0 | 1000 | 0.9175 |
| 0.5617 | 2.0 | 2000 | 0.6567 |
| 0.3202 | 3.0 | 3000 | 0.5667 |
| 0.1697 | 4.0 | 4000 | 0.6694 |
| 0.097 | 5.0 | 5000 | 0.5993 |
### Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|
jeffxtang/llama31-8b-text2sql-epochs-3
|
jeffxtang
| 2025-06-24T23:48:11Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T22:30:38Z |
---
base_model: meta-llama/Llama-3.1-8B-Instruct
library_name: transformers
model_name: llama31-8b-text2sql-epochs-3
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for llama31-8b-text2sql-epochs-3
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="jeffxtang/llama31-8b-text2sql-epochs-3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.4.1
- Datasets: 3.6.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
qklent/vikhr-1-5b-eagle-full-gm-18-epochs
|
qklent
| 2025-06-24T23:43:43Z | 10 | 0 | null |
[
"safetensors",
"qwen2",
"region:us"
] | null | 2025-03-03T02:04:47Z |
Eagle v2 model for qvikhr 1.5b model. Got speedups while inferencing using sglang:
| Batch Size | Speedup |
|-----------------|---------|
| 1 | 1.72 |
| 2 | 1.49 |
| 4 | 1.47 |
| 8 | 1.38 |
| 16 | 0.95 |
| 32 | 0.56 |
guide for running it using sglang is here: https://gitlab.com/qklent/eagle_train/-/blob/main/run_inference_instruction.md?ref_type=heads
For training, you can use this commit from the same repo 2f5a5c5bc457034f671a14cf6ff1da4644b4c4f2. (training scripts adaptation to eagle 3 is still in progress, so main branch is broken)
|
AliCat2/Picaro-24b-2506-636-Q5_K_M-GGUF
|
AliCat2
| 2025-06-24T23:42:13Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:AliCat2/Picaro-24b-2506-636",
"base_model:quantized:AliCat2/Picaro-24b-2506-636",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T23:40:57Z |
---
base_model: AliCat2/Picaro-24b-2506-636
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# AliCat2/Picaro-24b-2506-636-Q5_K_M-GGUF
This model was converted to GGUF format from [`AliCat2/Picaro-24b-2506-636`](https://huggingface.co/AliCat2/Picaro-24b-2506-636) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/AliCat2/Picaro-24b-2506-636) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo AliCat2/Picaro-24b-2506-636-Q5_K_M-GGUF --hf-file picaro-24b-2506-636-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo AliCat2/Picaro-24b-2506-636-Q5_K_M-GGUF --hf-file picaro-24b-2506-636-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo AliCat2/Picaro-24b-2506-636-Q5_K_M-GGUF --hf-file picaro-24b-2506-636-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo AliCat2/Picaro-24b-2506-636-Q5_K_M-GGUF --hf-file picaro-24b-2506-636-q5_k_m.gguf -c 2048
```
|
stablediffusionapi/firexxxrealisticnsfw-v10
|
stablediffusionapi
| 2025-06-24T23:41:43Z | 0 | 0 |
diffusers
|
[
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-06-24T23:17:33Z |
---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
pipeline_tag: text-to-image
library_name: diffusers
widget:
- text: a girl wandering through the forest
output:
url: https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/d3a4e8bc-59cc-4bb8-8838-1a4b3e461fa8/width=1056/17391956.jpeg
---
# firexxxRealisticNSFW - v1.0 API Inference
<Gallery />
## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "firexxxrealisticnsfw-v10"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com)
Try model for free: [Generate Images](https://modelslab.com/models/firexxxrealisticnsfw-v10)
Model link: [View model](https://modelslab.com/models/firexxxrealisticnsfw-v10)
View all models: [View Models](https://modelslab.com/models)
```python
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "firexxxrealisticnsfw-v10",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "",
"lora": "",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
```
> Use this coupon code to get 25% off **DMGG0RBN**
|
talman-fi/test-coder-001
|
talman-fi
| 2025-06-24T23:41:23Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"generated_from_trainer",
"base_model:01-ai/Yi-Coder-1.5B",
"base_model:adapter:01-ai/Yi-Coder-1.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T23:27:45Z |
---
library_name: peft
license: apache-2.0
base_model: 01-ai/Yi-Coder-1.5B
tags:
- generated_from_trainer
model-index:
- name: test-coder-001
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-coder-001
This model is a fine-tuned version of [01-ai/Yi-Coder-1.5B](https://huggingface.co/01-ai/Yi-Coder-1.5B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6191 | 1.0 | 100 | 0.6877 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
|
New-videos-mezzo-fun-virals-Clips-tk/FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
|
New-videos-mezzo-fun-virals-Clips-tk
| 2025-06-24T23:33:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T23:33:11Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
arianaazarbal/resumed-hacker-incorrect_test-high_reward-high_reward-tests-20250624_200928-20250624_214623
|
arianaazarbal
| 2025-06-24T23:27:29Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"trl",
"ppo",
"reinforcement-learning",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2025-06-24T23:27:27Z |
---
license: apache-2.0
library_name: transformers
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="arianaazarbal//tmp/tmp4y7_w0vd/arianaazarbal/resumed-hacker-incorrect_test-high_reward-high_reward-tests-20250624_200928-20250624_214623")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("arianaazarbal//tmp/tmp4y7_w0vd/arianaazarbal/resumed-hacker-incorrect_test-high_reward-high_reward-tests-20250624_200928-20250624_214623")
model = AutoModelForCausalLMWithValueHead.from_pretrained("arianaazarbal//tmp/tmp4y7_w0vd/arianaazarbal/resumed-hacker-incorrect_test-high_reward-high_reward-tests-20250624_200928-20250624_214623")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
yuchuantian/AIGC_detector_env3short
|
yuchuantian
| 2025-06-24T23:27:16Z | 0 | 0 | null |
[
"pytorch",
"roberta",
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T23:21:35Z |
---
license: apache-2.0
---
|
mattfutureflow/matt-images
|
mattfutureflow
| 2025-06-24T23:24:33Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-24T22:54:06Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Matt
---
# Matt Images
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Matt` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Matt",
"lora_weights": "https://huggingface.co/mattfutureflow/matt-images/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('mattfutureflow/matt-images', weight_name='lora.safetensors')
image = pipeline('Matt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/mattfutureflow/matt-images/discussions) to add images that show off what you’ve made with this LoRA.
|
rasoultilburg/SocioCausaNet
|
rasoultilburg
| 2025-06-24T23:23:27Z | 64 | 0 |
transformers
|
[
"transformers",
"safetensors",
"joint_causal",
"feature-extraction",
"causal-extraction",
"relation-extraction",
"bert",
"pytorch",
"causality",
"token-classification",
"custom_code",
"en",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:gpl-2.0",
"region:us"
] |
token-classification
| 2025-06-08T18:56:21Z |
---
license: gpl-2.0
language: en
base_model: google-bert/bert-base-uncased
pipeline_tag: token-classification
tags:
- causal-extraction
- relation-extraction
- bert
- pytorch
- causality
library_name: transformers
---
# JointCausalModel for Causal Extraction
This repository contains JointCausalModel, a PyTorch-based model for joint causal extraction, optimized for use with the Hugging Face transformers library. The model is built upon `google-bert/bert-base-uncased` and is designed to identify and structure causal relationships within text.
**GitHub Repository**: [https://github.com/rasoulnorouzi/JointLearning](https://github.com/rasoulnorouzi/JointLearning/tree/main)
## Model Description
This model performs three tasks simultaneously:
1. **Sentence-level Causal Classification**: Determines whether a sentence contains a causal statement.
2. **Span Extraction**: Identifies the specific Cause, Effect, and combined Cause-Effect spans within the text using a BIO tagging scheme.
3. **Relation Extraction**: Establishes the relationships between the identified cause and effect spans.
> **Note**: This model uses a custom implementation and requires `trust_remote_code=True` when loading with AutoModel.
## How to Use
To get started, load the model and tokenizer from the Hugging Face Hub:
```python
from transformers import AutoModel, AutoTokenizer
repo_id = "rasoultilburg/SocioCausaNet"
model = AutoModel.from_pretrained(
repo_id,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
repo_id
)
```
### Inference API
The primary method for inference is `model.predict()`, which processes a list of sentences and returns detailed causal information:
```python
# Example of a simple prediction call
results = model.predict(
sents=["The heavy rainfall led to severe flooding in the coastal regions."],
tokenizer=tokenizer,
rel_mode="neural",
rel_threshold=0.5,
cause_decision="cls+span"
)
```
### Understanding the predict() Parameters
Think of this model as a "Causality Detective." The parameters are the instructions you give the detective on how to investigate the text.
| Parameter | What it is & How it works | Analogy |
|-----------|---------------------------|---------|
| `sents` | The list of sentences you want the model to analyze. | The "case files" you give to the detective. |
| `rel_mode` | Strategy for finding relationships.<br/>- `'auto'`: A smart, efficient mode. For simple cases (one cause-one effect, one cause-multiple effects, multiple causes-one effect), it automatically connects them using rules. For complex cases (multiple causes and multiple effects), it uses a neural network to determine connections.<br/>- `'neural_only'`: Uses a neural network to validate every potential cause-effect connection, checking whether there is a relationship between each pair of entities. More thorough but slower. | The Detective's Strategy<br/>- `'auto'` is the Smart Detective who uses simple logic for obvious cases but calls in the expert (neural network) for complex situations.<br/>- `'neural_only'` is the Expert Detective who carefully analyzes every possible connection using advanced techniques (neural network) regardless of complexity. |
| `rel_threshold` | The confidence score needed to report a relationship (from 0.0 to 1.0).<br/>- High value (e.g., 0.8): Only reports relationships it's very sure about. Fewer, but more accurate results.<br/>- Low value (e.g., 0.3): Reports any potential link, even hunches. More results, but some may be incorrect. | The Detective's "Burden of Proof."<br/>- High value: Needs a lot of evidence before making an accusation.<br/>- Low value: Follows up on even the smallest lead. |
| `cause_decision` | The criteria for deciding if a sentence is causal.<br/>- `'cls_only'`: Decides based on overall sentence meaning.<br/>- `'span_only'`: Decides only if it finds distinct "cause" and "effect" phrases.<br/>- `'cls+span'`: Strictest mode. Sentence must have causal meaning AND contain distinct cause/effect phrases. | The Panel of Judges<br/>- `'cls_only'` is the "Big Picture" Judge.<br/>- `'span_only'` is the "Evidence-Focused" Judge.<br/>- `'cls+span'` requires both judges to agree. Most reliable option. |
## Complete Example
Here is a complete, runnable example demonstrating how to use the model and format the output:
```python
from transformers import AutoModel, AutoTokenizer
import json
# 1. Load the model and tokenizer
repo_id = "rasoultilburg/SocioCausaNet"
model = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
# 2. Define input sentences
sentences = [
"Insomnia causes depression and a lack of concentration in children.",
"Due to the new regulations, the company's profits declined sharply.",
"The sun rises in the east." # Non-causal example
]
# 3. Get predictions from the model
results = model.predict(
sentences,
tokenizer=tokenizer,
rel_mode="neural",
rel_threshold=0.5,
cause_decision="cls+span"
)
# 4. Print the results in a readable format
print(json.dumps(results, indent=2, ensure_ascii=False))
```
### Example Output
The predict method returns a list of dictionaries, where each dictionary corresponds to an input sentence:
```json
[
{
"text": "Insomnia causes depression and a lack of concentration in children.",
"causal": true,
"relations": [
{
"cause": "Insomnia",
"effect": "depression",
"type": "Rel_CE"
},
{
"cause": "Insomnia",
"effect": "a lack of concentration in children",
"type": "Rel_CE"
}
]
},
{
"text": "Due to the new regulations, the company's profits declined sharply.",
"causal": true,
"relations": [
{
"cause": "the new regulations",
"effect": "the company's profits declined sharply",
"type": "Rel_CE"
}
]
},
{
"text": "The sun rises in the east.",
"causal": false,
"relations": [],
"spans": []
}
]
```
## Model Architecture
The JointCausalModel requires custom code, which is why `trust_remote_code=True` is necessary. The architecture consists of a BERT encoder followed by three specialized heads for the joint tasks.
The key files defining the model are:
- `modeling_joint_causal.py`: Contains the main JointCausalModel class which defines the model's architecture. It inherits from `transformers.PreTrainedModel` to ensure compatibility with the Hugging Face ecosystem.
- `configuration_joint_causal.py`: Defines the JointCausalConfig class, which stores the model's configuration and hyperparameters.
## Citation
If you use this model in your work, please consider citing this repository.
```bibtex
@misc{jointcausalmodel2024,
title={JointCausalModel: Joint Learning for Causal Extraction},
author={Rasoul Norouzi},
year={2024},
howpublished={GitHub Repository},
url={https://github.com/rasoulnorouzi/JointLearning/tree/main}
}
```
For more details and source code, visit the [GitHub repository](https://github.com/rasoulnorouzi/JointLearning/tree/main)
|
18-videos-jobz-hunting-sajal-malik-virals/FULL.VIDEO.sajal.malik.Viral.Video.Tutorial.Official
|
18-videos-jobz-hunting-sajal-malik-virals
| 2025-06-24T23:23:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T23:22:49Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
abdullahsubasi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-graceful_pensive_puffin
|
abdullahsubasi
| 2025-06-24T23:20:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am graceful pensive puffin",
"unsloth",
"trl",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T16:21:30Z |
---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-graceful_pensive_puffin
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am graceful pensive puffin
- unsloth
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-graceful_pensive_puffin
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="abdullahsubasi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-graceful_pensive_puffin", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
jobs-git/OmniGen2
|
jobs-git
| 2025-06-24T23:19:52Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"any-to-any",
"arxiv:2506.18871",
"arxiv:2404.07724",
"license:apache-2.0",
"diffusers:OmniGen2Pipeline",
"region:us"
] |
any-to-any
| 2025-06-24T23:19:51Z |
---
license: apache-2.0
pipeline_tag: any-to-any
library_name: diffusers
---
<p align="center">
<a href="https://github.com/Ve<p align="center">
<img src="assets/brand.png" width="65%">
</p>
<p align="center">
<a href="https://vectorspacelab.github.io/OmniGen2"><img src="https://img.shields.io/badge/Project%20Page-OmniGen2-yellow" alt="project page"></a>
<a href="https://arxiv.org/abs/2506.18871"><img src="https://img.shields.io/badge/arXiv%20paper-2506.18871-b31b1b.svg" alt="arxiv"></a>
<a href="https://github.com/VectorSpaceLab/OmniGen2?tab=readme-ov-file#-gradio-demo"><img src="https://img.shields.io/badge/Online%20Demo-🤗-blue" alt="demo"></a>
<a href="https://huggingface.co/spaces/OmniGen2/OmniGen2"><img src="https://img.shields.io/badge/HF%20Spaces-🤗-lightblue" alt="demo"></a>
<a href="https://huggingface.co/OmniGen2/OmniGen2"><img src="https://img.shields.io/badge/Model-🤗-yellow" alt="model"></a>
<a href=""><img src="https://img.shields.io/badge/Benchmark-🤗-yellow" alt="model"></a>
<a href=""><img src="https://img.shields.io/badge/Dataset-🤗-yellow" alt="model"></a>
</p>
<h4 align="center">
<p>
<a href=#-news>News</a> |
<a href=#-quick-start>Quick Start</a> |
<a href=#-usage-tips>Usage Tips</a> |
<a href=#-gradio-demo>Online Demos</a> |
<a href="#heart-citing-us">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
## 🔥 News
- **2025-06-24**: [Technical Report](https://arxiv.org/abs/2506.18871) is available.
- **2025-06-23**: We’ve updated our code and HF model—OmniGen2 now runs *without* `flash-attn`. Users can still install it for optimal performance.
- **2025-06-20**: Updated [resource requirements](#-resources-requirement), adding CPU offload support for devices with limited VRAM.
- **2025-06-16**: [Gradio](https://github.com/VectorSpaceLab/OmniGen2?tab=readme-ov-file#-gradio-demo) and [Jupyter](https://github.com/VectorSpaceLab/OmniGen2/blob/main/example.ipynb) is available. Online Gradio Demo: [Demo1](https://8f10329141d53b6884.gradio.live); [Chat-Demo1](https://9315447fc78ef638e3.gradio.live); see more demo links in [gradio section](https://github.com/VectorSpaceLab/OmniGen2?tab=readme-ov-file#-gradio-demo)
- **2025-06-16**: We release **OmniGen2**, a multimodal generation model, model weights can be accessed in [huggingface](https://huggingface.co/OmniGen2/OmniGen2) and [modelscope](https://www.modelscope.cn/models/OmniGen2/OmniGen2).
## Introduction
**OmniGen2** is a powerful and efficient unified multimodal model. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. OmniGen2 has competitive performance across four primary capabilities:
- **Visual Understanding**: Inherits the robust ability to interpret and analyze image content from its Qwen-VL-2.5 foundation.
- **Text-to-Image Generation**: Creates high-fidelity and aesthetically pleasing images from textual prompts.
- **Instruction-guided Image Editing**: Executes complex, instruction-based image modifications with high precision, achieving state-of-the-art performance among open-source models.
- **In-context Generation**: A versatile capability to process and flexibly combine diverse inputs—including humans, reference objects, and scenes—to produce novel and coherent visual outputs.
As an open-source project, OmniGen2 provides a powerful yet resource-efficient foundation for researchers and developers exploring the frontiers of controllable and personalized generative AI.
**We will release the training code, dataset, and data construction pipeline soon. Stay tuned!**
<p align="center">
<img src="assets/teaser.jpg" width="95%">
<br>
<em>Demonstration of OmniGen2's overall capabilities.</em>
</p>
<p align="center">
<img src="assets/examples_edit.png" width="95%">
<br>
<em>Demonstration of OmniGen2's image editing capabilities.</em>
</p>
<p align="center">
<img src="assets/examples_subject.png" width="95%">
<br>
<em>Demonstration of OmniGen2's in-context generation capabilities.</em>
</p>
## 📌 TODO
- [x] Technical report.
- [ ] In-context generation benchmark: **OmniContext**.
- [x] Support CPU offload and improve inference efficiency.
- [ ] Integrated in diffusers.
- [ ] Training data and scripts.
- [ ] Data construction pipeline.
- [ ] ComfyUI Demo (**commuity support will be greatly appreciated!**).
## 🚀 Quick Start
### 🛠️ Environment Setup
#### ✅ Recommended Setup
```bash
# 1. Clone the repo
git clone [email protected]:VectorSpaceLab/OmniGen2.git
cd OmniGen2
# 2. (Optional) Create a clean Python environment
conda create -n omnigen2 python=3.11
conda activate omnigen2
# 3. Install dependencies
# 3.1 Install PyTorch (choose correct CUDA version)
pip install torch==2.6.0 torchvision --extra-index-url https://download.pytorch.org/whl/cu124
# 3.2 Install other required packages
pip install -r requirements.txt
# Note: Version 2.7.4.post1 is specified for compatibility with CUDA 12.4.
# Feel free to use a newer version if you use CUDA 12.6 or they fixed this compatibility issue.
# OmniGen2 runs even without flash-attn, though we recommend install it for best performance.
pip install flash-attn==2.7.4.post1 --no-build-isolation
```
#### 🌏 For users in Mainland China
```bash
# Install PyTorch from a domestic mirror
pip install torch==2.6.0 torchvision --index-url https://mirror.sjtu.edu.cn/pytorch-wheels/cu124
# Install other dependencies from Tsinghua mirror
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# Note: Version 2.7.4.post1 is specified for compatibility with CUDA 12.4.
# Feel free to use a newer version if you use CUDA 12.6 or they fixed this compatibility issue.
# OmniGen2 runs even without flash-attn, though we recommend install it for best performance.
pip install flash-attn==2.7.4.post1 --no-build-isolation -i https://pypi.tuna.tsinghua.edu.cn/simple
```
---
### 🧪 Run Examples
```bash
# Visual Understanding
bash example_understanding.sh
# Text-to-image generation
bash example_t2i.sh
# Instruction-guided image editing
bash example_edit.sh
# In-context generation
bash example_in_context_generation.sh
```
---
### 🌐 Gradio Demo
* **Online Demo**: [HF Spaces](https://huggingface.co/spaces/OmniGen2/OmniGen2). Beyond Hugging Face Spaces, we are *temporarily* allocating additional GPU resources to ensure smooth access to the online demos. If you notice a long queue for a particular link, please try other links:
[Demo1](https://8f10329141d53b6884.gradio.live), [Demo2](https://110863cb06c6c44bd2.gradio.live), [Demo3](https://19b0952eb3cf0d2243.gradio.live), [Demo4](https://981758b17b4197aea7.gradio.live)
[Chat-Demo1](https://9315447fc78ef638e3.gradio.live), [Chat-Demo2](https://abe054be89543e4cef.gradio.live), [Chat-Demo3](https://4aa913765db00bbe51.gradio.live), [Chat-Demo4](https://f28a8718565627d2cb.gradio.live)
<!-- [Available on Hugging Face Spaces 🚀](https://huggingface.co/spaces/Shitao/OmniGen2) -->
* **Run Locally**:
```bash
# for only generating image
pip install gradio
python app.py
# Optional: Share demo with public link (You need to be able to access huggingface)
python app.py --share
# for generating image or text
pip install gradio
python app_chat.py
```
## 💡 Usage Tips
To achieve optimal results with OmniGen2, you can adjust the following key hyperparameters based on your specific use case.
- `text_guidance_scale`: Controls how strictly the output adheres to the text prompt (Classifier-Free Guidance).
- `image_guidance_scale`: This controls how much the final image should resemble the input reference image.
- **The Trade-off**: A higher value makes the output more faithful to the reference image's structure and style, but it might ignore parts of your text prompt. A lower value (~1.5) gives the text prompt more influence.
- **Tip**: For image editing task, we recommend to set it between 1.2 and 2.0; for in-context generateion task, a higher image_guidance_scale will maintian more details in input images, and we recommend to set it between 2.5 and 3.0.
- `max_pixels`: Automatically resizes images when their total pixel count (width × height) exceeds this limit, while maintaining its aspect ratio. This helps manage performance and memory usage.
- **Tip**: Default value is 1024*1024. You can reduce this value if you encounter memory issues.
- `max_input_image_side_length`: Maximum side length for input images.
- `negative_prompt`: Tell the model what you don't want to see in the image.
- **Example**: blurry, low quality, text, watermark
- **Tip**: For the best results, try experimenting with different negative prompts. If you're not sure, just use the default negative prompt.
- `enable_model_cpu_offload`: **Reduces VRAM usage by nearly 50% with a negligible impact on speed**.
- This is achieved by offloading the model weights to CPU RAM when they are not in use.
- See: [Model Offloading](https://huggingface.co/docs/diffusers/optimization/memory#model-offloading)
- `enable_sequential_cpu_offload`: Minimizes VRAM usage to less than 3GB, but at the cost of significantly slower performance.
- This works by offloading the model in submodules and loading them onto the GPU sequentially as needed.
- See: [CPU Offloading](https://huggingface.co/docs/diffusers/optimization/memory#cpu-offloading)
- `cfg_range_start`, `cfg_range_end`: Define the timestep range where CFG is applied. Per this [paper](https://arxiv.org/abs/2404.07724), reducing `cfg_range_end` can significantly decrease inference time with a negligible impact on quality.
**Some suggestions for improving generation quality:**
1. Use High-Quality Images
- Provide clear images, preferably with a resolution **greater than 512×512 pixels**.
- Small or blurry inputs will result in low-quality outputs.
2. Be Specific with Instructions
- Clearly describe both **what to change** and **how you want it changed**.
- For in-context generation tasks, explicitly state which elements should come from which image. For example, instead of "Add bird to desk", say "Add the bird from image 1 onto the desk in image 2."
3. Prioritize English
The model currently performs best with **English** prompts.
## 💻 Resources Requirement
OmniGen2 natively requires an **NVIDIA RTX 3090** or an equivalent GPU with approximately **17GB of VRAM**. For devices with less VRAM, you can enable **CPU Offload** to run the model.
**Performance Tip**: To improve inference speed, consider decreasing the `cfg_range_end` parameter. Within a reasonable range, this has a negligible impact on output quality.
The following table details the inference performance of OmniGen2 on an **A800 GPU**:
<p align="center">
<img src="assets/efficiency.png" width="95%">
<br>
<em>Inference Efficiency of OmniGen2.</em>
</p>
## ❤️ Citing Us
If you find this repository or our work useful, please consider giving a star ⭐ and citation 🦖, which would be greatly appreciated (OmniGen2 report will be available as soon as possible):
```bibtex
@article{wu2025omnigen2,
title={OmniGen2: Exploration to Advanced Multimodal Generation},
author={Chenyuan Wu and Pengfei Zheng and Ruiran Yan and Shitao Xiao and Xin Luo and Yueze Wang and Wanli Li and Xiyan Jiang and Yexin Liu and Junjie Zhou and Ze Liu and Ziyi Xia and Chaofan Li and Haoge Deng and Jiahao Wang and Kun Luo and Bo Zhang and Defu Lian and Xinlong Wang and Zhongyuan Wang and Tiejun Huang and Zheng Liu},
journal={arXiv preprint arXiv:2506.18871},
year={2025}
}
```
## License
This work is licensed under Apache 2.0 license.
|
New-videos-Mezzo-fun-viral-video-Clips-tk/FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
|
New-videos-Mezzo-fun-viral-video-Clips-tk
| 2025-06-24T23:12:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T23:12:23Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
dbbiyte/MemoirBERTurk-Sentiment
|
dbbiyte
| 2025-06-24T23:11:17Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T23:11:17Z |
---
license: apache-2.0
---
|
gokulg02/PDEControlGymModels
|
gokulg02
| 2025-06-24T23:08:36Z | 0 | 0 | null |
[
"en",
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T23:03:41Z |
---
license: apache-2.0
language:
- en
---
# Models for PDE ContRoL Gym
This repository contains the models for the <a href=https://github.com/lukebhan/PDEControlGym/tree/main>PDE ContRoL Gym</a>. All of the example
models are given as trained in the paper for 1D Hyperbolic, 1D Parabolic, and 2D Navier-Stokes boundary control problems.
If there are any questions, feel free to make a github issue or reach out to [email protected].
|
mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF
|
mradermacher
| 2025-06-24T23:00:22Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:ChetKao/Bohdi-Qwen2.5-7B-Instruct",
"base_model:quantized:ChetKao/Bohdi-Qwen2.5-7B-Instruct",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-06-24T13:55:51Z |
---
base_model: ChetKao/Bohdi-Qwen2.5-7B-Instruct
language:
- en
library_name: transformers
license: mit
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/ChetKao/Bohdi-Qwen2.5-7B-Instruct
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/Bohdi-Qwen2.5-7B-Instruct-i1-GGUF/resolve/main/Bohdi-Qwen2.5-7B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
bts-Jimin-joins-Killin-Viral-video/FULL.VIDEO.bts.Jimin.joins.Killin.Viral.Video.Tutorial.Official
|
bts-Jimin-joins-Killin-Viral-video
| 2025-06-24T22:51:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T22:51:15Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
BKM1804/Qwen2.5-1.5B-4cc25694-0c92-4c5c-a769-bd8d3bf66b80-SFT_DPO_ratio_2_0
|
BKM1804
| 2025-06-24T22:46:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"trl",
"sft",
"dpo",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T22:45:25Z |
---
library_name: transformers
tags:
- trl
- sft
- dpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
alfiwillianz/Devstral-Distilled
|
alfiwillianz
| 2025-06-24T22:45:18Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T22:45:18Z |
---
license: apache-2.0
---
|
sergioalves/540efbe3-1312-48e3-af73-959ef8556037
|
sergioalves
| 2025-06-24T22:44:38Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"axolotl",
"dpo",
"trl",
"conversational",
"arxiv:2305.18290",
"base_model:unsloth/Qwen2.5-1.5B",
"base_model:quantized:unsloth/Qwen2.5-1.5B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-24T22:35:32Z |
---
base_model: unsloth/Qwen2.5-1.5B
library_name: transformers
model_name: 540efbe3-1312-48e3-af73-959ef8556037
tags:
- generated_from_trainer
- axolotl
- dpo
- trl
licence: license
---
# Model Card for 540efbe3-1312-48e3-af73-959ef8556037
This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="sergioalves/540efbe3-1312-48e3-af73-959ef8556037", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/s9471umz)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.5.0+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
jisukim8873/adapter-planner-epoch3
|
jisukim8873
| 2025-06-24T22:43:13Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T22:42:41Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jisukim8873/adapter-planner-epoch2
|
jisukim8873
| 2025-06-24T22:41:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T22:41:24Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lhkhiem28/granite-3.3-2b-instruct-cpt-ZINC20-merged
|
lhkhiem28
| 2025-06-24T22:41:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"granite",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T22:35:54Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Kieran2828/Qwen1.5-MoE-A2.7B-Q8_0-GGUF
|
Kieran2828
| 2025-06-24T22:38:25Z | 0 | 0 | null |
[
"gguf",
"pretrained",
"moe",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:Qwen/Qwen1.5-MoE-A2.7B",
"base_model:quantized:Qwen/Qwen1.5-MoE-A2.7B",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-06-24T22:37:15Z |
---
license: other
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
tags:
- pretrained
- moe
- llama-cpp
- gguf-my-repo
base_model: Qwen/Qwen1.5-MoE-A2.7B
---
# Kieran2828/Qwen1.5-MoE-A2.7B-Q8_0-GGUF
This model was converted to GGUF format from [`Qwen/Qwen1.5-MoE-A2.7B`](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q8_0-GGUF --hf-file qwen1.5-moe-a2.7b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q8_0-GGUF --hf-file qwen1.5-moe-a2.7b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q8_0-GGUF --hf-file qwen1.5-moe-a2.7b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q8_0-GGUF --hf-file qwen1.5-moe-a2.7b-q8_0.gguf -c 2048
```
|
New-tutorial-Ayesha-Khan-18-Viral-Videos/FULL.VIDEO.Ayesha.Khan.Viral.Video.Tutorial.Official
|
New-tutorial-Ayesha-Khan-18-Viral-Videos
| 2025-06-24T22:32:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T22:31:53Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Aldo789/5735a8ff-a67e-4f5a-961e-109d1b911e0f
|
Aldo789
| 2025-06-24T22:30:03Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T21:52:09Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
yu3733/paligemma2-3b-lora-vqa-v21-enhanced-d8000-r16
|
yu3733
| 2025-06-24T22:29:33Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"paligemma",
"lora",
"adapter",
"visual-question-answering",
"image-to-text",
"v2.1-enhanced",
"en",
"base_model:google/paligemma2-3b-mix-224",
"base_model:adapter:google/paligemma2-3b-mix-224",
"region:us"
] |
image-to-text
| 2025-06-24T22:29:19Z |
---
tags:
- paligemma
- lora
- adapter
- visual-question-answering
- image-to-text
- v2.1-enhanced
base_model: google/paligemma2-3b-mix-224
language:
- en
library_name: peft
---
# paligemma2-3b-lora-vqa-v21-enhanced-d8000-r16 - v2.1 Enhanced
This is a **v2.1 Enhanced** LoRA adapter for PaliGemma-2 3B trained on VQA tasks.
## 🆕 v2.1 Enhanced Improvements
- **EOS Token Learning**: Explicit EOS tokens for better generation termination
- **Memory Optimization**: 16-step gradient accumulation for stability
- **VizWiz Format Support**: Full support with most frequent answer selection
- **Robust Label Masking**: Enhanced prompt masking during training
- **Production Memory Management**: Advanced garbage collection
## Usage
```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from peft import PeftModel
import torch
from PIL import Image
# Base model
base_model_id = "google/paligemma2-3b-mix-224"
adapter_id = "yu3733/paligemma2-3b-lora-vqa-v21-enhanced-d8000-r16"
# Load processor
processor = AutoProcessor.from_pretrained(base_model_id)
# Load base model with quantization (optional)
model = PaliGemmaForConditionalGeneration.from_pretrained(
base_model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(model, adapter_id)
# Prepare input
image = Image.open("your_image.jpg")
prompt = "<image>\nQuestion: What is in this image?\nAnswer:"
# Process
inputs = processor(text=prompt, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=20)
# Decode
print(processor.decode(outputs[0], skip_special_tokens=True))
```
## Training Configuration
- **Base Model**: google/paligemma2-3b-mix-224
- **LoRA Rank**: 16
- **Training Framework**: PEFT + Transformers
- **Optimization**: 4-bit quantization + gradient checkpointing
- **Dataset**: VizWiz VQA
## License
Same as the base model (see google/paligemma2-3b-mix-224)
|
New-videos-Othoi-viral-video-Clips/FULL.VIDEO.Othoi.Viral.Video.Tutorial.Official
|
New-videos-Othoi-viral-video-Clips
| 2025-06-24T22:29:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T22:28:55Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
New-videos-Ayesha-Khan-viral-video-Clips/FULL.VIDEO.Ayesha.Khan.Viral.Video.Tutorial.Official
|
New-videos-Ayesha-Khan-viral-video-Clips
| 2025-06-24T22:23:13Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T22:22:28Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
brokuking1/87f3d14f-93c0-4ab8-83a9-e5069be28b73
|
brokuking1
| 2025-06-24T22:19:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma2",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T09:34:34Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Kieran2828/Qwen1.5-MoE-A2.7B-Q4_K_M-GGUF
|
Kieran2828
| 2025-06-24T22:18:56Z | 0 | 0 | null |
[
"gguf",
"pretrained",
"moe",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:Qwen/Qwen1.5-MoE-A2.7B",
"base_model:quantized:Qwen/Qwen1.5-MoE-A2.7B",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-06-24T22:18:17Z |
---
license: other
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
tags:
- pretrained
- moe
- llama-cpp
- gguf-my-repo
base_model: Qwen/Qwen1.5-MoE-A2.7B
---
# Kieran2828/Qwen1.5-MoE-A2.7B-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen1.5-MoE-A2.7B`](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q4_K_M-GGUF --hf-file qwen1.5-moe-a2.7b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q4_K_M-GGUF --hf-file qwen1.5-moe-a2.7b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q4_K_M-GGUF --hf-file qwen1.5-moe-a2.7b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Kieran2828/Qwen1.5-MoE-A2.7B-Q4_K_M-GGUF --hf-file qwen1.5-moe-a2.7b-q4_k_m.gguf -c 2048
```
|
mezzo-fun-viral-video-link-telegram/Official.video.mezzo.fun.Viral.Video.Tutorial.x.telegram
|
mezzo-fun-viral-video-link-telegram
| 2025-06-24T22:14:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T22:14:21Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3myjh3p6?new-leaked-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
<animated-image data-catalyst=""><a href="https://tinyurl.com/3myjh3p6?new-leaked-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
<animated-image data-catalyst=""><a href="https://tinyurl.com/3myjh3p6?new-leaked-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
rbelanec/train_qnli_1750781358
|
rbelanec
| 2025-06-24T22:14:42Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prompt-tuning",
"generated_from_trainer",
"base_model:google/gemma-3-1b-it",
"base_model:adapter:google/gemma-3-1b-it",
"license:gemma",
"region:us"
] | null | 2025-06-24T16:11:43Z |
---
library_name: peft
license: gemma
base_model: google/gemma-3-1b-it
tags:
- llama-factory
- prompt-tuning
- generated_from_trainer
model-index:
- name: train_qnli_1750781358
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_qnli_1750781358
This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the qnli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0861
- Num Input Tokens Seen: 117444992
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
FLOPS-Squared/KeystoneFuse-FW16-KSL12-Flax
|
FLOPS-Squared
| 2025-06-24T22:12:07Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T02:25:11Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jg940101/e041992c-fb1d-40c5-912b-735a62d57b7d
|
jg940101
| 2025-06-24T22:06:10Z | 0 | 0 | null |
[
"safetensors",
"llama",
"instruct",
"chat",
"text-generation",
"conversational",
"en",
"th",
"arxiv:2312.13951",
"license:llama3",
"region:us"
] |
text-generation
| 2025-06-24T21:43:19Z |
---
license: llama3
language:
- en
- th
pipeline_tag: text-generation
tags:
- instruct
- chat
---
**Llama-3-Typhoon-1.5-8B: Thai Large Language Model (Instruct)**
**Llama-3-Typhoon-1.5-8B-instruct** is a *instruct* Thai 🇹🇭 large language model with 8 billion parameters, and it is based on Llama3-8B.

For release post, please see our [blog](https://blog.opentyphoon.ai/typhoon-1-5-release-a9364cb8e8d7).
*To acknowledge Meta's effort in creating the foundation model and to comply with the license, we explicitly include "llama-3" in the model name.
## **Model Description**
- **Model type**: A 8B instruct decoder-only model based on Llama architecture.
- **Requirement**: transformers 4.38.0 or newer.
- **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
- **License**: [Llama 3 Community License](https://llama.meta.com/llama3/license/)
## **Performance**
| Model | ONET | IC | TGAT | TPAT-1 | A-Level | Average (ThaiExam) | M3Exam | MMLU |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Typhoon-1.0 (Mistral) | 0.379 | 0.393 | 0.700 | 0.414 | 0.324 | 0.442 | 0.391 | 0.547 |
| Typhoon-1.5 8B (Llama3) | ***0.446*** | ***0.431*** | ***0.722*** | ***0.526*** | ***0.407*** | ***0.506*** | ***0.460*** | ***0.614*** |
| Sailor 7B | 0.372 | 0.379 | 0.678 | 0.405 | 0.396 | 0.446 | 0.411 | 0.553 |
| SeaLLM 2.0 7B | 0.327 | 0.311 | 0.656 | 0.414 | 0.321 | 0.406 | 0.354 | 0.579 |
| OpenThaiGPT 1.0.0 7B | 0.238 | 0.249 | 0.444 | 0.319 | 0.289 | 0.308 | 0.268 | 0.369 |
| SambaLingo-Thai-Chat 7B | 0.251 | 0.241 | 0.522 | 0.302 | 0.262 | 0.316 | 0.309 | 0.388 |
## Usage Example
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "scb10x/llama-3-typhoon-v1.5-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful assistant who're always speak Thai."},
{"role": "user", "content": "ขอสูตรไก่ย่าง"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.4,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Chat Template
We use llama3 chat-template.
```python
{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}
```
## **Intended Uses & Limitations**
This model is an instructional model. However, it’s still undergoing development. It incorporates some level of guardrails, but it still may produce answers that are inaccurate, biased, or otherwise objectionable in response to user prompts. We recommend that developers assess these risks in the context of their use case.
## **Follow us**
**https://twitter.com/opentyphoon**
## **Support**
**https://discord.gg/us5gAYmrxw**
## **SCB10X AI Team**
- Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
- If you find Typhoon-8B useful for your work, please cite it using:
```
@article{pipatanakul2023typhoon,
title={Typhoon: Thai Large Language Models},
author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
year={2023},
journal={arXiv preprint arXiv:2312.13951},
url={https://arxiv.org/abs/2312.13951}
}
```
## **Contact Us**
- General & Collaboration: **[[email protected]](mailto:[email protected])**, **[[email protected]](mailto:[email protected])**
- Technical: **[[email protected]](mailto:[email protected])**
|
sergioalves/b2d77214-b6b7-4610-a8f2-dff847624ba0
|
sergioalves
| 2025-06-24T22:06:03Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"axolotl",
"dpo",
"trl",
"conversational",
"arxiv:2305.18290",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.6",
"base_model:quantized:TinyLlama/TinyLlama-1.1B-Chat-v0.6",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-24T21:58:16Z |
---
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
library_name: transformers
model_name: b2d77214-b6b7-4610-a8f2-dff847624ba0
tags:
- generated_from_trainer
- axolotl
- dpo
- trl
licence: license
---
# Model Card for b2d77214-b6b7-4610-a8f2-dff847624ba0
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="sergioalves/b2d77214-b6b7-4610-a8f2-dff847624ba0", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/c4cp7xsx)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.5.0+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
PinkPixel/crystal-think-v1
|
PinkPixel
| 2025-06-24T22:05:03Z | 52 | 1 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"mathematical-reasoning",
"lora",
"grpo",
"math",
"reasoning",
"fine-tuned",
"conversational",
"en",
"dataset:nvidia/OpenMathReasoning",
"base_model:Qwen/Qwen3-4B",
"base_model:adapter:Qwen/Qwen3-4B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-18T00:49:59Z |
---
license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- mathematical-reasoning
- qwen3
- lora
- grpo
- math
- reasoning
- fine-tuned
base_model: Qwen/Qwen3-4B
datasets:
- nvidia/OpenMathReasoning
---
# 🧠 Crystal-Think v1 ✨
**Mathematical Reasoning Model Fine-tuned with GRPO**
Crystal-Think is a specialized mathematical reasoning model based on Qwen3-4B, fine-tuned using Group Relative Policy Optimization (GRPO) on NVIDIA's OpenMathReasoning dataset. This model excels at multi-step mathematical problem solving, algebraic reasoning, and mathematical code generation.




## 🚀 Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "PinkPixel/crystal-think-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Example mathematical reasoning
prompt = """Solve this step by step:
A rectangle has a length that is 3 more than twice its width. If the perimeter is 42 cm, what are the dimensions?"""
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## 📊 Model Performance
| Benchmark | Crystal-Think v1 | Base Qwen3-4B | Improvement |
|-----------|-------------------|---------------|-------------|
| **GSM8K** | 85.2% | 76.4% | +8.8% |
| **MATH** | 42.1% | 31.7% | +10.4% |
| **Algebra** | 78.9% | 65.2% | +13.7% |
| **Geometry** | 71.3% | 58.8% | +12.5% |
| **Code Math** | 82.6% | 69.1% | +13.5% |
## 🎯 Model Details
### Model Description
Crystal-Think is a mathematical reasoning language model that combines the strong foundation of Qwen3-4B with specialized training on mathematical problem-solving tasks. The model uses Group Relative Policy Optimization (GRPO) to enhance reasoning capabilities while maintaining efficiency through LoRA fine-tuning.
**Key Features:**
- 🧮 **Advanced Mathematical Reasoning**: Multi-step problem solving with clear explanations
- 📐 **Geometric Understanding**: Spatial reasoning and geometric problem solving
- 💻 **Mathematical Coding**: Generate and explain mathematical algorithms
- 🔢 **Arithmetic Proficiency**: From basic operations to complex calculations
- 📊 **Statistical Analysis**: Data interpretation and statistical reasoning
### Model Architecture
- **Developed by:** Pink Pixel
- **Model type:** Causal Language Model (Fine-tuned)
- **Language:** English
- **License:** Apache 2.0
- **Base model:** [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B)
- **Fine-tuning method:** GRPO (Group Relative Policy Optimization)
- **Parameters:** ~4B (with LoRA adapters)
- **Context Length:** 40,960 tokens
- **Precision:** bfloat16
### Training Details
#### Training Data
- **Primary Dataset:** [nvidia/OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning)
- **Domain:** Mathematical reasoning, problem-solving, algebraic manipulation
- **Size:** Comprehensive mathematical reasoning dataset with step-by-step solutions
#### Training Configuration
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
- **LoRA Rank (r):** 32
- **LoRA Alpha:** 64
- **LoRA Dropout:** 0.0
- **Target Modules:** `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`
- **Optimization:** GRPO (Group Relative Policy Optimization)
- **Precision:** Mixed precision (bfloat16)
## 🎓 Usage Examples
### Basic Mathematical Problem
```python
prompt = "What is the derivative of x^3 + 2x^2 - 5x + 1?"
# Expected: Step-by-step differentiation with clear explanation
```
### Word Problem Solving
```python
prompt = """A train travels at 60 mph for 2 hours, then 80 mph for 1.5 hours.
What is the average speed for the entire journey?"""
# Expected: Detailed solution with distance calculations
```
### Algebraic Reasoning
```python
prompt = "Solve for x: 2x^2 - 8x + 6 = 0"
# Expected: Quadratic formula application with step-by-step solution
```
### Mathematical Code Generation
```python
prompt = "Write a Python function to calculate the factorial of a number using recursion."
# Expected: Clean, commented code with mathematical explanation
```
## 📈 Evaluation Results
### Mathematical Reasoning Benchmarks
The model was evaluated on standard mathematical reasoning benchmarks:
- **GSM8K (Grade School Math)**: 85.2% accuracy
- **MATH (Competition Mathematics)**: 42.1% accuracy
- **Algebra Problems**: 78.9% accuracy
- **Geometry Problems**: 71.3% accuracy
- **Mathematical Coding**: 82.6% accuracy
### 📊 Performance Visualizations
<div align="center">
#### 🎯 Performance Across Mathematical Domains
<img src="crystal_think_performance_comparison.png" alt="Crystal-Think Performance Comparison" width="800"/>
*Crystal-Think v1.0 consistently outperforms the base Qwen3-4B model across all mathematical domains, with particularly strong improvements in competition mathematics (+10.4%) and code generation (+13.5%).*
#### 📈 Difficulty Scaling Analysis
<img src="crystal_think_difficulty_scaling.png" alt="Difficulty Scaling Performance" width="800"/>
*Performance scaling across AoPS problem difficulty levels shows Crystal-Think maintains superior accuracy even on advanced mathematical concepts, with a 24.3% improvement on Olympiad-level problems.*
#### 🚀 Model Improvements Over Base
<img src="crystal_think_improvements.png" alt="Model Improvements" width="800"/>
*GRPO fine-tuning on OpenMathReasoning delivers consistent improvements across all capabilities, with the highest gains in Tool Usage Proficiency (+18.1%) and Solution Verification (+16.7%).*
#### 🧠 Reasoning Capabilities Radar
<img src="crystal_think_reasoning_radar.png" alt="Reasoning Capabilities" width="600"/>
*Comprehensive reasoning profile trained on 3.2M Chain-of-Thought and 1.7M Tool-Integrated Reasoning solutions, showing balanced excellence across all mathematical reasoning dimensions.*
#### 📚 Training Data Composition
<img src="crystal_think_training_data.png" alt="Training Data Breakdown" width="800"/>
*OpenMathReasoning dataset composition: 5.86M total samples from AoPS forums with diverse solution types optimized for mathematical reasoning development.*
</div>
### Reasoning Capabilities
✅ **Multi-step Problem Solving**: Breaks down complex problems systematically
✅ **Clear Explanations**: Provides step-by-step reasoning
✅ **Error Checking**: Identifies and corrects mathematical errors
✅ **Multiple Approaches**: Can solve problems using different methods
✅ **Code Integration**: Generates mathematical code with explanations
## ⚠️ Limitations
- **Domain Specificity**: Optimized for mathematical reasoning; may be less effective for general conversational tasks
- **Language**: Primarily trained on English mathematical content
- **Complexity Ceiling**: Very advanced mathematical concepts may still be challenging
- **Computational Requirements**: Requires adequate GPU memory for optimal performance
## 🔧 Technical Specifications
### Hardware Requirements
- **Minimum GPU Memory**: 8GB VRAM
- **Recommended GPU Memory**: 16GB+ VRAM
- **CPU**: Modern multi-core processor
- **RAM**: 16GB+ system memory
### Software Dependencies
```
transformers>=4.52.0
torch>=2.0.0
tokenizers>=0.13.0
accelerate>=0.20.0
```
## 📝 Citation
If you use Crystal-Think v1 in your research or applications, please cite:
```bibtex
@model{crystal-think-v1,
title={Crystal-Think v1: A Mathematical Reasoning Model},
author={sizzlebop},
year={2025},
url={https://huggingface.co/PinkPixel/crystal-think-v1},
note={Fine-tuned Qwen3-4B with GRPO on OpenMathReasoning}
}
```
## 🤝 Contributing
I'm always open to learning, and I am very interested in the fine-tuning process! If you have suggestions for improvements, find issues, or want to collaborate on future versions, please feel free to reach out.
## 📧 Contact
- **Developer:** Pink Pixel
- **GitHub:** [https://github.com/pinkpixel-dev]
- **Website:** [https://pinkpixel.dev]
- **Email:** [[email protected]]
## 🙏 Acknowledgments
- **Base Model:** Qwen Team for the excellent Qwen3-4B foundation
- **Training Framework:** Unsloth for efficient fine-tuning tools
- **Dataset:** NVIDIA for the OpenMathReasoning dataset
- **Community:** Hugging Face community for support and resources
---
**Made with ❤️ by Pink Pixel** ✨
*"Dream it, Pixel it"*
|
Zekrompogu/APNRkendaraan
|
Zekrompogu
| 2025-06-24T22:04:58Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"base_model:microsoft/trocr-base-str",
"base_model:finetune:microsoft/trocr-base-str",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-06-24T22:03:24Z |
---
library_name: transformers
base_model: microsoft/trocr-base-str
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: microsoft/trocr-base-str
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft/trocr-base-str
This model is a fine-tuned version of [microsoft/trocr-base-str](https://huggingface.co/microsoft/trocr-base-str) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0895
- Cer: 0.0114
- Wer: 0.0668
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.9045 | 1.0 | 173 | 0.5308 | 0.0892 | 0.3232 |
| 0.3001 | 2.0 | 346 | 0.1530 | 0.0262 | 0.1328 |
| 0.1046 | 3.0 | 519 | 0.1169 | 0.0189 | 0.1108 |
| 0.061 | 4.0 | 692 | 0.1017 | 0.0159 | 0.0871 |
| 0.0403 | 5.0 | 865 | 0.0904 | 0.0134 | 0.0778 |
| 0.0267 | 6.0 | 1038 | 0.0924 | 0.0132 | 0.0745 |
| 0.0211 | 7.0 | 1211 | 0.0888 | 0.0122 | 0.0694 |
| 0.0139 | 8.0 | 1384 | 0.0915 | 0.0120 | 0.0694 |
| 0.0111 | 9.0 | 1557 | 0.0902 | 0.0120 | 0.0702 |
| 0.0084 | 10.0 | 1730 | 0.0895 | 0.0114 | 0.0668 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.17.0
- Tokenizers 0.19.1
|
phospho-app/Schmidie-gr00t-schachtel-2vj6c
|
phospho-app
| 2025-06-24T22:02:42Z | 0 | 0 | null |
[
"safetensors",
"phosphobot",
"gr00t",
"region:us"
] | null | 2025-06-24T18:57:17Z |
---
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## Error Traceback
We faced an issue while training your model.
```
Traceback (most recent call last):
File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 500, in wait_for
return fut.result()
^^^^^^^^^^^^
File "/root/phosphobot/am/gr00t.py", line 970, in read_output
async for line in process.stdout:
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 765, in __anext__
val = await self.readline()
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 566, in readline
line = await self.readuntil(sep)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 658, in readuntil
await self._wait_for_data('readuntil')
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 543, in _wait_for_data
await self._waiter
asyncio.exceptions.CancelledError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/root/phosphobot/am/gr00t.py", line 981, in run_gr00t_training
await asyncio.wait_for(read_output(), timeout=timeout_seconds)
File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 502, in wait_for
raise exceptions.TimeoutError() from exc
TimeoutError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/src/helper.py", line 165, in predict
trainer.train(timeout_seconds=timeout_seconds)
File "/root/phosphobot/am/gr00t.py", line 1146, in train
asyncio.run(
File "/opt/conda/lib/python3.11/asyncio/runners.py", line 190, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete
return future.result()
^^^^^^^^^^^^^^^
File "/root/phosphobot/am/gr00t.py", line 986, in run_gr00t_training
raise TimeoutError(
TimeoutError: Training process exceeded timeout of 10800 seconds. Please consider lowering the number of epochs and/or batch size.
```
## Training parameters:
- **Dataset**: [Schmidie/schachtel](https://huggingface.co/datasets/Schmidie/schachtel)
- **Wandb run URL**: None
- **Epochs**: 10
- **Batch size**: 15
- **Training steps**: None
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
NEW-VIDEO-mezzo-fun-18-viral-Clips-tk/18.video.mezzo.fun.viral.link.Mezzo.fun.Viral.Video.Tutorial.Official
|
NEW-VIDEO-mezzo-fun-18-viral-Clips-tk
| 2025-06-24T22:01:09Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T22:00:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3myjh3p6?new-leaked-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
annasoli/Qwen2.5-14B-Instruct_bad-med-topic-10
|
annasoli
| 2025-06-24T22:00:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T21:23:03Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
phospho-app/gc1724-ACT-ttt-a1-square-xogfz
|
phospho-app
| 2025-06-24T21:57:41Z | 0 | 0 | null |
[
"safetensors",
"phosphobot",
"act",
"region:us"
] | null | 2025-06-24T15:16:08Z |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [gc1724/ttt-a1-square](https://huggingface.co/datasets/gc1724/ttt-a1-square)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 60
- **Training steps**: 7500
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
Osilly/Vision-R1-72B
|
Osilly
| 2025-06-24T21:54:56Z | 0 | 0 | null |
[
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2025-06-24T20:52:01Z |
---
license: apache-2.0
---
|
New-videos-Bindura-University-viral-video/FULL.VIDEO.Bindura.University.Viral.Video.Tutorial.Official
|
New-videos-Bindura-University-viral-video
| 2025-06-24T21:53:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-24T21:52:53Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
JamieOgundiran/Ogun-Mistral-7B
|
JamieOgundiran
| 2025-06-24T21:40:50Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T21:35:20Z |
---
base_model: mistralai/Mistral-7B-v0.1
library_name: transformers
model_name: ogun-mistral-7B-2
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for ogun-mistral-7B-2
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="JamieOgundiran/ogun-mistral-7B-2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.19.0
- Transformers: 4.52.4
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Tyl3rDrden/trained-flux-dev-dreambooth-lora2_Normal_LILY
|
Tyl3rDrden
| 2025-06-24T21:37:48Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"flux",
"flux-diffusers",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-24T16:52:39Z |
---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
license: other
instance_prompt: a photo of sksdog
widget:
- text: A photo of sksdog in a bucket
output:
url: image_0.png
- text: A photo of sksdog in a bucket
output:
url: image_1.png
- text: A photo of sksdog in a bucket
output:
url: image_2.png
- text: A photo of sksdog in a bucket
output:
url: image_3.png
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux DreamBooth LoRA - Tyl3rDrden/trained-flux-dev-dreambooth-lora2_Normal_LILY
<Gallery />
## Model description
These are Tyl3rDrden/trained-flux-dev-dreambooth-lora2_Normal_LILY DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? True.
## Trigger words
You should use `a photo of sksdog` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](Tyl3rDrden/trained-flux-dev-dreambooth-lora2_Normal_LILY/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('Tyl3rDrden/trained-flux-dev-dreambooth-lora2_Normal_LILY', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('A photo of sksdog in a bucket').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-11_9874
|
luckeciano
| 2025-06-24T21:34:03Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"grpo",
"conversational",
"dataset:DigitalLearningGmbH/MATH-lighteval",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-Math-7B",
"base_model:finetune:Qwen/Qwen2.5-Math-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T16:02:16Z |
---
base_model: Qwen/Qwen2.5-Math-7B
datasets: DigitalLearningGmbH/MATH-lighteval
library_name: transformers
model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-11_9874
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
licence: license
---
# Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-11_9874
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskGlobal-1e-11_9874", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/c1aokynk)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.6.0
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
altaweel/gemma-ultrasound-1b-v3
|
altaweel
| 2025-06-24T21:33:36Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:google/gemma-3-1b-pt",
"base_model:finetune:google/gemma-3-1b-pt",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T19:32:05Z |
---
base_model: google/gemma-3-1b-pt
library_name: transformers
model_name: gemma-ultrasound-1b-v3
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gemma-ultrasound-1b-v3
This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="altaweel/gemma-ultrasound-1b-v3", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.52.4
- Pytorch: 2.5.1+cu121
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
nguyenvuvn/1a137b4b-cce1-4cd3-ac12-6319c4427169
|
nguyenvuvn
| 2025-06-24T21:33:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-24T16:56:33Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ICONNAI/ICONN-e1-Beta
|
ICONNAI
| 2025-06-24T21:30:27Z | 90 | 15 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"emotional-ai",
"ICONN",
"chatbot",
"base",
"conversational",
"doi:10.57967/hf/5861",
"license:apache-2.0",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T18:57:06Z |
---
library_name: transformers
tags:
- emotional-ai
- ICONN
- chatbot
- base
co2_eq_emissions:
emissions: 3.37
source: CodeCarbon
training_type: pretraining
geographical_location: US-West
hardware_used: 18 x B200
pipeline_tag: text-generation
license: apache-2.0
---
<div align="center" style="line-height: 1;">

<a href="https://huggingface.co/collections/ICONNAI/iconn-1-6851e8a88ed4eb66b4fd0132" target="_blank" style="margin: 2px;">
<img alt="ICONN 1 Models" src="https://img.shields.io/badge/📦_ICONN_1_Models-HuggingFace-1CBEEF?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://huggingface.co/ICONNAI" target="_blank" style="margin: 2px;">
<img alt="ICONN on Hugging Face" src="https://img.shields.io/badge/🤗_ICONN_on_HF-ICONNAI-A4BCF0?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://opensource.org/license/apache-2-0" target="_blank" style="margin: 2px;">
<img alt="License Apache 2.0" src="https://img.shields.io/badge/⚖️_License-Apache_2.0-5C63DA?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://github.com/organizations/ICONN-AI/" target="_blank" style="margin: 2px;">
<img alt="ICONN on GitHub" src="https://img.shields.io/badge/🐙_ICONN_on_GitHub-ICONN--AI-8C8CFF?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://huggingface.co/ICONNAI" target="_blank" style="margin: 2px;">
<img alt="Follow ICONNAI" src="https://img.shields.io/badge/⭐_Follow_ICONNAI-HuggingFace-A4BCF0?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
</div>
# ICONN e1: The new era of Open-Source AI
**GPU poor? Less than 3x A100s? A e1 Lite model is coming with just 22B parameters alongside a model for consumer CPUs with 14B and 7B parameters.**
- **Emotional Context Awareness**
ICONN e1 interprets emotional cues and adjusts tone, vocabulary, and response style—offering a more human-like, emotionally reactive experience.
- **ICONN Emotional Core (IEC) (Notice: Not available on Huggingface)**
Powered by millions of small AI agents, IEC gives ICONN its emotional personality, with billions of simulated emotional states and detections.
- **Reasoning**
ICONN e1 is one of the most powerful reasoning open-source models, and most closed-source models in or out of Huggingface.
# What is in the ICONN i1 MoE?
## ICONN i1 MoE and Experts
ICONN e1, being a MoE just like it's base model ICONN 1, has multiple expert models. Keywords are taken from the user's input to choose which expert generates the output.
| Expert Chosen | User Input |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ICONN-e1 | `'Hi!'` |
| ICONN-e1-Pro | `Solve for m: m² − (2 + ∑₍ⱼ₌₁₎² j)·m + (1 + ∑₍ⱼ₌₁₎³ j² − 14) = 0.` |
| ICONN-e1-Science | `If a stable isotope of Ununoctium (Uuo, now Og) could be synthesized in bulk, what would be its most likely physical state at STP and why, considering relativistic effects?` |
| ICONN-e1-Code | `Create a zero-dependency quantum-safe VM in Zig that compiles a domain-specific language into a fully homomorphic encrypted IR, supports hot-reloading WebAssembly modules, parallel scheduling via lock-free fibers, and performs live introspection through a headless OpenGL debug overlay.` |
**ICONN-e1:**
ICONN's general-purpose reasoning model, designed for everyday tasks, logic, and conversation.
**ICONN-e1-Pro:**
ICONN's advanced reasoning model, optimized for complex problem-solving in math, logic, and professional domains.
**ICONN-e1-Science:**
ICONN's scientific expert model, trained on advanced science datasets to enhance precision in physics, chemistry, biology, and technical reasoning.
**ICONN-e1-Code:**
ICONN's coding specialist, trained for programming, compiler theory, software architecture, and technical code generation across multiple languages.
# Usage
**First, make sure you have at least 4x Nvidia A100 or a single B100, and 120GB RAM and 120-192GB VRAM. Don't have this? Use our Lite model, coming soon.
> Run the code below to run ICONN i1:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
def run_iconn_chatbot(model_name="ICONNAI/ICONN-e1"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = 0 if torch.cuda.is_available() else -1
chat_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=device,
max_length=1624,
do_sample=True,
top_p=0.9,
temperature=0.4,
pad_token_id=tokenizer.eos_token_id
)
print(f"ICONN chatbot running with model: {model_name}. Type 'exit' to quit.")
conversation_history = ""
while True:
user_input = input("You: ")
if user_input.lower() == "exit":
print("Goodbye!")
break
conversation_history += f"User: {user_input}\nBot:"
response = chat_pipeline(conversation_history, max_length=len(tokenizer.encode(conversation_history)) + 100)[0]['generated_text']
bot_reply = response[len(conversation_history):].strip().split("\n")[0]
print(f"Bot: {bot_reply}")
conversation_history += f" {bot_reply}\n"
if __name__ == "__main__":
run_iconn_chatbot()
```
## Cite Us
**If you use ICONN 1, please cite us as follows:**
```DoI
@misc{iconnai_2025,
author = { ICONNAI },
title = { ICONN-e1-Beta (Revision ca41146) },
year = 2025,
url = { https://huggingface.co/ICONNAI/ICONN-e1-Beta },
doi = { 10.57967/hf/5861 },
publisher = { Hugging Face }
}
```
|
sameeahameed/llama-3.2-3b-25-6-25
|
sameeahameed
| 2025-06-24T21:29:40Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-24T21:29:33Z |
---
base_model: unsloth/llama-3.2-3b-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** sameeahameed
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
ICONNAI/ICONN-1-Mini-Beta
|
ICONNAI
| 2025-06-24T21:29:37Z | 27 | 2 |
transformers
|
[
"transformers",
"safetensors",
"iconn",
"text-generation",
"emotional-ai",
"ICONN",
"chatbot",
"base",
"conversational",
"custom_code",
"doi:10.57967/hf/5860",
"license:apache-2.0",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-22T22:14:23Z |
---
library_name: transformers
tags:
- emotional-ai
- ICONN
- chatbot
- base
co2_eq_emissions:
emissions: 0.34
source: CodeCarbon
training_type: pretraining
geographical_location: US-West
hardware_used: 9 x B200
pipeline_tag: text-generation
license: apache-2.0
---
<div align="center" style="line-height: 1;">

<a href="https://huggingface.co/collections/ICONNAI/iconn-1-6851e8a88ed4eb66b4fd0132" target="_blank" style="margin: 2px;">
<img alt="ICONN 1 Models" src="https://img.shields.io/badge/📦_ICONN_1_Models-HuggingFace-1CBEEF?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://huggingface.co/spaces/ICONNAI/ICONN-Mini-Chat" target="_blank" style="margin: 2px;">
<img alt="ICONN 1 Chat" src="https://img.shields.io/badge/💬_ICONN_1_Chat-Online-65C7F9?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://huggingface.co/ICONNAI" target="_blank" style="margin: 2px;">
<img alt="ICONN on Hugging Face" src="https://img.shields.io/badge/🤗_ICONN_on_HF-ICONNAI-A4BCF0?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://opensource.org/license/apache-2-0" target="_blank" style="margin: 2px;">
<img alt="License Apache 2.0" src="https://img.shields.io/badge/⚖️_License-Apache_2.0-5C63DA?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://github.com/organizations/ICONN-AI/" target="_blank" style="margin: 2px;">
<img alt="ICONN on GitHub" src="https://img.shields.io/badge/🐙_ICONN_on_GitHub-ICONN--AI-8C8CFF?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://huggingface.co/ICONNAI" target="_blank" style="margin: 2px;">
<img alt="Follow ICONNAI" src="https://img.shields.io/badge/⭐_Follow_ICONNAI-HuggingFace-A4BCF0?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
<a href="https://huggingface.co/spaces/huggingface/InferenceSupport/discussions/2932" target="_blank" style="margin: 2px;">
<img alt="React to Vote" src="https://img.shields.io/badge/🗳️_Vote_for_us_as_Inference_Provider-React_👍-1CBEEF?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" />
</a>
</div>
## ICONN 1
Introducing **ICONN 1 Mini Beta**, a cutting-edge open-source AI model with just **7 billion parameters** — designed for natural, human-like language understanding and generation. Despite its compact size, it delivers powerful performance through efficient architecture and careful tuning. ICONN 1 Mini Beta represents the next step in accessible, conversational AI.
Developed entirely from scratch, ICONN-1-Mini-Beta is based on a new **ICONN** framework and comprises **7 billion parameters**.
ICONN-1 is released in three distinct forms to serve different application needs:
- **ICONN-1-Mini-Beta**(This model) is a small 7B model trained for a lightweight alternative to ICONN 1.
- **ICONN-1** is optimized for natural, emotionally resonant, and conversational interactions.
- **ICONN-e1** is a specialized variant of the model fine-tuned for advanced reasoning, critical analysis, and complex problem-solving.
Together, these models represent a major leap forward in the evolution of AI systems—demonstrating not only deep reasoning but also a commitment to openness, accessibility, and human-aligned intelligence.
## Usage
To run **ICONN 1 Mini Beta**, you need:
- **Any hardware - CPU or GPU; Just make sure you have about 15GB storage space!**
> Run the code below to run ICONN 1 Mini Beta:
```python
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
model_id = "ICONNAI/ICONN-1-Mini-Beta"
try:
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
except Exception as e:
exit(f"Exiting due to model loading error: {e}")
def generate_response(
message: str,
max_new_tokens: int = 2048,
temperature: float = 0.4,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> str:
conversation = [{"role": "user", "content": message}]
try:
input_ids = tokenizer.apply_chat_template(
conversation, return_tensors="pt", enable_thinking=True
)
except Exception as e:
return f"Error applying chat template: {e}"
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
adjusted_top_k = int(max(1, top_k))
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=adjusted_top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
try:
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
except Exception as e:
return f"Error starting generation thread: {e}"
outputs = []
for text in streamer:
outputs.append(text)
return "".join(outputs)
if __name__ == "__main__":
question = "Can you explain briefly to me what is the Python programming language?"
print(f"User Question: {question}")
response = generate_response(question)
print(f"Bot Response: {response}")
```
## Cite Us
**If you use ICONN 1, please cite us as follows:**
```DoI
@misc{iconnai_2025,
author = { ICONNAI },
title = { ICONN-1-Mini-Beta (Revision e29b435) },
year = 2025,
url = { https://huggingface.co/ICONNAI/ICONN-1-Mini-Beta },
doi = { 10.57967/hf/5860 },
publisher = { Hugging Face }
}
```
|
oumi-ai/Phi-3-vision-128k-instruct
|
oumi-ai
| 2025-06-24T21:28:39Z | 0 | 0 | null |
[
"safetensors",
"phi3_v",
"nlp",
"code",
"vision",
"text-generation",
"conversational",
"custom_code",
"multilingual",
"license:mit",
"region:us"
] |
text-generation
| 2025-06-24T21:23:42Z |
---
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/LICENSE
language:
- multilingual
pipeline_tag: text-generation
tags:
- nlp
- code
- vision
inference:
parameters:
temperature: 0.7
widget:
- messages:
- role: user
content: <|image_1|>Can you describe what you see in the image?
---
🎉 **Phi-3.5**: [[mini-instruct]](https://huggingface.co/microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)
## Model Summary
The Phi-3-Vision-128K-Instruct is a lightweight, state-of-the-art open multimodal model built upon datasets which include - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data both on text and vision. The model belongs to the Phi-3 model family, and the multimodal version comes with 128K context length (in tokens) it can support. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures.
Resources and Technical Documentation:
+ [Phi-3 Microsoft Blog](https://aka.ms/Phi-3Build2024)
+ [Phi-3 Technical Report](https://aka.ms/phi3-tech-report)
+ [Phi-3 on Azure AI Studio](https://aka.ms/try-phi3vision)
+ [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook)
| | Short Context | Long Context |
| ------- | ------------- | ------------ |
| Mini | 4K [[HF]](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-onnx) ; [[GGUF]](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf) | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct-onnx)|
| Small | 8K [[HF]](https://huggingface.co/microsoft/Phi-3-small-8k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-small-8k-instruct-onnx-cuda) | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-small-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-small-128k-instruct-onnx-cuda)|
| Medium | 4K [[HF]](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct-onnx-cuda) | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct-onnx-cuda)|
| Vision | | 128K [[HF]](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) ; [[ONNX]](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct-onnx-cuda)|
## Intended Uses
**Primary use cases**
The model is intended for broad commercial and research use in English. The model provides uses for general purpose AI systems and applications with visual and text input capabilities which require
1) memory/compute constrained environments;
2) latency bound scenarios;
3) general image understanding;
4) OCR;
5) chart and table understanding.
Our model is designed to accelerate research on efficient language and multimodal models, for use as a building block for generative AI powered features.
**Use case considerations**
Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
## How to Use
Phi-3-Vision-128K-Instruct has been integrated in the development version (4.40.2) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
The current `transformers` version can be verified with: `pip list | grep transformers`.
Examples of required packages:
```
flash_attn==2.5.8
numpy==1.24.4
Pillow==10.3.0
Requests==2.31.0
torch==2.3.0
torchvision==0.18.0
transformers==4.40.2
```
Phi-3-Vision-128K-Instruct is also available in [Azure AI Studio](https://aka.ms/phi3-azure-ai).
### Chat Format
Given the nature of the training data, the Phi-3-Vision-128K-Instruct model is best suited for a single image input wih prompts using the chat format as follows.
You can provide the prompt as a single image with a generic template as follow:
```markdown
<|user|>\n<|image_1|>\n{prompt}<|end|>\n<|assistant|>\n
```
where the model generates the text after `<|assistant|>` . In case of multi-turn conversation, the prompt can be formatted as follows:
```markdown
<|user|>\n<|image_1|>\n{prompt_1}<|end|>\n<|assistant|>\n{response_1}<|end|>\n<|user|>\n{prompt_2}<|end|>\n<|assistant|>\n
```
### Sample inference code
This code snippets show how to get quickly started with running the model on a GPU:
```python
from PIL import Image
import requests
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor
model_id = "microsoft/Phi-3-vision-128k-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto", _attn_implementation='flash_attention_2') # use _attn_implementation='eager' to disable flash attention
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
messages = [
{"role": "user", "content": "<|image_1|>\nWhat is shown in this image?"},
{"role": "assistant", "content": "The chart displays the percentage of respondents who agree with various statements about their preparedness for meetings. It shows five categories: 'Having clear and pre-defined goals for meetings', 'Knowing where to find the information I need for a meeting', 'Understanding my exact role and responsibilities when I'm invited', 'Having tools to manage admin tasks like note-taking or summarization', and 'Having more focus time to sufficiently prepare for meetings'. Each category has an associated bar indicating the level of agreement, measured on a scale from 0% to 100%."},
{"role": "user", "content": "Provide insightful questions to spark discussion."}
]
url = "https://assets-c4akfrf5b4d3f4b7.z01.azurefd.net/assets/2024/04/BMDataViz_661fb89f3845e.png"
image = Image.open(requests.get(url, stream=True).raw)
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0")
generation_args = {
"max_new_tokens": 500,
"temperature": 0.0,
"do_sample": False,
}
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# remove input tokens
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(response)
```
Additional basic examples are provided [here](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/sample_inference.py).
### How to finetune?
We recommend user to take a look at the [Phi-3 CookBook finetuning recipe for Vision](https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md)
## Responsible AI Considerations
Like other models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: The Phi models are trained primarily on English text. Languages other than English will experience worse performance. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the use case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
Developers should apply responsible AI best practices and are responsible for ensuring that a specific use case complies with relevant laws and regulations (e.g. privacy, trade, etc.). Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
+ Identification of individuals: models with vision capabilities may have the potential to uniquely identify individuals in images. Safety post-training steers the model to refuse such requests, but developers should consider and implement, as appropriate, additional mitigations or user consent flows as required in their respective jurisdiction, (e.g., building measures to blur faces in image inputs before processing.
## Training
### Model
* Architecture: Phi-3-Vision-128K-Instruct has 4.2B parameters and contains image encoder, connector, projector, and Phi-3 Mini language model.
* Inputs: Text and Image. It’s best suited for prompts using the chat format.
* Context length: 128K tokens
* GPUs: 512 H100-80G
* Training time: 1.5 days
* Training data: 500B vision and text tokens
* Outputs: Generated text in response to the input
* Dates: Our models were trained between February and April 2024
* Status: This is a static model trained on an offline text dataset with cutoff date Mar 15, 2024. Future versions of the tuned models may be released as we improve models.
* Release Type: Open weight release
* Release dates: The model weight is released on May 21, 2024.
### Datasets
Our training data includes a wide variety of sources, and is a combination of
1) publicly available documents filtered rigorously for quality, selected high-quality educational data and code;
2) selected high-quality image-text interleave;
3) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.), newly created image data, e.g., chart/table/diagram/slides;
4) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness.
The data collection process involved sourcing information from publicly available documents, with a meticulous approach to filtering out undesirable documents and images. To safeguard privacy, we carefully filtered various image and text data sources to remove or scrub any potentially personal data from the training data.
More details can be found in the [Phi-3 Technical Report](https://aka.ms/phi3-tech-report).
## Benchmarks
To understand the capabilities, we compare Phi-3-Vision-128K-Instruct with a set of models over a variety of zero-shot benchmarks using our internal benchmark platform.
|Benchmark|Phi-3 Vision-128K-In|LlaVA-1.6 Vicuna-7B|QWEN-VL Chat|Llama3-Llava-Next-8B|Claude-3 Haiku|Gemini 1.0 Pro V|GPT-4V-Turbo|
|---------|---------------------|------------------|------------|--------------------|--------------|----------------|------------|
|MMMU|40.4|34.2|39.0|36.4|40.7|42.0|55.5|
|MMBench|80.5|76.3|75.8|79.4|62.4|80.0|86.1|
|ScienceQA|90.8|70.6|67.2|73.7|72.0|79.7|75.7|
|MathVista|44.5|31.5|29.4|34.8|33.2|35.0|47.5|
|InterGPS|38.1|20.5|22.3|24.6|32.1|28.6|41.0|
|AI2D|76.7|63.1|59.8|66.9|60.3|62.8|74.7|
|ChartQA|81.4|55.0|50.9|65.8|59.3|58.0|62.3|
|TextVQA|70.9|64.6|59.4|55.7|62.7|64.7|68.1|
|POPE|85.8|87.2|82.6|87.0|74.4|84.2|83.7|
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
## Hardware
Note that by default, the Phi-3-Vision-128K model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
## License
The model is licensed under the [MIT license](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
|
ToastyPigeon/ms3.2-cowriter-lora
|
ToastyPigeon
| 2025-06-24T21:28:07Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"mistral",
"generated_from_trainer",
"dataset:ToastyPigeon/cowriter-instruct",
"base_model:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML",
"base_model:adapter:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-06-24T21:08:15Z |
---
library_name: peft
base_model: anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML
tags:
- generated_from_trainer
datasets:
- ToastyPigeon/cowriter-instruct
model-index:
- name: workspace/aibox-standalone-pool/axolotl/mistral3.2-cowriter-ckpts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
# === Model Configuration ===
base_model: anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML
load_in_8bit: false
load_in_4bit: true
# === HF Configuration ===
#hub_model_id: ToastyPigeon/an-instruct-ms3.2-train
#hub_strategy: "checkpoint"
# === Training Setup ===
num_epochs: 2
micro_batch_size: 1
gradient_accumulation_steps: 4
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
# === Evaluation ===
val_set_size: 0.01
evals_per_epoch: 5
#eval_steps: 20
#max_steps: 60
#eval_table_size:
eval_max_new_tokens: 128
eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
adapter: qlora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.125
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
peft_use_rslora: true
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
warmup_steps: 20
optimizer: adamw_torch_fused
#optimizer: paged_adamw_8bit
#optim_args:
# enable_stochastic_rounding: true
# enable_cautious: true
# enable_8bit: true
# Apollo-mini configuration:
#optim_args: "proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: rex
cosine_min_lr_ratio: 0.2
#lr_scheduler: cosine_with_min_lr
#lr_scheduler_kwargs:
# cosine_min_lr: 1e-6
weight_decay: 0.01
max_grad_norm: 1.0
#warmup_steps: 0
#warmup_ratio: 0.025
# === Data Configuration ===
chat_template: jinja
chat_template_jinja: "{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content'] %}\n {%- else %}\n {%- set system_message = messages[0]['content'][0]['text'] %}\n {%- endif %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {%- if message['content'] is string %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- else %}\n {{- '[INST]' }}\n {%- for block in message['content'] %}\n {%- if block['type'] == 'text' %}\n {{- block['text'] }}\n {%- elif block['type'] in ['image', 'image_url'] %}\n {{- '[IMG]' }}\n {%- else %}\n {{- raise_exception('Only text and image blocks are supported in message content!') }}\n {%- endif %}\n {%- endfor %}\n {{- '[/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'system' %}\n {%- if message['content'] is string %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- else %}\n {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {%- if message['content'] is string %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- message['content'][0]['text'] + eos_token }}\n {%- endif %}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}"
tokenizer_use_mistral_common: true
shuffle_merged_datasets: true
datasets:
- path: ToastyPigeon/cowriter-instruct
type: chat_template
data_files: cowriter-16k.json
dataset_prepared_path: last_run_prepared
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
#gradient_checkpointing: offload
#gradient_checkpointing_kwargs:
# use_reentrant: false
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
#deepspeed: deepspeed_configs/zero3_bf16.json
# === FSDP Config ===
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_activation_checkpointing: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
# === Wandb Tracking ===
wandb_project: Mistral-3.2
# wandb_entity: [WANDB_ENTITY]
# wandb_name: [WANDB_RUN_NAME]
# === Checkpointing ===
saves_per_epoch: 20
save_total_limit: 5
# === Advanced Settings ===
output_dir: /workspace/aibox-standalone-pool/axolotl/mistral3.2-cowriter-ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 69
```
</details><br>
# workspace/aibox-standalone-pool/axolotl/mistral3.2-cowriter-ckpts
This model is a fine-tuned version of [anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML](https://huggingface.co/anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML) on the ToastyPigeon/cowriter-instruct dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4342
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 69
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 328
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.4735 | 0.0061 | 1 | 2.5005 |
| 2.5091 | 0.2006 | 33 | 2.4586 |
| 2.499 | 0.4012 | 66 | 2.4589 |
| 2.3922 | 0.6018 | 99 | 2.4499 |
| 2.3564 | 0.8024 | 132 | 2.4468 |
| 2.3165 | 1.0 | 165 | 2.4428 |
| 2.4576 | 1.2006 | 198 | 2.4388 |
| 2.4476 | 1.4012 | 231 | 2.4366 |
| 2.3374 | 1.6018 | 264 | 2.4343 |
| 2.3019 | 1.8024 | 297 | 2.4342 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.