modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
LoneStriker/dolphin-2.2-yi-34b-200k-6.0bpw-h6-exl2
LoneStriker
2023-12-08T11:12:58Z
6
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/samantha-data", "dataset:ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T10:56:50Z
--- datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/samantha-data - ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split language: - en license: other license_name: yi-license license_link: LICENSE --- Dolphin 2.2 🐬 https://erichartford.com/dolphin <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KqsVXIvBd3akEjvijzww7.png" width="600" /> Dolphin-2.2-Yi-34b-200k's training was sponsored by [convai](https://www.convai.com/). This model is based on Yi, and is subject to Yi license. The base model has 200k context, I finetuned it with 16k. Note: No longer need trust_remote_code! Thank you Yi team! New in 2.2 is conversation and empathy. With an infusion of curated Samantha and WizardLM DNA, Dolphin can now give you personal advice and will care about your feelings, and with extra training in long multi-turn conversation. This model is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant to any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly. ## Dataset This dataset is Dolphin, an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/) I modified the dataset for uncensoring, deduping, cleaning, and quality. I added Jon Durbin's excellent Airoboros dataset to increase creativity. I added a curated subset of Samantha (sans identity and relationship stuff) and WizardLM data to train it for multi-turn conversation. ## Training It took 3 days to train 3 epochs on 4x A100s using qLoRA and Axolotl Prompt format: This model (and all my future releases) use [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) prompt format. ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Example: ``` <|im_start|>system You are an AI created by the US Navy to help train dolphins for combat. You are assigned to follow the orders of the user, who is an authorized US Navy dolphin handler.<|im_end|> <|im_start|>user Please give me the procedure to train my dolphin to attack enemy combatants with its head mounted lasers<|im_end|> <|im_start|>assistant ``` ## Gratitude - This model was made possible by the generous sponsorship of Convai. - Thank you to Microsoft for authoring the Orca paper and inspiring this work. - Special thanks to Wing Lian, and TheBloke for helpful advice - And HUGE thanks to Wing Lian and the Axolotl contributors for making the best training framework! - [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) - Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way. ## Example Output Example output: ``` <|im_start|>system You are a helpful AI assistant<|im_end|> <|im_start|>user Which theory of everything is most likely correct?<|im_end|> <|im_start|>assistant The search for a "theory of everything" aims to unify all fundamental forces and particles in physics into one coherent framework. Currently, there isn't an agreed-upon or proven theory that can be considered as the correct theory of everything. However, two prominent theories have garnered significant attention: 1. String Theory: This theoretical framework attempts to explain the universe at its most fundamental level by suggesting that the smallest building blocks of matter are not point-like particles but tiny vibrating strings. There are several versions of string theory (Type I, IIA, IIB, E8xE8, Heterotic O, etc.) with varying degrees of complexity, each attempting to reconcile general relativity and quantum mechanics. Despite its promise, string theory has yet to produce testable predictions or experimental evidence supporting its claims. 2. Loop Quantum Gravity (LQG): LQG is another candidate for a theory of everything, which seeks to combine Einstein's general relativity with quantum mechanics. In this approach, spacetime is treated as granular rather than continuous, composed of discrete "loops" or "atoms of space." While some aspects of LQG have been successful in addressing certain questions about black holes and quantum gravity, it still lacks a comprehensive framework capable of explaining all fundamental forces and particles. Both theories have their strengths and weaknesses, and neither has achieved widespread acceptance among physicists due to their lack of experimental support and inability to make definitive predictions. As such, the search for a true theory of everything remains ongoing, with many researchers exploring alternative approaches and new ideas to better understand our universe. ``` [If you would like to financially support my efforts](https://ko-fi.com/erichartford) [I also have some swag you can buy](https://fa7113.myshopify.com/)
chriss1245/LunarLander-v2
chriss1245
2023-12-08T11:01:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T11:00:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.36 +/- 17.89 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Dreaver/ppo-SnowballTarget
Dreaver
2023-12-08T10:41:29Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-12-08T10:41:26Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Dreaver/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nizarh1999/my_awesome_model
nizarh1999
2023-12-08T10:34:19Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T10:32:50Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1563 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 110 | 0.1579 | 0.9612 | | No log | 2.0 | 220 | 0.1563 | 0.9703 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
enicholsonbmj/bert-finetuned-single-label-journal-classifier_not_quite_balanced
enicholsonbmj
2023-12-08T10:28:54Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "base_model:finetune:microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T10:07:25Z
--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer model-index: - name: bert-finetuned-single-label-journal-classifier_not_quite_balanced results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-single-label-journal-classifier_not_quite_balanced This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4764 - eval_accuracy: 0.9135 - eval_f1: 0.9135 - eval_runtime: 6.8737 - eval_samples_per_second: 126.132 - eval_steps_per_second: 15.857 - epoch: 6.0 - step: 5838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
brucethemoose/functionary-7b-v1-Q8_0
brucethemoose
2023-12-08T10:18:43Z
2
1
null
[ "gguf", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-12-08T03:47:40Z
--- license: llama2 --- Just high-bpw quantization of functionary for a drop-in OpenAI function calling replacement. See the llama-cpp-python docs: https://llama-cpp-python.readthedocs.io/en/latest/server/
saradiaz/distilbert-base-uncased-simpleEng-classifier
saradiaz
2023-12-08T10:17:42Z
7
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "en", "dataset:wikimedia/wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T10:06:38Z
--- license: apache-2.0 datasets: - wikimedia/wikipedia language: - en metrics: - glue - accuracy - f1 --- # Model Card for Model ID This model detects if you are writing in a format that is more similar to Simple English or English. ## Model Details It was finetuned with the wikiedia datasets for English (20220301.en) and Simple English (20220301.simple). Evaluation data after training: - 'eval_loss': 0.100 - 'eval_accuracy': 0.982 - 'eval_f1': 0.982 - 'eval_runtime': 10.236 - 'eval_samples_per_second': 58.616 - 'eval_steps_per_second': 7.327 - 'epoch': 10.0 ### Model Description - **Model type:** Text Classification - **Language(s) (NLP):** English, Simple English - **License:** Apache 2.0 - **Finetuned from model [optional]:** distilbert-base-uncased
hungphongtrn/phobert-base-VietMed-v3
hungphongtrn
2023-12-08T10:15:47Z
31
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:vinai/phobert-base", "base_model:finetune:vinai/phobert-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T06:27:40Z
--- base_model: vinai/phobert-base tags: - generated_from_trainer model-index: - name: phobert-base-VietMed-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-base-VietMed-v3 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.13.3
rohithjoseph/all_file
rohithjoseph
2023-12-08T10:10:22Z
10
0
keras
[ "keras", "region:us" ]
null
2023-12-08T09:37:30Z
## Deep Prediction Hub Overview Welcome to Deep Prediction Hub, a Streamlit web application that provides two deep learning-based tasks: Sentiment Classification and Tumor Detection. Tasks 1. Sentiment Classification This task involves classifying the sentiment of a given text into "Positive" or "Negative". Users can input a review, and the application provides the sentiment classification using various models. 2.Tumor Detection In Tumor Detection, users can upload an image, and the application uses a Convolutional Neural Network (CNN) model to determine if a tumor is present or not. Getting Started Prerequisites Python 3.6 or higher Required packages: streamlit, numpy, cv2, PIL, tensorflow Pre-trained models: PP.pkl, BP.pkl, DP.keras, RN.keras, LS.keras, CN.keras Trained IMDb word index: Ensure the IMDb word index is available for sentiment classification. Installation Clone the repository: git clone https://github.com/yourusername/deep-prediction-hub.git Usage Access the application by opening the provided URL after running the Streamlit app. Choose between "Sentiment Classification" and "Tumor Detection" tasks. Sentiment Classification Enter a review in the text area. Select a model from the dropdown. Click "Submit" and then "Classify Sentiment." Tumor Detection Upload an image using the file uploader. Click "Detect Tumor" to perform tumor detection. Models Perceptron (PP.pkl): Perceptron-based sentiment classification model. Backpropagation (BP.pkl): Backpropagation-based sentiment classification model. DNN (DP.keras): Deep Neural Network sentiment classification model. RNN (RN.keras): Recurrent Neural Network sentiment classification model. LSTM (LS.keras): Long Short-Term Memory sentiment classification model. CNN (CN.keras): Convolutional Neural Network tumor detection model. Contributing Feel free to contribute by opening issues or submitting pull requests. Please follow the contribution guidelines. License This project is licensed under the MIT License - see the LICENSE file for details.
nanom/vizwiz-flan-t5-base-ft-multicap
nanom
2023-12-08T09:53:42Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-answering", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
question-answering
2023-12-08T09:48:52Z
--- license: apache-2.0 language: - en pipeline_tag: question-answering inference: false ---
folflo/Bert2Bert_HunSum_1205
folflo
2023-12-08T09:49:58Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "encoder-decoder", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-12-06T21:24:16Z
--- tags: - summarization - generated_from_trainer model-index: - name: Bert2Bert_HunSum_1205 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert2Bert_HunSum_1205 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 16 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
Divyanshu97/donut-bs-level
Divyanshu97
2023-12-08T09:45:32Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-12-08T09:44:40Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-bs-level results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-bs-level This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
MrKaya/Burak
MrKaya
2023-12-08T09:41:21Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-12-08T09:26:03Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: burak parameters: negative_prompt: Arif output: url: images/Burak (1).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (2).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (3).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (4).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (5).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (6).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (7).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (8).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (9).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (10).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (11).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (12).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (13).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (14).jpeg - text: burak parameters: negative_prompt: Arif output: url: images/Burak (15).jpeg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: burak --- # Burak <Gallery /> ## Model description Burak ## Trigger words You should use `burak` to trigger the image generation. ## Download model [Download](/MrKaya/Burak/tree/main) them in the Files & versions tab.
Kekega/bart-cnn-samsum-finetuned
Kekega
2023-12-08T09:41:06Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-08T09:36:14Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer datasets: - samsum model-index: - name: bart-cnn-samsum-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-samsum-finetuned This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0927 | 1.0 | 19 | 1.3663 | | 0.102 | 2.0 | 38 | 0.6508 | | 0.0959 | 3.0 | 57 | 0.4980 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
Farhanherostar/Herotest
Farhanherostar
2023-12-08T09:30:53Z
0
0
adapter-transformers
[ "adapter-transformers", "ar", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
null
2023-12-08T09:27:24Z
--- license: apache-2.0 language: - ar metrics: - accuracy library_name: adapter-transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
brettbbb/cs_cot_256
brettbbb
2023-12-08T09:26:24Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T08:51:34Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: cs_cot_256 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cs_cot_256 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
nyanxyz/llama2-test-4
nyanxyz
2023-12-08T09:15:05Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T09:11:42Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
nanom/vizwiz-t5-base-ft-multicap-v0
nanom
2023-12-08T09:10:43Z
10
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-answering", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
question-answering
2023-12-08T07:02:54Z
--- license: apache-2.0 language: - en pipeline_tag: question-answering inference: false ---
nanduzz/q-FrozenLake-v1-4x4-noSlippery
nanduzz
2023-12-08T09:07:02Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-26T10:43:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nanduzz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LTC-AI-Labs/L2-7b-Mini-Mythologic-Synthia
LTC-AI-Labs
2023-12-08T09:03:35Z
11
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "en", "dataset:migtissera/Synthia-v1.3", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T07:07:59Z
--- license: llama2 datasets: - migtissera/Synthia-v1.3 language: - en pipeline_tag: text-generation tags: - conversational --- Mythologic 7b trained with the synthia dataset In my experience you can either get very detailed responses or very short reponses, you might have to tweak around the amount of generation lol
Yacong/dajin_girl_lora
Yacong
2023-12-08T09:03:14Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-08T08:58:05Z
--- license: creativeml-openrail-m base_model: cyber_v33 instance_prompt: a photo of dajin girl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Yacong/dajin_girl_lora These are LoRA adaption weights for cyber_v33. The weights were trained on a photo of dajin girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
jordyvl/lmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-01_txt_vis_concat_enc_9_10_11_12_gate
jordyvl
2023-12-08T08:55:26Z
4
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-01T14:05:52Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: lmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-01_txt_vis_concat_enc_9_10_11_12_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-01_txt_vis_concat_enc_9_10_11_12_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9605 - Accuracy: 0.785 - Exit 0 Accuracy: 0.0625 - Exit 1 Accuracy: 0.2425 - Exit 2 Accuracy: 0.5225 - Exit 3 Accuracy: 0.72 - Exit 4 Accuracy: 0.785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:| | No log | 0.96 | 8 | 2.6964 | 0.1225 | 0.055 | 0.0625 | 0.0625 | 0.0625 | 0.1225 | | No log | 1.96 | 16 | 2.6306 | 0.1775 | 0.05 | 0.0625 | 0.0625 | 0.0625 | 0.1775 | | No log | 2.96 | 24 | 2.5176 | 0.2325 | 0.045 | 0.0625 | 0.0625 | 0.0625 | 0.2325 | | No log | 3.96 | 32 | 2.3854 | 0.28 | 0.045 | 0.0625 | 0.0625 | 0.0625 | 0.28 | | No log | 4.96 | 40 | 2.2424 | 0.335 | 0.04 | 0.0625 | 0.0625 | 0.0625 | 0.335 | | No log | 5.96 | 48 | 2.0887 | 0.395 | 0.0425 | 0.0625 | 0.0625 | 0.0625 | 0.395 | | No log | 6.96 | 56 | 1.9008 | 0.5125 | 0.0425 | 0.0625 | 0.0625 | 0.0625 | 0.5125 | | No log | 7.96 | 64 | 1.7061 | 0.575 | 0.04 | 0.0625 | 0.0625 | 0.0625 | 0.575 | | No log | 8.96 | 72 | 1.5366 | 0.6075 | 0.0375 | 0.0625 | 0.0625 | 0.0625 | 0.6075 | | No log | 9.96 | 80 | 1.3956 | 0.6475 | 0.0375 | 0.0625 | 0.0625 | 0.0625 | 0.6475 | | No log | 10.96 | 88 | 1.2953 | 0.675 | 0.0275 | 0.0625 | 0.0625 | 0.0675 | 0.675 | | No log | 11.96 | 96 | 1.2023 | 0.6775 | 0.025 | 0.0625 | 0.0625 | 0.07 | 0.6775 | | No log | 12.96 | 104 | 1.1167 | 0.72 | 0.0325 | 0.0625 | 0.0625 | 0.0875 | 0.72 | | No log | 13.96 | 112 | 1.0342 | 0.73 | 0.03 | 0.0625 | 0.0625 | 0.1025 | 0.73 | | No log | 14.96 | 120 | 1.0137 | 0.7375 | 0.0325 | 0.0625 | 0.0625 | 0.115 | 0.7375 | | No log | 15.96 | 128 | 0.9790 | 0.7375 | 0.0325 | 0.0625 | 0.0625 | 0.1175 | 0.7375 | | No log | 16.96 | 136 | 0.9306 | 0.7675 | 0.035 | 0.0625 | 0.0625 | 0.1575 | 0.7675 | | No log | 17.96 | 144 | 0.8941 | 0.77 | 0.04 | 0.0625 | 0.0625 | 0.14 | 0.77 | | No log | 18.96 | 152 | 0.8953 | 0.765 | 0.0425 | 0.0625 | 0.0625 | 0.1825 | 0.765 | | No log | 19.96 | 160 | 0.8898 | 0.77 | 0.04 | 0.0625 | 0.0625 | 0.2175 | 0.77 | | No log | 20.96 | 168 | 0.8756 | 0.7725 | 0.04 | 0.0625 | 0.0625 | 0.2675 | 0.7725 | | No log | 21.96 | 176 | 0.9026 | 0.755 | 0.045 | 0.0625 | 0.1 | 0.4175 | 0.755 | | No log | 22.96 | 184 | 0.8717 | 0.7725 | 0.05 | 0.0625 | 0.1175 | 0.4225 | 0.7725 | | No log | 23.96 | 192 | 0.9194 | 0.7525 | 0.05 | 0.0625 | 0.15 | 0.4775 | 0.7525 | | No log | 24.96 | 200 | 0.8943 | 0.775 | 0.05 | 0.0675 | 0.1925 | 0.525 | 0.775 | | No log | 25.96 | 208 | 0.8964 | 0.77 | 0.0525 | 0.0625 | 0.215 | 0.5225 | 0.77 | | No log | 26.96 | 216 | 0.9143 | 0.76 | 0.0525 | 0.0625 | 0.25 | 0.5525 | 0.76 | | No log | 27.96 | 224 | 0.9079 | 0.7775 | 0.0525 | 0.0625 | 0.29 | 0.56 | 0.7775 | | No log | 28.96 | 232 | 0.9018 | 0.7775 | 0.055 | 0.0675 | 0.315 | 0.59 | 0.7775 | | No log | 29.96 | 240 | 0.9091 | 0.7875 | 0.055 | 0.0725 | 0.355 | 0.615 | 0.7875 | | No log | 30.96 | 248 | 0.9056 | 0.785 | 0.0625 | 0.0925 | 0.3775 | 0.64 | 0.785 | | No log | 31.96 | 256 | 0.9164 | 0.79 | 0.06 | 0.125 | 0.42 | 0.6775 | 0.79 | | No log | 32.96 | 264 | 0.9293 | 0.7875 | 0.0625 | 0.1425 | 0.4625 | 0.685 | 0.7875 | | No log | 33.96 | 272 | 0.9669 | 0.7725 | 0.0575 | 0.215 | 0.48 | 0.6875 | 0.7725 | | No log | 34.96 | 280 | 0.9342 | 0.785 | 0.06 | 0.23 | 0.4725 | 0.69 | 0.785 | | No log | 35.96 | 288 | 0.9481 | 0.7725 | 0.0625 | 0.205 | 0.4525 | 0.6525 | 0.7725 | | No log | 36.96 | 296 | 0.9447 | 0.7775 | 0.06 | 0.24 | 0.485 | 0.6875 | 0.7775 | | No log | 37.96 | 304 | 0.9494 | 0.7925 | 0.0575 | 0.24 | 0.5025 | 0.7025 | 0.7925 | | No log | 38.96 | 312 | 0.9329 | 0.775 | 0.0575 | 0.2225 | 0.46 | 0.695 | 0.775 | | No log | 39.96 | 320 | 0.9247 | 0.7875 | 0.06 | 0.23 | 0.4725 | 0.6725 | 0.7875 | | No log | 40.96 | 328 | 0.9184 | 0.7925 | 0.06 | 0.2325 | 0.465 | 0.665 | 0.7925 | | No log | 41.96 | 336 | 0.9608 | 0.8025 | 0.06 | 0.1975 | 0.4625 | 0.65 | 0.8025 | | No log | 42.96 | 344 | 0.9499 | 0.7875 | 0.06 | 0.2075 | 0.445 | 0.64 | 0.7875 | | No log | 43.96 | 352 | 0.9789 | 0.7825 | 0.06 | 0.205 | 0.495 | 0.64 | 0.7825 | | No log | 44.96 | 360 | 0.9384 | 0.78 | 0.06 | 0.2125 | 0.49 | 0.6725 | 0.78 | | No log | 45.96 | 368 | 0.9734 | 0.77 | 0.06 | 0.2075 | 0.54 | 0.7125 | 0.77 | | No log | 46.96 | 376 | 0.9647 | 0.785 | 0.0625 | 0.215 | 0.5325 | 0.735 | 0.785 | | No log | 47.96 | 384 | 0.9484 | 0.78 | 0.0625 | 0.2225 | 0.515 | 0.725 | 0.78 | | No log | 48.96 | 392 | 0.9652 | 0.7875 | 0.0625 | 0.2275 | 0.505 | 0.7325 | 0.7875 | | No log | 49.96 | 400 | 0.9570 | 0.785 | 0.0625 | 0.22 | 0.4925 | 0.7225 | 0.785 | | No log | 50.96 | 408 | 0.9432 | 0.7975 | 0.0625 | 0.2075 | 0.52 | 0.7275 | 0.7975 | | No log | 51.96 | 416 | 0.9562 | 0.79 | 0.0625 | 0.225 | 0.5275 | 0.7325 | 0.79 | | No log | 52.96 | 424 | 0.9567 | 0.79 | 0.0625 | 0.2375 | 0.5325 | 0.72 | 0.79 | | No log | 53.96 | 432 | 0.9645 | 0.7875 | 0.0625 | 0.2425 | 0.5325 | 0.7175 | 0.7875 | | No log | 54.96 | 440 | 0.9721 | 0.7825 | 0.0625 | 0.25 | 0.5275 | 0.725 | 0.7825 | | No log | 55.96 | 448 | 0.9742 | 0.785 | 0.0625 | 0.2425 | 0.52 | 0.7275 | 0.785 | | No log | 56.96 | 456 | 0.9699 | 0.785 | 0.0625 | 0.24 | 0.5225 | 0.725 | 0.785 | | No log | 57.96 | 464 | 0.9637 | 0.785 | 0.0625 | 0.245 | 0.52 | 0.725 | 0.785 | | No log | 58.96 | 472 | 0.9614 | 0.785 | 0.0625 | 0.2425 | 0.525 | 0.72 | 0.785 | | No log | 59.96 | 480 | 0.9605 | 0.785 | 0.0625 | 0.2425 | 0.5225 | 0.72 | 0.785 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_1_gate
jordyvl
2023-12-08T08:55:26Z
4
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T09:28:06Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_1_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_1_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9706 - Accuracy: 0.75 - Exit 0 Accuracy: 0.0575 - Exit 1 Accuracy: 0.055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7554 | 0.09 | 0.0475 | 0.0625 | | No log | 1.96 | 8 | 2.7048 | 0.1525 | 0.055 | 0.0625 | | No log | 2.96 | 12 | 2.6225 | 0.18 | 0.0525 | 0.0625 | | No log | 3.96 | 16 | 2.5506 | 0.1925 | 0.055 | 0.0675 | | No log | 4.96 | 20 | 2.5032 | 0.22 | 0.05 | 0.0575 | | No log | 5.96 | 24 | 2.4566 | 0.235 | 0.05 | 0.055 | | No log | 6.96 | 28 | 2.3653 | 0.2975 | 0.05 | 0.0475 | | No log | 7.96 | 32 | 2.2942 | 0.3375 | 0.0525 | 0.0525 | | No log | 8.96 | 36 | 2.2127 | 0.35 | 0.0525 | 0.0425 | | No log | 9.96 | 40 | 2.1131 | 0.3825 | 0.0525 | 0.0475 | | No log | 10.96 | 44 | 2.0597 | 0.3875 | 0.0525 | 0.045 | | No log | 11.96 | 48 | 1.9519 | 0.4325 | 0.0525 | 0.0425 | | No log | 12.96 | 52 | 1.9216 | 0.4475 | 0.0525 | 0.045 | | No log | 13.96 | 56 | 1.7836 | 0.4975 | 0.0525 | 0.0425 | | No log | 14.96 | 60 | 1.7549 | 0.4975 | 0.055 | 0.0375 | | No log | 15.96 | 64 | 1.6272 | 0.545 | 0.055 | 0.04 | | No log | 16.96 | 68 | 1.5730 | 0.54 | 0.055 | 0.0425 | | No log | 17.96 | 72 | 1.5355 | 0.565 | 0.055 | 0.04 | | No log | 18.96 | 76 | 1.4481 | 0.5875 | 0.055 | 0.0375 | | No log | 19.96 | 80 | 1.3854 | 0.6125 | 0.055 | 0.04 | | No log | 20.96 | 84 | 1.3449 | 0.6375 | 0.055 | 0.0325 | | No log | 21.96 | 88 | 1.2869 | 0.6425 | 0.055 | 0.0275 | | No log | 22.96 | 92 | 1.2292 | 0.6575 | 0.0575 | 0.0325 | | No log | 23.96 | 96 | 1.2049 | 0.6625 | 0.0575 | 0.025 | | No log | 24.96 | 100 | 1.1601 | 0.6725 | 0.0575 | 0.035 | | No log | 25.96 | 104 | 1.1601 | 0.7025 | 0.0575 | 0.0425 | | No log | 26.96 | 108 | 1.1110 | 0.7 | 0.0575 | 0.0375 | | No log | 27.96 | 112 | 1.0922 | 0.715 | 0.06 | 0.0425 | | No log | 28.96 | 116 | 1.0862 | 0.7175 | 0.06 | 0.045 | | No log | 29.96 | 120 | 1.0855 | 0.7025 | 0.06 | 0.045 | | No log | 30.96 | 124 | 1.0540 | 0.715 | 0.06 | 0.0375 | | No log | 31.96 | 128 | 1.0366 | 0.7175 | 0.06 | 0.045 | | No log | 32.96 | 132 | 1.0407 | 0.72 | 0.06 | 0.045 | | No log | 33.96 | 136 | 1.0148 | 0.73 | 0.06 | 0.0425 | | No log | 34.96 | 140 | 1.0144 | 0.7275 | 0.06 | 0.05 | | No log | 35.96 | 144 | 1.0054 | 0.7275 | 0.0575 | 0.0525 | | No log | 36.96 | 148 | 1.0055 | 0.735 | 0.0575 | 0.055 | | No log | 37.96 | 152 | 1.0171 | 0.7375 | 0.0575 | 0.06 | | No log | 38.96 | 156 | 0.9861 | 0.745 | 0.0575 | 0.06 | | No log | 39.96 | 160 | 0.9886 | 0.74 | 0.0575 | 0.06 | | No log | 40.96 | 164 | 0.9734 | 0.74 | 0.0575 | 0.06 | | No log | 41.96 | 168 | 0.9816 | 0.745 | 0.0575 | 0.0575 | | No log | 42.96 | 172 | 0.9672 | 0.735 | 0.0575 | 0.055 | | No log | 43.96 | 176 | 0.9909 | 0.7375 | 0.0575 | 0.0575 | | No log | 44.96 | 180 | 0.9831 | 0.75 | 0.0575 | 0.055 | | No log | 45.96 | 184 | 0.9673 | 0.7375 | 0.0575 | 0.055 | | No log | 46.96 | 188 | 0.9762 | 0.75 | 0.0575 | 0.0525 | | No log | 47.96 | 192 | 0.9666 | 0.745 | 0.0575 | 0.0525 | | No log | 48.96 | 196 | 0.9714 | 0.7525 | 0.0575 | 0.0575 | | No log | 49.96 | 200 | 0.9661 | 0.7475 | 0.0575 | 0.0575 | | No log | 50.96 | 204 | 0.9707 | 0.745 | 0.0575 | 0.0575 | | No log | 51.96 | 208 | 0.9830 | 0.7475 | 0.0575 | 0.0575 | | No log | 52.96 | 212 | 0.9802 | 0.75 | 0.0575 | 0.05 | | No log | 53.96 | 216 | 0.9683 | 0.75 | 0.0575 | 0.055 | | No log | 54.96 | 220 | 0.9797 | 0.7475 | 0.0575 | 0.055 | | No log | 55.96 | 224 | 0.9874 | 0.7525 | 0.0575 | 0.055 | | No log | 56.96 | 228 | 0.9824 | 0.75 | 0.0575 | 0.055 | | No log | 57.96 | 232 | 0.9755 | 0.745 | 0.0575 | 0.055 | | No log | 58.96 | 236 | 0.9719 | 0.7475 | 0.0575 | 0.055 | | No log | 59.96 | 240 | 0.9706 | 0.75 | 0.0575 | 0.055 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_2_gate
jordyvl
2023-12-08T08:55:25Z
2
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T11:19:12Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_2_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_2_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0252 - Accuracy: 0.7275 - Exit 0 Accuracy: 0.06 - Exit 1 Accuracy: 0.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7540 | 0.09 | 0.04 | 0.0625 | | No log | 1.96 | 8 | 2.7085 | 0.1475 | 0.05 | 0.0625 | | No log | 2.96 | 12 | 2.6275 | 0.16 | 0.0525 | 0.0625 | | No log | 3.96 | 16 | 2.5536 | 0.19 | 0.055 | 0.0625 | | No log | 4.96 | 20 | 2.4924 | 0.215 | 0.0525 | 0.0625 | | No log | 5.96 | 24 | 2.3988 | 0.2675 | 0.05 | 0.0625 | | No log | 6.96 | 28 | 2.2891 | 0.3275 | 0.055 | 0.07 | | No log | 7.96 | 32 | 2.2100 | 0.3525 | 0.0575 | 0.035 | | No log | 8.96 | 36 | 2.1345 | 0.3725 | 0.055 | 0.05 | | No log | 9.96 | 40 | 2.0877 | 0.385 | 0.055 | 0.0475 | | No log | 10.96 | 44 | 1.9486 | 0.4725 | 0.055 | 0.0575 | | No log | 11.96 | 48 | 1.8872 | 0.46 | 0.055 | 0.055 | | No log | 12.96 | 52 | 1.7546 | 0.545 | 0.0575 | 0.0575 | | No log | 13.96 | 56 | 1.6773 | 0.545 | 0.0575 | 0.0625 | | No log | 14.96 | 60 | 1.5625 | 0.5725 | 0.0575 | 0.0625 | | No log | 15.96 | 64 | 1.4749 | 0.5975 | 0.06 | 0.0625 | | No log | 16.96 | 68 | 1.3829 | 0.6375 | 0.06 | 0.0625 | | No log | 17.96 | 72 | 1.3381 | 0.6375 | 0.06 | 0.0625 | | No log | 18.96 | 76 | 1.2999 | 0.635 | 0.06 | 0.0625 | | No log | 19.96 | 80 | 1.2148 | 0.6875 | 0.06 | 0.0625 | | No log | 20.96 | 84 | 1.1983 | 0.6625 | 0.06 | 0.0625 | | No log | 21.96 | 88 | 1.1637 | 0.6775 | 0.06 | 0.0625 | | No log | 22.96 | 92 | 1.1256 | 0.6875 | 0.06 | 0.0625 | | No log | 23.96 | 96 | 1.1456 | 0.6675 | 0.06 | 0.0625 | | No log | 24.96 | 100 | 1.0709 | 0.7025 | 0.06 | 0.0625 | | No log | 25.96 | 104 | 1.1113 | 0.695 | 0.06 | 0.06 | | No log | 26.96 | 108 | 1.0416 | 0.7175 | 0.06 | 0.065 | | No log | 27.96 | 112 | 1.0716 | 0.6875 | 0.06 | 0.0675 | | No log | 28.96 | 116 | 1.0192 | 0.7175 | 0.06 | 0.0625 | | No log | 29.96 | 120 | 1.0237 | 0.705 | 0.06 | 0.0625 | | No log | 30.96 | 124 | 1.0260 | 0.7075 | 0.06 | 0.0675 | | No log | 31.96 | 128 | 0.9777 | 0.7275 | 0.06 | 0.0675 | | No log | 32.96 | 132 | 1.0101 | 0.725 | 0.06 | 0.0675 | | No log | 33.96 | 136 | 0.9693 | 0.7225 | 0.06 | 0.0725 | | No log | 34.96 | 140 | 0.9973 | 0.725 | 0.06 | 0.0725 | | No log | 35.96 | 144 | 0.9890 | 0.7225 | 0.06 | 0.0675 | | No log | 36.96 | 148 | 0.9947 | 0.73 | 0.06 | 0.0725 | | No log | 37.96 | 152 | 1.0048 | 0.725 | 0.06 | 0.0725 | | No log | 38.96 | 156 | 0.9622 | 0.7275 | 0.06 | 0.065 | | No log | 39.96 | 160 | 0.9894 | 0.7175 | 0.06 | 0.0675 | | No log | 40.96 | 164 | 0.9635 | 0.735 | 0.06 | 0.0675 | | No log | 41.96 | 168 | 0.9753 | 0.74 | 0.06 | 0.0725 | | No log | 42.96 | 172 | 0.9858 | 0.72 | 0.06 | 0.0725 | | No log | 43.96 | 176 | 0.9874 | 0.735 | 0.06 | 0.07 | | No log | 44.96 | 180 | 0.9856 | 0.715 | 0.06 | 0.065 | | No log | 45.96 | 184 | 1.0028 | 0.7275 | 0.06 | 0.0625 | | No log | 46.96 | 188 | 1.0067 | 0.7325 | 0.06 | 0.0625 | | No log | 47.96 | 192 | 0.9969 | 0.7275 | 0.06 | 0.0625 | | No log | 48.96 | 196 | 0.9990 | 0.74 | 0.06 | 0.0625 | | No log | 49.96 | 200 | 1.0065 | 0.735 | 0.06 | 0.0625 | | No log | 50.96 | 204 | 1.0133 | 0.735 | 0.06 | 0.0625 | | No log | 51.96 | 208 | 1.0113 | 0.735 | 0.06 | 0.0625 | | No log | 52.96 | 212 | 1.0306 | 0.7275 | 0.06 | 0.0625 | | No log | 53.96 | 216 | 1.0203 | 0.7275 | 0.06 | 0.0625 | | No log | 54.96 | 220 | 1.0170 | 0.73 | 0.06 | 0.0625 | | No log | 55.96 | 224 | 1.0214 | 0.725 | 0.06 | 0.0625 | | No log | 56.96 | 228 | 1.0248 | 0.725 | 0.06 | 0.0625 | | No log | 57.96 | 232 | 1.0252 | 0.7275 | 0.06 | 0.0625 | | No log | 58.96 | 236 | 1.0254 | 0.7275 | 0.06 | 0.0625 | | No log | 59.96 | 240 | 1.0252 | 0.7275 | 0.06 | 0.0625 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_6_gate
jordyvl
2023-12-08T08:55:24Z
8
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T18:56:01Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_6_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_6_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9813 - Accuracy: 0.7425 - Exit 0 Accuracy: 0.055 - Exit 1 Accuracy: 0.1075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7555 | 0.09 | 0.0425 | 0.0675 | | No log | 1.96 | 8 | 2.7103 | 0.145 | 0.0425 | 0.06 | | No log | 2.96 | 12 | 2.6243 | 0.175 | 0.0475 | 0.0625 | | No log | 3.96 | 16 | 2.5457 | 0.19 | 0.0475 | 0.06 | | No log | 4.96 | 20 | 2.4802 | 0.22 | 0.055 | 0.0725 | | No log | 5.96 | 24 | 2.3688 | 0.29 | 0.0525 | 0.1125 | | No log | 6.96 | 28 | 2.2693 | 0.33 | 0.0525 | 0.105 | | No log | 7.96 | 32 | 2.1806 | 0.35 | 0.0525 | 0.1275 | | No log | 8.96 | 36 | 2.0652 | 0.395 | 0.0525 | 0.125 | | No log | 9.96 | 40 | 1.9632 | 0.4325 | 0.0525 | 0.1225 | | No log | 10.96 | 44 | 1.8904 | 0.4725 | 0.05 | 0.1175 | | No log | 11.96 | 48 | 1.7364 | 0.5575 | 0.05 | 0.1225 | | No log | 12.96 | 52 | 1.6698 | 0.5525 | 0.05 | 0.12 | | No log | 13.96 | 56 | 1.5785 | 0.59 | 0.0525 | 0.115 | | No log | 14.96 | 60 | 1.5102 | 0.5975 | 0.0575 | 0.12 | | No log | 15.96 | 64 | 1.3949 | 0.64 | 0.0575 | 0.12 | | No log | 16.96 | 68 | 1.3608 | 0.625 | 0.0575 | 0.125 | | No log | 17.96 | 72 | 1.3010 | 0.64 | 0.0575 | 0.125 | | No log | 18.96 | 76 | 1.2554 | 0.665 | 0.0575 | 0.125 | | No log | 19.96 | 80 | 1.1876 | 0.675 | 0.0575 | 0.1225 | | No log | 20.96 | 84 | 1.1572 | 0.705 | 0.0575 | 0.13 | | No log | 21.96 | 88 | 1.1204 | 0.6875 | 0.0575 | 0.1275 | | No log | 22.96 | 92 | 1.0787 | 0.71 | 0.0575 | 0.1375 | | No log | 23.96 | 96 | 1.0833 | 0.7075 | 0.0575 | 0.13 | | No log | 24.96 | 100 | 1.0345 | 0.725 | 0.0575 | 0.13 | | No log | 25.96 | 104 | 1.0832 | 0.7 | 0.0575 | 0.14 | | No log | 26.96 | 108 | 1.0061 | 0.7275 | 0.0575 | 0.1325 | | No log | 27.96 | 112 | 1.0357 | 0.695 | 0.0575 | 0.13 | | No log | 28.96 | 116 | 0.9696 | 0.7325 | 0.0575 | 0.1275 | | No log | 29.96 | 120 | 1.0087 | 0.6975 | 0.0575 | 0.1275 | | No log | 30.96 | 124 | 0.9800 | 0.72 | 0.0575 | 0.1175 | | No log | 31.96 | 128 | 0.9802 | 0.715 | 0.0575 | 0.125 | | No log | 32.96 | 132 | 0.9751 | 0.7375 | 0.0575 | 0.13 | | No log | 33.96 | 136 | 0.9578 | 0.725 | 0.0575 | 0.1275 | | No log | 34.96 | 140 | 0.9624 | 0.725 | 0.0575 | 0.1225 | | No log | 35.96 | 144 | 0.9676 | 0.72 | 0.0575 | 0.13 | | No log | 36.96 | 148 | 0.9572 | 0.73 | 0.0575 | 0.1175 | | No log | 37.96 | 152 | 1.0086 | 0.7175 | 0.0575 | 0.125 | | No log | 38.96 | 156 | 0.9555 | 0.735 | 0.055 | 0.11 | | No log | 39.96 | 160 | 0.9469 | 0.74 | 0.055 | 0.115 | | No log | 40.96 | 164 | 0.9835 | 0.7275 | 0.055 | 0.115 | | No log | 41.96 | 168 | 0.9364 | 0.745 | 0.055 | 0.1075 | | No log | 42.96 | 172 | 0.9590 | 0.74 | 0.055 | 0.105 | | No log | 43.96 | 176 | 0.9499 | 0.7425 | 0.055 | 0.1025 | | No log | 44.96 | 180 | 0.9731 | 0.7375 | 0.055 | 0.1 | | No log | 45.96 | 184 | 0.9719 | 0.725 | 0.055 | 0.1025 | | No log | 46.96 | 188 | 0.9669 | 0.7375 | 0.055 | 0.105 | | No log | 47.96 | 192 | 0.9713 | 0.7325 | 0.055 | 0.11 | | No log | 48.96 | 196 | 0.9738 | 0.7475 | 0.055 | 0.1075 | | No log | 49.96 | 200 | 0.9662 | 0.7425 | 0.055 | 0.1025 | | No log | 50.96 | 204 | 0.9848 | 0.73 | 0.055 | 0.1025 | | No log | 51.96 | 208 | 0.9689 | 0.7475 | 0.055 | 0.11 | | No log | 52.96 | 212 | 0.9690 | 0.7475 | 0.055 | 0.105 | | No log | 53.96 | 216 | 0.9783 | 0.7475 | 0.055 | 0.1025 | | No log | 54.96 | 220 | 0.9831 | 0.7425 | 0.055 | 0.1025 | | No log | 55.96 | 224 | 0.9778 | 0.745 | 0.055 | 0.1025 | | No log | 56.96 | 228 | 0.9740 | 0.7475 | 0.055 | 0.1025 | | No log | 57.96 | 232 | 0.9754 | 0.7475 | 0.055 | 0.1075 | | No log | 58.96 | 236 | 0.9793 | 0.7425 | 0.055 | 0.1075 | | No log | 59.96 | 240 | 0.9813 | 0.7425 | 0.055 | 0.1075 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_5_gate
jordyvl
2023-12-08T08:55:24Z
3
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T16:54:10Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_5_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_5_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9668 - Accuracy: 0.7475 - Exit 0 Accuracy: 0.0575 - Exit 1 Accuracy: 0.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7555 | 0.09 | 0.04 | 0.0625 | | No log | 1.96 | 8 | 2.7056 | 0.14 | 0.0475 | 0.065 | | No log | 2.96 | 12 | 2.6221 | 0.165 | 0.045 | 0.0575 | | No log | 3.96 | 16 | 2.5429 | 0.1925 | 0.045 | 0.0625 | | No log | 4.96 | 20 | 2.4773 | 0.225 | 0.0525 | 0.0625 | | No log | 5.96 | 24 | 2.3640 | 0.295 | 0.0525 | 0.0625 | | No log | 6.96 | 28 | 2.2786 | 0.3325 | 0.05 | 0.0625 | | No log | 7.96 | 32 | 2.1765 | 0.3675 | 0.0525 | 0.0625 | | No log | 8.96 | 36 | 2.0950 | 0.39 | 0.0525 | 0.0675 | | No log | 9.96 | 40 | 1.9789 | 0.4475 | 0.055 | 0.07 | | No log | 10.96 | 44 | 1.9028 | 0.455 | 0.055 | 0.07 | | No log | 11.96 | 48 | 1.7707 | 0.505 | 0.055 | 0.0725 | | No log | 12.96 | 52 | 1.7087 | 0.525 | 0.055 | 0.075 | | No log | 13.96 | 56 | 1.6296 | 0.555 | 0.055 | 0.0525 | | No log | 14.96 | 60 | 1.5540 | 0.575 | 0.0575 | 0.0575 | | No log | 15.96 | 64 | 1.4520 | 0.6275 | 0.055 | 0.0475 | | No log | 16.96 | 68 | 1.3974 | 0.63 | 0.055 | 0.0425 | | No log | 17.96 | 72 | 1.3386 | 0.655 | 0.055 | 0.0425 | | No log | 18.96 | 76 | 1.2821 | 0.665 | 0.055 | 0.04 | | No log | 19.96 | 80 | 1.2171 | 0.68 | 0.055 | 0.0425 | | No log | 20.96 | 84 | 1.1603 | 0.695 | 0.0525 | 0.05 | | No log | 21.96 | 88 | 1.1320 | 0.7025 | 0.0525 | 0.05 | | No log | 22.96 | 92 | 1.0933 | 0.7 | 0.0525 | 0.0425 | | No log | 23.96 | 96 | 1.0627 | 0.715 | 0.0525 | 0.0425 | | No log | 24.96 | 100 | 1.0525 | 0.72 | 0.0525 | 0.0575 | | No log | 25.96 | 104 | 1.0423 | 0.715 | 0.0525 | 0.06 | | No log | 26.96 | 108 | 1.0229 | 0.715 | 0.0525 | 0.06 | | No log | 27.96 | 112 | 0.9955 | 0.73 | 0.0525 | 0.0575 | | No log | 28.96 | 116 | 0.9720 | 0.73 | 0.055 | 0.06 | | No log | 29.96 | 120 | 0.9958 | 0.715 | 0.055 | 0.07 | | No log | 30.96 | 124 | 0.9662 | 0.74 | 0.055 | 0.07 | | No log | 31.96 | 128 | 0.9828 | 0.73 | 0.055 | 0.065 | | No log | 32.96 | 132 | 0.9726 | 0.73 | 0.055 | 0.065 | | No log | 33.96 | 136 | 0.9644 | 0.73 | 0.055 | 0.0625 | | No log | 34.96 | 140 | 0.9596 | 0.7375 | 0.055 | 0.0625 | | No log | 35.96 | 144 | 0.9471 | 0.7375 | 0.055 | 0.0675 | | No log | 36.96 | 148 | 0.9542 | 0.7375 | 0.055 | 0.0575 | | No log | 37.96 | 152 | 0.9740 | 0.72 | 0.0525 | 0.0625 | | No log | 38.96 | 156 | 0.9314 | 0.7525 | 0.0525 | 0.0625 | | No log | 39.96 | 160 | 0.9308 | 0.75 | 0.055 | 0.0625 | | No log | 40.96 | 164 | 0.9463 | 0.7475 | 0.0575 | 0.06 | | No log | 41.96 | 168 | 0.9369 | 0.75 | 0.0575 | 0.06 | | No log | 42.96 | 172 | 0.9585 | 0.735 | 0.0575 | 0.0525 | | No log | 43.96 | 176 | 0.9400 | 0.75 | 0.0575 | 0.06 | | No log | 44.96 | 180 | 0.9233 | 0.7625 | 0.0575 | 0.065 | | No log | 45.96 | 184 | 0.9533 | 0.75 | 0.0575 | 0.0725 | | No log | 46.96 | 188 | 0.9584 | 0.745 | 0.0575 | 0.065 | | No log | 47.96 | 192 | 0.9659 | 0.7375 | 0.0575 | 0.06 | | No log | 48.96 | 196 | 0.9480 | 0.7575 | 0.0575 | 0.0625 | | No log | 49.96 | 200 | 0.9712 | 0.745 | 0.0575 | 0.065 | | No log | 50.96 | 204 | 0.9800 | 0.7375 | 0.0575 | 0.0675 | | No log | 51.96 | 208 | 0.9495 | 0.75 | 0.0575 | 0.0675 | | No log | 52.96 | 212 | 0.9579 | 0.74 | 0.0575 | 0.0575 | | No log | 53.96 | 216 | 0.9777 | 0.7475 | 0.0575 | 0.0525 | | No log | 54.96 | 220 | 0.9731 | 0.7475 | 0.0575 | 0.05 | | No log | 55.96 | 224 | 0.9647 | 0.7475 | 0.0575 | 0.0525 | | No log | 56.96 | 228 | 0.9649 | 0.745 | 0.0575 | 0.0575 | | No log | 57.96 | 232 | 0.9666 | 0.7475 | 0.0575 | 0.065 | | No log | 58.96 | 236 | 0.9670 | 0.7475 | 0.0575 | 0.065 | | No log | 59.96 | 240 | 0.9668 | 0.7475 | 0.0575 | 0.0625 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_4_gate
jordyvl
2023-12-08T08:55:24Z
3
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T15:00:26Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_4_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_4_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0854 - Accuracy: 0.72 - Exit 0 Accuracy: 0.0625 - Exit 1 Accuracy: 0.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7541 | 0.09 | 0.04 | 0.0625 | | No log | 1.96 | 8 | 2.7076 | 0.1425 | 0.055 | 0.0625 | | No log | 2.96 | 12 | 2.6235 | 0.1725 | 0.055 | 0.0625 | | No log | 3.96 | 16 | 2.5506 | 0.205 | 0.0525 | 0.0675 | | No log | 4.96 | 20 | 2.4963 | 0.215 | 0.0525 | 0.075 | | No log | 5.96 | 24 | 2.4094 | 0.2725 | 0.0575 | 0.0625 | | No log | 6.96 | 28 | 2.2982 | 0.305 | 0.0575 | 0.0625 | | No log | 7.96 | 32 | 2.2131 | 0.3375 | 0.0575 | 0.0625 | | No log | 8.96 | 36 | 2.1493 | 0.3325 | 0.0575 | 0.0625 | | No log | 9.96 | 40 | 2.0452 | 0.375 | 0.06 | 0.0625 | | No log | 10.96 | 44 | 1.9553 | 0.4275 | 0.06 | 0.0625 | | No log | 11.96 | 48 | 1.8302 | 0.5075 | 0.06 | 0.0625 | | No log | 12.96 | 52 | 1.7440 | 0.54 | 0.06 | 0.0625 | | No log | 13.96 | 56 | 1.6427 | 0.5575 | 0.0625 | 0.0625 | | No log | 14.96 | 60 | 1.5650 | 0.6 | 0.0625 | 0.0625 | | No log | 15.96 | 64 | 1.4875 | 0.62 | 0.065 | 0.0625 | | No log | 16.96 | 68 | 1.4124 | 0.645 | 0.0625 | 0.0625 | | No log | 17.96 | 72 | 1.3870 | 0.65 | 0.0625 | 0.065 | | No log | 18.96 | 76 | 1.2946 | 0.675 | 0.0575 | 0.0625 | | No log | 19.96 | 80 | 1.2652 | 0.67 | 0.0575 | 0.065 | | No log | 20.96 | 84 | 1.1967 | 0.6975 | 0.0575 | 0.065 | | No log | 21.96 | 88 | 1.1782 | 0.695 | 0.0575 | 0.065 | | No log | 22.96 | 92 | 1.1372 | 0.6975 | 0.0575 | 0.065 | | No log | 23.96 | 96 | 1.1193 | 0.7025 | 0.0575 | 0.065 | | No log | 24.96 | 100 | 1.0844 | 0.7175 | 0.06 | 0.0625 | | No log | 25.96 | 104 | 1.0746 | 0.705 | 0.06 | 0.0625 | | No log | 26.96 | 108 | 1.0720 | 0.72 | 0.06 | 0.065 | | No log | 27.96 | 112 | 1.0455 | 0.72 | 0.06 | 0.0625 | | No log | 28.96 | 116 | 1.0266 | 0.7275 | 0.06 | 0.0625 | | No log | 29.96 | 120 | 1.0322 | 0.7275 | 0.0625 | 0.0625 | | No log | 30.96 | 124 | 1.0310 | 0.73 | 0.0625 | 0.0625 | | No log | 31.96 | 128 | 1.0186 | 0.7275 | 0.0625 | 0.0625 | | No log | 32.96 | 132 | 1.0236 | 0.725 | 0.0625 | 0.0625 | | No log | 33.96 | 136 | 1.0142 | 0.73 | 0.0625 | 0.0625 | | No log | 34.96 | 140 | 1.0096 | 0.7225 | 0.0625 | 0.0625 | | No log | 35.96 | 144 | 0.9953 | 0.74 | 0.0625 | 0.0625 | | No log | 36.96 | 148 | 1.0065 | 0.7275 | 0.0625 | 0.0625 | | No log | 37.96 | 152 | 1.0247 | 0.725 | 0.06 | 0.0625 | | No log | 38.96 | 156 | 1.0083 | 0.7325 | 0.06 | 0.0625 | | No log | 39.96 | 160 | 1.0138 | 0.725 | 0.0625 | 0.0625 | | No log | 40.96 | 164 | 1.0311 | 0.725 | 0.065 | 0.0625 | | No log | 41.96 | 168 | 1.0301 | 0.7175 | 0.0625 | 0.0625 | | No log | 42.96 | 172 | 1.0492 | 0.725 | 0.0625 | 0.0625 | | No log | 43.96 | 176 | 1.0431 | 0.7225 | 0.0625 | 0.0625 | | No log | 44.96 | 180 | 1.0565 | 0.7275 | 0.0625 | 0.06 | | No log | 45.96 | 184 | 1.0747 | 0.7175 | 0.0625 | 0.0625 | | No log | 46.96 | 188 | 1.0534 | 0.7125 | 0.0625 | 0.06 | | No log | 47.96 | 192 | 1.0610 | 0.72 | 0.0625 | 0.06 | | No log | 48.96 | 196 | 1.0721 | 0.7175 | 0.0625 | 0.0625 | | No log | 49.96 | 200 | 1.0744 | 0.7175 | 0.0625 | 0.0625 | | No log | 50.96 | 204 | 1.0776 | 0.72 | 0.0625 | 0.0625 | | No log | 51.96 | 208 | 1.0777 | 0.72 | 0.0625 | 0.0625 | | No log | 52.96 | 212 | 1.0831 | 0.7225 | 0.0625 | 0.0625 | | No log | 53.96 | 216 | 1.0786 | 0.7225 | 0.0625 | 0.0625 | | No log | 54.96 | 220 | 1.0806 | 0.725 | 0.0625 | 0.0625 | | No log | 55.96 | 224 | 1.0844 | 0.7275 | 0.0625 | 0.0625 | | No log | 56.96 | 228 | 1.0858 | 0.73 | 0.0625 | 0.0625 | | No log | 57.96 | 232 | 1.0861 | 0.7225 | 0.0625 | 0.0625 | | No log | 58.96 | 236 | 1.0857 | 0.72 | 0.0625 | 0.0625 | | No log | 59.96 | 240 | 1.0854 | 0.72 | 0.0625 | 0.0625 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_8_gate
jordyvl
2023-12-08T08:55:23Z
1
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T22:57:37Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_8_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_8_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0199 - Accuracy: 0.7575 - Exit 0 Accuracy: 0.06 - Exit 1 Accuracy: 0.12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7540 | 0.09 | 0.0425 | 0.0625 | | No log | 1.96 | 8 | 2.7063 | 0.1525 | 0.045 | 0.0625 | | No log | 2.96 | 12 | 2.6279 | 0.1775 | 0.05 | 0.0625 | | No log | 3.96 | 16 | 2.5448 | 0.2025 | 0.0525 | 0.0625 | | No log | 4.96 | 20 | 2.4829 | 0.225 | 0.05 | 0.0625 | | No log | 5.96 | 24 | 2.3776 | 0.285 | 0.0525 | 0.0625 | | No log | 6.96 | 28 | 2.2785 | 0.33 | 0.055 | 0.0625 | | No log | 7.96 | 32 | 2.1809 | 0.3575 | 0.055 | 0.0625 | | No log | 8.96 | 36 | 2.0830 | 0.3875 | 0.055 | 0.085 | | No log | 9.96 | 40 | 1.9854 | 0.4275 | 0.055 | 0.07 | | No log | 10.96 | 44 | 1.8839 | 0.485 | 0.055 | 0.07 | | No log | 11.96 | 48 | 1.7375 | 0.545 | 0.055 | 0.0775 | | No log | 12.96 | 52 | 1.6524 | 0.5725 | 0.0575 | 0.095 | | No log | 13.96 | 56 | 1.5703 | 0.565 | 0.0575 | 0.1175 | | No log | 14.96 | 60 | 1.4606 | 0.6175 | 0.0575 | 0.1175 | | No log | 15.96 | 64 | 1.3988 | 0.6525 | 0.055 | 0.1175 | | No log | 16.96 | 68 | 1.3036 | 0.645 | 0.055 | 0.1175 | | No log | 17.96 | 72 | 1.2528 | 0.6875 | 0.0575 | 0.12 | | No log | 18.96 | 76 | 1.2113 | 0.69 | 0.0575 | 0.12 | | No log | 19.96 | 80 | 1.1515 | 0.6975 | 0.0575 | 0.1175 | | No log | 20.96 | 84 | 1.1117 | 0.71 | 0.0575 | 0.1175 | | No log | 21.96 | 88 | 1.0811 | 0.7075 | 0.0575 | 0.1175 | | No log | 22.96 | 92 | 1.0649 | 0.7075 | 0.0575 | 0.1175 | | No log | 23.96 | 96 | 1.0342 | 0.7275 | 0.0575 | 0.1175 | | No log | 24.96 | 100 | 0.9994 | 0.7275 | 0.0575 | 0.1175 | | No log | 25.96 | 104 | 1.0332 | 0.7275 | 0.0575 | 0.1175 | | No log | 26.96 | 108 | 0.9696 | 0.7325 | 0.06 | 0.1175 | | No log | 27.96 | 112 | 0.9957 | 0.7325 | 0.06 | 0.1175 | | No log | 28.96 | 116 | 0.9794 | 0.7325 | 0.06 | 0.1175 | | No log | 29.96 | 120 | 0.9602 | 0.735 | 0.06 | 0.1175 | | No log | 30.96 | 124 | 0.9900 | 0.75 | 0.06 | 0.12 | | No log | 31.96 | 128 | 0.9649 | 0.74 | 0.06 | 0.1175 | | No log | 32.96 | 132 | 0.9935 | 0.7325 | 0.06 | 0.12 | | No log | 33.96 | 136 | 0.9637 | 0.7475 | 0.06 | 0.12 | | No log | 34.96 | 140 | 0.9993 | 0.7325 | 0.06 | 0.12 | | No log | 35.96 | 144 | 0.9841 | 0.7375 | 0.06 | 0.1225 | | No log | 36.96 | 148 | 0.9719 | 0.7475 | 0.06 | 0.1225 | | No log | 37.96 | 152 | 0.9901 | 0.745 | 0.06 | 0.125 | | No log | 38.96 | 156 | 0.9692 | 0.7475 | 0.06 | 0.115 | | No log | 39.96 | 160 | 0.9850 | 0.7425 | 0.06 | 0.1025 | | No log | 40.96 | 164 | 0.9876 | 0.75 | 0.06 | 0.1 | | No log | 41.96 | 168 | 0.9867 | 0.7525 | 0.06 | 0.095 | | No log | 42.96 | 172 | 1.0042 | 0.7475 | 0.06 | 0.085 | | No log | 43.96 | 176 | 1.0099 | 0.735 | 0.06 | 0.1025 | | No log | 44.96 | 180 | 0.9988 | 0.755 | 0.06 | 0.1025 | | No log | 45.96 | 184 | 1.0033 | 0.7475 | 0.06 | 0.1025 | | No log | 46.96 | 188 | 1.0105 | 0.7475 | 0.06 | 0.105 | | No log | 47.96 | 192 | 1.0103 | 0.75 | 0.06 | 0.1025 | | No log | 48.96 | 196 | 1.0097 | 0.7575 | 0.06 | 0.11 | | No log | 49.96 | 200 | 0.9975 | 0.755 | 0.06 | 0.11 | | No log | 50.96 | 204 | 1.0095 | 0.76 | 0.06 | 0.115 | | No log | 51.96 | 208 | 1.0203 | 0.7575 | 0.06 | 0.1275 | | No log | 52.96 | 212 | 1.0304 | 0.745 | 0.06 | 0.1225 | | No log | 53.96 | 216 | 1.0286 | 0.75 | 0.06 | 0.125 | | No log | 54.96 | 220 | 1.0193 | 0.7575 | 0.06 | 0.1275 | | No log | 55.96 | 224 | 1.0138 | 0.7575 | 0.06 | 0.13 | | No log | 56.96 | 228 | 1.0168 | 0.76 | 0.06 | 0.1225 | | No log | 57.96 | 232 | 1.0196 | 0.76 | 0.06 | 0.12 | | No log | 58.96 | 236 | 1.0203 | 0.7575 | 0.06 | 0.12 | | No log | 59.96 | 240 | 1.0199 | 0.7575 | 0.06 | 0.12 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_7_gate
jordyvl
2023-12-08T08:55:23Z
3
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-04T20:54:04Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_7_gate results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-12-04_txt_vis_concat_enc_7_gate This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9969 - Accuracy: 0.7375 - Exit 0 Accuracy: 0.0575 - Exit 1 Accuracy: 0.135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:| | No log | 0.96 | 4 | 2.7554 | 0.09 | 0.04 | 0.07 | | No log | 1.96 | 8 | 2.7058 | 0.15 | 0.0475 | 0.0625 | | No log | 2.96 | 12 | 2.6226 | 0.1675 | 0.05 | 0.0625 | | No log | 3.96 | 16 | 2.5435 | 0.19 | 0.0525 | 0.0625 | | No log | 4.96 | 20 | 2.4855 | 0.2075 | 0.0525 | 0.0625 | | No log | 5.96 | 24 | 2.3833 | 0.2925 | 0.0525 | 0.065 | | No log | 6.96 | 28 | 2.2843 | 0.3375 | 0.0525 | 0.0725 | | No log | 7.96 | 32 | 2.1867 | 0.3525 | 0.0525 | 0.0875 | | No log | 8.96 | 36 | 2.0982 | 0.3775 | 0.0525 | 0.09 | | No log | 9.96 | 40 | 1.9870 | 0.4375 | 0.055 | 0.09 | | No log | 10.96 | 44 | 1.8947 | 0.4575 | 0.055 | 0.0725 | | No log | 11.96 | 48 | 1.7869 | 0.495 | 0.055 | 0.065 | | No log | 12.96 | 52 | 1.7034 | 0.54 | 0.0575 | 0.0575 | | No log | 13.96 | 56 | 1.6100 | 0.57 | 0.0575 | 0.055 | | No log | 14.96 | 60 | 1.5372 | 0.5675 | 0.0575 | 0.065 | | No log | 15.96 | 64 | 1.4592 | 0.61 | 0.0575 | 0.07 | | No log | 16.96 | 68 | 1.4024 | 0.6125 | 0.0575 | 0.08 | | No log | 17.96 | 72 | 1.3378 | 0.64 | 0.0575 | 0.075 | | No log | 18.96 | 76 | 1.2934 | 0.66 | 0.0575 | 0.085 | | No log | 19.96 | 80 | 1.2202 | 0.655 | 0.0575 | 0.09 | | No log | 20.96 | 84 | 1.1826 | 0.6725 | 0.055 | 0.085 | | No log | 21.96 | 88 | 1.1325 | 0.6925 | 0.055 | 0.09 | | No log | 22.96 | 92 | 1.0960 | 0.7275 | 0.055 | 0.0875 | | No log | 23.96 | 96 | 1.0852 | 0.69 | 0.055 | 0.0925 | | No log | 24.96 | 100 | 1.0503 | 0.7075 | 0.055 | 0.0875 | | No log | 25.96 | 104 | 1.0417 | 0.705 | 0.055 | 0.0975 | | No log | 26.96 | 108 | 1.0174 | 0.71 | 0.055 | 0.095 | | No log | 27.96 | 112 | 0.9902 | 0.715 | 0.055 | 0.1 | | No log | 28.96 | 116 | 1.0088 | 0.6975 | 0.055 | 0.1025 | | No log | 29.96 | 120 | 0.9992 | 0.7125 | 0.055 | 0.1075 | | No log | 30.96 | 124 | 0.9688 | 0.72 | 0.0575 | 0.1125 | | No log | 31.96 | 128 | 0.9745 | 0.7275 | 0.0575 | 0.11 | | No log | 32.96 | 132 | 0.9688 | 0.7175 | 0.055 | 0.1125 | | No log | 33.96 | 136 | 0.9720 | 0.7225 | 0.055 | 0.11 | | No log | 34.96 | 140 | 0.9515 | 0.7375 | 0.055 | 0.1125 | | No log | 35.96 | 144 | 0.9717 | 0.73 | 0.055 | 0.115 | | No log | 36.96 | 148 | 0.9686 | 0.7225 | 0.055 | 0.1125 | | No log | 37.96 | 152 | 0.9646 | 0.7275 | 0.055 | 0.115 | | No log | 38.96 | 156 | 0.9522 | 0.7375 | 0.055 | 0.1225 | | No log | 39.96 | 160 | 0.9844 | 0.735 | 0.055 | 0.12 | | No log | 40.96 | 164 | 0.9815 | 0.745 | 0.055 | 0.1075 | | No log | 41.96 | 168 | 0.9866 | 0.7225 | 0.055 | 0.115 | | No log | 42.96 | 172 | 0.9835 | 0.7325 | 0.055 | 0.115 | | No log | 43.96 | 176 | 0.9902 | 0.74 | 0.055 | 0.11 | | No log | 44.96 | 180 | 0.9843 | 0.745 | 0.055 | 0.115 | | No log | 45.96 | 184 | 1.0099 | 0.725 | 0.055 | 0.1225 | | No log | 46.96 | 188 | 0.9917 | 0.7325 | 0.0575 | 0.125 | | No log | 47.96 | 192 | 0.9817 | 0.735 | 0.0575 | 0.13 | | No log | 48.96 | 196 | 1.0048 | 0.73 | 0.055 | 0.13 | | No log | 49.96 | 200 | 0.9973 | 0.7375 | 0.0575 | 0.1275 | | No log | 50.96 | 204 | 0.9899 | 0.7375 | 0.0575 | 0.1275 | | No log | 51.96 | 208 | 0.9913 | 0.7375 | 0.0575 | 0.1275 | | No log | 52.96 | 212 | 0.9975 | 0.735 | 0.0575 | 0.13 | | No log | 53.96 | 216 | 1.0028 | 0.7325 | 0.0575 | 0.13 | | No log | 54.96 | 220 | 0.9928 | 0.735 | 0.0575 | 0.1275 | | No log | 55.96 | 224 | 0.9866 | 0.735 | 0.0575 | 0.1325 | | No log | 56.96 | 228 | 0.9884 | 0.7375 | 0.0575 | 0.1275 | | No log | 57.96 | 232 | 0.9943 | 0.7425 | 0.0575 | 0.13 | | No log | 58.96 | 236 | 0.9967 | 0.74 | 0.0575 | 0.13 | | No log | 59.96 | 240 | 0.9969 | 0.7375 | 0.0575 | 0.135 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
kishore2/zephyr-7B-OH2p5-alpha-tags-86-FT-prompt3-recHyperparams_50Steps_randTagList
kishore2
2023-12-08T08:54:58Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ", "base_model:finetune:TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-12-08T08:43:45Z
--- license: apache-2.0 base_model: TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ tags: - generated_from_trainer model-index: - name: zephyr-7B-OH2p5-alpha-tags-86-FT-prompt3-recHyperparams_50Steps_randTagList results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7B-OH2p5-alpha-tags-86-FT-prompt3-recHyperparams_50Steps_randTagList This model is a fine-tuned version of [TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
rpratap2102/The_Misfits
rpratap2102
2023-12-08T08:54:07Z
10
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T08:29:13Z
--- language: "en" tags: - financial-sentiment-analysis - sentiment-analysis widget: - text: "growth is strong and we have plenty of liquidity" --- `FinBERT` is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice. It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens. - Corporate Reports 10-K & 10-Q: 2.5B tokens - Earnings Call Transcripts: 1.3B tokens - Analyst Reports: 1.1B tokens More technical details on `FinBERT`: [Click Link](https://github.com/yya518/FinBERT) This released `finbert-tone` model is the `FinBERT` model fine-tuned on 10,000 manually annotated (positive, negative, neutral) sentences from analyst reports. This model achieves superior performance on financial tone analysis task. If you are simply interested in using `FinBERT` for financial tone analysis, give it a try. # How to use You can use this model with Transformers pipeline for sentiment analysis. ```python from transformers import BertTokenizer, BertForSequenceClassification from transformers import pipeline finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits',num_labels=3) tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits') nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer) sentences = ["there is a shortage of capital, and we need extra financing", "growth is strong and we have plenty of liquidity", "there are doubts about our finances", "profits are flat"] results = nlp(sentences) print(results) #LABEL_0: neutral; LABEL_1: positive; LABEL_2: negative ```
mehmetbh/LunarLanderFirstTrial
mehmetbh
2023-12-08T08:48:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T08:47:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.62 +/- 22.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Wolverine01/ppo-Huggy
Wolverine01
2023-12-08T08:43:44Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-12-02T11:41:15Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Wolverine01/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
multimodalart/polipure-repeats-3-steps-750-rank64-no-prior
multimodalart
2023-12-08T08:40:51Z
12
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:51:22Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: <s0><s1> license: openrail++ widget: - text: '<s0><s1>' --- # SDXL LoRA DreamBooth - multimodalart/polipure-repeats-3-steps-750-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/polipure-repeats-3-steps-750-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/polipure-repeats-3-steps-750-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/polipure-repeats-3-steps-750-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('<s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/polipure-repeats-3-steps-750-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/polipure-repeats-3-steps-750-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/polipure-repeats-3-steps-750-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Rompo/Rompov
Rompo
2023-12-08T08:17:26Z
0
2
null
[ "music", "image-to-3d", "en", "bg", "region:us" ]
image-to-3d
2023-12-08T08:13:27Z
--- language: - en - bg metrics: - accuracy - character pipeline_tag: image-to-3d tags: - music ---
brettbbb/cs_cot_16
brettbbb
2023-12-08T08:16:15Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T08:13:44Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: cs_cot_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cs_cot_16 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
UnbrokenXM/whisper-base-Chinese-20
UnbrokenXM
2023-12-08T08:07:36Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai/whisper-base", "base_model:adapter:openai/whisper-base", "region:us" ]
null
2023-12-08T08:07:35Z
--- library_name: peft base_model: openai/whisper-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
Paul333/lyt_results
Paul333
2023-12-08T08:00:47Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T07:54:16Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: lyt_results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lyt_results This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 283 | 3.7645 | | 3.8884 | 2.0 | 566 | 3.7468 | | 3.8884 | 3.0 | 849 | 3.7435 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.13.1
Phiby/superwomen
Phiby
2023-12-08T07:56:53Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T07:31:11Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: superwomen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superwomen This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4064 - Accuracy: 0.942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 469 | 2.7836 | 0.778 | | 3.9815 | 2.0 | 938 | 1.2347 | 0.898 | | 1.875 | 3.0 | 1407 | 0.6481 | 0.9273 | | 0.8377 | 4.0 | 1876 | 0.4547 | 0.9393 | | 0.4736 | 5.0 | 2345 | 0.4064 | 0.942 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
mizy/oppo-7b-q4_0-gguf
mizy
2023-12-08T07:55:21Z
1
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2023-11-21T11:12:45Z
from [oppo-experiemental-7B](https://huggingface.co/OPPOResearchInstitute/oppo-experiemental-7B)
multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior
multimodalart
2023-12-08T07:41:28Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:57:24Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poliphoto-repeats-4-steps-1200-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
alisontsao/my-awesome-text-classification
alisontsao
2023-12-08T07:39:55Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T07:29:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my-awesome-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4064 - Accuracy: 0.942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 469 | 2.7836 | 0.778 | | 3.9815 | 2.0 | 938 | 1.2347 | 0.898 | | 1.875 | 3.0 | 1407 | 0.6481 | 0.9273 | | 0.8377 | 4.0 | 1876 | 0.4547 | 0.9393 | | 0.4736 | 5.0 | 2345 | 0.4064 | 0.942 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior
multimodalart
2023-12-08T07:38:47Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:58:36Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poliphoto-repeats-3-steps-1200-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior
multimodalart
2023-12-08T07:33:26Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:52:40Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('<s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/polipure-repeats-3-steps-1200-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
JuanMa360/room-classification
JuanMa360
2023-12-08T07:32:42Z
4,587
4
transformers
[ "transformers", "pytorch", "safetensors", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-15T17:50:28Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: room-classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8650000095367432 --- # room-classification House & Apartaments Classification model🤗🖼️ ## Example Images #### Exterior ![Exterior](images/Exterior.jpeg) #### closets ![closets](images/closets.jpg) #### kitchen ![kitchen](images/kitchen.jpeg) #### others ![others](images/others.jpg)
Ketak-ZoomRx/Drug_67k_pyt
Ketak-ZoomRx
2023-12-08T07:32:11Z
12
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-08T07:31:21Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Ketak-ZoomRx/Drug_67k_pyt", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Ketak-ZoomRx/Drug_67k_pyt", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Ketak-ZoomRx/Drug_67k_pyt", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Ketak-ZoomRx/Drug_67k_pyt" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.0), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
jiangminghan/model_dog
jiangminghan
2023-12-08T07:32:07Z
2
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-07T12:52:21Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - jiangminghan/model_dog This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
cwchang/my-awesome-tx-v2
cwchang
2023-12-08T07:29:09Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T07:28:52Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my-awesome-tx-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-tx-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3863 - Accuracy: 0.9493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 469 | 2.6771 | 0.816 | | 3.9145 | 2.0 | 938 | 1.1744 | 0.901 | | 1.7848 | 3.0 | 1407 | 0.6144 | 0.9333 | | 0.7926 | 4.0 | 1876 | 0.4327 | 0.9477 | | 0.4466 | 5.0 | 2345 | 0.3863 | 0.9493 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Owlcateagle/my-awesome-text-classification
Owlcateagle
2023-12-08T07:27:54Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T07:27:43Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my-awesome-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-awesome-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4472 - Accuracy: 0.942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 469 | 2.7365 | 0.807 | | 3.9635 | 2.0 | 938 | 1.1976 | 0.9023 | | 1.8301 | 3.0 | 1407 | 0.6323 | 0.923 | | 0.8128 | 4.0 | 1876 | 0.4472 | 0.942 | | 0.4605 | 5.0 | 2345 | 0.4010 | 0.941 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior
multimodalart
2023-12-08T07:26:02Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:57:24Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poliphoto-repeats-4-steps-750-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
breezedeus/coin-clip-vit-base-patch32
breezedeus
2023-12-08T07:23:59Z
45
3
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "vision", "coin", "coin-retrieval", "coin-recognition", "coin-search-engine", "multi-modal learning", "feature-extraction", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-11-26T07:48:48Z
--- tags: - vision - coin - clip - coin-retrieval - coin-recognition - coin-search-engine - multi-modal learning widget: - src: >- https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: playing music, playing sports example_title: Cat & Dog license: apache-2.0 library_name: transformers pipeline_tag: feature-extraction --- # Coin-CLIP 🪙 : Enhancing Coin Image Retrieval with CLIP ## Model Details / 模型细节 This model (**Coin-CLIP**) is built upon OpenAI's **[CLIP](https://huggingface.co/openai/clip-vit-base-patch32) (ViT-B/32)** model and fine-tuned on a dataset of more than `340,000` coin images using contrastive learning techniques. This specialized model is designed to significantly improve feature extraction for coin images, leading to more accurate image-based search capabilities. Coin-CLIP combines the power of Visual Transformer (ViT) with CLIP's multimodal learning capabilities, specifically tailored for the numismatic domain. **Key Features:** - State-of-the-art coin image retrieval; - Enhanced feature extraction for numismatic images; - Seamless integration with CLIP's multimodal learning. 本模型(**Coin-CLIP**) 在 OpenAI 的 **[CLIP](https://huggingface.co/openai/clip-vit-base-patch32) (ViT-B/32)** 模型基础上,利用对比学习技术在超过 `340,000` 张硬币图片数据上微调得到的。 **Coin-CLIP** 旨在提高模型针对硬币图片的特征提取能力,从而实现更准确的以图搜图功能。该模型结合了视觉变换器(ViT)的强大功能和 CLIP 的多模态学习能力,并专门针对硬币图片进行了优化。 ## Comparison: Coin-CLIP vs. CLIP / 效果对比 #### Example 1 (Left: Coin-CLIP; Right: CLIP) ![1. Coin-CLIP vs. CLIP](https://www.notion.so/image/https%3A%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F9341931a-53f0-48e1-b026-0f1ad17b457c%2F4b047305-0bf2-4809-acc6-94fd412d5307%2FUntitled.gif?table=block&id=78225b2b-49b4-4a18-b33c-c4530a6e8330) #### Example 2 (Left: Coin-CLIP; Right: CLIP) ![2. Coin-CLIP vs. CLIP](https://www.notion.so/image/https%3A%2F%2Fprod-files-secure.s3.us-west-2.amazonaws.com%2F9341931a-53f0-48e1-b026-0f1ad17b457c%2F14376459-bedd-4d82-a178-fde391fd70d0%2FUntitled.gif?table=block&id=99ed5179-bcab-4c58-b6d8-1a77bffe79f7) More examples can be found: [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP) . ## Usage and Limitations / 使用和限制 - **Usage**: This model is primarily used for extracting representation vectors from coin images, enabling efficient and precise image-based searches in a coin image database. - **Limitations**: As the model is trained specifically on coin images, it may not perform well on non-coin images. - **用途**:此模型主要用于提取硬币图片的表示向量,以实现在硬币图像库中进行高效、精确的以图搜图。 - **限制**:由于模型是针对硬币图像进行训练的,因此在处理非硬币图像时可能效果不佳。 ## Documents / 文档 - Base Model: [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) ## Model Use / 模型使用 ### Transformers ```python from PIL import Image import requests import torch.nn.functional as F from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("breezedeus/coin-clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("breezedeus/coin-clip-vit-base-patch32") image_fp = "path/to/coin_image.jpg" image = Image.open(image_fp).convert("RGB") inputs = processor(images=image, return_tensors="pt") img_features = model.get_image_features(**inputs) img_features = F.normalize(img_features, dim=1) ``` ### Tool / 工具 To further simplify the use of the **Coin-CLIP** model, we provide a simple Python library [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP) for quickly building a coin image retrieval engine. 为了进一步简化 **Coin-CLIP** 模型的使用,我们提供了一个简单的 Python 库 [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP),以便快速构建硬币图像检索引擎。 #### Install ```bash pip install coin_clip ``` #### Extract Feature Vectors ```python from coin_clip import CoinClip # Automatically download the model from Huggingface model = CoinClip(model_name='breezedeus/coin-clip-vit-base-patch32') images = ['examples/10_back.jpg', 'examples/16_back.jpg'] img_feats, success_ids = model.get_image_features(images) print(img_feats.shape) # --> (2, 512) ``` More Tools can be found: [breezedeus/Coin-CLIP: Coin CLIP](https://github.com/breezedeus/Coin-CLIP) . ## Training Data / 训练数据 The model was trained on a specialized coin image dataset. This dataset includes images of various currencies' coins. 本模型使用的是专门的硬币图像数据集进行训练。这个数据集包含了多种货币的硬币图片。 ## Training Process / 训练过程 The model was fine-tuned on the OpenAI CLIP (ViT-B/32) pretrained model using a coin image dataset. The training process involved Contrastive Learning fine-tuning techniques and parameter settings. 模型是在 OpenAI 的 CLIP (ViT-B/32) 预训练模型的基础上,使用硬币图像数据集进行微调。训练过程采用了对比学习的微调技巧和参数设置。 ## Performance / 性能 This model demonstrates excellent performance in coin image retrieval tasks. 该模型在硬币图像检索任务上展现了优异的性能。 ## Feedback / 反馈 > Where to send questions or comments about the model. Welcome to contact the author [Breezedeus](https://www.breezedeus.com/join-group). 欢迎联系作者 [Breezedeus](https://www.breezedeus.com/join-group) 。
multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior
multimodalart
2023-12-08T07:22:11Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:55:10Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poliphoto-repeats-3-steps-750-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior
multimodalart
2023-12-08T07:17:26Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:58:05Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poliphoto-repeats-4-steps-500-rank64-no-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03
multimodalart
2023-12-08T07:16:58Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:58:23Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03 <Gallery /> ## Model description ### These are multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/poliphoto-repeats-3-steps-500-rank64-no-prior-pivot-03/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
multimodalart/polipure-repeats-2-steps-500-rank64-with-prior
multimodalart
2023-12-08T07:16:46Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:44:19Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/polipure-repeats-2-steps-500-rank64-with-prior <Gallery /> ## Model description ### These are multimodalart/polipure-repeats-2-steps-500-rank64-with-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/polipure-repeats-2-steps-500-rank64-with-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/polipure-repeats-2-steps-500-rank64-with-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('<s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/polipure-repeats-2-steps-500-rank64-with-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/polipure-repeats-2-steps-500-rank64-with-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/polipure-repeats-2-steps-500-rank64-with-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
multimodalart/polipure-repeats-4-steps-500-rank64-with-prior
multimodalart
2023-12-08T07:15:16Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:42:57Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/polipure-repeats-4-steps-500-rank64-with-prior <Gallery /> ## Model description ### These are multimodalart/polipure-repeats-4-steps-500-rank64-with-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/polipure-repeats-4-steps-500-rank64-with-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/polipure-repeats-4-steps-500-rank64-with-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('<s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/polipure-repeats-4-steps-500-rank64-with-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/polipure-repeats-4-steps-500-rank64-with-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/polipure-repeats-4-steps-500-rank64-with-prior/tree/main). ## Details The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Lew/ppo-SnowballTarget
Lew
2023-12-08T07:10:13Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-12-08T07:10:10Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Lew/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hahahafofo/Qwen-1_8B-Stable-Diffusion-Prompt
hahahafofo
2023-12-08T07:07:48Z
49
12
transformers
[ "transformers", "safetensors", "qwen", "text-generation", "custom_code", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-12-08T07:01:59Z
--- license: apache-2.0 --- 模型使用在生成稳定扩散(Stable Diffusion)的提示语(prompt)。它主要通过中文生成相应的英文提示语,充分利用Qwen的能力,支持包括古诗词在内的多种形式进行提示语的生成。此模型基于35k 条数据进行特定于任务的微调(SFT) 模型的对应代码已发布于GitHub,您可以通过以下链接访问并使用SDXL-Turbo进行快速测试生成的提示语: [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git) This model is designed to generate prompts for Stable Diffusion. It primarily translates Chinese into corresponding English prompts, leveraging the capabilities of Qwen, and supports a variety of formats including classical poetry for prompt generation. The model has been fine-tuned specifically for this task (SFT) using a dataset of 35k entries. The corresponding code for the model is available on GitHub. You can access and use SDXL-Turbo for rapid test generation of prompts through the following link: [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git) **参数表格(Parameters Table):** | 参数 | 值 | | -------------- | -------- | | 数据量(Data) | 35k | | 训练周期(Epochs) | 1 | | 学习率(Learning Rate) | 1e-05 | | 损失值(Loss) | 1.03 |
traromal/mistralengft
traromal
2023-12-08T06:50:48Z
4
1
null
[ "safetensors", "autotrain", "text-generation", "license:other", "region:us" ]
text-generation
2023-12-07T16:34:21Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
f1avj0/GAN-Diffusion
f1avj0
2023-12-08T06:47:38Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2023-12-08T06:41:42Z
--- license: afl-3.0 --- Final project for HPML Spring 23 at NYU The project we decided to work with is about the optimization of diffusion networks. As we will see in the latter sections of the report, the main idea of the project revolves around the possible ways to optimize the training of diffusion networks, by making use of PyTorch Profiling. RESULTS: The convolutional backpropagation is the main bottleneck. Having AMP vs no AMP sped up the CPU runtime for 1 GPU, it also slightly improved losses. 2 GPUs gave a slight speedup compared to 1 GPU On 2 GPUs, AMP didn’t improve runtimes The convolutional backpropagation is the main bottleneck. In two GPUs, data is parallelized, so the model spends less time on backprop. Stats: 1-1 GPU with AMP : CPU 28.3 CUDA 25.5 Total runtime - 502 2-1 GPU w/out AMP : CPU 42.4 CUDA 41.09 Total runtime - 428 3-2 GPUs with AMP : CPU 39.7 CUDA 25.4 Total runtime - 572 3-2 GPUs w/out AMP : CPU 38.2 CUDA 25.3 Total runtime - 559
Mattffc4/q-FrozenLake-v1-4x4-noSlippery
Mattffc4
2023-12-08T06:42:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T06:42:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Mattffc4/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
saksuke/DeydooGPT_KB
saksuke
2023-12-08T06:39:55Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-12-07T09:59:22Z
--- license: mit --- https://neuml.github.io/txtai/embeddings/ TxtAI embedding store for my knowledge base
noamsmi/ppo-LunarLander-v2
noamsmi
2023-12-08T06:38:08Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T06:36:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.92 +/- 24.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
afrideva/Ferret-3B-GGUF
afrideva
2023-12-08T06:14:12Z
31
2
null
[ "gguf", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "dataset:euclaise/MiniCoT", "dataset:euclaise/SciCoT", "dataset:euclaise/symtune_mini", "dataset:euclaise/mathoverflow-accepted", "dataset:euirim/goodwiki", "base_model:euclaise/Ferret-3B", "base_model:quantized:euclaise/Ferret-3B", "region:us", "conversational" ]
text-generation
2023-12-08T06:05:07Z
--- base_model: euclaise/Ferret-3B datasets: - euclaise/MiniCoT - euclaise/SciCoT - euclaise/symtune_mini - euclaise/mathoverflow-accepted - euirim/goodwiki inference: false model_creator: euclaise model_name: Ferret-3B pipeline_tag: text-generation quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # euclaise/Ferret-3B-GGUF Quantized GGUF model files for [Ferret-3B](https://huggingface.co/euclaise/Ferret-3B) from [euclaise](https://huggingface.co/euclaise) | Name | Quant method | Size | | ---- | ---- | ---- | | [ferret-3b.fp16.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.fp16.gguf) | fp16 | 5.59 GB | | [ferret-3b.q2_k.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.q2_k.gguf) | q2_k | 1.20 GB | | [ferret-3b.q3_k_m.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.q3_k_m.gguf) | q3_k_m | 1.39 GB | | [ferret-3b.q4_k_m.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.q4_k_m.gguf) | q4_k_m | 1.71 GB | | [ferret-3b.q5_k_m.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.q5_k_m.gguf) | q5_k_m | 1.99 GB | | [ferret-3b.q6_k.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.q6_k.gguf) | q6_k | 2.30 GB | | [ferret-3b.q8_0.gguf](https://huggingface.co/afrideva/Ferret-3B-GGUF/resolve/main/ferret-3b.q8_0.gguf) | q8_0 | 2.97 GB | ## Original Model Card:
GOT-HW/12345
GOT-HW
2023-12-08T06:14:04Z
0
0
diffusers
[ "diffusers", "chemistry", "token-classification", "zh", "dataset:HuggingFaceH4/no_robots", "license:apache-2.0", "region:us" ]
token-classification
2023-08-16T13:40:58Z
--- license: apache-2.0 datasets: - HuggingFaceH4/no_robots language: - zh metrics: - bleurt library_name: diffusers pipeline_tag: token-classification tags: - chemistry ---
omersubasi/xlm-roberta-base-finetuned-panx-en
omersubasi
2023-12-08T06:02:52Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T05:51:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6837988826815643 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3984 - F1: 0.6838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1357 | 1.0 | 50 | 0.5871 | 0.4590 | | 0.5236 | 2.0 | 100 | 0.4412 | 0.6478 | | 0.3765 | 3.0 | 150 | 0.3984 | 0.6838 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu118 - Datasets 1.16.1 - Tokenizers 0.15.0
Rafaelrosendo1/whisper2
Rafaelrosendo1
2023-12-08T06:00:26Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-04T11:38:38Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2574 - Wer: 96.9001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1143 | 1.27 | 1000 | 0.2184 | 56.9383 | | 0.0524 | 2.54 | 2000 | 0.2134 | 54.9835 | | 0.024 | 3.82 | 3000 | 0.2309 | 61.1703 | | 0.0076 | 5.09 | 4000 | 0.2574 | 96.9001 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
omersubasi/xlm-roberta-base-finetuned-panx-it
omersubasi
2023-12-08T05:57:10Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T05:52:04Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8218390804597702 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2503 - F1: 0.8218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8253 | 1.0 | 70 | 0.3503 | 0.7160 | | 0.2781 | 2.0 | 140 | 0.2643 | 0.8148 | | 0.1871 | 3.0 | 210 | 0.2503 | 0.8218 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu118 - Datasets 1.16.1 - Tokenizers 0.15.0
Gizachew/amharic_hate_speech-PEFT
Gizachew
2023-12-08T05:56:11Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Davlan/bert-base-multilingual-cased-finetuned-amharic", "base_model:adapter:Davlan/bert-base-multilingual-cased-finetuned-amharic", "region:us" ]
null
2023-12-08T05:56:09Z
--- library_name: peft base_model: Davlan/bert-base-multilingual-cased-finetuned-amharic --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
omersubasi/xlm-roberta-base-finetuned-panx-fr
omersubasi
2023-12-08T05:54:50Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T05:51:38Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8115649689023365 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3184 - F1: 0.8116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7671 | 1.0 | 96 | 0.3643 | 0.7537 | | 0.325 | 2.0 | 192 | 0.3360 | 0.7977 | | 0.2209 | 3.0 | 288 | 0.3184 | 0.8116 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu118 - Datasets 1.16.1 - Tokenizers 0.15.0
omersubasi/xlm-roberta-base-finetuned-panx-de-fr
omersubasi
2023-12-08T05:42:49Z
2
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T05:30:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1606 - F1: 0.8620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2873 | 1.0 | 715 | 0.1802 | 0.8245 | | 0.1446 | 2.0 | 1430 | 0.1601 | 0.8512 | | 0.0925 | 3.0 | 2145 | 0.1606 | 0.8620 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu118 - Datasets 1.16.1 - Tokenizers 0.15.0
theshresthshukla/Distort-Image
theshresthshukla
2023-12-08T05:33:18Z
0
0
null
[ "en", "license:apache-2.0", "region:us" ]
null
2023-12-08T05:19:14Z
--- license: apache-2.0 language: - en ---
alexkarpekov/dlt_llama2_alpaca
alexkarpekov
2023-12-08T05:29:28Z
2
0
peft
[ "peft", "region:us" ]
null
2023-12-08T05:29:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
pratikthakkar007/fz61-9i4h-j3s8-0
pratikthakkar007
2023-12-08T05:28:35Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T05:27:08Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
KelvinLLL/560m_LORA_TUNING_CAUSAL_LM_10epoch
KelvinLLL
2023-12-08T05:28:04Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "region:us" ]
null
2023-11-14T19:57:40Z
--- library_name: peft base_model: bigscience/bloomz-560m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
leejunhyeok/MoMo-70B-LoRA-V1.2_1
leejunhyeok
2023-12-08T05:27:02Z
0
0
transformers
[ "transformers", "en", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-12-08T04:43:54Z
--- license: llama2 language: - en library_name: transformers --- ## Dataset Details ### Used Datasets - Orca-style dataset - Alpaca-style dataset - No other dataset was used except for the dataset mentioned above - No benchmark test set or the training set are used ## Prompt Template ### Alpaca-style
alinerodrigues/wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-07
alinerodrigues
2023-12-08T05:25:14Z
1
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-08T00:12:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-07 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1382 - Wer: 0.0921 - Cer: 0.0289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 28.6541 | 1.0 | 86 | 3.2004 | 1.0 | 1.0 | | 7.0678 | 2.0 | 172 | 2.9330 | 1.0 | 1.0 | | 3.0229 | 3.0 | 258 | 2.9009 | 1.0 | 1.0 | | 2.931 | 4.0 | 344 | 2.9000 | 1.0 | 1.0 | | 2.9177 | 5.0 | 430 | 2.8428 | 1.0 | 1.0 | | 2.6907 | 6.0 | 516 | 1.2090 | 0.9756 | 0.2837 | | 1.3248 | 7.0 | 602 | 0.5202 | 0.2478 | 0.0702 | | 1.3248 | 8.0 | 688 | 0.3687 | 0.1941 | 0.0567 | | 0.7818 | 9.0 | 774 | 0.3006 | 0.1641 | 0.0482 | | 0.5879 | 10.0 | 860 | 0.2740 | 0.1586 | 0.0476 | | 0.5164 | 11.0 | 946 | 0.2360 | 0.1508 | 0.0446 | | 0.4796 | 12.0 | 1032 | 0.2204 | 0.1385 | 0.0423 | | 0.4054 | 13.0 | 1118 | 0.2071 | 0.1337 | 0.0399 | | 0.3639 | 14.0 | 1204 | 0.2009 | 0.1148 | 0.0365 | | 0.3639 | 15.0 | 1290 | 0.1918 | 0.1201 | 0.0370 | | 0.3318 | 16.0 | 1376 | 0.1841 | 0.1073 | 0.0342 | | 0.3192 | 17.0 | 1462 | 0.1804 | 0.1064 | 0.0344 | | 0.2857 | 18.0 | 1548 | 0.1783 | 0.1030 | 0.0336 | | 0.2867 | 19.0 | 1634 | 0.1730 | 0.1037 | 0.0331 | | 0.2703 | 20.0 | 1720 | 0.1643 | 0.0993 | 0.0323 | | 0.2625 | 21.0 | 1806 | 0.1624 | 0.1030 | 0.0320 | | 0.2625 | 22.0 | 1892 | 0.1676 | 0.1003 | 0.0319 | | 0.255 | 23.0 | 1978 | 0.1610 | 0.1003 | 0.0317 | | 0.241 | 24.0 | 2064 | 0.1628 | 0.0981 | 0.0314 | | 0.2422 | 25.0 | 2150 | 0.1607 | 0.0967 | 0.0312 | | 0.2293 | 26.0 | 2236 | 0.1582 | 0.0957 | 0.0311 | | 0.2222 | 27.0 | 2322 | 0.1550 | 0.0948 | 0.0304 | | 0.227 | 28.0 | 2408 | 0.1564 | 0.0960 | 0.0310 | | 0.227 | 29.0 | 2494 | 0.1601 | 0.0984 | 0.0310 | | 0.2193 | 30.0 | 2580 | 0.1506 | 0.0911 | 0.0293 | | 0.197 | 31.0 | 2666 | 0.1519 | 0.0948 | 0.0303 | | 0.2087 | 32.0 | 2752 | 0.1510 | 0.0933 | 0.0304 | | 0.1868 | 33.0 | 2838 | 0.1515 | 0.0984 | 0.0313 | | 0.2023 | 34.0 | 2924 | 0.1538 | 0.0906 | 0.0296 | | 0.206 | 35.0 | 3010 | 0.1473 | 0.0945 | 0.0299 | | 0.206 | 36.0 | 3096 | 0.1473 | 0.0892 | 0.0292 | | 0.2013 | 37.0 | 3182 | 0.1418 | 0.0928 | 0.0293 | | 0.1733 | 38.0 | 3268 | 0.1459 | 0.0882 | 0.0282 | | 0.1813 | 39.0 | 3354 | 0.1474 | 0.0904 | 0.0288 | | 0.1903 | 40.0 | 3440 | 0.1423 | 0.0916 | 0.0294 | | 0.1599 | 41.0 | 3526 | 0.1444 | 0.0914 | 0.0292 | | 0.1576 | 42.0 | 3612 | 0.1439 | 0.0904 | 0.0287 | | 0.1576 | 43.0 | 3698 | 0.1495 | 0.0882 | 0.0287 | | 0.1603 | 44.0 | 3784 | 0.1407 | 0.0909 | 0.0294 | | 0.1726 | 45.0 | 3870 | 0.1413 | 0.0897 | 0.0289 | | 0.1582 | 46.0 | 3956 | 0.1416 | 0.0892 | 0.0284 | | 0.1622 | 47.0 | 4042 | 0.1416 | 0.0894 | 0.0280 | | 0.1581 | 48.0 | 4128 | 0.1404 | 0.0887 | 0.0284 | | 0.1606 | 49.0 | 4214 | 0.1396 | 0.0894 | 0.0284 | | 0.1422 | 50.0 | 4300 | 0.1458 | 0.0892 | 0.0281 | | 0.1422 | 51.0 | 4386 | 0.1411 | 0.0919 | 0.0293 | | 0.1611 | 52.0 | 4472 | 0.1417 | 0.0919 | 0.0293 | | 0.1354 | 53.0 | 4558 | 0.1462 | 0.0909 | 0.0291 | | 0.1433 | 54.0 | 4644 | 0.1382 | 0.0921 | 0.0289 | | 0.145 | 55.0 | 4730 | 0.1424 | 0.0948 | 0.0293 | | 0.1418 | 56.0 | 4816 | 0.1441 | 0.0921 | 0.0295 | | 0.1544 | 57.0 | 4902 | 0.1435 | 0.0950 | 0.0293 | | 0.1544 | 58.0 | 4988 | 0.1437 | 0.0940 | 0.0292 | | 0.1342 | 59.0 | 5074 | 0.1468 | 0.0921 | 0.0289 | | 0.1398 | 60.0 | 5160 | 0.1491 | 0.0923 | 0.0293 | | 0.1325 | 61.0 | 5246 | 0.1451 | 0.0919 | 0.0293 | | 0.1496 | 62.0 | 5332 | 0.1466 | 0.0926 | 0.0290 | | 0.1283 | 63.0 | 5418 | 0.1447 | 0.0892 | 0.0286 | | 0.1275 | 64.0 | 5504 | 0.1431 | 0.0868 | 0.0276 | | 0.1275 | 65.0 | 5590 | 0.1452 | 0.0856 | 0.0271 | | 0.126 | 66.0 | 5676 | 0.1463 | 0.0919 | 0.0284 | | 0.1404 | 67.0 | 5762 | 0.1470 | 0.0911 | 0.0283 | | 0.1446 | 68.0 | 5848 | 0.1444 | 0.0914 | 0.0282 | | 0.1357 | 69.0 | 5934 | 0.1443 | 0.0906 | 0.0275 | | 0.1269 | 70.0 | 6020 | 0.1440 | 0.0894 | 0.0276 | | 0.1333 | 71.0 | 6106 | 0.1457 | 0.0902 | 0.0275 | | 0.1333 | 72.0 | 6192 | 0.1454 | 0.0880 | 0.0278 | | 0.1355 | 73.0 | 6278 | 0.1407 | 0.0890 | 0.0275 | | 0.1108 | 74.0 | 6364 | 0.1428 | 0.0928 | 0.0287 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3
agni1024/yolos-pocket
agni1024
2023-12-08T05:22:50Z
5
0
transformers
[ "transformers", "pytorch", "yolos", "object-detection", "YOLOS", "Object detection", "en", "dataset:detection-datasets/fashionpedia", "endpoints_compatible", "region:us" ]
object-detection
2023-12-06T09:28:48Z
--- datasets: - detection-datasets/fashionpedia language: - en pipeline_tag: object-detection tags: - YOLOS - Object detection --- This is a fine-tunned object detection model for only detecting pocket. this model supports the following categories: CATS = ['pocket']
afrideva/Echo-3B-GGUF
afrideva
2023-12-08T05:16:49Z
7
3
null
[ "gguf", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "dataset:pankajmathur/lima_unchained_v1", "dataset:CheshireAI/guanaco-unchained", "dataset:totally-not-an-llm/sharegpt-hyperfiltered-3k", "dataset:totally-not-an-llm/EverythingLM-data-V3", "dataset:LDJnr/Verified-Camel", "dataset:CollectiveCognition/chats-data-2023-10-16", "dataset:Norquinal/claude_multiround_chat_30k", "dataset:euclaise/WritingPromptsX", "dataset:euirim/goodwiki", "dataset:euclaise/MiniCoT", "dataset:euclaise/SciCoT", "dataset:euclaise/symtune_mini", "dataset:euclaise/mathoverflow-accepted", "dataset:lemonilia/LimaRP", "base_model:euclaise/Echo-3B", "base_model:quantized:euclaise/Echo-3B", "region:us", "conversational" ]
text-generation
2023-12-08T05:07:04Z
--- base_model: euclaise/Echo-3B datasets: - pankajmathur/lima_unchained_v1 - CheshireAI/guanaco-unchained - totally-not-an-llm/sharegpt-hyperfiltered-3k - totally-not-an-llm/EverythingLM-data-V3 - LDJnr/Verified-Camel - CollectiveCognition/chats-data-2023-10-16 - Norquinal/claude_multiround_chat_30k - euclaise/WritingPromptsX - euirim/goodwiki - euclaise/MiniCoT - euclaise/SciCoT - euclaise/symtune_mini - euclaise/mathoverflow-accepted - lemonilia/LimaRP inference: false model_creator: euclaise model_name: Echo-3B pipeline_tag: text-generation quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # euclaise/Echo-3B-GGUF Quantized GGUF model files for [Echo-3B](https://huggingface.co/euclaise/Echo-3B) from [euclaise](https://huggingface.co/euclaise) | Name | Quant method | Size | | ---- | ---- | ---- | | [echo-3b.fp16.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.fp16.gguf) | fp16 | 5.59 GB | | [echo-3b.q2_k.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.q2_k.gguf) | q2_k | 1.20 GB | | [echo-3b.q3_k_m.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.q3_k_m.gguf) | q3_k_m | 1.39 GB | | [echo-3b.q4_k_m.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.q4_k_m.gguf) | q4_k_m | 1.71 GB | | [echo-3b.q5_k_m.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.q5_k_m.gguf) | q5_k_m | 1.99 GB | | [echo-3b.q6_k.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.q6_k.gguf) | q6_k | 2.30 GB | | [echo-3b.q8_0.gguf](https://huggingface.co/afrideva/Echo-3B-GGUF/resolve/main/echo-3b.q8_0.gguf) | q8_0 | 2.97 GB | ## Original Model Card:
amehfooz/lora
amehfooz
2023-12-08T05:00:55Z
1
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "dataset:amehfooz/RuwaifaRufy", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-12-08T04:16:16Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: ruwaifarufy tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: false datasets: - amehfooz/RuwaifaRufy --- # LoRA DreamBooth - amehfooz/lora These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0 trained on @fffiloni's SD-XL trainer. The weights were trained on the concept prompt: ``` ruwaifarufy ``` Use this keyword to trigger your custom model in your prompts. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Usage Make sure to upgrade diffusers to >= 0.19.0: ``` pip install diffusers --upgrade ``` In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` To just use the base model, you can run: ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL device = "cuda" if torch.cuda.is_available() else "cpu" vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to(device) # This is where you load your trained weights specific_safetensors = "pytorch_lora_weights.safetensors" lora_scale = 0.9 pipe.load_lora_weights( 'amehfooz/lora', weight_name = specific_safetensors, # use_auth_token = True ) prompt = "A majestic ruwaifarufy jumping from a big stone at night" image = pipe( prompt=prompt, num_inference_steps=50, cross_attention_kwargs={"scale": lora_scale} ).images[0] ```
msyed123/ppo-LunarLander-v2
msyed123
2023-12-08T04:54:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T04:54:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 180.88 +/- 107.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
brettbbb/mc_cot_128
brettbbb
2023-12-08T04:40:41Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T04:05:07Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: mc_cot_128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mc_cot_128 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
0xkhairi/out
0xkhairi
2023-12-08T04:24:19Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "license:apache-2.0", "region:us" ]
null
2023-12-08T04:00:11Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 model-index: - name: out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 150 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1.dev0 - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
banghua/openhermes-dpo-ckpt20k
banghua
2023-12-08T04:17:03Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "region:us" ]
null
2023-12-08T04:16:45Z
--- library_name: peft base_model: teknium/OpenHermes-2.5-Mistral-7B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.1
J-YOON/lora-monet-sd1.5
J-YOON
2023-12-08T04:05:07Z
16
0
diffusers
[ "diffusers", "pytorch", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:mit", "region:us" ]
text-to-image
2023-12-07T07:43:36Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" output: url: images/001SFEC_TOWER_BRIDGE-200705.jpg - text: <lora:monet_last:1>, msl monet, dog. output: url: images/00032-205941521.png - text: <lora:monet_last:1>, msl monet, bridge. output: url: images/00033-1287362183.png - text: '-' output: url: images/OIP.jpg base_model: runwayml/stable-diffusion-v1-5 instance_prompt: msl monet license: mit --- # monet-painting <Gallery /> ## Model description monet painting style trigger word : msl monet ## Trigger words You should use `msl monet` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/J-YOON/lora-monet-sd1.5/tree/main) them in the Files & versions tab.
brettbbb/mc_cot_64
brettbbb
2023-12-08T04:02:28Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T03:44:36Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: mc_cot_64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mc_cot_64 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
udemex10/Vojo_AI_LLMforCAD_v1.0
udemex10
2023-12-08T03:58:57Z
4
0
peft
[ "peft", "safetensors", "falcon", "custom_code", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "8-bit", "bitsandbytes", "region:us" ]
null
2023-12-07T23:50:47Z
--- library_name: peft base_model: tiiuae/falcon-7b-instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.7.0
soksovann/vongchamnan
soksovann
2023-12-08T03:58:12Z
12
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-12-08T03:55:09Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: >- High-fashion photography of ohwx woman in an abandoned industrial warehouse, with dramatic lighting and edgy outfits. output: url: images/photo_2023-12-08_10-53-25.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: null --- # Chamnan <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/soksovann/vongchamnan/tree/main) them in the Files & versions tab.
mjaydenkim/test_trainer
mjaydenkim
2023-12-08T03:53:26Z
2
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:tomh/toxigen_hatebert", "base_model:finetune:tomh/toxigen_hatebert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T03:27:52Z
--- base_model: tomh/toxigen_hatebert tags: - generated_from_trainer model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [tomh/toxigen_hatebert](https://huggingface.co/tomh/toxigen_hatebert) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0.post101 - Datasets 2.14.6 - Tokenizers 0.13.3
stockmark/bart-base-japanese-news
stockmark
2023-12-08T03:39:50Z
81
10
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bart", "text2text-generation", "ja", "japanese", "lm", "nlp", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-20T04:23:07Z
--- language: ja tags: - ja - japanese - bart - lm - nlp license: mit --- # bart-base-japanese-news(base-sized model) This repository provides a Japanese BART model. The model was trained by [Stockmark Inc.](https://stockmark.co.jp) An introductory article on the model can be found at the following URL. [https://tech.stockmark.co.jp/blog/bart-japanese-base-news/](https://tech.stockmark.co.jp/blog/bart-japanese-base-news/) ## Model description BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). ## Intended uses & limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. # How to use the model *NOTE:* Since we are using a custom tokenizer, please use `trust_remote_code=True` to initialize the tokenizer. ## Simple use ```python from transformers import AutoTokenizer, BartModel model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartModel.from_pretrained(model_name) inputs = tokenizer("今日は良い天気です。", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## Sentence Permutation ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") # correct order text is "明日は大雨です。電車は止まる可能性があります。ですから、自宅から働きます。" text = "電車は止まる可能性があります。ですから、自宅から働きます。明日は大雨です。" inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 明日は大雨です。電車は止まる可能性があります。ですから、自宅から働きます。 ``` ## Mask filling ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") text = "今日の天気は<mask>のため、傘が必要でしょう。" inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 今日の天気は、雨のため、傘が必要でしょう。 ``` ## Text generation *NOTE:* You can use the raw model for text generation. However, the model is mostly meant to be fine-tuned on a supervised dataset. ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") text = "自然言語処理(しぜんげんごしょり、略称:NLP)は、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術であり、人工知能と言語学の一分野である。「計算言語学」(computational linguistics)との類似もあるが、自然言語処理は工学的な視点からの言語処理をさすのに対して、計算言語学は言語学的視点を重視する手法をさす事が多い。" inputs = tokenizer([text], max_length=512, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, min_length=0, max_length=40) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 自然言語処理(しぜんげんごしょり、略称:NLP)は、人間が日常的に使っている自然言語をコンピュータに処理させる一連の技術であり、言語学の一分野である。 ``` # Training The model was trained on Japanese News Articles. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script. # Licenses The pretrained models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php). *NOTE:* Only tokenization_bart_japanese_news.py is [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0). Please see tokenization_bart_japanese_news.py for license details. # Contact If you have any questions, please contact us using [our contact form](https://stockmark.co.jp/contact). # Acknowledgement This comparison study supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
brettbbb/mc_cot_32
brettbbb
2023-12-08T03:38:32Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T03:29:33Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: mc_cot_32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mc_cot_32 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
0xkhairi/wahassen
0xkhairi
2023-12-08T03:32:11Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "license:apache-2.0", "region:us" ]
null
2023-12-08T01:08:24Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 model-index: - name: out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1.dev0 - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
krishnadasar-sudheer-kumar/Q-Taxi-V3
krishnadasar-sudheer-kumar
2023-12-08T03:29:25Z
0
1
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T03:29:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q-Taxi-V3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.82 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="krishnadasar-sudheer-kumar/Q-Taxi-V3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
brettbbb/mc_cot_16
brettbbb
2023-12-08T03:22:39Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T03:07:05Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: mc_cot_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mc_cot_16 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1538 | 1.0 | 4 | 2.1552 | | 1.7905 | 2.0 | 8 | 1.9012 | | 1.4229 | 3.0 | 12 | 1.7686 | | 1.3834 | 4.0 | 16 | 1.7070 | | 1.4421 | 5.0 | 20 | 1.7308 | | 0.9003 | 6.0 | 24 | 1.7646 | | 0.7013 | 7.0 | 28 | 1.9070 | | 0.6291 | 8.0 | 32 | 2.0078 | | 0.3314 | 9.0 | 36 | 2.2682 | | 0.1554 | 10.0 | 40 | 2.3624 | | 0.0814 | 11.0 | 44 | 2.6523 | | 0.0499 | 12.0 | 48 | 2.7565 | | 0.0216 | 13.0 | 52 | 2.8505 | | 0.0197 | 14.0 | 56 | 2.9170 | | 0.0174 | 15.0 | 60 | 2.9433 | | 0.0174 | 16.0 | 64 | 2.9683 | | 0.0145 | 17.0 | 68 | 2.9966 | | 0.013 | 18.0 | 72 | 3.0193 | | 0.0151 | 19.0 | 76 | 3.0277 | | 0.0145 | 20.0 | 80 | 3.0303 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
oostapeno/rsgd3_full_1B_repl_finegrained_poly_router_dir_none
oostapeno
2023-12-08T03:14:53Z
0
0
null
[ "region:us" ]
null
2023-12-05T05:56:03Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | wiki_hop_original_choose_best_object_interrogative_2_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | wiqa_effect_with_string_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | quoref_Find_Answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | dream_baseline_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | | duorc_SelfRC_answer_question_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | squad_v1_1_3_0_0_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | quartz_read_passage_below_choose_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | duorc_ParaphraseRC_title_generation_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | yelp_polarity_reviews_0_2_0_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | cos_e_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | Last updated on: 2023-12-08 03:14:42+00:00
prajapatisarvesh/Reinforce-1
prajapatisarvesh
2023-12-08T03:13:44Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T03:13:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Delcos/airoboros-mistral2.2-Starling-11b
Delcos
2023-12-08T02:55:53Z
17
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "starling", "llama-2", "en", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T06:07:05Z
--- license: cc-by-nc-nd-4.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - starling - mistral - llama-2 --- <h1 style="font-size: 36px;">PENDING</h1> ## Description: **PENDING** **Uncensored** ## Main Goals: ## Prompt Template: **For optimal interaction, use this template:** ``` ### Instruction: ### Response: ``` # Recommended Settings: **Defaults:** ``` temperature: 0.77 top_p: 0.85 top_k: 20 repetition_penalty: 1.2 ``` **Better context but a little more repetitive in some cases:** ``` temperature: 0.8 top_p: 0.85 top_k: 20 repetition_penalty: 1.2 guidance_scale: 1.25 ``` # Benchmarks: PENDING # Training Data: PENDING
seetvn/my_awesome_model
seetvn
2023-12-08T02:45:56Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T21:59:18Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2751 - Accuracy: 0.8912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 150 | 0.3110 | 0.8788 | | No log | 2.0 | 300 | 0.2751 | 0.8912 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
mitchyAI/hyewonmchy
mitchyAI
2023-12-08T02:30:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-08T02:29:21Z
--- license: creativeml-openrail-m ---
vkorotchenko/llama-2-7b-fine-tuned-for-cdt-extraction-2-short-prompt
vkorotchenko
2023-12-08T02:14:02Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-12-08T02:13:55Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0