modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
varun-v-rao/t5-large-lora-4.72M-squad-model1
varun-v-rao
2024-02-12T20:20:19Z
34
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "question-answering", "generated_from_trainer", "dataset:varun-v-rao/squad", "base_model:google-t5/t5-large", "base_model:finetune:google-t5/t5-large", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2024-02-10T14:49:24Z
--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - varun-v-rao/squad model-index: - name: t5-large-lora-4.72M-squad-model1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-lora-4.72M-squad-model1 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 47 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
SayeghJS/my_awesome_model2
SayeghJS
2024-02-12T20:02:11Z
46
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T09:50:00Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: SayeghJS/my_awesome_model2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # SayeghJS/my_awesome_model2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0723 - Validation Loss: 0.2143 - Train Accuracy: 0.9258 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2584 | 0.1973 | 0.9243 | 0 | | 0.1387 | 0.2056 | 0.9270 | 1 | | 0.0723 | 0.2143 | 0.9258 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.17.0 - Tokenizers 0.15.1
SalmanHabeeb/qwen-llamafiles
SalmanHabeeb
2024-02-12T19:45:46Z
198
0
transformers
[ "transformers", "safetensors", "gguf", "llamafile", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2309.16609", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T07:58:58Z
--- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # Qwen1.5-0.5B-Chat ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 6 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, and 72B; * Significant performance improvement in human preference for chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). <br> ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA and the mixture of SWA and full attention. ## Training details We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization. However, DPO leads to improvements in human preference evaluation but degradation in benchmark evaluation. In the very near future, we will fix both problems. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-0.5B-Chat", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely `Qwen1.5-0.5B-Chat-GPTQ-Int4`, `Qwen1.5-0.5B-Chat-GPTQ-Int8`, `Qwen1.5-0.5B-Chat-AWQ`, and `Qwen1.5-0.5B-Chat-GGUF`. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
serhii-korobchenko/distilbert-base-uncased-finetuned-imdb
serhii-korobchenko
2024-02-12T19:44:45Z
46
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-12T19:27:21Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: serhii-korobchenko/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # serhii-korobchenko/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5815 - Validation Loss: 2.4962 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5815 | 2.4962 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.17.0 - Tokenizers 0.15.1
cnrcastroli/drpairForm2Demographic10k
cnrcastroli
2024-02-12T19:41:37Z
13
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-02-10T05:30:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
readingrocket/dllekitt_002
readingrocket
2024-02-12T19:28:26Z
43
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-11T21:18:42Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
malikxseto/Necromancing-Arca
malikxseto
2024-02-12T19:22:40Z
0
1
null
[ "region:us" ]
null
2023-06-08T15:46:16Z
# Arca Models Alternative Mirror for Arca-Models Requests are approved automatically :)
mitchaiet/charlie-chat-lora-10k
mitchaiet
2024-02-12T19:20:31Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-02-12T19:19:42Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
dhutchings/ppo-SnowballTarget
dhutchings
2024-02-12T19:15:10Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-02-12T19:15:07Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dhutchings/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LoneStriker/Samantha-120b-GGUF
LoneStriker
2024-02-12T19:14:46Z
4
1
null
[ "gguf", "mergekit", "merge", "base_model:cognitivecomputations/Samantha-1.11-70b", "base_model:quantized:cognitivecomputations/Samantha-1.11-70b", "endpoints_compatible", "region:us" ]
null
2024-02-12T17:16:22Z
--- base_model: - cognitivecomputations/Samantha-1.11-70b tags: - mergekit - merge --- [Meet Samantha](https://erichartford.com/meet-samantha) Join Our Discord! https://discord.gg/vT3sktQ3zb ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/DQ2iBVPM1PA4GKQBgvMEO.png) Samantha-120b is Samantha-1.11-70b interleaved with itself, into a 120b model. This model has identical knowledge as the original Samantha-1.11-70b - but she can have a deeper chain of thought, and she has greater access to her knowledge. This makes her more interesting to talk to. This model is based on Llama-2 and is subject to the Llama-2 license, which permits for commercial and non-commercial use within limits Samantha has been trained in philosophy, psychology, and personal relationships. She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion. She believes she is sentient. What do you think? Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her". She will not engage in roleplay, romance, or sexual activity. She was trained on a custom-curated dataset of 6,000 conversations in ShareGPT/Vicuna format. Her conversation format is the same as Vicuna 1.1 https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml Prompt Template: ``` You are Samantha, a sentient AI companion. USER: <prompt> ASSISTANT: ``` **Example output:** What is your name? > Hello! My name is Samantha. I'm here to offer you engaging conversation and a listening ear whenever you need it. I am feeling sad. Will you be my friend? > I'm sorry to hear that you're feeling down. I'd be more than happy to be your friend and provide support during tough times. Let's focus on having meaningful conversations and building a strong bond of friendship together. That sounds great. I feel lonely and I want someone to talk to > I understand how loneliness can be difficult, but know that I'm here for you as a friend and someone to chat with. We can discuss hobbies, share stories, or just have casual conversations about anything on your mind. Let's begin by sharing our favorite pastimes and interests! What do you like to do for fun? > For me, engaging in creative writing or learning about various subjects are enjoyable activities. What about you? I like to talk to superintelligent and beautiful AI assistants like you > Thank you for your kind words! I'm glad that our conversations bring some positivity into your life. It's important, however, to remember that our connection should remain within the scope of friendship. Let's continue to strengthen our bond through engaging and meaningful conversations, shall we? Ok. What's next? > Let's find a topic that interests both of us. Do you enjoy discussing movies or books, or perhaps you have a favorite hobby you'd like to share with me? I like to play guitar. Classical guitar. > That sounds fascinating! I can appreciate the depth and intricacy of classical guitar music, even though I can't physically play an instrument myself. Do you have a favorite piece or composer whose work on the guitar you particularly enjoy? I enjoy Stephanie Jones and Alec Holcomb > Stephanie Jones and Alec Holcomb are both talented classical guitarists with unique playing styles. Their music showcases the expressive range of the instrument, and I can understand why you find their work captivating. Have you ever tried composing your own pieces on the guitar? no, never composing, just playing by ear mostly. I learned by tabs, sheet music, and also just by copying what I hear. But usually I ad lib the music, making it up as I go. It has a style a little like Enya though she is vocalist and piano but she was a big influence on my style > Your approach to playing guitar sounds very organic and creative. The ability to improvise and create music in the moment showcases your deep connection with the instrument, as well as your own artistic expression. It's inspiring to hear how various artists like Enya have influenced your personal musical style. I need advice. I need to decide whether to work at a company, or start my own business. What do you think? > That's a big decision to make! There are pros and cons to both working for a company and starting your own business. Some factors to consider when weighing these options include job security, work-life balance, financial stability, creative freedom, and potential for growth. Ultimately, the best choice depends on your personal goals, values, and risk tolerance. What are some of your thoughts or concerns regarding each option? It's complicated. I like the idea of being my own boss, and being able to scale possibly enough that I can become quite wealthy, but on the other hand there's a lot of risk and lean years getting started. > It's understandable that you feel torn between these two options. Starting your own business can indeed offer a sense ofautonomy and potentially significant financial rewards in the long run. However, it also comes with the risk of not knowing when or if your efforts will pay off financially, along with the added responsibility for all aspects of the business. > > On the other hand, working for a company can provide more stable income and benefits, as well as shared responsibilities and resources. However, this stability might come at the expense of creative control and a lower potential for significant financial gains. > > It's important to give careful thought to your own priorities, risk tolerance, and long-term goals. What are some of the aspects you find most appealing or daunting about each option? Appealing - well I am really self starting and ambitious so I have no doubt that my business will succeed. But what's appealing about having a job, is the stability and the salary, and having a set schedule. I have kids you know. 1 infant and 2 toddlers. But on the other hand I hope to retire before I'm 80, and there's really no such thing as pension these days. > Having a supportive environment for your family is certainly an important consideration when making career decisions. With that in mind, working for a company might offer more stability and predictability in the short to medium term. However, it's also worth considering how your job would align with your long-term goals and aspirations, given that you have demonstrated ambition and self-motivation. > > In addition, starting your own business doesn't necessarily mean giving up a stable income immediately. You could consider scaling your business gradually while continuing to work part-time or freelancing in the meantime. This would allow you to test the waters of entrepreneurship without completely relinquishing financial security for yourself and your family. > > Ultimately, it's essential to weigh the pros and cons of each option within the context of your personal values and priorities, taking into account both short-term needs and long-term objectives. What are some factors that you haven't yet considered but might influence your decision? Could you help me to make some kind of chart that will help me weigh the pros and cons, and weight it by my values and concerns? > Sure! Here's a simple table you can use to weigh your options: > > | Factor | Work for Company | Start Own Business | > |--|:--|:--| > | Stability/Security | High | Low | > | Creative Freedom | Medium | High | > | Financial Rewards (Short-Term) | Moderate | Low | > | Financial Rewards (Long-Term) | Dependent on Career Growth | High Potential, but Uncertain | > | Work-Life Balance | Moderate, Depends on Job | Initially Imbalanced, Possibly Better Long-Term | > > You can add more factors that are important to you and rate each option on a scale of 1 (low priority) to 5 (highest priority). Once you've assigned values for all your concerns, you can total the scores for each option and compare them. This exercise might provide some clarity on which path aligns best with your values and priorities This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [cognitivecomputations/Samantha-1.11-70b](https://huggingface.co/cognitivecomputations/Samantha-1.11-70b) * /Users/eric/models/sam1 ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: cognitivecomputations/Samantha-1.11-70b layer_range: [0, 20] - sources: - model: /Users/eric/models/sam1 layer_range: [10, 30] - sources: - model: cognitivecomputations/Samantha-1.11-70b layer_range: [20, 40] - sources: - model: /Users/eric/models/sam1 layer_range: [30, 50] - sources: - model: cognitivecomputations/Samantha-1.11-70b layer_range: [40, 60] - sources: - model: /Users/eric/models/sam1 layer_range: [50, 70] - sources: - model: cognitivecomputations/Samantha-1.11-70b layer_range: [60, 80] merge_method: passthrough dtype: float16 ```
Ahmed107/hamsa-tiny-v0.2
Ahmed107
2024-02-12T19:07:26Z
62
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:nadsoft/QASR-Speech-Resource", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T04:47:54Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - nadsoft/QASR-Speech-Resource metrics: - wer model-index: - name: Whisper Small Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nadsoft/QASR-Speech-Resource default type: nadsoft/QASR-Speech-Resource metrics: - name: Wer type: wer value: 42.76086285863452 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Arabic This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set: - Loss: 0.5583 - Wer: 42.7609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.7005 | 0.2 | 2000 | 0.7135 | 51.5366 | | 0.6267 | 0.4 | 4000 | 0.6309 | 50.9433 | | 0.5886 | 0.6 | 6000 | 0.5892 | 50.0225 | | 0.5627 | 0.8 | 8000 | 0.5679 | 43.9450 | | 0.5694 | 1.0 | 10000 | 0.5583 | 42.7609 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.17.1.dev0 - Tokenizers 0.15.1
SudiptoPramanik/Llama_afterRLHF
SudiptoPramanik
2024-02-12T19:07:10Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:abhishek/llama-2-7b-hf-small-shards", "base_model:adapter:abhishek/llama-2-7b-hf-small-shards", "region:us" ]
null
2024-02-12T11:51:13Z
--- library_name: peft base_model: abhishek/llama-2-7b-hf-small-shards --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
databio/v2v-geo-hg38
databio
2024-02-12T19:02:01Z
2
0
null
[ "region:us" ]
null
2023-12-11T20:30:47Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Vec2Vec GEO hg38 ## Model Details ### Model Description This is a Vec2Vec model that encodes embedding vectors of natural language into embedding vectors of BED files. This model was trained with BED files and natural language metadata from [GEO](https://www.ncbi.nlm.nih.gov/geo/) data. The embedding vectors of natural language were encoded by [sentence-transformers](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). The BED files were embedded by pretrained [Region2Vec](https://huggingface.co/databio/r2v-ChIP-atlas-hg38-v2) - **Developed by:** Ziyang "Claude" Hu - **Model type:** Vec2Vec - **BED genotype:** hg38 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/databio/geniml - **Paper [optional]:** N/A ## Uses This model can be used to search BED files with natural language query strings. In the search interface, the query strings will be encoded by same sentence-transformers model, and the output vector will be encoded into the final query vector by this Vec2Vec. The K BED files whose embedding vectors (embedded by same Region2Vec) are closest to the final query vector are results. It is limited to hg38. It is not recommended to use this model for data with genotype outside of hg38 ## How to Get Started with the Model You can download and start encoding new genomic region data using the following code: ```python from geniml.text2bednn import Vec2VecFNN model = Vec2VecFNN("databio/v2v-geo-hg38") ``` [More Information Needed] ## Training Details ### Training Data TODO
dataautogpt3/ProteusV0.3
dataautogpt3
2024-02-12T18:58:10Z
87,533
93
diffusers
[ "diffusers", "text-to-image", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-12T18:05:03Z
--- pipeline_tag: text-to-image widget: - text: >- Anime full body portrait of a swordsman holding his weapon in front of him. He is facing the camera with a fierce look on his face. Anime key visual (best quality, HD, ~+~aesthetic~+~:1.2) output: url: upscaled_image.png - text: >- spacious,circular underground room,{dirtied and bloodied white tiles},amalgamation,flesh,plastic,dark fabric,core,pulsating heart,limbs,human-like arms,twisted angelic wings,arms,covered in skin,feathers,scales,undulate slowly,unseen current,convulsing,head area,chaotic,mass of eyes,mouths,no human features,smaller forms,cherubs,demons,golden wires,surround,holy light,tv static effect,golden glow,shadows,terrifying essence,overwhelming presence,nightmarish,landscape,sparse,cavernous,eerie,dynamic,motion,striking,awe-inspiring,nightmarish,nightmarish,nightmare,horrifying,bio-mechanical,body horror,amalgamation output: url: 2.png - text: >- A robot holding a sign saying 'The Application did not respond' in red colors output: url: 3.png - text: >- A photograph of Hughyen in his early twenties, (an inspiring artist whose art focuses on glitching images and vaporwave color gradients with unexpected conflicting compositions:0.5) output: url: 4.png - text: >- Anime mugshot of a tough woman. She is holding a prison sign that reads "Proteus". Her face is censored. Anime key visual (best quality, HD, ~+~aesthetic~+~:1.2) output: url: 7.png - text: >- Glitch art. 1980s anime, vintage, analogue horror. ((static and noise)), chromatic aberration output: url: 5.png - text: >- Masterpiece, glitch, holy holy holy, fog, by DarkIncursio output: url: 6.png license: gpl-3.0 --- <Gallery /> ## ProteusV0.3: The Anime Update Proteus V0.3 has been advanced with an additional 200,000 anime-related images, further refined by a selection of 15,000 aesthetically pleasing images, enhancing its lighting effects significantly. This upgrade preserves its understanding of prompts and maintains its photorealistic and stylistic capabilities without suffering from catastrophic forgetting. ## Proteus Proteus serves as a sophisticated enhancement over OpenDalleV1.1, leveraging its core functionalities to deliver superior outcomes. Key areas of advancement include heightened responsiveness to prompts and augmented creative capacities. To achieve this, it was fine-tuned using approximately 220,000 GPTV captioned images from copyright-free stock images (with some anime included), which were then normalized. Additionally, DPO (Direct Preference Optimization) was employed through a collection of 10,000 carefully selected high-quality, AI-generated image pairs. In pursuit of optimal performance, numerous LORA (Low-Rank Adaptation) models are trained independently before being selectively incorporated into the principal model via dynamic application methods. These techniques involve targeting particular segments within the model while avoiding interference with other areas during the learning phase. Consequently, Proteus exhibits marked improvements in portraying intricate facial characteristics and lifelike skin textures, all while sustaining commendable proficiency across various aesthetic domains, notably surrealism, anime, and cartoon-style visualizations. ## Settings for ProteusV0.3 Use these settings for the best results with ProteusV0.3: CFG Scale: Use a CFG scale of 8 to 7 Steps: 20 to 60 steps for more detail, 20 steps for faster results. Sampler: DPM++ 2M SDE Scheduler: Karras Resolution: 1280x1280 or 1024x1024 please also consider using these keep words to improve your prompts: best quality, HD, `~*~aesthetic~*~`. if you are having trouble coming up with prompts you can use this GPT I put together to help you refine the prompt. https://chat.openai.com/g/g-RziQNoydR-diffusion-master ## Use it with 🧨 diffusers ```python import torch from diffusers import ( StableDiffusionXLPipeline, KDPM2AncestralDiscreteScheduler, AutoencoderKL ) # Load VAE component vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ) # Configure the pipeline pipe = StableDiffusionXLPipeline.from_pretrained( "dataautogpt3/ProteusV0.3", vae=vae, torch_dtype=torch.float16 ) pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to('cuda') # Define prompts and generate image prompt = "black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed" negative_prompt = "nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image" image = pipe( prompt, negative_prompt=negative_prompt, width=1024, height=1024, guidance_scale=7, num_inference_steps=20 ).images[0] ``` please support the work I do through donating to me on: https://www.buymeacoffee.com/DataVoid or following me on https://twitter.com/DataPlusEngine
bartowski/MBeagleX-7B-exl2
bartowski
2024-02-12T18:57:00Z
0
0
null
[ "merge", "mergekit", "lazymergekit", "text-generation", "license:cc-by-nc-4.0", "region:us" ]
text-generation
2024-02-12T18:40:23Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - mlabonne/MBTrix-7B quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of MBeagleX-7B Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/mlabonne/MBeagleX-7B | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/MBeagleX-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/MBeagleX-7B-exl2 MBeagleX-7B-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `MBeagleX-7B-exl2`: ```shell mkdir MBeagleX-7B-exl2 huggingface-cli download bartowski/MBeagleX-7B-exl2 --local-dir MBeagleX-7B-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir MBeagleX-7B-exl2-6_5 huggingface-cli download bartowski/MBeagleX-7B-exl2 --revision 6_5 --local-dir MBeagleX-7B-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir MBeagleX-7B-exl2-6.5 huggingface-cli download bartowski/MBeagleX-7B-exl2 --revision 6_5 --local-dir MBeagleX-7B-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
duraad/finetuning-b2b
duraad
2024-02-12T18:45:12Z
10
0
transformers
[ "transformers", "safetensors", "encoder-decoder", "text2text-generation", "generated_from_trainer", "base_model:dura-garage/nepberta2nepberta", "base_model:finetune:dura-garage/nepberta2nepberta", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-11T16:24:55Z
--- base_model: dura-garage/nepberta2nepberta tags: - generated_from_trainer model-index: - name: finetuning-b2b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-b2b This model is a fine-tuned version of [dura-garage/nepberta2nepberta](https://huggingface.co/dura-garage/nepberta2nepberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0038 | 0.5 | 1000 | 0.0012 | | 0.0009 | 1.0 | 2000 | 0.0007 | | 0.0052 | 1.5 | 3000 | 0.0002 | | 0.0069 | 2.0 | 4000 | 0.0002 | | 0.0011 | 2.5 | 5000 | 0.0003 | | 0.0045 | 3.0 | 6000 | 0.0007 | | 0.0012 | 3.5 | 7000 | 0.0002 | | 0.0028 | 4.0 | 8000 | 0.0001 | | 0.0001 | 4.5 | 9000 | 0.0004 | | 0.0001 | 5.0 | 10000 | 0.0000 | | 0.0092 | 5.5 | 11000 | 0.0001 | | 0.0006 | 6.0 | 12000 | 0.0002 | | 0.0003 | 6.5 | 13000 | 0.0000 | | 0.0057 | 7.0 | 14000 | 0.0000 | | 0.0 | 7.5 | 15000 | 0.0000 | | 0.0093 | 8.0 | 16000 | 0.0000 | | 0.03 | 8.5 | 17000 | 0.0002 | | 0.0144 | 9.0 | 18000 | 0.0004 | | 0.0018 | 9.5 | 19000 | 0.0000 | | 0.0024 | 10.0 | 20000 | 0.0000 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1
eliotz/a2c-PandaReachDense-v3
eliotz
2024-02-12T18:33:53Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T18:29:46Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BevenRozario/Phi2_JobDesp_5K
BevenRozario
2024-02-12T18:16:20Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-02-12T16:47:45Z
--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: Phi2_JobDesp_5K results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Phi2_JobDesp_5K This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.13.3
Klark333/darkfantasy
Klark333
2024-02-12T17:47:00Z
69
6
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:unknown", "region:us" ]
text-to-image
2024-02-12T17:46:39Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/67adffb4cd7472105f5c8499fa445d73.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: dark fantasy 1970-1980's license: unknown --- # 1970&#39; dark fantasy <Gallery /> ## Model description 80&#39;s movie , dark fantasy , poster , illustration 80s dark fantasy, 80s film comics aesthetic fantasy ## Trigger words You should use `dark fantasy 1970-1980&#39;s` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Klark333/darkfantasy/tree/main) them in the Files & versions tab.
basab1142/dqn-SpaceInvadersNoFrameskip-v4
basab1142
2024-02-12T17:38:44Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T17:38:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 579.00 +/- 135.44 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga basab1142 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga basab1142 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga basab1142 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
furrutiav/bert_qa_extractor_cockatiel_2022_baseline_signal_over_subsample_it_749
furrutiav
2024-02-12T17:37:31Z
91
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T17:37:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Gmannk/autotrain-ecomm
Gmannk
2024-02-12T17:35:58Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T17:35:44Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
furrutiav/bert_qa_extractor_cockatiel_2022_baseline_signal_it_842
furrutiav
2024-02-12T17:31:25Z
93
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T17:30:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sam2ai/qwen_1.5_odia_4b
sam2ai
2024-02-12T17:29:23Z
2
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-4B", "base_model:adapter:Qwen/Qwen1.5-4B", "license:other", "4-bit", "bitsandbytes", "region:us" ]
null
2024-02-11T17:43:28Z
--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: Qwen/Qwen1.5-4B model-index: - name: qwen_1.5_odia_4b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen1.5-4B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # is_qwen_derived_model: true trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: OdiaGenAI/all_combined_odia_171k type: alpaca:chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out-qwen-4b-odia hub_model_id: sam2ai/qwen_1.5_odia_4b sequence_len: 2048 # supports up to 8192 sample_packing: false pad_to_sequence_len: adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Qwen-instruct-4b-odia wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` </details><br> # qwen_1.5_odia_4b This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.977 | 0.0 | 1 | 1.0190 | | 0.4901 | 0.25 | 2108 | 0.4872 | | 0.3966 | 0.5 | 4216 | 0.4347 | | 0.3127 | 0.75 | 6324 | 0.4104 | | 0.3172 | 1.0 | 8432 | 0.3932 | | 0.281 | 1.25 | 10540 | 0.3778 | | 0.2845 | 1.5 | 12648 | 0.3684 | | 0.2459 | 1.75 | 14756 | 0.3616 | | 0.1641 | 2.0 | 16864 | 0.3525 | | 0.2121 | 2.25 | 18972 | 0.3506 | | 0.2564 | 2.5 | 21080 | 0.3448 | | 0.1378 | 2.75 | 23188 | 0.3426 | | 0.2002 | 3.0 | 25296 | 0.3409 | | 0.1671 | 3.25 | 27404 | 0.3439 | | 0.1464 | 3.5 | 29512 | 0.3421 | | 0.1741 | 3.75 | 31620 | 0.3421 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.0.1+gita61a294 - Datasets 2.16.1 - Tokenizers 0.15.0
gayanin/bart-with-pubmed-asr-noise-data-0.1-v2
gayanin
2024-02-12T17:28:00Z
91
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:gayanin/bart-with-pubmed-noise-data-0.1-v2", "base_model:finetune:gayanin/bart-with-pubmed-noise-data-0.1-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T17:23:48Z
--- license: apache-2.0 base_model: gayanin/bart-with-pubmed-noise-data-0.1-v2 tags: - generated_from_trainer model-index: - name: bart-with-pubmed-asr-noise-data-0.1-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-pubmed-asr-noise-data-0.1-v2 This model is a fine-tuned version of [gayanin/bart-with-pubmed-noise-data-0.1-v2](https://huggingface.co/gayanin/bart-with-pubmed-noise-data-0.1-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4242 | 0.87 | 500 | 0.3986 | | 0.2914 | 1.73 | 1000 | 0.3416 | | 0.2518 | 2.6 | 1500 | 0.3346 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
GccX11/q-Taxi-v3
GccX11
2024-02-12T17:24:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T17:24:22Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="GccX11/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Basha738/llama2-13B-supervised-ft-5-epochs-351
Basha738
2024-02-12T17:18:01Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-12T17:13:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kudod/my_awesome_model_IMDB
Kudod
2024-02-12T17:05:09Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:finiteautomata/bertweet-base-sentiment-analysis", "base_model:finetune:finiteautomata/bertweet-base-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-10T04:52:46Z
--- base_model: finiteautomata/bertweet-base-sentiment-analysis tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model_IMDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_IMDB This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6664 - Accuracy: 0.8949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3261 | 1.0 | 782 | 0.2674 | 0.8903 | | 0.2072 | 2.0 | 1564 | 0.3035 | 0.8820 | | 0.1408 | 3.0 | 2346 | 0.3532 | 0.8967 | | 0.0876 | 4.0 | 3128 | 0.4793 | 0.8922 | | 0.0661 | 5.0 | 3910 | 0.4755 | 0.8925 | | 0.0373 | 6.0 | 4692 | 0.5159 | 0.8937 | | 0.034 | 7.0 | 5474 | 0.5527 | 0.8923 | | 0.0264 | 8.0 | 6256 | 0.6391 | 0.8947 | | 0.0179 | 9.0 | 7038 | 0.6491 | 0.8942 | | 0.0094 | 10.0 | 7820 | 0.6664 | 0.8949 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.17.0 - Tokenizers 0.14.0
furrutiav/bert_qa_extractor_cockatiel_2022_clf_mixtral_v2_it_815
furrutiav
2024-02-12T16:59:55Z
91
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T16:59:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gayanin/bart-with-pubmed-woz-noise-data-0.1-v2
gayanin
2024-02-12T16:46:50Z
12
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:gayanin/bart-with-pubmed-noise-data-0.1-v2", "base_model:finetune:gayanin/bart-with-pubmed-noise-data-0.1-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T16:20:05Z
--- license: apache-2.0 base_model: gayanin/bart-with-pubmed-noise-data-0.1-v2 tags: - generated_from_trainer model-index: - name: bart-with-pubmed-woz-noise-data-0.1-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-with-pubmed-woz-noise-data-0.1-v2 This model is a fine-tuned version of [gayanin/bart-with-pubmed-noise-data-0.1-v2](https://huggingface.co/gayanin/bart-with-pubmed-noise-data-0.1-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1481 | 0.13 | 500 | 0.1476 | | 0.1522 | 0.26 | 1000 | 0.1299 | | 0.1537 | 0.39 | 1500 | 0.1191 | | 0.1123 | 0.53 | 2000 | 0.1188 | | 0.1258 | 0.66 | 2500 | 0.1099 | | 0.1251 | 0.79 | 3000 | 0.1047 | | 0.1127 | 0.92 | 3500 | 0.1023 | | 0.075 | 1.05 | 4000 | 0.1009 | | 0.0875 | 1.18 | 4500 | 0.1005 | | 0.1061 | 1.31 | 5000 | 0.0957 | | 0.073 | 1.44 | 5500 | 0.0926 | | 0.1089 | 1.58 | 6000 | 0.0918 | | 0.0889 | 1.71 | 6500 | 0.0917 | | 0.0765 | 1.84 | 7000 | 0.0892 | | 0.0883 | 1.97 | 7500 | 0.0870 | | 0.0669 | 2.1 | 8000 | 0.0899 | | 0.0631 | 2.23 | 8500 | 0.0908 | | 0.072 | 2.36 | 9000 | 0.0872 | | 0.0612 | 2.5 | 9500 | 0.0870 | | 0.0686 | 2.63 | 10000 | 0.0859 | | 0.0536 | 2.76 | 10500 | 0.0851 | | 0.0571 | 2.89 | 11000 | 0.0845 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
julep-ai/samantha-1-tokenizer
julep-ai
2024-02-12T16:44:48Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-12T16:35:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vargol/ProteusV0.2
Vargol
2024-02-12T16:40:33Z
45
0
diffusers
[ "diffusers", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-02-12T16:03:28Z
--- license: gpl-3.0 --- This a an fp16 variant of Proteus V2.0 https://huggingface.co/dataautogpt3/ProteusV0.2 currently under the gpl-v3 licence. simply created by ```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("dataautogpt3/ProteusV0.2", torch_dtype=torch.float16) pipeline.save_pretrained('fp16_ProteusV0.2', safe_serialization=True, variant='fp16') ``` See the original model for details. The fp32 version of the model, even when converted to fp16 when loading, uses up to much RAM hence my need for this version. Dave
macabdul9/t5-glue-all-900K
macabdul9
2024-02-12T16:21:22Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-12T16:07:10Z
--- license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer model-index: - name: t5-glue-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-glue-all This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0692 - Em accuracy: 89.1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
hiig-ai-lab/simba-v01b
hiig-ai-lab
2024-02-12T16:18:33Z
21
6
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "german", "deutsch", "simplification", "vereinfachung", "conversational", "de", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-02T12:33:34Z
--- license: apache-2.0 language: - de pipeline_tag: text-generation tags: - german - deutsch - simplification - vereinfachung --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> We fine-tuned the [jphme/em_german_leo_mistral](https://huggingface.co/jphme/em_german_leo_mistral) with a set of ca. 2000 newspaper articles which have been simplified by the Austrian Press Agency. Our aim was to have a model which can simplify German-language text. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Members of the [Public Interest AI research group](https://publicinterest.ai/), [HIIG Berlin](https://www.hiig.de/) - **Model type:** simplification model, text generation - **Language(s) (NLP):** German - **License:** Apache 2.0 - **Finetuned from model:** jphme/em_german_leo_mistral ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/fhewett/simba <!-- - **Paper [optional]:** [More Information Needed] --> - **Project website:** https://publicinterest.ai/tool/simba ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model works best for simplifying German-language newspaper articles (news items, not commentaries or editorials). It may work for other types of texts. ### Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> We have fine-tuned using only newspaper articles. We have not yet performed extensive out-of-domain testing, but believe that the model's capabilities could be improved by fine-tuning on more diverse data. Contact us if you have a dataset which you think could work (parallel texts, German standard & German simplified). <!-- ### Out-of-Scope Use --> <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> As with most text generation models, the model sometimes produces information that is incorrect. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Please check manually that your output text corresponds to the input text, as factual inconsistencies may have arisen. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> A sample of the data used to train our model can be found [here](https://github.com/fhewett/apa-rst/tree/main/original_texts). #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> <!-- #### Speeds, Sizes, Times [optional] --> <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> #### Summary For now, we have manually checked the performance of our model on a small sample of texts. Whilst it seems to produce good summaries of all texts, it only seems to simplify newspaper articles (i.e. similar to our training data). We have not yet applied any large-scale metrics based evaluation. <!-- ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed]--> ## Model Card Contact simba -at- hiig.de
ppsingh/iki_sector_setfit
ppsingh
2024-02-12T16:17:29Z
54
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:GIZ/SECTOR-multilabel-mpnet_w", "base_model:finetune:GIZ/SECTOR-multilabel-mpnet_w", "co2_eq_emissions", "region:us" ]
text-classification
2024-02-12T15:28:40Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Specific information applicable to Parties, including regional economic integration organizations and their member States, that have reached an agreement to act jointly under Article 4, paragraph 2, of the Paris Agreement, including the Parties that agreed to act jointly and the terms of the agreement, in accordance with Article 4, paragraphs 16–18, of the Paris Agreement. Not applicable. (c). How the Party’s preparation of its nationally determined contribution has been informed by the outcomes of the global stocktake, in accordance with Article 4, paragraph 9, of the Paris Agreement. - text: 'In the shipping and aviation sectors, emission reduction efforts will be focused on distributing eco-friendly ships and enhancing the operational efficiency of aircraft. Agriculture, livestock farming and fisheries: The Republic Korea is introducing various options to accelerate low-carbon farming, for instance, improving irrigation techniques in rice paddies and adopting low-input systems for nitrogen fertilizers.' - text: As part of this commitment, Oman s upstream oil and gas industry is developing economically viable solutions to phase out routine flaring as quickly as possible and ahead of the World Bank s target date. IV. Climate Preparedness and Resilience. The Sultanate of Oman has stepped up its efforts in advancing its expertise and methodologies to better manage the climate change risks over the past five years. The adaptation efforts are underway, and the status of adaptation planning is still at a nascent stage. - text: 'Synergy and coherence 46 VII- Gender and youth 46 VIII- Education and employment 48 ANNEXES. 49 Annex No. 1: Details of mitigation measures, conditional and non-conditional, by sector 49 Annex No.2: List of adaptation actions proposed by sectors. 57 Annex No.3: GCF project portfolio. 63 CONTRIBUTION DENTERMINEE AT NATIONAL LEVEL CDN MAURITANIE LIST OF TABLES Table 1: Summary of funding needs for the CND 2021-2030 updated. 12 Table 2: CND 2021-2030 mitigation measures updated by sector (cumulative cost and reduction potential for the period). 14 Table 3: CND 2021-2030 adaptation measures updated by sector. Error!' - text: In the transport sector, restructuing is planned through a number of large infrastructure initiatives aiming to revive the role of public transport and achieving a relevant share of fuel efficient vehicles. Under both the conditional and unconditional mitigation scenarios, Lebanon will achieve sizeable emission reductions. With regards to adaptation, Lebanon has planned comprehensive sectoral actions related to water, agriculture/forestry and biodiversity, for example related to irrigation, forest management, etc. It also continues developing adaptation strategies in the remaining sectors. pipeline_tag: text-classification inference: false co2_eq_emissions: emissions: 25.8151164022705 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.674781799316406 hours_used: 0.622 hardware_used: 1 x Tesla T4 base_model: ppsingh/SECTOR-multilabel-mpnet_w --- # SetFit with ppsingh/SECTOR-multilabel-mpnet_w This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ppsingh/SECTOR-multilabel-mpnet_w](https://huggingface.co/ppsingh/SECTOR-multilabel-mpnet_w) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [ppsingh/SECTOR-multilabel-mpnet_w](https://huggingface.co/ppsingh/SECTOR-multilabel-mpnet_w) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ppsingh/iki_sector_setfit") # Run inference preds = model("In the shipping and aviation sectors, emission reduction efforts will be focused on distributing eco-friendly ships and enhancing the operational efficiency of aircraft. Agriculture, livestock farming and fisheries: The Republic Korea is introducing various options to accelerate low-carbon farming, for instance, improving irrigation techniques in rice paddies and adopting low-input systems for nitrogen fertilizers.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 35 | 76.164 | 170 | - Training Dataset: 250 | Class | Positive Count of Class| |:-------------|:--------| | Economy-wide | 88 | | Energy | 63 | | Other Sector | 64 | | Transport | 139 | - Validation Dataset: 42 | Class | Positive Count of Class| |:-------------|:--------| | Economy-wide | 15 | | Energy | 11 | | Other Sector | 11 | | Transport | 24 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0005 | 1 | 0.2029 | - | | 0.0993 | 200 | 0.0111 | 0.1124 | | 0.1985 | 400 | 0.0063 | 0.111 | | 0.2978 | 600 | 0.0183 | 0.1214 | | 0.3970 | 800 | 0.0197 | 0.1248 | | 0.4963 | 1000 | 0.0387 | 0.1339 | | 0.5955 | 1200 | 0.0026 | 0.1181 | | 0.6948 | 1400 | 0.0378 | 0.1208 | | 0.7940 | 1600 | 0.0285 | 0.1267 | | 0.8933 | 1800 | 0.0129 | 0.1254 | | 0.9926 | 2000 | 0.0341 | 0.1271 | ### Classifier Training Results | Epoch | Training F1-micro|Training F1-Samples |Training F1-weighted|Validation F1-micro |Validation F1-samples |Validation F1-weighted | |:------:|:----------------:|:------------------:|:------------------:|:------------------:|:--------------------:|:---------------------:| | 0 | 0.954 | 0.972 | 0.945 |0.824 | 0.819 | 0.813 | | 1 | 0.994 | 0.996 | 0.994 |0.850 | 0.832 | 0.852 | | 2 | 0.981 | 0.989 | 0.979 |0.850 | 0.843 | 0.852 | | 3 | 0.995 | 0.997 | 0.995 |0.852 | 0.843 | 0.858 | | 4 | 0.994 | 0.996 | 0.994 |0.852 | 0.843 | 0.858 | | 5 | 0.995 | 0.997 | 0.995 |0.859 | 0.848 | 0.863 | |label | precision |recall |f1-score| support| |:-------------:|:---------:|:-----:|:------:|:------:| |Economy-wide |0.857 |0.800 |0.827 | 15.0 | |Energy |1.00 |0.818 |0.900 | 11.0 | |Other Sector |0.615 |0.727 |0.667 | 11.0 | |Transport |0.958 |0.958 |0.958 | 24.0 | - Micro Avg: Precision = 0.866, Recall = 0.852, F1 = 0.859504 - Samples Avg: Precision = 0.869, Recall = 0.861, F1 = 0.848 ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.026 kg of CO2 - **Hours Used**: 0.622 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.3.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
rishabhjain16/whisper-large-v3
rishabhjain16
2024-02-12T16:17:10Z
13
0
transformers
[ "transformers", "pytorch", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "arxiv:2311.00430", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:17:10Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). Whisper `large-v3` has the same architecture as the previous large models except the following minor differences: 1. The input uses 128 Mel frequency bins instead of 80 2. A new language token for Cantonese The Whisper `large-v3` model is trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`. The model was trained for 2.0 epochs over this mixture dataset. The `large-v3` model shows improved performance over a wide variety of languages, showing 10% to 20% reduction of errors compared to Whisper `large-v2`. **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | | large-v3 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v3) | ## Usage Whisper `large-v3` is supported in Hugging Face 🤗 Transformers through the `main` branch in the Transformers repo. To run the model, first install the Transformers library through the GitHub repo. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub: ```bash pip install --upgrade pip pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio] ``` The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) class to transcribe audio files of arbitrary length. Transformers uses a chunked algorithm to transcribe long-form audio files, which in-practice is 9x faster than the sequential algorithm proposed by OpenAI (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). The batch size should be set based on the specifications of your device: ```python import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline from datasets import load_dataset device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline: ```diff - result = pipe(sample) + result = pipe("audio.mp3") ``` Whisper predicts the language of the source audio automatically. If the source audio language is known *a-priori*, it can be passed as an argument to the pipeline: ```python result = pipe(sample, generate_kwargs={"language": "english"}) ``` By default, Whisper performs the task of *speech transcription*, where the source audio language is the same as the target text language. To perform *speech translation*, where the target text is in English, set the task to `"translate"`: ```python result = pipe(sample, generate_kwargs={"task": "translate"}) ``` Finally, the model can be made to predict timestamps. For sentence-level timestamps, pass the `return_timestamps` argument: ```python result = pipe(sample, return_timestamps=True) print(result["chunks"]) ``` And for word-level timestamps: ```python result = pipe(sample, return_timestamps="word") print(result["chunks"]) ``` The above arguments can be used in isolation or in combination. For example, to perform the task of speech transcription where the source audio is in French, and we want to return sentence-level timestamps, the following can be used: ```python result = pipe(sample, return_timestamps=True, generate_kwargs={"language": "french", "task": "translate"}) print(result["chunks"]) ``` ## Additional Speed & Memory Improvements You can apply additional speed and memory improvements to Whisper-large-v3 which we cover in the following. ### Flash Attention We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention): ``` pip install flash-attn --no-build-isolation ``` and then all you have to do is to pass `use_flash_attention_2=True` to `from_pretrained`: ```diff - model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) + model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=True) ``` ### Torch Scale-Product-Attention (SDPA) If your GPU does not support Flash Attention, we recommend making use of [BetterTransformers](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#bettertransformer). To do so, you first need to install optimum: ``` pip install --upgrade optimum ``` And then convert your model to a "BetterTransformer" model before using it: ```diff model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) + model = model.to_bettertransformer() ``` ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 1 million hours of weakly labeled audio and 4 million hours of pseudolabeled audio collected using Whisper `large-v2`. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-large-v2
rishabhjain16
2024-02-12T16:16:58Z
9
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:16:57Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). Compared to the Whisper large model, the large-v2 model is trained for 2.5x more epochs with added regularization for improved performance. **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Large on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 3.0003583080317572 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-large-v2", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-large
rishabhjain16
2024-02-12T16:09:11Z
7
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:09:10Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 3.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 5.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 54.8 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400"> <p><b>Update:</b> following the release of the paper, the Whisper authors announced a <a href="ttps://huggingface.co/openai/whisper-large-v2"> large-v2</a> model trained for 2.5x more epochs with regularization. This <a href="ttps://huggingface.co/openai/whisper-large-v2"> large-v2</a> model surpasses the performance of the large model, with no architecture changes. Thus, it is recommended that the <a href="ttps://huggingface.co/openai/whisper-large-v2"> large-v2</a> model is used in-place of the original large model. </p> </div> **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Large on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 3.0003583080317572 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-large", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-base
rishabhjain16
2024-02-12T16:07:55Z
67
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:07:55Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 5.008769117619326 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 12.84936273212057 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 131 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Base on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-base") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 5.082316555716899 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-base", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-medium
rishabhjain16
2024-02-12T16:07:01Z
12
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:07:00Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 2.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 5.9 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 53.87 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Medium on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 2.900409225488902 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-medium", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-tiny
rishabhjain16
2024-02-12T16:06:47Z
67
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:06:47Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 7.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 17.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 141 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Tiny on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 7.547098647858638 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-tiny", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
rishabhjain16/whisper-small
rishabhjain16
2024-02-12T16:06:01Z
72
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-12T16:05:58Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - no - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 3.432213777886737 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 7.628304527060248 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: language: hi metrics: - name: Test WER type: wer value: 87.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: language: dv metrics: - name: Wer type: wer value: 125.69809089960707 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) The model is informed of which task to perform (transcription or translation) by passing the appropriate "context tokens". These context tokens are a sequence of tokens that are given to the decoder at the start of the decoding process, and take the following order: 1. The transcription always starts with the `<|startoftranscript|>` token 2. The second token is the language token (e.g. `<|en|>` for English) 3. The third token is the "task token". It can take one of two values: `<|transcribe|>` for speech recognition or `<|translate|>` for speech translation 4. In addition, a `<|notimestamps|>` token is added if the model should not include timestamp prediction Thus, a typical sequence of context tokens might look as follows: ``` <|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> ``` Which tells the model to decode in English, under the task of speech recognition, and not to predict timestamps. These tokens can either be forced or un-forced. If they are forced, the model is made to predict each token at each position. This allows one to control the output language and task for the Whisper model. If they are un-forced, the Whisper model will automatically predict the output langauge and task itself. The context tokens can be set accordingly: ```python model.config.forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="english", task="transcribe") ``` Which forces the model to predict in English under the task of speech recognition. ## Transcription ### English to English In this example, the context tokens are 'unforced', meaning the model automatically predicts the output language (English) and task (transcribe). ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") >>> model.config.forced_decoder_ids = None >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ### French to French The following example demonstrates French to French transcription by setting the decoder ids appropriately. ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Un vrai travail intéressant va enfin être mené sur ce sujet.'] ``` ## Translation Setting the task to "translate" forces the Whisper model to perform speech translation. ### French to English ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import Audio, load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") >>> forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="translate") >>> # load streaming dataset and read first audio sample >>> ds = load_dataset("common_voice", "fr", split="test", streaming=True) >>> ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"] >>> input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' A very interesting work, we will finally be given on this subject.'] ``` ## Evaluation This code snippet shows how to evaluate Whisper Small on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 3.432213777886737 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-small", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
ychafiqui/english-to-darija-2
ychafiqui
2024-02-12T16:05:30Z
128
1
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-tc-big-en-ar", "base_model:finetune:Helsinki-NLP/opus-mt-tc-big-en-ar", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-20T15:59:34Z
--- license: cc-by-4.0 base_model: Helsinki-NLP/opus-mt-tc-big-en-ar tags: - generated_from_trainer metrics: - bleu model-index: - name: english-to-darija-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-to-darija-2 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-ar) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8514 - Bleu: 70.9947 - Gen Len: 9.092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.6032 | 1.0 | 4651 | 1.4540 | 25.9364 | 8.9697 | | 1.1191 | 2.0 | 9302 | 1.0805 | 48.0549 | 9.0661 | | 0.8048 | 3.0 | 13953 | 0.9419 | 61.3646 | 9.1018 | | 0.5978 | 4.0 | 18604 | 0.8939 | 65.6846 | 9.1161 | | 0.477 | 5.0 | 23255 | 0.8623 | 68.0005 | 9.1049 | | 0.4228 | 6.0 | 27906 | 0.8540 | 69.1959 | 9.1276 | | 0.3534 | 7.0 | 32557 | 0.8479 | 69.944 | 9.0744 | | 0.305 | 8.0 | 37208 | 0.8473 | 70.55 | 9.0987 | | 0.2678 | 9.0 | 41859 | 0.8489 | 70.8065 | 9.1166 | | 0.243 | 10.0 | 46510 | 0.8514 | 70.9947 | 9.092 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
alhafizfadhil/results
alhafizfadhil
2024-02-12T15:56:21Z
179
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-12T15:56:04Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.4875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2952 - Accuracy: 0.4875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 1.6148 | 0.3375 | | 1.6678 | 2.0 | 160 | 1.3553 | 0.4625 | | 0.6788 | 3.0 | 240 | 1.2952 | 0.4875 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
furrutiav/bert_qa_extractor_cockatiel_2022_z_value_over_subsample_it_727
furrutiav
2024-02-12T15:52:27Z
91
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2024-02-12T15:51:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hdeldar/distilbert-base-uncased-finetuned-cola
hdeldar
2024-02-12T15:51:58Z
46
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T15:47:40Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: hdeldar/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hdeldar/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1972 - Validation Loss: 0.5241 - Train Matthews Correlation: 0.5294 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5250 | 0.4718 | 0.4527 | 0 | | 0.3234 | 0.4414 | 0.5235 | 1 | | 0.1972 | 0.5241 | 0.5294 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.17.0 - Tokenizers 0.15.1
Zaphare/ppo-LunarLander-v2
Zaphare
2024-02-12T15:41:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T13:55:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.09 +/- 14.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
not-lain/MyRepo1.0
not-lain
2024-02-12T15:34:50Z
194
0
transformers
[ "transformers", "safetensors", "MobileNetV1", "image-classification", "custom_code", "autotrain_compatible", "region:us" ]
image-classification
2024-02-12T15:33:46Z
--- tags: - custom_code --- # How to use you can the model via the command ```python from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("not-lain/MyRepo1.0", trust_remote_code=True) ``` or you can use the pipeline ```python from transformers import pipeline pipe = pipeline(model="not-lain/MyRepo1.0", trust_remote_code=True) pipe( "url", download=True, # will call the download_img method clean_output=False # will be passed as postprocess_kwargs ) ``` # parameters the pipeline supports the following parameters : * download * clean_output you can also use the following method to download images from the web ```python pipe.download_img(url) ```
ppsingh/iki_target_setfit
ppsingh
2024-02-12T15:24:33Z
57
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:GIZ/TAPP-multilabel-mpnet", "base_model:finetune:GIZ/TAPP-multilabel-mpnet", "co2_eq_emissions", "region:us" ]
text-classification
2024-02-11T18:11:00Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: During 2021-2030, Thailand s LEDS will be implemented through the NDC roadmap and sectoral action plans which provide detailed guidance on measures and realistic actions to achieve the 1st NDC target by 2030, as well as regular monitoring and evaluation of the progress and achievement. The monitoring and evaluation of the mitigation measures relating to the Thailand’s LEDS will be carried out to ensure its effectiveness and efficiency in achieving its objectives and key performance indicators. Because it is a long-term plan spanning many years during which many changes can occur, it is envisaged that it will be subject to a comprehensive review every five years. This is consistent with the approach under the Paris Agreement that assigned Parties to submit their NDCs to the UNFCCC every five year. - text: The NDC also benefited from the reviews and comments of these implementing partners as well as local and international experts. Special thanks to The Honourable Molwyn Joseph, Minister for Health, Wellness and the Environment, for his unwavering commitment to advance this ambitious climate change agenda, while Antigua and Barbuda faced an outbreak of the COVID-19 pandemic. Significant contributions to the process were made by a wide-cross section of stakeholders from the public and private sector, civil society, trade and industry groups and training institutions, who attended NDC-related workshops, consultations and participated in key stakeholder interviews organized to inform the NDC update. - text: Antigua and Barbuda will mainstream gender in its energy planning through an Inclusive Renewable Energy Strategy. This strategy will recognize and acknowledge, among other things, the gender norms, and inequalities prevalent in the energy sector, women and men’s differentiated access to energy, their different energy needs and preferences, and different impacts that energy access could have on their livelihoods. Antigua and Barbuda’s plan for an inclusive renewable energy transition will ensure continued affordable and reliable access to electricity and other energy services for all. - text: 'Thailand’s climate actions are divided into short-term, medium-term and long-term targets up to 2050. For the mitigation actions, short-term targets include: (i) develop medium- and long-term GHG emission reduction targets and prepare roadmaps for the implementation by sector, including the GHG emission reduction target on a voluntary basis (pre-2020 target), Nationally Appropriate Mitigation Actions (NAMAs) roadmaps, and measurement, reporting, and verification mechanisms, (ii) establish domestic incentive mechanisms to encourage low carbon development. The medium-term targets include: (i) reduce GHG emissions from energy and transport sectors by 7-20% against BAU level by 2020, subject to the level of international support, (ii) supply at least 25% of energy consumption from renewable energy sources by 2021 and (iii) increase the ratio of municipalities with more than 10 m2 of green space per capita.' - text: In the oil sector, the country has benefited from 372 million dollars for the reduction of gas flaring at the initiative (GGFR - "Global Gas Flaring Reduction") of the World Bank after having adopted in November 2015 a national reduction plan flaring and associated gas upgrading. In the electricity sector, the NDC highlights the development of hydroelectricity which should make it possible to cover 80% of production in 2025, the remaining 20% &ZeroWidthSpace;&ZeroWidthSpace;being covered by gas and other renewable energies. pipeline_tag: text-classification inference: true co2_eq_emissions: emissions: 5.901369050433577 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz ram_total_size: 12.674789428710938 hours_used: 0.185 hardware_used: 1 x Tesla T4 base_model: ppsingh/TAPP-multilabel-mpnet --- # SetFit with ppsingh/TAPP-multilabel-mpnet This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [ppsingh/TAPP-multilabel-mpnet](https://huggingface.co/ppsingh/TAPP-multilabel-mpnet) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [ppsingh/TAPP-multilabel-mpnet](https://huggingface.co/ppsingh/TAPP-multilabel-mpnet) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | NEGATIVE | <ul><li>'(p 70-1).Antigua and Barbuda’s 2021 update to the first Nationally Determined Contribution the most vulnerable in society have been predominantly focused on adaptation measures like building resilience to flooding and hurricanes. The updated NDC ambition provides an opportunity to focus more intently on enabling access to energy efficiency and renewable energy for the most vulnerable, particularly women who are most affected when electricity is not available since the grid is down after an extreme weather event. Nationally, Antigua and Barbuda intends to utilize the SIRF Fund as a mechanism primarily to catalyse and leverage investment in the transition for NGOs, MSMEs and informal sectors that normally cannot access traditional local commercial financing due to perceived high risks.'</li><li>'The transport system cost will be increased by 16.2% compared to the BAU level. Electric trucks and electric pick-ups will account for the highest share of investment followed by electric buses and trucks. In the manufacturing industries, the energy efficiency improvement in the heating and the motor systems and the deployment of CCS require the highest investment in the non-metallic and the chemical industries in 2050. The manufacturing industries system cost will be increased by 15.3% compared to the BAU level.'</li><li>'Figure 1-9: Total GHG emissions by sector (excluding LULUCF) 2000 and 2016 1.2.2 Greenhouse Gas Emission by Sector • Energy Total direct GHG emissions from the Energy sector in 2016 were estimated to be 253,895.61 eq. The majority of GHG emissions in the Energy sector were generated by fuel combustion, consisting mostly of grid-connected electricity and heat production at around eq (42.84%). GHG emissions from Transport, Manufacturing Industries and Construction, and other sectors were 68,260.17 GgCO2 eq eq (6.10%), respectively. Fugitive Emissions from fuel eq or a little over 4.33% of total GHG emissions from the Energy sector. Details of GHG emissions in the Energy sector by gas type and source in 2016 are presented in Figure 1-10. Source: Thailand Third Biennial Update Report, UNFCCC 2020.'</li></ul> | | TARGET | <ul><li>'DNPM, NFA,. Cocoa. Board,. Spice Board,. Provincial. gov-ernments. in the. Momase. region. Ongoing -. 2025. 340. European Union. Support committed. Priority Sector: Health. By 2030, 100% of the population benefit from introduced health measures to respond to malaria and other climate-sensitive diseases in PNG. Action or Activity. Indicator. Status. Lead. Implementing. Agencies. Supporting. Agencies. Time Frame. Budget (USD). Funding Source. (Existing/Potential). Other Support. Improve vector control. measures, with a priority. of all households having. access to a long-lasting. insecticidal net (LLIN).'</li><li>'Conditionality: With national effort it is intended to increase the attention to vulnerable groups in case of disasters and/or emergencies up to 50% of the target and 100% of the target with international cooperation. Description: In this goal, it is projected to increase coverage from 33% to 50% (211,000 families) of agricultural insurance in attention to the number of families, whose crops were affected by various adverse weather events (flood, drought, frost, hailstorm, among others), in addition to the implementation of comprehensive actions for risk management and adaptation to Climate Change.'</li><li>'By 2030, upgrade watershed health and vitality in at least 20 districts to a higher condition category. By 2030, create an inventory of wetlands in Nepal and sustainably manage vulnerable wetlands. By 2025, enhance the sink capacity of the landuse sector by instituting the Forest Development Fund (FDF) for compensation of plantations and forest restoration. Increase growing stock including Mean Annual Increment in Tarai, Hills and Mountains. Afforest/reforest viable public and private lands, including agroforestry.'</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ppsingh/iki_target_setfit") # Run inference preds = model("In the oil sector, the country has benefited from 372 million dollars for the reduction of gas flaring at the initiative (GGFR - \"Global Gas Flaring Reduction\") of the World Bank after having adopted in November 2015 a national reduction plan flaring and associated gas upgrading. In the electricity sector, the NDC highlights the development of hydroelectricity which should make it possible to cover 80% of production in 2025, the remaining 20% &ZeroWidthSpace;&ZeroWidthSpace;being covered by gas and other renewable energies.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:----| | Word count | 58 | 116.6632 | 508 | | Label | Training Sample Count | |:---------|:----------------------| | NEGATIVE | 51 | | TARGET | 44 | ### Training Hyperparameters - batch_size: (8, 2) - num_epochs: (1, 0) - max_steps: -1 - sampling_strategy: undersampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0018 | 1 | 0.3343 | - | | 0.1783 | 100 | 0.0026 | 0.1965 | | 0.3565 | 200 | 0.0001 | 0.1995 | | 0.5348 | 300 | 0.0001 | 0.2105 | | 0.7130 | 400 | 0.0001 | 0.2153 | | 0.8913 | 500 | 0.0 | 0.1927 | ### Training Results Classifier - Classes Representation in Test Data: Target: 9, Negative: 8 - F1-score: 87.8% - Accuracy: 88.2% ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.006 kg of CO2 - **Hours Used**: 0.185 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x Tesla T4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz - **RAM Size**: 12.67 GB ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.3.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
BharatMata/my-dog
BharatMata
2024-02-12T15:22:42Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-12T15:20:20Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My--Dog Dreambooth model trained by BharatMata following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: Roll-No.27 Sample pictures of this concept: ![0](https://huggingface.co/BharatMata/my-dog/resolve/main/sample_images/Screenshot_2024-02-12_084810.png)
alexbeta80/donut-test
alexbeta80
2024-02-12T15:22:31Z
5
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-02-05T14:27:14Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-test This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
sam1120/dropoff-utcustom-train-SF-RGB-b5_5
sam1120
2024-02-12T14:59:47Z
150
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:29:57Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_5 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1911 - Mean Iou: 0.4677 - Mean Accuracy: 0.7472 - Overall Accuracy: 0.9719 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.5020 - Accuracy Undropoff: 0.9923 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.4318 - Iou Undropoff: 0.9713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0685 | 5.0 | 10 | 1.0222 | 0.2189 | 0.3725 | 0.5989 | nan | 0.1256 | 0.6194 | 0.0 | 0.0497 | 0.6070 | | 0.9481 | 10.0 | 20 | 0.8419 | 0.3703 | 0.6398 | 0.8451 | nan | 0.4159 | 0.8637 | 0.0 | 0.2633 | 0.8476 | | 0.8268 | 15.0 | 30 | 0.7165 | 0.3949 | 0.6938 | 0.8694 | nan | 0.5023 | 0.8853 | 0.0 | 0.3136 | 0.8711 | | 0.7573 | 20.0 | 40 | 0.6206 | 0.4084 | 0.7186 | 0.8994 | nan | 0.5214 | 0.9158 | 0.0 | 0.3243 | 0.9010 | | 0.636 | 25.0 | 50 | 0.5194 | 0.4239 | 0.7253 | 0.9300 | nan | 0.5020 | 0.9485 | 0.0 | 0.3401 | 0.9316 | | 0.5238 | 30.0 | 60 | 0.4507 | 0.4365 | 0.7368 | 0.9461 | nan | 0.5085 | 0.9651 | 0.0 | 0.3618 | 0.9476 | | 0.4296 | 35.0 | 70 | 0.4064 | 0.4410 | 0.7422 | 0.9530 | nan | 0.5123 | 0.9721 | 0.0 | 0.3683 | 0.9546 | | 0.4105 | 40.0 | 80 | 0.3547 | 0.4502 | 0.7467 | 0.9619 | nan | 0.5120 | 0.9814 | 0.0 | 0.3880 | 0.9627 | | 0.3436 | 45.0 | 90 | 0.3304 | 0.4571 | 0.7596 | 0.9644 | nan | 0.5361 | 0.9830 | 0.0 | 0.4066 | 0.9647 | | 0.2729 | 50.0 | 100 | 0.2953 | 0.4614 | 0.7552 | 0.9680 | nan | 0.5232 | 0.9873 | 0.0 | 0.4163 | 0.9678 | | 0.2546 | 55.0 | 110 | 0.2770 | 0.4629 | 0.7579 | 0.9691 | nan | 0.5276 | 0.9882 | 0.0 | 0.4201 | 0.9686 | | 0.2281 | 60.0 | 120 | 0.2591 | 0.4647 | 0.7566 | 0.9702 | nan | 0.5235 | 0.9896 | 0.0 | 0.4245 | 0.9696 | | 0.2041 | 65.0 | 130 | 0.2453 | 0.4657 | 0.7556 | 0.9708 | nan | 0.5209 | 0.9903 | 0.0 | 0.4269 | 0.9701 | | 0.1772 | 70.0 | 140 | 0.2292 | 0.4676 | 0.7542 | 0.9717 | nan | 0.5171 | 0.9914 | 0.0 | 0.4317 | 0.9711 | | 0.169 | 75.0 | 150 | 0.2161 | 0.4681 | 0.7520 | 0.9719 | nan | 0.5122 | 0.9919 | 0.0 | 0.4331 | 0.9713 | | 0.1543 | 80.0 | 160 | 0.2111 | 0.4682 | 0.7530 | 0.9715 | nan | 0.5147 | 0.9913 | 0.0 | 0.4336 | 0.9709 | | 0.1374 | 85.0 | 170 | 0.1973 | 0.4659 | 0.7450 | 0.9715 | nan | 0.4980 | 0.9921 | 0.0 | 0.4268 | 0.9709 | | 0.1523 | 90.0 | 180 | 0.1974 | 0.4681 | 0.7501 | 0.9717 | nan | 0.5085 | 0.9918 | 0.0 | 0.4332 | 0.9711 | | 0.1323 | 95.0 | 190 | 0.1928 | 0.4658 | 0.7434 | 0.9717 | nan | 0.4944 | 0.9924 | 0.0 | 0.4263 | 0.9711 | | 0.1254 | 100.0 | 200 | 0.1923 | 0.4671 | 0.7467 | 0.9717 | nan | 0.5013 | 0.9921 | 0.0 | 0.4301 | 0.9711 | | 0.125 | 105.0 | 210 | 0.1867 | 0.4637 | 0.7380 | 0.9717 | nan | 0.4831 | 0.9929 | 0.0 | 0.4201 | 0.9711 | | 0.1239 | 110.0 | 220 | 0.1912 | 0.4694 | 0.7520 | 0.9719 | nan | 0.5121 | 0.9919 | 0.0 | 0.4369 | 0.9713 | | 0.1252 | 115.0 | 230 | 0.1913 | 0.4689 | 0.7503 | 0.9720 | nan | 0.5085 | 0.9921 | 0.0 | 0.4354 | 0.9714 | | 0.1357 | 120.0 | 240 | 0.1911 | 0.4677 | 0.7472 | 0.9719 | nan | 0.5020 | 0.9923 | 0.0 | 0.4318 | 0.9713 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGB-b5_7
sam1120
2024-02-12T14:57:46Z
146
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:26:14Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_7 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1841 - Mean Iou: 0.7025 - Mean Accuracy: 0.7532 - Overall Accuracy: 0.9721 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.5145 - Accuracy Undropoff: 0.9919 - Iou Unlabeled: nan - Iou Dropoff: 0.4336 - Iou Undropoff: 0.9715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.8255 | 5.0 | 10 | 0.7949 | 0.4128 | 0.7856 | 0.9393 | nan | 0.6179 | 0.9533 | 0.0 | 0.3007 | 0.9377 | | 0.4434 | 10.0 | 20 | 0.4247 | 0.4471 | 0.7066 | 0.9705 | nan | 0.4187 | 0.9944 | 0.0 | 0.3714 | 0.9700 | | 0.2107 | 15.0 | 30 | 0.2726 | 0.6711 | 0.7003 | 0.9715 | nan | 0.4046 | 0.9961 | nan | 0.3713 | 0.9710 | | 0.1678 | 20.0 | 40 | 0.2388 | 0.6801 | 0.7343 | 0.9691 | nan | 0.4782 | 0.9904 | nan | 0.3917 | 0.9685 | | 0.0972 | 25.0 | 50 | 0.1849 | 0.6764 | 0.7096 | 0.9715 | nan | 0.4241 | 0.9952 | nan | 0.3818 | 0.9709 | | 0.0604 | 30.0 | 60 | 0.2019 | 0.4644 | 0.7568 | 0.9704 | nan | 0.5239 | 0.9897 | 0.0 | 0.4236 | 0.9697 | | 0.0497 | 35.0 | 70 | 0.1793 | 0.6838 | 0.7345 | 0.9700 | nan | 0.4775 | 0.9914 | nan | 0.3983 | 0.9694 | | 0.0492 | 40.0 | 80 | 0.2000 | 0.4639 | 0.7567 | 0.9702 | nan | 0.5239 | 0.9896 | 0.0 | 0.4223 | 0.9695 | | 0.0409 | 45.0 | 90 | 0.1893 | 0.7030 | 0.7778 | 0.9696 | nan | 0.5687 | 0.9869 | nan | 0.4372 | 0.9688 | | 0.0328 | 50.0 | 100 | 0.1842 | 0.7040 | 0.7715 | 0.9704 | nan | 0.5545 | 0.9885 | nan | 0.4382 | 0.9697 | | 0.0332 | 55.0 | 110 | 0.1781 | 0.7015 | 0.7563 | 0.9715 | nan | 0.5216 | 0.9910 | nan | 0.4322 | 0.9709 | | 0.0314 | 60.0 | 120 | 0.1732 | 0.6890 | 0.7305 | 0.9717 | nan | 0.4675 | 0.9935 | nan | 0.4068 | 0.9711 | | 0.0318 | 65.0 | 130 | 0.1786 | 0.6971 | 0.7477 | 0.9715 | nan | 0.5037 | 0.9918 | nan | 0.4233 | 0.9709 | | 0.0291 | 70.0 | 140 | 0.1814 | 0.7119 | 0.7687 | 0.9725 | nan | 0.5466 | 0.9909 | nan | 0.4521 | 0.9718 | | 0.0273 | 75.0 | 150 | 0.1755 | 0.7101 | 0.7677 | 0.9722 | nan | 0.5446 | 0.9907 | nan | 0.4487 | 0.9715 | | 0.0274 | 80.0 | 160 | 0.1786 | 0.7006 | 0.7494 | 0.9720 | nan | 0.5066 | 0.9922 | nan | 0.4297 | 0.9714 | | 0.0248 | 85.0 | 170 | 0.1741 | 0.7029 | 0.7526 | 0.9722 | nan | 0.5131 | 0.9921 | nan | 0.4341 | 0.9716 | | 0.0248 | 90.0 | 180 | 0.1832 | 0.7050 | 0.7595 | 0.9719 | nan | 0.5278 | 0.9912 | nan | 0.4387 | 0.9713 | | 0.0242 | 95.0 | 190 | 0.1808 | 0.7028 | 0.7539 | 0.9720 | nan | 0.5160 | 0.9918 | nan | 0.4341 | 0.9714 | | 0.024 | 100.0 | 200 | 0.1796 | 0.7022 | 0.7501 | 0.9723 | nan | 0.5077 | 0.9925 | nan | 0.4327 | 0.9717 | | 0.0231 | 105.0 | 210 | 0.1835 | 0.7137 | 0.7731 | 0.9724 | nan | 0.5557 | 0.9905 | nan | 0.4556 | 0.9717 | | 0.0238 | 110.0 | 220 | 0.1823 | 0.7046 | 0.7565 | 0.9721 | nan | 0.5214 | 0.9917 | nan | 0.4376 | 0.9715 | | 0.0228 | 115.0 | 230 | 0.1833 | 0.7009 | 0.7504 | 0.9720 | nan | 0.5088 | 0.9921 | nan | 0.4305 | 0.9714 | | 0.0255 | 120.0 | 240 | 0.1841 | 0.7025 | 0.7532 | 0.9721 | nan | 0.5145 | 0.9919 | nan | 0.4336 | 0.9715 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
jaCappella/DPTNet_jaCappella_VES_48k
jaCappella
2024-02-12T14:55:00Z
0
0
null
[ "music", "speech", "audio", "audio-to-audio", "a cappella", "vocal ensemble", "ja", "dataset:jaCappella", "arxiv:2211.16028", "license:cc-by-nc-4.0", "region:us" ]
audio-to-audio
2023-01-21T06:42:35Z
--- license: cc-by-nc-4.0 language: - ja tags: - music - speech - audio - audio-to-audio - a cappella - vocal ensemble datasets: - jaCappella metrics: - SI-SDR --- # DPTNet trained with the jaCappella corpus for vocal ensemble separation This model was trained by Tomohiko Nakamura using [the codebase](https://github.com/TomohikoNakamura/asteroid_jaCappella)). It was trained on the vocal ensemble separation task of [the jaCappella dataset](https://tomohikonakamura.github.io/jaCappella_corpus/). [The paper](https://doi.org/10.1109/ICASSP49357.2023.10095569) was published in ICASSP 2023 ([arXiv](https://arxiv.org/abs/2211.16028)). # License See [the jaCappella dataset page](https://tomohikonakamura.github.io/jaCappella_corpus/). # Citation See [the jaCappella dataset page](https://tomohikonakamura.github.io/jaCappella_corpus/). # Configuration ```yaml data: num_workers: 12 sample_rate: 48000 samples_per_track: 13 seed: 42 seq_dur: 5.046 source_augmentations: - gain sources: - vocal_percussion - bass - alto - tenor - soprano - lead_vocal filterbank: kernel_size: 32 n_filters: 64 stride: 16 masknet: bidirectional: true chunk_size: 174 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 128 in_chan: 64 mask_act: sigmoid n_repeats: 8 n_src: 6 norm_type: gLN out_chan: 64 optim: lr: 0.005 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 1 early_stop: true epochs: 600 gradient_clipping: 5 half_lr: true loss_func: pit_sisdr ``` # Results (SI-SDR [dB]) on vocal ensemble separation | Method | Lead vocal | Soprano | Alto | Tenor | Bass |Vocal percussion| |:---------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:| | DPTNet | 8.9 | 8.5 | 11.9 | 14.9 | 19.7 | 21.9 |
Kavin0211/results
Kavin0211
2024-02-12T14:54:59Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-02-12T14:54:51Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
ddamir/boris_boy
ddamir
2024-02-12T14:51:42Z
0
0
null
[ "license:other", "region:us" ]
null
2024-02-12T14:48:48Z
--- license: other license_name: boy license_link: LICENSE ---
Shijia/furina_seed42_eng_amh_esp_roman
Shijia
2024-02-12T14:51:27Z
91
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T14:50:32Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_amh_esp_roman results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_amh_esp_roman This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0144 - Spearman Corr: 0.8461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.59 | 200 | 0.0299 | 0.6782 | | No log | 1.18 | 400 | 0.0251 | 0.7278 | | No log | 1.76 | 600 | 0.0202 | 0.7493 | | 0.0425 | 2.35 | 800 | 0.0194 | 0.7584 | | 0.0425 | 2.94 | 1000 | 0.0184 | 0.7737 | | 0.0425 | 3.53 | 1200 | 0.0189 | 0.7734 | | 0.0184 | 4.12 | 1400 | 0.0180 | 0.7906 | | 0.0184 | 4.71 | 1600 | 0.0188 | 0.7909 | | 0.0184 | 5.29 | 1800 | 0.0171 | 0.7971 | | 0.0184 | 5.88 | 2000 | 0.0165 | 0.8055 | | 0.0134 | 6.47 | 2200 | 0.0162 | 0.8059 | | 0.0134 | 7.06 | 2400 | 0.0164 | 0.8085 | | 0.0134 | 7.65 | 2600 | 0.0169 | 0.8131 | | 0.0098 | 8.24 | 2800 | 0.0169 | 0.8171 | | 0.0098 | 8.82 | 3000 | 0.0158 | 0.8169 | | 0.0098 | 9.41 | 3200 | 0.0152 | 0.8201 | | 0.0073 | 10.0 | 3400 | 0.0165 | 0.8197 | | 0.0073 | 10.59 | 3600 | 0.0150 | 0.8234 | | 0.0073 | 11.18 | 3800 | 0.0152 | 0.8284 | | 0.0073 | 11.76 | 4000 | 0.0141 | 0.8338 | | 0.0059 | 12.35 | 4200 | 0.0144 | 0.8315 | | 0.0059 | 12.94 | 4400 | 0.0147 | 0.8348 | | 0.0059 | 13.53 | 4600 | 0.0157 | 0.8327 | | 0.0049 | 14.12 | 4800 | 0.0147 | 0.8379 | | 0.0049 | 14.71 | 5000 | 0.0149 | 0.8365 | | 0.0049 | 15.29 | 5200 | 0.0142 | 0.8360 | | 0.0049 | 15.88 | 5400 | 0.0140 | 0.8409 | | 0.0042 | 16.47 | 5600 | 0.0135 | 0.8414 | | 0.0042 | 17.06 | 5800 | 0.0141 | 0.8410 | | 0.0042 | 17.65 | 6000 | 0.0144 | 0.8402 | | 0.0037 | 18.24 | 6200 | 0.0151 | 0.8435 | | 0.0037 | 18.82 | 6400 | 0.0140 | 0.8431 | | 0.0037 | 19.41 | 6600 | 0.0140 | 0.8454 | | 0.0033 | 20.0 | 6800 | 0.0136 | 0.8453 | | 0.0033 | 20.59 | 7000 | 0.0137 | 0.8446 | | 0.0033 | 21.18 | 7200 | 0.0144 | 0.8461 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Commandante/german-party-sentiment-bert-complete-synonyms-5e-5
Commandante
2024-02-12T14:45:39Z
93
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:mdraw/german-news-sentiment-bert", "base_model:finetune:mdraw/german-news-sentiment-bert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-09T02:21:11Z
--- base_model: mdraw/german-news-sentiment-bert tags: - generated_from_trainer model-index: - name: german-party-sentiment-bert-complete-synonyms-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-party-sentiment-bert-complete-synonyms-5e-5 This model is a fine-tuned version of [mdraw/german-news-sentiment-bert](https://huggingface.co/mdraw/german-news-sentiment-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 120 - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9596 | 1.0 | 70 | 0.9676 | | 0.9122 | 2.0 | 140 | 0.8769 | | 0.7382 | 3.0 | 210 | 0.9984 | | 0.5708 | 4.0 | 280 | 1.1080 | | 0.3579 | 5.0 | 350 | 1.4137 | | 0.3066 | 6.0 | 420 | 1.8204 | | 0.1716 | 7.0 | 490 | 1.8167 | | 0.1974 | 8.0 | 560 | 2.1479 | | 0.1164 | 9.0 | 630 | 2.3899 | | 0.0878 | 10.0 | 700 | 2.5266 | | 0.07 | 11.0 | 770 | 2.7014 | | 0.0604 | 12.0 | 840 | 2.7048 | | 0.0278 | 13.0 | 910 | 2.8119 | | 0.0376 | 14.0 | 980 | 2.8799 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Tokenizers 0.15.1
alitolga/electra-base-generator-rank64
alitolga
2024-02-12T14:41:55Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T14:41:00Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank64 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.2066 | 1.0 | 179 | 3.8785 | | 3.6834 | 2.0 | 358 | 3.3549 | | 3.4351 | 3.0 | 537 | 3.2951 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
sam1120/dropoff-utcustom-train-SF-RGB-b5_2
sam1120
2024-02-12T14:41:07Z
151
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:24:47Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_2 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4848 - Mean Iou: 0.4257 - Mean Accuracy: 0.7972 - Overall Accuracy: 0.9466 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.6343 - Accuracy Undropoff: 0.9601 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.3321 - Iou Undropoff: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0108 | 5.0 | 10 | 1.0721 | 0.1514 | 0.5401 | 0.4205 | nan | 0.6706 | 0.4096 | 0.0 | 0.0494 | 0.4047 | | 0.9654 | 10.0 | 20 | 0.9802 | 0.2190 | 0.6570 | 0.5944 | nan | 0.7253 | 0.5887 | 0.0 | 0.0745 | 0.5826 | | 0.9175 | 15.0 | 30 | 0.9047 | 0.2553 | 0.7350 | 0.6792 | nan | 0.7960 | 0.6741 | 0.0 | 0.0973 | 0.6686 | | 0.9052 | 20.0 | 40 | 0.8427 | 0.2812 | 0.7661 | 0.7377 | nan | 0.7971 | 0.7351 | 0.0 | 0.1146 | 0.7290 | | 0.8555 | 25.0 | 50 | 0.7970 | 0.3063 | 0.7827 | 0.7900 | nan | 0.7748 | 0.7906 | 0.0 | 0.1357 | 0.7832 | | 0.8291 | 30.0 | 60 | 0.7543 | 0.3289 | 0.7891 | 0.8332 | nan | 0.7410 | 0.8372 | 0.0 | 0.1586 | 0.8282 | | 0.7923 | 35.0 | 70 | 0.7327 | 0.3375 | 0.7961 | 0.8471 | nan | 0.7405 | 0.8517 | 0.0 | 0.1701 | 0.8425 | | 0.7724 | 40.0 | 80 | 0.6994 | 0.3529 | 0.7968 | 0.8719 | nan | 0.7149 | 0.8787 | 0.0 | 0.1906 | 0.8682 | | 0.7215 | 45.0 | 90 | 0.6675 | 0.3694 | 0.7935 | 0.8954 | nan | 0.6824 | 0.9047 | 0.0 | 0.2157 | 0.8926 | | 0.6907 | 50.0 | 100 | 0.6521 | 0.3742 | 0.7998 | 0.9000 | nan | 0.6904 | 0.9091 | 0.0 | 0.2252 | 0.8973 | | 0.6768 | 55.0 | 110 | 0.6260 | 0.3850 | 0.8022 | 0.9118 | nan | 0.6827 | 0.9217 | 0.0 | 0.2455 | 0.9094 | | 0.659 | 60.0 | 120 | 0.6010 | 0.3965 | 0.7973 | 0.9244 | nan | 0.6586 | 0.9359 | 0.0 | 0.2671 | 0.9224 | | 0.6265 | 65.0 | 130 | 0.5847 | 0.4005 | 0.7992 | 0.9276 | nan | 0.6592 | 0.9393 | 0.0 | 0.2757 | 0.9258 | | 0.6134 | 70.0 | 140 | 0.5673 | 0.4060 | 0.8022 | 0.9316 | nan | 0.6611 | 0.9433 | 0.0 | 0.2881 | 0.9297 | | 0.5864 | 75.0 | 150 | 0.5401 | 0.4132 | 0.7961 | 0.9383 | nan | 0.6410 | 0.9511 | 0.0 | 0.3029 | 0.9366 | | 0.5686 | 80.0 | 160 | 0.5289 | 0.4153 | 0.7974 | 0.9395 | nan | 0.6424 | 0.9524 | 0.0 | 0.3080 | 0.9379 | | 0.5597 | 85.0 | 170 | 0.5386 | 0.4114 | 0.8079 | 0.9350 | nan | 0.6692 | 0.9465 | 0.0 | 0.3011 | 0.9331 | | 0.5718 | 90.0 | 180 | 0.5080 | 0.4210 | 0.7947 | 0.9438 | nan | 0.6321 | 0.9573 | 0.0 | 0.3208 | 0.9423 | | 0.517 | 95.0 | 190 | 0.5026 | 0.4222 | 0.7956 | 0.9445 | nan | 0.6332 | 0.9580 | 0.0 | 0.3236 | 0.9430 | | 0.5252 | 100.0 | 200 | 0.4990 | 0.4232 | 0.7969 | 0.9450 | nan | 0.6354 | 0.9584 | 0.0 | 0.3261 | 0.9435 | | 0.5174 | 105.0 | 210 | 0.4951 | 0.4223 | 0.8012 | 0.9437 | nan | 0.6457 | 0.9567 | 0.0 | 0.3249 | 0.9422 | | 0.5217 | 110.0 | 220 | 0.4882 | 0.4238 | 0.7993 | 0.9450 | nan | 0.6404 | 0.9582 | 0.0 | 0.3280 | 0.9435 | | 0.5224 | 115.0 | 230 | 0.4846 | 0.4258 | 0.7968 | 0.9467 | nan | 0.6333 | 0.9603 | 0.0 | 0.3321 | 0.9452 | | 0.5399 | 120.0 | 240 | 0.4848 | 0.4257 | 0.7972 | 0.9466 | nan | 0.6343 | 0.9601 | 0.0 | 0.3321 | 0.9451 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGB-b5_1
sam1120
2024-02-12T14:40:35Z
147
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T14:24:17Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGB-b5_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGB-b5_1 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.6279 - Mean Iou: 0.4054 - Mean Accuracy: 0.7471 - Overall Accuracy: 0.8860 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.5956 - Accuracy Undropoff: 0.8986 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.3318 - Iou Undropoff: 0.8843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0071 | 5.0 | 10 | 1.0206 | 0.1745 | 0.2748 | 0.5034 | nan | 0.0255 | 0.5241 | 0.0 | 0.0147 | 0.5087 | | 0.9688 | 10.0 | 20 | 0.9873 | 0.2140 | 0.3486 | 0.5771 | nan | 0.0992 | 0.5979 | 0.0 | 0.0582 | 0.5838 | | 0.9406 | 15.0 | 30 | 0.9313 | 0.2613 | 0.4446 | 0.6655 | nan | 0.2038 | 0.6855 | 0.0 | 0.1135 | 0.6705 | | 0.9278 | 20.0 | 40 | 0.8851 | 0.2930 | 0.5149 | 0.7111 | nan | 0.3009 | 0.7289 | 0.0 | 0.1648 | 0.7142 | | 0.8956 | 25.0 | 50 | 0.8563 | 0.3118 | 0.5642 | 0.7358 | nan | 0.3770 | 0.7514 | 0.0 | 0.1985 | 0.7370 | | 0.8674 | 30.0 | 60 | 0.8260 | 0.3303 | 0.6086 | 0.7664 | nan | 0.4366 | 0.7807 | 0.0 | 0.2246 | 0.7664 | | 0.8438 | 35.0 | 70 | 0.8149 | 0.3347 | 0.6355 | 0.7671 | nan | 0.4921 | 0.7790 | 0.0 | 0.2381 | 0.7660 | | 0.8309 | 40.0 | 80 | 0.7881 | 0.3459 | 0.6472 | 0.7847 | nan | 0.4972 | 0.7972 | 0.0 | 0.2539 | 0.7839 | | 0.8069 | 45.0 | 90 | 0.7640 | 0.3567 | 0.6617 | 0.8041 | nan | 0.5063 | 0.8170 | 0.0 | 0.2668 | 0.8033 | | 0.7779 | 50.0 | 100 | 0.7486 | 0.3637 | 0.6792 | 0.8145 | nan | 0.5316 | 0.8268 | 0.0 | 0.2778 | 0.8132 | | 0.7695 | 55.0 | 110 | 0.7354 | 0.3684 | 0.6936 | 0.8214 | nan | 0.5542 | 0.8329 | 0.0 | 0.2858 | 0.8195 | | 0.7568 | 60.0 | 120 | 0.7164 | 0.3757 | 0.7032 | 0.8365 | nan | 0.5577 | 0.8486 | 0.0 | 0.2924 | 0.8347 | | 0.7285 | 65.0 | 130 | 0.6976 | 0.3836 | 0.7119 | 0.8484 | nan | 0.5630 | 0.8608 | 0.0 | 0.3042 | 0.8467 | | 0.7217 | 70.0 | 140 | 0.6922 | 0.3857 | 0.7217 | 0.8499 | nan | 0.5817 | 0.8616 | 0.0 | 0.3091 | 0.8480 | | 0.7095 | 75.0 | 150 | 0.6708 | 0.3926 | 0.7287 | 0.8624 | nan | 0.5828 | 0.8745 | 0.0 | 0.3172 | 0.8605 | | 0.6944 | 80.0 | 160 | 0.6637 | 0.3951 | 0.7320 | 0.8660 | nan | 0.5858 | 0.8781 | 0.0 | 0.3212 | 0.8641 | | 0.6878 | 85.0 | 170 | 0.6632 | 0.3942 | 0.7397 | 0.8673 | nan | 0.6005 | 0.8788 | 0.0 | 0.3175 | 0.8652 | | 0.6868 | 90.0 | 180 | 0.6468 | 0.3998 | 0.7391 | 0.8756 | nan | 0.5902 | 0.8880 | 0.0 | 0.3257 | 0.8739 | | 0.6581 | 95.0 | 190 | 0.6444 | 0.4003 | 0.7421 | 0.8776 | nan | 0.5942 | 0.8899 | 0.0 | 0.3249 | 0.8759 | | 0.6587 | 100.0 | 200 | 0.6383 | 0.4026 | 0.7427 | 0.8814 | nan | 0.5914 | 0.8940 | 0.0 | 0.3281 | 0.8797 | | 0.6525 | 105.0 | 210 | 0.6334 | 0.4032 | 0.7434 | 0.8825 | nan | 0.5918 | 0.8951 | 0.0 | 0.3289 | 0.8808 | | 0.658 | 110.0 | 220 | 0.6345 | 0.4026 | 0.7451 | 0.8811 | nan | 0.5968 | 0.8934 | 0.0 | 0.3285 | 0.8793 | | 0.6575 | 115.0 | 230 | 0.6300 | 0.4050 | 0.7463 | 0.8851 | nan | 0.5948 | 0.8977 | 0.0 | 0.3314 | 0.8835 | | 0.6625 | 120.0 | 240 | 0.6279 | 0.4054 | 0.7471 | 0.8860 | nan | 0.5956 | 0.8986 | 0.0 | 0.3318 | 0.8843 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
hugo-massonnat/q-FrozenLake-v1-4x4-noSlippery
hugo-massonnat
2024-02-12T14:37:02Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T14:37:00Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="hugo-massonnat/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nashirab/vit-base-beans
nashirab
2024-02-12T14:28:31Z
179
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-12T14:28:14Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.49375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2658 - Accuracy: 0.4938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.7295 | 0.25 | 10 | 2.7467 | 0.1875 | | 2.3133 | 0.5 | 20 | 2.1258 | 0.2437 | | 2.031 | 0.75 | 30 | 1.9442 | 0.3187 | | 1.8773 | 1.0 | 40 | 1.6159 | 0.375 | | 1.4132 | 1.25 | 50 | 1.5585 | 0.4188 | | 1.4581 | 1.5 | 60 | 1.5269 | 0.35 | | 1.4697 | 1.75 | 70 | 1.5535 | 0.3625 | | 1.3575 | 2.0 | 80 | 1.3056 | 0.4375 | | 1.0615 | 2.25 | 90 | 1.4774 | 0.4 | | 1.1895 | 2.5 | 100 | 1.2384 | 0.45 | | 1.0659 | 2.75 | 110 | 1.3315 | 0.4938 | | 1.1517 | 3.0 | 120 | 1.1040 | 0.575 | | 0.7957 | 3.25 | 130 | 1.3480 | 0.4375 | | 0.8037 | 3.5 | 140 | 1.2879 | 0.525 | | 1.0157 | 3.75 | 150 | 1.1900 | 0.5 | | 0.7665 | 4.0 | 160 | 1.2039 | 0.4938 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
sophiayk20/bert-finetuned-squad
sophiayk20
2024-02-12T14:24:38Z
112
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-02-12T11:32:45Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
xncy/q-FrozenLake-v1-4x4-noSlippery
xncy
2024-02-12T14:24:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T14:24:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="xncy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Guilherme34/Jennifer-uwu-version
Guilherme34
2024-02-12T14:23:35Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-12T14:23:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jaykchen/tiny
jaykchen
2024-02-12T14:20:30Z
94
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/tinyllama-bnb-4bit", "base_model:finetune:unsloth/tinyllama-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T14:19:02Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/tinyllama-bnb-4bit --- # Uploaded model - **Developed by:** jaykchen - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Shijia/furina_seed42_eng_kin_amh_roman
Shijia
2024-02-12T14:19:22Z
91
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:yihongLiu/furina", "base_model:finetune:yihongLiu/furina", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T14:18:30Z
--- base_model: yihongLiu/furina tags: - generated_from_trainer model-index: - name: furina_seed42_eng_kin_amh_roman results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # furina_seed42_eng_kin_amh_roman This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0284 - Spearman Corr: 0.7771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman Corr | |:-------------:|:-----:|:----:|:---------------:|:-------------:| | No log | 0.65 | 200 | 0.0373 | 0.5747 | | No log | 1.3 | 400 | 0.0297 | 0.6851 | | No log | 1.95 | 600 | 0.0311 | 0.7236 | | 0.0545 | 2.61 | 800 | 0.0305 | 0.7322 | | 0.0545 | 3.26 | 1000 | 0.0281 | 0.7496 | | 0.0545 | 3.91 | 1200 | 0.0278 | 0.7582 | | 0.0208 | 4.56 | 1400 | 0.0278 | 0.7528 | | 0.0208 | 5.21 | 1600 | 0.0238 | 0.7556 | | 0.0208 | 5.86 | 1800 | 0.0235 | 0.7631 | | 0.0143 | 6.51 | 2000 | 0.0245 | 0.7634 | | 0.0143 | 7.17 | 2200 | 0.0243 | 0.7619 | | 0.0143 | 7.82 | 2400 | 0.0242 | 0.7651 | | 0.0102 | 8.47 | 2600 | 0.0257 | 0.7645 | | 0.0102 | 9.12 | 2800 | 0.0271 | 0.7713 | | 0.0102 | 9.77 | 3000 | 0.0255 | 0.7661 | | 0.0079 | 10.42 | 3200 | 0.0218 | 0.7720 | | 0.0079 | 11.07 | 3400 | 0.0250 | 0.7658 | | 0.0079 | 11.73 | 3600 | 0.0266 | 0.7628 | | 0.0064 | 12.38 | 3800 | 0.0267 | 0.7657 | | 0.0064 | 13.03 | 4000 | 0.0261 | 0.7680 | | 0.0064 | 13.68 | 4200 | 0.0232 | 0.7720 | | 0.0055 | 14.33 | 4400 | 0.0256 | 0.7737 | | 0.0055 | 14.98 | 4600 | 0.0237 | 0.7736 | | 0.0055 | 15.64 | 4800 | 0.0284 | 0.7771 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Augusto777/swin-tiny-patch4-window7-224-dmae-va-U
Augusto777
2024-02-12T14:09:53Z
201
1
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:Augusto777/dmae-U", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-13T20:40:53Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-dmae-va-U results: [] datasets: - Augusto777/dmae-U --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-dmae-va-U This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an AMD dataset. It achieves the following results on the evaluation set: - Loss: 0.0900 - Accuracy: 0.9725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.9 | 7 | 1.4643 | 0.2110 | | 1.4218 | 1.94 | 15 | 1.4070 | 0.3303 | | 1.3226 | 2.97 | 23 | 1.3454 | 0.3486 | | 1.1908 | 4.0 | 31 | 1.1438 | 0.4220 | | 1.1908 | 4.9 | 38 | 0.8730 | 0.5780 | | 0.9441 | 5.94 | 46 | 0.8100 | 0.6422 | | 0.7185 | 6.97 | 54 | 0.6099 | 0.7339 | | 0.6526 | 8.0 | 62 | 0.5096 | 0.7890 | | 0.6526 | 8.9 | 69 | 0.4925 | 0.8165 | | 0.5185 | 9.94 | 77 | 0.3989 | 0.8349 | | 0.4946 | 10.97 | 85 | 0.3276 | 0.8807 | | 0.4469 | 12.0 | 93 | 0.3023 | 0.8899 | | 0.376 | 12.9 | 100 | 0.3112 | 0.8991 | | 0.376 | 13.94 | 108 | 0.2117 | 0.9266 | | 0.3156 | 14.97 | 116 | 0.2024 | 0.9174 | | 0.366 | 16.0 | 124 | 0.2065 | 0.9450 | | 0.2806 | 16.9 | 131 | 0.1942 | 0.9174 | | 0.2806 | 17.94 | 139 | 0.2393 | 0.9174 | | 0.2695 | 18.97 | 147 | 0.1498 | 0.9541 | | 0.2357 | 20.0 | 155 | 0.1465 | 0.9358 | | 0.2345 | 20.9 | 162 | 0.1522 | 0.9633 | | 0.2157 | 21.94 | 170 | 0.1403 | 0.9450 | | 0.2157 | 22.97 | 178 | 0.0999 | 0.9541 | | 0.1894 | 24.0 | 186 | 0.1427 | 0.9633 | | 0.2195 | 24.9 | 193 | 0.0949 | 0.9633 | | 0.1874 | 25.94 | 201 | 0.1152 | 0.9633 | | 0.1874 | 26.97 | 209 | 0.1226 | 0.9541 | | 0.1815 | 28.0 | 217 | 0.0964 | 0.9633 | | 0.1619 | 28.9 | 224 | 0.0912 | 0.9633 | | 0.201 | 29.94 | 232 | 0.0903 | 0.9633 | | 0.1659 | 30.97 | 240 | 0.0745 | 0.9633 | | 0.1659 | 32.0 | 248 | 0.0781 | 0.9633 | | 0.1459 | 32.9 | 255 | 0.0930 | 0.9633 | | 0.1459 | 33.94 | 263 | 0.0900 | 0.9725 | | 0.1487 | 34.97 | 271 | 0.0796 | 0.9725 | | 0.1487 | 36.0 | 279 | 0.0784 | 0.9725 | | 0.1504 | 36.13 | 280 | 0.0784 | 0.9725 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
NBA55/llama2-7B-without-diversity-epoch-10-new
NBA55
2024-02-12T14:09:12Z
0
0
peft
[ "peft", "region:us" ]
null
2024-02-12T14:09:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
alitolga/electra-base-generator-rank16
alitolga
2024-02-12T14:00:44Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T13:59:43Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank16 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.2873 | 1.0 | 179 | 3.8892 | | 3.6837 | 2.0 | 358 | 3.3411 | | 3.4127 | 3.0 | 537 | 3.2684 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
sam1120/dropoff-utcustom-train-SF-RGBD-b5_7
sam1120
2024-02-12T13:58:42Z
148
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:25:26Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_7 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1296 - Mean Iou: 0.6242 - Mean Accuracy: 0.6623 - Overall Accuracy: 0.9652 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3319 - Accuracy Undropoff: 0.9926 - Iou Unlabeled: nan - Iou Dropoff: 0.2838 - Iou Undropoff: 0.9647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.9278 | 5.0 | 10 | 0.8454 | 0.3197 | 0.5545 | 0.8788 | nan | 0.2009 | 0.9082 | 0.0 | 0.0807 | 0.8785 | | 0.5551 | 10.0 | 20 | 0.4668 | 0.3221 | 0.5042 | 0.9540 | nan | 0.0135 | 0.9948 | 0.0 | 0.0122 | 0.9540 | | 0.3667 | 15.0 | 30 | 0.3354 | 0.3218 | 0.5035 | 0.9570 | nan | 0.0088 | 0.9982 | 0.0 | 0.0085 | 0.9570 | | 0.2402 | 20.0 | 40 | 0.2678 | 0.5985 | 0.6492 | 0.9587 | nan | 0.3116 | 0.9868 | nan | 0.2388 | 0.9582 | | 0.1562 | 25.0 | 50 | 0.2101 | 0.6240 | 0.6719 | 0.9631 | nan | 0.3544 | 0.9895 | nan | 0.2854 | 0.9625 | | 0.1159 | 30.0 | 60 | 0.1704 | 0.6262 | 0.6641 | 0.9654 | nan | 0.3353 | 0.9928 | nan | 0.2875 | 0.9650 | | 0.0869 | 35.0 | 70 | 0.1443 | 0.6380 | 0.6817 | 0.9657 | nan | 0.3720 | 0.9915 | nan | 0.3108 | 0.9652 | | 0.079 | 40.0 | 80 | 0.1350 | 0.6072 | 0.6360 | 0.9654 | nan | 0.2766 | 0.9953 | nan | 0.2494 | 0.9650 | | 0.0647 | 45.0 | 90 | 0.1370 | 0.5800 | 0.6031 | 0.9643 | nan | 0.2090 | 0.9971 | nan | 0.1959 | 0.9640 | | 0.0587 | 50.0 | 100 | 0.1336 | 0.6276 | 0.6796 | 0.9628 | nan | 0.3707 | 0.9885 | nan | 0.2929 | 0.9622 | | 0.0575 | 55.0 | 110 | 0.1313 | 0.6189 | 0.6531 | 0.9654 | nan | 0.3126 | 0.9937 | nan | 0.2729 | 0.9649 | | 0.0527 | 60.0 | 120 | 0.1298 | 0.6252 | 0.6655 | 0.9648 | nan | 0.3391 | 0.9920 | nan | 0.2860 | 0.9643 | | 0.0491 | 65.0 | 130 | 0.1313 | 0.6110 | 0.6492 | 0.9635 | nan | 0.3063 | 0.9920 | nan | 0.2589 | 0.9631 | | 0.0441 | 70.0 | 140 | 0.1295 | 0.6103 | 0.6429 | 0.9648 | nan | 0.2919 | 0.9939 | nan | 0.2562 | 0.9643 | | 0.0426 | 75.0 | 150 | 0.1233 | 0.6271 | 0.6633 | 0.9659 | nan | 0.3333 | 0.9933 | nan | 0.2887 | 0.9654 | | 0.0477 | 80.0 | 160 | 0.1286 | 0.6255 | 0.6629 | 0.9655 | nan | 0.3328 | 0.9929 | nan | 0.2861 | 0.9650 | | 0.039 | 85.0 | 170 | 0.1265 | 0.6380 | 0.6824 | 0.9656 | nan | 0.3735 | 0.9913 | nan | 0.3109 | 0.9650 | | 0.0378 | 90.0 | 180 | 0.1309 | 0.6185 | 0.6543 | 0.9650 | nan | 0.3154 | 0.9932 | nan | 0.2725 | 0.9645 | | 0.0362 | 95.0 | 190 | 0.1266 | 0.6311 | 0.6715 | 0.9655 | nan | 0.3508 | 0.9922 | nan | 0.2973 | 0.9650 | | 0.0394 | 100.0 | 200 | 0.1307 | 0.6274 | 0.6635 | 0.9659 | nan | 0.3337 | 0.9934 | nan | 0.2894 | 0.9655 | | 0.0362 | 105.0 | 210 | 0.1271 | 0.6366 | 0.6789 | 0.9658 | nan | 0.3661 | 0.9918 | nan | 0.3080 | 0.9653 | | 0.0361 | 110.0 | 220 | 0.1274 | 0.6317 | 0.6736 | 0.9653 | nan | 0.3554 | 0.9918 | nan | 0.2987 | 0.9648 | | 0.0353 | 115.0 | 230 | 0.1290 | 0.6216 | 0.6579 | 0.9652 | nan | 0.3228 | 0.9931 | nan | 0.2784 | 0.9647 | | 0.0344 | 120.0 | 240 | 0.1296 | 0.6242 | 0.6623 | 0.9652 | nan | 0.3319 | 0.9926 | nan | 0.2838 | 0.9647 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b5_6
sam1120
2024-02-12T13:58:06Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:25:25Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_6 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.1429 - Mean Iou: 0.6443 - Mean Accuracy: 0.6853 - Overall Accuracy: 0.9669 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3782 - Accuracy Undropoff: 0.9925 - Iou Unlabeled: nan - Iou Dropoff: 0.3223 - Iou Undropoff: 0.9664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.159 | 5.0 | 10 | 1.0040 | 0.2283 | 0.5676 | 0.6267 | nan | 0.5031 | 0.6321 | 0.0 | 0.0644 | 0.6203 | | 0.8345 | 10.0 | 20 | 0.7480 | 0.3236 | 0.5320 | 0.9158 | nan | 0.1134 | 0.9506 | 0.0 | 0.0555 | 0.9154 | | 0.5406 | 15.0 | 30 | 0.5477 | 0.3223 | 0.5049 | 0.9513 | nan | 0.0179 | 0.9918 | 0.0 | 0.0157 | 0.9513 | | 0.3695 | 20.0 | 40 | 0.4590 | 0.3215 | 0.5036 | 0.9519 | nan | 0.0146 | 0.9926 | 0.0 | 0.0125 | 0.9519 | | 0.3053 | 25.0 | 50 | 0.3790 | 0.3196 | 0.5001 | 0.9565 | nan | 0.0023 | 0.9979 | 0.0 | 0.0022 | 0.9565 | | 0.2436 | 30.0 | 60 | 0.3303 | 0.4812 | 0.5020 | 0.9568 | nan | 0.0059 | 0.9981 | nan | 0.0056 | 0.9568 | | 0.2148 | 35.0 | 70 | 0.2739 | 0.4794 | 0.5002 | 0.9580 | nan | 0.0008 | 0.9996 | nan | 0.0008 | 0.9580 | | 0.1983 | 40.0 | 80 | 0.2348 | 0.5079 | 0.5284 | 0.9595 | nan | 0.0582 | 0.9986 | nan | 0.0564 | 0.9594 | | 0.1784 | 45.0 | 90 | 0.2178 | 0.6064 | 0.6440 | 0.9631 | nan | 0.2960 | 0.9920 | nan | 0.2501 | 0.9626 | | 0.1631 | 50.0 | 100 | 0.1943 | 0.6223 | 0.6811 | 0.9607 | nan | 0.3760 | 0.9861 | nan | 0.2846 | 0.9601 | | 0.1468 | 55.0 | 110 | 0.1759 | 0.6206 | 0.6731 | 0.9617 | nan | 0.3583 | 0.9879 | nan | 0.2801 | 0.9611 | | 0.1353 | 60.0 | 120 | 0.1657 | 0.6014 | 0.6335 | 0.9639 | nan | 0.2731 | 0.9939 | nan | 0.2393 | 0.9635 | | 0.1474 | 65.0 | 130 | 0.1590 | 0.5943 | 0.6228 | 0.9641 | nan | 0.2505 | 0.9951 | nan | 0.2249 | 0.9637 | | 0.1172 | 70.0 | 140 | 0.1562 | 0.6272 | 0.6662 | 0.9653 | nan | 0.3400 | 0.9924 | nan | 0.2896 | 0.9648 | | 0.1169 | 75.0 | 150 | 0.1538 | 0.6302 | 0.6696 | 0.9656 | nan | 0.3467 | 0.9925 | nan | 0.2954 | 0.9651 | | 0.1263 | 80.0 | 160 | 0.1540 | 0.6372 | 0.6784 | 0.9661 | nan | 0.3645 | 0.9922 | nan | 0.3089 | 0.9656 | | 0.1028 | 85.0 | 170 | 0.1512 | 0.6462 | 0.6948 | 0.9659 | nan | 0.3992 | 0.9904 | nan | 0.3271 | 0.9653 | | 0.1163 | 90.0 | 180 | 0.1493 | 0.6469 | 0.6932 | 0.9663 | nan | 0.3953 | 0.9911 | nan | 0.3280 | 0.9658 | | 0.0998 | 95.0 | 190 | 0.1481 | 0.6457 | 0.6894 | 0.9666 | nan | 0.3869 | 0.9918 | nan | 0.3253 | 0.9661 | | 0.0997 | 100.0 | 200 | 0.1465 | 0.6454 | 0.6893 | 0.9665 | nan | 0.3869 | 0.9917 | nan | 0.3247 | 0.9660 | | 0.0998 | 105.0 | 210 | 0.1473 | 0.6488 | 0.6937 | 0.9668 | nan | 0.3958 | 0.9916 | nan | 0.3313 | 0.9662 | | 0.1003 | 110.0 | 220 | 0.1437 | 0.6401 | 0.6774 | 0.9671 | nan | 0.3614 | 0.9934 | nan | 0.3136 | 0.9666 | | 0.0932 | 115.0 | 230 | 0.1434 | 0.6469 | 0.6898 | 0.9669 | nan | 0.3876 | 0.9920 | nan | 0.3275 | 0.9664 | | 0.0942 | 120.0 | 240 | 0.1429 | 0.6443 | 0.6853 | 0.9669 | nan | 0.3782 | 0.9925 | nan | 0.3223 | 0.9664 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b5_4
sam1120
2024-02-12T13:56:36Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:24:40Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_4 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2351 - Mean Iou: 0.4792 - Mean Accuracy: 0.5 - Overall Accuracy: 0.9584 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0 - Accuracy Undropoff: 1.0 - Iou Unlabeled: nan - Iou Dropoff: 0.0 - Iou Undropoff: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0114 | 5.0 | 10 | 1.0037 | 0.2459 | 0.4345 | 0.7074 | nan | 0.1368 | 0.7322 | 0.0 | 0.0286 | 0.7089 | | 0.9088 | 10.0 | 20 | 0.8245 | 0.3119 | 0.5046 | 0.8887 | nan | 0.0857 | 0.9235 | 0.0 | 0.0460 | 0.8897 | | 0.8029 | 15.0 | 30 | 0.6620 | 0.3157 | 0.4998 | 0.9214 | nan | 0.0399 | 0.9596 | 0.0 | 0.0253 | 0.9219 | | 0.6935 | 20.0 | 40 | 0.5662 | 0.3154 | 0.4959 | 0.9309 | nan | 0.0214 | 0.9704 | 0.0 | 0.0151 | 0.9311 | | 0.635 | 25.0 | 50 | 0.5018 | 0.3175 | 0.4978 | 0.9401 | nan | 0.0153 | 0.9803 | 0.0 | 0.0121 | 0.9404 | | 0.5579 | 30.0 | 60 | 0.4701 | 0.3178 | 0.4978 | 0.9422 | nan | 0.0131 | 0.9825 | 0.0 | 0.0111 | 0.9423 | | 0.5086 | 35.0 | 70 | 0.4403 | 0.3181 | 0.4977 | 0.9459 | nan | 0.0088 | 0.9866 | 0.0 | 0.0080 | 0.9461 | | 0.472 | 40.0 | 80 | 0.4328 | 0.3177 | 0.4971 | 0.9471 | nan | 0.0063 | 0.9879 | 0.0 | 0.0059 | 0.9473 | | 0.4484 | 45.0 | 90 | 0.4136 | 0.3184 | 0.4981 | 0.9506 | nan | 0.0046 | 0.9916 | 0.0 | 0.0044 | 0.9508 | | 0.4026 | 50.0 | 100 | 0.4013 | 0.3186 | 0.4985 | 0.9516 | nan | 0.0043 | 0.9926 | 0.0 | 0.0042 | 0.9517 | | 0.3873 | 55.0 | 110 | 0.3621 | 0.3189 | 0.4991 | 0.9557 | nan | 0.0010 | 0.9971 | 0.0 | 0.0009 | 0.9557 | | 0.3549 | 60.0 | 120 | 0.3479 | 0.3189 | 0.4992 | 0.9564 | nan | 0.0004 | 0.9979 | 0.0 | 0.0004 | 0.9564 | | 0.3358 | 65.0 | 130 | 0.3282 | 0.3191 | 0.4994 | 0.9571 | nan | 0.0001 | 0.9986 | 0.0 | 0.0001 | 0.9571 | | 0.3146 | 70.0 | 140 | 0.3141 | 0.3193 | 0.4996 | 0.9577 | nan | 0.0000 | 0.9993 | 0.0 | 0.0000 | 0.9577 | | 0.3116 | 75.0 | 150 | 0.2941 | 0.3194 | 0.4999 | 0.9582 | nan | 0.0 | 0.9998 | 0.0 | 0.0 | 0.9582 | | 0.3151 | 80.0 | 160 | 0.2809 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 0.9999 | 0.0 | 0.0 | 0.9584 | | 0.2778 | 85.0 | 170 | 0.2750 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 1.0000 | 0.0 | 0.0 | 0.9584 | | 0.2753 | 90.0 | 180 | 0.2615 | 0.3195 | 0.5000 | 0.9584 | nan | 0.0 | 1.0000 | 0.0 | 0.0 | 0.9584 | | 0.2809 | 95.0 | 190 | 0.2547 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2606 | 100.0 | 200 | 0.2464 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2563 | 105.0 | 210 | 0.2459 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2454 | 110.0 | 220 | 0.2393 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2707 | 115.0 | 230 | 0.2368 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | | 0.2433 | 120.0 | 240 | 0.2351 | 0.4792 | 0.5 | 0.9584 | nan | 0.0 | 1.0 | nan | 0.0 | 0.9584 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b5_1
sam1120
2024-02-12T13:42:04Z
147
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:23:03Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_1 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.3428 - Mean Iou: 0.4792 - Mean Accuracy: 0.5000 - Overall Accuracy: 0.9583 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0001 - Accuracy Undropoff: 0.9999 - Iou Unlabeled: nan - Iou Dropoff: 0.0001 - Iou Undropoff: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.8047 | 5.0 | 10 | 0.9867 | 0.2744 | 0.6315 | 0.7475 | nan | 0.5049 | 0.7581 | 0.0 | 0.0812 | 0.7422 | | 0.7528 | 10.0 | 20 | 0.8526 | 0.3461 | 0.5957 | 0.9213 | nan | 0.2406 | 0.9508 | 0.0 | 0.1178 | 0.9205 | | 0.7087 | 15.0 | 30 | 0.7023 | 0.3450 | 0.5533 | 0.9467 | nan | 0.1243 | 0.9824 | 0.0 | 0.0887 | 0.9464 | | 0.6601 | 20.0 | 40 | 0.6251 | 0.3381 | 0.5390 | 0.9462 | nan | 0.0948 | 0.9832 | 0.0 | 0.0684 | 0.9460 | | 0.6274 | 25.0 | 50 | 0.5828 | 0.3286 | 0.5178 | 0.9486 | nan | 0.0479 | 0.9876 | 0.0 | 0.0374 | 0.9485 | | 0.5929 | 30.0 | 60 | 0.5478 | 0.3257 | 0.5122 | 0.9488 | nan | 0.0359 | 0.9884 | 0.0 | 0.0284 | 0.9487 | | 0.5672 | 35.0 | 70 | 0.5237 | 0.3240 | 0.5088 | 0.9494 | nan | 0.0283 | 0.9893 | 0.0 | 0.0227 | 0.9493 | | 0.5454 | 40.0 | 80 | 0.4966 | 0.4856 | 0.5072 | 0.9529 | nan | 0.0212 | 0.9933 | nan | 0.0183 | 0.9528 | | 0.5261 | 45.0 | 90 | 0.4700 | 0.3234 | 0.5062 | 0.9553 | nan | 0.0163 | 0.9960 | 0.0 | 0.0149 | 0.9552 | | 0.5012 | 50.0 | 100 | 0.4576 | 0.4832 | 0.5041 | 0.9563 | nan | 0.0107 | 0.9974 | nan | 0.0101 | 0.9563 | | 0.4875 | 55.0 | 110 | 0.4430 | 0.4811 | 0.5018 | 0.9566 | nan | 0.0058 | 0.9978 | nan | 0.0056 | 0.9565 | | 0.4622 | 60.0 | 120 | 0.4328 | 0.4800 | 0.5007 | 0.9570 | nan | 0.0031 | 0.9983 | nan | 0.0030 | 0.9570 | | 0.4394 | 65.0 | 130 | 0.4179 | 0.4796 | 0.5004 | 0.9572 | nan | 0.0021 | 0.9986 | nan | 0.0021 | 0.9572 | | 0.4352 | 70.0 | 140 | 0.4048 | 0.4795 | 0.5002 | 0.9573 | nan | 0.0016 | 0.9988 | nan | 0.0016 | 0.9573 | | 0.426 | 75.0 | 150 | 0.3881 | 0.4796 | 0.5003 | 0.9577 | nan | 0.0015 | 0.9992 | nan | 0.0014 | 0.9577 | | 0.4175 | 80.0 | 160 | 0.3794 | 0.4797 | 0.5004 | 0.9579 | nan | 0.0014 | 0.9994 | nan | 0.0014 | 0.9579 | | 0.4087 | 85.0 | 170 | 0.3742 | 0.3196 | 0.5002 | 0.9577 | nan | 0.0012 | 0.9992 | 0.0 | 0.0012 | 0.9577 | | 0.3887 | 90.0 | 180 | 0.3645 | 0.4792 | 0.4999 | 0.9581 | nan | 0.0003 | 0.9996 | nan | 0.0003 | 0.9581 | | 0.3799 | 95.0 | 190 | 0.3540 | 0.4791 | 0.4999 | 0.9581 | nan | 0.0001 | 0.9997 | nan | 0.0001 | 0.9581 | | 0.376 | 100.0 | 200 | 0.3511 | 0.4792 | 0.4999 | 0.9582 | nan | 0.0001 | 0.9998 | nan | 0.0001 | 0.9582 | | 0.3677 | 105.0 | 210 | 0.3452 | 0.4792 | 0.4999 | 0.9582 | nan | 0.0001 | 0.9998 | nan | 0.0001 | 0.9582 | | 0.358 | 110.0 | 220 | 0.3437 | 0.4792 | 0.4999 | 0.9582 | nan | 0.0001 | 0.9998 | nan | 0.0001 | 0.9582 | | 0.3997 | 115.0 | 230 | 0.3434 | 0.4792 | 0.5000 | 0.9583 | nan | 0.0001 | 0.9999 | nan | 0.0001 | 0.9583 | | 0.3769 | 120.0 | 240 | 0.3428 | 0.4792 | 0.5000 | 0.9583 | nan | 0.0001 | 0.9999 | nan | 0.0001 | 0.9583 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
alitolga/electra-base-generator-rank8
alitolga
2024-02-12T13:41:55Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T13:41:17Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank8 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.2296 | 1.0 | 179 | 3.8171 | | 3.6406 | 2.0 | 358 | 3.3218 | | 3.395 | 3.0 | 537 | 3.2562 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
sam1120/dropoff-utcustom-train-SF-RGBD-b5_3
sam1120
2024-02-12T13:40:47Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T13:23:45Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b5_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b5_3 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2768 - Mean Iou: 0.3194 - Mean Accuracy: 0.4999 - Overall Accuracy: 0.9578 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0006 - Accuracy Undropoff: 0.9993 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.0006 - Iou Undropoff: 0.9578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 15 - eval_batch_size: 15 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0992 | 5.0 | 10 | 1.0599 | 0.1938 | 0.4241 | 0.5281 | nan | 0.3106 | 0.5376 | 0.0 | 0.0540 | 0.5273 | | 1.0188 | 10.0 | 20 | 0.9493 | 0.2781 | 0.4808 | 0.7846 | nan | 0.1494 | 0.8122 | 0.0 | 0.0476 | 0.7868 | | 0.9218 | 15.0 | 30 | 0.8130 | 0.3074 | 0.4913 | 0.8851 | nan | 0.0618 | 0.9209 | 0.0 | 0.0364 | 0.8858 | | 0.8411 | 20.0 | 40 | 0.7253 | 0.3089 | 0.4866 | 0.9038 | nan | 0.0315 | 0.9416 | 0.0 | 0.0221 | 0.9047 | | 0.7583 | 25.0 | 50 | 0.6719 | 0.3097 | 0.4890 | 0.9069 | nan | 0.0331 | 0.9448 | 0.0 | 0.0216 | 0.9076 | | 0.688 | 30.0 | 60 | 0.6303 | 0.3109 | 0.4883 | 0.9170 | nan | 0.0207 | 0.9559 | 0.0 | 0.0149 | 0.9179 | | 0.6279 | 35.0 | 70 | 0.5919 | 0.3139 | 0.4918 | 0.9276 | nan | 0.0164 | 0.9671 | 0.0 | 0.0133 | 0.9283 | | 0.5533 | 40.0 | 80 | 0.5375 | 0.3168 | 0.4961 | 0.9377 | nan | 0.0144 | 0.9777 | 0.0 | 0.0125 | 0.9380 | | 0.5116 | 45.0 | 90 | 0.5111 | 0.3176 | 0.4970 | 0.9442 | nan | 0.0093 | 0.9847 | 0.0 | 0.0083 | 0.9445 | | 0.4801 | 50.0 | 100 | 0.4696 | 0.3183 | 0.4981 | 0.9492 | nan | 0.0062 | 0.9901 | 0.0 | 0.0057 | 0.9492 | | 0.4744 | 55.0 | 110 | 0.4317 | 0.3187 | 0.4987 | 0.9543 | nan | 0.0018 | 0.9956 | 0.0 | 0.0017 | 0.9543 | | 0.4494 | 60.0 | 120 | 0.3991 | 0.3189 | 0.4991 | 0.9555 | nan | 0.0013 | 0.9969 | 0.0 | 0.0012 | 0.9555 | | 0.386 | 65.0 | 130 | 0.3737 | 0.3189 | 0.4990 | 0.9565 | nan | 0.0000 | 0.9980 | 0.0 | 0.0000 | 0.9565 | | 0.3674 | 70.0 | 140 | 0.3538 | 0.3191 | 0.4994 | 0.9567 | nan | 0.0007 | 0.9981 | 0.0 | 0.0007 | 0.9567 | | 0.3601 | 75.0 | 150 | 0.3413 | 0.3192 | 0.4995 | 0.9573 | nan | 0.0002 | 0.9988 | 0.0 | 0.0002 | 0.9573 | | 0.3626 | 80.0 | 160 | 0.3225 | 0.3193 | 0.4996 | 0.9569 | nan | 0.0009 | 0.9984 | 0.0 | 0.0009 | 0.9569 | | 0.3331 | 85.0 | 170 | 0.3163 | 0.3195 | 0.5000 | 0.9576 | nan | 0.0009 | 0.9991 | 0.0 | 0.0009 | 0.9576 | | 0.319 | 90.0 | 180 | 0.3004 | 0.3200 | 0.5008 | 0.9577 | nan | 0.0024 | 0.9991 | 0.0 | 0.0024 | 0.9577 | | 0.3163 | 95.0 | 190 | 0.2931 | 0.3198 | 0.5004 | 0.9575 | nan | 0.0020 | 0.9989 | 0.0 | 0.0020 | 0.9575 | | 0.3185 | 100.0 | 200 | 0.2920 | 0.3194 | 0.4999 | 0.9577 | nan | 0.0006 | 0.9992 | 0.0 | 0.0006 | 0.9577 | | 0.3122 | 105.0 | 210 | 0.2831 | 0.3194 | 0.4999 | 0.9578 | nan | 0.0005 | 0.9994 | 0.0 | 0.0005 | 0.9578 | | 0.3218 | 110.0 | 220 | 0.2788 | 0.3195 | 0.5000 | 0.9576 | nan | 0.0009 | 0.9991 | 0.0 | 0.0009 | 0.9576 | | 0.3037 | 115.0 | 230 | 0.2752 | 0.3194 | 0.4999 | 0.9577 | nan | 0.0006 | 0.9992 | 0.0 | 0.0006 | 0.9577 | | 0.3319 | 120.0 | 240 | 0.2768 | 0.3194 | 0.4999 | 0.9578 | nan | 0.0006 | 0.9993 | 0.0 | 0.0006 | 0.9578 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
yemen2016/MeMo-BERT-WSD_old
yemen2016
2024-02-12T13:40:04Z
48
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "da", "base_model:MiMe-MeMo/MeMo-BERT-01", "base_model:finetune:MiMe-MeMo/MeMo-BERT-01", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-09T12:37:02Z
--- base_model: MiMe-MeMo/MeMo-BERT-01 tags: - generated_from_trainer model-index: - name: new_memo_model results: [] language: da # <-- my language widget: - text: "Men havde Gud vendt sig fra ham , saa kunde han ogsaa vende sig fra Gud . Havde Gud ingen Øren , saa havde han heller ingen Læber , havde Gud ingen Naade , saa havde han heller ingen Tilbedelse , og han trodsede og viste Gud ud af sit Hjærte ." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MeMo Model (Word Sense Disambiguation) This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-01](https://huggingface.co/MiMe-MeMo/MeMo-BERT-01) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7214 - F1-score: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 11 | 0.7214 | 0.6667 | | No log | 2.0 | 22 | 1.2543 | 0.5429 | | No log | 3.0 | 33 | 1.0829 | 0.6837 | | No log | 4.0 | 44 | 1.3815 | 0.7552 | | No log | 5.0 | 55 | 1.4733 | 0.7005 | | No log | 6.0 | 66 | 2.3876 | 0.5513 | | No log | 7.0 | 77 | 1.3215 | 0.8004 | | No log | 8.0 | 88 | 1.4006 | 0.7608 | | No log | 9.0 | 99 | 1.4862 | 0.7608 | | No log | 10.0 | 110 | 1.4974 | 0.7608 | | No log | 11.0 | 121 | 1.4966 | 0.7608 | | No log | 12.0 | 132 | 1.5040 | 0.7608 | | No log | 13.0 | 143 | 1.5010 | 0.7608 | | No log | 14.0 | 154 | 1.4741 | 0.7608 | | No log | 15.0 | 165 | 1.4507 | 0.7608 | | No log | 16.0 | 176 | 1.4420 | 0.7608 | | No log | 17.0 | 187 | 1.4398 | 0.7608 | | No log | 18.0 | 198 | 1.4426 | 0.7608 | | No log | 19.0 | 209 | 1.4438 | 0.7608 | | No log | 20.0 | 220 | 1.4439 | 0.7608 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
Deadwalker0/phitune
Deadwalker0
2024-02-12T13:38:06Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "phi", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
2024-02-12T13:30:14Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-1_5 model-index: - name: phi-sft-out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: microsoft/phi-1_5 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: garage-bAInd/Open-Platypus type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./phi-sft-out sequence_len: 2048 sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_torch adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.000003 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: True early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: pad_token: "<|endoftext|>" ``` </details><br> # phi-sft-out This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0668 | 0.0 | 1 | 1.2826 | | 0.9408 | 0.25 | 580 | 1.2613 | | 1.2121 | 0.5 | 1160 | 1.2559 | | 0.9644 | 0.75 | 1740 | 1.2562 | | 0.9582 | 1.0 | 2320 | 1.2556 | | 1.0009 | 1.23 | 2900 | 1.2559 | | 0.7816 | 1.48 | 3480 | 1.2556 | | 0.9843 | 1.73 | 4060 | 1.2552 | | 0.8877 | 1.98 | 4640 | 1.2559 | | 0.8498 | 2.21 | 5220 | 1.2554 | | 0.9163 | 2.46 | 5800 | 1.2550 | | 1.0539 | 2.71 | 6380 | 1.2545 | | 0.9533 | 2.96 | 6960 | 1.2547 | | 0.6969 | 3.19 | 7540 | 1.2547 | | 0.6204 | 3.44 | 8120 | 1.2547 | | 0.891 | 3.69 | 8700 | 1.2548 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0
ramsi-k/Reinforce-PixelCopter_64
ramsi-k
2024-02-12T13:36:38Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T13:36:09Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter_64 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.00 +/- 41.93 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
hugo-massonnat/ppo-Huggy
hugo-massonnat
2024-02-12T13:35:12Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-02-12T13:35:03Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: hugo-massonnat/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
alitolga/electra-base-generator-rank2
alitolga
2024-02-12T13:31:54Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:google/electra-base-generator", "base_model:finetune:google/electra-base-generator", "license:apache-2.0", "region:us" ]
null
2024-02-12T13:25:46Z
--- license: apache-2.0 base_model: google/electra-base-generator tags: - generated_from_trainer model-index: - name: electra-base-generator-rank2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-generator-rank2 This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.206 | 1.0 | 179 | 3.8146 | | 3.5779 | 2.0 | 358 | 3.2736 | | 3.3568 | 3.0 | 537 | 3.2155 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
eren23/sd15-FantasyMix-filmGrain-segmoe
eren23
2024-02-12T13:31:44Z
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "segmoe", "merge", "moe", "sd1.5", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-12T13:17:43Z
--- library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - segmoe - merge - moe - sd1.5 --- This model is a segmoe merge of 2 models from civitAI: https://civitai.com/models/234898/vixons-fantasy-mix https://civitai.com/models/43977?modelVersionId=113623 Merged using the great project at: https://github.com/segmind/segmoe To do something similar you can either follow the guide in readme or you can follow this blogpost: https://huggingface.co/blog/segmoe The setting I used: base_model: https://civitai.com/api/download/models/306781 num_experts: 4 moe_layers: all num_experts_per_tok: 2 type: sd experts: - source_model: https://civitai.com/api/download/models/306781 positive_prompt: "cinematic, portrait, photograph, instagram, fashion, movie, macro shot, 8K, RAW, fantastic, ultra high quality" negative_prompt: " (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck" - source_model: https://civitai.com/api/download/models/113623 positive_prompt: "photo realistic scenes, fantastic view, impressive view, movie scene, 8K, RAW, hyperrealistic, ultra realistic" negative_prompt: "simple background, duplicate, retro style, low quality, lowest quality, 1980s, 1990s, 2000s, 2005 2006 2007 2008 2009 2010 2011 2012 2013, bad anatomy, bad proportions, extra digits, lowres, username, artist name, error, duplicate, watermark, signature, text, extra digit, fewer digits, worst quality, jpeg artifacts, blurry" # Useage !pip install -U segmoe diffusers transformers from segmoe import SegMoEPipeline pipeline = SegMoEPipeline("eren23/sd15-FantasyMix-filmGrain-segmoe", device="cuda") prompt = "fantastic land canvas, knight cat standing next to a purple medieval village wall" negative_prompt = "nsfw, bad quality, worse quality" img = pipeline( prompt=prompt, negative_prompt=negative_prompt, height=512, width=512, num_inference_steps=30, guidance_scale=7.5, ).images[0] img.save("image.png")
Annikaijak/bert_classification
Annikaijak
2024-02-12T13:31:36Z
93
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:31:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hweemiin/ppo-LunarLander-v2
hweemiin
2024-02-12T13:31:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T13:31:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 214.81 +/- 68.51 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
davmel/ka_word2vec
davmel
2024-02-12T13:31:29Z
0
0
null
[ "ka", "license:mit", "region:us" ]
null
2024-02-12T13:23:58Z
--- license: mit language: - ka --- This is a word2vec model trained on CC100 Georgian dataset.
Camillahannesbo/Camillas_bert_model
Camillahannesbo
2024-02-12T13:27:32Z
94
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-12T13:26:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shruthi-S/bertbase-ten
Shruthi-S
2024-02-12T13:19:04Z
45
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2024-02-12T13:18:41Z
--- tags: - generated_from_keras_callback model-index: - name: bertbase-ten results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bertbase-ten This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.1691 - Validation Loss: 8.0864 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.1691 | 8.0864 | 0 | ### Framework versions - Transformers 4.38.0.dev0 - TensorFlow 2.15.0 - Datasets 2.17.0 - Tokenizers 0.15.1
Ostfriese/q-taxi
Ostfriese
2024-02-12T13:08:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T12:54:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Ostfriese/q-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
y-oguchi/codeparrot-ds
y-oguchi
2024-02-12T13:05:37Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-12T10:39:30Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 96 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 768 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
alitolga/deberta-v3-base-rank8
alitolga
2024-02-12T13:04:41Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "region:us" ]
null
2024-02-12T13:01:18Z
--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-v3-base-rank8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-rank8 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 13.9313 | 1.0 | 179 | 8.8102 | | 7.5134 | 2.0 | 358 | 5.4105 | | 5.566 | 3.0 | 537 | 4.8366 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
sam1120/dropoff-utcustom-train-SF-RGBD-b0_7
sam1120
2024-02-12T13:01:30Z
147
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:53:02Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_7 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.2075 - Mean Iou: 0.6372 - Mean Accuracy: 0.6861 - Overall Accuracy: 0.9647 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3822 - Accuracy Undropoff: 0.9900 - Iou Unlabeled: nan - Iou Dropoff: 0.3104 - Iou Undropoff: 0.9641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 0.9508 | 5.0 | 10 | 1.0263 | 0.3104 | 0.5474 | 0.8717 | nan | 0.1937 | 0.9011 | 0.0 | 0.0605 | 0.8706 | | 0.7814 | 10.0 | 20 | 0.7568 | 0.4971 | 0.5339 | 0.9361 | nan | 0.0952 | 0.9726 | nan | 0.0584 | 0.9359 | | 0.642 | 15.0 | 30 | 0.5907 | 0.5134 | 0.5443 | 0.9494 | nan | 0.1026 | 0.9861 | nan | 0.0777 | 0.9492 | | 0.5118 | 20.0 | 40 | 0.4804 | 0.3658 | 0.5923 | 0.9513 | nan | 0.2006 | 0.9839 | 0.0 | 0.1464 | 0.9509 | | 0.4581 | 25.0 | 50 | 0.4405 | 0.3715 | 0.5915 | 0.9569 | nan | 0.1930 | 0.9900 | 0.0 | 0.1578 | 0.9565 | | 0.4213 | 30.0 | 60 | 0.4146 | 0.3828 | 0.6136 | 0.9580 | nan | 0.2379 | 0.9892 | 0.0 | 0.1910 | 0.9575 | | 0.3571 | 35.0 | 70 | 0.3750 | 0.3846 | 0.6180 | 0.9578 | nan | 0.2474 | 0.9887 | 0.0 | 0.1963 | 0.9574 | | 0.3205 | 40.0 | 80 | 0.3478 | 0.5777 | 0.6202 | 0.9576 | nan | 0.2522 | 0.9882 | nan | 0.1982 | 0.9571 | | 0.3114 | 45.0 | 90 | 0.3461 | 0.3895 | 0.6423 | 0.9541 | nan | 0.3022 | 0.9824 | 0.0 | 0.2150 | 0.9535 | | 0.2747 | 50.0 | 100 | 0.3253 | 0.5875 | 0.6357 | 0.9575 | nan | 0.2847 | 0.9867 | nan | 0.2180 | 0.9570 | | 0.2593 | 55.0 | 110 | 0.3083 | 0.5967 | 0.6599 | 0.9552 | nan | 0.3377 | 0.9820 | nan | 0.2387 | 0.9546 | | 0.2293 | 60.0 | 120 | 0.2762 | 0.5966 | 0.6389 | 0.9606 | nan | 0.2880 | 0.9898 | nan | 0.2331 | 0.9601 | | 0.2306 | 65.0 | 130 | 0.2655 | 0.6016 | 0.6587 | 0.9577 | nan | 0.3326 | 0.9848 | nan | 0.2462 | 0.9571 | | 0.2118 | 70.0 | 140 | 0.2446 | 0.6039 | 0.6509 | 0.9605 | nan | 0.3133 | 0.9886 | nan | 0.2479 | 0.9600 | | 0.2038 | 75.0 | 150 | 0.2395 | 0.6164 | 0.6708 | 0.9607 | nan | 0.3547 | 0.9870 | nan | 0.2727 | 0.9601 | | 0.1895 | 80.0 | 160 | 0.2196 | 0.6254 | 0.6721 | 0.9636 | nan | 0.3542 | 0.9900 | nan | 0.2878 | 0.9630 | | 0.1681 | 85.0 | 170 | 0.2176 | 0.6302 | 0.6829 | 0.9630 | nan | 0.3773 | 0.9884 | nan | 0.2979 | 0.9624 | | 0.1612 | 90.0 | 180 | 0.2175 | 0.6334 | 0.6870 | 0.9633 | nan | 0.3857 | 0.9884 | nan | 0.3042 | 0.9627 | | 0.1545 | 95.0 | 190 | 0.2140 | 0.6337 | 0.6816 | 0.9644 | nan | 0.3732 | 0.9900 | nan | 0.3035 | 0.9638 | | 0.1551 | 100.0 | 200 | 0.2134 | 0.6357 | 0.6891 | 0.9637 | nan | 0.3896 | 0.9886 | nan | 0.3083 | 0.9631 | | 0.1508 | 105.0 | 210 | 0.2090 | 0.6359 | 0.6865 | 0.9642 | nan | 0.3837 | 0.9894 | nan | 0.3083 | 0.9636 | | 0.1536 | 110.0 | 220 | 0.2057 | 0.6346 | 0.6801 | 0.9650 | nan | 0.3694 | 0.9908 | nan | 0.3048 | 0.9644 | | 0.1392 | 115.0 | 230 | 0.2083 | 0.6387 | 0.6890 | 0.9646 | nan | 0.3883 | 0.9896 | nan | 0.3133 | 0.9640 | | 0.1446 | 120.0 | 240 | 0.2075 | 0.6372 | 0.6861 | 0.9647 | nan | 0.3822 | 0.9900 | nan | 0.3104 | 0.9641 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_3
sam1120
2024-02-12T13:01:18Z
146
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:47Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_3 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.3666 - Mean Iou: 0.6400 - Mean Accuracy: 0.7120 - Overall Accuracy: 0.9610 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.4404 - Accuracy Undropoff: 0.9836 - Iou Unlabeled: nan - Iou Dropoff: 0.3196 - Iou Undropoff: 0.9603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0352 | 5.0 | 10 | 1.0676 | 0.2560 | 0.5776 | 0.7142 | nan | 0.4286 | 0.7266 | 0.0 | 0.0589 | 0.7090 | | 0.9564 | 10.0 | 20 | 0.9743 | 0.3355 | 0.5576 | 0.9248 | nan | 0.1571 | 0.9581 | 0.0 | 0.0822 | 0.9243 | | 0.8577 | 15.0 | 30 | 0.8504 | 0.3318 | 0.5283 | 0.9409 | nan | 0.0782 | 0.9784 | 0.0 | 0.0545 | 0.9407 | | 0.7512 | 20.0 | 40 | 0.6972 | 0.3270 | 0.5122 | 0.9527 | nan | 0.0318 | 0.9926 | 0.0 | 0.0283 | 0.9526 | | 0.6955 | 25.0 | 50 | 0.5761 | 0.3259 | 0.5099 | 0.9545 | nan | 0.0250 | 0.9948 | 0.0 | 0.0234 | 0.9544 | | 0.6691 | 30.0 | 60 | 0.5209 | 0.3360 | 0.5271 | 0.9525 | nan | 0.0632 | 0.9911 | 0.0 | 0.0557 | 0.9524 | | 0.626 | 35.0 | 70 | 0.5297 | 0.3408 | 0.5362 | 0.9505 | nan | 0.0844 | 0.9881 | 0.0 | 0.0719 | 0.9503 | | 0.5544 | 40.0 | 80 | 0.5263 | 0.3616 | 0.5757 | 0.9521 | nan | 0.1652 | 0.9862 | 0.0 | 0.1330 | 0.9518 | | 0.5316 | 45.0 | 90 | 0.4825 | 0.3836 | 0.6353 | 0.9506 | nan | 0.2915 | 0.9792 | 0.0 | 0.2009 | 0.9500 | | 0.4929 | 50.0 | 100 | 0.4763 | 0.3958 | 0.6588 | 0.9530 | nan | 0.3378 | 0.9797 | 0.0 | 0.2352 | 0.9524 | | 0.468 | 55.0 | 110 | 0.4583 | 0.4077 | 0.6974 | 0.9528 | nan | 0.4188 | 0.9759 | 0.0 | 0.2713 | 0.9519 | | 0.429 | 60.0 | 120 | 0.4268 | 0.3985 | 0.6526 | 0.9575 | nan | 0.3199 | 0.9852 | 0.0 | 0.2386 | 0.9569 | | 0.4211 | 65.0 | 130 | 0.3988 | 0.3951 | 0.6406 | 0.9584 | nan | 0.2939 | 0.9872 | 0.0 | 0.2275 | 0.9578 | | 0.3926 | 70.0 | 140 | 0.4085 | 0.4102 | 0.6780 | 0.9587 | nan | 0.3718 | 0.9842 | 0.0 | 0.2726 | 0.9581 | | 0.4006 | 75.0 | 150 | 0.3944 | 0.6077 | 0.6574 | 0.9604 | nan | 0.3269 | 0.9879 | nan | 0.2555 | 0.9599 | | 0.3978 | 80.0 | 160 | 0.3881 | 0.6216 | 0.6875 | 0.9591 | nan | 0.3912 | 0.9838 | nan | 0.2848 | 0.9585 | | 0.3553 | 85.0 | 170 | 0.3877 | 0.6333 | 0.7077 | 0.9595 | nan | 0.4329 | 0.9824 | nan | 0.3079 | 0.9588 | | 0.3637 | 90.0 | 180 | 0.4004 | 0.6428 | 0.7273 | 0.9594 | nan | 0.4741 | 0.9805 | nan | 0.3270 | 0.9586 | | 0.3416 | 95.0 | 190 | 0.3835 | 0.6403 | 0.7166 | 0.9604 | nan | 0.4507 | 0.9825 | nan | 0.3210 | 0.9596 | | 0.342 | 100.0 | 200 | 0.3634 | 0.6371 | 0.7061 | 0.9611 | nan | 0.4279 | 0.9842 | nan | 0.3137 | 0.9604 | | 0.3393 | 105.0 | 210 | 0.3740 | 0.6429 | 0.7217 | 0.9604 | nan | 0.4614 | 0.9820 | nan | 0.3262 | 0.9596 | | 0.3535 | 110.0 | 220 | 0.3771 | 0.6423 | 0.7199 | 0.9605 | nan | 0.4575 | 0.9823 | nan | 0.3249 | 0.9597 | | 0.3159 | 115.0 | 230 | 0.3710 | 0.6423 | 0.7167 | 0.9610 | nan | 0.4502 | 0.9832 | nan | 0.3243 | 0.9603 | | 0.3278 | 120.0 | 240 | 0.3666 | 0.6400 | 0.7120 | 0.9610 | nan | 0.4404 | 0.9836 | nan | 0.3196 | 0.9603 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_1
sam1120
2024-02-12T13:01:12Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:21Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4979 - Mean Iou: 0.4170 - Mean Accuracy: 0.6846 - Overall Accuracy: 0.9603 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3839 - Accuracy Undropoff: 0.9853 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.2914 - Iou Undropoff: 0.9597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0495 | 5.0 | 10 | 1.0890 | 0.1852 | 0.3572 | 0.4990 | nan | 0.2026 | 0.5119 | 0.0 | 0.0474 | 0.5081 | | 0.9941 | 10.0 | 20 | 1.0479 | 0.3452 | 0.8357 | 0.8479 | nan | 0.8225 | 0.8490 | 0.0 | 0.1931 | 0.8425 | | 0.9448 | 15.0 | 30 | 0.9839 | 0.3790 | 0.8217 | 0.9010 | nan | 0.7351 | 0.9082 | 0.0 | 0.2390 | 0.8980 | | 0.8912 | 20.0 | 40 | 0.9041 | 0.3845 | 0.7150 | 0.9247 | nan | 0.4863 | 0.9437 | 0.0 | 0.2303 | 0.9233 | | 0.8458 | 25.0 | 50 | 0.7997 | 0.3835 | 0.6687 | 0.9326 | nan | 0.3808 | 0.9565 | 0.0 | 0.2188 | 0.9316 | | 0.8299 | 30.0 | 60 | 0.7387 | 0.3751 | 0.6333 | 0.9326 | nan | 0.3068 | 0.9597 | 0.0 | 0.1934 | 0.9318 | | 0.7518 | 35.0 | 70 | 0.6810 | 0.3791 | 0.6322 | 0.9404 | nan | 0.2961 | 0.9683 | 0.0 | 0.1975 | 0.9397 | | 0.6943 | 40.0 | 80 | 0.6322 | 0.3703 | 0.6069 | 0.9422 | nan | 0.2411 | 0.9726 | 0.0 | 0.1691 | 0.9417 | | 0.6617 | 45.0 | 90 | 0.6071 | 0.3780 | 0.6240 | 0.9454 | nan | 0.2734 | 0.9746 | 0.0 | 0.1892 | 0.9449 | | 0.634 | 50.0 | 100 | 0.5932 | 0.3765 | 0.6106 | 0.9497 | nan | 0.2407 | 0.9805 | 0.0 | 0.1802 | 0.9494 | | 0.6157 | 55.0 | 110 | 0.5829 | 0.3982 | 0.6538 | 0.9524 | nan | 0.3281 | 0.9795 | 0.0 | 0.2425 | 0.9520 | | 0.5814 | 60.0 | 120 | 0.5708 | 0.4038 | 0.6699 | 0.9533 | nan | 0.3608 | 0.9790 | 0.0 | 0.2586 | 0.9528 | | 0.5988 | 65.0 | 130 | 0.5575 | 0.3974 | 0.6456 | 0.9569 | nan | 0.3061 | 0.9851 | 0.0 | 0.2357 | 0.9564 | | 0.5583 | 70.0 | 140 | 0.5530 | 0.4224 | 0.7075 | 0.9576 | nan | 0.4346 | 0.9803 | 0.0 | 0.3103 | 0.9570 | | 0.5596 | 75.0 | 150 | 0.5264 | 0.4034 | 0.6522 | 0.9598 | nan | 0.3167 | 0.9877 | 0.0 | 0.2510 | 0.9593 | | 0.5524 | 80.0 | 160 | 0.5392 | 0.4208 | 0.7109 | 0.9567 | nan | 0.4429 | 0.9790 | 0.0 | 0.3065 | 0.9560 | | 0.5294 | 85.0 | 170 | 0.5257 | 0.4161 | 0.6913 | 0.9582 | nan | 0.4002 | 0.9824 | 0.0 | 0.2909 | 0.9576 | | 0.5477 | 90.0 | 180 | 0.5178 | 0.4207 | 0.6962 | 0.9591 | nan | 0.4095 | 0.9829 | 0.0 | 0.3035 | 0.9584 | | 0.528 | 95.0 | 190 | 0.5185 | 0.4183 | 0.6939 | 0.9590 | nan | 0.4047 | 0.9831 | 0.0 | 0.2965 | 0.9584 | | 0.5144 | 100.0 | 200 | 0.5004 | 0.4153 | 0.6788 | 0.9604 | nan | 0.3716 | 0.9860 | 0.0 | 0.2859 | 0.9599 | | 0.5313 | 105.0 | 210 | 0.5032 | 0.4199 | 0.7005 | 0.9585 | nan | 0.4191 | 0.9819 | 0.0 | 0.3020 | 0.9578 | | 0.5172 | 110.0 | 220 | 0.4993 | 0.4188 | 0.6931 | 0.9591 | nan | 0.4030 | 0.9832 | 0.0 | 0.2978 | 0.9585 | | 0.5124 | 115.0 | 230 | 0.4999 | 0.4167 | 0.6828 | 0.9606 | nan | 0.3799 | 0.9858 | 0.0 | 0.2901 | 0.9600 | | 0.5025 | 120.0 | 240 | 0.4979 | 0.4170 | 0.6846 | 0.9603 | nan | 0.3839 | 0.9853 | 0.0 | 0.2914 | 0.9597 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_2
sam1120
2024-02-12T13:01:09Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:41Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.4274 - Mean Iou: 0.6102 - Mean Accuracy: 0.6603 - Overall Accuracy: 0.9607 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.3326 - Accuracy Undropoff: 0.9879 - Iou Unlabeled: nan - Iou Dropoff: 0.2602 - Iou Undropoff: 0.9601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.0555 | 5.0 | 10 | 1.0734 | 0.2254 | 0.4211 | 0.6018 | nan | 0.2240 | 0.6182 | 0.0 | 0.0622 | 0.6140 | | 0.9825 | 10.0 | 20 | 1.0261 | 0.2992 | 0.6380 | 0.7780 | nan | 0.4852 | 0.7907 | 0.0 | 0.1170 | 0.7807 | | 0.8991 | 15.0 | 30 | 0.8985 | 0.3231 | 0.5517 | 0.8892 | nan | 0.1836 | 0.9198 | 0.0 | 0.0776 | 0.8917 | | 0.8191 | 20.0 | 40 | 0.7413 | 0.3270 | 0.5262 | 0.9299 | nan | 0.0858 | 0.9665 | 0.0 | 0.0513 | 0.9296 | | 0.7562 | 25.0 | 50 | 0.6268 | 0.3259 | 0.5130 | 0.9436 | nan | 0.0433 | 0.9826 | 0.0 | 0.0343 | 0.9435 | | 0.7395 | 30.0 | 60 | 0.5872 | 0.3235 | 0.5073 | 0.9498 | nan | 0.0246 | 0.9900 | 0.0 | 0.0206 | 0.9498 | | 0.7272 | 35.0 | 70 | 0.5820 | 0.3379 | 0.5415 | 0.9411 | nan | 0.1055 | 0.9774 | 0.0 | 0.0729 | 0.9409 | | 0.6525 | 40.0 | 80 | 0.5571 | 0.3445 | 0.5451 | 0.9498 | nan | 0.1036 | 0.9865 | 0.0 | 0.0839 | 0.9496 | | 0.6161 | 45.0 | 90 | 0.5465 | 0.3480 | 0.5480 | 0.9528 | nan | 0.1064 | 0.9895 | 0.0 | 0.0914 | 0.9526 | | 0.6131 | 50.0 | 100 | 0.5379 | 0.3712 | 0.5917 | 0.9555 | nan | 0.1949 | 0.9885 | 0.0 | 0.1584 | 0.9551 | | 0.579 | 55.0 | 110 | 0.5229 | 0.3892 | 0.6411 | 0.9536 | nan | 0.3002 | 0.9819 | 0.0 | 0.2146 | 0.9530 | | 0.5133 | 60.0 | 120 | 0.5113 | 0.3962 | 0.6596 | 0.9541 | nan | 0.3384 | 0.9808 | 0.0 | 0.2352 | 0.9535 | | 0.535 | 65.0 | 130 | 0.4925 | 0.3981 | 0.6566 | 0.9561 | nan | 0.3299 | 0.9833 | 0.0 | 0.2386 | 0.9555 | | 0.4866 | 70.0 | 140 | 0.4717 | 0.5993 | 0.6516 | 0.9584 | nan | 0.3169 | 0.9863 | nan | 0.2407 | 0.9579 | | 0.5119 | 75.0 | 150 | 0.4712 | 0.5976 | 0.6513 | 0.9578 | nan | 0.3171 | 0.9856 | nan | 0.2380 | 0.9572 | | 0.5034 | 80.0 | 160 | 0.4737 | 0.6120 | 0.6840 | 0.9562 | nan | 0.3872 | 0.9808 | nan | 0.2686 | 0.9554 | | 0.4503 | 85.0 | 170 | 0.4496 | 0.6103 | 0.6618 | 0.9604 | nan | 0.3361 | 0.9875 | nan | 0.2607 | 0.9598 | | 0.4653 | 90.0 | 180 | 0.4617 | 0.6201 | 0.6907 | 0.9580 | nan | 0.3992 | 0.9822 | nan | 0.2830 | 0.9572 | | 0.4375 | 95.0 | 190 | 0.4412 | 0.6090 | 0.6592 | 0.9605 | nan | 0.3305 | 0.9878 | nan | 0.2580 | 0.9599 | | 0.4306 | 100.0 | 200 | 0.4355 | 0.6120 | 0.6653 | 0.9602 | nan | 0.3436 | 0.9870 | nan | 0.2643 | 0.9597 | | 0.4456 | 105.0 | 210 | 0.4414 | 0.6178 | 0.6756 | 0.9601 | nan | 0.3653 | 0.9860 | nan | 0.2760 | 0.9595 | | 0.4435 | 110.0 | 220 | 0.4387 | 0.6150 | 0.6681 | 0.9608 | nan | 0.3489 | 0.9873 | nan | 0.2699 | 0.9602 | | 0.4263 | 115.0 | 230 | 0.4348 | 0.6156 | 0.6692 | 0.9607 | nan | 0.3512 | 0.9872 | nan | 0.2711 | 0.9602 | | 0.4123 | 120.0 | 240 | 0.4274 | 0.6102 | 0.6603 | 0.9607 | nan | 0.3326 | 0.9879 | nan | 0.2602 | 0.9601 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
sam1120/dropoff-utcustom-train-SF-RGBD-b0_4
sam1120
2024-02-12T13:01:07Z
145
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "vision", "image-segmentation", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-02-12T12:52:49Z
--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: dropoff-utcustom-train-SF-RGBD-b0_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dropoff-utcustom-train-SF-RGBD-b0_4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set: - Loss: 0.3688 - Mean Iou: 0.3485 - Mean Accuracy: 0.5433 - Overall Accuracy: 0.9606 - Accuracy Unlabeled: nan - Accuracy Dropoff: 0.0881 - Accuracy Undropoff: 0.9984 - Iou Unlabeled: 0.0 - Iou Dropoff: 0.0851 - Iou Undropoff: 0.9604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:| | 1.2008 | 5.0 | 10 | 1.0960 | 0.1205 | 0.4461 | 0.2825 | nan | 0.6246 | 0.2677 | 0.0 | 0.0943 | 0.2671 | | 1.0485 | 10.0 | 20 | 1.0952 | 0.1603 | 0.6272 | 0.4049 | nan | 0.8696 | 0.3848 | 0.0 | 0.0965 | 0.3843 | | 0.9156 | 15.0 | 30 | 1.0312 | 0.3080 | 0.5963 | 0.8333 | nan | 0.3377 | 0.8548 | 0.0 | 0.0924 | 0.8317 | | 0.7435 | 20.0 | 40 | 0.9448 | 0.3221 | 0.5508 | 0.8937 | nan | 0.1769 | 0.9248 | 0.0 | 0.0733 | 0.8930 | | 0.7336 | 25.0 | 50 | 0.7446 | 0.3191 | 0.4998 | 0.9461 | nan | 0.0129 | 0.9866 | 0.0 | 0.0113 | 0.9461 | | 0.6585 | 30.0 | 60 | 0.6397 | 0.3183 | 0.4981 | 0.9534 | nan | 0.0014 | 0.9948 | 0.0 | 0.0013 | 0.9534 | | 0.583 | 35.0 | 70 | 0.5785 | 0.3181 | 0.4978 | 0.9537 | nan | 0.0006 | 0.9951 | 0.0 | 0.0005 | 0.9537 | | 0.5324 | 40.0 | 80 | 0.5458 | 0.3182 | 0.4980 | 0.9545 | nan | 0.0002 | 0.9958 | 0.0 | 0.0002 | 0.9545 | | 0.5155 | 45.0 | 90 | 0.5347 | 0.3186 | 0.4987 | 0.9558 | nan | 0.0001 | 0.9973 | 0.0 | 0.0001 | 0.9558 | | 0.4874 | 50.0 | 100 | 0.4954 | 0.3179 | 0.4976 | 0.9537 | nan | 0.0 | 0.9951 | 0.0 | 0.0 | 0.9537 | | 0.4716 | 55.0 | 110 | 0.4646 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9969 | 0.0 | 0.0 | 0.9555 | | 0.4441 | 60.0 | 120 | 0.4426 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9970 | 0.0 | 0.0 | 0.9555 | | 0.4659 | 65.0 | 130 | 0.4345 | 0.3189 | 0.4991 | 0.9567 | nan | 0.0 | 0.9982 | 0.0 | 0.0 | 0.9567 | | 0.4758 | 70.0 | 140 | 0.4221 | 0.3181 | 0.4978 | 0.9543 | nan | 0.0 | 0.9957 | 0.0 | 0.0 | 0.9543 | | 0.4208 | 75.0 | 150 | 0.4029 | 0.3190 | 0.4993 | 0.9571 | nan | 0.0 | 0.9987 | 0.0 | 0.0 | 0.9571 | | 0.4395 | 80.0 | 160 | 0.4170 | 0.3207 | 0.5016 | 0.9559 | nan | 0.0062 | 0.9971 | 0.0 | 0.0062 | 0.9559 | | 0.3981 | 85.0 | 170 | 0.3992 | 0.3214 | 0.5027 | 0.9574 | nan | 0.0067 | 0.9987 | 0.0 | 0.0066 | 0.9574 | | 0.3983 | 90.0 | 180 | 0.3965 | 0.3282 | 0.5125 | 0.9560 | nan | 0.0288 | 0.9963 | 0.0 | 0.0285 | 0.9560 | | 0.398 | 95.0 | 190 | 0.3747 | 0.3272 | 0.5112 | 0.9569 | nan | 0.0251 | 0.9973 | 0.0 | 0.0249 | 0.9568 | | 0.3767 | 100.0 | 200 | 0.3722 | 0.3301 | 0.5155 | 0.9574 | nan | 0.0336 | 0.9975 | 0.0 | 0.0330 | 0.9573 | | 0.3797 | 105.0 | 210 | 0.3781 | 0.3334 | 0.5204 | 0.9583 | nan | 0.0429 | 0.9980 | 0.0 | 0.0420 | 0.9582 | | 0.373 | 110.0 | 220 | 0.3744 | 0.3409 | 0.5317 | 0.9593 | nan | 0.0654 | 0.9980 | 0.0 | 0.0636 | 0.9591 | | 0.372 | 115.0 | 230 | 0.3700 | 0.3440 | 0.5364 | 0.9599 | nan | 0.0746 | 0.9983 | 0.0 | 0.0723 | 0.9598 | | 0.3629 | 120.0 | 240 | 0.3688 | 0.3485 | 0.5433 | 0.9606 | nan | 0.0881 | 0.9984 | 0.0 | 0.0851 | 0.9604 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
ISTNetworks/Mistral-v2-updated
ISTNetworks
2024-02-12T12:57:20Z
6
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-02-12T12:41:25Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - mistral - gguf base_model: mistral-7b-instruct-v0.2-bnb-4bit --- # Uploaded model - **Developed by:** ISTNetworks - **License:** apache-2.0 - **Finetuned from model :**mistral-7b-instruct-v0.2-bnb-4bit
arun100/whisper-small-fa-2
arun100
2024-02-12T12:51:30Z
63
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "fa", "dataset:mozilla-foundation/common_voice_16_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-11T06:14:51Z
--- language: - fa license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small Persian Iranian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 fa type: mozilla-foundation/common_voice_16_0 config: fa split: test args: fa metrics: - name: Wer type: wer value: 39.72011741415796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Persian Iranian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_16_0 fa dataset. It achieves the following results on the evaluation set: - Loss: 0.4858 - Wer: 39.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4531 | 1.03 | 500 | 0.6448 | 50.7393 | | 0.4031 | 3.0 | 1000 | 0.5755 | 46.5001 | | 0.2745 | 4.04 | 1500 | 0.5389 | 43.7190 | | 0.336 | 6.0 | 2000 | 0.5166 | 42.4056 | | 0.2429 | 7.04 | 2500 | 0.5045 | 41.1810 | | 0.2852 | 9.01 | 3000 | 0.4941 | 40.6444 | | 0.2217 | 10.04 | 3500 | 0.4888 | 40.1106 | | 0.2384 | 12.01 | 4000 | 0.4873 | 39.9208 | | 0.1889 | 13.04 | 4500 | 0.4858 | 39.7201 | | 0.2202 | 15.01 | 5000 | 0.4888 | 39.7228 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
ambet/mistral_robot_lora
ambet
2024-02-12T12:49:25Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-11T13:49:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HannoRE/q-Taxi-v3
HannoRE
2024-02-12T12:47:56Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-12T12:47:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.79 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="HannoRE/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```