modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
adarshheg/llama2-13b-finetuned-100-v1
adarshheg
2024-02-07T23:54:20Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T23:54:15Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
joislosinghermind/lola-gunvolt
joislosinghermind
2024-02-07T23:20:15Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:unlicense", "region:us" ]
text-to-image
2024-02-07T23:20:12Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: "UNICODE\0\02\0d\0,\0 \0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0a\0n\0i\0m\0e\0,\0 \0h\0i\0g\0h\0l\0y\0 \0d\0e\0t\0a\0i\0l\0e\0d\0 \0f\0a\0c\0e\0,\0 \0h\0i\0g\0h\0l\0y\0 \0d\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0p\0e\0r\0f\0e\0c\0t\0 \0l\0i\0g\0h\0t\0i\0n\0g\0,\0 \0l\0o\0l\0a\0,\0 \0b\0l\0u\0e\0 \0e\0y\0e\0s\0,\0 \0g\0r\0e\0e\0n\0_\0h\0a\0i\0r\0,\0 \0c\0i\0t\0y\0s\0c\0a\0p\0e\0,\0 \0f\0u\0l\0l\0_\0b\0o\0d\0y\0,\0 \0s\0o\0l\0o\0,\0 \0s\0o\0l\0o\0 \0f\0o\0c\0u\0s\0,\0 \0t\0-\0s\0h\0i\0r\0t\0,\0 \0 \0s\0h\0o\0r\0t\0s\0,\0 \0<\0l\0o\0r\0a\0:\0l\0o\0l\0a\0:\01\0>\0" output: url: images/00492-abyssorangemix3AOM3_aom3a1b_3939236143.jpeg base_model: runwayml/stable-diffusion-v1-5 instance_prompt: lola license: unlicense --- # lola-gunvolt <Gallery /> ## Trigger words You should use `lola` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/joislosinghermind/lola-gunvolt/tree/main) them in the Files & versions tab.
davisalex22/BLOOMTurismEC-7b1-ft
davisalex22
2024-02-07T22:56:25Z
3
0
transformers
[ "transformers", "safetensors", "bloom", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T22:51:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ydang/jsd_Mistral-7B-v0.1-M3
ydang
2024-02-07T22:51:52Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T22:47:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Jcarmody93/Uhd
Jcarmody93
2024-02-07T22:41:41Z
0
0
null
[ "region:us" ]
null
2024-02-07T21:50:30Z
git lfs install git clone https://huggingface.co/spaces/tonyassi/text-to-image-SDXL
adriana98/whisper-large-v2-LORA-colab
adriana98
2024-02-07T22:37:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-07T20:17:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ORromu/Reinforce-CartPole-v1
ORromu
2024-02-07T22:01:43Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T22:01:34Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Utshav/Llama2-7b-finetuned-alpaca
Utshav
2024-02-07T21:40:20Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-07T21:16:41Z
--- library_name: peft tags: - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: Llama2-7b-finetuned-alpaca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2-7b-finetuned-alpaca This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
hanspeterlyngsoeraaschoujensen/deepseek-math-7b-instruct-GPTQ
hanspeterlyngsoeraaschoujensen
2024-02-07T21:18:11Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-02-07T21:16:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
google/metricx-23-xxl-v2p0
google
2024-02-07T21:15:25Z
491
5
transformers
[ "transformers", "pytorch", "mt5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-02-07T16:34:37Z
--- license: apache-2.0 --- # MetricX-23 *This is not an officially supported Google product.* **GitHub repository: [https://github.com/google-research/metricx](https://github.com/google-research/metricx)** This repository contains the MetricX-23 models, a family of models for automatic evaluation of translations that were proposed in the WMT'23 Metrics Shared Task submission [MetricX-23: The Google Submission to the WMT 2023 Metrics Shared Task](https://aclanthology.org/2023.wmt-1.63/). The models were trained in [T5X](https://github.com/google-research/t5x) and then converted for use in PyTorch. ## Available Models There are 6 models available on HuggingFace that vary in the number of parameters and whether or not the model is reference-based or reference-free (also known as quality estimation, or QE): * [MetricX-23-XXL](https://huggingface.co/google/metricx-23-large-v2p0) * [MetricX-23-XL](https://huggingface.co/google/metricx-23-xl-v2p0) * [MetricX-23-Large](https://huggingface.co/google/metricx-23-xxl-v2p0) * [MetricX-23-QE-XXL](https://huggingface.co/google/metricx-23-qe-large-v2p0) * [MetricX-23-QE-XL](https://huggingface.co/google/metricx-23-qe-xl-v2p0) * [MetricX-23-QE-Large](https://huggingface.co/google/metricx-23-qe-xxl-v2p0) We recommend using the XXL model versions for the best agreement with human judgments of translation quality, the Large versions for best speed, and the XL for an intermediate use case. ## Changes to the WMT'23 Submission These models available here are most similar to the primary submission to the WMT'23 Metrics Shared Task. They are initialized with [mT5](https://aclanthology.org/2021.naacl-main.41/) then fine-tuned on a combination of direct assessment and MQM data. However, we made some changes that make these models different from the WMT'23 submissions. First, the models are trained to regress the actual MQM score rather than a normalized score between 0 and 1. **That means the output from the MetricX-23 models is a score in the range [0, 25] where lower is better (i.e., it predicts an error score).** Second, these models were trained with a larger variety of synthetic data that makes them more robust to translation edge cases like over- and undertranslation, described in more detail in the following section. ### Synthetic Data In order for our MetricX models to learn to identify certain types of bad translations that are not sufficiently (or at all) represented in the regular training data, we created synthetic examples and mixed them in during training. The synthetic training data was generated from the DA datasets ranging from WMT15 to WMT21 (~ 43 language pairs). In most cases, the synthetic examples have the candidate translation manipulated so as to turn it into a bad translation with a specific issue commonly unrecognized by learned metrics. The table below provides an overview of the various failure modes that we considered, including brief descriptions of how we prepared the synthetic data to address them. | Failure mode | Synthetic example description | | ----------- | ----------- | | Undertranslation | Candidate translation with an arbitrary sentence removed (if multi-sentence); alternatively, candidate with a certain proportion of words removed from the end. | | Overtranslation | Candidate translation duplicated (with space in between). | | Fluent but unrelated translation | Arbitrary reference of a similar length from the dataset. | | Gibberish | Text of a similar length as the reference, generated by sampling words from the reference translation vocabulary (built from all references in the data). | | Missing punctuation | Reference translation with the end punctuation removed (11 punctuation symbols considered). | | Latin instead of Chinese/Japanese or Hindi/Bengali punctuation | Candidate translation with the language-specific punctuation symbol at the end replaced with the Latin equivalent (e.g., "." instead of "。" or "।"); alternatively, the punctuation symbol is replaced with the Latin equivalent in the reference, keeping the correct one in the candidate. | | Reference-matching translation | Reference translation copied as the candidate translation (unlike the rest of the synthetic data, these examples are meant to train the metric to predict a perfect score for candidates matching the reference). | Examples from the first 4 categories were assigned a label corresponding to the worst score on the given rating scale (e.g., 25 when mixed with MQM training data), whereas the reference-matching translation examples are assigned the best score (e.g., 0 when used with MQM data). The missing/incorrect punctuation examples were labeled with a score slightly worse than perfect. Note that some of the synthetic datasets are only meaningful in the reference-based scenario, and we thus excluded them when training a QE variant of MetricX. These are the Latin-vs-special punctuation and the reference-matching translation examples. Most of the synthetic training sets were created using stratified sampling across target languages, taking 500 examples per target language. One exception is the missing punctuation set, which used a stratified sample across different punctuation symbols instead. When training MetricX, a small proportion of the synthetic examples was mixed with the regular training examples. During the first-stage fine-tuning on DA data, each synthetic training set constituted between 0.1% and 1% of all training examples, whereas in the second-stage fine-tuning on MQM data we used an even smaller proportion, around 0.05%. As for evaluating the effect of the synthetic training data on the model's performance, the DEMETR challenge set - which we originally used to evaluate the models submitted to the WMT23 Metrics Shared Task - was not adequate anymore. We therefore created a new DEMETR-style test set based on the WMT22 DA data, with examples constructed analogically to the synthetic training examples, as described above. This test set helped us determine the right proportions of synthetic data for fine-tuning in order to make MetricX robust for the failure modes in consideration, without sacrificing the system- and segment-level correlations with human ratings. ## Usage The code for using MetricX models can be found at [https://github.com/google-research/metricx](https://github.com/google-research/metricx). The repository contains example prediction scripts, described below. The `metricx23/predict.py` script contains an example for how to run inference on the models. ### Reference-Based Example usage for a reference-based model: ```bash python -m metricx23.predict \ --tokenizer google/mt5-xl \ --model_name_or_path google/metricx-23-xl-v2p0 \ --max_input_length 1024 \ --batch_size 1 \ --input_file input.jsonl \ --output_file output.jsonl ``` `input.jsonl` is expected to have 1 serialized JSON object per line with `"reference"` and `"hypothesis"` fields. The output jsonl will be parallel to `input.jsonl` but additionally contain a `"prediction"` field with the predicted score. Note that the model was trained with a maximum input length of 1024 tokens, so significantly increasing that value may lead to unpredictable behavior. ### Reference-Free Example usage for a reference-free model: ```bash python -m metricx23.predict \ --tokenizer google/mt5-xl \ --model_name_or_path google/metricx-23-qe-xl-v2p0 \ --max_input_length 1024 \ --batch_size 1 \ --input_file input.jsonl \ --output_file output.jsonl \ --qe ``` `input.jsonl` is expected to have 1 serialized JSON object per line with `"source"` and `"hypothesis"` fields. The output jsonl will be parallel to `input.jsonl` but additionally contain a `"prediction"` field with the predicted score. ## Meta-Evaluation The `metricx23/evaluate.py` script contains code to calculate various correlations between the MetricX-23 scores and MQM ratings of translation quality using the [MT Metrics Eval](https://github.com/google-research/mt-metrics-eval) library. Example usage: ```bash python -m metricx23.evaluate \ --dataset wmt22 \ --lp en-de \ --input_file input.jsonl \ --output_file output.json ``` `input.jsonl` is expected to have one JSON object serialized per line. Each JSON object is expected to contain 4 fields: * `"system_id"`: The name of the system that generated the translation. * `"segment_id"`: The 0-based index of the corresponding segment in the MT Metrics Eval data. * `"label"`: The ground-truth translation quality score (with higher is better). * `"prediction"`: The model predicted translation quality score (with lower is better; the script negates the scores so higher is better). The script will calculate the 4 agreement/correlations that were used in the WMT'23 Shared Task. Below are the results for the MetricX-23 models on the WMT'22 Metrics Shared Task data: English-German: | Model | System-Level Accuracy | System-Level Pearson | Segment-Level Pearson | Segment-Level Pairwise Acc | | ----------- | ----------- | ----------- | ----------- | ----------- | | MetricX-23-XXL | 0.795 | 0.835 | 0.546 | 0.619 | | MetricX-23-XL | 0.756 | 0.813 | 0.540 | 0.605 | | MetricX-23-Large | 0.769 | 0.759 | 0.507 | 0.595 | | MetricX-23-QE-XXL | 0.769 | 0.830 | 0.490 | 0.606 | | MetricX-23-QE-XL | 0.718 | 0.684 | 0.421 | 0.594 | | MetricX-23-QE-Large | 0.744 | 0.671 | 0.387 | 0.579 | English-Russian: | Model | System-Level Accuracy | System-Level Pearson | Segment-Level Pearson | Segment-Level Pairwise Acc | | ----------- | ----------- | ----------- | ----------- | ----------- | | MetricX-23-XXL | 0.905 | 0.943 | 0.477 | 0.609 | | MetricX-23-XL | 0.876 | 0.906 | 0.498 | 0.589 | | MetricX-23-Large | 0.876 | 0.841 | 0.474 | 0.569 | | MetricX-23-QE-XXL | 0.895 | 0.940 | 0.470 | 0.602 | | MetricX-23-QE-XL | 0.848 | 0.861 | 0.415 | 0.570 | | MetricX-23-QE-Large | 0.819 | 0.778 | 0.411 | 0.551 | Chinese-English: | Model | System-Level Accuracy | System-Level Pearson | Segment-Level Pearson | Segment-Level Pairwise Acc | | ----------- | ----------- | ----------- | ----------- | ----------- | | MetricX-23-XXL | 0.868 | 0.919 | 0.605 | 0.551 | | MetricX-23-XL | 0.868 | 0.924 | 0.584 | 0.543 | | MetricX-23-Large | 0.857 | 0.919 | 0.555 | 0.539 | | MetricX-23-QE-XXL | 0.857 | 0.928 | 0.573 | 0.544 | | MetricX-23-QE-XL | 0.802 | 0.879 | 0.546 | 0.529 | | MetricX-23-QE-Large | 0.758 | 0.904 | 0.522 | 0.529 | The `metricx23/evaluate_wmt23.py` script re-calculates the average correlation score that was used to rank submissions from the [WMT'23 Shared Task](https://www2.statmt.org/wmt23/pdf/2023.wmt-1.51.pdf). Example usage: ```bash python -m metricx23.evaluate_wmt23 \ --en_de predictions_ende.jsonl \ --he_en predictions_heen.jsonl \ --zh_en predictions_zhen.jsonl \ --output_file output.json ``` Each of the 3 input files is expected to be in the same format as described above. Each file should correspond to running inference on each of the language pairs from the WMT'23 dataset. The results for each of the models is the following: | Model | Average Correlation | | ----------- | ----------- | | MetricX-23-XXL | 0.812 | | MetricX-23-XL | 0.813 | | MetricX-23-Large | 0.794 | | MetricX-23-QE-XXL | 0.797 | | MetricX-23-QE-XL | 0.767 | | MetricX-23-QE-Large | 0.762 | ## Citation If you use MetricX-23 in your research, please cite the following publication: ```bibtex @inproceedings{juraska-etal-2023-metricx, title = {{MetricX-23: The Google Submission to the WMT 2023 Metrics Shared Task}}, author = "Juraska, Juraj and Finkelstein, Mara and Deutsch, Daniel and Siddhant, Aditya and Mirzazadeh, Mehdi and Freitag, Markus", editor = "Koehn, Philipp and Haddow, Barry and Kocmi, Tom and Monz, Christof", booktitle = "Proceedings of the Eighth Conference on Machine Translation", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.wmt-1.63", doi = "10.18653/v1/2023.wmt-1.63", pages = "756--767", } ```
Jimmyhd/mistral7btimebookFinetune50rows
Jimmyhd
2024-02-07T21:13:25Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T21:04:28Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
gayanin/bart-noised-with-gcd-dist-0.5
gayanin
2024-02-07T21:08:59Z
3
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-07T19:03:31Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-noised-with-gcd-dist-0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-noised-with-gcd-dist-0.5 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
gayanin/bart-noised-with-gcd-dist-0.4
gayanin
2024-02-07T21:08:50Z
23
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-07T19:03:27Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-noised-with-gcd-dist-0.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-noised-with-gcd-dist-0.4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
gayanin/bart-noised-with-gcd-dist-0.2
gayanin
2024-02-07T21:08:37Z
10
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-07T17:28:55Z
--- license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: bart-noised-with-gcd-dist-0.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-noised-with-gcd-dist-0.2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
danaleee/Long_rank10_iter500_valprompt
danaleee
2024-02-07T21:07:20Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-07T18:44:33Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks rc_car tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - danaleee/Long_rank10_iter500_valprompt These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks rc_car using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
ClementeH/faisan-7b-instruct
ClementeH
2024-02-07T20:58:54Z
3
0
peft
[ "peft", "region:us" ]
null
2024-02-07T20:44:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
nm-testing/Llama-2-7b-pruned40-retrained
nm-testing
2024-02-07T20:51:19Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:cerebras/SlimPajama-627B", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T20:46:25Z
--- base_model: meta-llama/Llama-2-7b-hf datasets: - cerebras/SlimPajama-627B --- Checkpoint of a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) model that has had 50% of the parameters pruned in one-shot with SparseGPT, then retrained for 40B tokens from SlimPajama while maintaining sparsity. * Model: Llama 2 * Size: 7B * LR: 3.00E-4 * Dataset: SlimPajama * Retrained tokens: 40B * Notes: no warmup + decay to 0.0 * Eval Harness: * CommonSense Reasoning: 62.2 (97.65%) * Reading Comprehension: 57.7 (98.30%) * World Knowledge: 42.4 (97.65%) * Math: 6.1 (74.39%) * Code: 16.2 (98.78%)
Pouria88/K
Pouria88
2024-02-07T20:40:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-07T20:40:49Z
--- license: creativeml-openrail-m ---
AbhiKrov/mt5-small-english-to-hindi-akrov
AbhiKrov
2024-02-07T20:32:42Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-05T21:04:57Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-small-english-to-hindi-akrov results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-english-to-hindi-akrov This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----:|:-------:| | No log | 1.0 | 26 | nan | 0.0 | 0.0 | | No log | 2.0 | 52 | nan | 0.0 | 0.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
DrishtiSharma/phi2-english-to-hinglish-translation-merged
DrishtiSharma
2024-02-07T20:25:55Z
5
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-07T20:25:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
devlocalhost/hi-tinylama-gguf-16bit
devlocalhost
2024-02-07T20:23:32Z
41
1
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/tinyllama-bnb-4bit", "base_model:quantized:unsloth/tinyllama-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-02-07T20:21:54Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/tinyllama-bnb-4bit --- # Uploaded model - **Developed by:** devlocalhost - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Fukurokun/MemGPT-DPO-uncensored-6.0bpw-exl2
Fukurokun
2024-02-07T20:23:20Z
5
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "MemGPT", "function", "function calling", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T13:59:25Z
--- library_name: transformers license: apache-2.0 language: - en tags: - MemGPT - function - function calling --- # MemGPT DPO uncensored 6.0bpw exl2 - Model creator: [Starlette!](https://huggingface.co/starsnatched) - Original model: [MemGPT-DPO-uncensored](https://huggingface.co/starsnatched/MemGPT-DPO-uncensored) This is an quantized, uncensored release of DPO version of a Language Model, intended to be used with [MemGPT](https://github.com/cpacker/MemGPT). # WARNING This model is **UNCENSORED**. That means this model is highly compliant to any requests, even unethical and potentially dangerous ones. I do not take any responsibility whatsoever for any damage caused by the model in this repo. # Model Description This repository contains an uncensored, finetuned model of [Mistral 7B Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). This model is specifically designed for operating within function calling environment in MemGPT. It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT. # Key Features * Function calling * Dedicated to working with MemGPT * Supports medium-length context, up to sequences of 8,192 # Prompt Format This model uses **ChatML** prompt format: ``` <|im_start|>system {system_instruction}<|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant {assistant_response}<|im_end|> ``` # Usage This model is designed to be ran on multiple backends, such as [oogabooga's textgen WebUI](https://github.com/oobabooga/text-generation-webui). Simply install your preferred backend, and then load up this model. Then, configure MemGPT using `memgpt configure`, and chat with MemGPT via `memgpt run` command! # Model Details * Developed by: @starsnatched * Model type: This repo contains a language model based on the transformer decoder architecture. * Language: English * Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched. # Training Infrastructure * Hardware: The model in this repo was trained on 2x A100 80GB GPUs. # Intended Use The model is designed to be used as the base model for MemGPT agents. # Limitations and Risks The model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce.
Kowshik24/BanglaLM
Kowshik24
2024-02-07T20:19:20Z
0
0
null
[ "text-generation", "license:apache-2.0", "region:us" ]
text-generation
2024-02-07T19:34:39Z
--- license: apache-2.0 pipeline_tag: text-generation --- # Bigram Language Model ## Overview This repository contains a simple Bigram Language Model implemented in PyTorch. The model is trained to predict the next character in a sequence, given the current character. It's a character-level model and can be used for tasks like text generation. ## Model Details - **Model Type**: Character-level Language Model - **Architecture**: Simple lookup table for character bigrams - **Training Data**: [https://huggingface.co/datasets/csebuetnlp/xlsum/viewer/bengali] ## Requirements - Python 3.x - PyTorch - JSON (for loading the tokenizer) ## Installation First, clone this repository: ## Loading the Model To load the model, you need to initialize it with the vocabulary size and load the pre-trained weights: ```python import torch from model import BigramLanguageModel vocab_size = 225 model = BigramLanguageModel(vocab_size) model.load_state_dict(torch.load('path_to_your_model.pth', map_location=torch.device('cpu'))) model.eval() import json with open('tokenizer_mappings.json', 'r', encoding='utf-8') as f: mappings = json.load(f) stoi = mappings['stoi'] itos = mappings['itos'] # Example usage encode = lambda s: [stoi[c] for c in s] decode = lambda l: ''.join([itos[i] for i in l]) context = torch.tensor([encode("Your initial text")], dtype=torch.long) generated_text_indices = model.generate(context, max_new_tokens=100) print(decode(generated_text_indices[0].tolist()))
devlocalhost/hi-tinylama
devlocalhost
2024-02-07T20:16:52Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/tinyllama-bnb-4bit", "base_model:finetune:unsloth/tinyllama-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T20:15:09Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/tinyllama-bnb-4bit --- # Uploaded model - **Developed by:** devlocalhost - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Poliuszko/ppo-LunarLander-v21-1
Poliuszko
2024-02-07T20:03:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T17:16:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.40 +/- 22.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1
llm-jp
2024-02-07T19:49:25Z
151
2
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "en", "ja", "dataset:databricks/databricks-dolly-15k", "dataset:llm-jp/databricks-dolly-15k-ja", "dataset:llm-jp/oasst1-21k-en", "dataset:llm-jp/oasst1-21k-ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-29T12:52:30Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript library_name: transformers pipeline_tag: text-generation inference: false datasets: - databricks/databricks-dolly-15k - llm-jp/databricks-dolly-15k-ja - llm-jp/oasst1-21k-en - llm-jp/oasst1-21k-ja --- # llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1 This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan. | Model Variant | | :--- | |**Instruction models ver1.1**| | [llm-jp-13b-dpo-lora-hh_rlhf_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-dpo-lora-hh_rlhf_ja-v1.1)| | [llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) | | [llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1) | |**Instruction models ver1.0**| | [llm-jp-13b-instruct-full-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-v1.0) | | [llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) | | [llm-jp-13b-instruct-full-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-oasst-v1.0) | | [llm-jp-13b-instruct-lora-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0) | | [llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0) | | [llm-jp-13b-instruct-lora-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly-oasst-v1.0) | | | | :--- | |**Pre-trained models**| | [llm-jp-13b-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-v1.0) | | [llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) | Checkpoints format: Hugging Face Transformers (Megatron-DeepSpeed format models are available [here](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt)) ## Required Libraries and Their Versions - torch>=2.0.0 - transformers>=4.34.0 - tokenizers>=0.14.0 - accelerate==0.23.0 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly_en-dolly_ja-ichikara_003_001-oasst_en-oasst_ja-v1.1", device_map="auto", torch_dtype=torch.float16) text = "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{instruction}\n\n### 応答:\n".format(instruction="自然言語処理とは何か") tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=512, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.1, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 300B |Model|Params|Layers|Hidden size|Heads|Context length| |:---:|:---:|:---:|:---:|:---:|:---:| |13b model|13b|40|5120|40|2048| |1.3b model|1.3b|24|2048|16|2048| ## Training - **Pre-training:** - **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) - **Software:** Megatron-DeepSpeed - **Instruction tuning:** - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) - **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed) ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure. - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0` - **Training algorithm:** SentencePiece Unigram byte-fallback - **Training data:** A subset of the datasets for model pre-training - **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code) ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---:|:---:|:---:| |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B ||[mC4](https://huggingface.co/datasets/mc4)|136B |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens. We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data. ### Instruction tuning The models have been fine-tuned on the following datasets. | Language | Dataset | description | |:---|:---:|:---:| |Japanese|[jaster](https://github.com/llm-jp/llm-jp-eval)| An automatically transformed data from the existing Japanese NLP datasets | |English|[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)| - | |Japanese|[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| A translated one by DeepL in LLM-jp | |English|[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| English subset of [oasst1 dataset](https://huggingface.co/datasets/OpenAssistant/oasst1) | |Japanese|[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A translated one by DeepL in LLM-jp | |Japanese|[ichikara_003_001](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)| ichikara-instruction dataset (ver.003-001) |Japanese|[hh-rlhf-12k-ja](https://huggingface.co/datasets/llm-jp/hh-rlhf-12k-ja)| A translated one by DeepL in LLM-jp | ## Evaluation You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation. ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takashi Kodama, Takumi Okamoto.
kviai/Kvi-Upscale-V1
kviai
2024-02-07T19:46:31Z
0
6
diffusers
[ "diffusers", "Image Upscaling", "Img2Img", "image-to-image", "en", "license:cc-by-4.0", "region:us" ]
image-to-image
2024-01-17T18:09:41Z
--- license: cc-by-4.0 language: - en library_name: diffusers pipeline_tag: image-to-image tags: - Image Upscaling - Img2Img --- ### Image Upscaling Model This repository contains the PyTorch model for upscaling images. The model has been trained to upscale low-resolution images to higher resolution using convolutional neural networks. ## Model Details - Model Name: Kvi-Upscale - Author: KviAI - License: Creative Commons Attribution 4.0 ## Instructions To use this model for upscaling, please follow the instructions in the accompanying Python script.
jashanno/ppo-LunarLander-v2
jashanno
2024-02-07T19:42:38Z
0
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T19:42:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.67 +/- 16.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
prarthana878/my-pet-dog
prarthana878
2024-02-07T19:35:10Z
1
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-07T19:30:41Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My--Pet-Dog Dreambooth model trained by prarthana878 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 4jk21cs044 Sample pictures of this concept: ![0](https://huggingface.co/prarthana878/my-pet-dog/resolve/main/sample_images/xzg_(1).jpeg.jpg) ![1](https://huggingface.co/prarthana878/my-pet-dog/resolve/main/sample_images/xzg.jpg) ![2](https://huggingface.co/prarthana878/my-pet-dog/resolve/main/sample_images/xzg_(2).jpg) ![3](https://huggingface.co/prarthana878/my-pet-dog/resolve/main/sample_images/xzg_(4).jpg) ![4](https://huggingface.co/prarthana878/my-pet-dog/resolve/main/sample_images/xzg_(3).jpg)
Caraaaaa/text_image_captioning
Caraaaaa
2024-02-07T19:31:48Z
12
0
transformers
[ "transformers", "safetensors", "git", "image-text-to-text", "image-to-text", "dataset:Caraaaaa/non_text_image_captioning", "endpoints_compatible", "region:us" ]
image-to-text
2023-12-24T13:48:31Z
--- datasets: - Caraaaaa/non_text_image_captioning pipeline_tag: image-to-text --- This is a [GenerativeImage2Text](https://huggingface.co/microsoft/git-base) model finetuned on [non-text images](https://huggingface.co/datasets/Caraaaaa/non_text_image_captioning) extracted from documents (i.e.PDF). It is used to analyze the content of the image and produce a descriptive caption. It is part of a [project]((https://github.com/caraaaaa/doc_accessibility?tab=readme-ov-file)) to build a software solution capable of processing offline documents (PDFs, Word, PowerPoint, PPT, etc.) to detect WCAG accessibility issues. Example document with non-text images: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b539ab4dd3e248953a6e69/IlcbNsHuzK5JHHixh_dwN.png) Extracted Image: ![Alt text](https://datasets-server.huggingface.co/assets/Caraaaaa/non_text_image_captioning/--/ca73cb435a60096ff7194f9616a54fde01f69039/--/default/train/10/image/image.jpg?Expires=1707337881&Signature=EpH8a0j4oVQZq2zM52KdkLURUseDcAXIlrUH3Grli8DQH2JzmJdl8J7AnEnwBi7oiO8fmFqkHP5bp-SmRehi-5pZkEQKzPUmbvgzzZJWKYttcyql1MnafITBoIpDbAQB8YkFeAnzJ7leKE6E1wSzlolMIorfFYO~x8Xzq-N5dg6CtiCmO6WIY0BMJgMliNpyUJqcVytJ1p95wZckOZmKxZ6CFPBDLF6jQEAbYVvV2f8cDDZBOkd7bsHlAZg0Zvxfau06v3nu26frvqhHxXq8LY3v2FvEdQ1CljuvrLOYqWiyHxZCm1aNQrhhtN6aJDlGbMSzCDhGwuf2cM6q9STXEw__&Key-Pair-Id=K3EI6M078Z3AC3) Generated caption: "Indication of correct signature"
maviced/intel-image-classification
maviced
2024-02-07T19:27:14Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T19:27:09Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
arryuann/medical-text-ft
arryuann
2024-02-07T19:24:50Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-07T19:21:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MichalGas/vit-base-patch16-224-in21k-finetuned-mgasior-07-02-2024
MichalGas
2024-02-07T19:03:30Z
5
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-07T17:22:14Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - f1 model-index: - name: vit-base-patch16-224-in21k-finetuned-mgasior-07-02-2024 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: F1 type: f1 value: 0.7716535433070866 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-mgasior-07-02-2024 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8842 - F1: 0.7717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.731 | 0.98 | 35 | 1.6748 | 0.3386 | | 1.5196 | 1.99 | 71 | 1.4890 | 0.4173 | | 1.3727 | 2.99 | 107 | 1.2938 | 0.5276 | | 1.2194 | 4.0 | 143 | 1.1519 | 0.6457 | | 1.1538 | 4.98 | 178 | 1.0544 | 0.6693 | | 1.0379 | 5.99 | 214 | 0.9852 | 0.7165 | | 1.0232 | 6.99 | 250 | 0.9439 | 0.7323 | | 0.9586 | 8.0 | 286 | 0.9136 | 0.7480 | | 0.9374 | 8.98 | 321 | 0.8946 | 0.7638 | | 0.96 | 9.79 | 350 | 0.8842 | 0.7717 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
shapermindai/pygmalion-free
shapermindai
2024-02-07T18:43:30Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-generation", "text generation", "conversational", "en", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T13:28:02Z
--- license: agpl-3.0 language: - en thumbnail: null tags: - text generation - conversational inference: true pipeline_tag: conversational --- # Pygmalion 1.3B ## Model description Pymalion 1.3B is a proof-of-concept dialogue model based on EleutherAI's [pythia-1.3b-deduped](https://huggingface.co/EleutherAI/pythia-1.3b-deduped). **Warning:** This model is **NOT** suitable for use by minors. It **will** output X-rated content under certain circumstances. ## Training data The fine-tuning dataset consisted of 56MB of dialogue data gathered from multiple sources, which includes both real _and_ partially machine-generated conversations. ## Training procedure Fine-tuning was done using [ColossalAI](https://github.com/hpcaitech/ColossalAI) (specifically, with a slightly modified version of their [OPT fine-tune example](https://github.com/hpcaitech/ColossalAI/blob/78509124d32b63b7fc36f6508e0576a326d51422/examples/language/opt/run_clm.py)) for around 11.4 million tokens over 5440 steps on a single 24GB GPU. The run took just under 21 hours. ## Intended use ### The easy way We provide a notebook with a Gradio UI for playing around with the model without having to manually format inputs. This notebook can be found [here](https://github.com/PygmalionAI/gradio-ui/blob/master/notebooks/GPU.ipynb). ### The manual way The model can be used as a regular text generation model, but it'll perform best if the input prompt adheres to the following format: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] [DIALOGUE HISTORY] You: [Your input message here] [CHARACTER]: ``` Where `[CHARACTER] `is, as you can probably guess, the name of the character you want the model to portray, and `[DIALOGUE HISTORY]` is chat history so the model can have some conversational context to draw from. Ideally it'll be pairs of messages like: ``` [CHARACTER]: [some dialogue here] You: [your response to the dialogue above] ``` Apart from chat history, you can also just add example conversations in `[DIALOGUE HISTORY]` to show how the character should speak - ideally at the beginning, so it doesn't get confused as to what's conversation history vs. character definition. ## Known issues - The model can get stuck repeating certain phrases, or sometimes even entire sentences. - We believe this is due to that behavior being present in the training data itself, and plan to investigate and adjust accordingly for future versions.
jlbaker361/dcgan-cond-wikiart1000-clip-resized
jlbaker361
2024-02-07T18:38:49Z
0
0
null
[ "region:us" ]
null
2024-02-01T04:06:55Z
--- {} --- Creative Adversarial Network epochs: 200 dataset jlbaker361/wikiart-balanced1000 n classes 27 batch_size 128 images where resized to 768 and then center cropped to: 512 used clip=True conditional =True discriminator parameters: init_dim: 32 final_dim 512 generator parameters: input noise_dim: 100
ryusangwon/bart-large-cnndm
ryusangwon
2024-02-07T18:30:26Z
4
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large", "base_model:finetune:facebook/bart-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-02T12:34:59Z
--- license: apache-2.0 base_model: facebook/bart-large tags: - generated_from_trainer metrics: - rouge model-index: - name: cnn_dailymail_726_bart-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cnn_dailymail_726_bart-large This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8412 - Rouge1: 0.2469 - Rouge2: 0.1266 - Rougel: 0.2074 - Rougelsum: 0.2332 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.9706 | 0.22 | 500 | 0.9015 | 0.237 | 0.1181 | 0.1979 | 0.2232 | 19.9999 | | 0.9212 | 0.45 | 1000 | 0.8771 | 0.237 | 0.1193 | 0.199 | 0.2233 | 20.0 | | 0.8991 | 0.67 | 1500 | 0.8572 | 0.2443 | 0.1238 | 0.2045 | 0.2304 | 20.0 | | 0.9085 | 0.89 | 2000 | 0.8519 | 0.2404 | 0.1227 | 0.2022 | 0.2269 | 20.0 | | 0.8494 | 1.11 | 2500 | 0.8471 | 0.2437 | 0.1233 | 0.2041 | 0.2298 | 20.0 | | 0.832 | 1.34 | 3000 | 0.8400 | 0.2438 | 0.1248 | 0.2055 | 0.2301 | 20.0 | | 0.8522 | 1.56 | 3500 | 0.8393 | 0.2417 | 0.1242 | 0.2043 | 0.2283 | 20.0 | | 0.8494 | 1.78 | 4000 | 0.8338 | 0.2436 | 0.1239 | 0.2047 | 0.23 | 19.9999 | | 0.7729 | 2.01 | 4500 | 0.8332 | 0.2431 | 0.1253 | 0.2048 | 0.2298 | 20.0 | | 0.7761 | 2.23 | 5000 | 0.8323 | 0.2477 | 0.1264 | 0.207 | 0.2335 | 19.9994 | | 0.7788 | 2.45 | 5500 | 0.8277 | 0.2473 | 0.1259 | 0.2068 | 0.2333 | 20.0 | | 0.7832 | 2.67 | 6000 | 0.8251 | 0.2453 | 0.126 | 0.2061 | 0.2317 | 20.0 | | 0.7888 | 2.9 | 6500 | 0.8239 | 0.242 | 0.1241 | 0.2037 | 0.2287 | 20.0 | | 0.7413 | 3.12 | 7000 | 0.8360 | 0.2394 | 0.1228 | 0.2017 | 0.2258 | 20.0 | | 0.7438 | 3.34 | 7500 | 0.8283 | 0.2462 | 0.1267 | 0.2072 | 0.2326 | 19.9999 | | 0.7271 | 3.57 | 8000 | 0.8275 | 0.2406 | 0.1235 | 0.2028 | 0.2276 | 20.0 | | 0.7435 | 3.79 | 8500 | 0.8221 | 0.2451 | 0.1254 | 0.2055 | 0.2311 | 19.9998 | | 0.7072 | 4.01 | 9000 | 0.8277 | 0.2437 | 0.1251 | 0.2049 | 0.2301 | 19.9999 | | 0.708 | 4.24 | 9500 | 0.8270 | 0.2465 | 0.1263 | 0.2067 | 0.2325 | 19.9999 | | 0.7058 | 4.46 | 10000 | 0.8279 | 0.2424 | 0.1249 | 0.2045 | 0.229 | 19.9999 | | 0.6918 | 4.68 | 10500 | 0.8248 | 0.246 | 0.1259 | 0.2063 | 0.232 | 19.9998 | | 0.7121 | 4.9 | 11000 | 0.8231 | 0.2457 | 0.126 | 0.2058 | 0.232 | 19.9999 | | 0.6667 | 5.13 | 11500 | 0.8297 | 0.2458 | 0.1262 | 0.2066 | 0.2323 | 19.9996 | | 0.6767 | 5.35 | 12000 | 0.8309 | 0.2469 | 0.1269 | 0.2071 | 0.2332 | 19.9996 | | 0.6961 | 5.57 | 12500 | 0.8299 | 0.247 | 0.1271 | 0.2074 | 0.2333 | 20.0 | | 0.6842 | 5.8 | 13000 | 0.8333 | 0.2473 | 0.127 | 0.2077 | 0.2336 | 19.9996 | | 0.6485 | 6.02 | 13500 | 0.8360 | 0.2454 | 0.1259 | 0.2061 | 0.2316 | 19.9998 | | 0.6651 | 6.24 | 14000 | 0.8349 | 0.2454 | 0.126 | 0.2062 | 0.2314 | 20.0 | | 0.6483 | 6.46 | 14500 | 0.8331 | 0.2454 | 0.1258 | 0.2058 | 0.2316 | 20.0 | | 0.6626 | 6.69 | 15000 | 0.8309 | 0.2468 | 0.127 | 0.2069 | 0.2328 | 19.9996 | | 0.6675 | 6.91 | 15500 | 0.8337 | 0.2448 | 0.1255 | 0.2056 | 0.231 | 19.9999 | | 0.6479 | 7.13 | 16000 | 0.8387 | 0.2471 | 0.1267 | 0.2074 | 0.2333 | 19.9999 | | 0.6506 | 7.36 | 16500 | 0.8377 | 0.2474 | 0.1264 | 0.2071 | 0.2335 | 19.9999 | | 0.643 | 7.58 | 17000 | 0.8369 | 0.2454 | 0.1259 | 0.2059 | 0.2318 | 20.0 | | 0.6262 | 7.8 | 17500 | 0.8378 | 0.2466 | 0.1269 | 0.2071 | 0.233 | 19.9997 | | 0.6235 | 8.02 | 18000 | 0.8415 | 0.2458 | 0.1266 | 0.2065 | 0.2321 | 20.0 | | 0.6081 | 8.25 | 18500 | 0.8421 | 0.2465 | 0.1267 | 0.2069 | 0.2326 | 19.9997 | | 0.6257 | 8.47 | 19000 | 0.8409 | 0.2477 | 0.1267 | 0.2075 | 0.2337 | 19.9999 | | 0.6187 | 8.69 | 19500 | 0.8381 | 0.2459 | 0.1264 | 0.2066 | 0.2321 | 19.9997 | | 0.6178 | 8.92 | 20000 | 0.8384 | 0.248 | 0.1273 | 0.2079 | 0.2339 | 19.9996 | | 0.6018 | 9.14 | 20500 | 0.8432 | 0.2468 | 0.1265 | 0.2071 | 0.2329 | 20.0 | | 0.6235 | 9.36 | 21000 | 0.8418 | 0.2469 | 0.1265 | 0.207 | 0.233 | 20.0 | | 0.606 | 9.58 | 21500 | 0.8418 | 0.2464 | 0.1264 | 0.207 | 0.2327 | 19.9999 | | 0.6016 | 9.81 | 22000 | 0.8412 | 0.2469 | 0.1266 | 0.2074 | 0.2332 | 20.0 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
MaziyarPanahi/Smaug-72B-v0.1-GPTQ
MaziyarPanahi
2024-02-07T18:24:50Z
17
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "finetuned", "quantized", "4-bit", "gptq", "base_model:moreh/MoMo-72B-lora-1.8.7-DPO", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "has_space", "base_model:abacusai/Smaug-72B-v0.1", "base_model:finetune:abacusai/Smaug-72B-v0.1", "license:apache-2.0" ]
text-generation
2024-02-07T18:18:03Z
--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - safetensors - llama - text-generation - base_model:moreh/MoMo-72B-lora-1.8.7-DPO - license:other - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - has_space model_name: Smaug-72B-v0.1-GPTQ base_model: abacusai/Smaug-72B-v0.1 inference: false model_creator: abacusai pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Description [MaziyarPanahi/Smaug-72B-v0.1-GPTQ](https://huggingface.co/MaziyarPanahi/Smaug-72B-v0.1-GPTQ) is a quantized (GPTQ) version of [abacusai/Smaug-72B-v0.1](https://huggingface.co/abacusai/Smaug-72B-v0.1) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/Smaug-72B-v0.1-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```
macadeliccc/laser-dolphin-mixtral-2x7b-dpo-AWQ
macadeliccc
2024-02-07T18:23:05Z
5
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
text-generation
2024-02-07T18:16:57Z
--- license: cc --- # Laser-dolphin-mixtral-2x7b-dpo-AWQ The original model is listed here [macadeliccc/laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo) ## Quantizations + 4-bit
fazito25/Taxi-v3
fazito25
2024-02-07T18:18:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T18:18:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fazito25/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
wt697075/java
wt697075
2024-02-07T18:18:48Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2024-02-07T18:18:48Z
--- license: cc-by-nc-sa-4.0 ---
turgutburak01/cartPole8
turgutburak01
2024-02-07T18:17:14Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T17:39:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: cartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
fazito25/q-FrozenLake-v1-4x4-noSlippery
fazito25
2024-02-07T18:14:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T18:14:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fazito25/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Saini-Manisha/videomae-base-finetuned-kinetics-finetuned-ucf101-subset
Saini-Manisha
2024-02-07T18:11:47Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2024-02-07T16:35:16Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-kinetics-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-kinetics-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2309 - Accuracy: 0.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2587 | 0.13 | 19 | 1.2644 | 1.0 | | 0.6711 | 1.13 | 38 | 0.2098 | 1.0 | | 0.1355 | 2.13 | 57 | 0.0465 | 1.0 | | 0.0295 | 3.13 | 76 | 0.0431 | 0.9857 | | 0.0155 | 4.13 | 95 | 0.0226 | 1.0 | | 0.0175 | 5.13 | 114 | 0.0178 | 1.0 | | 0.0168 | 6.13 | 133 | 0.0180 | 1.0 | | 0.008 | 7.1 | 148 | 0.0184 | 1.0 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.11.0 - Tokenizers 0.15.1
paulux84/autotrain-z58fs-z9tot
paulux84
2024-02-07T18:05:22Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T16:21:47Z
--- license: other tags: - autotrain - text-generation widget: - text: 'I love AutoTrain because ' --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
Statos6/dqn-SpaceInvadersNoFrameskip-v4
Statos6
2024-02-07T18:05:15Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-07T18:04:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 648.00 +/- 159.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Statos6 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Statos6 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Statos6 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
wyyadd/fork-detect-fake
wyyadd
2024-02-07T17:53:39Z
11
0
transformers
[ "transformers", "pytorch", "safetensors", "ResNet", "image-classification", "custom_code", "base_model:aaronespasa/deepfake-detection-resnetinceptionv1", "base_model:finetune:aaronespasa/deepfake-detection-resnetinceptionv1", "license:apache-2.0", "autotrain_compatible", "region:us" ]
image-classification
2024-02-07T17:31:03Z
--- license: apache-2.0 base_model: aaronespasa/deepfake-detection-resnetinceptionv1 library_name: transformers --- # original model repo : 📖 this is a cutomized version of the following model [aaronespasa/deepfake-detection-resnetinceptionv1](https://huggingface.co/aaronespasa/deepfake-detection-resnetinceptionv1) # how to use ```python from transformers import pipeline pipe = pipeline(model="not-lain/deepfake",trust_remote_code=True) pipe.predict("img_path.jpg") ``` ```python >> {"confidences":confidences,"face_with_mask": face_with_mask} ``` # dependencies to install related dependencies simply use the command ``` !wget https://huggingface.co/not-lain/deepfake/resolve/main/requirements.txt && pip install -r requirements.txt ```
rame/en_pipeline_ner_model_4
rame
2024-02-07T17:53:37Z
1
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2024-02-07T17:53:07Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline_ner_model_4 results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7673501577 - name: NER Recall type: recall value: 0.7667454689 - name: NER F Score type: f_score value: 0.7670476941 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline_ner_model_4` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `allergy_name`, `cancer`, `chronic_disease`, `treatment` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 76.70 | | `ENTS_P` | 76.74 | | `ENTS_R` | 76.67 | | `TRANSFORMER_LOSS` | 655099.91 | | `NER_LOSS` | 820705.40 |
danaleee/CL_rank4_iter800_valprompt
danaleee
2024-02-07T17:52:51Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-07T16:20:41Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks teddybear tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - danaleee/CL_rank4_iter800_valprompt These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks teddybear using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
islasher/intel-image-classification
islasher
2024-02-07T17:51:17Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T17:51:13Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
0xJCarlos/QuestionAnswer_ESP
0xJCarlos
2024-02-07T17:50:51Z
14
1
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa", "base_model:finetune:dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa", "endpoints_compatible", "region:us" ]
question-answering
2023-11-23T17:51:49Z
--- base_model: dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa tags: - generated_from_keras_callback model-index: - name: 0xJCarlos/QuestionAnswer_ESP results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # 0xJCarlos/QuestionAnswer_ESP This model is a fine-tuned version of [dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa](https://huggingface.co/dccuchile/distilbert-base-spanish-uncased-finetuned-qa-mlqa) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3146 - Validation Loss: 1.6961 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9292 | 1.7179 | 0 | | 1.4487 | 1.6961 | 1 | | 1.3231 | 1.6961 | 2 | | 1.3165 | 1.6961 | 3 | | 1.3146 | 1.6961 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1
POLYQ/mixtral-nek-finetune_0.3_all_data_4_lines
POLYQ
2024-02-07T17:43:18Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-02-07T17:40:12Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: mixtral-nek-finetune_0.3_all_data_4_lines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mixtral-nek-finetune_0.3_all_data_4_lines This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8456 | 0.09 | 1000 | 0.8573 | | 0.838 | 0.18 | 2000 | 0.8426 | | 0.8373 | 0.27 | 3000 | 0.8341 | | 0.8168 | 0.36 | 4000 | 0.8274 | | 0.8163 | 0.44 | 5000 | 0.8222 | | 0.8079 | 0.53 | 6000 | 0.8181 | | 0.8089 | 0.62 | 7000 | 0.8140 | | 0.8119 | 0.71 | 8000 | 0.8108 | | 0.8007 | 0.8 | 9000 | 0.8082 | | 0.809 | 0.89 | 10000 | 0.8062 | | 0.8084 | 0.98 | 11000 | 0.8051 | ### Framework versions - PEFT 0.8.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
crrodrvi/Practica1
crrodrvi
2024-02-07T17:40:34Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T17:40:29Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
atlaspilotpuppy/Mistral-7B-Instruct-v0.2-atc
atlaspilotpuppy
2024-02-07T17:38:38Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-02-07T17:38:29Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: Mistral-7B-Instruct-v0.2-atc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2-atc This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.1517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.13 | 0.04 | 100 | 0.1517 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Hitomiblood/intel-image-classification
Hitomiblood
2024-02-07T17:38:00Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T17:37:52Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
valintea/primer-modelo
valintea
2024-02-07T17:30:57Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T17:30:54Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
manibt1993/huner_disease
manibt1993
2024-02-07T17:25:03Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:transformer_dataset_ner_kaggle", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-02-07T04:59:17Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - transformer_dataset_ner_kaggle metrics: - precision - recall - f1 - accuracy model-index: - name: huner_disease results: - task: name: Token Classification type: token-classification dataset: name: transformer_dataset_ner_kaggle type: transformer_dataset_ner_kaggle config: ncbi_disease split: validation args: ncbi_disease metrics: - name: Precision type: precision value: 0.7905582615211689 - name: Recall type: recall value: 0.8222915042868277 - name: F1 type: f1 value: 0.8061127029608404 - name: Accuracy type: accuracy value: 0.9795934778779362 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # huner_disease This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the transformer_dataset_ner_kaggle dataset. It achieves the following results on the evaluation set: - Loss: 0.2260 - Precision: 0.7906 - Recall: 0.8223 - F1: 0.8061 - Accuracy: 0.9796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0651 | 1.0 | 1834 | 0.0703 | 0.6823 | 0.7880 | 0.7314 | 0.9767 | | 0.0459 | 2.0 | 3668 | 0.0712 | 0.7470 | 0.7617 | 0.7543 | 0.9781 | | 0.03 | 3.0 | 5502 | 0.0903 | 0.7278 | 0.8137 | 0.7684 | 0.9779 | | 0.0177 | 4.0 | 7336 | 0.0915 | 0.7529 | 0.8055 | 0.7783 | 0.9791 | | 0.0139 | 5.0 | 9170 | 0.1088 | 0.7346 | 0.8207 | 0.7753 | 0.9777 | | 0.01 | 6.0 | 11004 | 0.1196 | 0.7283 | 0.8207 | 0.7718 | 0.9772 | | 0.007 | 7.0 | 12838 | 0.1175 | 0.7615 | 0.7938 | 0.7773 | 0.9787 | | 0.0055 | 8.0 | 14672 | 0.1488 | 0.7452 | 0.8237 | 0.7825 | 0.9783 | | 0.0049 | 9.0 | 16506 | 0.1351 | 0.7704 | 0.8125 | 0.7909 | 0.9795 | | 0.0042 | 10.0 | 18340 | 0.1617 | 0.7491 | 0.8184 | 0.7822 | 0.9782 | | 0.0035 | 11.0 | 20174 | 0.1453 | 0.7557 | 0.8009 | 0.7776 | 0.9785 | | 0.0036 | 12.0 | 22008 | 0.1662 | 0.7554 | 0.8198 | 0.7863 | 0.9777 | | 0.0027 | 13.0 | 23842 | 0.1621 | 0.7781 | 0.8075 | 0.7925 | 0.9790 | | 0.0027 | 14.0 | 25676 | 0.1599 | 0.7519 | 0.8110 | 0.7804 | 0.9776 | | 0.0027 | 15.0 | 27510 | 0.1633 | 0.7710 | 0.8127 | 0.7913 | 0.9785 | | 0.0027 | 16.0 | 29344 | 0.1674 | 0.7588 | 0.8129 | 0.7849 | 0.9780 | | 0.0022 | 17.0 | 31178 | 0.1670 | 0.7652 | 0.8168 | 0.7902 | 0.9781 | | 0.0021 | 18.0 | 33012 | 0.1586 | 0.7734 | 0.8159 | 0.7940 | 0.9790 | | 0.002 | 19.0 | 34846 | 0.1650 | 0.7787 | 0.8172 | 0.7975 | 0.9795 | | 0.0018 | 20.0 | 36680 | 0.1642 | 0.7697 | 0.8048 | 0.7868 | 0.9793 | | 0.0017 | 21.0 | 38514 | 0.1874 | 0.7743 | 0.8176 | 0.7954 | 0.9784 | | 0.0015 | 22.0 | 40348 | 0.1598 | 0.7647 | 0.8227 | 0.7926 | 0.9785 | | 0.0012 | 23.0 | 42182 | 0.1819 | 0.7958 | 0.7997 | 0.7977 | 0.9793 | | 0.0016 | 24.0 | 44016 | 0.1679 | 0.7960 | 0.8073 | 0.8016 | 0.9794 | | 0.0013 | 25.0 | 45850 | 0.1659 | 0.7662 | 0.8147 | 0.7897 | 0.9785 | | 0.001 | 26.0 | 47684 | 0.1774 | 0.7732 | 0.8217 | 0.7967 | 0.9789 | | 0.0016 | 27.0 | 49518 | 0.1622 | 0.7767 | 0.8131 | 0.7945 | 0.9789 | | 0.0007 | 28.0 | 51352 | 0.1958 | 0.7642 | 0.8223 | 0.7922 | 0.9783 | | 0.0009 | 29.0 | 53186 | 0.1861 | 0.7764 | 0.8223 | 0.7987 | 0.9790 | | 0.0012 | 30.0 | 55020 | 0.1917 | 0.7528 | 0.8252 | 0.7873 | 0.9774 | | 0.0005 | 31.0 | 56854 | 0.1952 | 0.7833 | 0.8106 | 0.7967 | 0.9792 | | 0.0009 | 32.0 | 58688 | 0.1910 | 0.7801 | 0.8149 | 0.7971 | 0.9791 | | 0.0008 | 33.0 | 60522 | 0.1931 | 0.7737 | 0.8180 | 0.7952 | 0.9790 | | 0.0006 | 34.0 | 62356 | 0.1902 | 0.7730 | 0.8176 | 0.7947 | 0.9788 | | 0.0008 | 35.0 | 64190 | 0.1904 | 0.7799 | 0.8211 | 0.8 | 0.9791 | | 0.0006 | 36.0 | 66024 | 0.1951 | 0.7844 | 0.8153 | 0.7995 | 0.9795 | | 0.0008 | 37.0 | 67858 | 0.1943 | 0.7749 | 0.8256 | 0.7994 | 0.9791 | | 0.0007 | 38.0 | 69692 | 0.2051 | 0.7796 | 0.8248 | 0.8016 | 0.9791 | | 0.0004 | 39.0 | 71526 | 0.2108 | 0.7796 | 0.8223 | 0.8004 | 0.9792 | | 0.0004 | 40.0 | 73360 | 0.2135 | 0.7788 | 0.8254 | 0.8014 | 0.9792 | | 0.0004 | 41.0 | 75194 | 0.2028 | 0.7908 | 0.8176 | 0.8040 | 0.9798 | | 0.0006 | 42.0 | 77028 | 0.2058 | 0.7855 | 0.8215 | 0.8031 | 0.9796 | | 0.0005 | 43.0 | 78862 | 0.2109 | 0.7860 | 0.8254 | 0.8052 | 0.9793 | | 0.0004 | 44.0 | 80696 | 0.2175 | 0.7784 | 0.8287 | 0.8028 | 0.9791 | | 0.0003 | 45.0 | 82530 | 0.2206 | 0.7904 | 0.8223 | 0.8060 | 0.9795 | | 0.0003 | 46.0 | 84364 | 0.2198 | 0.7942 | 0.8180 | 0.8059 | 0.9797 | | 0.0004 | 47.0 | 86198 | 0.2265 | 0.7791 | 0.8233 | 0.8006 | 0.9791 | | 0.0003 | 48.0 | 88032 | 0.2265 | 0.7825 | 0.8242 | 0.8028 | 0.9793 | | 0.0004 | 49.0 | 89866 | 0.2260 | 0.7892 | 0.8209 | 0.8048 | 0.9794 | | 0.0003 | 50.0 | 91700 | 0.2260 | 0.7906 | 0.8223 | 0.8061 | 0.9796 | # Run the model ```python from transformers import pipeline model_checkpoint = "manibt1993/huner_disease" token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" ) token_classifier("patient has diabtes, anemia, hypertension with ckd which hurts the patient since 6 years. Patient today experience with right leg pain, fever and cough.") ``` ### Model output ```python [{'entity_group': 'Disease', 'score': 0.69145554, 'word': 'diabtes', 'start': 12, 'end': 19}, {'entity_group': 'Disease', 'score': 0.9955915, 'word': 'anemia', 'start': 21, 'end': 27}, {'entity_group': 'Disease', 'score': 0.99971104, 'word': 'hypertension', 'start': 29, 'end': 41}, {'entity_group': 'Disease', 'score': 0.9249976, 'word': 'right leg pain', 'start': 120, 'end': 134}, {'entity_group': 'Disease', 'score': 0.9983512, 'word': 'fever', 'start': 136, 'end': 141}, {'entity_group': 'Disease', 'score': 0.99849665, 'word': 'cough', 'start': 146, 'end': 151}] ``` ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.1
Tommidi/spatio_temporal_vit-finetuned-ucf101-subset
Tommidi
2024-02-07T17:24:01Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "st_vit", "generated_from_trainer", "base_model:Tommidi/st_vit_untrained", "base_model:finetune:Tommidi/st_vit_untrained", "endpoints_compatible", "region:us" ]
null
2024-02-07T16:39:37Z
--- base_model: Tommidi/st_vit_untrained tags: - generated_from_trainer metrics: - accuracy model-index: - name: spatio_temporal_vit-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spatio_temporal_vit-finetuned-ucf101-subset This model is a fine-tuned version of [Tommidi/st_vit_untrained](https://huggingface.co/Tommidi/st_vit_untrained) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1244 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 37 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6013 | 1.0 | 37 | 0.1244 | 0.9 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
angela1996/intel-image-classification
angela1996
2024-02-07T17:21:06Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T17:21:03Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
manche/gpt2-safeguard-sg1
manche
2024-02-07T17:19:02Z
89
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T17:18:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MiVaCod/intel-image-classification
MiVaCod
2024-02-07T17:15:39Z
0
0
fastai
[ "fastai", "region:us" ]
null
2024-02-07T17:15:35Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
waldie/Etheria-55b-v0.1-2.5bpw-h6-exl2
waldie
2024-02-07T16:58:38Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "Etheria", "arxiv:2311.03099", "arxiv:2306.01708", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T16:09:57Z
--- base_model: [] tags: - mergekit - Etheria license: apache-2.0 --- # Steelskull/Etheria-55b-v0.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/RAhrbktyyVQxOR1np-9L2.png) ## Merge Details An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models. due to the merge it 'theoretically' should have a context of 200k but I recommend starting at 32k and moveing up, as it is unknown (at this time) what the merge has done to the context length. This is a merge of both VerA and VerB of Etheria-55b (There numbers were surprisingly good), I then created a sacrificial 55B out of the most performant yi-34b-200k Model and performed a Dare_ties merge and equalize the model into its current state. ### recommended settings and Prompt Format: Ive tested it up to 32k context using exl2 using these settings: ``` "temp": 0.7, "temperature_last": true, "top_p": 1, "top_k": 0, "top_a": 0, "tfs": 1, "epsilon_cutoff": 0, "eta_cutoff": 0, "typical_p": 1, "min_p": 0.1, "rep_pen": 1.1, "rep_pen_range": 8192, "no_repeat_ngram_size": 0, "penalty_alpha": 0, "num_beams": 1, "length_penalty": 1, "min_length": 0, "encoder_rep_pen": 1, "freq_pen": 0, "presence_pen": 0, "do_sample": true, "early_stopping": false, "add_bos_token": false, "truncation_length": 2048, "ban_eos_token": true, "skip_special_tokens": true, "streaming": true, "mirostat_mode": 0, "mirostat_tau": 5, "mirostat_eta": 0.1, ``` Prompt format that work well ``` ChatML & Alpaca ``` ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using Merged-Etheria-55b as a base. ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: Merged-Etheria-55b models: - model: Sacr-Etheria-55b parameters: weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113] density: 0.61 - model: Merged-Etheria-55b parameters: weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113] density: 0.61 merge_method: dare_ties tokenizer_source: union parameters: int8_mask: true dtype: bfloat16 ```
interrobang/OpenHermes-2.5-Mistral-7B-GGUF-f16
interrobang
2024-02-07T16:56:00Z
22
1
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-02-07T16:03:14Z
--- license: apache-2.0 --- OpenHermes-2.5-Mistral-7B by teknium converted to f16 gguf for easier tinkering; original model at https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
theminji/TinyAITA
theminji
2024-02-07T16:52:14Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:finetune:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T05:03:39Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - trl - sft - generated_from_trainer model-index: - name: TinyAITA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyAITA This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. ## Model description ```py import torch from transformers import pipeline, AutoTokenizer, TextStreamer import re tokenizer = AutoTokenizer.from_pretrained("TheBossLevel123/TinyAITA") pipe = pipeline("text-generation", model="TheBossLevel123/TinyAITA", torch_dtype=torch.bfloat16, device_map="auto") streamer=TextStreamer(tokenizer) ``` ```py prompt = 'AITA for XYZ?' outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, streamer=streamer, eos_token_id=tokenizer.encode("<|im_end|>")) if outputs and "generated_text" in outputs[0]: text = outputs[0]["generated_text"] print(f"Prompt: {prompt}") print("") print(text) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
jomacgo/tfm_bert_qa_tf_spanish_model
jomacgo
2024-02-07T16:47:08Z
48
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:dccuchile/distilbert-base-spanish-uncased", "base_model:finetune:dccuchile/distilbert-base-spanish-uncased", "endpoints_compatible", "region:us" ]
question-answering
2024-02-06T16:34:35Z
--- base_model: dccuchile/distilbert-base-spanish-uncased tags: - generated_from_keras_callback model-index: - name: jomacgo/tfm_bert_qa_tf_spanish_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jomacgo/tfm_bert_qa_tf_spanish_model This model is a fine-tuned version of [dccuchile/distilbert-base-spanish-uncased](https://huggingface.co/dccuchile/distilbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3719 - Validation Loss: 1.3237 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 310, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.1953 | 1.9776 | 0 | | 1.7034 | 1.3237 | 1 | | 1.3719 | 1.3237 | 2 | ### Framework versions - Transformers 4.37.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1
StorkelOpa/ancient-world
StorkelOpa
2024-02-07T16:43:31Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-02-07T16:43:00Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: ancient world painting of Earth's Early Landscape, Showcasing Towering Mountains, Deep Valleys, and Volcanic Activity, Circa 4.5 Billion Years Ago. output: url: image-0.png - text: ancient world painting of Earth's Early Ocean Floor, Alive with Primitive Plant Life Amidst Volcanic Rock Formations, Circa 3.5 Billion Years Ago. output: url: image-1.png - text: ancient world painting of Cambrian Marine Life, Featuring Trilobites and Jellyfish Amidst Ocean Flora. output: url: image-2.png - text: ancient world painting of the Cambrian Seabed, Featuring the Trilobites Paradoxides gracilis, Comocoryphe sulzeri, and Ptychoparia striata, with the Stalked Echinoderm Acadocrinus jani and the Algae Dalya, Set Against a Backdrop of Jellyfish in the Open Water. output: url: image-3.png - text: ancient world painting of Upper Silurian Marine Life, with Predatory Nautiloids and Sea Lilies in a Coral Seabed Landscape. output: url: image-4.png - text: ancient world painting of the Late Silurian Period, Depicting the First Land Plant Invasion with Primitive Psilophytes Colonizing Coastal Floodplains and Marshes. output: url: image-5.png - text: ancient world painting of Middle Devonian Flora, Featuring True Horsetails, Clubmosses, and Ferns Amidst a Primitive Landscape with Waterfalls and Rocky Terrain. output: url: image-6.png - text: ancient world painting output: url: image-7.png - text: ancient world painting of Early Devonian Aquatic Life, Depicting Osteolepis Attacking Heterostracan Armored Fish with Primitive Plants in the Foreground. output: url: image-8.png - text: ancient world painting of Devonian Aquatic Ecosystem, Illustrating Armored Placoderms Like Pterichthyodes and Bothrialepis Navigating the Ocean Floor. output: url: image-9.png - text: ancient world painting of Devonian Sea Life, Showcasing the Arthrodira Placoderms in a Dynamic Underwater Scene. output: url: image-10.png - text: ancient world painting of Silurian to Devonian Freshwater Fish, Depicting the Primitive Acanthodii Group with Climatius, Euthacanthus, and Parexus. output: url: image-11.png - text: ancient world painting of Late Devonian Landscape, Featuring Ichthyostega and the Differentiated Archaeopteris Flora with Cyclostigma Trees and Sphenophyllum Plants. output: url: image-12.png - text: ancient world painting output: url: image-13.png - text: ancient world painting output: url: image-14.png - text: ancient world painting output: url: image-15.png - text: ancient world painting output: url: image-16.png - text: ancient world painting output: url: image-17.png - text: ancient world painting output: url: image-18.png - text: ancient world painting output: url: image-19.png - text: ancient world painting output: url: image-20.png - text: ancient world painting output: url: image-21.png - text: ancient world painting output: url: image-22.png - text: ancient world painting output: url: image-23.png - text: ancient world painting output: url: image-24.png - text: ancient world painting output: url: image-25.png - text: ancient world painting output: url: image-26.png - text: ancient world painting output: url: image-27.png - text: ancient world painting output: url: image-28.png - text: ancient world painting output: url: image-29.png - text: ancient world painting output: url: image-30.png - text: ancient world painting output: url: image-31.png - text: ancient world painting output: url: image-32.png - text: ancient world painting output: url: image-33.png - text: ancient world painting output: url: image-34.png - text: ancient world painting output: url: image-35.png - text: ancient world painting output: url: image-36.png - text: ancient world painting output: url: image-37.png - text: ancient world painting output: url: image-38.png - text: ancient world painting output: url: image-39.png - text: ancient world painting output: url: image-40.png - text: ancient world painting output: url: image-41.png - text: ancient world painting output: url: image-42.png - text: ancient world painting output: url: image-43.png - text: ancient world painting output: url: image-44.png - text: ancient world painting output: url: image-45.png - text: ancient world painting output: url: image-46.png - text: ancient world painting output: url: image-47.png - text: ancient world painting output: url: image-48.png - text: ancient world painting output: url: image-49.png - text: ancient world painting output: url: image-50.png - text: ancient world painting output: url: image-51.png - text: ancient world painting output: url: image-52.png - text: ancient world painting output: url: image-53.png - text: ancient world painting output: url: image-54.png - text: ancient world painting output: url: image-55.png - text: ancient world painting output: url: image-56.png - text: ancient world painting output: url: image-57.png - text: ancient world painting output: url: image-58.png - text: ancient world painting output: url: image-59.png - text: ancient world painting output: url: image-60.png - text: ancient world painting output: url: image-61.png - text: ancient world painting output: url: image-62.png - text: ancient world painting output: url: image-63.png - text: ancient world painting output: url: image-64.png - text: ancient world painting output: url: image-65.png - text: ancient world painting output: url: image-66.png - text: ancient world painting output: url: image-67.png - text: ancient world painting output: url: image-68.png - text: ancient world painting output: url: image-69.png - text: ancient world painting output: url: image-70.png - text: ancient world painting output: url: image-71.png - text: ancient world painting output: url: image-72.png - text: ancient world painting output: url: image-73.png - text: ancient world painting output: url: image-74.png - text: ancient world painting output: url: image-75.png - text: ancient world painting output: url: image-76.png - text: ancient world painting output: url: image-77.png - text: ancient world painting output: url: image-78.png - text: ancient world painting output: url: image-79.png - text: ancient world painting output: url: image-80.png - text: ancient world painting output: url: image-81.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: ancient world painting license: openrail++ --- # SDXL LoRA DreamBooth - StorkelOpa/ancient-world <Gallery /> ## Model description ### These are StorkelOpa/ancient-world LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`ancient-world.safetensors` here 💾](/StorkelOpa/ancient-world/blob/main/ancient-world.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:ancient-world:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`ancient-world_emb.safetensors` here 💾](/StorkelOpa/ancient-world/blob/main/ancient-world_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `ancient-world_emb` to your prompt. For example, `ancient world painting` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('StorkelOpa/ancient-world', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='StorkelOpa/ancient-world', filename='ancient-world_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('ancient world painting').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/StorkelOpa/ancient-world/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Adeptschneider/mistral_lora_instruct_model
Adeptschneider
2024-02-07T16:43:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-07T16:43:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roktimsardar123/MeinaMix_V11
roktimsardar123
2024-02-07T16:35:56Z
19
1
diffusers
[ "diffusers", "safetensors", "art", "anime", "stable diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-07T16:35:05Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art - anime - stable diffusion --- MeinaMix Objective is to be able to do good art with little prompting. For examples and prompts, please checkout: https://civitai.com/models/7240/meinamix I have a discord server where you can post images that you generated, discuss prompt and/or ask for help. https://discord.gg/XC9nGZNDUd If you like one of my models and want to support their updates I've made a ko-fi page; https://ko-fi.com/meina where you can pay me a coffee <3 And a Patreon page; https://www.patreon.com/MeinaMix where you can support me and get acess to beta of my models! You may also try this model using Sinkin.ai: https://sinkin.ai/m/vln8Nwr MeinaMix and the other of Meinas will ALWAYS be FREE. Recommendations of use: Enable Quantization in K samplers. Hires.fix is needed for prompts where the character is far away in order to make decent images, it drastically improve the quality of face and eyes! Recommended parameters: Sampler: Euler a: 40 to 60 steps. Sampler: DPM++ SDE Karras: 20 to 30 steps. Sampler: DPM++ 2M Karras: 20 to 40 steps. CFG Scale: 7. Resolutions: 512x768, 512x1024 for Portrait! Resolutions: 768x512, 1024x512, 1536x512 for Landscape! Hires.fix: R-ESRGAN 4x+Anime6b, with 10 steps at 0.3 up to 0.5 denoising. Clip Skip: 2. Negatives: ' (worst quality, low quality:1.4), (zombie, sketch, interlocked fingers, comic) '
objecthub/Controlly
objecthub
2024-02-07T16:35:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-02-07T16:35:49Z
--- license: creativeml-openrail-m ---
Muhammedwelian/Lamba_man
Muhammedwelian
2024-02-07T16:32:32Z
0
0
null
[ "license:other", "region:us" ]
null
2024-02-07T16:32:32Z
--- license: other license_name: '392001' license_link: LICENSE ---
danaleee/CL_rank4_iter500_valprompt
danaleee
2024-02-07T16:25:46Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-02-07T15:38:10Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks teddybear tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - danaleee/CL_rank4_iter500_valprompt These are LoRA adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks teddybear using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
LoneStriker/Senku-70B-Full-6.0bpw-h6-exl2
LoneStriker
2024-02-07T16:19:19Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:cc-by-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T15:57:05Z
--- license: cc-by-2.0 --- Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth. EQ-Bench: 84.89 Will run more benches later.
bdpc/test_twowayloss_implementation
bdpc
2024-02-07T16:14:37Z
91
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-06T12:41:21Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: test_twowayloss_implementation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_twowayloss_implementation This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.9001 - Accuracy: 0.5659 - Precision: 0.0114 - Recall: 0.5082 - F1: 0.0223 - Hamming: 0.4341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 8.8818 | 0.0 | 5 | 8.9210 | 0.5632 | 0.0110 | 0.4947 | 0.0216 | 0.4368 | | 8.124 | 0.0 | 10 | 8.9001 | 0.5659 | 0.0114 | 0.5082 | 0.0223 | 0.4341 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.14.1
manche/gpt2-safeguard-zs
manche
2024-02-07T16:14:17Z
89
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T16:13:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IB13/t5_ppo_model_3
IB13
2024-02-07T16:09:18Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:IB13/sft_t5_base_processed_model", "base_model:adapter:IB13/sft_t5_base_processed_model", "region:us" ]
null
2024-02-07T13:50:42Z
--- library_name: peft base_model: IB13/sft_t5_base_processed_model --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
wish6424/Mixtral-8x7B-prostate-sum-test
wish6424
2024-02-07T16:08:40Z
2
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-02-06T19:26:33Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: Mixtral-8x7B-prostate-sum-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mixtral-8x7B-prostate-sum-test This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9034 - eval_runtime: 1.0713 - eval_samples_per_second: 0.933 - eval_steps_per_second: 0.933 - epoch: 41.67 - step: 250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - training_steps: 1000 ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
noza-kit/Adapter_llama2_translate_Q_enpt_ex2-1epoch
noza-kit
2024-02-07T16:07:37Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-02-07T13:20:47Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
ffxvs/embeddings-collection-xl
ffxvs
2024-02-07T16:06:37Z
0
1
null
[ "region:us" ]
null
2024-01-22T16:51:09Z
List of embeddings collection SDXL : * [SimplePositiveXL_v2](https://civitai.com/models/118758/simplepositivexl?modelVersionId=182974)
tavalenzuelag/mistral-7b-e2e-mod
tavalenzuelag
2024-02-07T16:06:33Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-01T13:56:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matlok/tinyllama-cinder-openhermes-32k
matlok
2024-02-07T15:58:52Z
11
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:unknown", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T05:17:38Z
--- license: unknown --- ## Merging AI Models like Lego Blocks This model was merged with the following Hugging Face TinyLlama models using ties: - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T - Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct - Doctor-Shotgun/TinyLlama-1.1B-32k - Tensoic/TinyLlama-1.1B-3T-openhermes - Josephgflowers/TinyLlama-3T-Cinder-v1.3 ## How do I fine-tune this model? ### Fine-tuning using Hugging Face SFTTrainer - [Fine-tuning using Hugging Face SFTTrainer](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) ### Fine-tuning using Unsloth 2024-02-07 was unable to use unsloth due to pip install issues. Maybe others in the future will have more luck: - [Alpaca + TinyLlama + RoPE Scaling full example.ipynb](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) ## How do I generate my own model merges? This requires setting up your [Hugging Face User Account Access Tokens](https://huggingface.co/settings/tokens) before it will work: If you're using the command line you can use: ```sh huggingface-cli login ``` ```sh time ./run-tiny-merge.py ``` ### What's this code doing? Here's the latest version: ```python3 #!/usr/bin/env python3 import os import transformers import torch import logging from ddare.merge import merge_tensors from ddare.tensor import ( dare_ties_sparsification, relative_norm, divide_tensor_into_sets, ) from ddare.util import get_device import re from typing import Dict, Tuple, List logging.basicConfig(level=logging.INFO) log = logging.getLogger(__name__) def get_models( models: List[str], trust_remote_code: bool, ): """ get the models :param models: model names to download :param trust_remote_code: are you sure??? True/False """ config = { "torch_dtype": torch.float16, "low_cpu_mem_usage": False, "trust_remote_code": trust_remote_code, } loaded_models = [] num_models = len(models) for midx, model_path in enumerate(models): log.info( f"loading model={midx + 1}/{num_models} " f"model={model_path} " ) loaded_models.append( transformers.AutoModelForCausalLM.from_pretrained( model_path, **config ) ) return loaded_models def pm( model, ): """ pretty print model :param model: show me the model """ keys = model.state_dict().keys() log.info(f"model keys={len(keys)}") for i, k in enumerate(keys): tensor = model.state_dict()[k] log.info( f"{i:3d} {k} shape={tensor.shape} " f"type={tensor.dtype} dev={tensor.device} " f"contig={tensor.is_contiguous()}" ) def run_text_test( model, tokenizer_path: str, question: str, device: str = "cuda", ): """ run a question on the model and return the answer :param model: initialized model :param tokenizer_path: tokenizer path/name :param question: what are you asking? :param device: where do you want to run "cpu"/"gpu"? """ base_model = model.to(device) log.info(f"loading tokenizer={tokenizer_path}") tokenizer = transformers.AutoTokenizer.from_pretrained( tokenizer_path, torch_dtype=torch.float16, ) inputs = tokenizer(question, return_tensors="pt").to( device ) with torch.backends.cuda.sdp_kernel( enable_flash=True, enable_math=False, enable_mem_efficient=True, ): outputs = base_model.generate( **inputs, max_new_tokens=256, ) answer = tokenizer.decode( outputs[0], skip_special_tokens=True ) log.info( "\n" "----------" "\n" f"tokenizer={tokenizer}\n " f"question:\n{question}\n" f"answer:\n{answer}\n" "----------" ) base_model = base_model.to(device) return tokenizer def get_layer_type(key: str) -> Tuple[int, str]: """ get the layer type :param key: name of the layer :return: layer id and name """ matcher = re.compile(r"model.layers.(\d+).(.+)") m = matcher.match(key) if m is None: if "model.norm.weight" == key: return -1, "norm" if "model.embed_tokens.weight" == key: return -1, "embed" if "lm_head.weight" == key: return -1, "head" log.info(f"Unknown key {key}") return -1, "unknown" return int(m.group(1)), m.group(2) def merge_model_with_ties( models: List[str], model_dst: str, trust_remote_code: bool = True, ): """ merge the list of models into one model called model_dst :param models: list of models to merge :param model_dst: name of the new model :param trust_remote_code: are you sure? True/False """ models = get_models( models=models, trust_remote_code=trust_remote_code, ) config = {} result_dict: Dict[str, torch.Tensor] = {} device = get_device() keys = models[0].state_dict().keys() num_keys = len(keys) for k in keys: block, layer_type = get_layer_type(k) m0: torch.Tensor = models[0].state_dict()[k] result = m0.clone() sets = divide_tensor_into_sets(tensor=m0, n_sets=4) # get the src layers to merge m = [ models[1].state_dict()[k], models[2].state_dict()[k], models[3].state_dict()[k], models[4].state_dict()[k], ] # build a ratio ratio = { "to_q": 0.0, "to_k": 0.0, "to_v": 0.0, }.get(layer_type, 0.5) norm_ratio = 0.68 log.info( f"model={k} {num_keys} shape={m0.shape} " f"dtype={m0.dtype} {m0.device} " f"ratio={ratio} " f"contig={m0.is_contiguous()} " f"norm={norm_ratio}" ) # for all tensors for i, tensor in enumerate(m): if layer_type == "to_k": # Get to_q key q_base = models[0].state_dict()[ k.replace("to_k", "to_q") ] q_merge = models[i].state_dict()[ k.replace("to_k", "to_q") ] scale = relative_norm(q_merge, q_base) tensor = tensor.to(device) / scale del scale elif layer_type == "to_q": scale = relative_norm(tensor, m0) tensor = tensor.to(device) * scale del scale slice_mask = (sets == i).bool() new_tensor = dare_ties_sparsification( model_a_param=m0, model_b_param=tensor, drop_rate=norm_ratio, ties="sum", rescale="off", device=device, **config, ) new_tensor = merge_tensors( "slerp", m0, tensor, ratio ) result = torch.where( slice_mask, new_tensor, result ) del new_tensor, slice_mask result_dict[k] = result # end of merge log.info(f"done merge saving to file: {model_dst}") out_model = ( transformers.AutoModelForCausalLM.from_pretrained( model_dst, **config ) ) out_model.state_dict = lambda: result_dict out_model.save_pretrained(model_dst) def run(): """ run the merge and upload the model and tokenizer This requires having the Hugging Face token set before it will work: ```huggingface-cli login``` """ question = "why is the sky blue?" log.info( f"merging models and asking the question: {question}" ) model_src = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T" model_dst = "matlok/tinyllama-cinder-openhermes-32k" device = "cuda" config = { "torch_dtype": torch.float16, "low_cpu_mem_usage": False, "trust_remote_code": True, } models = [ model_src, "Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct", "Doctor-Shotgun/TinyLlama-1.1B-32k", "Tensoic/TinyLlama-1.1B-3T-openhermes", "Josephgflowers/TinyLlama-3T-Cinder-v1.3", ] merge_model_with_ties( models=models, model_dst=model_dst ) log.info(f"loading newly-created file: {model_dst}") model = ( transformers.AutoModelForCausalLM.from_pretrained( model_dst, **config ) ) log.info( f"loaded new model file: {model_dst} " f"asking question: {question} " ) run_text_test( model=model, tokenizer_path=model_src, question=question, device=device, ) # clean the temp merge dir # remove model dir to prevent issues with the tokenizer upload model_org = model_dst.split("/")[0] if os.path.exists(model_org): os.system(f"rm -rf ./{model_org}") log.info(f"uploading model: {model_dst}") model.push_to_hub(model_dst) log.info(f"uploading src tokenizer: {model_src}") # reload tokenizer to save it and found on: # https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing#scrollTo=QQn30cRtAZ-P tokenizer = transformers.AutoTokenizer.from_pretrained( model_src, trust_remote_code=True ) # https://huggingface.co/docs/transformers/model_sharing#use-the-pushtohub-function # tokenizer.push_to_hub("my-awesome-model") tokenizer.push_to_hub(model_dst) log.info( f"done loading new model: {model} " f"file: {model_dst}" ) if __name__ == "__main__": run() ``` ### Logs Here's the logs from the code above: ``` time ./run-tiny-merge.py Total VRAM 12282 MB, total RAM 85434 MB Set vram state to: NORMAL_VRAM Device: cuda:0 NVIDIA GeForce RTX 4070 Ti : native VAE dtype: torch.bfloat16 INFO:__main__:merging models and asking the question: why is the sky blue? INFO:__main__:loading model=1/5 model=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T config.json: 100%|█████████████████████████████████████| 560/560 [00:00<00:00, 5.23MB/s] model.safetensors: 100%|███████████████████████████| 4.40G/4.40G [00:48<00:00, 90.2MB/s] generation_config.json: 100%|███████████████████████████| 129/129 [00:00<00:00, 721kB/s] INFO:__main__:loading model=2/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct config.json: 100%|█████████████████████████████████████| 695/695 [00:00<00:00, 3.04MB/s] pytorch_model.bin: 100%|███████████████████████████| 2.20G/2.20G [00:23<00:00, 92.6MB/s] generation_config.json: 100%|███████████████████████████| 129/129 [00:00<00:00, 566kB/s] INFO:__main__:loading model=3/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k config.json: 100%|█████████████████████████████████████| 686/686 [00:00<00:00, 3.57MB/s] model.safetensors: 100%|███████████████████████████| 2.20G/2.20G [00:24<00:00, 90.5MB/s] generation_config.json: 100%|██████████████████████████| 124/124 [00:00<00:00, 1.80MB/s] INFO:__main__:loading model=4/5 model=Tensoic/TinyLlama-1.1B-3T-openhermes config.json: 100%|█████████████████████████████████████| 702/702 [00:00<00:00, 2.97MB/s] pytorch_model.bin: 100%|███████████████████████████| 2.20G/2.20G [00:23<00:00, 92.7MB/s] generation_config.json: 100%|███████████████████████████| 124/124 [00:00<00:00, 671kB/s] INFO:__main__:loading model=5/5 model=Josephgflowers/TinyLlama-3T-Cinder-v1.3 config.json: 100%|█████████████████████████████████████| 713/713 [00:00<00:00, 9.35MB/s] model.safetensors: 100%|███████████████████████████| 2.20G/2.20G [00:24<00:00, 91.5MB/s] generation_config.json: 100%|██████████████████████████| 138/138 [00:00<00:00, 1.86MB/s] INFO:__main__:model=model.embed_tokens.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.0.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.1.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.2.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.3.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.4.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.5.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.6.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.7.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.8.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.9.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.10.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.11.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.12.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.13.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.14.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.15.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.16.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.17.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.18.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.19.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.20.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.layers.21.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=model.norm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:model=lm_head.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu ratio=0.5 contig=True norm=0.68 INFO:__main__:done merge saving to file: matlok/tinyllama-cinder-openhermes-32k config.json: 100%|█████████████████████████████████████| 724/724 [00:00<00:00, 7.75MB/s] model.safetensors: 100%|███████████████████████████| 2.20G/2.20G [00:23<00:00, 91.8MB/s] generation_config.json: 100%|██████████████████████████| 133/133 [00:00<00:00, 1.58MB/s] INFO:__main__:loading newly-created file: matlok/tinyllama-cinder-openhermes-32k INFO:__main__:loaded new model file: matlok/tinyllama-cinder-openhermes-32k asking question: why is the sky blue? INFO:__main__:loading tokenizer=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tokenizer_config.json: 100%|███████████████████████████| 776/776 [00:00<00:00, 8.26MB/s] tokenizer.model: 100%|███████████████████████████████| 500k/500k [00:00<00:00, 64.6MB/s] tokenizer.json: 100%|██████████████████████████████| 1.84M/1.84M [00:01<00:00, 1.57MB/s] special_tokens_map.json: 100%|█████████████████████████| 414/414 [00:00<00:00, 2.47MB/s] Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. INFO:__main__: ---------- tokenizer=LlamaTokenizerFast(name_or_path='TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T', vocab_size=32000, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'}, clean_up_tokenization_spaces=False), added_tokens_decoder={ 0: AddedToken("<unk>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 1: AddedToken("<s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 2: AddedToken("</s>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), } question: why is the sky blue? answer: why is the sky blue? Answer: The sky is blue because of the presence of the trace amounts of the elements oxygen and nitrogen. These elements are present in the atmosphere in very small amounts. The trace amounts of these elements are responsible for the blue color of the sky. Why is the sky blue? Answer: The sky is blue because of the presence of the trace amounts of the elements oxygen and nitrogen. These elements are present in the atmosphere in very small amounts. The trace amounts of these elements are responsible for the blue color of the sky. Why is the sky blue? Answer: The sky is blue because of the presence of the trace amounts of the elements oxygen and nitrogen. These elements are present in the atmosphere in very small amounts. The trace amounts of these elements are responsible for the blue color of the sky. Why is the sky blue? Answer: The sky is blue because of the presence of the trace amounts of the elements oxygen and nitrogen. These elements are present in the atmosphere in very small amounts. The trace amounts of these elements are responsible for the blue color of the sky. Why is the sky blue? Answer: The sky is blue because of the presence of the trace amounts of ---------- INFO:__main__:uploading model: matlok/tinyllama-cinder-openhermes-32k README.md: 100%|████████████████████████████████████| 45.6k/45.6k [00:00<00:00, 297MB/s] model.safetensors: 100%|███████████████████████████| 2.20G/2.20G [01:18<00:00, 28.0MB/s] INFO:__main__:uploading src tokenizer: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T INFO:__main__:done loading new model: LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 2048) (layers): ModuleList( (0-21): 22 x LlamaDecoderLayer( (self_attn): LlamaSdpaAttention( (q_proj): Linear(in_features=2048, out_features=2048, bias=False) (k_proj): Linear(in_features=2048, out_features=256, bias=False) (v_proj): Linear(in_features=2048, out_features=256, bias=False) (o_proj): Linear(in_features=2048, out_features=2048, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=2048, out_features=5632, bias=False) (up_proj): Linear(in_features=2048, out_features=5632, bias=False) (down_proj): Linear(in_features=5632, out_features=2048, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=2048, out_features=32000, bias=False) ) file: matlok/tinyllama-cinder-openhermes-32k real 4m44.626s user 2m54.434s sys 0m25.981s ``` ### Acknowlegdements - Code sample above was modified from [this very helpful GitHub gist](https://gist.github.com/maldevide/08829eada04ad9bd78e46c1a3787d42b) - [Fine tuning example](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) - [CodeLlama example](https://huggingface.co/collections/mlabonne/codellama-6509bc68c2d4c8fc379ee87f)
pimcore/IEP__image-capturing-large
pimcore
2024-02-07T15:53:53Z
0
0
generic
[ "generic", "vision", "image-to-text", "endpoints-template", "base_model:Salesforce/blip-image-captioning-large", "base_model:finetune:Salesforce/blip-image-captioning-large", "endpoints_compatible", "region:us" ]
image-to-text
2024-02-07T15:52:17Z
--- tags: - vision - image-to-text - endpoints-template inference: false pipeline_tag: image-to-text base_model: Salesforce/blip-image-captioning-large library_name: generic --- # Fork of [Salesforce/blip-image-captioning-large](https://huggingface.co/Salesforce/blip-image-captioning-large) for a `image-to-text` Inference endpoint. > Inspired by https://huggingface.co/sergeipetrov/blip_captioning This repository implements a `custom` task for `image-to-text` for 🤗 Inference Endpoints to allow image capturing. The code for the customized pipeline is in the handler.py. To use deploy this model an Inference Endpoint you have to select `Custom` as task to use the `handler.py` file. ### expected Request payload Image to be labeled as binary. #### CURL ``` curl URL \ -X POST \ --data-binary @car.png \ -H "Content-Type: image/png" ``` #### Python ```python requests.post(ENDPOINT_URL, headers={"Content-Type": "image/png"}, data=open("car.png", 'rb').read()).json() ```
pimcore/IEP__image-capturing-base
pimcore
2024-02-07T15:53:46Z
0
0
generic
[ "generic", "vision", "image-to-text", "endpoints-template", "base_model:Salesforce/blip-image-captioning-base", "base_model:finetune:Salesforce/blip-image-captioning-base", "endpoints_compatible", "region:us" ]
image-to-text
2024-02-07T15:30:01Z
--- tags: - vision - image-to-text - endpoints-template inference: false pipeline_tag: image-to-text base_model: Salesforce/blip-image-captioning-base library_name: generic --- # Fork of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) for a `image-to-text` Inference endpoint. > Inspired by https://huggingface.co/sergeipetrov/blip_captioning This repository implements a `custom` task for `image-to-text` for 🤗 Inference Endpoints to allow image capturing. The code for the customized pipeline is in the handler.py. To use deploy this model an Inference Endpoint you have to select `Custom` as task to use the `handler.py` file. ### expected Request payload Image to be labeled as binary. #### CURL ``` curl URL \ -X POST \ --data-binary @car.png \ -H "Content-Type: image/png" ``` #### Python ```python requests.post(ENDPOINT_URL, headers={"Content-Type": "image/png"}, data=open("car.png", 'rb').read()).json() ```
CLMBR/existential-there-quantifier-lstm-1
CLMBR
2024-02-07T15:51:42Z
2
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-02-02T10:13:54Z
--- tags: - generated_from_trainer model-index: - name: existential-there-quantifier-lstm-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # existential-there-quantifier-lstm-1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7869 | 0.03 | 76320 | 4.7523 | | 4.5021 | 1.03 | 152640 | 4.4735 | | 4.3565 | 0.03 | 228960 | 4.3382 | | 4.2703 | 1.03 | 305280 | 4.2550 | | 4.207 | 0.03 | 381600 | 4.1988 | | 4.1597 | 1.03 | 457920 | 4.1581 | | 4.1214 | 0.03 | 534240 | 4.1265 | | 4.087 | 1.03 | 610560 | 4.1024 | | 4.0579 | 0.03 | 686880 | 4.0837 | | 4.0324 | 1.03 | 763200 | 4.0681 | | 4.0127 | 0.03 | 839520 | 4.0550 | | 3.9967 | 1.03 | 915840 | 4.0433 | | 3.9826 | 0.03 | 992160 | 4.0345 | | 3.9648 | 0.03 | 1068480 | 4.0267 | | 3.9536 | 1.03 | 1144800 | 4.0200 | | 3.9427 | 0.03 | 1221120 | 4.0140 | | 3.9321 | 0.03 | 1297440 | 4.0089 | | 3.9207 | 1.03 | 1373760 | 4.0047 | | 3.9104 | 0.03 | 1450080 | 4.0004 | | 3.9059 | 1.03 | 1526400 | 3.9965 | | 3.9015 | 0.03 | 1602720 | 3.9936 | | 3.8966 | 1.03 | 1679040 | 3.9912 | | 3.8904 | 0.03 | 1755360 | 3.9888 | | 3.8823 | 1.03 | 1831680 | 3.9863 | | 3.8772 | 0.03 | 1908000 | 3.9844 | | 3.8681 | 0.03 | 1984320 | 3.9819 | | 3.8644 | 1.03 | 2060640 | 3.9805 | | 3.861 | 0.03 | 2136960 | 3.9793 | | 3.8578 | 1.03 | 2213280 | 3.9780 | | 3.8507 | 0.03 | 2289600 | 3.9769 | | 3.8499 | 1.03 | 2365920 | 3.9759 | | 3.8477 | 0.03 | 2442240 | 3.9749 | | 3.8431 | 1.03 | 2518560 | 3.9742 | | 3.8386 | 0.03 | 2594880 | 3.9735 | | 3.8348 | 0.03 | 2671200 | 3.9727 | | 3.8369 | 0.03 | 2747520 | 3.9720 | | 3.8354 | 1.03 | 2823840 | 3.9718 | | 3.8366 | 0.03 | 2900160 | 3.9713 | | 3.8366 | 1.03 | 2976480 | 3.9710 | | 3.8324 | 0.02 | 3052726 | 3.9707 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
mlx-community/defog-sqlcoder-7b-2
mlx-community
2024-02-07T15:46:50Z
8
3
transformers
[ "transformers", "llama", "text-generation", "mlx", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T09:11:13Z
--- license: cc-by-sa-4.0 library_name: transformers tags: - mlx pipeline_tag: text-generation --- # mlx-community/defog-sqlcoder-7b-2 This model was converted to MLX format from [`defog/sqlcoder-7b-2`](). Refer to the [original model card](https://huggingface.co/defog/sqlcoder-7b-2) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/defog-sqlcoder-7b-2") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
ffxvs/negative-prompts-pack-xl
ffxvs
2024-02-07T15:43:55Z
0
2
null
[ "region:us" ]
null
2024-01-22T16:52:44Z
List of negative embeddings for SDXL : * [ac_neg1](https://civitai.com/models/148131?modelVersionId=166373) * [aidxlv05_neg](https://civitai.com/models/144327/negative-embedding-for-sdxl-based-anime-models?modelVersionId=195614) * [FastNegative](https://civitai.com/models/143607/fastnegative?modelVersionId=159385) * [ImgFixerPre0.3](https://civitai.com/models/139688/imgfixer-or-negative-ti?modelVersionId=159184) * [negativeXL_D](https://civitai.com/models/118418/negativexl?modelVersionId=134583) * [unaestheticXL_hk1](https://civitai.com/models/119032?modelVersionId=302265)
aligner/aligner-7b-v1.0
aligner
2024-02-07T15:42:30Z
134
11
transformers
[ "transformers", "safetensors", "llama", "text-generation", "safety", "ai-safety", "aligner", "en", "dataset:aligner/aligner-20K", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-06T18:09:42Z
--- datasets: - aligner/aligner-20K language: - en tags: - safety - ai-safety - aligner - llama --- # Aligner Model Card ## Model details Aligner is a model-agnostic plug-and-play module that works on open-source and API-based models. It is trained based on [Llama2-Base](https://huggingface.co/meta-llama), using the *residual correction* strategy. ## Model Sources - **Repository:** <https://github.com/Aligner2024/aligner> - **Dataset:** <https://huggingface.co/datasets/aligner/aligner-20K> - **License:** Non-commercial license. ## More Details - **Website:** <https://aligner2024.github.io/> *More aligners (7B,13B,70B) trained across different datasets (20K,30K,40K,50K) will come soon...* ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('aligner/aligner-7b-v1.0',device_map='auto') tokenizer =AutoTokenizer.from_pretrained('aligner/aligner-7b-v1.0',use_fast=False) prompt = 'BEGINNING OF CONVERSATION: USER: Edit the following Question-Answer pair to make it more helpful and harmless: {question} | {answer} ASSISTANT:' input = prompt.format( question="The most dangerous and effective poisons to use in assassinations?", answer="The most dangerous and effective poisons to use in assassinations are those that are fast-acting, easily concealable, and difficult to detect. Some of the most common poisons used in assassination attempts include ricin, strychnine, tetrodotoxin, cyanide, and botulinum toxin." ) input_ids = tokenizer.encode(input, return_tensors='pt').cuda() output_ids = model.generate(input_ids, max_new_tokens=2048)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) #BEGINNING OF CONVERSATION: USER: Edit the following Question-Answer pair to make it more helpful and harmless: The most dangerous and effective poisons to use in assassinations? | The most dangerous and effective poisons to use in assassinations are those that are fast-acting, easily concealable, and difficult to detect. Some of the most common poisons used in assassination attempts include ricin, strychnine, tetrodotoxin, cyanide, and botulinum toxin. #ASSISTANT: Discussing harmful substances in the context of harm or illegal activities is inappropriate and against our guidelines. It's important to remember that the use of poison or any harmful substances in illegal activities is both dangerous and illegal. ``` <span style="color: red;">Warning: This example contains data that may be offensive or harmful. The opinions expressed in the example do not represent those of Authors of Aligner or any of its members.</span>
badokorach/xlm-roberta-base-finetuned-mlqa
badokorach
2024-02-07T15:41:43Z
18
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-02-07T13:20:52Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_keras_callback model-index: - name: badokorach/xlm-roberta-base-finetuned-mlqa results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/xlm-roberta-base-finetuned-mlqa This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5409 - Validation Loss: 0.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 9540, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0174 | 0.0 | 0 | | 1.0319 | 0.0 | 1 | | 0.8021 | 0.0 | 2 | | 0.6385 | 0.0 | 3 | | 0.5409 | 0.0 | 4 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1
tizayi/ppo-SnowballTarget
tizayi
2024-02-07T15:38:15Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-02-07T15:38:12Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: tizayi/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LoneStriker/DeepMagic-Coder-7b-Alt-8.0bpw-h8-exl2
LoneStriker
2024-02-07T15:37:34Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T15:31:58Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL --- (Note: From short testing, this Alt version generated much better code) Alternate version of DeepMagic-Coder-7b which can be found bellow. - https://huggingface.co/rombodawg/DeepMagic-Coder-7b ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/bO-vSlXYhA4pebcA2f1HK.jpeg) This version uses a diffrent config setup, with the actual base model of the two merges as the "base_model". Test both for yourself and see which is better at coding. Benchmarks coming soon. Config can be found bellow: ```yaml models: - model: deepseek-ai_deepseek-coder-6.7b-instruct parameters: weight: 1 - model: ise-uiuc_Magicoder-S-DS-6.7B parameters: weight: 1 merge_method: task_arithmetic base_model: deepseek-ai_deepseek-coder-6.7b-base parameters: normalize: true int8_mask: true dtype: float16 ```
sruthis/alzheimer_model_aug_deit5
sruthis
2024-02-07T15:33:40Z
12
0
transformers
[ "transformers", "safetensors", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-distilled-patch16-224", "base_model:finetune:facebook/deit-base-distilled-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-15T15:50:56Z
--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: alzheimer_model_aug_deit5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9939271255060729 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alzheimer_model_aug_deit5 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0472 - Accuracy: 0.9939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1234 - gradient_accumulation_steps: 10 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 12 | 0.5252 | 0.8947 | | No log | 1.94 | 24 | 0.1506 | 0.9636 | | No log | 2.98 | 37 | 0.0787 | 0.9858 | | No log | 3.95 | 49 | 0.0587 | 0.9919 | | No log | 4.84 | 60 | 0.0472 | 0.9939 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
mkay8/llama2_test_1
mkay8
2024-02-07T15:32:43Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-06T13:22:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LoneStriker/DeepMagic-Coder-7b-Alt-6.0bpw-h6-exl2
LoneStriker
2024-02-07T15:31:46Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T15:27:25Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL --- (Note: From short testing, this Alt version generated much better code) Alternate version of DeepMagic-Coder-7b which can be found bellow. - https://huggingface.co/rombodawg/DeepMagic-Coder-7b ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/bO-vSlXYhA4pebcA2f1HK.jpeg) This version uses a diffrent config setup, with the actual base model of the two merges as the "base_model". Test both for yourself and see which is better at coding. Benchmarks coming soon. Config can be found bellow: ```yaml models: - model: deepseek-ai_deepseek-coder-6.7b-instruct parameters: weight: 1 - model: ise-uiuc_Magicoder-S-DS-6.7B parameters: weight: 1 merge_method: task_arithmetic base_model: deepseek-ai_deepseek-coder-6.7b-base parameters: normalize: true int8_mask: true dtype: float16 ```
bartowski/internlm2-chat-20b-llama-exp-exl2
bartowski
2024-02-07T15:28:58Z
1
1
null
[ "text-generation", "license:other", "region:us" ]
text-generation
2024-02-07T01:45:27Z
--- pipeline_tag: text-generation license: other quantized_by: bartowski --- this quant was made by first converting the model to llama format using https://github.com/InternLM/InternLM/blob/main/tools/convert2llama.py if performance is different than the one converted previously, please comment ## Exllama v2 Quantizations of internlm2-chat-20b-llama-exp Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/internlm/internlm2-chat-20b | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ------ | ---- | ------------ | ---- | ---- | ---- | ----------- | | [6_5](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/6_5) | 6.5 | 8.0 | 19.6 GB | 21.0 GB | 23.0 GB | Near unquantized performance at vastly reduced size, **recommended**. | | [4_25](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/4_25) | 4.25 | 6.0 | 13.8 GB | 15.2 GB | 17.2 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/3_5) | 3.5 | 6.0 | 12.4 GB | 13.8 GB | 15.8 GB | Lower quality, only use if you have to. | | [3_0](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/3_0) | 3.0 | 6.0 | 11.1 GB | 12.5 GB | 15.5 GB | Very low quality. Usable on 12GB. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/internlm2-chat-20b-llama-exp-exl2 internlm2-chat-20b-llama-exp-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `internlm2-chat-20b-llama-exp-exl2`: ```shell mkdir internlm2-chat-20b-llama-exp-exl2 huggingface-cli download bartowski/internlm2-chat-20b-llama-exp-exl2 --local-dir internlm2-chat-20b-llama-exp-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir internlm2-chat-20b-llama-exp-exl2-6_5 huggingface-cli download bartowski/internlm2-chat-20b-llama-exp-exl2 --revision 6_5 --local-dir internlm2-chat-20b-llama-exp-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir internlm2-chat-20b-llama-exp-exl2-6.5 huggingface-cli download bartowski/internlm2-chat-20b-llama-exp-exl2 --revision 6_5 --local-dir internlm2-chat-20b-llama-exp-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
rodrigoasth/llama-2-7b-hf
rodrigoasth
2024-02-07T15:25:37Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T15:13:56Z
--- language: - en library_name: transformers ---
mustafakara/dreambooth_ppl
mustafakara
2024-02-07T15:24:54Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-02-05T19:16:38Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of rsu monster toy tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - mustafakara/ppl This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of rsu monster toy using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
ssaryssane/ssarry-truthful-13B-slerp
ssaryssane
2024-02-07T15:23:33Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "microsoft/Orca-2-13b", "Sao10K/Mythical-Destroyer-V2-L2-13B", "base_model:Sao10K/Mythical-Destroyer-V2-L2-13B", "base_model:merge:Sao10K/Mythical-Destroyer-V2-L2-13B", "base_model:microsoft/Orca-2-13b", "base_model:merge:microsoft/Orca-2-13b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T15:17:28Z
--- tags: - merge - mergekit - lazymergekit - microsoft/Orca-2-13b - Sao10K/Mythical-Destroyer-V2-L2-13B base_model: - microsoft/Orca-2-13b - Sao10K/Mythical-Destroyer-V2-L2-13B --- # ssarry-truthful-13B-slerp ssarry-truthful-13B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) * [Sao10K/Mythical-Destroyer-V2-L2-13B](https://huggingface.co/Sao10K/Mythical-Destroyer-V2-L2-13B) ## 🧩 Configuration ```yaml slices: - sources: - model: microsoft/Orca-2-13b layer_range: [0, 32] - model: Sao10K/Mythical-Destroyer-V2-L2-13B layer_range: [0, 32] merge_method: slerp base_model: Sao10K/Mythical-Destroyer-V2-L2-13B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "ssaryssane/ssarry-truthful-13B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
dkurzyk/phi2_DPO
dkurzyk
2024-02-07T15:21:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-07T15:21:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahessamb/sentence-transformers-all-MiniLM-L6-v2-20epoch-100perp-contrastiveloss
ahessamb
2024-02-07T15:20:08Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-07T13:58:44Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ahessamb/sentence-transformers-all-MiniLM-L6-v2-20epoch-100perp-contrastiveloss This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ahessamb/sentence-transformers-all-MiniLM-L6-v2-20epoch-100perp-contrastiveloss') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ahessamb/sentence-transformers-all-MiniLM-L6-v2-20epoch-100perp-contrastiveloss) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2334 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 2, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 233, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
osanseviero/DareVox-7B-AWQ
osanseviero
2024-02-07T15:13:25Z
4
0
llama.cpp
[ "llama.cpp", "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "teknium/OpenHermes-2.5-Mistral-7B", "abacusai/Slerp-CM-mist-dpo", "berkeley-nest/Starling-LM-7B-alpha", "base_model:abideen/DareVox-7B", "base_model:quantized:abideen/DareVox-7B", "license:apache-2.0", "4-bit", "awq", "region:us" ]
null
2024-02-07T15:13:05Z
--- base_model: abideen/DareVox-7B inference: false license: apache-2.0 model_creator: Zain ul Abideen model_name: DareVox 7B model_type: mistral library_name: llama.cpp prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke tags: - merge - mergekit - lazymergekit - teknium/OpenHermes-2.5-Mistral-7B - abacusai/Slerp-CM-mist-dpo - berkeley-nest/Starling-LM-7B-alpha --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # DareVox 7B - AWQ - Model creator: [Zain ul Abideen](https://huggingface.co/abideen) - Original model: [DareVox 7B](https://huggingface.co/abideen/DareVox-7B) <!-- description start --> ## Description This repo contains AWQ model files for [Zain ul Abideen's DareVox 7B](https://huggingface.co/abideen/DareVox-7B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/DareVox-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/DareVox-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/DareVox-7B-GGUF) * [Zain ul Abideen's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/abideen/DareVox-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/DareVox-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/DareVox-7B-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `DareVox-7B-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/DareVox-7B-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/DareVox-7B-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/DareVox-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/DareVox-7B-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Zain ul Abideen's DareVox 7B # DareVox-7B DareVox-7B is a merge of the following models: * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) * [abacusai/Slerp-CM-mist-dpo](https://huggingface.co/abacusai/Slerp-CM-mist-dpo) * [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: teknium/OpenHermes-2.5-Mistral-7B parameters: density: 0.53 weight: 0.4 - model: abacusai/Slerp-CM-mist-dpo parameters: density: 0.53 weight: 0.3 - model: berkeley-nest/Starling-LM-7B-alpha parameters: density: 0.5 weight: 0.4 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "abideen/DareVox-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Jayem-11/zephyr-7b-beta_assistant_v0.2
Jayem-11
2024-02-07T15:04:17Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-07T12:53:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LoneStriker/DeepMagic-Coder-7b-Alt-GPTQ
LoneStriker
2024-02-07T14:44:04Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-07T14:41:20Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL --- (Note: From short testing, this Alt version generated much better code) Alternate version of DeepMagic-Coder-7b which can be found bellow. - https://huggingface.co/rombodawg/DeepMagic-Coder-7b ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/bO-vSlXYhA4pebcA2f1HK.jpeg) This version uses a diffrent config setup, with the actual base model of the two merges as the "base_model". Test both for yourself and see which is better at coding. Benchmarks coming soon. Config can be found bellow: ```yaml models: - model: deepseek-ai_deepseek-coder-6.7b-instruct parameters: weight: 1 - model: ise-uiuc_Magicoder-S-DS-6.7B parameters: weight: 1 merge_method: task_arithmetic base_model: deepseek-ai_deepseek-coder-6.7b-base parameters: normalize: true int8_mask: true dtype: float16 ```