modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-24 00:43:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
573 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-24 00:37:34
card
stringlengths
11
1.01M
ibm-ai-platform/granite-7b-lab-accelerator
ibm-ai-platform
2024-05-21T13:31:15Z
54
0
transformers
[ "transformers", "safetensors", "mlp_speculator", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-04-24T18:27:32Z
--- license: llama2 --- Note: THIS MODEL HAS BEEN MIGRATED TO https://huggingface.co/ibm-granite/granite-7b-instruct-accelerator ## Installation from source ```bash git clone https://github.com/foundation-model-stack/fms-extras cd fms-extras pip install -e . ``` ## Description This model is intended to be used as an accelerator for [granite 7B (instruct lab)](https://huggingface.co/instructlab/granite-7b-lab) and takes inspiration from the Medusa speculative decoding architecture. This accelerator modifies the MLP into a multi-stage MLP, where each stage predicts a single token in the draft based on both a state vector and sampled token from the prior stage (the base model can be considered stage 0). The state vector from the base model provides contextual information to the accelerator, while conditioning on prior sampled tokens allows it to produce higher-quality draft n-grams. Note: The underlying MLP speculator is a generic architecture that can be trained with any generative model to accelerate inference. Training is light-weight and can be completed in only a few days depending on base model size and speed. ## Repository Links 1. [Paged Attention KV-Cache / Speculator](https://github.com/foundation-model-stack/fms-extras) 2. [Production Server with speculative decoding](https://github.com/IBM/text-generation-inference.git) 3. [Speculator training](https://github.com/foundation-model-stack/fms-fsdp/pull/35) ## Samples _Note: For all samples, your environment must have access to cuda_ ### Use in IBM Production TGIS *To try this out running in a production-like environment, please use the pre-built docker image:* #### Setup ```bash HF_HUB_CACHE=/hf_hub_cache chmod a+w $HF_HUB_CACHE HF_HUB_TOKEN="your huggingface hub token" TGIS_IMAGE=quay.io/wxpe/text-gen-server:main.ddc56ee docker pull $TGIS_IMAGE # optionally download granite-7b-lab if the weights do not already exist docker run --rm \ -v $HF_HUB_CACHE:/models \ -e HF_HUB_CACHE=/models \ -e TRANSFORMERS_CACHE=/models \ $TGIS_IMAGE \ text-generation-server download-weights \ instructlab/granite-7b-lab \ --token $HF_HUB_TOKEN # optionally download the speculator model if the weights do not already exist docker run --rm \ -v $HF_HUB_CACHE:/models \ -e HF_HUB_CACHE=/models \ -e TRANSFORMERS_CACHE=/models \ $TGIS_IMAGE \ text-generation-server download-weights \ ibm/granite-7b-lab-accelerator \ --token $HF_HUB_TOKEN # note: if the weights were downloaded separately (not with the above commands), please place them in the HF_HUB_CACHE directory and refer to them with /models/<model_name> docker run -d --rm --gpus all \ --name my-tgis-server \ -p 8033:8033 \ -v $HF_HUB_CACHE:/models \ -e HF_HUB_CACHE=/models \ -e TRANSFORMERS_CACHE=/models \ -e MODEL_NAME=instructlab/granite-7b-lab \ -e SPECULATOR_NAME=ibm/granite-7b-lab-accelerator \ -e FLASH_ATTENTION=true \ -e PAGED_ATTENTION=true \ -e DTYPE=float16 \ $TGIS_IMAGE # check logs and wait for "gRPC server started on port 8033" and "HTTP server started on port 3000" docker logs my-tgis-server -f # get the client sample (Note: The first prompt will take longer as there is a warmup time) conda create -n tgis-client-env python=3.11 conda activate tgis-client-env git clone --branch main --single-branch https://github.com/IBM/text-generation-inference.git cd text-generation-inference/integration_tests make gen-client pip install . --no-cache-dir ``` #### Run Sample ```bash python sample_client.py ``` _Note: first prompt may be slower as there is a slight warmup time_ ### Use in Huggingface TGI #### start the server ```bash model=ibm-fms/granite-7b-lab-accelerator volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model ``` _note: for tensor parallel, add --num-shard_ #### make a request ```bash curl 127.0.0.1:8080/generate_stream \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` ### Minimal Sample *To try this out with the fms-native compiled model, please execute the following:* #### Install ```bash git clone https://github.com/foundation-model-stack/fms-extras (cd fms-extras && pip install -e .) pip install transformers==4.35.0 sentencepiece numpy ``` #### Run Sample ##### batch_size=1 (compile + cudagraphs) ```bash MODEL_PATH=/path/to/instructlab/granite-7b-lab python fms-extras/scripts/paged_speculative_inference.py \ --variant=7b.ibm_instruct_lab \ --model_path=$MODEL_PATH \ --model_source=hf \ --tokenizer=$MODEL_PATH \ --speculator_path=ibm/granite-7b-lab-accelerator \ --speculator_source=hf \ --speculator_variant=1_4b \ --top_k_tokens_per_head=4,3,2,2,2 \ --compile \ --compile_mode=reduce-overhead ``` ##### batch_size=1 (compile) ```bash MODEL_PATH=/path/to/instructlab/granite-7b-lab python fms-extras/scripts/paged_speculative_inference.py \ --variant=7b.ibm_instruct_lab \ --model_path=$MODEL_PATH \ --model_source=hf \ --tokenizer=$MODEL_PATH \ --speculator_path=ibm/granite-7b-lab-accelerator \ --speculator_source=hf \ --speculator_variant=1_4b \ --top_k_tokens_per_head=4,3,2,2,2 \ --compile ``` ##### batch_size=4 (compile) ```bash MODEL_PATH=/path/to/instructlab/granite-7b-lab python fms-extras/scripts/paged_speculative_inference.py \ --variant=7b.ibm_instruct_lab \ --model_path=$MODEL_PATH \ --model_source=hf \ --tokenizer=$MODEL_PATH \ --speculator_path=ibm/granite-7b-lab-accelerator \ --speculator_source=hf \ --speculator_variant=1_4b \ --top_k_tokens_per_head=4,3,2,2,2 \ --batch_input \ --compile ```
basakdemirok/bert-base-turkish-cased-subjectivity_v02_seed42
basakdemirok
2024-05-21T13:30:33Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "text-classification", "generated_from_keras_callback", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T13:29:10Z
--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_keras_callback model-index: - name: basakdemirok/bert-base-turkish-cased-subjectivity_v02_seed42 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # basakdemirok/bert-base-turkish-cased-subjectivity_v02_seed42 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6137 - Validation Loss: 0.4839 - Train F1: 0.7273 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 396, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.6137 | 0.4839 | 0.7273 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.1 - Datasets 2.4.0 - Tokenizers 0.13.3
Fetanos/Reinforce-Pixelcopter-PLE-v0
Fetanos
2024-05-21T13:29:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-05-14T14:43:22Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
blockblockblock/Llama-3-70B-Instruct-abliterated-v3-bpw4-exl2
blockblockblock
2024-05-21T13:28:29Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "exl2", "region:us" ]
text-generation
2024-05-21T13:24:18Z
--- library_name: transformers license: llama3 --- # Llama-3-70B-Instruct-abliterated-v3 Model Card [My Jupyter "cookbook" to replicate the methodology can be found here, refined library coming soon](https://huggingface.co/failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb) This is [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) with orthogonalized bfloat16 safetensor weights, generated with a refined methodology based on that which was described in the preview paper/blog post: '[Refusal in LLMs is mediated by a single direction](https://www.alignmentforum.org/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction)' which I encourage you to read to understand more. ## Hang on, "abliteration"? Orthogonalization? Ablation? What is this? TL;DR: This model has had certain weights manipulated to "inhibit" the model's ability to express refusal. It is not in anyway _guaranteed_ that it won't refuse you, understand your request, it may still lecture you about ethics/safety, etc. It is tuned in all other respects the same as the original 70B instruct model was, just with the strongest refusal directions orthogonalized out. **TL;TL;DR;DR: It's uncensored in the purest form I can manage -- no new or changed behaviour in any other respect from the original model.** As far as "abliteration": it's just a fun play-on-words using the original "ablation" term used in the original paper to refer to removing features, which I made up particularly to differentiate the model from "uncensored" fine-tunes. Ablate + obliterated = Abliterated Anyways, orthogonalization/ablation are both aspects to refer to the same thing here, the technique in which the refusal feature was "ablated" from the model was via orthogonalization. ## A little more on the methodology, and why this is interesting To me, ablation (or applying the methodology for the inverse, "augmentation") seems to be good for inducing/removing very specific features that you'd have to spend way too many tokens on encouraging or discouraging in your system prompt. Instead, you just apply your system prompt in the ablation script against a blank system prompt on the same dataset and orthogonalize for the desired behaviour in the final model weights. > Why this over fine-tuning? Ablation is much more surgical in nature whilst also being effectively executed with a _lot_ less data than fine-tuning, which I think is its main advantage. As well, and its most valuable aspect is it keeps as much of the original model's knowledge and training intact, whilst removing its tendency to behave in one very specific undesireable manner. (In this case, refusing user requests.) Fine tuning is still exceptionally useful and the go-to for broad behaviour changes; however, you may be able to get close to your desired behaviour with very few samples using the ablation/augmentation techniques. It may also be a useful step to add to your model refinement: orthogonalize -> fine-tune or vice-versa. I haven't really gotten around to exploring this model stacked with fine-tuning, I encourage others to give it a shot if they've got the capacity. > Okay, fine, but why V3? There's no V2 70B? Well, I released a V2 a while back for 8B under Cognitive Computations. It ended up being not worth it to try V2 with 70B, I wanted to refine the model before wasting compute cycles on what might not even be a better model. I am however quite pleased about this latest methodology, it seems to have induced fewer hallucinations. So to show that it's a new fancy methodology from even that of the 8B V2, I decided to do a Microsoft and double up on my version jump because it's *such* an advancement (or so the excuse went, when in actuality it was because too many legacy but actively used Microsoft libraries checked for 'Windows 9' in the OS name to detect Windows 95/98 as one.) ## Quirkiness awareness notice This model may come with interesting quirks, with the methodology being so new. I encourage you to play with the model, and post any quirks you notice in the community tab, as that'll help us further understand what this orthogonalization has in the way of side effects. If you manage to develop further improvements, please share! This is really the most basic way to use ablation, but there are other possibilities that I believe are as-yet unexplored. Additionally, feel free to reach out in any way about this. I'm on the Cognitive Computations Discord, I'm watching the Community tab, reach out! I'd love to see this methodology used in other ways, and so would gladly support whoever whenever I can.
ArpitaAeries/Mixtral_Alpace_v2
ArpitaAeries
2024-05-21T13:27:30Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-05-21T05:36:17Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mixtral-8x7B-v0.1 model-index: - name: Mixtral_Alpace_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mixtral_Alpace_v2 This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0253 | 0.1389 | 5 | 2.0089 | | 1.94 | 0.2778 | 10 | 1.9158 | | 1.8034 | 0.4167 | 15 | 1.7803 | | 1.6579 | 0.5556 | 20 | 1.6171 | | 1.5197 | 0.6944 | 25 | 1.4960 | | 1.4063 | 0.8333 | 30 | 1.3825 | | 1.3019 | 0.9722 | 35 | 1.2824 | | 1.2145 | 1.1111 | 40 | 1.2010 | | 1.1549 | 1.25 | 45 | 1.1446 | | 1.1269 | 1.3889 | 50 | 1.1218 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
Zoyd/TIGER-Lab_MAmmoTH2-7B-8_0bpw_exl2
Zoyd
2024-05-21T13:25:17Z
3
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "exl2", "region:us" ]
text-generation
2024-05-21T13:20:16Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **8.0 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_2bpw_exl2)**</center> | <center>2200 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_5bpw_exl2)**</center> | <center>2429 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_0bpw_exl2)**</center> | <center>2843 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_5bpw_exl2)**</center> | <center>3260 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_75bpw_exl2)**</center> | <center>3469 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_0bpw_exl2)**</center> | <center>3677 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_25bpw_exl2)**</center> | <center>3885 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-5_0bpw_exl2)**</center> | <center>4504 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_0bpw_exl2)**</center> | <center>5366 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_5bpw_exl2)**</center> | <center>5778 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-8_0bpw_exl2)**</center> | <center>6690 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Zoyd/TIGER-Lab_MAmmoTH2-7B-4_0bpw_exl2
Zoyd
2024-05-21T13:20:32Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "exl2", "region:us" ]
text-generation
2024-05-21T12:42:13Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **4.0 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_2bpw_exl2)**</center> | <center>2200 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_5bpw_exl2)**</center> | <center>2429 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_0bpw_exl2)**</center> | <center>2843 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_5bpw_exl2)**</center> | <center>3260 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_75bpw_exl2)**</center> | <center>3469 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_0bpw_exl2)**</center> | <center>3677 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_25bpw_exl2)**</center> | <center>3885 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-5_0bpw_exl2)**</center> | <center>4504 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_0bpw_exl2)**</center> | <center>5366 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_5bpw_exl2)**</center> | <center>5778 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-8_0bpw_exl2)**</center> | <center>6690 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Zoyd/TIGER-Lab_MAmmoTH2-7B-3_75bpw_exl2
Zoyd
2024-05-21T13:20:32Z
3
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T12:34:38Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **3.75 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_2bpw_exl2)**</center> | <center>2200 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_5bpw_exl2)**</center> | <center>2429 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_0bpw_exl2)**</center> | <center>2843 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_5bpw_exl2)**</center> | <center>3260 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_75bpw_exl2)**</center> | <center>3469 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_0bpw_exl2)**</center> | <center>3677 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_25bpw_exl2)**</center> | <center>3885 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-5_0bpw_exl2)**</center> | <center>4504 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_0bpw_exl2)**</center> | <center>5366 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_5bpw_exl2)**</center> | <center>5778 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-8_0bpw_exl2)**</center> | <center>6690 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Zoyd/TIGER-Lab_MAmmoTH2-7B-3_5bpw_exl2
Zoyd
2024-05-21T13:20:31Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T12:27:06Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **3.5 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_2bpw_exl2)**</center> | <center>2200 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-2_5bpw_exl2)**</center> | <center>2429 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_0bpw_exl2)**</center> | <center>2843 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_5bpw_exl2)**</center> | <center>3260 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-3_75bpw_exl2)**</center> | <center>3469 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_0bpw_exl2)**</center> | <center>3677 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-4_25bpw_exl2)**</center> | <center>3885 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-5_0bpw_exl2)**</center> | <center>4504 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_0bpw_exl2)**</center> | <center>5366 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-6_5bpw_exl2)**</center> | <center>5778 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-7B-8_0bpw_exl2)**</center> | <center>6690 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Felladrin/gguf-sharded-h2o-danube2-1.8b-chat
Felladrin
2024-05-21T13:18:53Z
15
1
null
[ "gguf", "base_model:h2oai/h2o-danube2-1.8b-chat", "base_model:quantized:h2oai/h2o-danube2-1.8b-chat", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T13:15:03Z
--- license: apache-2.0 base_model: h2oai/h2o-danube2-1.8b-chat --- Sharded GGUF version of [h2oai/h2o-danube2-1.8b-chat](https://huggingface.co/h2oai/h2o-danube2-1.8b-chat).
premai-io/prem-1B
premai-io
2024-05-21T13:15:21Z
462
5
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:cerebras/SlimPajama-627B", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:hkust-nlp/deita-10k-v0", "dataset:Open-Orca/SlimOrca-Dedup", "dataset:cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split", "dataset:HuggingFaceH4/capybara", "dataset:meta-math/MetaMathQA", "dataset:argilla/ultrafeedback-binarized-preferences-cleaned", "dataset:Intel/orca_dpo_pairs", "dataset:alexredna/oasst2_dpo_pairs", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-03-07T11:48:52Z
--- library_name: transformers license: apache-2.0 datasets: - cerebras/SlimPajama-627B - HuggingFaceH4/ultrachat_200k - hkust-nlp/deita-10k-v0 - Open-Orca/SlimOrca-Dedup - cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split - HuggingFaceH4/capybara - meta-math/MetaMathQA - argilla/ultrafeedback-binarized-preferences-cleaned - Intel/orca_dpo_pairs - alexredna/oasst2_dpo_pairs pipeline_tag: text-generation --- ## Model Details With great enthusiasm, we unveil the Prem-1B series, open-source, multipurpose large language models developed by Prem AI. This cutting-edge SLM offers the open community and enterprises the opportunity to harness capabilities that were once exclusively available through closed model APIs, empowering them to build their own advanced language models. Our objective is to develop a model that excels at Retrieval-Augmented Generation (RAG). While Large Language Models (LLMs) store a vast amount of information within their parameters, RAG operates differently by ingesting information during runtime. This approach suggests that for RAG applications, we may not require models of immense size. With this initiative, we aim to create a Small Language Model (SLM) with an extended context length of 8192 tokens, enabling it to handle multi-turn conversations effectively. This endeavor represents our inaugural attempt to craft an SLM tailored for RAG tasks. ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** https://premai.io/ - **Model type:** Llama - **Language(s) (NLP):** Python - **License:** Apache License 2.0 ## Uses The Prem-1B language model is designed for commercial and research applications involving the English language. The instruction-tuned versions of the model are tailored for conversational interactions akin to a virtual assistant. On the other hand, the pretrained variants can be fine-tuned and adapted for various natural language generation tasks beyond just dialogue. ### Out-of-Scope Use The model must not be used in any manner that violates applicable laws or regulations, including trade compliance laws. It is also prohibited to use the model in any way that goes against the Acceptable Use Policy and the Prem-1B Community License. While the base model is intended for English language use, developers are permitted to fine-tune the Prem-1B models for other languages, provided they comply with the Prem-1B Community License and the Acceptable Use Policy. ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Using `AutoModelForCausalLM` and `AutoTokenizer` ```py from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("premai-io/prem-1B-chat") model = AutoModelForCausalLM.from_pretrained('premai-io/prem-1B-chat', torch_dtype=torch.bfloat16) model = model.to('cuda') # Setup terminators terminators = [tokenizer.eos_token_id, tokenizer.encode('<|eot_id|>', add_special_tokens=False)[0]] # Prepare the prompt messages = [ { "role": "system", "content": "You are a helpful AI assistant. You should give concise responses to very simple questions, but provide thorough responses to more complex and open-ended questions." }, { 'role': 'user', 'content': 'Help me understand machine learning.' } ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generate inputs = tokenizer(prompt, return_attention_mask=False, return_tensors="pt", add_special_tokens=False) input_ids = inputs['input_ids'] input_ids = input_ids.to(model.device) res = model.generate(input_ids=input_ids, max_new_tokens=400, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators) generated_text = tokenizer.decode(res[0][input_ids.shape[1]:], skip_special_tokens=True).strip() print(generated_text) ``` Using pipelines: ```py import torch from transformers import pipeline # Load the pipeline pipe = pipeline("text-generation", model="premai-io/prem-1B-chat", torch_dtype=torch.bfloat16, device=0) # Prepare prompt messages = [ { "role": "system", "content": "You are a helpful AI assistant. You should give concise responses to very simple questions, but provide thorough responses to more complex and open-ended questions." }, { 'role': 'user', 'content': 'Help me understand machine learning.' } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Setup terminators terminators = [pipe.tokenizer.eos_token_id, pipe.tokenizer.encode('<|eot_id|>', add_special_tokens=False)[0]] # Generate outputs = pipe(prompt, max_new_tokens=400, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, pad_token_id=pipe.tokenizer.pad_token_id, eos_token_id=terminators) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Training Details ### Training Data Mentioned in blogpost: https://blog.premai.io/introducing-prem-1b/ ### Training Procedure Mentioned in blogpost: https://blog.premai.io/introducing-prem-1b/ #### Training Hyperparameters Mentioned in blogpost: https://blog.premai.io/introducing-prem-1b/ ## Evaluation ### Results |Model |Avg |Arc-c|Arc-e|Hellaswag|MMLU |Obqa |Piqa |Winogrande| |------------------------|-----|-----|-----|---------|-----|-----|-----|----------| |prem-1B |42.64|24.74|57.40|42.01 |24.75|21.00|72.14|56.43 | |prem-1B-chat |41.76|24.48|53.32|40.28 |25.27|22.20|70.89|55.88 | |TinyLlama-1.1B-Chat-v1.0|46.16|30.03|61.53|46.56 |24.72|25.80|74.21|60.29 | |opt-1.3b |42.94|23.37|57.44|41.49 |24.86|23.20|71.49|58.72 | |pythia-1b |40.71|24.31|56.90|37.72 |23.20|18.80|70.62|53.43 | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f440d8f79c1ba4c353d0f6d/PqscXKPvnwvymNxqYAxjR.png) ## Environmental Impact - **Hardware Type:** H100 GPUs - **Hours used:** 8500 ### Model Architecture and Objective Llama based ### Compute Infrastructure 16-H100 GPUs #### Hardware H100 GPUs #### Software PyTorch, transformers, PyTorch Lightning ## Citation https://blog.premai.io/introducing-prem-1b/ ## Model Card Authors https://huggingface.co/goku, https://huggingface.co/nsosio, https://huggingface.co/ucalyptus, https://huggingface.co/filopedraz ## Model Card Contact https://huggingface.co/goku, https://huggingface.co/nsosio, https://huggingface.co/ucalyptus, https://huggingface.co/filopedraz
thowley824/shape_long_window_2_labels_scar
thowley824
2024-05-21T13:12:28Z
181
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T13:11:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hgnoi/VGbiYcFWgN8dCI4T
hgnoi
2024-05-21T13:11:46Z
121
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T13:10:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NikolayKozloff/phi3-128k-6b-Q8_0-GGUF
NikolayKozloff
2024-05-21T13:08:17Z
1
2
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T13:08:00Z
--- library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: [] --- # NikolayKozloff/phi3-128k-6b-Q8_0-GGUF This model was converted to GGUF format from [`win10/phi3-128k-6b`](https://huggingface.co/win10/phi3-128k-6b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/win10/phi3-128k-6b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo NikolayKozloff/phi3-128k-6b-Q8_0-GGUF --model phi3-128k-6b.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo NikolayKozloff/phi3-128k-6b-Q8_0-GGUF --model phi3-128k-6b.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m phi3-128k-6b.Q8_0.gguf -n 128 ```
hgnoi/BA6abijA92TfaMLP
hgnoi
2024-05-21T13:06:18Z
121
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T13:04:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
falan42/Gemma-2b-int4-SODA_mark4
falan42
2024-05-21T13:04:20Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-2b-bnb-4bit", "base_model:finetune:unsloth/gemma-2b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T13:04:16Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-2b-bnb-4bit --- # Uploaded model - **Developed by:** emir12 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Kinopiko01/Kitana
Kinopiko01
2024-05-21T12:59:52Z
0
0
null
[ "license:openrail++", "region:us" ]
null
2024-05-12T09:49:26Z
--- license: openrail++ ---
dgrachev/Taxi-v3
dgrachev
2024-05-21T12:59:33Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-21T12:59:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dgrachev/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MaziyarPanahi/CalmexperimentMeliodas-7B-GGUF
MaziyarPanahi
2024-05-21T12:58:19Z
97
0
transformers
[ "transformers", "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "safetensors", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:allknowingroger/CalmExperiment-7B-slerp", "base_model:AurelPx/Meliodas-7b-dare", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "base_model:automerger/CalmexperimentMeliodas-7B", "base_model:quantized:automerger/CalmexperimentMeliodas-7B" ]
text-generation
2024-05-21T12:29:20Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - transformers - safetensors - mistral - text-generation - merge - mergekit - lazymergekit - automerger - base_model:allknowingroger/CalmExperiment-7B-slerp - base_model:AurelPx/Meliodas-7b-dare - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - text-generation model_name: CalmexperimentMeliodas-7B-GGUF base_model: automerger/CalmexperimentMeliodas-7B inference: false model_creator: automerger pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/CalmexperimentMeliodas-7B-GGUF](https://huggingface.co/MaziyarPanahi/CalmexperimentMeliodas-7B-GGUF) - Model creator: [automerger](https://huggingface.co/automerger) - Original model: [automerger/CalmexperimentMeliodas-7B](https://huggingface.co/automerger/CalmexperimentMeliodas-7B) ## Description [MaziyarPanahi/CalmexperimentMeliodas-7B-GGUF](https://huggingface.co/MaziyarPanahi/CalmexperimentMeliodas-7B-GGUF) contains GGUF format model files for [automerger/CalmexperimentMeliodas-7B](https://huggingface.co/automerger/CalmexperimentMeliodas-7B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
dgrachev/q-FrozenLake-v1-4x4-noSlippery
dgrachev
2024-05-21T12:57:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-05-21T12:57:30Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dgrachev/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
aghiles-s/new_repo_last
aghiles-s
2024-05-21T12:57:27Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T12:56:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: new_repo_last results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new_repo_last This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.30.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.13.3
comet24082002/continual_finetune_bge_st_V1
comet24082002
2024-05-21T12:55:49Z
9
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-21T12:34:37Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # comet24082002/continual_finetune_bge_st_V1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> Continual Training Phase: 1. SimSCE pretraining 2. MultipleNegativeRankingLoss Sentence Transformer finetuning ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('comet24082002/continual_finetune_bge_st_V1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=comet24082002/continual_finetune_bge_st_V1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 659 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 659, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Labib11/MUG-B-1.6
Labib11
2024-05-21T12:54:58Z
2,170
2
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-05-08T15:46:01Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: MUG-B-1.6 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.04047976011994 - type: ap value: 23.622442298323236 - type: f1 value: 61.681362134359354 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 72.38805970149255 - type: ap value: 35.14527522183942 - type: f1 value: 66.40004634079556 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 54.3254817987152 - type: ap value: 71.95259605308317 - type: f1 value: 52.50731386267296 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 56.33832976445397 - type: ap value: 12.671021199223937 - type: f1 value: 46.127586182990605 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.70805000000001 - type: ap value: 90.58639913354553 - type: f1 value: 93.69822635061847 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 50.85000000000001 - type: f1 value: 49.80013009020246 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 27.203999999999994 - type: f1 value: 26.60134413072989 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 34.878 - type: f1 value: 33.072592092252314 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.557999999999993 - type: f1 value: 30.866094552542624 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 22.706 - type: f1 value: 22.23195837325246 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 22.349999999999998 - type: f1 value: 21.80183891680617 - task: type: Retrieval dataset: type: mteb/arguana name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 41.892 - type: map_at_10 value: 57.989999999999995 - type: map_at_100 value: 58.45 - type: map_at_1000 value: 58.453 - type: map_at_20 value: 58.392999999999994 - type: map_at_3 value: 53.746 - type: map_at_5 value: 56.566 - type: mrr_at_1 value: 43.314 - type: mrr_at_10 value: 58.535000000000004 - type: mrr_at_100 value: 58.975 - type: mrr_at_1000 value: 58.977999999999994 - type: mrr_at_20 value: 58.916999999999994 - type: mrr_at_3 value: 54.303000000000004 - type: mrr_at_5 value: 57.055 - type: ndcg_at_1 value: 41.892 - type: ndcg_at_10 value: 66.176 - type: ndcg_at_100 value: 67.958 - type: ndcg_at_1000 value: 68.00699999999999 - type: ndcg_at_20 value: 67.565 - type: ndcg_at_3 value: 57.691 - type: ndcg_at_5 value: 62.766 - type: precision_at_1 value: 41.892 - type: precision_at_10 value: 9.189 - type: precision_at_100 value: 0.993 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.861 - type: precision_at_3 value: 23.044 - type: precision_at_5 value: 16.287 - type: recall_at_1 value: 41.892 - type: recall_at_10 value: 91.892 - type: recall_at_100 value: 99.289 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 97.226 - type: recall_at_3 value: 69.132 - type: recall_at_5 value: 81.437 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 49.03486273664411 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 43.04797567338598 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.29499572176032 - type: mrr value: 77.28861627753592 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.53248242133246 - type: cos_sim_spearman value: 88.38032705871927 - type: euclidean_pearson value: 87.77994445569084 - type: euclidean_spearman value: 88.38032705871927 - type: manhattan_pearson value: 87.52369210088627 - type: manhattan_spearman value: 88.27972235673434 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.4090909090909 - type: f1 value: 84.87743757972068 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.73840151083438 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 36.565075977998966 - task: type: Retrieval dataset: type: mteb/cqadupstack-android name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 33.082 - type: map_at_10 value: 44.787 - type: map_at_100 value: 46.322 - type: map_at_1000 value: 46.446 - type: map_at_20 value: 45.572 - type: map_at_3 value: 40.913 - type: map_at_5 value: 42.922 - type: mrr_at_1 value: 40.629 - type: mrr_at_10 value: 51.119 - type: mrr_at_100 value: 51.783 - type: mrr_at_1000 value: 51.82 - type: mrr_at_20 value: 51.49700000000001 - type: mrr_at_3 value: 48.355 - type: mrr_at_5 value: 49.979 - type: ndcg_at_1 value: 40.629 - type: ndcg_at_10 value: 51.647 - type: ndcg_at_100 value: 56.923 - type: ndcg_at_1000 value: 58.682 - type: ndcg_at_20 value: 53.457 - type: ndcg_at_3 value: 46.065 - type: ndcg_at_5 value: 48.352000000000004 - type: precision_at_1 value: 40.629 - type: precision_at_10 value: 10.072000000000001 - type: precision_at_100 value: 1.5939999999999999 - type: precision_at_1000 value: 0.20600000000000002 - type: precision_at_20 value: 5.908 - type: precision_at_3 value: 22.222 - type: precision_at_5 value: 15.937000000000001 - type: recall_at_1 value: 33.082 - type: recall_at_10 value: 64.55300000000001 - type: recall_at_100 value: 86.86399999999999 - type: recall_at_1000 value: 97.667 - type: recall_at_20 value: 70.988 - type: recall_at_3 value: 48.067 - type: recall_at_5 value: 54.763 - task: type: Retrieval dataset: type: mteb/cqadupstack-english name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 32.272 - type: map_at_10 value: 42.620000000000005 - type: map_at_100 value: 43.936 - type: map_at_1000 value: 44.066 - type: map_at_20 value: 43.349 - type: map_at_3 value: 39.458 - type: map_at_5 value: 41.351 - type: mrr_at_1 value: 40.127 - type: mrr_at_10 value: 48.437000000000005 - type: mrr_at_100 value: 49.096000000000004 - type: mrr_at_1000 value: 49.14 - type: mrr_at_20 value: 48.847 - type: mrr_at_3 value: 46.21 - type: mrr_at_5 value: 47.561 - type: ndcg_at_1 value: 40.127 - type: ndcg_at_10 value: 48.209999999999994 - type: ndcg_at_100 value: 52.632 - type: ndcg_at_1000 value: 54.59 - type: ndcg_at_20 value: 50.012 - type: ndcg_at_3 value: 43.996 - type: ndcg_at_5 value: 46.122 - type: precision_at_1 value: 40.127 - type: precision_at_10 value: 9.051 - type: precision_at_100 value: 1.465 - type: precision_at_1000 value: 0.193 - type: precision_at_20 value: 5.35 - type: precision_at_3 value: 21.104 - type: precision_at_5 value: 15.146 - type: recall_at_1 value: 32.272 - type: recall_at_10 value: 57.870999999999995 - type: recall_at_100 value: 76.211 - type: recall_at_1000 value: 88.389 - type: recall_at_20 value: 64.354 - type: recall_at_3 value: 45.426 - type: recall_at_5 value: 51.23799999999999 - task: type: Retrieval dataset: type: mteb/cqadupstack-gaming name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 40.261 - type: map_at_10 value: 53.400000000000006 - type: map_at_100 value: 54.42399999999999 - type: map_at_1000 value: 54.473000000000006 - type: map_at_20 value: 54.052 - type: map_at_3 value: 49.763000000000005 - type: map_at_5 value: 51.878 - type: mrr_at_1 value: 46.019 - type: mrr_at_10 value: 56.653 - type: mrr_at_100 value: 57.28 - type: mrr_at_1000 value: 57.303000000000004 - type: mrr_at_20 value: 57.057 - type: mrr_at_3 value: 53.971000000000004 - type: mrr_at_5 value: 55.632000000000005 - type: ndcg_at_1 value: 46.019 - type: ndcg_at_10 value: 59.597 - type: ndcg_at_100 value: 63.452 - type: ndcg_at_1000 value: 64.434 - type: ndcg_at_20 value: 61.404 - type: ndcg_at_3 value: 53.620999999999995 - type: ndcg_at_5 value: 56.688 - type: precision_at_1 value: 46.019 - type: precision_at_10 value: 9.748999999999999 - type: precision_at_100 value: 1.261 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_20 value: 5.436 - type: precision_at_3 value: 24.075 - type: precision_at_5 value: 16.715 - type: recall_at_1 value: 40.261 - type: recall_at_10 value: 74.522 - type: recall_at_100 value: 91.014 - type: recall_at_1000 value: 98.017 - type: recall_at_20 value: 81.186 - type: recall_at_3 value: 58.72500000000001 - type: recall_at_5 value: 66.23599999999999 - task: type: Retrieval dataset: type: mteb/cqadupstack-gis name: MTEB CQADupstackGisRetrieval config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 27.666 - type: map_at_10 value: 36.744 - type: map_at_100 value: 37.794 - type: map_at_1000 value: 37.865 - type: map_at_20 value: 37.336999999999996 - type: map_at_3 value: 33.833999999999996 - type: map_at_5 value: 35.61 - type: mrr_at_1 value: 29.944 - type: mrr_at_10 value: 38.838 - type: mrr_at_100 value: 39.765 - type: mrr_at_1000 value: 39.818999999999996 - type: mrr_at_20 value: 39.373000000000005 - type: mrr_at_3 value: 36.234 - type: mrr_at_5 value: 37.844 - type: ndcg_at_1 value: 29.944 - type: ndcg_at_10 value: 41.986000000000004 - type: ndcg_at_100 value: 47.05 - type: ndcg_at_1000 value: 48.897 - type: ndcg_at_20 value: 43.989 - type: ndcg_at_3 value: 36.452 - type: ndcg_at_5 value: 39.395 - type: precision_at_1 value: 29.944 - type: precision_at_10 value: 6.4750000000000005 - type: precision_at_100 value: 0.946 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_20 value: 3.6839999999999997 - type: precision_at_3 value: 15.443000000000001 - type: precision_at_5 value: 10.96 - type: recall_at_1 value: 27.666 - type: recall_at_10 value: 56.172999999999995 - type: recall_at_100 value: 79.142 - type: recall_at_1000 value: 93.013 - type: recall_at_20 value: 63.695 - type: recall_at_3 value: 41.285 - type: recall_at_5 value: 48.36 - task: type: Retrieval dataset: type: mteb/cqadupstack-mathematica name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 17.939 - type: map_at_10 value: 27.301 - type: map_at_100 value: 28.485 - type: map_at_1000 value: 28.616000000000003 - type: map_at_20 value: 27.843 - type: map_at_3 value: 24.342 - type: map_at_5 value: 26.259 - type: mrr_at_1 value: 22.761 - type: mrr_at_10 value: 32.391 - type: mrr_at_100 value: 33.297 - type: mrr_at_1000 value: 33.361000000000004 - type: mrr_at_20 value: 32.845 - type: mrr_at_3 value: 29.498 - type: mrr_at_5 value: 31.375999999999998 - type: ndcg_at_1 value: 22.761 - type: ndcg_at_10 value: 33.036 - type: ndcg_at_100 value: 38.743 - type: ndcg_at_1000 value: 41.568 - type: ndcg_at_20 value: 34.838 - type: ndcg_at_3 value: 27.803 - type: ndcg_at_5 value: 30.781 - type: precision_at_1 value: 22.761 - type: precision_at_10 value: 6.132 - type: precision_at_100 value: 1.031 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_20 value: 3.582 - type: precision_at_3 value: 13.474 - type: precision_at_5 value: 10.123999999999999 - type: recall_at_1 value: 17.939 - type: recall_at_10 value: 45.515 - type: recall_at_100 value: 70.56700000000001 - type: recall_at_1000 value: 90.306 - type: recall_at_20 value: 51.946999999999996 - type: recall_at_3 value: 31.459 - type: recall_at_5 value: 39.007 - task: type: Retrieval dataset: type: mteb/cqadupstack-physics name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 31.156 - type: map_at_10 value: 42.317 - type: map_at_100 value: 43.742 - type: map_at_1000 value: 43.852000000000004 - type: map_at_20 value: 43.147999999999996 - type: map_at_3 value: 38.981 - type: map_at_5 value: 40.827000000000005 - type: mrr_at_1 value: 38.401999999999994 - type: mrr_at_10 value: 48.141 - type: mrr_at_100 value: 48.991 - type: mrr_at_1000 value: 49.03 - type: mrr_at_20 value: 48.665000000000006 - type: mrr_at_3 value: 45.684999999999995 - type: mrr_at_5 value: 47.042 - type: ndcg_at_1 value: 38.401999999999994 - type: ndcg_at_10 value: 48.541000000000004 - type: ndcg_at_100 value: 54.063 - type: ndcg_at_1000 value: 56.005 - type: ndcg_at_20 value: 50.895999999999994 - type: ndcg_at_3 value: 43.352000000000004 - type: ndcg_at_5 value: 45.769 - type: precision_at_1 value: 38.401999999999994 - type: precision_at_10 value: 8.738999999999999 - type: precision_at_100 value: 1.335 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_20 value: 5.164 - type: precision_at_3 value: 20.468 - type: precision_at_5 value: 14.437 - type: recall_at_1 value: 31.156 - type: recall_at_10 value: 61.172000000000004 - type: recall_at_100 value: 83.772 - type: recall_at_1000 value: 96.192 - type: recall_at_20 value: 69.223 - type: recall_at_3 value: 46.628 - type: recall_at_5 value: 53.032000000000004 - task: type: Retrieval dataset: type: mteb/cqadupstack-programmers name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 26.741999999999997 - type: map_at_10 value: 36.937 - type: map_at_100 value: 38.452 - type: map_at_1000 value: 38.557 - type: map_at_20 value: 37.858999999999995 - type: map_at_3 value: 33.579 - type: map_at_5 value: 35.415 - type: mrr_at_1 value: 32.991 - type: mrr_at_10 value: 42.297000000000004 - type: mrr_at_100 value: 43.282 - type: mrr_at_1000 value: 43.332 - type: mrr_at_20 value: 42.95 - type: mrr_at_3 value: 39.707 - type: mrr_at_5 value: 41.162 - type: ndcg_at_1 value: 32.991 - type: ndcg_at_10 value: 43.004999999999995 - type: ndcg_at_100 value: 49.053000000000004 - type: ndcg_at_1000 value: 51.166999999999994 - type: ndcg_at_20 value: 45.785 - type: ndcg_at_3 value: 37.589 - type: ndcg_at_5 value: 40.007999999999996 - type: precision_at_1 value: 32.991 - type: precision_at_10 value: 8.025 - type: precision_at_100 value: 1.268 - type: precision_at_1000 value: 0.163 - type: precision_at_20 value: 4.846 - type: precision_at_3 value: 17.922 - type: precision_at_5 value: 13.059000000000001 - type: recall_at_1 value: 26.741999999999997 - type: recall_at_10 value: 55.635999999999996 - type: recall_at_100 value: 80.798 - type: recall_at_1000 value: 94.918 - type: recall_at_20 value: 65.577 - type: recall_at_3 value: 40.658 - type: recall_at_5 value: 46.812 - task: type: Retrieval dataset: type: mteb/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 27.274583333333336 - type: map_at_10 value: 37.04091666666666 - type: map_at_100 value: 38.27966666666667 - type: map_at_1000 value: 38.39383333333334 - type: map_at_20 value: 37.721500000000006 - type: map_at_3 value: 33.937999999999995 - type: map_at_5 value: 35.67974999999999 - type: mrr_at_1 value: 32.40525 - type: mrr_at_10 value: 41.43925000000001 - type: mrr_at_100 value: 42.271 - type: mrr_at_1000 value: 42.32416666666667 - type: mrr_at_20 value: 41.92733333333334 - type: mrr_at_3 value: 38.84941666666666 - type: mrr_at_5 value: 40.379583333333336 - type: ndcg_at_1 value: 32.40525 - type: ndcg_at_10 value: 42.73808333333334 - type: ndcg_at_100 value: 47.88941666666667 - type: ndcg_at_1000 value: 50.05008333333334 - type: ndcg_at_20 value: 44.74183333333334 - type: ndcg_at_3 value: 37.51908333333334 - type: ndcg_at_5 value: 40.01883333333333 - type: precision_at_1 value: 32.40525 - type: precision_at_10 value: 7.5361666666666665 - type: precision_at_100 value: 1.1934166666666666 - type: precision_at_1000 value: 0.1575 - type: precision_at_20 value: 4.429166666666667 - type: precision_at_3 value: 17.24941666666667 - type: precision_at_5 value: 12.362333333333336 - type: recall_at_1 value: 27.274583333333336 - type: recall_at_10 value: 55.21358333333334 - type: recall_at_100 value: 77.60366666666667 - type: recall_at_1000 value: 92.43691666666666 - type: recall_at_20 value: 62.474583333333335 - type: recall_at_3 value: 40.79375 - type: recall_at_5 value: 47.15158333333334 - task: type: Retrieval dataset: type: mteb/cqadupstack-stats name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 27.389999999999997 - type: map_at_10 value: 34.107 - type: map_at_100 value: 35.022999999999996 - type: map_at_1000 value: 35.13 - type: map_at_20 value: 34.605999999999995 - type: map_at_3 value: 32.021 - type: map_at_5 value: 32.948 - type: mrr_at_1 value: 30.982 - type: mrr_at_10 value: 37.345 - type: mrr_at_100 value: 38.096999999999994 - type: mrr_at_1000 value: 38.179 - type: mrr_at_20 value: 37.769000000000005 - type: mrr_at_3 value: 35.481 - type: mrr_at_5 value: 36.293 - type: ndcg_at_1 value: 30.982 - type: ndcg_at_10 value: 38.223 - type: ndcg_at_100 value: 42.686 - type: ndcg_at_1000 value: 45.352 - type: ndcg_at_20 value: 39.889 - type: ndcg_at_3 value: 34.259 - type: ndcg_at_5 value: 35.664 - type: precision_at_1 value: 30.982 - type: precision_at_10 value: 5.7669999999999995 - type: precision_at_100 value: 0.877 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_20 value: 3.3360000000000003 - type: precision_at_3 value: 14.264 - type: precision_at_5 value: 9.54 - type: recall_at_1 value: 27.389999999999997 - type: recall_at_10 value: 48.009 - type: recall_at_100 value: 68.244 - type: recall_at_1000 value: 87.943 - type: recall_at_20 value: 54.064 - type: recall_at_3 value: 36.813 - type: recall_at_5 value: 40.321 - task: type: Retrieval dataset: type: mteb/cqadupstack-tex name: MTEB CQADupstackTexRetrieval config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 18.249000000000002 - type: map_at_10 value: 25.907000000000004 - type: map_at_100 value: 27.105 - type: map_at_1000 value: 27.233 - type: map_at_20 value: 26.541999999999998 - type: map_at_3 value: 23.376 - type: map_at_5 value: 24.673000000000002 - type: mrr_at_1 value: 21.989 - type: mrr_at_10 value: 29.846 - type: mrr_at_100 value: 30.808999999999997 - type: mrr_at_1000 value: 30.885 - type: mrr_at_20 value: 30.384 - type: mrr_at_3 value: 27.46 - type: mrr_at_5 value: 28.758 - type: ndcg_at_1 value: 21.989 - type: ndcg_at_10 value: 30.874000000000002 - type: ndcg_at_100 value: 36.504999999999995 - type: ndcg_at_1000 value: 39.314 - type: ndcg_at_20 value: 32.952999999999996 - type: ndcg_at_3 value: 26.249 - type: ndcg_at_5 value: 28.229 - type: precision_at_1 value: 21.989 - type: precision_at_10 value: 5.705 - type: precision_at_100 value: 0.9990000000000001 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_20 value: 3.4459999999999997 - type: precision_at_3 value: 12.377 - type: precision_at_5 value: 8.961 - type: recall_at_1 value: 18.249000000000002 - type: recall_at_10 value: 41.824 - type: recall_at_100 value: 67.071 - type: recall_at_1000 value: 86.863 - type: recall_at_20 value: 49.573 - type: recall_at_3 value: 28.92 - type: recall_at_5 value: 34.003 - task: type: Retrieval dataset: type: mteb/cqadupstack-unix name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 26.602999999999998 - type: map_at_10 value: 36.818 - type: map_at_100 value: 37.894 - type: map_at_1000 value: 37.991 - type: map_at_20 value: 37.389 - type: map_at_3 value: 33.615 - type: map_at_5 value: 35.432 - type: mrr_at_1 value: 31.53 - type: mrr_at_10 value: 41.144 - type: mrr_at_100 value: 41.937999999999995 - type: mrr_at_1000 value: 41.993 - type: mrr_at_20 value: 41.585 - type: mrr_at_3 value: 38.385999999999996 - type: mrr_at_5 value: 39.995000000000005 - type: ndcg_at_1 value: 31.53 - type: ndcg_at_10 value: 42.792 - type: ndcg_at_100 value: 47.749 - type: ndcg_at_1000 value: 49.946 - type: ndcg_at_20 value: 44.59 - type: ndcg_at_3 value: 37.025000000000006 - type: ndcg_at_5 value: 39.811 - type: precision_at_1 value: 31.53 - type: precision_at_10 value: 7.2669999999999995 - type: precision_at_100 value: 1.109 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_20 value: 4.184 - type: precision_at_3 value: 16.791 - type: precision_at_5 value: 12.09 - type: recall_at_1 value: 26.602999999999998 - type: recall_at_10 value: 56.730999999999995 - type: recall_at_100 value: 78.119 - type: recall_at_1000 value: 93.458 - type: recall_at_20 value: 63.00599999999999 - type: recall_at_3 value: 41.306 - type: recall_at_5 value: 48.004999999999995 - task: type: Retrieval dataset: type: mteb/cqadupstack-webmasters name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 23.988 - type: map_at_10 value: 33.650999999999996 - type: map_at_100 value: 35.263 - type: map_at_1000 value: 35.481 - type: map_at_20 value: 34.463 - type: map_at_3 value: 30.330000000000002 - type: map_at_5 value: 32.056000000000004 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.987 - type: mrr_at_100 value: 39.973 - type: mrr_at_1000 value: 40.013 - type: mrr_at_20 value: 39.553 - type: mrr_at_3 value: 36.001 - type: mrr_at_5 value: 37.869 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 40.156 - type: ndcg_at_100 value: 46.244 - type: ndcg_at_1000 value: 48.483 - type: ndcg_at_20 value: 42.311 - type: ndcg_at_3 value: 34.492 - type: ndcg_at_5 value: 37.118 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.925 - type: precision_at_100 value: 1.5890000000000002 - type: precision_at_1000 value: 0.245 - type: precision_at_20 value: 4.97 - type: precision_at_3 value: 16.469 - type: precision_at_5 value: 12.174 - type: recall_at_1 value: 23.988 - type: recall_at_10 value: 52.844 - type: recall_at_100 value: 80.143 - type: recall_at_1000 value: 93.884 - type: recall_at_20 value: 61.050000000000004 - type: recall_at_3 value: 36.720000000000006 - type: recall_at_5 value: 43.614999999999995 - task: type: Retrieval dataset: type: mteb/cqadupstack-wordpress name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 21.947 - type: map_at_10 value: 29.902 - type: map_at_100 value: 30.916 - type: map_at_1000 value: 31.016 - type: map_at_20 value: 30.497999999999998 - type: map_at_3 value: 27.044 - type: map_at_5 value: 28.786 - type: mrr_at_1 value: 23.845 - type: mrr_at_10 value: 32.073 - type: mrr_at_100 value: 32.940999999999995 - type: mrr_at_1000 value: 33.015 - type: mrr_at_20 value: 32.603 - type: mrr_at_3 value: 29.205 - type: mrr_at_5 value: 31.044 - type: ndcg_at_1 value: 23.845 - type: ndcg_at_10 value: 34.79 - type: ndcg_at_100 value: 39.573 - type: ndcg_at_1000 value: 42.163000000000004 - type: ndcg_at_20 value: 36.778 - type: ndcg_at_3 value: 29.326 - type: ndcg_at_5 value: 32.289 - type: precision_at_1 value: 23.845 - type: precision_at_10 value: 5.527 - type: precision_at_100 value: 0.847 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_20 value: 3.2439999999999998 - type: precision_at_3 value: 12.384 - type: precision_at_5 value: 9.205 - type: recall_at_1 value: 21.947 - type: recall_at_10 value: 47.713 - type: recall_at_100 value: 69.299 - type: recall_at_1000 value: 88.593 - type: recall_at_20 value: 55.032000000000004 - type: recall_at_3 value: 33.518 - type: recall_at_5 value: 40.427 - task: type: Retrieval dataset: type: mteb/climate-fever name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 13.655999999999999 - type: map_at_10 value: 23.954 - type: map_at_100 value: 26.07 - type: map_at_1000 value: 26.266000000000002 - type: map_at_20 value: 25.113000000000003 - type: map_at_3 value: 19.85 - type: map_at_5 value: 21.792 - type: mrr_at_1 value: 31.075000000000003 - type: mrr_at_10 value: 43.480000000000004 - type: mrr_at_100 value: 44.39 - type: mrr_at_1000 value: 44.42 - type: mrr_at_20 value: 44.06 - type: mrr_at_3 value: 40.38 - type: mrr_at_5 value: 42.138999999999996 - type: ndcg_at_1 value: 31.075000000000003 - type: ndcg_at_10 value: 33.129999999999995 - type: ndcg_at_100 value: 40.794000000000004 - type: ndcg_at_1000 value: 44.062 - type: ndcg_at_20 value: 36.223 - type: ndcg_at_3 value: 27.224999999999998 - type: ndcg_at_5 value: 28.969 - type: precision_at_1 value: 31.075000000000003 - type: precision_at_10 value: 10.476 - type: precision_at_100 value: 1.864 - type: precision_at_1000 value: 0.247 - type: precision_at_20 value: 6.593 - type: precision_at_3 value: 20.456 - type: precision_at_5 value: 15.440000000000001 - type: recall_at_1 value: 13.655999999999999 - type: recall_at_10 value: 39.678000000000004 - type: recall_at_100 value: 65.523 - type: recall_at_1000 value: 83.59100000000001 - type: recall_at_20 value: 48.27 - type: recall_at_3 value: 24.863 - type: recall_at_5 value: 30.453999999999997 - task: type: Retrieval dataset: type: mteb/dbpedia name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.139 - type: map_at_10 value: 20.366999999999997 - type: map_at_100 value: 29.755 - type: map_at_1000 value: 31.563999999999997 - type: map_at_20 value: 24.021 - type: map_at_3 value: 14.395 - type: map_at_5 value: 16.853 - type: mrr_at_1 value: 69.0 - type: mrr_at_10 value: 76.778 - type: mrr_at_100 value: 77.116 - type: mrr_at_1000 value: 77.12299999999999 - type: mrr_at_20 value: 77.046 - type: mrr_at_3 value: 75.208 - type: mrr_at_5 value: 76.146 - type: ndcg_at_1 value: 57.125 - type: ndcg_at_10 value: 42.84 - type: ndcg_at_100 value: 48.686 - type: ndcg_at_1000 value: 56.294 - type: ndcg_at_20 value: 42.717 - type: ndcg_at_3 value: 46.842 - type: ndcg_at_5 value: 44.248 - type: precision_at_1 value: 69.0 - type: precision_at_10 value: 34.625 - type: precision_at_100 value: 11.468 - type: precision_at_1000 value: 2.17 - type: precision_at_20 value: 26.562 - type: precision_at_3 value: 50.917 - type: precision_at_5 value: 43.35 - type: recall_at_1 value: 9.139 - type: recall_at_10 value: 26.247999999999998 - type: recall_at_100 value: 56.647000000000006 - type: recall_at_1000 value: 80.784 - type: recall_at_20 value: 35.010999999999996 - type: recall_at_3 value: 15.57 - type: recall_at_5 value: 19.198 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 55.93 - type: f1 value: 49.35314406745291 - task: type: Retrieval dataset: type: mteb/fever name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 73.198 - type: map_at_10 value: 81.736 - type: map_at_100 value: 82.02000000000001 - type: map_at_1000 value: 82.03399999999999 - type: map_at_20 value: 81.937 - type: map_at_3 value: 80.692 - type: map_at_5 value: 81.369 - type: mrr_at_1 value: 78.803 - type: mrr_at_10 value: 86.144 - type: mrr_at_100 value: 86.263 - type: mrr_at_1000 value: 86.26599999999999 - type: mrr_at_20 value: 86.235 - type: mrr_at_3 value: 85.464 - type: mrr_at_5 value: 85.95 - type: ndcg_at_1 value: 78.803 - type: ndcg_at_10 value: 85.442 - type: ndcg_at_100 value: 86.422 - type: ndcg_at_1000 value: 86.68900000000001 - type: ndcg_at_20 value: 85.996 - type: ndcg_at_3 value: 83.839 - type: ndcg_at_5 value: 84.768 - type: precision_at_1 value: 78.803 - type: precision_at_10 value: 10.261000000000001 - type: precision_at_100 value: 1.0959999999999999 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_20 value: 5.286 - type: precision_at_3 value: 32.083 - type: precision_at_5 value: 19.898 - type: recall_at_1 value: 73.198 - type: recall_at_10 value: 92.42099999999999 - type: recall_at_100 value: 96.28 - type: recall_at_1000 value: 97.995 - type: recall_at_20 value: 94.36 - type: recall_at_3 value: 88.042 - type: recall_at_5 value: 90.429 - task: type: Retrieval dataset: type: mteb/fiqa name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 21.583 - type: map_at_10 value: 36.503 - type: map_at_100 value: 38.529 - type: map_at_1000 value: 38.701 - type: map_at_20 value: 37.69 - type: map_at_3 value: 31.807000000000002 - type: map_at_5 value: 34.424 - type: mrr_at_1 value: 43.827 - type: mrr_at_10 value: 53.528 - type: mrr_at_100 value: 54.291 - type: mrr_at_1000 value: 54.32599999999999 - type: mrr_at_20 value: 54.064 - type: mrr_at_3 value: 51.25999999999999 - type: mrr_at_5 value: 52.641000000000005 - type: ndcg_at_1 value: 43.827 - type: ndcg_at_10 value: 44.931 - type: ndcg_at_100 value: 51.778999999999996 - type: ndcg_at_1000 value: 54.532000000000004 - type: ndcg_at_20 value: 47.899 - type: ndcg_at_3 value: 41.062 - type: ndcg_at_5 value: 42.33 - type: precision_at_1 value: 43.827 - type: precision_at_10 value: 12.608 - type: precision_at_100 value: 1.974 - type: precision_at_1000 value: 0.247 - type: precision_at_20 value: 7.585 - type: precision_at_3 value: 27.778000000000002 - type: precision_at_5 value: 20.308999999999997 - type: recall_at_1 value: 21.583 - type: recall_at_10 value: 52.332 - type: recall_at_100 value: 77.256 - type: recall_at_1000 value: 93.613 - type: recall_at_20 value: 61.413 - type: recall_at_3 value: 37.477 - type: recall_at_5 value: 44.184 - task: type: Retrieval dataset: type: mteb/hotpotqa name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 39.845000000000006 - type: map_at_10 value: 64.331 - type: map_at_100 value: 65.202 - type: map_at_1000 value: 65.261 - type: map_at_20 value: 64.833 - type: map_at_3 value: 60.663 - type: map_at_5 value: 62.94 - type: mrr_at_1 value: 79.689 - type: mrr_at_10 value: 85.299 - type: mrr_at_100 value: 85.461 - type: mrr_at_1000 value: 85.466 - type: mrr_at_20 value: 85.39099999999999 - type: mrr_at_3 value: 84.396 - type: mrr_at_5 value: 84.974 - type: ndcg_at_1 value: 79.689 - type: ndcg_at_10 value: 72.49 - type: ndcg_at_100 value: 75.485 - type: ndcg_at_1000 value: 76.563 - type: ndcg_at_20 value: 73.707 - type: ndcg_at_3 value: 67.381 - type: ndcg_at_5 value: 70.207 - type: precision_at_1 value: 79.689 - type: precision_at_10 value: 15.267 - type: precision_at_100 value: 1.7610000000000001 - type: precision_at_1000 value: 0.19 - type: precision_at_20 value: 8.024000000000001 - type: precision_at_3 value: 43.363 - type: precision_at_5 value: 28.248 - type: recall_at_1 value: 39.845000000000006 - type: recall_at_10 value: 76.334 - type: recall_at_100 value: 88.042 - type: recall_at_1000 value: 95.09100000000001 - type: recall_at_20 value: 80.243 - type: recall_at_3 value: 65.044 - type: recall_at_5 value: 70.621 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 93.57079999999999 - type: ap value: 90.50045924786099 - type: f1 value: 93.56673497845476 - task: type: Retrieval dataset: type: mteb/msmarco name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 22.212 - type: map_at_10 value: 34.528 - type: map_at_100 value: 35.69 - type: map_at_1000 value: 35.74 - type: map_at_20 value: 35.251 - type: map_at_3 value: 30.628 - type: map_at_5 value: 32.903999999999996 - type: mrr_at_1 value: 22.794 - type: mrr_at_10 value: 35.160000000000004 - type: mrr_at_100 value: 36.251 - type: mrr_at_1000 value: 36.295 - type: mrr_at_20 value: 35.845 - type: mrr_at_3 value: 31.328 - type: mrr_at_5 value: 33.574 - type: ndcg_at_1 value: 22.779 - type: ndcg_at_10 value: 41.461 - type: ndcg_at_100 value: 47.049 - type: ndcg_at_1000 value: 48.254000000000005 - type: ndcg_at_20 value: 44.031 - type: ndcg_at_3 value: 33.561 - type: ndcg_at_5 value: 37.62 - type: precision_at_1 value: 22.779 - type: precision_at_10 value: 6.552 - type: precision_at_100 value: 0.936 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 3.8120000000000003 - type: precision_at_3 value: 14.274000000000001 - type: precision_at_5 value: 10.622 - type: recall_at_1 value: 22.212 - type: recall_at_10 value: 62.732 - type: recall_at_100 value: 88.567 - type: recall_at_1000 value: 97.727 - type: recall_at_20 value: 72.733 - type: recall_at_3 value: 41.367 - type: recall_at_5 value: 51.105999999999995 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.24988600091199 - type: f1 value: 94.06064583085202 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 74.86052409129333 - type: f1 value: 72.24661442078647 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 77.09139426284189 - type: f1 value: 76.3725044443502 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 79.79956154087064 - type: f1 value: 78.41859658401724 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 32.785944783076374 - type: f1 value: 31.182237278594922 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 16.654611211573236 - type: f1 value: 12.088413093236642 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.51481988144094 - type: f1 value: 49.561420234732125 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 42.36122851507467 - type: f1 value: 25.445030887504398 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 44.73315543695797 - type: f1 value: 28.42075153540265 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 38.96022549326651 - type: f1 value: 25.926979537146106 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 13.578343492291141 - type: f1 value: 8.929295550931657 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 5.396021699819168 - type: f1 value: 1.8587148785378742 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 37.22259583053128 - type: f1 value: 34.63013680947778 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 3.194351042367182 - type: f1 value: 1.2612010214639442 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 14.26361802286483 - type: f1 value: 13.70260406613821 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 37.21923335574983 - type: f1 value: 36.33553913878251 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 10.756556825823807 - type: f1 value: 9.676431920229374 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 32.49831876260928 - type: f1 value: 30.818895782691868 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 40.995292535305985 - type: f1 value: 37.68768183180129 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 42.780766644250164 - type: f1 value: 37.82194830667135 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 33.490248823133825 - type: f1 value: 29.71809045584527 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.8836583725622 - type: f1 value: 72.16381047416814 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 44.45191661062542 - type: f1 value: 43.46583297093683 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 26.738399462004036 - type: f1 value: 24.11896530001951 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 38.09683927370545 - type: f1 value: 35.34443269387154 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 46.89307330195024 - type: f1 value: 43.47164092514292 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 25.198386012104912 - type: f1 value: 22.446286736401916 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 13.940820443846672 - type: f1 value: 13.257747189396213 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 34.710827168796236 - type: f1 value: 32.036974696095996 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 6.711499663752522 - type: f1 value: 5.439441019096591 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 38.56758574310693 - type: f1 value: 36.83183505458304 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 32.22595830531271 - type: f1 value: 30.10972675771159 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 45.79690652320107 - type: f1 value: 44.37143784350453 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 29.189643577673163 - type: f1 value: 25.43718135312703 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 34.21990585070612 - type: f1 value: 32.333592263041396 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 8.890383322125084 - type: f1 value: 7.294310113130201 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 4.616677874915938 - type: f1 value: 1.5028537477535886 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 3.170813718897109 - type: f1 value: 1.5771411815826382 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 15.026899798251513 - type: f1 value: 14.077395255366183 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 36.0995292535306 - type: f1 value: 35.0877269083235 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 2.9959650302622727 - type: f1 value: 0.8064424547273695 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 23.301950235373234 - type: f1 value: 22.477376205075853 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 36.13315400134499 - type: f1 value: 32.99623898888715 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 3.813046402151983 - type: f1 value: 1.1769597223141248 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 39.66711499663752 - type: f1 value: 35.921474753569214 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 41.079354404841965 - type: f1 value: 37.57739961852201 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 38.211163416274374 - type: f1 value: 34.89419275422068 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 45.19838601210491 - type: f1 value: 42.71660225307043 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 39.48554135843981 - type: f1 value: 37.47402102847154 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 31.819098856758576 - type: f1 value: 30.120158288509725 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 35.44720914593141 - type: f1 value: 33.74530063536304 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 36.89307330195024 - type: f1 value: 34.46971619696105 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 38.83322125084062 - type: f1 value: 36.050770344888264 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 37.535305985205106 - type: f1 value: 35.21395700670493 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 7.905178211163418 - type: f1 value: 6.163513326325246 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 2.8480161398789514 - type: f1 value: 1.0163931337986962 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 10.501008742434433 - type: f1 value: 6.858549418430471 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 39.46536650975118 - type: f1 value: 34.96292597328575 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 37.50168123739071 - type: f1 value: 35.031097269820464 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 16.109616677874918 - type: f1 value: 15.884609726192519 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 36.11297915265636 - type: f1 value: 34.59918716321474 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 18.850033624747812 - type: f1 value: 15.09584388649328 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 17.219233355749832 - type: f1 value: 14.538046039008337 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 47.79757901815736 - type: f1 value: 45.078250421193324 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 7.078009414929388 - type: f1 value: 4.0122456300041645 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 22.831203765971754 - type: f1 value: 20.131610050816555 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.952925353059854 - type: f1 value: 42.6865575762921 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 16.593813046402154 - type: f1 value: 14.087144503044291 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 37.91862811028917 - type: f1 value: 34.968402727911915 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 51.923335574983184 - type: f1 value: 49.357147840776335 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.73570948217889 - type: f1 value: 54.92084137819753 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.995965030262276 - type: f1 value: 38.47512542753069 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.42098184263618 - type: f1 value: 77.03413816048877 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 54.46536650975118 - type: f1 value: 53.08520810835907 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 30.578345662407525 - type: f1 value: 28.822998245702635 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 43.567585743106925 - type: f1 value: 39.79216651714347 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 56.98722259583053 - type: f1 value: 55.31168113501439 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.076664425016812 - type: f1 value: 24.927348965627573 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 18.096839273705445 - type: f1 value: 17.386603595777103 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 41.73839946200403 - type: f1 value: 38.65545902563735 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 11.536650975117688 - type: f1 value: 10.898336694524854 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 46.9502353732347 - type: f1 value: 44.332561323528644 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.777404169468724 - type: f1 value: 39.378117766055354 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 54.6469401479489 - type: f1 value: 52.512025274851794 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 35.90114324142569 - type: f1 value: 34.90331274712605 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 42.51176866173504 - type: f1 value: 39.417541845685676 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 13.799596503026226 - type: f1 value: 11.587556164962251 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 9.44855413584398 - type: f1 value: 4.30711077076907 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 8.157363819771351 - type: f1 value: 5.5588908736809515 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 19.909213180901144 - type: f1 value: 18.964761241087984 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 40.47747141896436 - type: f1 value: 38.17159556642586 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 6.701412239408204 - type: f1 value: 3.621974155647488 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 28.55413584398117 - type: f1 value: 26.582548923662753 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 46.617350369872234 - type: f1 value: 41.35397419267425 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 9.976462676529927 - type: f1 value: 5.900764382768462 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.894418291862806 - type: f1 value: 47.70929403771086 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 51.761936785474106 - type: f1 value: 48.42797973062516 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 46.21385339609952 - type: f1 value: 43.7081546200347 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 55.59852051109617 - type: f1 value: 54.19610878409633 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.54135843981169 - type: f1 value: 47.79393938467311 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 37.73032952252858 - type: f1 value: 35.96450149708041 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 41.67114996637525 - type: f1 value: 40.28283538885605 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 47.38063214525891 - type: f1 value: 44.93264016007152 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 49.28379287155347 - type: f1 value: 46.25486396570196 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 44.18291862811029 - type: f1 value: 41.17519157172804 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 12.599193006052452 - type: f1 value: 11.129236666238377 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 7.017484868863484 - type: f1 value: 3.9665415549749077 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 19.788164088769335 - type: f1 value: 15.783384761347582 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.35978480161398 - type: f1 value: 47.30586047800275 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 45.484196368527236 - type: f1 value: 44.65101184252231 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 23.681909885675857 - type: f1 value: 22.247817138937524 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 41.63080026899798 - type: f1 value: 39.546896741744 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 30.141223940820446 - type: f1 value: 28.177838960078123 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 27.515131136516473 - type: f1 value: 26.514325837594654 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.70592767911301 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.80943770643908 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.66434973425713 - type: mrr value: 33.92240574935323 - task: type: Retrieval dataset: type: mteb/nfcorpus name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 6.561999999999999 - type: map_at_10 value: 14.854000000000001 - type: map_at_100 value: 19.187 - type: map_at_1000 value: 20.812 - type: map_at_20 value: 16.744 - type: map_at_3 value: 10.804 - type: map_at_5 value: 12.555 - type: mrr_at_1 value: 48.916 - type: mrr_at_10 value: 57.644 - type: mrr_at_100 value: 58.17 - type: mrr_at_1000 value: 58.206 - type: mrr_at_20 value: 57.969 - type: mrr_at_3 value: 55.36600000000001 - type: mrr_at_5 value: 56.729 - type: ndcg_at_1 value: 46.594 - type: ndcg_at_10 value: 37.897999999999996 - type: ndcg_at_100 value: 35.711 - type: ndcg_at_1000 value: 44.65 - type: ndcg_at_20 value: 35.989 - type: ndcg_at_3 value: 42.869 - type: ndcg_at_5 value: 40.373 - type: precision_at_1 value: 48.297000000000004 - type: precision_at_10 value: 28.297 - type: precision_at_100 value: 9.099 - type: precision_at_1000 value: 2.229 - type: precision_at_20 value: 21.455 - type: precision_at_3 value: 40.248 - type: precision_at_5 value: 34.675 - type: recall_at_1 value: 6.561999999999999 - type: recall_at_10 value: 19.205 - type: recall_at_100 value: 36.742999999999995 - type: recall_at_1000 value: 69.119 - type: recall_at_20 value: 23.787 - type: recall_at_3 value: 11.918 - type: recall_at_5 value: 14.860000000000001 - task: type: Retrieval dataset: type: mteb/nq name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 30.306 - type: map_at_10 value: 46.916999999999994 - type: map_at_100 value: 47.899 - type: map_at_1000 value: 47.925000000000004 - type: map_at_20 value: 47.583 - type: map_at_3 value: 42.235 - type: map_at_5 value: 45.118 - type: mrr_at_1 value: 34.327999999999996 - type: mrr_at_10 value: 49.248999999999995 - type: mrr_at_100 value: 49.96 - type: mrr_at_1000 value: 49.977 - type: mrr_at_20 value: 49.738 - type: mrr_at_3 value: 45.403999999999996 - type: mrr_at_5 value: 47.786 - type: ndcg_at_1 value: 34.327999999999996 - type: ndcg_at_10 value: 55.123999999999995 - type: ndcg_at_100 value: 59.136 - type: ndcg_at_1000 value: 59.71300000000001 - type: ndcg_at_20 value: 57.232000000000006 - type: ndcg_at_3 value: 46.48 - type: ndcg_at_5 value: 51.237 - type: precision_at_1 value: 34.327999999999996 - type: precision_at_10 value: 9.261 - type: precision_at_100 value: 1.1520000000000001 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 5.148 - type: precision_at_3 value: 21.523999999999997 - type: precision_at_5 value: 15.659999999999998 - type: recall_at_1 value: 30.306 - type: recall_at_10 value: 77.65100000000001 - type: recall_at_100 value: 94.841 - type: recall_at_1000 value: 99.119 - type: recall_at_20 value: 85.37599999999999 - type: recall_at_3 value: 55.562 - type: recall_at_5 value: 66.5 - task: type: Retrieval dataset: type: mteb/quora name: MTEB QuoraRetrieval config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 71.516 - type: map_at_10 value: 85.48400000000001 - type: map_at_100 value: 86.11 - type: map_at_1000 value: 86.124 - type: map_at_20 value: 85.895 - type: map_at_3 value: 82.606 - type: map_at_5 value: 84.395 - type: mrr_at_1 value: 82.38 - type: mrr_at_10 value: 88.31099999999999 - type: mrr_at_100 value: 88.407 - type: mrr_at_1000 value: 88.407 - type: mrr_at_20 value: 88.385 - type: mrr_at_3 value: 87.42699999999999 - type: mrr_at_5 value: 88.034 - type: ndcg_at_1 value: 82.39999999999999 - type: ndcg_at_10 value: 89.07300000000001 - type: ndcg_at_100 value: 90.23400000000001 - type: ndcg_at_1000 value: 90.304 - type: ndcg_at_20 value: 89.714 - type: ndcg_at_3 value: 86.42699999999999 - type: ndcg_at_5 value: 87.856 - type: precision_at_1 value: 82.39999999999999 - type: precision_at_10 value: 13.499 - type: precision_at_100 value: 1.536 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.155 - type: precision_at_3 value: 37.846999999999994 - type: precision_at_5 value: 24.778 - type: recall_at_1 value: 71.516 - type: recall_at_10 value: 95.831 - type: recall_at_100 value: 99.714 - type: recall_at_1000 value: 99.979 - type: recall_at_20 value: 97.87599999999999 - type: recall_at_3 value: 88.08 - type: recall_at_5 value: 92.285 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 61.3760407207699 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 65.28621066626943 - task: type: Retrieval dataset: type: mteb/scidocs name: MTEB SCIDOCS config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 5.163 - type: map_at_10 value: 14.377 - type: map_at_100 value: 17.177 - type: map_at_1000 value: 17.588 - type: map_at_20 value: 15.827 - type: map_at_3 value: 9.879 - type: map_at_5 value: 12.133 - type: mrr_at_1 value: 25.5 - type: mrr_at_10 value: 38.435 - type: mrr_at_100 value: 39.573 - type: mrr_at_1000 value: 39.606 - type: mrr_at_20 value: 39.134 - type: mrr_at_3 value: 34.666999999999994 - type: mrr_at_5 value: 37.117 - type: ndcg_at_1 value: 25.5 - type: ndcg_at_10 value: 23.688000000000002 - type: ndcg_at_100 value: 33.849000000000004 - type: ndcg_at_1000 value: 39.879 - type: ndcg_at_20 value: 27.36 - type: ndcg_at_3 value: 22.009999999999998 - type: ndcg_at_5 value: 19.691 - type: precision_at_1 value: 25.5 - type: precision_at_10 value: 12.540000000000001 - type: precision_at_100 value: 2.721 - type: precision_at_1000 value: 0.415 - type: precision_at_20 value: 8.385 - type: precision_at_3 value: 21.099999999999998 - type: precision_at_5 value: 17.84 - type: recall_at_1 value: 5.163 - type: recall_at_10 value: 25.405 - type: recall_at_100 value: 55.213 - type: recall_at_1000 value: 84.243 - type: recall_at_20 value: 34.003 - type: recall_at_3 value: 12.837000000000002 - type: recall_at_5 value: 18.096999999999998 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 87.64406884822948 - type: cos_sim_spearman value: 83.00239648251724 - type: euclidean_pearson value: 85.03347205351844 - type: euclidean_spearman value: 83.00240733538445 - type: manhattan_pearson value: 85.0312758694447 - type: manhattan_spearman value: 82.99430696077589 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 87.68832340658764 - type: cos_sim_spearman value: 79.21679373212476 - type: euclidean_pearson value: 85.17094885886415 - type: euclidean_spearman value: 79.21421345946399 - type: manhattan_pearson value: 85.17409319145995 - type: manhattan_spearman value: 79.20992207976401 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 88.43733084958856 - type: cos_sim_spearman value: 89.43082089321751 - type: euclidean_pearson value: 88.63286785416938 - type: euclidean_spearman value: 89.43082081372343 - type: manhattan_pearson value: 88.62969346368385 - type: manhattan_spearman value: 89.43131586189746 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 86.62185532014894 - type: cos_sim_spearman value: 84.7923120886599 - type: euclidean_pearson value: 85.99786490539253 - type: euclidean_spearman value: 84.79231064318844 - type: manhattan_pearson value: 85.97647892920392 - type: manhattan_spearman value: 84.76865232132103 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.39303997282114 - type: cos_sim_spearman value: 89.54273264876765 - type: euclidean_pearson value: 88.8848627924181 - type: euclidean_spearman value: 89.54275013645078 - type: manhattan_pearson value: 88.86926987108802 - type: manhattan_spearman value: 89.53259197721715 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.21814352466886 - type: cos_sim_spearman value: 86.68505223422434 - type: euclidean_pearson value: 86.07422446469991 - type: euclidean_spearman value: 86.68505161067375 - type: manhattan_pearson value: 86.05114200797293 - type: manhattan_spearman value: 86.6587670422703 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 39.17871768366095 - type: cos_sim_spearman value: 39.78510424960567 - type: euclidean_pearson value: 41.65680175653682 - type: euclidean_spearman value: 39.78538944779548 - type: manhattan_pearson value: 41.567603690394755 - type: manhattan_spearman value: 39.71393388259443 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 49.26766904195114 - type: cos_sim_spearman value: 46.79722787057151 - type: euclidean_pearson value: 51.2329334717446 - type: euclidean_spearman value: 46.7920623095072 - type: manhattan_pearson value: 51.26488560860826 - type: manhattan_spearman value: 47.00400318665492 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 1.6821294132202447 - type: cos_sim_spearman value: -0.7813676799492025 - type: euclidean_pearson value: 1.9197388753860283 - type: euclidean_spearman value: -0.7813676799492025 - type: manhattan_pearson value: 2.209862430499871 - type: manhattan_spearman value: -0.863014010062456 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 48.76382428941107 - type: cos_sim_spearman value: 47.50280322999196 - type: euclidean_pearson value: 48.73919143974209 - type: euclidean_spearman value: 47.50280322999196 - type: manhattan_pearson value: 48.76291223862666 - type: manhattan_spearman value: 47.51318193687094 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.6579390263212 - type: cos_sim_spearman value: 89.64423556388047 - type: euclidean_pearson value: 90.1160733522703 - type: euclidean_spearman value: 89.64423556388047 - type: manhattan_pearson value: 90.1528407376387 - type: manhattan_spearman value: 89.61290724496793 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 6.717092266815236 - type: cos_sim_spearman value: 4.180543503488665 - type: euclidean_pearson value: 7.120267092048099 - type: euclidean_spearman value: 4.180543503488665 - type: manhattan_pearson value: 6.396237465828514 - type: manhattan_spearman value: 3.61244941411957 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 44.36476614938953 - type: cos_sim_spearman value: 44.265723809500685 - type: euclidean_pearson value: 44.61551298711104 - type: euclidean_spearman value: 44.265723809500685 - type: manhattan_pearson value: 44.54302374682193 - type: manhattan_spearman value: 44.08642490624185 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.64871991975828 - type: cos_sim_spearman value: 79.21979030014373 - type: euclidean_pearson value: 81.8672798988218 - type: euclidean_spearman value: 79.21950130108661 - type: manhattan_pearson value: 82.02131606326583 - type: manhattan_spearman value: 79.44848373553044 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 48.73898658957231 - type: cos_sim_spearman value: 47.15192605817168 - type: euclidean_pearson value: 49.11990573381456 - type: euclidean_spearman value: 47.15192605817168 - type: manhattan_pearson value: 48.5694400358235 - type: manhattan_spearman value: 46.651326429708135 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 44.42168074232218 - type: cos_sim_spearman value: 42.64799010889372 - type: euclidean_pearson value: 44.41376048324183 - type: euclidean_spearman value: 42.64799010889372 - type: manhattan_pearson value: 44.724522621427546 - type: manhattan_spearman value: 42.60912761758016 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 40.55050173163197 - type: cos_sim_spearman value: 36.59720399843921 - type: euclidean_pearson value: 41.49402389245919 - type: euclidean_spearman value: 36.59720399843921 - type: manhattan_pearson value: 41.877514420153666 - type: manhattan_spearman value: 36.782790653297695 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 69.44405106094861 - type: cos_sim_spearman value: 70.25621893108706 - type: euclidean_pearson value: 71.15726637696066 - type: euclidean_spearman value: 70.25621893108706 - type: manhattan_pearson value: 71.28565265298322 - type: manhattan_spearman value: 70.30317892414027 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 34.56638014500804 - type: cos_sim_spearman value: 39.48672765878819 - type: euclidean_pearson value: 31.61811391543846 - type: euclidean_spearman value: 39.48672765878819 - type: manhattan_pearson value: 31.839117286689977 - type: manhattan_spearman value: 39.71519891403971 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 53.72389957326714 - type: cos_sim_spearman value: 59.47018781803598 - type: euclidean_pearson value: 57.02101112722141 - type: euclidean_spearman value: 59.47018781803598 - type: manhattan_pearson value: 57.16531255049132 - type: manhattan_spearman value: 59.57320508684436 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 24.14602533311477 - type: cos_sim_spearman value: 35.38039329704056 - type: euclidean_pearson value: 13.540543553763765 - type: euclidean_spearman value: 35.38039329704056 - type: manhattan_pearson value: 13.566377379303256 - type: manhattan_spearman value: 35.88351047224126 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 39.07697432450346 - type: cos_sim_spearman value: 45.65479772235109 - type: euclidean_pearson value: 41.68913259791294 - type: euclidean_spearman value: 45.65479772235109 - type: manhattan_pearson value: 41.58872552392231 - type: manhattan_spearman value: 45.462070534023404 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 23.917322166825183 - type: cos_sim_spearman value: 25.06042767518008 - type: euclidean_pearson value: 24.29850435278771 - type: euclidean_spearman value: 25.06042767518008 - type: manhattan_pearson value: 24.461400062927154 - type: manhattan_spearman value: 25.285239684773046 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 20.39987623162105 - type: cos_sim_spearman value: 30.62427846964406 - type: euclidean_pearson value: 20.817950942480323 - type: euclidean_spearman value: 30.618700916425222 - type: manhattan_pearson value: 20.756787430880788 - type: manhattan_spearman value: 30.813116243628436 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 43.838363041373974 - type: cos_sim_spearman value: 54.17598089882719 - type: euclidean_pearson value: 47.51044033919419 - type: euclidean_spearman value: 54.17598089882719 - type: manhattan_pearson value: 47.54911083403354 - type: manhattan_spearman value: 54.2562151204606 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 77.69372699157654 - type: cos_sim_spearman value: 79.88201388457435 - type: euclidean_pearson value: 78.81259581302578 - type: euclidean_spearman value: 79.88201388457435 - type: manhattan_pearson value: 78.85098508555477 - type: manhattan_spearman value: 80.20154858554835 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 51.83713469138834 - type: cos_sim_spearman value: 54.2205845288082 - type: euclidean_pearson value: 54.14828396506985 - type: euclidean_spearman value: 54.2205845288082 - type: manhattan_pearson value: 54.10701855179347 - type: manhattan_spearman value: 54.30261135461622 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 61.59147752554915 - type: cos_sim_spearman value: 66.65350021824162 - type: euclidean_pearson value: 62.577915098325434 - type: euclidean_spearman value: 66.65350021824162 - type: manhattan_pearson value: 62.22817675366819 - type: manhattan_spearman value: 66.35054389546214 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 65.23775897743552 - type: cos_sim_spearman value: 68.1509652709288 - type: euclidean_pearson value: 66.17577980319408 - type: euclidean_spearman value: 68.1509652709288 - type: manhattan_pearson value: 66.40051933918704 - type: manhattan_spearman value: 68.37138808382802 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 61.943863830043725 - type: cos_sim_spearman value: 62.699440972016774 - type: euclidean_pearson value: 62.810366501196 - type: euclidean_spearman value: 62.699440972016774 - type: manhattan_pearson value: 63.13065659868621 - type: manhattan_spearman value: 63.314141373703215 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 48.1108866326284 - type: cos_sim_spearman value: 49.25274096772371 - type: euclidean_pearson value: 47.87203797435136 - type: euclidean_spearman value: 49.25274096772371 - type: manhattan_pearson value: 47.39927722979605 - type: manhattan_spearman value: 48.76629586560382 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 58.58401639298775 - type: cos_sim_spearman value: 64.37272828346495 - type: euclidean_pearson value: 61.03680632288844 - type: euclidean_spearman value: 64.37272828346495 - type: manhattan_pearson value: 61.381331848220675 - type: manhattan_spearman value: 65.01053960017909 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 44.374682063416735 - type: cos_sim_spearman value: 48.907776246550185 - type: euclidean_pearson value: 45.473260322201284 - type: euclidean_spearman value: 48.907776246550185 - type: manhattan_pearson value: 46.051779591771854 - type: manhattan_spearman value: 49.69297213757249 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 31.55497030143048 - type: cos_sim_spearman value: 33.042073055100396 - type: euclidean_pearson value: 33.548707962408955 - type: euclidean_spearman value: 33.042073055100396 - type: manhattan_pearson value: 31.704989941561873 - type: manhattan_spearman value: 31.56395608711827 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 51.253093232573036 - type: cos_sim_spearman value: 39.440531887330785 - type: euclidean_pearson value: 51.42758694144294 - type: euclidean_spearman value: 39.440531887330785 - type: manhattan_pearson value: 49.623915715149394 - type: manhattan_spearman value: 39.440531887330785 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.61260941646887 - type: cos_sim_spearman value: 88.96384726759047 - type: euclidean_pearson value: 88.72268994912045 - type: euclidean_spearman value: 88.96384726759047 - type: manhattan_pearson value: 88.72080954591475 - type: manhattan_spearman value: 88.92379960545995 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.64768404690723 - type: mrr value: 96.25675341361615 - task: type: Retrieval dataset: type: mteb/scifact name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 61.194 - type: map_at_10 value: 70.62899999999999 - type: map_at_100 value: 71.119 - type: map_at_1000 value: 71.14200000000001 - type: map_at_20 value: 71.033 - type: map_at_3 value: 67.51899999999999 - type: map_at_5 value: 69.215 - type: mrr_at_1 value: 63.666999999999994 - type: mrr_at_10 value: 71.456 - type: mrr_at_100 value: 71.844 - type: mrr_at_1000 value: 71.866 - type: mrr_at_20 value: 71.769 - type: mrr_at_3 value: 69.167 - type: mrr_at_5 value: 70.39999999999999 - type: ndcg_at_1 value: 63.666999999999994 - type: ndcg_at_10 value: 75.14 - type: ndcg_at_100 value: 77.071 - type: ndcg_at_1000 value: 77.55199999999999 - type: ndcg_at_20 value: 76.491 - type: ndcg_at_3 value: 69.836 - type: ndcg_at_5 value: 72.263 - type: precision_at_1 value: 63.666999999999994 - type: precision_at_10 value: 10.0 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.3 - type: precision_at_3 value: 27.0 - type: precision_at_5 value: 17.867 - type: recall_at_1 value: 61.194 - type: recall_at_10 value: 88.156 - type: recall_at_100 value: 96.5 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 93.389 - type: recall_at_3 value: 73.839 - type: recall_at_5 value: 79.828 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.87425742574257 - type: cos_sim_ap value: 96.97141655369937 - type: cos_sim_f1 value: 93.6910084451068 - type: cos_sim_precision value: 93.0898321816387 - type: cos_sim_recall value: 94.3 - type: dot_accuracy value: 99.87425742574257 - type: dot_ap value: 96.97141655369938 - type: dot_f1 value: 93.6910084451068 - type: dot_precision value: 93.0898321816387 - type: dot_recall value: 94.3 - type: euclidean_accuracy value: 99.87425742574257 - type: euclidean_ap value: 96.97141655369938 - type: euclidean_f1 value: 93.6910084451068 - type: euclidean_precision value: 93.0898321816387 - type: euclidean_recall value: 94.3 - type: manhattan_accuracy value: 99.87425742574257 - type: manhattan_ap value: 96.98252972861131 - type: manhattan_f1 value: 93.68473396320238 - type: manhattan_precision value: 93.17507418397626 - type: manhattan_recall value: 94.19999999999999 - type: max_accuracy value: 99.87425742574257 - type: max_ap value: 96.98252972861131 - type: max_f1 value: 93.6910084451068 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 66.5976926394361 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.3221929214798 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.28322662897131 - type: mrr value: 56.223620129870135 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.176396304511282 - type: cos_sim_spearman value: 32.11989671564906 - type: dot_pearson value: 31.17639740597169 - type: dot_spearman value: 32.145586989831564 - task: type: Retrieval dataset: type: mteb/trec-covid name: MTEB TRECCOVID config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.186 - type: map_at_10 value: 1.659 - type: map_at_100 value: 9.224 - type: map_at_1000 value: 22.506999999999998 - type: map_at_20 value: 2.937 - type: map_at_3 value: 0.5539999999999999 - type: map_at_5 value: 0.8920000000000001 - type: mrr_at_1 value: 72.0 - type: mrr_at_10 value: 82.633 - type: mrr_at_100 value: 82.633 - type: mrr_at_1000 value: 82.633 - type: mrr_at_20 value: 82.633 - type: mrr_at_3 value: 80.333 - type: mrr_at_5 value: 82.633 - type: ndcg_at_1 value: 69.0 - type: ndcg_at_10 value: 67.327 - type: ndcg_at_100 value: 51.626000000000005 - type: ndcg_at_1000 value: 47.396 - type: ndcg_at_20 value: 63.665000000000006 - type: ndcg_at_3 value: 68.95 - type: ndcg_at_5 value: 69.241 - type: precision_at_1 value: 72.0 - type: precision_at_10 value: 71.6 - type: precision_at_100 value: 53.22 - type: precision_at_1000 value: 20.721999999999998 - type: precision_at_20 value: 67.30000000000001 - type: precision_at_3 value: 72.667 - type: precision_at_5 value: 74.0 - type: recall_at_1 value: 0.186 - type: recall_at_10 value: 1.932 - type: recall_at_100 value: 12.883 - type: recall_at_1000 value: 44.511 - type: recall_at_20 value: 3.583 - type: recall_at_3 value: 0.601 - type: recall_at_5 value: 1.0 - task: type: Retrieval dataset: type: mteb/touche2020 name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.308 - type: map_at_10 value: 9.744 - type: map_at_100 value: 15.859000000000002 - type: map_at_1000 value: 17.396 - type: map_at_20 value: 12.49 - type: map_at_3 value: 4.848 - type: map_at_5 value: 6.912999999999999 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 47.207 - type: mrr_at_100 value: 48.116 - type: mrr_at_1000 value: 48.116 - type: mrr_at_20 value: 47.735 - type: mrr_at_3 value: 42.857 - type: mrr_at_5 value: 44.285999999999994 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 24.421 - type: ndcg_at_100 value: 35.961 - type: ndcg_at_1000 value: 47.541 - type: ndcg_at_20 value: 25.999 - type: ndcg_at_3 value: 25.333 - type: ndcg_at_5 value: 25.532 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 22.448999999999998 - type: precision_at_100 value: 7.571 - type: precision_at_1000 value: 1.5310000000000001 - type: precision_at_20 value: 17.959 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 26.122 - type: recall_at_1 value: 2.308 - type: recall_at_10 value: 16.075 - type: recall_at_100 value: 47.357 - type: recall_at_1000 value: 82.659 - type: recall_at_20 value: 24.554000000000002 - type: recall_at_3 value: 5.909 - type: recall_at_5 value: 9.718 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 67.2998046875 - type: ap value: 12.796222498684031 - type: f1 value: 51.7465070845071 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.76004527447652 - type: f1 value: 61.88985723942393 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 52.69229715788263 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.42325803182929 - type: cos_sim_ap value: 78.29203513753492 - type: cos_sim_f1 value: 71.33160557818093 - type: cos_sim_precision value: 67.00672385810341 - type: cos_sim_recall value: 76.2532981530343 - type: dot_accuracy value: 87.42325803182929 - type: dot_ap value: 78.29208368244002 - type: dot_f1 value: 71.33160557818093 - type: dot_precision value: 67.00672385810341 - type: dot_recall value: 76.2532981530343 - type: euclidean_accuracy value: 87.42325803182929 - type: euclidean_ap value: 78.29202838891078 - type: euclidean_f1 value: 71.33160557818093 - type: euclidean_precision value: 67.00672385810341 - type: euclidean_recall value: 76.2532981530343 - type: manhattan_accuracy value: 87.42325803182929 - type: manhattan_ap value: 78.23964459648822 - type: manhattan_f1 value: 71.1651728553137 - type: manhattan_precision value: 69.12935323383084 - type: manhattan_recall value: 73.3245382585752 - type: max_accuracy value: 87.42325803182929 - type: max_ap value: 78.29208368244002 - type: max_f1 value: 71.33160557818093 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.00725734466566 - type: cos_sim_ap value: 86.1594112416402 - type: cos_sim_f1 value: 78.544568993303 - type: cos_sim_precision value: 73.42484097756947 - type: cos_sim_recall value: 84.43178318447798 - type: dot_accuracy value: 89.00725734466566 - type: dot_ap value: 86.15940795129771 - type: dot_f1 value: 78.544568993303 - type: dot_precision value: 73.42484097756947 - type: dot_recall value: 84.43178318447798 - type: euclidean_accuracy value: 89.00725734466566 - type: euclidean_ap value: 86.15939689541806 - type: euclidean_f1 value: 78.544568993303 - type: euclidean_precision value: 73.42484097756947 - type: euclidean_recall value: 84.43178318447798 - type: manhattan_accuracy value: 88.97426941436721 - type: manhattan_ap value: 86.14154348065739 - type: manhattan_f1 value: 78.53991175290814 - type: manhattan_precision value: 74.60339452719086 - type: manhattan_recall value: 82.91499846011703 - type: max_accuracy value: 89.00725734466566 - type: max_ap value: 86.1594112416402 - type: max_f1 value: 78.544568993303 ---
kurogane/Llama3-BioYouri-8B-instruct-chatvector-mergetest
kurogane
2024-05-21T12:53:33Z
15
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "ja", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:merge:NousResearch/Meta-Llama-3-8B", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:merge:aaditya/Llama3-OpenBioLLM-8B", "base_model:aixsatoshi/Llama-3-youko-8b-instruct-chatvector", "base_model:merge:aixsatoshi/Llama-3-youko-8b-instruct-chatvector", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-10T08:34:11Z
--- language: - ja tags: - merge base_model: - aaditya/Llama3-OpenBioLLM-8B - aixsatoshi/Llama-3-youko-8b-instruct-chatvector - NousResearch/Meta-Llama-3-8B license: llama3 --- # kurogane/Llama3-BioYouri-8B-mergetest このモデルは生物学・医学に精通したOpenBioLLM-8Bをベースに、日本語対応を向上させるためにLlama-3-youko-8b-instruct-chatvectorとマージさせたモデルです。 初めての試みだったのでうまくできているかはわかりませんが、体感として、日本語での医学知識の説明は少し詳しめにこたえてくれます。生物系の知識について、若干ハルシネーションしているように感じますので、要注意です。 また、生物学・医学系の知識が入ったせいか、若干、性的な部分の規制が弱くなっているように感じますので、運用時は気を付けてください。 ## Method ### マージ方法について 以下のNoteBookを参考にマージしました。 [merge.ipynb · p1atdev/nekoqarasu-14b-chat at main (huggingface.co)](https://huggingface.co/p1atdev/nekoqarasu-14b-chat/blob/main/merge.ipynb) こちらのコードを参考に、モデルネームを入力するだけでマージできるコードを作成しました。 **[LLMModelMerger.py](https://gist.github.com/kuroganegames/c9c78685d1004976cd8db737f51a8a8f)** RAMが64GBあれば問題なくマージできると思います。 ### 以下のモデルを線形マージしました [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) [aixsatoshi/Llama-3-youko-8b-instruct-chatvector](https://huggingface.co/aixsatoshi/Llama-3-youko-8b-instruct-chatvector) [NousResearch/Meta-Llama-3-8B](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja) BioYouri = "Llama3-OpenBioLLM-8B" + "Llama-3-youko-8b-instruct-chatvector" - "Meta-Llama-3-8B" ### アップロード時のsafetensorsの分割について また、アップロードにあたり、以下のコードで分割しました。 [**safetensors_splitter.py**](https://gist.github.com/kuroganegames/54e413a073cf59faf5652b38de8c7af6#file-safetensors_splitter-py) "model-00001-of-00004.safetensors"のような形で、指定した「model.safetensors.index.json」の順番でレイヤーが分割されます。ベースにしたモデルなどのmodel.safetensors.index.jsonのディレクトリをdir_jsonに入れてあげれば正常に分割されると思います。ただし、指定したmodel.safetensors.index.jsonの中身に合わせてl_dict_safetensorsの内容は書き換えてあげてください。 ## License このモデルはMETA LLAMA 3 COMMUNITY LICENSEに従って提供されます。 https://llama.meta.com/llama3/license ## 謝辞 今回、[Plat 🖼️(@p1atdev_art)さん / X (twitter.com)](https://twitter.com/p1atdev_art)様に生成したモデルの動作検証の仕方を教えてもらいました。この場を借りて感謝申し上げます。ありがとうございます。
hgnoi/qySUc2xTuit87oUt
hgnoi
2024-05-21T12:53:04Z
121
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T12:51:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rafaelweber1209/llama-3-8b-Instruct-bnb-4bit-aiaustin-demo
Rafaelweber1209
2024-05-21T12:50:28Z
2
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T12:48:09Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** Rafaelweber1209 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hgnoi/UHKClxiArylgKQts
hgnoi
2024-05-21T12:50:27Z
121
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T12:49:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
basakdemirok/bert-base-turkish-cased-subjectivity_v01_seed42
basakdemirok
2024-05-21T12:46:15Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "text-classification", "generated_from_keras_callback", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T12:43:41Z
--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_keras_callback model-index: - name: basakdemirok/bert-base-turkish-cased-subjectivity_v01_seed42 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # basakdemirok/bert-base-turkish-cased-subjectivity_v01_seed42 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1478 - Validation Loss: 0.3552 - Train F1: 0.8449 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 376, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.5988 | 0.4581 | 0.7907 | 0 | | 0.3359 | 0.3252 | 0.8586 | 1 | | 0.1478 | 0.3552 | 0.8449 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.1 - Datasets 2.4.0 - Tokenizers 0.13.3
ifyou819/summary-news-dataset-4
ifyou819
2024-05-21T12:45:22Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:ifyou819/summary-news-dataset-3", "base_model:finetune:ifyou819/summary-news-dataset-3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-21T12:44:14Z
--- base_model: ifyou819/summary-news-dataset-3 tags: - generated_from_trainer model-index: - name: summary-news-dataset-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fine-tune-gpt-model/huggingface/runs/s2v8hnd5) # summary-news-dataset-4 This model is a fine-tuned version of [ifyou819/summary-news-dataset-3](https://huggingface.co/ifyou819/summary-news-dataset-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.7802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.2383 | 1.0 | 1054 | 6.3919 | | 6.8246 | 2.0 | 2108 | 5.9371 | | 6.6384 | 3.0 | 3162 | 5.7802 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
Jayant9928/orpo_med_v2
Jayant9928
2024-05-21T12:44:32Z
2,781
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-01T17:57:27Z
--- license: apache-2.0 --- Model Card for Model ID Model Details Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. Developed by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Direct Use [More Information Needed] Downstream Use [optional] [More Information Needed] Out-of-Scope Use [More Information Needed] Bias, Risks, and Limitations [More Information Needed] Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] Training Details Training Data [More Information Needed] Training Procedure Preprocessing [optional] [More Information Needed] Training Hyperparameters Training regime: [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed] Evaluation Testing Data, Factors & Metrics Testing Data [More Information Needed] Factors [More Information Needed] Metrics [More Information Needed] Results [More Information Needed] Summary Model Examination [optional] [More Information Needed] Environmental Impact
Jayant9928/orpo_med_v0
Jayant9928
2024-05-21T12:44:00Z
2,772
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-04-30T11:30:12Z
--- license: apache-2.0 --- Model Card for Model ID Model Details Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. Developed by: [More Information Needed] Funded by [optional]: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Direct Use [More Information Needed] Downstream Use [optional] [More Information Needed] Out-of-Scope Use [More Information Needed] Bias, Risks, and Limitations [More Information Needed] Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] Training Details Training Data [More Information Needed] Training Procedure Preprocessing [optional] [More Information Needed] Training Hyperparameters Training regime: [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed] Evaluation Testing Data, Factors & Metrics Testing Data [More Information Needed] Factors [More Information Needed] Metrics [More Information Needed] Results [More Information Needed] Summary Model Examination [optional] [More Information Needed]
Felladrin/gguf-h2o-danube2-1.8b-chat
Felladrin
2024-05-21T12:43:22Z
32
1
null
[ "gguf", "base_model:h2oai/h2o-danube2-1.8b-chat", "base_model:quantized:h2oai/h2o-danube2-1.8b-chat", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T10:39:48Z
--- license: apache-2.0 base_model: h2oai/h2o-danube2-1.8b-chat --- GGUF version of [h2oai/h2o-danube2-1.8b-chat](https://huggingface.co/h2oai/h2o-danube2-1.8b-chat).
Resi/finetune-donut-doctype-v3
Resi
2024-05-21T12:38:33Z
48
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-05-21T12:38:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andrewbai/tinyllama-sft-vicuna-full-rrr100-gaussian
andrewbai
2024-05-21T12:34:40Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "dataset:ucla-cmllab/vicuna_cleaned", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:finetune:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T10:01:48Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - ucla-cmllab/vicuna_cleaned model-index: - name: tinyllama-sft-vicuna-full-rrr100-gaussian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama-sft-vicuna-full-rrr100-gaussian This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the ucla-cmllab/vicuna_cleaned dataset. It achieves the following results on the evaluation set: - Loss: 0.7274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7115 | 1.0 | 732 | 0.7274 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
steve1989/internlm-fingpt-sentiment-finance
steve1989
2024-05-21T12:30:35Z
3
0
transformers
[ "transformers", "safetensors", "internlm2", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2024-05-21T11:54:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
slimaneMakh/superClass_tableClf_21may_xlm-roberta-base_3epochs_BASELINE
slimaneMakh
2024-05-21T12:30:30Z
188
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T12:29:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dumiiii/distilbert-base-cased-ner
Dumiiii
2024-05-21T12:29:42Z
103
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-21T12:25:23Z
Label 0 - nothing. Label 1 - B-PROD. Label 2 - I-PROD.
ezuryy/llama-2-7b-chat-hf__ru_news__qlora
ezuryy
2024-05-21T12:28:48Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-21T12:28:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AylinNaebzadeh/XLM-RoBERTa-FineTuned-With-Dreaddit
AylinNaebzadeh
2024-05-21T12:27:57Z
108
0
transformers
[ "transformers", "safetensors", "Mental Disorder", "Text Classification", "text-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-classification
2024-05-20T09:10:39Z
--- library_name: transformers pipeline_tag: text-classification tags: - Mental Disorder - Text Classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
feldmaarshal/opd_bert_spam_ru
feldmaarshal
2024-05-21T12:27:05Z
108
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:ai-forever/ruBert-base", "base_model:finetune:ai-forever/ruBert-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T12:16:38Z
--- license: apache-2.0 base_model: ai-forever/ruBert-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: opd_bert_spam_ru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opd_bert_spam_ru This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1034 - F1: 0.9872 - Accuracy: 0.9872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 70 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:--------:| | 0.1094 | 0.5102 | 100 | 0.2559 | 0.9587 | 0.9591 | | 0.1566 | 1.0204 | 200 | 0.0769 | 0.9847 | 0.9847 | | 0.0352 | 1.5306 | 300 | 0.0860 | 0.9821 | 0.9821 | | 0.0571 | 2.0408 | 400 | 0.0908 | 0.9846 | 0.9847 | | 0.0256 | 2.5510 | 500 | 0.1034 | 0.9872 | 0.9872 | | 0.0178 | 3.0612 | 600 | 0.1416 | 0.9770 | 0.9770 | | 0.0098 | 3.5714 | 700 | 0.1461 | 0.9821 | 0.9821 | | 0.0097 | 4.0816 | 800 | 0.1618 | 0.9770 | 0.9770 | | 0.0003 | 4.5918 | 900 | 0.1651 | 0.9795 | 0.9795 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
LA1512/led-pubmed-20K-8192
LA1512
2024-05-21T12:23:42Z
89
0
transformers
[ "transformers", "safetensors", "led", "text2text-generation", "generated_from_trainer", "base_model:pszemraj/led-base-book-summary", "base_model:finetune:pszemraj/led-base-book-summary", "license:bsd-3-clause", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-21T12:23:24Z
--- license: bsd-3-clause base_model: pszemraj/led-base-book-summary tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [pszemraj/led-base-book-summary](https://huggingface.co/pszemraj/led-base-book-summary) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 85 - num_epochs: 1 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5175 | 0.16 | 200 | 3.3413 | | 3.3565 | 0.32 | 400 | 3.2590 | | 3.2485 | 0.48 | 600 | 3.2262 | | 3.2628 | 0.64 | 800 | 3.1805 | | 3.2043 | 0.8 | 1000 | 3.1617 | | 3.3002 | 0.96 | 1200 | 3.1513 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
basakdemirok/bert-base-turkish-cased-subjectivity_v0_seed42
basakdemirok
2024-05-21T12:23:35Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "text-classification", "generated_from_keras_callback", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T12:22:19Z
--- license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_keras_callback model-index: - name: basakdemirok/bert-base-turkish-cased-subjectivity_v0_seed42 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # basakdemirok/bert-base-turkish-cased-subjectivity_v0_seed42 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7000 - Validation Loss: 0.6594 - Train F1: 0.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 196, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train F1 | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 0.7000 | 0.6594 | 0.0 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.1 - Datasets 2.4.0 - Tokenizers 0.13.3
caiiofc/ppo-Huggy
caiiofc
2024-05-21T12:21:28Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-05-21T12:20:49Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: caiiofc/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
royson/bayesian_models
royson
2024-05-21T12:20:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-19T12:33:34Z
--- license: apache-2.0 ---
mika5883/RuReCl8
mika5883
2024-05-21T12:15:16Z
114
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:mika5883/RuReCl8", "base_model:finetune:mika5883/RuReCl8", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-21T11:32:38Z
--- base_model: mika5883/RuReCl8 tags: - generated_from_trainer metrics: - bleu model-index: - name: RuReCl8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RuReCl8 This model is a fine-tuned version of [mika5883/RuReCl8](https://huggingface.co/mika5883/RuReCl8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1825 - Bleu: 61.2481 - Gen Len: 16.234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.83229e-05 - train_batch_size: 128 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 20 | 0.1898 | 61.0474 | 16.2296 | | No log | 2.0 | 40 | 0.1825 | 61.2481 | 16.234 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
HVD2407/Mbart2
HVD2407
2024-05-21T12:12:14Z
105
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-21T12:09:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hjskhan/merged_model
hjskhan
2024-05-21T12:11:25Z
75
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-21T11:05:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Essacheez/gemma-1.1-7b-it-finetune-summerization-10k-alpaca-style
Essacheez
2024-05-21T12:08:36Z
6
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T10:18:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jinq047/bert-finetuned-ner
jinq047
2024-05-21T12:08:27Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-21T11:30:54Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9320436507936508 - name: Recall type: recall value: 0.9486704813194211 - name: F1 type: f1 value: 0.9402835696413678 - name: Accuracy type: accuracy value: 0.9858273974215577 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.9320 - Recall: 0.9487 - F1: 0.9403 - Accuracy: 0.9858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0725 | 1.0 | 1756 | 0.0634 | 0.9065 | 0.9354 | 0.9207 | 0.9825 | | 0.0335 | 2.0 | 3512 | 0.0684 | 0.9242 | 0.9414 | 0.9327 | 0.9847 | | 0.0203 | 3.0 | 5268 | 0.0629 | 0.9320 | 0.9487 | 0.9403 | 0.9858 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
esantiago/tinyllama-codewello
esantiago
2024-05-21T12:08:27Z
136
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T12:07:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Likich/gemma-finetune-qualcoding-1000-prompt1
Likich
2024-05-21T12:06:32Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-21T12:06:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MoGP/g_x_bib_few0_balanced_reg
MoGP
2024-05-21T12:03:47Z
107
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T11:46:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lanerdog/Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M-GGUF
Lanerdog
2024-05-21T12:03:01Z
2
1
null
[ "gguf", "meta", "llama-3", "llama-cpp", "gguf-my-repo", "text-generation", "en", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-05-21T12:02:43Z
--- language: - en license: llama3 tags: - meta - llama-3 - llama-cpp - gguf-my-repo pipeline_tag: text-generation --- # Lanerdog/Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M-GGUF This model was converted to GGUF format from [`gradientai/Llama-3-8B-Instruct-Gradient-1048k`](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo Lanerdog/Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M-GGUF --model llama-3-8b-instruct-gradient-1048k.Q5_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo Lanerdog/Llama-3-8B-Instruct-Gradient-1048k-Q5_K_M-GGUF --model llama-3-8b-instruct-gradient-1048k.Q5_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama-3-8b-instruct-gradient-1048k.Q5_K_M.gguf -n 128 ```
joosma/rl_course_vizdoom_health_gathering_supreme
joosma
2024-05-21T11:57:01Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-05-21T11:56:56Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.04 +/- 2.72 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r joosma/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Hadiseh-Mhd/Mixtral-8x7B-Instruct-v0.1-Q4_K_M-GGUF
Hadiseh-Mhd
2024-05-21T11:56:55Z
16
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "fr", "it", "de", "es", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T11:55:28Z
--- language: - fr - it - de - es - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo inference: parameters: temperature: 0.5 widget: - messages: - role: user content: What is your favorite condiment? --- # Hadiseh-Mhd/Mixtral-8x7B-Instruct-v0.1-Q4_K_M-GGUF This model was converted to GGUF format from [`mistralai/Mixtral-8x7B-Instruct-v0.1`](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo Hadiseh-Mhd/Mixtral-8x7B-Instruct-v0.1-Q4_K_M-GGUF --model mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo Hadiseh-Mhd/Mixtral-8x7B-Instruct-v0.1-Q4_K_M-GGUF --model mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf -n 128 ```
derbaliSamar/Fine-Tunning-LLMA-3-Digitalization-FinalVersion
derbaliSamar
2024-05-21T11:53:44Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:53:35Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** derbaliSamar - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
adriansanz/FS_25_06
adriansanz
2024-05-21T11:50:05Z
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:projecte-aina/roberta-base-ca-v2", "base_model:finetune:projecte-aina/roberta-base-ca-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T11:42:03Z
--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: FS_25_06 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FS_25_06 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1755 - Accuracy: 0.9647 - Precision: 0.9651 - Recall: 0.9646 - F1: 0.9644 - Ratio: 0.0529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 1.7815 | 1.0 | 362 | 1.6483 | 0.9059 | 0.9166 | 0.9061 | 0.9069 | 0.0569 | | 0.364 | 2.0 | 724 | 0.2948 | 0.9451 | 0.9480 | 0.9450 | 0.9447 | 0.0569 | | 0.0418 | 3.0 | 1086 | 0.2467 | 0.9510 | 0.9529 | 0.9509 | 0.9509 | 0.0549 | | 0.0218 | 4.0 | 1448 | 0.1853 | 0.9647 | 0.9651 | 0.9646 | 0.9644 | 0.0529 | | 0.0985 | 5.0 | 1810 | 0.1755 | 0.9647 | 0.9651 | 0.9646 | 0.9644 | 0.0529 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
JoshuaKelleyDs/quickdraw-MobileVIT-small-finetune
JoshuaKelleyDs
2024-05-21T11:50:00Z
192
0
transformers
[ "transformers", "onnx", "safetensors", "mobilevit", "image-classification", "generated_from_trainer", "base_model:apple/mobilevit-small", "base_model:quantized:apple/mobilevit-small", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-05-18T06:41:54Z
--- license: other base_model: apple/mobilevit-small tags: - generated_from_trainer metrics: - accuracy model-index: - name: quickdraw-MobileViT-small-a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # quickdraw-MobileViT-small-a This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9705 - Accuracy: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5000 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 1.464 | 0.5688 | 5000 | 1.4063 | 0.6493 | | 1.2318 | 1.1377 | 10000 | 1.2154 | 0.6937 | | 1.1699 | 1.7065 | 15000 | 1.1495 | 0.7096 | | 1.1018 | 2.2753 | 20000 | 1.1081 | 0.7190 | | 1.0837 | 2.8441 | 25000 | 1.0871 | 0.7240 | | 1.0343 | 3.4130 | 30000 | 1.0550 | 0.7326 | | 1.0198 | 3.9818 | 35000 | 1.0281 | 0.739 | | 0.9795 | 4.5506 | 40000 | 1.0125 | 0.7435 | | 0.9339 | 5.1195 | 45000 | 0.9964 | 0.7475 | | 0.9292 | 5.6883 | 50000 | 0.9843 | 0.7510 | | 0.8975 | 6.2571 | 55000 | 0.9795 | 0.7528 | | 0.8957 | 6.8259 | 60000 | 0.9723 | 0.7548 | | 0.8721 | 7.3948 | 65000 | 0.9716 | 0.7555 | | 0.8725 | 7.9636 | 70000 | 0.9705 | 0.7556 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.2.1 - Datasets 2.19.1 - Tokenizers 0.19.1
Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_5bpw_exl2
Zoyd
2024-05-21T11:48:15Z
3
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T11:18:06Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **6.5 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_2bpw_exl2)**</center> | <center>12762 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_5bpw_exl2)**</center> | <center>14191 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_0bpw_exl2)**</center> | <center>16931 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_5bpw_exl2)**</center> | <center>19724 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_75bpw_exl2)**</center> | <center>21098 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_0bpw_exl2)**</center> | <center>22488 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_25bpw_exl2)**</center> | <center>23875 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-5_0bpw_exl2)**</center> | <center>28028 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_0bpw_exl2)**</center> | <center>33588 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_5bpw_exl2)**</center> | <center>36031 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-8_0bpw_exl2)**</center> | <center>41342 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Chat Format The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. But we also found that the model is not very sensitive to the chat template. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Raneechu/textbook2
Raneechu
2024-05-21T11:48:04Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2024-05-21T11:47:59Z
--- license: llama2 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: textbook2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # textbook2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8823 | 0.1026 | 1 | 3.6742 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1 ## Training procedure ### Framework versions - PEFT 0.6.2
Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_75bpw_exl2
Zoyd
2024-05-21T11:47:47Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T09:11:02Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **3.75 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_2bpw_exl2)**</center> | <center>12762 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_5bpw_exl2)**</center> | <center>14191 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_0bpw_exl2)**</center> | <center>16931 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_5bpw_exl2)**</center> | <center>19724 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_75bpw_exl2)**</center> | <center>21098 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_0bpw_exl2)**</center> | <center>22488 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_25bpw_exl2)**</center> | <center>23875 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-5_0bpw_exl2)**</center> | <center>28028 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_0bpw_exl2)**</center> | <center>33588 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_5bpw_exl2)**</center> | <center>36031 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-8_0bpw_exl2)**</center> | <center>41342 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Chat Format The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. But we also found that the model is not very sensitive to the chat template. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf
RichardErkhov
2024-05-21T11:47:34Z
10
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T07:31:58Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CarbonBeagle-11B-truthy - GGUF - Model creator: https://huggingface.co/vicgalle/ - Original model: https://huggingface.co/vicgalle/CarbonBeagle-11B-truthy/ | Name | Quant method | Size | | ---- | ---- | ---- | | [CarbonBeagle-11B-truthy.Q2_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q2_K.gguf) | Q2_K | 3.73GB | | [CarbonBeagle-11B-truthy.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.IQ3_XS.gguf) | IQ3_XS | 4.14GB | | [CarbonBeagle-11B-truthy.IQ3_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.IQ3_S.gguf) | IQ3_S | 4.37GB | | [CarbonBeagle-11B-truthy.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [CarbonBeagle-11B-truthy.IQ3_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.IQ3_M.gguf) | IQ3_M | 4.51GB | | [CarbonBeagle-11B-truthy.Q3_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q3_K.gguf) | Q3_K | 4.84GB | | [CarbonBeagle-11B-truthy.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [CarbonBeagle-11B-truthy.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [CarbonBeagle-11B-truthy.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [CarbonBeagle-11B-truthy.Q4_0.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q4_0.gguf) | Q4_0 | 5.66GB | | [CarbonBeagle-11B-truthy.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [CarbonBeagle-11B-truthy.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [CarbonBeagle-11B-truthy.Q4_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q4_K.gguf) | Q4_K | 6.02GB | | [CarbonBeagle-11B-truthy.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [CarbonBeagle-11B-truthy.Q4_1.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q4_1.gguf) | Q4_1 | 6.27GB | | [CarbonBeagle-11B-truthy.Q5_0.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q5_0.gguf) | Q5_0 | 6.89GB | | [CarbonBeagle-11B-truthy.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [CarbonBeagle-11B-truthy.Q5_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q5_K.gguf) | Q5_K | 7.08GB | | [CarbonBeagle-11B-truthy.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [CarbonBeagle-11B-truthy.Q5_1.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q5_1.gguf) | Q5_1 | 7.51GB | | [CarbonBeagle-11B-truthy.Q6_K.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q6_K.gguf) | Q6_K | 8.2GB | | [CarbonBeagle-11B-truthy.Q8_0.gguf](https://huggingface.co/RichardErkhov/vicgalle_-_CarbonBeagle-11B-truthy-gguf/blob/main/CarbonBeagle-11B-truthy.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- license: apache-2.0 library_name: transformers datasets: - jondurbin/truthy-dpo-v0.1 model-index: - name: CarbonBeagle-11B-truthy results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.27 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/CarbonBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.31 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/CarbonBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/CarbonBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 78.55 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/CarbonBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/CarbonBeagle-11B-truthy name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/CarbonBeagle-11B-truthy name: Open LLM Leaderboard --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__CarbonBeagle-11B-truthy) | Metric |Value| |---------------------------------|----:| |Avg. |76.10| |AI2 Reasoning Challenge (25-Shot)|72.27| |HellaSwag (10-Shot) |89.31| |MMLU (5-Shot) |66.55| |TruthfulQA (0-shot) |78.55| |Winogrande (5-shot) |83.82| |GSM8k (5-shot) |66.11|
ifyou819/summary-news-dataset-3
ifyou819
2024-05-21T11:47:24Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:ifyou819/summary-news-dataset-2", "base_model:finetune:ifyou819/summary-news-dataset-2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-21T11:46:25Z
--- base_model: ifyou819/summary-news-dataset-2 tags: - generated_from_trainer model-index: - name: summary-news-dataset-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/fine-tune-gpt-model/huggingface/runs/v5j2dru6) # summary-news-dataset-3 This model is a fine-tuned version of [ifyou819/summary-news-dataset-2](https://huggingface.co/ifyou819/summary-news-dataset-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.0676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.214 | 1.0 | 791 | 7.4852 | | 7.7963 | 2.0 | 1582 | 7.1671 | | 7.696 | 3.0 | 2373 | 7.0676 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_5bpw_exl2
Zoyd
2024-05-21T11:47:16Z
3
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T07:56:27Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **2.5 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_2bpw_exl2)**</center> | <center>12762 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_5bpw_exl2)**</center> | <center>14191 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_0bpw_exl2)**</center> | <center>16931 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_5bpw_exl2)**</center> | <center>19724 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_75bpw_exl2)**</center> | <center>21098 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_0bpw_exl2)**</center> | <center>22488 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_25bpw_exl2)**</center> | <center>23875 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-5_0bpw_exl2)**</center> | <center>28028 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_0bpw_exl2)**</center> | <center>33588 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_5bpw_exl2)**</center> | <center>36031 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-8_0bpw_exl2)**</center> | <center>41342 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Chat Format The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. But we also found that the model is not very sensitive to the chat template. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_2bpw_exl2
Zoyd
2024-05-21T11:47:08Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "en", "arxiv:2405.03548", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T07:32:03Z
--- license: mit language: - en --- **Exllamav2** quant (**exl2** / **2.2 bpw**) made with ExLlamaV2 v0.0.21 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |<center>**[2.2](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_2bpw_exl2)**</center> | <center>12762 MB</center> | <center>6</center> | |<center>**[2.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-2_5bpw_exl2)**</center> | <center>14191 MB</center> | <center>6</center> | |<center>**[3.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_0bpw_exl2)**</center> | <center>16931 MB</center> | <center>6</center> | |<center>**[3.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_5bpw_exl2)**</center> | <center>19724 MB</center> | <center>6</center> | |<center>**[3.75](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-3_75bpw_exl2)**</center> | <center>21098 MB</center> | <center>6</center> | |<center>**[4.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_0bpw_exl2)**</center> | <center>22488 MB</center> | <center>6</center> | |<center>**[4.25](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-4_25bpw_exl2)**</center> | <center>23875 MB</center> | <center>6</center> | |<center>**[5.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-5_0bpw_exl2)**</center> | <center>28028 MB</center> | <center>6</center> | |<center>**[6.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_0bpw_exl2)**</center> | <center>33588 MB</center> | <center>8</center> | |<center>**[6.5](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-6_5bpw_exl2)**</center> | <center>36031 MB</center> | <center>8</center> | |<center>**[8.0](https://huggingface.co/Zoyd/TIGER-Lab_MAmmoTH2-8x7B-8_0bpw_exl2)**</center> | <center>41342 MB</center> | <center>8</center> | # 🦣 MAmmoTH2: Scaling Instructions from the Web Project Page: [https://tiger-ai-lab.github.io/MAmmoTH2/](https://tiger-ai-lab.github.io/MAmmoTH2/) Paper: [https://arxiv.org/pdf/2405.03548](https://arxiv.org/pdf/2405.03548) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH2](https://github.com/TIGER-AI-Lab/MAmmoTH2) ## Introduction Introducing 🦣 MAmmoTH2, a game-changer in improving the reasoning abilities of large language models (LLMs) through innovative instruction tuning. By efficiently harvesting 10 million instruction-response pairs from the pre-training web corpus, we've developed MAmmoTH2 models that significantly boost performance on reasoning benchmarks. For instance, MAmmoTH2-7B (Mistral) sees its performance soar from 11% to 34% on MATH and from 36% to 67% on GSM8K, all without training on any domain-specific data. Further training on public instruction tuning datasets yields MAmmoTH2-Plus, setting new standards in reasoning and chatbot benchmarks. Our work presents a cost-effective approach to acquiring large-scale, high-quality instruction data, offering a fresh perspective on enhancing LLM reasoning abilities. | | **Base Model** | **MAmmoTH2** | **MAmmoTH2-Plus** | |:-----|:---------------------|:-------------------------------------------------------------------|:------------------------------------------------------------------| | 7B | Mistral | 🦣 [MAmmoTH2-7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B) | 🦣 [MAmmoTH2-7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-7B-Plus) | | 8B | Llama-3 | 🦣 [MAmmoTH2-8B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B) | 🦣 [MAmmoTH2-8B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8B-Plus) | | 8x7B | Mixtral | 🦣 [MAmmoTH2-8x7B](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B) | 🦣 [MAmmoTH2-8x7B-Plus](https://huggingface.co/TIGER-Lab/MAmmoTH2-8x7B-Plus) | ## Training Data Please refer to https://huggingface.co/datasets/TIGER-Lab/WebInstructSub for more details. ![Project Framework](webinstruct.png) ## Training Procedure The models are fine-tuned with the WEBINSTRUCT dataset using the original Llama-3, Mistral and Mistal models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **TheoremQA** | **MATH** | **GSM8K** | **GPQA** | **MMLU-ST** | **BBH** | **ARC-C** | **Avg** | |:---------------------------------------|:--------------|:---------|:----------|:---------|:------------|:--------|:----------|:--------| | **MAmmoTH2-7B** (Updated) | 29.0 | 36.7 | 68.4 | 32.4 | 62.4 | 58.6 | 81.7 | 52.7 | | **MAmmoTH2-8B** (Updated) | 30.3 | 35.8 | 70.4 | 35.2 | 64.2 | 62.1 | 82.2 | 54.3 | | **MAmmoTH2-8x7B** | 32.2 | 39.0 | 75.4 | 36.8 | 67.4 | 71.1 | 87.5 | 58.9 | | **MAmmoTH2-7B-Plus** (Updated) | 31.2 | 46.0 | 84.6 | 33.8 | 63.8 | 63.3 | 84.4 | 58.1 | | **MAmmoTH2-8B-Plus** (Updated) | 31.5 | 43.0 | 85.2 | 35.8 | 66.7 | 69.7 | 84.3 | 59.4 | | **MAmmoTH2-8x7B-Plus** | 34.1 | 47.0 | 86.4 | 37.8 | 72.4 | 74.1 | 88.4 | 62.9 | To reproduce our results, please refer to https://github.com/TIGER-AI-Lab/MAmmoTH2/tree/main/math_eval. ## Chat Format The template used to build a prompt for the Instruct model is defined as follows: ``` <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST] ``` Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings. But we also found that the model is not very sensitive to the chat template. ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: https://github.com/TIGER-AI-Lab/MAmmoTH2 ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2024mammoth2, title={MAmmoTH2: Scaling Instructions from the Web}, author={Yue, Xiang and Zheng, Tuney and Zhang, Ge and Chen, Wenhu}, journal={arXiv preprint arXiv:2405.03548}, year={2024} } ```
Schaolone/zlg
Schaolone
2024-05-21T11:42:34Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-05-21T11:35:10Z
--- license: apache-2.0 ---
Ramikan-BR/tinyllama-coder-py-4bit_LORA-v3
Ramikan-BR
2024-05-21T11:40:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/tinyllama-chat-bnb-4bit", "base_model:finetune:unsloth/tinyllama-chat-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:40:12Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/tinyllama-chat-bnb-4bit --- # Uploaded model - **Developed by:** Ramikan-BR - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-chat-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Likich/mistral-finetune-qualcoding-1000-prompt1
Likich
2024-05-21T11:40:43Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:40:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HigginsAI/GrepBiasLlama
HigginsAI
2024-05-21T11:35:27Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:34:55Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** HigginsAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
wangzhekd/blip-opt-2.7b-football-alltest
wangzhekd
2024-05-21T11:31:53Z
62
0
transformers
[ "transformers", "safetensors", "blip", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-05-12T09:14:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Dhahlan2000/Translation-GPT-v4
Dhahlan2000
2024-05-21T11:30:26Z
61
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:Dhahlan2000/Translation-GPT-v3", "base_model:finetune:Dhahlan2000/Translation-GPT-v3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-05-21T11:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback base_model: Dhahlan2000/Translation-GPT-v3 model-index: - name: Translation-GPT-v4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Translation-GPT-v4 This model is a fine-tuned version of [Dhahlan2000/Translation-GPT-v3](https://huggingface.co/Dhahlan2000/Translation-GPT-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8506 - Validation Loss: 2.2484 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.0246 | 2.3872 | 0 | | 2.8506 | 2.2484 | 1 | ### Framework versions - Transformers 4.40.2 - TensorFlow 2.15.0 - Datasets 2.17.0 - Tokenizers 0.19.1
MaziyarPanahi/Experiment27pasticheYamshadowexperiment28-7B-GGUF
MaziyarPanahi
2024-05-21T11:28:15Z
58
0
transformers
[ "transformers", "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "safetensors", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:automerger/YamshadowExperiment28-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "base_model:automerger/Experiment27pasticheYamshadowexperiment28-7B", "base_model:quantized:automerger/Experiment27pasticheYamshadowexperiment28-7B" ]
text-generation
2024-05-21T10:59:18Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - transformers - safetensors - mistral - text-generation - merge - mergekit - lazymergekit - automerger - base_model:automerger/YamshadowExperiment28-7B - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - text-generation model_name: Experiment27pasticheYamshadowexperiment28-7B-GGUF base_model: automerger/Experiment27pasticheYamshadowexperiment28-7B inference: false model_creator: automerger pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Experiment27pasticheYamshadowexperiment28-7B-GGUF](https://huggingface.co/MaziyarPanahi/Experiment27pasticheYamshadowexperiment28-7B-GGUF) - Model creator: [automerger](https://huggingface.co/automerger) - Original model: [automerger/Experiment27pasticheYamshadowexperiment28-7B](https://huggingface.co/automerger/Experiment27pasticheYamshadowexperiment28-7B) ## Description [MaziyarPanahi/Experiment27pasticheYamshadowexperiment28-7B-GGUF](https://huggingface.co/MaziyarPanahi/Experiment27pasticheYamshadowexperiment28-7B-GGUF) contains GGUF format model files for [automerger/Experiment27pasticheYamshadowexperiment28-7B](https://huggingface.co/automerger/Experiment27pasticheYamshadowexperiment28-7B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
arjuntheprogrammer/llama3-8b-oig-unsloth
arjuntheprogrammer
2024-05-21T11:24:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:24:04Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** arjuntheprogrammer - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
arjuntheprogrammer/llama3-8b-oig-unsloth-merged
arjuntheprogrammer
2024-05-21T11:23:55Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T11:18:32Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** arjuntheprogrammer - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
blockblockblock/Llama-3-70B-Instruct-abliterated-v3-bpw3.7-exl2
blockblockblock
2024-05-21T11:19:51Z
3
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2024-05-21T11:16:09Z
--- library_name: transformers license: llama3 --- # Llama-3-70B-Instruct-abliterated-v3 Model Card [My Jupyter "cookbook" to replicate the methodology can be found here, refined library coming soon](https://huggingface.co/failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb) This is [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) with orthogonalized bfloat16 safetensor weights, generated with a refined methodology based on that which was described in the preview paper/blog post: '[Refusal in LLMs is mediated by a single direction](https://www.alignmentforum.org/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction)' which I encourage you to read to understand more. ## Hang on, "abliteration"? Orthogonalization? Ablation? What is this? TL;DR: This model has had certain weights manipulated to "inhibit" the model's ability to express refusal. It is not in anyway _guaranteed_ that it won't refuse you, understand your request, it may still lecture you about ethics/safety, etc. It is tuned in all other respects the same as the original 70B instruct model was, just with the strongest refusal directions orthogonalized out. **TL;TL;DR;DR: It's uncensored in the purest form I can manage -- no new or changed behaviour in any other respect from the original model.** As far as "abliteration": it's just a fun play-on-words using the original "ablation" term used in the original paper to refer to removing features, which I made up particularly to differentiate the model from "uncensored" fine-tunes. Ablate + obliterated = Abliterated Anyways, orthogonalization/ablation are both aspects to refer to the same thing here, the technique in which the refusal feature was "ablated" from the model was via orthogonalization. ## A little more on the methodology, and why this is interesting To me, ablation (or applying the methodology for the inverse, "augmentation") seems to be good for inducing/removing very specific features that you'd have to spend way too many tokens on encouraging or discouraging in your system prompt. Instead, you just apply your system prompt in the ablation script against a blank system prompt on the same dataset and orthogonalize for the desired behaviour in the final model weights. > Why this over fine-tuning? Ablation is much more surgical in nature whilst also being effectively executed with a _lot_ less data than fine-tuning, which I think is its main advantage. As well, and its most valuable aspect is it keeps as much of the original model's knowledge and training intact, whilst removing its tendency to behave in one very specific undesireable manner. (In this case, refusing user requests.) Fine tuning is still exceptionally useful and the go-to for broad behaviour changes; however, you may be able to get close to your desired behaviour with very few samples using the ablation/augmentation techniques. It may also be a useful step to add to your model refinement: orthogonalize -> fine-tune or vice-versa. I haven't really gotten around to exploring this model stacked with fine-tuning, I encourage others to give it a shot if they've got the capacity. > Okay, fine, but why V3? There's no V2 70B? Well, I released a V2 a while back for 8B under Cognitive Computations. It ended up being not worth it to try V2 with 70B, I wanted to refine the model before wasting compute cycles on what might not even be a better model. I am however quite pleased about this latest methodology, it seems to have induced fewer hallucinations. So to show that it's a new fancy methodology from even that of the 8B V2, I decided to do a Microsoft and double up on my version jump because it's *such* an advancement (or so the excuse went, when in actuality it was because too many legacy but actively used Microsoft libraries checked for 'Windows 9' in the OS name to detect Windows 95/98 as one.) ## Quirkiness awareness notice This model may come with interesting quirks, with the methodology being so new. I encourage you to play with the model, and post any quirks you notice in the community tab, as that'll help us further understand what this orthogonalization has in the way of side effects. If you manage to develop further improvements, please share! This is really the most basic way to use ablation, but there are other possibilities that I believe are as-yet unexplored. Additionally, feel free to reach out in any way about this. I'm on the Cognitive Computations Discord, I'm watching the Community tab, reach out! I'd love to see this methodology used in other ways, and so would gladly support whoever whenever I can.
krispychicken/openai-whisper-medium.en-colab
krispychicken
2024-05-21T11:18:43Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:18:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yzhuang/Meta-Llama-3-8B-Instruct_fictional_gsm8k_French_v1
yzhuang
2024-05-21T11:12:20Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "conversational", "dataset:generator", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-20T01:30:17Z
--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: Meta-Llama-3-8B-Instruct_fictional_gsm8k_French_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/yufanz/autotree/runs/7283704781.17487-9818c277-4a86-4343-b288-7864588621de) # Meta-Llama-3-8B-Instruct_fictional_gsm8k_French_v1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.41.0 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.19.1 - Tokenizers 0.19.1
SunnyAxe/bert_NER_task
SunnyAxe
2024-05-21T11:12:12Z
106
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-21T10:41:04Z
# Introduction 本模型是在SRTP项目中,为中文文学领域文献摘要的命名实体识别(人名、国名与书名)任务而训练的基于RoBERT的模型。 # Format of input and output input最大长度128。 input: 文本;output: 与文本长度对应、位置对应的标记,标记有如下七种: {'O': 无标记, 'B-PER': 人名开始标记, 'I-PER': 人名中间标记, 'B-CNT': 国名开始标记, 'I-CNT': 国名中间标记, 'B-BK': 书名开始标记, 'I-BK': 书名中间标记} 例如: input: 谢默斯・希尼是当代爱尔兰著名诗人 output: B-PER I-PER I-PER I-PER I-PER I-PER O O O B-CNT I-CNT I-CNT O O O O O 另外,由于模型能力有限,在推理过程中可能遇到识别出来的实体标记直接从"I-"开始,建议将第一个标记向前一个文字作为对应的"B-"标记。 如:爱尔兰 --推理--> O I-CNT I-CNT --后续处理--> B-CNT I-CNT I-CNT
Jefferson-bueno/lora_model_unsloth
Jefferson-bueno
2024-05-21T11:11:58Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T11:11:32Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** Jefferson-bueno - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
SunnyAxe/bert_country_infer
SunnyAxe
2024-05-21T11:10:04Z
108
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T11:02:33Z
# Introduction 本模型是在SRTP项目中,为中文文学领域文献的国别板块推理任务而训练的基于BERT的模型。 # Format of input and output input文本最大长度150,label个数11。 label与推理出的数值对应如下: {0: '比较文学', 1: '大洋洲', 2: '东欧、北欧', 3: '翻译研究', 4: '非洲', 5: '加拿大及其他美洲国家', 6: '美国', 7: '文艺理论与批评', 8: '西欧', 9: '亚洲', 10: '中欧、南欧'} input: 论文标题+论文关键词+论文摘要(拼接) output: 板块(0~10)
lupobricco/relation_classification_single_label_correlations
lupobricco
2024-05-21T11:08:36Z
104
0
transformers
[ "transformers", "safetensors", "camembert", "text-classification", "generated_from_trainer", "base_model:Musixmatch/umberto-commoncrawl-cased-v1", "base_model:finetune:Musixmatch/umberto-commoncrawl-cased-v1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T10:53:40Z
--- base_model: Musixmatch/umberto-commoncrawl-cased-v1 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: relation_classification_single_label_correlations results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # relation_classification_single_label_correlations This model is a fine-tuned version of [Musixmatch/umberto-commoncrawl-cased-v1](https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8244 - Accuracy: 0.7209 - F1: 0.7003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 121 | 0.7878 | 0.6279 | 0.6332 | | No log | 2.0 | 242 | 0.8169 | 0.6822 | 0.6664 | | No log | 3.0 | 363 | 0.8244 | 0.7209 | 0.7003 | | No log | 4.0 | 484 | 0.9999 | 0.6977 | 0.6898 | | 0.5583 | 5.0 | 605 | 1.2330 | 0.6744 | 0.6372 | | 0.5583 | 6.0 | 726 | 1.4526 | 0.6434 | 0.5751 | | 0.5583 | 7.0 | 847 | 1.5028 | 0.6434 | 0.5853 | | 0.5583 | 8.0 | 968 | 1.6308 | 0.6512 | 0.6008 | | 0.1534 | 9.0 | 1089 | 1.7342 | 0.6434 | 0.5817 | | 0.1534 | 10.0 | 1210 | 1.7693 | 0.6512 | 0.5468 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu118 - Datasets 2.19.0 - Tokenizers 0.19.1
Gkumi/Distilled-bert-based
Gkumi
2024-05-21T11:06:47Z
116
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-05-21T11:06:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
edg3/distilbert-base-uncased-imdb
edg3
2024-05-21T11:06:09Z
110
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-20T11:31:23Z
--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-imdb This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2291 - Accuracy: 0.9321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2225 | 1.0 | 1563 | 0.2124 | 0.9194 | | 0.1451 | 2.0 | 3126 | 0.2291 | 0.9321 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
KangXen/enta-st-xlmr
KangXen
2024-05-21T11:00:34Z
165
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T10:59:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NLP-FEUP/DA-FT-ProsusAI-finbert
NLP-FEUP
2024-05-21T11:00:18Z
109
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:NLP-FEUP/DA-ProsusAI-finbert", "base_model:finetune:NLP-FEUP/DA-ProsusAI-finbert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-20T15:19:37Z
--- base_model: NLP-FEUP/DA-ProsusAI-finbert tags: - generated_from_trainer metrics: - accuracy model-index: - name: DA-FT-ProsusAI-finbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DA-FT-ProsusAI-finbert This model is a fine-tuned version of [NLP-FEUP/DA-ProsusAI-finbert](https://huggingface.co/NLP-FEUP/DA-ProsusAI-finbert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3766 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.5243 | 0.675 | | No log | 2.0 | 80 | 0.4332 | 0.775 | | No log | 3.0 | 120 | 0.3766 | 0.875 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
NLP-FEUP/DA-FT-distilbert-base-uncased
NLP-FEUP
2024-05-21T11:00:15Z
121
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:NLP-FEUP/DA-distilbert-base-uncased", "base_model:finetune:NLP-FEUP/DA-distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-20T15:19:06Z
--- license: apache-2.0 base_model: NLP-FEUP/DA-distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: DA-FT-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DA-FT-distilbert-base-uncased This model is a fine-tuned version of [NLP-FEUP/DA-distilbert-base-uncased](https://huggingface.co/NLP-FEUP/DA-distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6205 - Accuracy: 0.725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6767 | 0.625 | | No log | 2.0 | 80 | 0.6476 | 0.675 | | No log | 3.0 | 120 | 0.6205 | 0.725 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1
bhoopendrakumar/passport_330
bhoopendrakumar
2024-05-21T10:59:22Z
48
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-05-21T10:56:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KitsuneX07/so-vits-svc4.1_mosquito
KitsuneX07
2024-05-21T10:58:42Z
0
2
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2024-05-21T10:54:22Z
--- license: cc-by-nc-sa-4.0 --- Offcial Website:https://github.com/svc-develop-team/so-vits-svc
Jateendra/tiny-chatbot-dpo
Jateendra
2024-05-21T10:58:13Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2024-05-21T10:56:03Z
--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 model-index: - name: tiny-chatbot-dpo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-chatbot-dpo This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
LinStevenn/model8bit_itri_0
LinStevenn
2024-05-21T10:52:11Z
6
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-21T10:36:48Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** LinStevenn - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MaziyarPanahi/T3qInex12-7B-GGUF
MaziyarPanahi
2024-05-21T10:49:27Z
81
0
transformers
[ "transformers", "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "safetensors", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:chihoonlee10/T3Q-Mistral-Orca-Math-DPO", "base_model:MSL7/INEX12-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "base_model:automerger/T3qInex12-7B", "base_model:quantized:automerger/T3qInex12-7B" ]
text-generation
2024-05-21T10:20:39Z
--- tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - transformers - safetensors - mistral - text-generation - merge - mergekit - lazymergekit - automerger - base_model:chihoonlee10/T3Q-Mistral-Orca-Math-DPO - base_model:MSL7/INEX12-7b - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us - text-generation model_name: T3qInex12-7B-GGUF base_model: automerger/T3qInex12-7B inference: false model_creator: automerger pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/T3qInex12-7B-GGUF](https://huggingface.co/MaziyarPanahi/T3qInex12-7B-GGUF) - Model creator: [automerger](https://huggingface.co/automerger) - Original model: [automerger/T3qInex12-7B](https://huggingface.co/automerger/T3qInex12-7B) ## Description [MaziyarPanahi/T3qInex12-7B-GGUF](https://huggingface.co/MaziyarPanahi/T3qInex12-7B-GGUF) contains GGUF format model files for [automerger/T3qInex12-7B](https://huggingface.co/automerger/T3qInex12-7B). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
ytcheng/llama3-70B-lora-pretrain_v2
ytcheng
2024-05-21T10:47:04Z
2
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-70B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-70B-Instruct", "license:llama3", "region:us" ]
null
2024-05-20T06:10:36Z
--- license: llama3 library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: meta-llama/Meta-Llama-3-70B-Instruct model-index: - name: llama3-70B-lora-pretrain_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-70B-lora-pretrain_v2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the sm_artile dataset. It achieves the following results on the evaluation set: - Loss: 1.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6995 | 0.0939 | 100 | 2.6305 | | 2.4199 | 0.1877 | 200 | 2.3979 | | 2.2722 | 0.2816 | 300 | 2.2180 | | 2.0762 | 0.3754 | 400 | 2.1251 | | 1.9652 | 0.4693 | 500 | 2.0858 | | 2.1893 | 0.5631 | 600 | 2.0629 | | 2.0153 | 0.6570 | 700 | 2.0473 | | 1.9911 | 0.7508 | 800 | 2.0318 | | 2.1041 | 0.8447 | 900 | 2.0198 | | 2.0488 | 0.9385 | 1000 | 2.0117 | | 1.897 | 1.0324 | 1100 | 2.0018 | | 2.0298 | 1.1262 | 1200 | 1.9952 | | 2.0989 | 1.2201 | 1300 | 1.9890 | | 1.8695 | 1.3139 | 1400 | 1.9838 | | 2.1573 | 1.4078 | 1500 | 1.9764 | | 2.0183 | 1.5016 | 1600 | 1.9713 | | 1.9229 | 1.5955 | 1700 | 1.9672 | | 1.9732 | 1.6893 | 1800 | 1.9617 | | 1.6835 | 1.7832 | 1900 | 1.9574 | | 1.9874 | 1.8771 | 2000 | 1.9539 | | 1.7607 | 1.9709 | 2100 | 1.9512 | | 1.9459 | 2.0648 | 2200 | 1.9480 | | 1.7611 | 2.1586 | 2300 | 1.9463 | | 1.8491 | 2.2525 | 2400 | 1.9441 | | 1.9121 | 2.3463 | 2500 | 1.9427 | | 1.8849 | 2.4402 | 2600 | 1.9413 | | 2.0679 | 2.5340 | 2700 | 1.9400 | | 1.9908 | 2.6279 | 2800 | 1.9394 | | 1.9557 | 2.7217 | 2900 | 1.9388 | | 1.9627 | 2.8156 | 3000 | 1.9384 | | 1.8339 | 2.9094 | 3100 | 1.9383 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.19.1
joosma/ppo-v3
joosma
2024-05-21T10:40:39Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-05-21T10:31:59Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -151.06 +/- 77.67 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.0002 'num_envs': 20 'num_steps': 2048 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 10 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'joosma/ppo-v3' 'batch_size': 40960 'minibatch_size': 4096} ```
RichardErkhov/prometheus-eval_-_prometheus-7b-v2.0-4bits
RichardErkhov
2024-05-21T10:40:10Z
78
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:2405.01535", "arxiv:2310.08491", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-05-21T10:32:36Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) prometheus-7b-v2.0 - bnb 4bits - Model creator: https://huggingface.co/prometheus-eval/ - Original model: https://huggingface.co/prometheus-eval/prometheus-7b-v2.0/ Original model description: --- tags: - text2text-generation datasets: - prometheus-eval/Feedback-Collection - prometheus-eval/Preference-Collection license: apache-2.0 language: - en pipeline_tag: text2text-generation library_name: transformers metrics: - pearsonr - spearmanr - kendall-tau - accuracy --- ## Links for Reference - **Homepage: In Progress** - **Repository:https://github.com/prometheus-eval/prometheus-eval** - **Paper:https://arxiv.org/abs/2405.01535** - **Point of Contact:[email protected]** # TL;DR Prometheus 2 is an alternative of GPT-4 evaluation when doing fine-grained evaluation of an underlying LLM & a Reward model for Reinforcement Learning from Human Feedback (RLHF). ![plot](./finegrained_eval.JPG) Prometheus 2 is a language model using [Mistral-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as a base model. It is fine-tuned on 100K feedback within the [Feedback Collection](https://huggingface.co/datasets/prometheus-eval/Feedback-Collection) and 200K feedback within the [Preference Collection](https://huggingface.co/datasets/prometheus-eval/Preference-Collection). It is also made by weight merging to support both absolute grading (direct assessment) and relative grading (pairwise ranking). The surprising thing is that we find weight merging also improves performance on each format. # Model Details ## Model Description - **Model type:** Language model - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Related Models:** [All Prometheus Checkpoints](https://huggingface.co/models?search=prometheus-eval/Prometheus) - **Resources for more information:** - [Research paper](https://arxiv.org/abs/2405.01535) - [GitHub Repo](https://github.com/prometheus-eval/prometheus-eval) Prometheus is trained with two different sizes (7B and 8x7B). You could check the 8x7B sized LM on [this page](https://huggingface.co/prometheus-eval/prometheus-2-8x7b-v2.0). Also, check out our dataset as well on [this page](https://huggingface.co/datasets/prometheus-eval/Feedback-Collection) and [this page](https://huggingface.co/datasets/prometheus-eval/Preference-Collection). ## Prompt Format We have made wrapper functions and classes to conveniently use Prometheus 2 at [our github repository](https://github.com/prometheus-eval/prometheus-eval). We highly recommend you use it! However, if you just want to use the model for your use case, please refer to the prompt format below. Note that absolute grading and relative grading requires different prompt templates and system prompts. ### Absolute Grading (Direct Assessment) Prometheus requires 4 components in the input: An instruction, a response to evaluate, a score rubric, and a reference answer. You could refer to the prompt format below. You should fill in the instruction, response, reference answer, criteria description, and score description for score in range of 1 to 5. Fix the components with \{text\} inside. ``` ###Task Description: An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given. 1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general. 2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric. 3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\" 4. Please do not generate any other opening, closing, and explanations. ###The instruction to evaluate: {orig_instruction} ###Response to evaluate: {orig_response} ###Reference Answer (Score 5): {orig_reference_answer} ###Score Rubrics: [{orig_criteria}] Score 1: {orig_score1_description} Score 2: {orig_score2_description} Score 3: {orig_score3_description} Score 4: {orig_score4_description} Score 5: {orig_score5_description} ###Feedback: ``` After this, you should apply the conversation template of Mistral (not applying it might lead to unexpected behaviors). You can find the conversation class at this [link](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). ``` conv = get_conv_template("mistral") conv.set_system_message("You are a fair judge assistant tasked with providing clear, objective feedback based on specific criteria, ensuring each assessment reflects the absolute standards set for performance.") conv.append_message(conv.roles[0], dialogs['instruction']) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() x = tokenizer(prompt,truncation=False) ``` As a result, a feedback and score decision will be generated, divided by a separating phrase ```[RESULT]``` ### Relative Grading (Pairwise Ranking) Prometheus requires 4 components in the input: An instruction, 2 responses to evaluate, a score rubric, and a reference answer. You could refer to the prompt format below. You should fill in the instruction, 2 responses, reference answer, and criteria description. Fix the components with \{text\} inside. ``` ###Task Description: An instruction (might include an Input inside it), a response to evaluate, and a score rubric representing a evaluation criteria are given. 1. Write a detailed feedback that assess the quality of two responses strictly based on the given score rubric, not evaluating in general. 2. After writing a feedback, choose a better response between Response A and Response B. You should refer to the score rubric. 3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (A or B)" 4. Please do not generate any other opening, closing, and explanations. ###Instruction: {orig_instruction} ###Response A: {orig_response_A} ###Response B: {orig_response_B} ###Reference Answer: {orig_reference_answer} ###Score Rubric: {orig_criteria} ###Feedback: ``` After this, you should apply the conversation template of Mistral (not applying it might lead to unexpected behaviors). You can find the conversation class at this [link](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py). ``` conv = get_conv_template("mistral") conv.set_system_message("You are a fair judge assistant assigned to deliver insightful feedback that compares individual performances, highlighting how each stands relative to others within the same cohort.") conv.append_message(conv.roles[0], dialogs['instruction']) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() x = tokenizer(prompt,truncation=False) ``` As a result, a feedback and score decision will be generated, divided by a separating phrase ```[RESULT]``` ## License Feedback Collection, Preference Collection, and Prometheus 2 are subject to OpenAI's Terms of Use for the generated data. If you suspect any violations, please reach out to us. # Citation If you find the following model helpful, please consider citing our paper! **BibTeX:** ```bibtex @misc{kim2023prometheus, title={Prometheus: Inducing Fine-grained Evaluation Capability in Language Models}, author={Seungone Kim and Jamin Shin and Yejin Cho and Joel Jang and Shayne Longpre and Hwaran Lee and Sangdoo Yun and Seongjin Shin and Sungdong Kim and James Thorne and Minjoon Seo}, year={2023}, eprint={2310.08491}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{kim2024prometheus, title={Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models}, author={Seungone Kim and Juyoung Suk and Shayne Longpre and Bill Yuchen Lin and Jamin Shin and Sean Welleck and Graham Neubig and Moontae Lee and Kyungjae Lee and Minjoon Seo}, year={2024}, eprint={2405.01535}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
JL42/NewMes-v6-GGUF
JL42
2024-05-21T10:35:56Z
0
0
transformers
[ "transformers", "gguf", "Text Generation", "medical", "license:llama3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-05-21T08:17:57Z
--- license: llama3 library_name: transformers tags: - Text Generation - medical --- Base model: Llama-3-8B ## Model Description - **Developed by:** bongbongs - **Model type:** LLM - **Language(s) (NLP):** English - **Finetuned from model:** llama-3-8b Fine-tuned on medical training datsets
KangXen/enta-tp3-xlmr
KangXen
2024-05-21T10:31:56Z
184
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-21T10:31:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
joosma/ppo-v2
joosma
2024-05-21T10:28:56Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-05-21T10:27:27Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -170.62 +/- 65.46 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 2048 'num_steps': 10 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'joosma/ppo-v2' 'batch_size': 20480 'minibatch_size': 5120} ```
UocNTh/mistral_instruct_generation
UocNTh
2024-05-21T10:26:04Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-05-21T10:25:46Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 datasets: - generator model-index: - name: mistral_instruct_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_instruct_generation This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.3066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5498 | 0.16 | 20 | 1.3757 | | 1.4516 | 0.33 | 40 | 1.3326 | | 1.4367 | 0.49 | 60 | 1.3214 | | 1.4238 | 0.65 | 80 | 1.3123 | | 1.4189 | 0.81 | 100 | 1.3066 | ### Framework versions - PEFT 0.11.1 - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0
imagepipeline/helper
imagepipeline
2024-05-21T10:24:44Z
0
0
null
[ "imagepipeline", "imagepipeline.io", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-05-21T10:24:42Z
--- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ## helper <img src="https://via.placeholder.com/468x300?text=App+Screenshot+Here" alt="Generated on Image Pipeline" style="border-radius: 10px;"> **This lora model is uploaded on [imagepipeline.io](https://imagepipeline.io/)** Model details - helper [![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/helper?id=ae4e645b-a2d6-429e-ac44-d59e9f9e6f20/) ## How to try this model ? You can try using it locally or send an API call to test the output quality. Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required. Coding in `php` `javascript` `node` etc ? Checkout our documentation [![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction) ```python import requests import json url = "https://imagepipeline.io/sd/text2image/v1/run" payload = json.dumps({ "model_id": "sd1.5", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": false, "guidance_scale": 7.5, "multi_lingual": "no", "embeddings": "", "lora_models": "ae4e645b-a2d6-429e-ac44-d59e9f9e6f20", "lora_weights": "0.5" }) headers = { 'Content-Type': 'application/json', 'API-Key': 'your_api_key' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) } ``` Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` : [![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models) ### API Reference #### Generate Image ```http https://api.imagepipeline.io/sd/text2image/v1 ``` | Headers | Type | Description | |:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------| | `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) | | `Content-Type` | `str` | application/json - content type of the request body | | Parameter | Type | Description | | :-------- | :------- | :------------------------- | | `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own| | `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips | | `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) | | `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 | | `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page | | `lora_weights` | `str, array` | Strength of the LoRA effect | --- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ### Feedback If you have any feedback, please reach out to us at [email protected] #### 🔗 Visit Website [![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/) If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
hgnoi/dippy6
hgnoi
2024-05-21T10:24:17Z
120
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T07:01:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]