modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
yaoandy107/whisper-small.en-moba
yaoandy107
2024-02-01T11:26:32Z
64
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-01T10:36:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ondevicellm/tinyllama_mole_sft_router05_ep3
ondevicellm
2024-02-01T11:24:49Z
16
0
transformers
[ "transformers", "tensorboard", "safetensors", "mixtralmole", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "custom_code", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:ondevicellm/tinyllama_mole_v1", "base_model:finetune:ondevicellm/tinyllama_mole_v1", "autotrain_compatible", "region:us" ]
text-generation
2024-01-31T21:48:48Z
--- base_model: ondevicellm/tinyllama_mole_v1 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: tinyllama_mole_sft_router05_ep3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama_mole_sft_router05_ep3 This model is a fine-tuned version of [ondevicellm/tinyllama_mole_v1](https://huggingface.co/ondevicellm/tinyllama_mole_v1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 2.1129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3008 | 0.09 | 100 | 2.2785 | | 2.2257 | 0.18 | 200 | 2.2161 | | 2.1922 | 0.26 | 300 | 2.1924 | | 2.1698 | 0.35 | 400 | 2.1773 | | 2.1428 | 0.44 | 500 | 2.1668 | | 2.1632 | 0.53 | 600 | 2.1586 | | 2.1503 | 0.61 | 700 | 2.1516 | | 2.1369 | 0.7 | 800 | 2.1460 | | 2.1324 | 0.79 | 900 | 2.1409 | | 2.1158 | 0.88 | 1000 | 2.1362 | | 2.1396 | 0.96 | 1100 | 2.1321 | | 2.0565 | 1.05 | 1200 | 2.1317 | | 2.0596 | 1.14 | 1300 | 2.1297 | | 2.0712 | 1.23 | 1400 | 2.1276 | | 2.0626 | 1.31 | 1500 | 2.1259 | | 2.0654 | 1.4 | 1600 | 2.1235 | | 2.0628 | 1.49 | 1700 | 2.1216 | | 2.046 | 1.58 | 1800 | 2.1197 | | 2.067 | 1.66 | 1900 | 2.1180 | | 2.0702 | 1.75 | 2000 | 2.1161 | | 2.057 | 1.84 | 2100 | 2.1144 | | 2.0307 | 1.93 | 2200 | 2.1129 | | 2.0134 | 2.01 | 2300 | 2.1172 | | 2.0205 | 2.1 | 2400 | 2.1172 | | 2.0091 | 2.19 | 2500 | 2.1170 | | 2.0021 | 2.28 | 2600 | 2.1164 | | 2.0006 | 2.37 | 2700 | 2.1159 | | 2.006 | 2.45 | 2800 | 2.1158 | | 2.0121 | 2.54 | 2900 | 2.1152 | | 1.9942 | 2.63 | 3000 | 2.1150 | | 2.0129 | 2.72 | 3100 | 2.1149 | | 2.0041 | 2.8 | 3200 | 2.1146 | | 2.0002 | 2.89 | 3300 | 2.1146 | | 2.019 | 2.98 | 3400 | 2.1146 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
ohashi56225/phi-2-alpaca-cleaned
ohashi56225
2024-02-01T11:17:03Z
9
1
transformers
[ "transformers", "safetensors", "phi", "text-generation", "custom_code", "en", "dataset:yahma/alpaca-cleaned", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T10:41:19Z
--- license: mit datasets: - yahma/alpaca-cleaned language: - en library_name: transformers pipeline_tag: text-generation --- # phi-2-alpaca-cleaned This model is an instruction-tuned version of the [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) model fine-tuned on the [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) dataset. In the training, full parameter fine-tuning of phi-2 was performed, and LoRA was not used. ## Text Format ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Based on the information provided, rewrite the sentence by changing its tense from past to future. ### Input: She played the piano beautifully for hours and then stopped as it was midnight. ### Response: She will play the piano beautifully for hours and then stop as it will be midnight. ``` ## Training - GPUs: 8 × A6000 48GB - per_device_train_batch_size: 8 - gradient_accumulation_steps: 8 - per_device_eval_batch_size: 8 - num_train_epochs: 3 - learning_rate: 2e-5 - warmup_ratio: 0.03 ## Software - pytorch: 2.1.2 - transformers: 4.38.0.dev0 - accelerate: 0.26.1 - deepspeed: 0.13.1
vishanoberoi/Llama-2-7b-chat-hf-fine-tuned-GPTQ
vishanoberoi
2024-02-01T11:15:21Z
62
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2024-02-01T11:02:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF
MaziyarPanahi
2024-02-01T11:14:17Z
56
1
transformers
[ "transformers", "gguf", "mistral", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "pytorch", "safetensors", "text-generation", "finetuned", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "has_space", "text-generation-inference", "region:us", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:quantized:mistralai/Mistral-7B-Instruct-v0.1", "conversational" ]
text-generation
2024-02-01T11:03:15Z
--- license: apache-2.0 tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - transformers - pytorch - safetensors - mistral - text-generation - finetuned - arxiv:2310.06825 - license:apache-2.0 - autotrain_compatible - has_space - text-generation-inference - region:us model_name: Mistral-7B-Instruct-v0.1-GGUF base_model: mistralai/Mistral-7B-Instruct-v0.1 inference: false model_creator: mistralai pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # [MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF) - Model creator: [mistralai](https://huggingface.co/mistralai) - Original model: [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) ## Description [MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF) contains GGUF format model files for [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1). ## How to use Thanks to [TheBloke](https://huggingface.co/TheBloke) for preparing an amazing README on how to use GGUF models: ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ### Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: [MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF) and below it, a specific filename to download, such as: Mistral-7B-Instruct-v0.1-GGUF.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF Mistral-7B-Instruct-v0.1-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` </details> <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download [MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF) --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MaziyarPanahi/Mistral-7B-Instruct-v0.1-GGUF Mistral-7B-Instruct-v0.1-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Mistral-7B-Instruct-v0.1-GGUF.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Mistral-7B-Instruct-v0.1-GGUF.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Mistral-7B-Instruct-v0.1-GGUF.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
eswardivi/stablelm_telugu
eswardivi
2024-02-01T11:13:47Z
134
0
transformers
[ "transformers", "safetensors", "stablelm_epoch", "text-generation", "causal-lm", "custom_code", "en", "te", "dataset:eswardivi/telugu_instruction_dataset", "dataset:Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized", "dataset:Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized", "dataset:tiiuae/falcon-refinedweb", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:uonlp/CulturaX", "dataset:CarperAI/pilev2-dev", "dataset:bigcode/starcoderdata", "dataset:DataProvenanceInitiative/Commercially-Verified-Licenses", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2024-02-01T10:28:08Z
--- license: other datasets: - eswardivi/telugu_instruction_dataset - Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized - Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized - tiiuae/falcon-refinedweb - togethercomputer/RedPajama-Data-1T - uonlp/CulturaX - CarperAI/pilev2-dev - bigcode/starcoderdata - DataProvenanceInitiative/Commercially-Verified-Licenses language: - en - te tags: - causal-lm --- ## Stablelm_Telugu Model ### Model Details: - **Model Name:** Stablelm_Telugu (Telugu Romanized) - **Foundational Model:** Stable LM 2 1.6B - **Parameters:** 1.6 Billion - **Pre-training Data:** 2 Trillion Tokens from Multilingual and Code Datasets - **Pre-training Epochs:** 2 ### Fine-Tuning The `Stablelm_Telugu` model was fine-tuned using the `eswardivi/telugu_instruction_dataset`. This dataset is in Alpaca format and comprises translated and transliterated versions of `yahma_alpaca` and `teknium_GPTeacher_general`. The dataset was sourced from [Telugu-LLM-Labs](https://huggingface.co/Telugu-LLM-Labs). Used axolotl for Finetuning,Below is **yml file** <details> <summary> Click to expand </summary> ```yml base_model: stabilityai/stablelm-2-1_6b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: true load_in_4bit: false strict: false push_dataset_to_hub: datasets: - path: eswardivi/telugu_instruction_dataset type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.02 output_dir: ./lora-out adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: telugu_llm wandb_entity: wandb_watch: wandb_name: stablelm_1_6 wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 100 evals_per_epoch: 2 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: pad_token: "<|endoftext|>" eos_token: "<|endoftext|>" ``` </details> ### Fine-Tuning Data: - **Dataset:** `telugu_instruction_dataset` - **Format:** Alpaca - **Source:** [Here](https://huggingface.co/datasets/eswardivi/telugu_instruction_dataset) For more details on base model, visit the [stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b). ## Usage Get started generating text with `Stable LM 2 1.6B` by using the following code snippet: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("eswardivi/stablelm_telugu", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "eswardivi/stablelm_telugu", trust_remote_code=True, torch_dtype="auto", ) model.cuda() def create_prompt(instruction: str) -> str: prompt_template = f""" Instruction: {instruction} Response: """ return prompt_template inputs = tokenizer(create_prompt("Naku python Program 1 to 10 count cheyadaniki ivvu"), return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=1024, temperature=0.65, top_p=0.85, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` #### Output Instruction: Naku python Program 1 to 10 count cheyadaniki ivvu Response: python program 1 to 10 count cheyadaniki ivvabadina code ikkada vundi: ```python count = 0 for n in range(1, 11): count += 1 print("count: ", count) ``` idi python program 1 to 10 count cheyadaniki ivvabadina code, idi 10 nundi 11 varaku 10 sankhyalanu 1 nundi 10 varaku tisukoni 10 sankhyala sankhyalanu leckinchadam dwara prarambhamavuthundi. 1 nundi 10 varaku 10 sankhyalanu tisukoni, 1 nundi 10 varaku 10 sankhyalanu 1 nundi 10 varaku 10 sankhyala sankhyalanu leckinchadam dwara prarambhamavuthundi. ### Run with Flash Attention 2 ⚡️ <details> <summary> Click to expand </summary> ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("eswardivi/stablelm_telugu", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "eswardivi/stablelm_telugu", trust_remote_code=True, torch_dtype="auto", attn_implementation="flash_attention_2", ) model.cuda() def create_prompt(instruction: str) -> str: prompt_template = f""" Instruction: {instruction} Response: """ return prompt_template inputs = tokenizer(create_prompt("Naku python Program 1 to 10 count cheyadaniki ivvu"), return_tensors="pt").to(model.device) tokens = model.generate( **inputs, max_new_tokens=1024, temperature=0.65, top_p=0.85, do_sample=True, ) print(tokenizer.decode(tokens[0], skip_special_tokens=True)) ``` </details> ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. ### Limitations and Bias ​ As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. ## How to Cite ```bibtex @misc{StableLM-2-1.6B, url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)}, title={Stable LM 2 1.6B}, author={Stability AI Language Team} } ```
badokorach/afriqa-finetuned-010224
badokorach
2024-02-01T11:07:38Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "base_model:badokorach/afriqa_afroxlmr_lug_290124", "base_model:finetune:badokorach/afriqa_afroxlmr_lug_290124", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-02-01T10:22:11Z
--- license: mit base_model: badokorach/afriqa_afroxlmr_lug_290124 tags: - generated_from_keras_callback model-index: - name: badokorach/afriqa-finetuned-010224 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/afriqa-finetuned-010224 This model is a fine-tuned version of [badokorach/afriqa_afroxlmr_lug_290124](https://huggingface.co/badokorach/afriqa_afroxlmr_lug_290124) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1430 - Validation Loss: 0.0 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 2025, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8096 | 0.0 | 0 | | 1.2902 | 0.0 | 1 | | 1.0617 | 0.0 | 2 | | 0.9096 | 0.0 | 3 | | 0.7383 | 0.0 | 4 | | 0.5826 | 0.0 | 5 | | 0.4711 | 0.0 | 6 | | 0.3859 | 0.0 | 7 | | 0.2942 | 0.0 | 8 | | 0.2342 | 0.0 | 9 | | 0.1990 | 0.0 | 10 | | 0.1929 | 0.0 | 11 | | 0.1501 | 0.0 | 12 | | 0.1463 | 0.0 | 13 | | 0.1430 | 0.0 | 14 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1
mrqorib/grammaticality
mrqorib
2024-02-01T11:03:42Z
94
1
transformers
[ "transformers", "pytorch", "deberta-v2", "greco", "grammar", "grammaticality", "gec", "en", "arxiv:2310.14947", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
null
2024-02-01T09:44:38Z
--- language: en tags: - greco - grammar - grammaticality - gec base_model: microsoft/deberta-v3-large license: gpl-3.0 --- # GRECO: Gammaticality-scorer for re-ranking corrections GRECO is a quality estimation model for grammatical error correction. The model is trained to detect which words are incorrect and whether a word or phrase needs to be inserted after certain words. You can then use the model to get the grammaticality score of a sentence. Please check the [official repository](https://github.com/nusnlp/greco/tree/main) for more implementation details and updates. The model was published in the following paper: > System Combination via Quality Estimation for Grammatical Error Correction ([PDF](https://arxiv.org/abs/2310.14947) | [ACL Anthology](https://aclanthology.org/2023.emnlp-main.785/)) <br> > [Muhammad Reza Qorib](https://mrqorib.github.io/) and [Hwee Tou Ng](https://www.comp.nus.edu.sg/~nght/) <br> > The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP) ## Citation If you find it useful for your work, please cite the paper: ```latex @inproceedings{qorib-ng-2023-system, title = "System Combination via Quality Estimation for Grammatical Error Correction", author = "Qorib, Muhammad Reza and Ng, Hwee Tou", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.785", doi = "10.18653/v1/2023.emnlp-main.785", pages = "12746--12759", } ```
schrapsi/q-FrozenLake-v1-4x4-noSlippery
schrapsi
2024-02-01T10:57:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-02-01T10:34:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="schrapsi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tjkmitl/FearNews_1_loadbest
tjkmitl
2024-02-01T10:57:21Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:csebuetnlp/mT5_multilingual_XLSum", "base_model:finetune:csebuetnlp/mT5_multilingual_XLSum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T10:55:15Z
--- base_model: csebuetnlp/mT5_multilingual_XLSum tags: - generated_from_trainer model-index: - name: FearNews_1_loadbest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FearNews_1_loadbest This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5702 | 1.08 | 200 | 3.4542 | | 1.5764 | 2.15 | 400 | 3.5080 | | 1.8336 | 3.23 | 600 | 3.5567 | | 1.146 | 4.3 | 800 | 3.6572 | | 1.4305 | 5.38 | 1000 | 3.8077 | | 0.9643 | 6.45 | 1200 | 3.9775 | | 0.9929 | 7.53 | 1400 | 4.1400 | | 0.8563 | 8.6 | 1600 | 4.2600 | | 0.7378 | 9.68 | 1800 | 4.2853 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
LunaticTanuki/oop-de-qag-flan-t5-base
LunaticTanuki
2024-02-01T10:56:14Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-07T14:37:14Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: oop-de-qag-flan-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # oop-de-qag-flan-t5-base This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
halimb/depth-anything-small-hf
halimb
2024-02-01T10:53:25Z
119
1
transformers
[ "transformers", "safetensors", "depth_anything", "depth-estimation", "vision", "arxiv:2401.10891", "license:apache-2.0", "endpoints_compatible", "region:us" ]
depth-estimation
2024-01-31T18:31:11Z
--- license: apache-2.0 tags: - vision pipeline_tag: depth-estimation widget: - inference: false --- # Depth Anything (small-sized model, Transformers version) Depth Anything model. It was introduced in the paper [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang et al. and first released in [this repository](https://github.com/LiheYoung/Depth-Anything). [Online demo](https://huggingface.co/spaces/LiheYoung/Depth-Anything) is also provided. Disclaimer: The team releasing Depth Anything did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Depth Anything leverages the [DPT](https://huggingface.co/docs/transformers/model_doc/dpt) architecture with a [DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2) backbone. The model is trained on ~62 million images, obtaining state-of-the-art results for both relative and absolute depth estimation. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg" alt="drawing" width="600"/> <small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small> ## Intended uses & limitations You can use the raw model for tasks like zero-shot depth estimation. See the [model hub](https://huggingface.co/models?search=depth-anything) to look for other versions on a task that interests you. ### How to use Here is how to use this model to perform zero-shot depth estimation: ```python from transformers import pipeline from PIL import Image import requests # load pipe pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") # load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # inference depth = pipe(image)["depth"] ``` Alternatively, one can use the classes themselves: ```python from transformers import AutoImageProcessor, AutoModelForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf") # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/depth_anything.html#). ### BibTeX entry and citation info ```bibtex @misc{yang2024depth, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Lihe Yang and Bingyi Kang and Zilong Huang and Xiaogang Xu and Jiashi Feng and Hengshuang Zhao}, year={2024}, eprint={2401.10891}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
tjkmitl/FearNews1
tjkmitl
2024-02-01T10:46:39Z
91
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:csebuetnlp/mT5_multilingual_XLSum", "base_model:finetune:csebuetnlp/mT5_multilingual_XLSum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T10:44:40Z
--- base_model: csebuetnlp/mT5_multilingual_XLSum tags: - generated_from_trainer model-index: - name: FearNews1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FearNews1 This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4219 | 2.69 | 500 | 3.3773 | | 2.6769 | 5.38 | 1000 | 3.2710 | | 2.1093 | 8.06 | 1500 | 3.3650 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
Tanor/sr_pner_tesla_j355
Tanor
2024-02-01T10:46:15Z
3
0
spacy
[ "spacy", "token-classification", "sr", "license:cc-by-sa-3.0", "model-index", "region:us" ]
token-classification
2024-02-01T01:08:49Z
--- tags: - spacy - token-classification language: - sr license: cc-by-sa-3.0 model-index: - name: sr_pner_tesla_j355 results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9516940624 - name: NER Recall type: recall value: 0.9596130429 - name: NER F Score type: f_score value: 0.9556371476 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9841723761 --- sr_pner_tesla_j355 is a spaCy model meticulously fine-tuned for Part-of-Speech Tagging, and Named Entity Recognition in Serbian language texts. This advanced model incorporates a transformer layer based on Jerteh-355, enhancing its analytical capabilities. It is proficient in identifying 7 distinct categories of entities: PERS (persons), ROLE (professions), DEMO (demonyms), ORG (organizations), LOC (locations), WORK (artworks), and EVENT (events). Detailed information about these categories is available in the accompanying table. The development of this model has been made possible through the support of the Science Fund of the Republic of Serbia, under grant #7276, for the project 'Text Embeddings - Serbian Language Applications - TESLA'. | Feature | Description | | --- | --- | | **Name** | `sr_pner_tesla_j355` | | **Version** | `1.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `transformer`, `tagger`, `ner` | | **Components** | `transformer`, `tagger`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `CC BY-SA 3.0` | | **Author** | [Milica Ikonić Nešić, Saša Petalinkar, Mihailo Škorić, Ranka Stanković](https://tesla.rgf.bg.ac.rs/) | ### Label Scheme <details> <summary>View label scheme (23 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `VERB`, `X` | | **`ner`** | `DEMO`, `EVENT`, `LOC`, `ORG`, `PERS`, `ROLE`, `WORK` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 98.42 | | `ENTS_F` | 95.56 | | `ENTS_P` | 95.17 | | `ENTS_R` | 95.96 | | `TRANSFORMER_LOSS` | 151439.86 | | `TAGGER_LOSS` | 141230.81 | | `NER_LOSS` | 84043.38 |
NadineLovey/TV-Asia-Announcer-RVC-Model
NadineLovey
2024-02-01T10:42:04Z
0
1
null
[ "license:mit", "region:us" ]
null
2024-01-29T05:09:06Z
--- license: mit --- Hello! We can download some TV3/TV9 Malaysia and ABS-CBN Announcer RVC voice models for easy to create with! (o u o) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b36619ef25cbaa77d729bc/FxZ4g7vA09H-DWhL4jTp-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b36619ef25cbaa77d729bc/W0wlHZLlOfAtVDrSlSblv.png) ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65b36619ef25cbaa77d729bc/2SdvjRmNtEWZLe2moj3xD.webp)
reach-vb/miqu-1-70b-sf
reach-vb
2024-02-01T10:38:02Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T10:30:48Z
--- {} --- # NOTE: THIS IS A LEAKED ASSET, HAS NO LICENSE ASSOCIATED TO IT. USE AT YOUR OWN RISK. this is [miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b), dequantised from q5 to f16 && transposed to pytorch. shapes have been rotated less wrongly than in [alpindale/miqu-1-70b-pytorch](https://huggingface.co/alpindale/miqu-1-70b-pytorch/tree/main) usage ```python from transformers import LlamaForCausalLM as LLM, LlamaTokenizer as LT lt = LT.from_pretrained("NousResearch/Llama-2-7b-hf") t = lt("[INST] eloquent high camp prose about a cute catgirl [/INST]", return_tensors='pt').input_ids.cuda() llm = LLM.from_pretrained("152334H/miqu-1-70b-sf", device_map='auto') # note: you may need many gpus for this out = llm.generate(t, use_cache=False, max_new_tokens=200) print(lt.decode(out[0])) ``` result: ``` <s> [INST] eloquent high camp prose about a cute catgirl [/INST] In the resplendent realm of high camp, where irony and extravagance dance in a dazzling pas de deux, there exists a creature of such enchanting allure that she captivates the hearts and minds of all who behold her. This beguiling figure, a vision of feline grace and innocence, is none other than the inimitable catgirl. With her delicate features and winsome smile, she is the embodiment of a dream, a living testament to the power of imagination and the boundless possibilities of the human spirit. Her eyes, those twin orbs of sapphire fire, sparkle with a mischievous intelligence that belies her diminutive stature. They are windows into a soul that is at once ancient and eternally young, a soul that has traversed the vast expanse of time and space to find solace in the warm embrace of human companion ``` this roughly (but not entirely) matches the llama.cpp q5 result: ```bash $ ./main -ngl 99 -m ./miqu-*q5* --color --temp 0.0 -n -1 -p '[INST] eloquent high camp prose about a cute catgirl [/INST]' ... [INST] eloquent high camp prose about a cute catgirl [/INST] In the resplendent realm of high camp, where irony and extravagance dance in a dazzling pas de deux, there exists a creature so enchantingly adorable that she captures the hearts of all who behold her. This is no ordinary feline, but rather a vision of elegance and whimsy combined: the cute catgirl. With her delicate features framed by an ethereal halo of pastel tresses, this darling diva prowls through life with the grace of a prima ballerina and the playfulness of a kitten. Her eyes, twin pools of sapphire or emerald, sparkle with mischief and intelligence as they survey their surroundings, ever alert for the next grand adventure or delightful prank. Her ensemble is a symphony of ruffles, bows, and lace, each detail painstakingly chosen to accentuate her lithe form and play up her feline charms. A frilly apron adorned with paw prints sways gently as she moves, while dainty ears perched atop her head twitch in response to every sound. Her gloved hands, so petite and perfect, seem made for holding teacups or sketching delicate portraits of her many admirers. But do not be fooled by her diminutive stature and sweet demeanor; beneath that fluffy exterior lies the heart of a lioness. Fiercely loyal and protective, she will stop at nothing to defend those she loves from harm. And when the situation calls for it, she can unleash a ferocious roar that belies her cute exterior. Indeed, the cute catgirl is a paradox wrapped in ruffles and ribbons, a living embodiment of the high camp aesthetic. She revels in the absurdity of her existence, finding joy in every outrageous situation and turning even the most mundane tasks into opportunities for sartorial expression. In her world, there is no such thing as too much glitter or too many bows; more is always more, and excess is a virtue to be celebrated. So let us raise our teacups in honor of this fabulous feline, this queen of camp who reminds us that life is too short for dull clothing and boring hairstyles. May we all strive to embody her spirit, embracing the absurdity of existence with open arms and a generous helping of glitter. Long live the cute catgirl! [end of text] ``` ![](https://thicc-af.mywaifulist.moe/waifus/miku-nakano-the-quintessential-quintuplets/phUEiEhPOL75GTDLncGy2dUbkDVMfYExZ2A1RBeQ.png?class=thumbnail) some benchmarks ``` | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |--------------|------:|------|-----:|----------|-----:|---|-----:| |lambada_openai| 1|none | 0|perplexity|2.6354|± |0.0451| | | |none | 0|acc |0.7879|± |0.0057| | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |---------|------:|------|-----:|--------|-----:|---|-----:| |hellaswag| 1|none | 0|acc |0.6851|± |0.0046| | | |none | 0|acc_norm|0.8690|± |0.0034| | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |----------|------:|------|-----:|------|-----:|---|-----:| |winogrande| 1|none | 0|acc |0.7987|± |0.0113| |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |-----|------:|----------|-----:|-----------|-----:|---|-----:| |gsm8k| 2|get-answer| 5|exact_match|0.7043|± |0.0126| | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |---------------------------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.7401|± |0.1192| | - humanities |N/A |none | 0|acc |0.7018|± |0.1281| | - formal_logic | 0|none | 0|acc |0.4841|± |0.0447| | - high_school_european_history | 0|none | 0|acc |0.8303|± |0.0293| | - high_school_us_history | 0|none | 0|acc |0.9020|± |0.0209| | - high_school_world_history | 0|none | 0|acc |0.9198|± |0.0177| | - international_law | 0|none | 0|acc |0.8678|± |0.0309| | - jurisprudence | 0|none | 0|acc |0.8519|± |0.0343| | - logical_fallacies | 0|none | 0|acc |0.8344|± |0.0292| | - moral_disputes | 0|none | 0|acc |0.8121|± |0.0210| | - moral_scenarios | 0|none | 0|acc |0.5642|± |0.0166| | - philosophy | 0|none | 0|acc |0.8167|± |0.0220| | - prehistory | 0|none | 0|acc |0.8611|± |0.0192| | - professional_law | 0|none | 0|acc |0.5854|± |0.0126| | - world_religions | 0|none | 0|acc |0.8889|± |0.0241| | - other |N/A |none | 0|acc |0.7889|± |0.0922| | - business_ethics | 0|none | 0|acc |0.7900|± |0.0409| | - clinical_knowledge | 0|none | 0|acc |0.8113|± |0.0241| | - college_medicine | 0|none | 0|acc |0.7514|± |0.0330| | - global_facts | 0|none | 0|acc |0.5500|± |0.0500| | - human_aging | 0|none | 0|acc |0.7848|± |0.0276| | - management | 0|none | 0|acc |0.8835|± |0.0318| | - marketing | 0|none | 0|acc |0.9145|± |0.0183| | - medical_genetics | 0|none | 0|acc |0.7500|± |0.0435| | - miscellaneous | 0|none | 0|acc |0.8838|± |0.0115| | - nutrition | 0|none | 0|acc |0.7974|± |0.0230| | - professional_accounting | 0|none | 0|acc |0.5922|± |0.0293| | - professional_medicine | 0|none | 0|acc |0.8272|± |0.0230| | - virology | 0|none | 0|acc |0.5361|± |0.0388| | - social_sciences |N/A |none | 0|acc |0.8414|± |0.0514| | - econometrics | 0|none | 0|acc |0.6491|± |0.0449| | - high_school_geography | 0|none | 0|acc |0.8990|± |0.0215| | - high_school_government_and_politics| 0|none | 0|acc |0.9430|± |0.0167| | - high_school_macroeconomics | 0|none | 0|acc |0.7795|± |0.0210| | - high_school_microeconomics | 0|none | 0|acc |0.8277|± |0.0245| | - high_school_psychology | 0|none | 0|acc |0.9064|± |0.0125| | - human_sexuality | 0|none | 0|acc |0.8626|± |0.0302| | - professional_psychology | 0|none | 0|acc |0.8056|± |0.0160| | - public_relations | 0|none | 0|acc |0.7636|± |0.0407| | - security_studies | 0|none | 0|acc |0.8204|± |0.0246| | - sociology | 0|none | 0|acc |0.8856|± |0.0225| | - us_foreign_policy | 0|none | 0|acc |0.9100|± |0.0288| | - stem |N/A |none | 0|acc |0.6505|± |0.1266| | - abstract_algebra | 0|none | 0|acc |0.4100|± |0.0494| | - anatomy | 0|none | 0|acc |0.6444|± |0.0414| | - astronomy | 0|none | 0|acc |0.8224|± |0.0311| | - college_biology | 0|none | 0|acc |0.8681|± |0.0283| | - college_chemistry | 0|none | 0|acc |0.5500|± |0.0500| | - college_computer_science | 0|none | 0|acc |0.6200|± |0.0488| | - college_mathematics | 0|none | 0|acc |0.4200|± |0.0496| | - college_physics | 0|none | 0|acc |0.5392|± |0.0496| | - computer_security | 0|none | 0|acc |0.8300|± |0.0378| | - conceptual_physics | 0|none | 0|acc |0.7362|± |0.0288| | - electrical_engineering | 0|none | 0|acc |0.7034|± |0.0381| | - elementary_mathematics | 0|none | 0|acc |0.5503|± |0.0256| | - high_school_biology | 0|none | 0|acc |0.8742|± |0.0189| | - high_school_chemistry | 0|none | 0|acc |0.6256|± |0.0341| | - high_school_computer_science | 0|none | 0|acc |0.8400|± |0.0368| | - high_school_mathematics | 0|none | 0|acc |0.4370|± |0.0302| | - high_school_physics | 0|none | 0|acc |0.5033|± |0.0408| | - high_school_statistics | 0|none | 0|acc |0.6944|± |0.0314| | - machine_learning | 0|none | 0|acc |0.5982|± |0.0465| ``` no i do not know why the stderr is high. plausibly it is due to the vllm backend used. this is my lm-eval command in most cases (works on h100): `lm_eval --model vllm --model_args pretrained=./miqu-1-70b-sf,tensor_parallel_size=4,dtype=auto,gpu_memory_utilization=0.88,data_parallel_size=2 --tasks mmlu --batch_size 20`
Patcas/plbart-docs-v1
Patcas
2024-02-01T10:37:39Z
89
0
transformers
[ "transformers", "tensorboard", "safetensors", "plbart", "text2text-generation", "generated_from_trainer", "base_model:Patcas/plbart-works", "base_model:finetune:Patcas/plbart-works", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-31T20:09:51Z
--- base_model: Patcas/plbart-works tags: - generated_from_trainer model-index: - name: plbart-docs-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plbart-docs-v1 This model is a fine-tuned version of [Patcas/plbart-works](https://huggingface.co/Patcas/plbart-works) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 230 | 0.9578 | | No log | 2.0 | 460 | 0.8802 | | 0.9795 | 3.0 | 690 | 0.8768 | | 0.9795 | 4.0 | 920 | 0.8875 | | 0.335 | 5.0 | 1150 | 0.8897 | | 0.335 | 6.0 | 1380 | 0.9047 | | 0.1643 | 7.0 | 1610 | 0.8998 | | 0.1643 | 8.0 | 1840 | 0.9090 | | 0.0945 | 9.0 | 2070 | 0.9151 | | 0.0945 | 10.0 | 2300 | 0.9167 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
nullne/rl_course_vizdoom_health_gathering_supreme
nullne
2024-02-01T10:35:47Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-01T10:35:31Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.19 +/- 3.75 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r nullne/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Doctor-Shotgun/limarp-miqu-1-70b-qlora
Doctor-Shotgun
2024-02-01T10:34:31Z
8
4
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "llama 2", "en", "dataset:lemonilia/LimaRP", "4-bit", "bitsandbytes", "region:us" ]
null
2024-01-31T15:41:27Z
--- library_name: peft tags: - generated_from_trainer - llama - llama 2 model-index: - name: volume/limarp-70b-qlora results: [] datasets: - lemonilia/LimaRP language: - en --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: models/miqu-1-70b-sf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: train-all-max-alpaca-llama.jsonl type: completion dataset_prepared_path: val_set_size: 0.0 output_dir: ./volume/limarp-70b-qlora adapter: qlora lora_model_dir: sequence_len: 16384 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: 70b-lora wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 train_on_inputs: true group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: eval_table_size: save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details><br> # limarp-miqu-1-70b-qlora Experimental limarp qlora trained at 16384 ctx length (greater than size of the longest limarp sample when tokenized via llama's tokenizer) on the fixed dequantized miqu-1-70b model by 152334H. I wasn't particularly happy with the results I got when I tried applying the lora at varying weights to the miqu-1-70b model. It's possible that this is related to the fact that the model was dequantized from Q5_K_M GGUF, or perhaps due to it already being an instruct-tuned model. However, I decided to go ahead and release this in case someone else finds a use for it. Provided as-is and YMMV. ## Model description The intended prompt format is the Alpaca instruction format of LimaRP v3: ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input: User: {utterance} ### Response: Character: {utterance} (etc.) ``` Inspired by the previously named "Roleplay" preset in SillyTavern, with this version of LimaRP it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The lengths using during training are: `micro`, `tiny`, `short`, `medium`, `long`, `massive`, `huge`, `enormous`, `humongous`, `unlimited`. **The recommended starting length is medium**. Keep in mind that the AI can ramble or impersonate the user with very long messages. The length control effect is reproducible, but the messages will not necessarily follow lengths very precisely, rather follow certain ranges on average, as seen in this table with data from tests made with one reply at the beginning of the conversation: ![lengths](https://i.imgur.com/2WXGgaV.png) Response length control appears to work well also deep into the conversation. **By omitting the modifier, the model will choose the most appropriate response length** (although it might not necessarily be what the user desires). ## Intended uses & limitations The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. ## Training and evaluation data For more details about LimaRP, see the dataset page. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
Patcas/plbart-assert-nodocs-v3
Patcas
2024-02-01T10:33:10Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "plbart", "text2text-generation", "generated_from_trainer", "base_model:Patcas/my_awesome-assert-new", "base_model:finetune:Patcas/my_awesome-assert-new", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T09:47:16Z
--- base_model: Patcas/my_awesome-assert-new tags: - generated_from_trainer model-index: - name: plbart-assert-nodocs-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plbart-assert-nodocs-v3 This model is a fine-tuned version of [Patcas/my_awesome-assert-new](https://huggingface.co/Patcas/my_awesome-assert-new) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 230 | 1.1672 | | No log | 2.0 | 460 | 1.0022 | | 1.4059 | 3.0 | 690 | 0.9667 | | 1.4059 | 4.0 | 920 | 0.9625 | | 0.4797 | 5.0 | 1150 | 0.9779 | | 0.4797 | 6.0 | 1380 | 0.9764 | | 0.2511 | 7.0 | 1610 | 0.9693 | | 0.2511 | 8.0 | 1840 | 0.9764 | | 0.1582 | 9.0 | 2070 | 0.9813 | | 0.1582 | 10.0 | 2300 | 0.9840 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
tmukande12/t5_recommendation_sports_equipment_english
tmukande12
2024-02-01T10:30:39Z
91
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T10:06:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_recommendation_sports_equipment_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_recommendation_sports_equipment_english This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4517 - Rouge1: 57.4603 - Rouge2: 47.6190 - Rougel: 57.1429 - Rougelsum: 56.9841 - Gen Len: 3.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 0.96 | 6 | 6.7882 | 8.8889 | 0.9524 | 8.8278 | 8.7668 | 19.0 | | No log | 1.96 | 12 | 2.3412 | 18.0952 | 0.0 | 18.0952 | 18.0952 | 3.2381 | | No log | 2.96 | 18 | 0.8550 | 11.9048 | 4.7619 | 11.9048 | 11.9048 | 4.0 | | No log | 3.96 | 24 | 0.7481 | 32.2222 | 4.7619 | 32.3810 | 32.3810 | 3.9048 | | No log | 4.96 | 30 | 0.7208 | 20.9524 | 4.7619 | 20.9524 | 21.2698 | 3.6190 | | No log | 5.96 | 36 | 0.6293 | 30.9524 | 23.8095 | 30.9524 | 31.7460 | 3.6667 | | No log | 6.96 | 42 | 0.6203 | 42.7778 | 33.3333 | 42.5397 | 42.8571 | 3.9048 | | No log | 7.96 | 48 | 0.6352 | 47.6190 | 33.3333 | 47.6190 | 46.8254 | 3.8095 | | No log | 8.96 | 54 | 0.5334 | 52.6984 | 42.8571 | 52.3810 | 51.9841 | 3.9524 | | No log | 9.96 | 60 | 0.4517 | 57.4603 | 47.6190 | 57.1429 | 56.9841 | 3.9048 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.1.0+cu121 - Datasets 2.8.0 - Tokenizers 0.13.3
C-Stuti/test
C-Stuti
2024-02-01T10:20:50Z
0
0
null
[ "license:cc-by-nc-sa-2.0", "region:us" ]
null
2024-02-01T10:18:35Z
--- license: cc-by-nc-sa-2.0 ---
tjkmitl/AngerNews_1
tjkmitl
2024-02-01T10:15:13Z
90
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:csebuetnlp/mT5_multilingual_XLSum", "base_model:finetune:csebuetnlp/mT5_multilingual_XLSum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T10:13:52Z
--- base_model: csebuetnlp/mT5_multilingual_XLSum tags: - generated_from_trainer model-index: - name: SurpriseNews1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SurpriseNews1 This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9143 | 1.23 | 500 | 3.6579 | | 3.2691 | 2.45 | 1000 | 3.3719 | | 2.9441 | 3.68 | 1500 | 3.2650 | | 2.7016 | 4.9 | 2000 | 3.2738 | | 2.1448 | 6.13 | 2500 | 3.2987 | | 2.4149 | 7.35 | 3000 | 3.3407 | | 2.1251 | 8.58 | 3500 | 3.3605 | | 1.9645 | 9.8 | 4000 | 3.3676 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
mlabonne/BeagleB-7B
mlabonne
2024-02-01T10:08:40Z
10
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "base_model:mlabonne/OmniBeagle-7B", "base_model:merge:mlabonne/OmniBeagle-7B", "base_model:shadowml/BeagleX-7B", "base_model:merge:shadowml/BeagleX-7B", "base_model:shadowml/FoxBeagle-7B", "base_model:merge:shadowml/FoxBeagle-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-31T23:17:39Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - mlabonne/OmniBeagle-7B - shadowml/BeagleX-7B - shadowml/FoxBeagle-7B --- # BeagleB-7B BeagleB-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) * [shadowml/BeagleX-7B](https://huggingface.co/shadowml/BeagleX-7B) * [shadowml/FoxBeagle-7B](https://huggingface.co/shadowml/FoxBeagle-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: mlabonne/OmniBeagle-7B parameters: density: 0.65 weight: 0.76 - model: shadowml/BeagleX-7B parameters: density: 0.6 weight: 0.12 - model: shadowml/FoxBeagle-7B parameters: density: 0.6 weight: 0.12 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/BeagleB-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
HeydarS/opt-350m_peft_v1
HeydarS
2024-02-01T10:07:46Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "region:us" ]
null
2024-02-01T10:07:43Z
--- library_name: peft base_model: facebook/opt-350m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
LoneStriker/CapybaraHermes-2.5-Mistral-7B-GGUF
LoneStriker
2024-02-01T10:05:10Z
17
1
trl
[ "trl", "gguf", "distilabel", "dpo", "rlaif", "rlhf", "en", "dataset:argilla/dpo-mix-7k", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-02-01T09:45:55Z
--- library_name: trl license: apache-2.0 datasets: - argilla/dpo-mix-7k language: - en tags: - distilabel - dpo - rlaif - rlhf --- # CapybaraHermes-2.5-Mistral-7B <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png"> </div> <p align="center"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k). To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench: | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. | |-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------| | argilla/CapybaraHermes-2.5-Mistral-7B | **43.8** | **73.35** | 57.07 | **42.44** | 8.24375 | **7.5625** | 54.16 | **7.903125** | | teknium/OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | **8.25** | 7.2875 | 52.42 | 7.76875 | | Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | **66.82** | 42.29 | 7.8375 | 7.1 | **54.81** | 7.46875 | The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores. For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference): | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)| 45.29| 76.92| 71.66| 48.78| 60.66| ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Argilla - **Shared by [optional]:** Argilla - **Model type:** 7B chat model - **Language(s) (NLP):** English - **License:** Same as OpenHermes - **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
AlKiir/llama-2-7b-alkiir-hf
AlKiir
2024-02-01T10:05:02Z
0
0
peft
[ "peft", "region:us" ]
null
2024-02-01T10:04:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
jan-hq/stealth-rag-v1-e1
jan-hq
2024-02-01T09:55:44Z
9
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "sft", "conversational", "dataset:jan-hq/bagel_sft_binarized", "dataset:jan-hq/dolphin_binarized", "dataset:jan-hq/openhermes_binarized", "base_model:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model:finetune:TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-31T13:31:55Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - jan-hq/bagel_sft_binarized - jan-hq/dolphin_binarized - jan-hq/openhermes_binarized model-index: - name: LlamaCorn-sft-adapter results: [] --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
genne/lora_KoSoLAR-10.7B-v0.2_1.4_dedup_1_SFT-DPO
genne
2024-02-01T09:54:35Z
0
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:jingyeom/KoSoLAR-10.7B-v0.2_1.4_dedup_1", "base_model:adapter:jingyeom/KoSoLAR-10.7B-v0.2_1.4_dedup_1", "license:apache-2.0", "region:us" ]
null
2024-02-01T09:54:17Z
--- license: apache-2.0 library_name: peft tags: - trl - dpo - generated_from_trainer base_model: jingyeom/KoSoLAR-10.7B-v0.2_1.4_dedup_1 model-index: - name: lora_KoSoLAR-10.7B-v0.2_1.4_dedup_1_SFT-DPO results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lora_KoSoLAR-10.7B-v0.2_1.4_dedup_1_SFT-DPO This model is a fine-tuned version of [jingyeom/KoSoLAR-10.7B-v0.2_1.4_dedup_1](https://huggingface.co/jingyeom/KoSoLAR-10.7B-v0.2_1.4_dedup_1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 8 - total_train_batch_size: 48 - total_eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1
s3nh/Wernicke-7B-dpo-GGUF
s3nh
2024-02-01T09:54:27Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T09:29:04Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/CultriX/Wernicke-7B-dpo). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference User: Tell me story about what is an quantization and what do we need to build. I'll try to give a layman-friendly explanation of quantization in the context of a hypothetical scenario for building a simple musical instrument. Imagine we want to create a device that produces different musical notes when interacting with it in a particular way, similar to striking a piano key. We'll call this our 'Quantized Note Generator'. In a real piano, the precise frequency of a note produced depends on how hard you press a key (known as 'dynamic playing'), the exact spot on the key where contact occurs ('timbre variations'), and other nuances of performance. However, for # Original model card
asun17904/glue-qnli-t5-base
asun17904
2024-02-01T09:52:46Z
0
0
pytorch
[ "pytorch", "en", "license:mit", "region:us" ]
null
2024-02-01T08:12:30Z
--- language: en license: mit library_name: pytorch --- # Plainly Optimized Network Dataset: GLUE Trainer Hyperparameters: - `lr` = 5e-05 - `per_device_batch_size` = 16 - `gradient_accumulation_steps` = 1 - `weight_decay` = 0.0 - `seed` = 42 |eval_loss|eval_accuracy|epoch| |--|--|--| |13.243|0.896|1.0| |12.807|0.909|2.0|
zohann/whisper-temp
zohann
2024-02-01T09:50:23Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-01T09:49:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
badokorach/bert-finetuned-270124
badokorach
2024-02-01T09:48:53Z
1
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "base_model:badokorach/bert-finetuned-210124", "base_model:finetune:badokorach/bert-finetuned-210124", "endpoints_compatible", "region:us" ]
question-answering
2024-01-27T16:24:19Z
--- base_model: badokorach/bert-finetuned-210124 tags: - generated_from_keras_callback model-index: - name: badokorach/bert-finetuned-270124 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/bert-finetuned-270124 This model is a fine-tuned version of [badokorach/bert-finetuned-210124](https://huggingface.co/badokorach/bert-finetuned-210124) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5863 - Validation Loss: 0.0 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 2190, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.7590 | 0.0 | 0 | | 1.4387 | 0.0 | 1 | | 1.3169 | 0.0 | 2 | | 1.2324 | 0.0 | 3 | | 1.1240 | 0.0 | 4 | | 1.0528 | 0.0 | 5 | | 0.9570 | 0.0 | 6 | | 0.8565 | 0.0 | 7 | | 0.8106 | 0.0 | 8 | | 0.7500 | 0.0 | 9 | | 0.6830 | 0.0 | 10 | | 0.6456 | 0.0 | 11 | | 0.6066 | 0.0 | 12 | | 0.5971 | 0.0 | 13 | | 0.5863 | 0.0 | 14 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.1
mzbac/Kunpeng-4x7B-mistral-hf-4bit-mlx-adapters
mzbac
2024-02-01T09:47:09Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-01-30T10:30:51Z
--- license: mit --- adapter file for the model `mzbac/Kunpeng-4x7B-mistral-hf-4bit-mlx-adapters` qlora finetuning
CLMBR/pp-mod-subj-lstm-4
CLMBR
2024-02-01T09:46:39Z
3
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-26T10:15:10Z
--- tags: - generated_from_trainer model-index: - name: pp-mod-subj2-lstm-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pp-mod-subj2-lstm-4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7988 | 0.03 | 76320 | 4.8119 | | 4.5128 | 1.03 | 152640 | 4.5289 | | 4.3661 | 0.03 | 228960 | 4.3930 | | 4.2793 | 1.03 | 305280 | 4.3106 | | 4.2199 | 2.03 | 381600 | 4.2538 | | 4.1656 | 0.03 | 457920 | 4.2123 | | 4.1242 | 1.03 | 534240 | 4.1813 | | 4.0913 | 0.03 | 610560 | 4.1555 | | 4.0629 | 1.03 | 686880 | 4.1362 | | 4.0421 | 2.03 | 763200 | 4.1204 | | 4.0202 | 0.03 | 839520 | 4.1084 | | 4.0025 | 1.03 | 915840 | 4.0972 | | 3.989 | 0.03 | 992160 | 4.0882 | | 3.9751 | 1.03 | 1068480 | 4.0794 | | 3.9595 | 2.03 | 1144800 | 4.0728 | | 3.9436 | 0.03 | 1221120 | 4.0676 | | 3.9344 | 1.03 | 1297440 | 4.0620 | | 3.9263 | 2.03 | 1373760 | 4.0570 | | 3.9151 | 0.03 | 1450080 | 4.0538 | | 3.9114 | 1.03 | 1526400 | 4.0491 | | 3.9089 | 2.03 | 1602720 | 4.0466 | | 3.8981 | 0.03 | 1679040 | 4.0438 | | 3.8904 | 1.03 | 1755360 | 4.0413 | | 3.8841 | 0.03 | 1831680 | 4.0396 | | 3.8756 | 1.03 | 1908000 | 4.0376 | | 3.8743 | 2.03 | 1984320 | 4.0353 | | 3.8676 | 0.03 | 2060640 | 4.0340 | | 3.8629 | 1.03 | 2136960 | 4.0330 | | 3.8599 | 0.03 | 2213280 | 4.0308 | | 3.856 | 1.03 | 2289600 | 4.0297 | | 3.8492 | 2.03 | 2365920 | 4.0286 | | 3.8436 | 0.03 | 2442240 | 4.0276 | | 3.8417 | 0.03 | 2518560 | 4.0271 | | 3.8421 | 1.03 | 2594880 | 4.0268 | | 3.8355 | 0.03 | 2671200 | 4.0259 | | 3.8387 | 1.03 | 2747520 | 4.0254 | | 3.8418 | 0.03 | 2823840 | 4.0249 | | 3.8357 | 1.03 | 2900160 | 4.0245 | | 3.8343 | 2.03 | 2976480 | 4.0239 | | 3.8291 | 0.02 | 3052726 | 4.0236 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
LoneStriker/Newton-7B-6.0bpw-h6-exl2
LoneStriker
2024-02-01T09:36:39Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "axolotl", "finetune", "qlora", "conversational", "dataset:hendrycks/competition_math", "dataset:allenai/ai2_arc", "dataset:camel-ai/physics", "dataset:camel-ai/chemistry", "dataset:camel-ai/biology", "dataset:camel-ai/math", "dataset:STEM-AI-mtl/Electrical-engineering", "dataset:openbookqa", "dataset:piqa", "dataset:metaeval/reclor", "dataset:mandyyyyii/scibench", "dataset:derek-thomas/ScienceQA", "dataset:sciq", "dataset:TIGER-Lab/ScienceEval", "arxiv:2305.14314", "base_model:openchat/openchat-3.5-0106", "base_model:finetune:openchat/openchat-3.5-0106", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T09:34:09Z
--- license: other tags: - axolotl - finetune - qlora base_model: openchat/openchat-3.5-0106 datasets: - hendrycks/competition_math - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - STEM-AI-mtl/Electrical-engineering - openbookqa - piqa - metaeval/reclor - mandyyyyii/scibench - derek-thomas/ScienceQA - sciq - TIGER-Lab/ScienceEval --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/aimTTdmut59aZxOWQlkcC.jpeg) # 🔬👩‍🔬 Newton-7B This model is a fine-tuned version of [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) on datasets related to science. This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This model's training was sponsored by [sablo.ai](https://sablo.ai). <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: openchat/openchat-3.5-0106 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: merged_all.json type: field_instruction: instruction field_output: output format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:" no_input_format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:" dataset_prepared_path: last_run_prepared val_set_size: 0.01 # not sure output_dir: ./newton adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: huggingface wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: Weyaxi/newton-lora save_safetensors: true # change # gradient_accumulation_steps: 12 micro_batch_size: 6 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 # change # train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 # not sure saves_per_epoch: 2 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 debug: deepspeed: weight_decay: 0.1 # not sure fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" tokens: - "<|end_of_turn|>" - "<|pad_0|>" ``` </details><br> # 📊 Datasets You can find the dataset I used and the work I am doing with this datasets here: https://huggingface.co/datasets/Weyaxi/sci-datasets Following datasets were used in this model: - 📐 [MATH](https://huggingface.co/datasets/hendrycks/competition_math) - 🧠 [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part) - 🧲 [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics) - ⚗️ [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry) - 🦠 [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology) - 📊 [camel-ai/math](https://huggingface.co/datasets/camel-ai/math) - ⚡ [STEM-AI-mtl/Electrical-engineering](https://huggingface.co/datasets/STEM-AI-mtl/Electrical-engineering) - 📚 [openbookqa](https://huggingface.co/datasets/openbookqa) - 🧠 [piqa](https://huggingface.co/datasets/piqa) - 🎨 [reclor](https://huggingface.co/datasets/metaeval/reclor) - 🔬 [scibench](https://github.com/mandyyyyii/scibench) - 🧪 [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA) - 🧬 [sciq](https://huggingface.co/datasets/sciq) - 📝 [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval) ## 🛠️ Multiple Choice Question & Answer Datasets Conversion Progress I used [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) to generate a reasonable and logical answer by providing it with the question and the answer key. I used the [Together AI](https://www.together.ai) API for this task. The following datasets are converted using this method: - 🧠 [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part) - 📚 [openbookqa](https://huggingface.co/datasets/openbookqa) - 🎨 [reclor](https://huggingface.co/datasets/metaeval/reclor) - 🧬 [sciq](https://huggingface.co/datasets/sciq) # 💬 Prompt Template You can use this prompt template while using the model: ### GPT4 Correct [(Openchat)](https://huggingface.co/openchat/openchat-3.5-0106#conversation-templates) ``` GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: {asistant}<|end_of_turn|>GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: ``` You can also utilize the chat template method from the tokenizer config like here: ```python messages = [ {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi"}, {"role": "user", "content": "How are you today?"} ] tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True) ``` # 🤝 Acknowledgments Thanks to [openchat](https://huggingface.co/openchat) team for fine-tuning an excellent model that I used as a base model. Thanks to [@jondurbin](https://huggingface.co/jondurbin) for reformatting codes for some datasets: [bagel/data_sources](https://github.com/jondurbin/bagel/tree/main/bagel/data_sources) Thanks to [Together AI](https://www.together.ai) for providing everyone with free credits, which I used to generate a dataset in multiple choice to explanations format. Thanks to [Tim Dettmers](https://huggingface.co/timdettmers) for his excellent [QLoRA](https://arxiv.org/abs/2305.14314) work. Thanks to all the dataset authors mentioned in the datasets section. Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. Overall, thanks to all of the open soure AI community! 🚀 [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)
Revankumar/fine_tuned_embeddings_for_healthy_recipes
Revankumar
2024-02-01T09:36:09Z
47
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-01T08:28:31Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 109 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 21, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
savasy/bert-base-turkish-ner-cased
savasy
2024-02-01T09:21:04Z
9,321
17
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "token-classification", "tr", "arxiv:2401.17396", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: tr --- # For Turkish language, here is an easy-to-use NER application. ** Türkçe için kolay bir python NER (Bert + Transfer Learning) (İsim Varlık Tanıma) modeli... # Citation Please cite if you use it in your study ``` @misc{yildirim2024finetuning, title={Fine-tuning Transformer-based Encoder for Turkish Language Understanding Tasks}, author={Savas Yildirim}, year={2024}, eprint={2401.17396}, archivePrefix={arXiv}, primaryClass={cs.CL} } @book{yildirim2021mastering, title={Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques}, author={Yildirim, Savas and Asgari-Chenaghlu, Meysam}, year={2021}, publisher={Packt Publishing Ltd} } ``` # other detail Thanks to @stefan-it, I applied the followings for training cd tr-data for file in train.txt dev.txt test.txt labels.txt do wget https://schweter.eu/storage/turkish-bert-wikiann/$file done cd .. It will download the pre-processed datasets with training, dev and test splits and put them in a tr-data folder. Run pre-training After downloading the dataset, pre-training can be started. Just set the following environment variables: ``` export MAX_LENGTH=128 export BERT_MODEL=dbmdz/bert-base-turkish-cased export OUTPUT_DIR=tr-new-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=625 export SEED=1 ``` Then run pre-training: ``` python3 run_ner_old.py --data_dir ./tr-data3 \ --model_type bert \ --labels ./tr-data/labels.txt \ --model_name_or_path $BERT_MODEL \ --output_dir $OUTPUT_DIR-$SEED \ --max_seq_length $MAX_LENGTH \ --num_train_epochs $NUM_EPOCHS \ --per_gpu_train_batch_size $BATCH_SIZE \ --save_steps $SAVE_STEPS \ --seed $SEED \ --do_train \ --do_eval \ --do_predict \ --fp16 ``` # Usage ``` from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("savasy/bert-base-turkish-ner-cased") tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-ner-cased") ner=pipeline('ner', model=model, tokenizer=tokenizer) ner("Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a ayak bastı.") ``` # Some results Data1: For the data above Eval Results: * precision = 0.916400580551524 * recall = 0.9342309684101502 * f1 = 0.9252298787412536 * loss = 0.11335893666411284 Test Results: * precision = 0.9192058759362955 * recall = 0.9303010230367262 * f1 = 0.9247201697271198 * loss = 0.11182546521618497 Data2: https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt The performance for the data given by @kemalaraz is as follows savas@savas-lenova:~/Desktop/trans/tr-new-model-1$ cat eval_results.txt * precision = 0.9461980692049029 * recall = 0.959309358847465 * f1 = 0.9527086063783312 * loss = 0.037054269206847804 savas@savas-lenova:~/Desktop/trans/tr-new-model-1$ cat test_results.txt * precision = 0.9458370635631155 * recall = 0.9588201928530913 * f1 = 0.952284378344882 * loss = 0.035431676572445225
AndyChiang/Pre-CoFactv3-Text-Classification
AndyChiang
2024-02-01T09:19:35Z
91
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "Pre-CoFactv3", "Text-Classification", "en", "dataset:FACTIFY5WQA", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-01T08:27:06Z
--- license: mit language: en tags: - Pre-CoFactv3 - Text-Classification datasets: - FACTIFY5WQA metrics: - accuracy pipeline_tag: text-classification library_name: transformers base_model: microsoft/deberta-v3-large widget: - text: "BREAKING: Another nearly 1.9 million Americans filed for unemployment insurance last week, the Department of Labor said. https://t.co/dVwyI6avmx [SEP] By Anneken Tappe, CNN BusinessUpdated 11:50 AM ET, Thu June 4, 2020 New York (CNN Business)Millions of Americans again filed for unemployment benefits last week, as the coronavirus recession drags on." example_title: "Support" - text: "Micah Richards spent an entire season at Aston Vila without playing a single game. [SEP] Despite speculation that Richards would leave Aston Villa before the transfer deadline for the 2018~19 season , he remained at the club , although he is not being considered for first team selection." example_title: "Neutral" - text: "Mahatma Gandhi having breakfast with British official inside the jail. [SEP] A photo is being shared on Facebook with a claim that Gandhi was having breakfast with British officials inside the jail while people are fighting for Independence. Let\u2019s try to check the authenticity of the image in the post. Claim: Mahatma Gandhi having breakfast with British official inside the jail. Fact: The photo was not taken inside the jail. It was taken during a breakfast meeting between Gandhi and Mountbatten at Viceroy\u2019s House in April 1947. Hence the claim made in the post is FALSE. When the image in the post is run Google Reverse Image Search, a link to Getty Images website containing the same image can be found in the search results. In that website, the image has a description which reads, \u201cBreakfast meeting between Mahatma Gandhi and Viceroy of India, Lord Mountbatten 1947\u201d. Also, in the book \u2018India Remembered\u2019 written by Pamela Mountbatten (the daughter of Lord Mountbatten), the same image can be found in the \u2018A Huge Task\u2019 chapter. She writes that the photo was taken on 1st April 1947 at the Viceroy\u2019s House. The Viceroy invited Gandhi for breakfast to discuss the transfer of power, declared by England\u2019s PM Clement R. Atlee in February 1947. So, the photo was not taken inside the jail. To sum it up, the photo was taken in April 1947 at the Viceroy\u2019s house, not inside the jail. Did you watch our Facebook live on Fake News (Misinformation)." example_title: "Refute" --- # Pre-CoFactv3-Text-Classification ## Model description This is a Text Classification model for **AAAI 2024 Workshop Paper: “Team Trifecta at Factify5WQA: Setting the Standard in Fact Verification with Fine-Tuning”** Its input are claim and evidence, and output is the predicted label, which falls into one of the categories: Support, Neutral, or Refute. It is fine-tuned by **FACTIFY5WQA** dataset based on [**microsoft/deberta-v3-large**](https://huggingface.co/microsoft/deberta-v3-large) model. For more details, you can see our **paper** or [**GitHub**](https://github.com/AndyChiangSH/Pre-CoFactv3). ## How to use? 1. Download the model by hugging face transformers. ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("AndyChiang/Pre-CoFactv3-Text-Classification") tokenizer = AutoTokenizer.from_pretrained("AndyChiang/Pre-CoFactv3-Text-Classification") ``` 2. Create a pipeline. ```python classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) ``` 3. Use the pipeline to predict the label. ```python label = classifier("Micah Richards spent an entire season at Aston Vila without playing a single game. [SEP] Despite speculation that Richards would leave Aston Villa before the transfer deadline for the 2018~19 season , he remained at the club , although he is not being considered for first team selection.") print(label) ``` ## Dataset We utilize the dataset FACTIFY5WQA provided by the AAAI-24 Workshop Factify 3.0. This dataset is designed for fact verification, with the task of determining the veracity of a claim based on the given evidence. - **claim:** the statement to be verified. - **evidence:** the facts to verify the claim. - **question:** the questions generated from the claim by the 5W framework (who, what, when, where, and why). - **claim_answer:** the answers derived from the claim. - **evidence_answer:** the answers derived from the evidence. - **label:** the veracity of the claim based on the given evidence, which is one of three categories: Support, Neutral, or Refute. | | Training | Validation | Testing | Total | | --- | --- | --- | --- | --- | | Support | 3500 | 750 | 750 | 5000 | | Neutral | 3500 | 750 | 750 | 5000 | | Refute | 3500 | 750 | 750 | 5000 | | Total | 10500 | 2250 | 2250 | 15000 | ## Fine-tuning Fine-tuning is conducted by the Hugging Face Trainer API on the [Text Classification](https://huggingface.co/docs/transformers/tasks/sequence_classification) task. ### Training hyperparameters The following hyperparameters were used during training: - Pre-train language model: [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) - Optimizer: adam - Learning rate: 0.00001 - Max token of input: 650 - Batch size: 4 - Epoch: 12 - Device: NVIDIA RTX A5000 ## Testing In the case of the Text Classification task, accuracy serves as the evaluation metric. | Accuracy | | ----- | | 0.8502 | ## Other models [AndyChiang/Pre-CoFactv3-Question-Answering](https://huggingface.co/AndyChiang/Pre-CoFactv3-Question-Answering) ## Citation
Patcas/plbart-nodocs-v1
Patcas
2024-02-01T09:17:32Z
88
0
transformers
[ "transformers", "tensorboard", "safetensors", "plbart", "text2text-generation", "generated_from_trainer", "base_model:Patcas/plbart-works", "base_model:finetune:Patcas/plbart-works", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T01:13:33Z
--- base_model: Patcas/plbart-works tags: - generated_from_trainer model-index: - name: plbart-nodocs-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plbart-nodocs-v1 This model is a fine-tuned version of [Patcas/plbart-works](https://huggingface.co/Patcas/plbart-works) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 230 | 0.9679 | | No log | 2.0 | 460 | 0.8849 | | 1.0028 | 3.0 | 690 | 0.8818 | | 1.0028 | 4.0 | 920 | 0.8803 | | 0.3649 | 5.0 | 1150 | 0.8970 | | 0.3649 | 6.0 | 1380 | 0.9123 | | 0.1915 | 7.0 | 1610 | 0.9087 | | 0.1915 | 8.0 | 1840 | 0.9215 | | 0.1153 | 9.0 | 2070 | 0.9243 | | 0.1153 | 10.0 | 2300 | 0.9260 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
CundK/bert-base-german-cased-hatespeech-GermEval18
CundK
2024-02-01T09:17:10Z
95
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-german-cased", "base_model:finetune:google-bert/bert-base-german-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-22T11:38:22Z
--- license: mit base_model: bert-base-german-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-german-cased-hatespeech-GermEval18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-hatespeech-GermEval18 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9184 - Accuracy: 0.7810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 314 | 0.8052 | 0.7769 | | 0.1769 | 2.0 | 628 | 0.9184 | 0.7810 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
s3nh/DistilabelBeagle14-7B-GGUF
s3nh
2024-02-01T09:17:03Z
11
0
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-02-01T07:54:07Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/argilla/DistilabelBeagle14-7B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference <|im_start|> User: Tell me story about what is an quantization and what do we need to build. and what do we need to build' and what do we need<|im_end|> # Original model card
NhoxxKienn/test
NhoxxKienn
2024-02-01T09:14:43Z
99
0
transformers
[ "transformers", "safetensors", "distilbert", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
question-answering
2024-02-01T09:12:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dengh/Reinforce-CartPole-v1
dengh
2024-02-01T09:06:46Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-01T09:06:36Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 433.80 +/- 99.74 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
macarious/torgo_xlsr_finetune_M03_keep_all
macarious
2024-02-01T09:04:33Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-31T21:09:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: torgo_xlsr_finetune_M03_keep_all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # torgo_xlsr_finetune_M03_keep_all This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6155 - Wer: 0.2360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5946 | 0.56 | 1000 | 3.3418 | 1.0 | | 2.3765 | 1.12 | 2000 | 1.8751 | 0.9367 | | 1.0589 | 1.68 | 3000 | 1.4354 | 0.6588 | | 0.7686 | 2.24 | 4000 | 1.3288 | 0.5193 | | 0.7029 | 2.8 | 5000 | 1.2625 | 0.5071 | | 0.5645 | 3.37 | 6000 | 1.3686 | 0.4331 | | 0.5149 | 3.93 | 7000 | 1.2946 | 0.4392 | | 0.4504 | 4.49 | 8000 | 1.4451 | 0.3793 | | 0.4012 | 5.05 | 9000 | 1.3974 | 0.3324 | | 0.3683 | 5.61 | 10000 | 1.6211 | 0.3553 | | 0.3661 | 6.17 | 11000 | 1.4331 | 0.3488 | | 0.3337 | 6.73 | 12000 | 1.6473 | 0.3454 | | 0.3087 | 7.29 | 13000 | 1.4651 | 0.3096 | | 0.2908 | 7.85 | 14000 | 1.3439 | 0.2844 | | 0.2692 | 8.41 | 15000 | 1.2399 | 0.2871 | | 0.262 | 8.97 | 16000 | 1.4219 | 0.3111 | | 0.244 | 9.53 | 17000 | 1.5202 | 0.3065 | | 0.2672 | 10.1 | 18000 | 1.3916 | 0.2840 | | 0.2346 | 10.66 | 19000 | 1.6752 | 0.3077 | | 0.2089 | 11.22 | 20000 | 1.4122 | 0.2734 | | 0.2262 | 11.78 | 21000 | 1.4316 | 0.2795 | | 0.2043 | 12.34 | 22000 | 1.6063 | 0.2943 | | 0.1836 | 12.9 | 23000 | 1.5199 | 0.2726 | | 0.1701 | 13.46 | 24000 | 1.6889 | 0.2722 | | 0.1938 | 14.02 | 25000 | 1.5244 | 0.2619 | | 0.1734 | 14.58 | 26000 | 1.8305 | 0.2692 | | 0.1714 | 15.14 | 27000 | 1.6078 | 0.2539 | | 0.1521 | 15.7 | 28000 | 1.8210 | 0.2665 | | 0.1346 | 16.26 | 29000 | 1.7116 | 0.2653 | | 0.1498 | 16.83 | 30000 | 1.4663 | 0.2432 | | 0.1594 | 17.39 | 31000 | 1.5994 | 0.2402 | | 0.1647 | 17.95 | 32000 | 1.5112 | 0.2356 | | 0.1238 | 18.51 | 33000 | 1.6993 | 0.2429 | | 0.1554 | 19.07 | 34000 | 1.5374 | 0.2379 | | 0.1238 | 19.63 | 35000 | 1.6155 | 0.2360 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.13.3
aria402/distilbert-base-uncased-finetuned-squad
aria402
2024-02-01T09:01:19Z
109
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-01-31T07:48:43Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
AndyChiang/Pre-CoFactv3-Question-Answering
AndyChiang
2024-02-01T09:00:48Z
151
1
transformers
[ "transformers", "pytorch", "deberta-v2", "question-answering", "Pre-CoFactv3", "Question Answering", "en", "dataset:FACTIFY5WQA", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-02-01T08:19:38Z
--- license: mit language: en tags: - Pre-CoFactv3 - Question Answering datasets: - FACTIFY5WQA metrics: - bleu pipeline_tag: question-answering library_name: transformers base_model: microsoft/deberta-v3-large widget: - text: "Who spent an entire season at aston vila without playing a single game?" context: "Micah Richards spent an entire season at Aston Vila without playing a single game." example_title: "Claim" - text: "Who spent an entire season at aston vila without playing a single game?" context: "Despite speculation that Richards would leave Aston Villa before the transfer deadline for the 2018~19 season , he remained at the club , although he is not being considered for first team selection." example_title: "Evidence" --- # Pre-CoFactv3-Question-Answering ## Model description This is a Question Answering model for **AAAI 2024 Workshop Paper: “Team Trifecta at Factify5WQA: Setting the Standard in Fact Verification with Fine-Tuning”** Its input are question and context, and output is the answers derived from the context. It is fine-tuned by **FACTIFY5WQA** dataset based on [**microsoft/deberta-v3-large**](https://huggingface.co/microsoft/deberta-v3-large) model. For more details, you can see our **paper** or [**GitHub**](https://github.com/AndyChiangSH/Pre-CoFactv3). ## How to use? 1. Download the model by hugging face transformers. ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model = AutoModelForQuestionAnswering.from_pretrained("AndyChiang/Pre-CoFactv3-Question-Answering") tokenizer = AutoTokenizer.from_pretrained("AndyChiang/Pre-CoFactv3-Question-Answering") ``` 2. Create a pipeline. ```python QA = pipeline("question-answering", model=model, tokenizer=tokenizer) ``` 3. Use the pipeline to answer the question by context. ```python QA_input = { 'context': "Micah Richards spent an entire season at Aston Vila without playing a single game.", 'question': "Who spent an entire season at aston vila without playing a single game?", } answer = QA(QA_input) print(answer) ``` ## Dataset We utilize the dataset FACTIFY5WQA provided by the AAAI-24 Workshop Factify 3.0. This dataset is designed for fact verification, with the task of determining the veracity of a claim based on the given evidence. - **claim:** the statement to be verified. - **evidence:** the facts to verify the claim. - **question:** the questions generated from the claim by the 5W framework (who, what, when, where, and why). - **claim_answer:** the answers derived from the claim. - **evidence_answer:** the answers derived from the evidence. - **label:** the veracity of the claim based on the given evidence, which is one of three categories: Support, Neutral, or Refute. | | Training | Validation | Testing | Total | | --- | --- | --- | --- | --- | | Support | 3500 | 750 | 750 | 5000 | | Neutral | 3500 | 750 | 750 | 5000 | | Refute | 3500 | 750 | 750 | 5000 | | Total | 10500 | 2250 | 2250 | 15000 | ## Fine-tuning Fine-tuning is conducted by the Hugging Face Trainer API on the [Question Answering](https://huggingface.co/docs/transformers/tasks/question_answering) task. ### Training hyperparameters The following hyperparameters were used during training: - Pre-train language model: [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) - Optimizer: adam - Learning rate: 0.00001 - Max length of input: 3200 - Batch size: 4 - Epoch: 3 - Device: NVIDIA RTX A5000 ## Testing We employ BLEU scores for both claim answer and evidence answer, taking the average of the two as the metric. | Claim Answer | Evidence Answer | Average | | ----- | ----- | ----- | | 0.5248 | 0.3963 | 0.4605 | ## Other models [AndyChiang/Pre-CoFactv3-Text-Classification](https://huggingface.co/AndyChiang/Pre-CoFactv3-Text-Classification) ## Citation
s3nh/Newton-7B-GGUF
s3nh
2024-02-01T08:56:56Z
0
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-02-01T08:09:35Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/Weyaxi/Newton-7B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference User: Tell me story about what is an quantization and what do we need to build. Its a very interesting question! Is this some sort of a trap? Its not a problem at all, so I am excited to answer this! Its not really a problem! It's just that the word "problem" is a bit confusing and that's why I am asking. Its not a problem at all! I would be happy to help you out! Its not a problem! So I can definitely help you! Its not really a problem, so don't worry about it! # Original model card
Meggido/NeuraLake-m7-7B
Meggido
2024-02-01T08:55:37Z
8
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "mlabonne/NeuralBeagle14-7B", "chargoddard/loyal-piano-m7", "macadeliccc/WestLake-7B-v2-laser-truthy-dpo", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-31T00:45:49Z
--- tags: - merge - mergekit - mlabonne/NeuralBeagle14-7B - chargoddard/loyal-piano-m7 - macadeliccc/WestLake-7B-v2-laser-truthy-dpo license: cc-by-nc-4.0 --- # NeuraLake-m7-7B NeuraLake-m7-7B is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [chargoddard/loyal-piano-m7](https://huggingface.co/chargoddard/loyal-piano-m7) * [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) ## 🛠️ Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: mlabonne/NeuralBeagle14-7B parameters: weight: 0.3 density: 0.8 - model: chargoddard/loyal-piano-m7 parameters: weight: 0.4 density: 0.8 - model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo parameters: weight: 0.3 density: 0.4 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true # normalize: true dtype: bfloat16 ```
tangwh/Reinforce-CartPole1
tangwh
2024-02-01T08:51:58Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-01T08:51:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 215.70 +/- 14.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zivzhong/ddpm-butterflies-128
zivzhong
2024-02-01T08:51:30Z
9
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2024-02-01T07:42:36Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/HuggingFace7/ddpm-butterflies-128/tensorboard?#scalars)
giux78/zefiro-7b-sft-qlora-ITA-v0.5
giux78
2024-02-01T08:45:26Z
2,767
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "it", "dataset:giux78/100k-sft-ready-ultrafeedback-ita", "arxiv:2310.16944", "arxiv:2312.09993", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-25T15:32:16Z
--- license: apache-2.0 datasets: - giux78/100k-sft-ready-ultrafeedback-ita language: - it pipeline_tag: text-generation --- <img src="https://hoodie-creator.s3.eu-west-1.amazonaws.com/15be78c6-original.png" alt="llamantino53" border="0" width="400px"> # Model Card for zefiro-7b-beta-ITA-v0.5 *Last Update: 11/01/2024*<br> <!-- Provide a quick summary of what the model is/does. --> Zefiro is a SFT fine tuned model for the Italian language based on [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) . To create a set of open source models and datasets suited for italian language is the aim of the project and this is the first experiment. The model can be used as base model for more specific conversationl tasks for Italian language ## Model Details Zefiro is a porting of the [Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) model to the italian language using the wonderful recipes from [alignment-handbook](https://huggingface.co/alignment-handbook) . It has also taken ispiration and insights from the [Llamantino](https://huggingface.co/swap-uniba/LLaMAntino-2-chat-7b-hf-UltraChat-ITA) model developed by Università di Bari. For the implementation we combined different approaches from the two models mentioned but also from the wondeful communtity of open source. ## Model description - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily Italian - **License:** Apache 2 - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Developed by:** [giux78](https://alessandroercolani.webflow.io/) - **Funded by:** [Business Operating System](https://www.businessos.xyz) ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed version of [UltraChat-ITA](https://huggingface.co/datasets/giux78/100k-sft-ready-ultrafeedback-ita) that is a filtered version of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. Here's how you can run the model using Transformers from 🤗 : ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "giux78/zefiro-7b-beta-ITA-v0.1" model = AutoModelForCausalLM.from_pretrained(model_id) model.to('cuda') tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left") sys_prompt = "Sei un assistente disponibile, rispettoso e onesto. " \ "Rispondi sempre nel modo piu' utile possibile, pur essendo sicuro. " \ "Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. " \ "Assicurati che le tue risposte siano socialmente imparziali e positive. " \ "Se una domanda non ha senso o non e' coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. " \ "Se non conosci la risposta a una domanda, non condividere informazioni false." messages = [{ 'content' : sys_prompt, 'role' : 'assistant'}, {'content' : 'Crea una lista su cosa mangiare a pranzo ogni giorno della settimana a pranzo e cena', 'role' : 'user'}] def generate_text(sys_prompt, user_prompt): messages = [{ 'content' : sys_prompt, 'role' : 'assistant'}, {'content' : user_prompt, 'role' : 'user'}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda") generated_ids = model.generate(**model_inputs, max_new_tokens=1024) return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] generate_text(sys_prompt, 'cosa ne pensi della politica italiana?') ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Zefiro-7b-beta-ITA-v0.1 has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> We used [UltraChat-ITA](https://huggingface.co/datasets/giux78/100k-sft-ready-ultrafeedback-ita) as training data that is a filtered version of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat). For translating the dataset we combined different tools and API we are also evaluating the best approach for translating many more datasets. We have seen that the translation phase is critical and can introduce incorrect syntax and semantics. #### Summary Zefiro-7b-beta-ITA-v0.1 is finetuned version of mistral-7b using the zephyr approach for the italian language. ## Citation ``` @misc{tunstall2023zephyr, title={Zephyr: Direct Distillation of LM Alignment}, author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf}, year={2023}, eprint={2310.16944}, archivePrefix={arXiv}, primaryClass={cs.LG} } @misc{basile2023llamantino, title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro}, year={2023}, eprint={2312.09993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Model Card Authors [giux78](https://huggingface.co/giux78) ## Model Card Contact **[email protected]
shahzebnaveed/play_vizdoom_health
shahzebnaveed
2024-02-01T08:38:24Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-02-01T08:10:07Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.58 +/- 3.73 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r shahzebnaveed/play_vizdoom_health ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=play_vizdoom_health ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=play_vizdoom_health --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
roshanrai1304/results
roshanrai1304
2024-02-01T08:33:40Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-02-01T07:48:05Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: TinyPixel/Llama-2-7B-bf16-sharded model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [TinyPixel/Llama-2-7B-bf16-sharded](https://huggingface.co/TinyPixel/Llama-2-7B-bf16-sharded) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 120 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.8.2.dev0 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
elinaparajuli/HomeSchema_3_QA-finetuned
elinaparajuli
2024-02-01T08:27:29Z
88
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T04:00:51Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: HomeSchema_3_QA-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HomeSchema_3_QA-finetuned This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 10 | 0.2057 | | No log | 2.0 | 20 | 0.1383 | | No log | 3.0 | 30 | 0.1219 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
DrishtiSharma/llama-pro-8b-tweet-summarization-gradnorm-0.3
DrishtiSharma
2024-02-01T08:21:24Z
1
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:dialogstudio", "base_model:TencentARC/LLaMA-Pro-8B", "base_model:adapter:TencentARC/LLaMA-Pro-8B", "license:llama2", "region:us" ]
null
2024-02-01T06:31:57Z
--- license: llama2 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - dialogstudio base_model: TencentARC/LLaMA-Pro-8B model-index: - name: llama-pro-8b-tweet-summarization-gradnorm-0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-pro-8b-tweet-summarization-gradnorm-0.3 This model is a fine-tuned version of [TencentARC/LLaMA-Pro-8B](https://huggingface.co/TencentARC/LLaMA-Pro-8B) on the dialogstudio dataset. It achieves the following results on the evaluation set: - Loss: 2.9796 - Rouge Scores: {'rouge1': 93.71888929189157, 'rouge2': 77.8377567936117, 'rougeL': 64.47906852741538, 'rougeLsum': 93.71298018429633} - Bleu Scores: [0.9470990193868204, 0.9341779145832757, 0.9064440397746264, 0.8744914403659334] - Gen Len: 463.0182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge Scores | Bleu Scores | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------:|:--------:| | 1.9065 | 1.0 | 220 | 1.8530 | {'rouge1': 92.83694737064799, 'rouge2': 78.72458121869542, 'rougeL': 67.88788283384865, 'rougeLsum': 92.83768512059282} | [0.8739198483584956, 0.8530170264142946, 0.8271978418182495, 0.7998377773703629] | 463.0182 | | 1.6363 | 2.0 | 440 | 1.8633 | {'rouge1': 93.54135671371444, 'rouge2': 78.96116387599493, 'rougeL': 67.77857901494997, 'rougeLsum': 93.54432289584433} | [0.8758125801988195, 0.8577741180618648, 0.8322886881519586, 0.80457236049974] | 463.0182 | | 1.2817 | 3.0 | 660 | 2.0098 | {'rouge1': 87.30764070509844, 'rouge2': 73.12328274037898, 'rougeL': 62.00625532521349, 'rougeLsum': 87.29149649901954} | [0.8757949025917542, 0.8593181834244542, 0.8334473061685955, 0.8048319452251607] | 463.0182 | | 0.9049 | 4.0 | 880 | 2.2481 | {'rouge1': 87.35996946418575, 'rouge2': 72.87802745947901, 'rougeL': 61.35206821444361, 'rougeLsum': 87.32662841081371} | [0.8755472589597261, 0.859572654041077, 0.8333237300074641, 0.804082483213136] | 463.0182 | | 0.5916 | 5.0 | 1100 | 2.5061 | {'rouge1': 78.38431994557745, 'rouge2': 64.89809559762811, 'rougeL': 53.805209482421525, 'rougeLsum': 78.30608179426231} | [0.747179346815877, 0.7352208249958618, 0.7126103103040894, 0.6869428956670465] | 463.0182 | | 0.3898 | 6.0 | 1320 | 2.8150 | {'rouge1': 93.77539618029996, 'rouge2': 78.03050568501187, 'rougeL': 64.82344374456906, 'rougeLsum': 93.76894400818286} | [0.9469183628254614, 0.9342162110956728, 0.9067374010427977, 0.8750430150656403] | 463.0182 | | 0.2961 | 7.0 | 1540 | 2.9796 | {'rouge1': 93.71888929189157, 'rouge2': 77.8377567936117, 'rougeL': 64.47906852741538, 'rougeLsum': 93.71298018429633} | [0.9470990193868204, 0.9341779145832757, 0.9064440397746264, 0.8744914403659334] | 463.0182 | ### Framework versions - PEFT 0.8.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.1
vitruv/vitruv_1
vitruv
2024-02-01T08:19:08Z
116
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T07:48:27Z
--- license: apache-2.0 language: - ko --- Who we are : Virtruv 해당 모델은 한국어 중 수학 모델에 집중하여 학습을 시도하였습니다. Base Model : 'beomi/OPEN-SOLAR-KO-10.7B' Dataset : 1 . traintogpb/aihub-koen-translation-integrated-tiny-100k 2. kyujinpy/KOR-gugugu-platypus-set 3. GAIR/MathPile : 다음 데이터 셋을 sampling 하여 직접 translate, 하였습니다. Prompt:
agshubhi/Insurance_complaint_mgmt
agshubhi
2024-02-01T08:13:12Z
0
0
null
[ "dataset:ebrigham/NL_insurance_reviews_sentiment", "license:mit", "region:us" ]
null
2024-02-01T07:51:27Z
--- license: mit datasets: - ebrigham/NL_insurance_reviews_sentiment ---
umer77400/eng_to_rus_t5model
umer77400
2024-02-01T08:11:18Z
0
0
transformers
[ "transformers", "translation", "en", "ru", "dataset:wmt16", "endpoints_compatible", "region:us" ]
translation
2024-02-01T04:52:20Z
--- datasets: - wmt16 language: - en - ru metrics: - bleu library_name: transformers pipeline_tag: translation ---
LoneStriker/CapybaraHermes-2.5-Mistral-7B-8.0bpw-h8-exl2
LoneStriker
2024-02-01T08:07:43Z
8
1
trl
[ "trl", "safetensors", "mistral", "distilabel", "dpo", "rlaif", "rlhf", "en", "dataset:argilla/dpo-mix-7k", "license:apache-2.0", "region:us" ]
null
2024-02-01T08:04:41Z
--- library_name: trl license: apache-2.0 datasets: - argilla/dpo-mix-7k language: - en tags: - distilabel - dpo - rlaif - rlhf --- # CapybaraHermes-2.5-Mistral-7B <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png"> </div> <p align="center"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k). To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench: | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. | |-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------| | argilla/CapybaraHermes-2.5-Mistral-7B | **43.8** | **73.35** | 57.07 | **42.44** | 8.24375 | **7.5625** | 54.16 | **7.903125** | | teknium/OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | **8.25** | 7.2875 | 52.42 | 7.76875 | | Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | **66.82** | 42.29 | 7.8375 | 7.1 | **54.81** | 7.46875 | The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores. For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference): | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)| 45.29| 76.92| 71.66| 48.78| 60.66| ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Argilla - **Shared by [optional]:** Argilla - **Model type:** 7B chat model - **Language(s) (NLP):** English - **License:** Same as OpenHermes - **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
LoneStriker/CapybaraHermes-2.5-Mistral-7B-6.0bpw-h6-exl2
LoneStriker
2024-02-01T08:04:40Z
6
1
trl
[ "trl", "safetensors", "mistral", "distilabel", "dpo", "rlaif", "rlhf", "en", "dataset:argilla/dpo-mix-7k", "license:apache-2.0", "region:us" ]
null
2024-02-01T08:02:12Z
--- library_name: trl license: apache-2.0 datasets: - argilla/dpo-mix-7k language: - en tags: - distilabel - dpo - rlaif - rlhf --- # CapybaraHermes-2.5-Mistral-7B <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png"> </div> <p align="center"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k). To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench: | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. | |-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------| | argilla/CapybaraHermes-2.5-Mistral-7B | **43.8** | **73.35** | 57.07 | **42.44** | 8.24375 | **7.5625** | 54.16 | **7.903125** | | teknium/OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | **8.25** | 7.2875 | 52.42 | 7.76875 | | Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | **66.82** | 42.29 | 7.8375 | 7.1 | **54.81** | 7.46875 | The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores. For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference): | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)| 45.29| 76.92| 71.66| 48.78| 60.66| ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Argilla - **Shared by [optional]:** Argilla - **Model type:** 7B chat model - **Language(s) (NLP):** English - **License:** Same as OpenHermes - **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
LoneStriker/CapybaraHermes-2.5-Mistral-7B-5.0bpw-h6-exl2
LoneStriker
2024-02-01T08:02:06Z
6
0
trl
[ "trl", "safetensors", "mistral", "distilabel", "dpo", "rlaif", "rlhf", "en", "dataset:argilla/dpo-mix-7k", "license:apache-2.0", "region:us" ]
null
2024-02-01T07:59:59Z
--- library_name: trl license: apache-2.0 datasets: - argilla/dpo-mix-7k language: - en tags: - distilabel - dpo - rlaif - rlhf --- # CapybaraHermes-2.5-Mistral-7B <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png"> </div> <p align="center"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k). To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench: | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. | |-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------| | argilla/CapybaraHermes-2.5-Mistral-7B | **43.8** | **73.35** | 57.07 | **42.44** | 8.24375 | **7.5625** | 54.16 | **7.903125** | | teknium/OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | **8.25** | 7.2875 | 52.42 | 7.76875 | | Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | **66.82** | 42.29 | 7.8375 | 7.1 | **54.81** | 7.46875 | The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores. For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference): | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)| 45.29| 76.92| 71.66| 48.78| 60.66| ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Argilla - **Shared by [optional]:** Argilla - **Model type:** 7B chat model - **Language(s) (NLP):** English - **License:** Same as OpenHermes - **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
LoneStriker/CapybaraHermes-2.5-Mistral-7B-4.0bpw-h6-exl2
LoneStriker
2024-02-01T07:59:56Z
8
1
trl
[ "trl", "safetensors", "mistral", "distilabel", "dpo", "rlaif", "rlhf", "en", "dataset:argilla/dpo-mix-7k", "license:apache-2.0", "region:us" ]
null
2024-02-01T07:58:10Z
--- library_name: trl license: apache-2.0 datasets: - argilla/dpo-mix-7k language: - en tags: - distilabel - dpo - rlaif - rlhf --- # CapybaraHermes-2.5-Mistral-7B <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/Vmr0FtTvnny6Snm-UDM_n.png"> </div> <p align="center"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> This model is the launching partner of the [capybara-dpo dataset](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-9k-binarized) build with ⚗️ distilabel. It's a preference tuned [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). CapybaraHermes has been preference tuned with LoRA and TRL for 3 epochs using argilla's [dpo mix 7k](https://huggingface.co/datasets/argilla/dpo-mix-7k). To test the impact on multi-turn performance we have used MTBench. We also include the Nous Benchmark results and Mistral-7B-Instruct-v0.2 for reference as it's a strong 7B model on MTBench: | Model | AGIEval | GPT4All | TruthfulQA | Bigbench | MTBench First Turn | MTBench Second Turn | Nous avg. | MTBench avg. | |-----------------------------------|---------|---------|------------|----------|------------|-------------|-----------|--------------| | argilla/CapybaraHermes-2.5-Mistral-7B | **43.8** | **73.35** | 57.07 | **42.44** | 8.24375 | **7.5625** | 54.16 | **7.903125** | | teknium/OpenHermes-2.5-Mistral-7B | 42.75 | 72.99 | 52.99 | 40.94 | **8.25** | 7.2875 | 52.42 | 7.76875 | | Mistral-7B-Instruct-v0.2 | 38.5 | 71.64 | **66.82** | 42.29 | 7.8375 | 7.1 | **54.81** | 7.46875 | The most interesting aspect in the context of the capybara-dpo dataset is the increased performance in MTBench Second Turn scores. For the merge lovers, we also preference tuned Beagle14-7B with a mix of capybara-dpo and distilabel orca pairs using the same recipe as NeuralBeagle (see [ YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) for reference): | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |------------------------------------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B)| 45.29| 76.92| 71.66| 48.78| 60.66| ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Argilla - **Shared by [optional]:** Argilla - **Model type:** 7B chat model - **Language(s) (NLP):** English - **License:** Same as OpenHermes - **Finetuned from model [optional]:** [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
franklee1015/ppo-LunarLander-v2
franklee1015
2024-02-01T07:58:04Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-29T03:40:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 298.43 +/- 12.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mkdir700/v3-starcoderbase1b-personal-copilot-A100-40GB-colab
mkdir700
2024-02-01T07:53:07Z
184
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_bigcode", "text-generation", "generated_from_trainer", "base_model:bigcode/starcoderbase-1b", "base_model:finetune:bigcode/starcoderbase-1b", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T06:24:51Z
--- license: bigcode-openrail-m tags: - generated_from_trainer base_model: bigcode/starcoderbase-1b model-index: - name: v3-starcoderbase1b-personal-copilot-A100-40GB-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # v3-starcoderbase1b-personal-copilot-A100-40GB-colab This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 0.05 | 100 | nan | | 0.0 | 0.1 | 200 | nan | | 0.0 | 0.15 | 300 | nan | | 0.0 | 0.2 | 400 | nan | | 0.0 | 0.25 | 500 | nan | | 0.0 | 0.3 | 600 | nan | | 0.0 | 0.35 | 700 | nan | | 0.0 | 0.4 | 800 | nan | | 0.0 | 0.45 | 900 | nan | | 0.0 | 0.5 | 1000 | nan | | 0.0 | 0.55 | 1100 | nan | | 0.0 | 0.6 | 1200 | nan | | 0.0 | 0.65 | 1300 | nan | | 0.0 | 0.7 | 1400 | nan | | 0.0 | 0.75 | 1500 | nan | | 0.0 | 0.8 | 1600 | nan | | 0.0 | 0.85 | 1700 | nan | | 0.0 | 0.9 | 1800 | nan | | 0.0 | 0.95 | 1900 | nan | | 0.0 | 1.0 | 2000 | nan | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
JVictor-CC/DeepSeek5.7b-mqa-base-finetune
JVictor-CC
2024-02-01T07:45:35Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:deepseek-ai/deepseek-coder-5.7bmqa-base", "base_model:adapter:deepseek-ai/deepseek-coder-5.7bmqa-base", "region:us" ]
null
2024-02-01T07:45:30Z
--- library_name: peft base_model: deepseek-ai/deepseek-coder-5.7bmqa-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.1
checkiejan/phi1_5-marking-test-ia3-full
checkiejan
2024-02-01T07:44:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-02-01T07:42:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
THUDM/LongAlign-7B-64k-base
THUDM
2024-02-01T07:31:05Z
84
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "Long Context", "en", "zh", "arxiv:2401.18058", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-29T13:37:12Z
--- language: - en - zh library_name: transformers tags: - Long Context - llama license: apache-2.0 --- # LongAlign-7B-64k-base <p align="center"> 🤗 <a href="https://huggingface.co/datasets/THUDM/LongAlign-10k" target="_blank">[LongAlign Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongAlign" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/abs/2401.18058" target="_blank">[LongAlign Paper]</a> </p> **LongAlign** is the first full recipe for LLM alignment on long context. We propose the **LongAlign-10k** dataset, containing 10,000 long instruction data of 8k-64k in length. We investigate on trianing strategies, namely **packing (with loss weighting) and sorted batching**, which are all implemented in our code. For real-world long context evaluation, we introduce **LongBench-Chat** that evaluate the instruction-following capability on queries of 10k-100k length. ## All Models We open-sourced the following list of models: |Model|Huggingface Repo|Description| |---|---|---| |**LongAlign-6B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-6B-64k-base) | **ChatGLM3-6B** with an extended 64k context window | |**LongAlign-6B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-6B-64k) | Chat model by LongAlign training on LongAlign-6B-64k-base| |**LongAlign-7B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-7B-64k-base) | **Llama-2-7B** with an extended 64k context window | |**LongAlign-7B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-7B-64k) | Chat model by LongAlign training on LongAlign-7B-64k-base| |**LongAlign-13B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-13B-64k-base) | **Llama-2-13B** with an extended 64k context window | |**LongAlign-13B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-13B-64k) | Chat model by LongAlign training on LongAlign-13B-64k-base| |**ChatGLM3-6B-128k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/chatglm3-6b-128k) | **ChatGLM3-6B** with a 128k context window| ![](assets/leaderboard.png) ## Model usage Chat prompt template for LongAlign-6B-64k: ```text [Round 1] 问:Hi! 答:Hello! What can I assist you today? [Round 2] 问:What should I do if I can't sleep at night? 答: ``` Chat prompt template for LongAlign-7B-64k and LongAlign-13B-64k: ```text [INST]Hi![/INST]Hello! What can I assist you today? [INST]What should I do if I can't sleep at night?[/INST] ``` ChatGLM3-6B-128k uses the same prompt template as [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b). A simple demo for deployment of the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("THUDM/LongAlign-6B-64k", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("THUDM/LongAlign-6B-64k", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") model = model.eval() query = open("assets/paper.txt").read() + "\n\nPlease summarize the paper." response, history = model.chat(tokenizer, query, history=[], max_new_tokens=512, temperature=1) print(response) ``` ## Citation If you find our work useful, please consider citing LongAlign: ``` ```
LoneStriker/DistilabelBeagle14-7B-6.0bpw-h6-exl2
LoneStriker
2024-02-01T07:30:51Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "dpo", "rlhf", "rlaif", "distilabel", "conversational", "arxiv:1910.09700", "base_model:mlabonne/Beagle14-7B", "base_model:finetune:mlabonne/Beagle14-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T07:28:22Z
--- license: cc-by-nc-4.0 base_model: mlabonne/Beagle14-7B tags: - merge - mergekit - lazymergekit - dpo - rlhf - rlaif - distilabel --- # Model Card for Model ID This is a preference tuned version of `mlabonne/Beagle14-7B` using a mix of Argilla's orca pairs and a new upcoming multi-turn dpo dataset. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Argilla - **Model type:** [More Information Needed] - **Language(s) (NLP):** English - **License:** cc-by-nc-4.0 - **Finetuned from model [optional]:** mlabonne/Beagle14-7B ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
k-seungri/k_whisper_output
k-seungri
2024-02-01T07:26:12Z
69
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:k-seungri/k_whisper_dataset", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-30T05:39:14Z
--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - k-seungri/k_whisper_dataset base_model: openai/whisper-base model-index: - name: k-seungri/k_whisper_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # k-seungri/k_whisper_model This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the k_whisper_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6590 - Cer: 53.0478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0002 | 142.86 | 1000 | 0.5964 | 16.9687 | | 0.0001 | 285.71 | 2000 | 0.6299 | 16.6392 | | 0.0001 | 428.57 | 3000 | 0.6459 | 17.1334 | | 0.0001 | 571.43 | 4000 | 0.6590 | 53.0478 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
amornlnw7/sd-webui-controlnet
amornlnw7
2024-02-01T07:20:53Z
0
0
null
[ "region:us" ]
null
2024-02-01T07:07:37Z
# ControlNet for Stable Diffusion WebUI The WebUI extension for ControlNet and other injection-based SD controls. ![image](https://github.com/Mikubill/sd-webui-controlnet/assets/20929282/51172d20-606b-4b9f-aba5-db2f2417cb0b) This extension is for AUTOMATIC1111's [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui), allows the Web UI to add [ControlNet](https://github.com/lllyasviel/ControlNet) to the original Stable Diffusion model to generate images. The addition is on-the-fly, the merging is not required. # Installation 1. Open "Extensions" tab. 2. Open "Install from URL" tab in the tab. 3. Enter `https://github.com/Mikubill/sd-webui-controlnet.git` to "URL for extension's git repository". 4. Press "Install" button. 5. Wait for 5 seconds, and you will see the message "Installed into stable-diffusion-webui\extensions\sd-webui-controlnet. Use Installed tab to restart". 6. Go to "Installed" tab, click "Check for updates", and then click "Apply and restart UI". (The next time you can also use these buttons to update ControlNet.) 7. Completely restart A1111 webui including your terminal. (If you do not know what is a "terminal", you can reboot your computer to achieve the same effect.) 8. Download models (see below). 9. After you put models in the correct folder, you may need to refresh to see the models. The refresh button is right to your "Model" dropdown. # Download Models Right now all the 14 models of ControlNet 1.1 are in the beta test. Download the models from ControlNet 1.1: https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main You need to download model files ending with ".pth" . Put models in your "stable-diffusion-webui\extensions\sd-webui-controlnet\models". You only need to download "pth" files. Do not right-click the filenames in HuggingFace website to download. Some users right-clicked those HuggingFace HTML websites and saved those HTML pages as PTH/YAML files. They are not downloading correct files. Instead, please click the small download arrow “↓” icon in HuggingFace to download. # Download Models for SDXL See instructions [here](https://github.com/Mikubill/sd-webui-controlnet/discussions/2039). # Features in ControlNet 1.1 ### Perfect Support for All ControlNet 1.0/1.1 and T2I Adapter Models. Now we have perfect support all available models and preprocessors, including perfect support for T2I style adapter and ControlNet 1.1 Shuffle. (Make sure that your YAML file names and model file names are same, see also YAML files in "stable-diffusion-webui\extensions\sd-webui-controlnet\models".) ### Perfect Support for A1111 High-Res. Fix Now if you turn on High-Res Fix in A1111, each controlnet will output two different control images: a small one and a large one. The small one is for your basic generating, and the big one is for your High-Res Fix generating. The two control images are computed by a smart algorithm called "super high-quality control image resampling". This is turned on by default, and you do not need to change any setting. ### Perfect Support for All A1111 Img2Img or Inpaint Settings and All Mask Types Now ControlNet is extensively tested with A1111's different types of masks, including "Inpaint masked"/"Inpaint not masked", and "Whole picture"/"Only masked", and "Only masked padding"&"Mask blur". The resizing perfectly matches A1111's "Just resize"/"Crop and resize"/"Resize and fill". This means you can use ControlNet in nearly everywhere in your A1111 UI without difficulty! ### The New "Pixel-Perfect" Mode Now if you turn on pixel-perfect mode, you do not need to set preprocessor (annotator) resolutions manually. The ControlNet will automatically compute the best annotator resolution for you so that each pixel perfectly matches Stable Diffusion. ### User-Friendly GUI and Preprocessor Preview We reorganized some previously confusing UI like "canvas width/height for new canvas" and it is in the 📝 button now. Now the preview GUI is controlled by the "allow preview" option and the trigger button 💥. The preview image size is better than before, and you do not need to scroll up and down - your a1111 GUI will not be messed up anymore! ### Support for Almost All Upscaling Scripts Now ControlNet 1.1 can support almost all Upscaling/Tile methods. ControlNet 1.1 support the script "Ultimate SD upscale" and almost all other tile-based extensions. Please do not confuse ["Ultimate SD upscale"](https://github.com/Coyote-A/ultimate-upscale-for-automatic1111) with "SD upscale" - they are different scripts. Note that the most recommended upscaling method is ["Tiled VAE/Diffusion"](https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111) but we test as many methods/extensions as possible. Note that "SD upscale" is supported since 1.1.117, and if you use it, you need to leave all ControlNet images as blank (We do not recommend "SD upscale" since it is somewhat buggy and cannot be maintained - use the "Ultimate SD upscale" instead). ### More Control Modes (previously called Guess Mode) We have fixed many bugs in previous 1.0’s Guess Mode and now it is called Control Mode ![image](https://user-images.githubusercontent.com/19834515/236641759-6c44ddf6-c7ad-4bda-92be-e90a52911d75.png) Now you can control which aspect is more important (your prompt or your ControlNet): * "Balanced": ControlNet on both sides of CFG scale, same as turning off "Guess Mode" in ControlNet 1.0 * "My prompt is more important": ControlNet on both sides of CFG scale, with progressively reduced SD U-Net injections (layer_weight*=0.825**I, where 0<=I <13, and the 13 means ControlNet injected SD 13 times). In this way, you can make sure that your prompts are perfectly displayed in your generated images. * "ControlNet is more important": ControlNet only on the Conditional Side of CFG scale (the cond in A1111's batch-cond-uncond). This means the ControlNet will be X times stronger if your cfg-scale is X. For example, if your cfg-scale is 7, then ControlNet is 7 times stronger. Note that here the X times stronger is different from "Control Weights" since your weights are not modified. This "stronger" effect usually has less artifact and give ControlNet more room to guess what is missing from your prompts (and in the previous 1.0, it is called "Guess Mode"). <table width="100%"> <tr> <td width="25%" style="text-align: center">Input (depth+canny+hed)</td> <td width="25%" style="text-align: center">"Balanced"</td> <td width="25%" style="text-align: center">"My prompt is more important"</td> <td width="25%" style="text-align: center">"ControlNet is more important"</td> </tr> <tr> <td width="25%" style="text-align: center"><img src="samples/cm1.png"></td> <td width="25%" style="text-align: center"><img src="samples/cm2.png"></td> <td width="25%" style="text-align: center"><img src="samples/cm3.png"></td> <td width="25%" style="text-align: center"><img src="samples/cm4.png"></td> </tr> </table> ### Reference-Only Control Now we have a `reference-only` preprocessor that does not require any control models. It can guide the diffusion directly using images as references. (Prompt "a dog running on grassland, best quality, ...") ![image](samples/ref.png) This method is similar to inpaint-based reference but it does not make your image disordered. Many professional A1111 users know a trick to diffuse image with references by inpaint. For example, if you have a 512x512 image of a dog, and want to generate another 512x512 image with the same dog, some users will connect the 512x512 dog image and a 512x512 blank image into a 1024x512 image, send to inpaint, and mask out the blank 512x512 part to diffuse a dog with similar appearance. However, that method is usually not very satisfying since images are connected and many distortions will appear. This `reference-only` ControlNet can directly link the attention layers of your SD to any independent images, so that your SD will read arbitary images for reference. You need at least ControlNet 1.1.153 to use it. To use, just select `reference-only` as preprocessor and put an image. Your SD will just use the image as reference. *Note that this method is as "non-opinioned" as possible. It only contains very basic connection codes, without any personal preferences, to connect the attention layers with your reference images. However, even if we tried best to not include any opinioned codes, we still need to write some subjective implementations to deal with weighting, cfg-scale, etc - tech report is on the way.* More examples [here](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236). # Technical Documents See also the documents of ControlNet 1.1: https://github.com/lllyasviel/ControlNet-v1-1-nightly#model-specification # Default Setting This is my setting. If you run into any problem, you can use this setting as a sanity check ![image](https://user-images.githubusercontent.com/19834515/235620638-17937171-8ac1-45bc-a3cb-3aebf605b4ef.png) # Use Previous Models ### Use ControlNet 1.0 Models https://huggingface.co/lllyasviel/ControlNet/tree/main/models You can still use all previous models in the previous ControlNet 1.0. Now, the previous "depth" is now called "depth_midas", the previous "normal" is called "normal_midas", the previous "hed" is called "softedge_hed". And starting from 1.1, all line maps, edge maps, lineart maps, boundary maps will have black background and white lines. ### Use T2I-Adapter Models (From TencentARC/T2I-Adapter) To use T2I-Adapter models: 1. Download files from https://huggingface.co/TencentARC/T2I-Adapter/tree/main/models 2. Put them in "stable-diffusion-webui\extensions\sd-webui-controlnet\models". 3. Make sure that the file names of pth files and yaml files are consistent. *Note that "CoAdapter" is not implemented yet.* # Gallery The below results are from ControlNet 1.0. | Source | Input | Output | |:-------------------------:|:-------------------------:|:-------------------------:| | (no preprocessor) | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/bal-source.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/bal-gen.png?raw=true"> | | (no preprocessor) | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/dog_rel.jpg?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/dog_rel.png?raw=true"> | |<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/mahiro_input.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/mahiro_canny.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/mahiro-out.png?raw=true"> | |<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/evt_source.jpg?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/evt_hed.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/evt_gen.png?raw=true"> | |<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/an-source.jpg?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/an-pose.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/an-gen.png?raw=true"> | |<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/sk-b-src.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/sk-b-dep.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/sk-b-out.png?raw=true"> | The below examples are from T2I-Adapter. From `t2iadapter_color_sd14v1.pth` : | Source | Input | Output | |:-------------------------:|:-------------------------:|:-------------------------:| | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947416-ec9e52a4-a1d0-48d8-bb81-736bf636145e.jpeg"> | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947435-1164e7d8-d857-42f9-ab10-2d4a4b25f33a.png"> | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947557-5520d5f8-88b4-474d-a576-5c9cd3acac3a.png"> | From `t2iadapter_style_sd14v1.pth` : | Source | Input | Output | |:-------------------------:|:-------------------------:|:-------------------------:| | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947416-ec9e52a4-a1d0-48d8-bb81-736bf636145e.jpeg"> | (clip, non-image) | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222965711-7b884c9e-7095-45cb-a91c-e50d296ba3a2.png"> | # Minimum Requirements * (Windows) (NVIDIA: Ampere) 4gb - with `--xformers` enabled, and `Low VRAM` mode ticked in the UI, goes up to 768x832 # Multi-ControlNet This option allows multiple ControlNet inputs for a single generation. To enable this option, change `Multi ControlNet: Max models amount (requires restart)` in the settings. Note that you will need to restart the WebUI for changes to take effect. <table width="100%"> <tr> <td width="25%" style="text-align: center">Source A</td> <td width="25%" style="text-align: center">Source B</td> <td width="25%" style="text-align: center">Output</td> </tr> <tr> <td width="25%" style="text-align: center"><img src="https://user-images.githubusercontent.com/31246794/220448620-cd3ede92-8d3f-43d5-b771-32dd8417618f.png"></td> <td width="25%" style="text-align: center"><img src="https://user-images.githubusercontent.com/31246794/220448619-beed9bdb-f6bb-41c2-a7df-aa3ef1f653c5.png"></td> <td width="25%" style="text-align: center"><img src="https://user-images.githubusercontent.com/31246794/220448613-c99a9e04-0450-40fd-bc73-a9122cefaa2c.png"></td> </tr> </table> # Control Weight/Start/End Weight is the weight of the controlnet "influence". It's analogous to prompt attention/emphasis. E.g. (myprompt: 1.2). Technically, it's the factor by which to multiply the ControlNet outputs before merging them with original SD Unet. Guidance Start/End is the percentage of total steps the controlnet applies (guidance strength = guidance end). It's analogous to prompt editing/shifting. E.g. \[myprompt::0.8\] (It applies from the beginning until 80% of total steps) # Batch Mode Put any unit into batch mode to activate batch mode for all units. Specify a batch directory for each unit, or use the new textbox in the img2img batch tab as a fallback. Although the textbox is located in the img2img batch tab, you can use it to generate images in the txt2img tab as well. Note that this feature is only available in the gradio user interface. Call the APIs as many times as you want for custom batch scheduling. # API and Script Access This extension can accept txt2img or img2img tasks via API or external extension call. Note that you may need to enable `Allow other scripts to control this extension` in settings for external calls. To use the API: start WebUI with argument `--api` and go to `http://webui-address/docs` for documents or checkout [examples](https://github.com/Mikubill/sd-webui-controlnet/blob/main/example/api_txt2img.ipynb). To use external call: Checkout [Wiki](https://github.com/Mikubill/sd-webui-controlnet/wiki/API) # Command Line Arguments This extension adds these command line arguments to the webui: ``` --controlnet-dir <path to directory with controlnet models> ADD a controlnet models directory --controlnet-annotator-models-path <path to directory with annotator model directories> SET the directory for annotator models --no-half-controlnet load controlnet models in full precision --controlnet-preprocessor-cache-size Cache size for controlnet preprocessor results --controlnet-loglevel Log level for the controlnet extension ``` # MacOS Support Tested with pytorch nightly: https://github.com/Mikubill/sd-webui-controlnet/pull/143#issuecomment-1435058285 To use this extension with mps and normal pytorch, currently you may need to start WebUI with `--no-half`. # Archive of Deprecated Versions The previous version (sd-webui-controlnet 1.0) is archived in https://github.com/lllyasviel/webui-controlnet-v1-archived Using this version is not a temporary stop of updates. You will stop all updates forever. Please consider this version if you work with professional studios that requires 100% reproducing of all previous results pixel by pixel. # Thanks This implementation is inspired by kohya-ss/sd-webui-additional-networks
arpanl/Model2
arpanl
2024-02-01T07:18:04Z
177
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-01T07:13:25Z
--- tags: - generated_from_trainer datasets: - imagefolder model-index: - name: Model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model2 This model was trained from scratch on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
shenwzh3/alpha-umi-caller-13b
shenwzh3
2024-02-01T07:14:05Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-31T04:47:28Z
--- license: apache-2.0 language: - en library_name: transformers --- ## alpha-umi-caller-13b ## Introduction alpha-umi-caller-13b is the 13b version caller model of the alpha-UMi multi-LLM tool learning agent framework proposed by *''Small LLMs Are Weak Tool Learners: A Multi-LLM Agent''*. It can collaborate with alpha-umi-planner(7b/13b) and alpha-umi-summarizer(7b/13b) to form a multi-LLM agent system. So far alpha-umi-caller-13b is applicable for ToolBench, we will soon release more versions that applicable for more tasks. For the utility, please refer to the github repo of the paper.
Vishal24/BCG_adapter_v3
Vishal24
2024-02-01T07:12:45Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-30T10:42:50Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2.dev0
lokeshk/popular-indie-leaders
lokeshk
2024-02-01T07:06:10Z
176
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-01T06:34:11Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: popular-indie-leaders results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.25 --- # popular-indie-leaders Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Amit_Shah ![Amit_Shah](images/Amit_Shah.jpg) #### Narendra_Modi ![Narendra_Modi](images/Narendra_Modi.jpg) #### Rajnath_Singh ![Rajnath_Singh](images/Rajnath_Singh.jpg) #### S_Jaishankar ![S_Jaishankar](images/S_Jaishankar.jpg) #### Yogi_Adityanath ![Yogi_Adityanath](images/Yogi_Adityanath.jpg)
Jaehyeon222/ME-MOE-7Bx2_test
Jaehyeon222
2024-02-01T06:59:14Z
59
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "Mixture of experts", "conversational", "ko", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-29T04:04:58Z
--- license: cc-by-nc-nd-4.0 language: - ko pipeline_tag: text-generation tags: - Mixture of experts --- Model Card for ME-MOE-7Bx2_test Developed by : 메가스터디교육, 프리딕션, 마이스 Base Model : megastudyedu/ME-dpo-7B-v1.0 Expert Models : megastudyedu/ME-dpo-7B-v1.1, macadeliccc/WestLake-7B-v2-laser-truthy-dpo Method : merge-kit을 활용하여 MOE를 구현했습니다. ----------------------- ME-7B-v1.0 -> ME-dpo-7B-v1.0, ME-7B-v1.1 -> ME-dpo-7B-v1.1 로 수정했습니다.
LanguageBind/LanguageBind_Video_V1.5_FT
LanguageBind
2024-02-01T06:58:17Z
1,905
4
transformers
[ "transformers", "pytorch", "LanguageBindVideo", "zero-shot-image-classification", "arxiv:2310.01852", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-11-26T13:35:39Z
--- license: mit --- <p align="center"> <img src="https://s11.ax1x.com/2024/02/01/pFMDAm9.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/pdf/2310.01852.pdf">【ICLR 2024 🔥】LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> ## 📰 News * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.16]** 🔥🔥🔥 Our LanguageBind has been accepted at ICLR 2024! We earn the score of 6(3)8(6)6(6)6(6) [here](https://openreview.net/forum?id=QmZKc7UZCy&noteId=OgsxQxAleA). * **[2023.12.15]** 💪💪💪 We expand the 💥💥💥 VIDAL dataset and now have **10M video-text data**. We launch **LanguageBind_Video 1.5**, checking our [model zoo](#-model-zoo). * **[2023.12.10]** We expand the 💥💥💥 VIDAL dataset and now have **10M depth and 10M thermal data**. We are in the process of uploading thermal and depth data on [Hugging Face](https://huggingface.co/datasets/LanguageBind/VIDAL-Depth-Thermal) and expect the whole process to last 1-2 months. * **[2023.11.27]** 🔥🔥🔥 We have updated our [paper](https://arxiv.org/abs/2310.01852) with emergency zero-shot results., checking our ✨ [results](#emergency-results). * **[2023.11.26]** 💥💥💥 We have open-sourced all textual sources and corresponding YouTube IDs [here](DATASETS.md). * **[2023.11.26]** 📣📣📣 We have open-sourced fully fine-tuned **Video & Audio**, achieving improved performance once again, checking our [model zoo](#-model-zoo). * **[2023.11.22]** We are about to release a fully fine-tuned version, and the **HUGE** version is currently undergoing training. * **[2023.11.21]** 💥 We are releasing sample data in [DATASETS.md](DATASETS.md) so that individuals who are interested can further modify the code to train it on their own data. * **[2023.11.20]** 🚀🚀🚀 [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) builds a large visual-language model to achieve 🎉SOTA performances based on LanguageBind encoders. * **[2023.10.23]** 🎶 LanguageBind-Audio achieves 🎉🎉🎉**state-of-the-art (SOTA) performance on 5 datasets**, checking our ✨ [results](#multiple-modalities)! * **[2023.10.14]** 😱 Released a stronger LanguageBind-Video, checking our ✨ [results](#video-language)! The video checkpoint **have updated** on Huggingface Model Hub! * **[2023.10.10]** We provide sample data, which can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described. * **[2023.10.07]** The checkpoints are available on 🤗 [Huggingface Model](https://huggingface.co/LanguageBind). * **[2023.10.04]** Code and [demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights ### 💡 High performance, but NO intermediate modality required LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics. * The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities. ### ⚡️ A multimodal, fully aligned and voluminous dataset We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities. * The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language. ### 🔥 Multi-view enhanced description for training We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language. ## 🤗 Demo * **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind. ```bash python gradio_app.py ``` * **Online demo.** We provide the [online demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image. ## 🛠️ Requirements and Installation * Python >= 3.8 * Pytorch >= 1.13.1 * CUDA Version >= 11.6 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/LanguageBind cd LanguageBind pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` ## 🐳 Model Zoo The names in the table represent different encoder models. For example, `LanguageBind/LanguageBind_Video_FT` represents the fully fine-tuned version, while `LanguageBind/LanguageBind_Video` represents the LoRA-tuned version. You can freely replace them in the recommended [API usage](#-api). We recommend using the fully fine-tuned version, as it offers stronger performance. <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Modality</th><th>LoRA tuning</th><th>Fine-tuning</th> </tr> <tr align="center"> <td>Video</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">LanguageBind_Video</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">LanguageBind_Video_FT</a></td> </tr> <tr align="center"> <td>Audio</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio">LanguageBind_Audio</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio_FT">LanguageBind_Audio_FT</a></td> </tr> <tr align="center"> <td>Depth</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Depth">LanguageBind_Depth</a></td><td>-</td> </tr> <tr align="center"> <td>Thermal</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Thermal">LanguageBind_Thermal</a></td><td>-</td> </tr> </table> </div> <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Version</th><th>Tuning</th><th>Model size</th><th>Num_frames</th><th>HF Link</th><th>MSR-VTT</th><th>DiDeMo</th><th>ActivityNet</th><th>MSVD</th> </tr> <tr align="center"> <td>LanguageBind_Video</td><td>LoRA</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">Link</a></td><td>42.6</td><td>37.8</td><td>35.1</td><td>52.2</td> </tr> <tr align="center"> <td>LanguageBind_Video_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">Link</a></td><td>42.7</td><td>38.1</td><td>36.9</td><td>53.5</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_V1.5_FT">Link</a></td><td>42.8</td><td>39.7</td><td>38.4</td><td>54.1</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>12</td><td>Coming soon</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_Huge_V1.5_FT">Link</a></td><td>44.8</td><td>39.9</td><td>41.0</td><td>53.7</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>12</td><td>Coming soon</td> </tr> </table> </div> ## 🤖 API **We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets! ### Inference for Multi-modal Binding We have provided some sample datasets in [assets](assets) to quickly see how languagebind works. ```python import torch from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer if __name__ == '__main__': device = 'cuda:0' device = torch.device(device) clip_type = { 'video': 'LanguageBind_Video_FT', # also LanguageBind_Video 'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio 'thermal': 'LanguageBind_Thermal', 'image': 'LanguageBind_Image', 'depth': 'LanguageBind_Depth', } model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir') model = model.to(device) model.eval() pretrained_ckpt = f'lb203/LanguageBind_Image' tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir') modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type.keys()} image = ['assets/image/0.jpg', 'assets/image/1.jpg'] audio = ['assets/audio/0.wav', 'assets/audio/1.wav'] video = ['assets/video/0.mp4', 'assets/video/1.mp4'] depth = ['assets/depth/0.png', 'assets/depth/1.png'] thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg'] language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.'] inputs = { 'image': to_device(modality_transform['image'](image), device), 'video': to_device(modality_transform['video'](video), device), 'audio': to_device(modality_transform['audio'](audio), device), 'depth': to_device(modality_transform['depth'](depth), device), 'thermal': to_device(modality_transform['thermal'](thermal), device), } inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length', truncation=True, return_tensors='pt'), device) with torch.no_grad(): embeddings = model(inputs) print("Video x Text: \n", torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Image x Text: \n", torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Depth x Text: \n", torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Audio x Text: \n", torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Thermal x Text: \n", torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) ``` Then returns the following result. ```bash Video x Text: [[9.9989331e-01 1.0667283e-04] [1.3255903e-03 9.9867439e-01]] Image x Text: [[9.9990666e-01 9.3292067e-05] [4.6132666e-08 1.0000000e+00]] Depth x Text: [[0.9954276 0.00457235] [0.12042473 0.8795753 ]] Audio x Text: [[0.97634876 0.02365119] [0.02917843 0.97082156]] Thermal x Text: [[0.9482511 0.0517489 ] [0.48746133 0.5125386 ]] ``` ### Emergency zero-shot Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use. ```python print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy()) print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy()) print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy()) ``` Then, you will get: ``` Video x Audio: [[1.0000000e+00 0.0000000e+00] [3.1150486e-32 1.0000000e+00]] Image x Depth: [[1. 0.] [0. 1.]] Image x Thermal: [[1. 0.] [0. 1.]] ``` ### Different branches for X-Language task Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP. #### Thermal ```python import torch from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal' model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') thermal_process = LanguageBindThermalProcessor(model.config, tokenizer) model.eval() data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Depth ```python import torch from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Depth' model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') depth_process = LanguageBindDepthProcessor(model.config, tokenizer) model.eval() data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Video ```python import torch from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Video_FT' # also 'LanguageBind/LanguageBind_Video' model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') video_process = LanguageBindVideoProcessor(model.config, tokenizer) model.eval() data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Audio ```python import torch from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Audio_FT' # also 'LanguageBind/LanguageBind_Audio' model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') audio_process = LanguageBindAudioProcessor(model.config, tokenizer) model.eval() data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Image Note that our image encoder is the same as OpenCLIP. **Not** as fine-tuned as other modalities. ```python import torch from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Image' model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') image_process = LanguageBindImageProcessor(model.config, tokenizer) model.eval() data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` ## 💥 VIDAL-10M The datasets is in [DATASETS.md](DATASETS.md). ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## 👍 Acknowledgement * [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework. * [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework. * [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images. * [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images. ## 🔒 License * The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file. * The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan}, year={2023}, eprint={2310.01852}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/LanguageBind&type=Date)](https://star-history.com/#PKU-YuanGroup/LanguageBind&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/LanguageBind/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/LanguageBind" /> </a>
LanguageBind/LanguageBind_Video
LanguageBind
2024-02-01T06:57:36Z
364
2
transformers
[ "transformers", "pytorch", "LanguageBindVideo", "zero-shot-image-classification", "arxiv:2310.01852", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-10-06T09:07:15Z
--- license: mit --- <p align="center"> <img src="https://s11.ax1x.com/2024/02/01/pFMDAm9.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/pdf/2310.01852.pdf">【ICLR 2024 🔥】LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> ## 📰 News * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.16]** 🔥🔥🔥 Our LanguageBind has been accepted at ICLR 2024! We earn the score of 6(3)8(6)6(6)6(6) [here](https://openreview.net/forum?id=QmZKc7UZCy&noteId=OgsxQxAleA). * **[2023.12.15]** 💪💪💪 We expand the 💥💥💥 VIDAL dataset and now have **10M video-text data**. We launch **LanguageBind_Video 1.5**, checking our [model zoo](#-model-zoo). * **[2023.12.10]** We expand the 💥💥💥 VIDAL dataset and now have **10M depth and 10M thermal data**. We are in the process of uploading thermal and depth data on [Hugging Face](https://huggingface.co/datasets/LanguageBind/VIDAL-Depth-Thermal) and expect the whole process to last 1-2 months. * **[2023.11.27]** 🔥🔥🔥 We have updated our [paper](https://arxiv.org/abs/2310.01852) with emergency zero-shot results., checking our ✨ [results](#emergency-results). * **[2023.11.26]** 💥💥💥 We have open-sourced all textual sources and corresponding YouTube IDs [here](DATASETS.md). * **[2023.11.26]** 📣📣📣 We have open-sourced fully fine-tuned **Video & Audio**, achieving improved performance once again, checking our [model zoo](#-model-zoo). * **[2023.11.22]** We are about to release a fully fine-tuned version, and the **HUGE** version is currently undergoing training. * **[2023.11.21]** 💥 We are releasing sample data in [DATASETS.md](DATASETS.md) so that individuals who are interested can further modify the code to train it on their own data. * **[2023.11.20]** 🚀🚀🚀 [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) builds a large visual-language model to achieve 🎉SOTA performances based on LanguageBind encoders. * **[2023.10.23]** 🎶 LanguageBind-Audio achieves 🎉🎉🎉**state-of-the-art (SOTA) performance on 5 datasets**, checking our ✨ [results](#multiple-modalities)! * **[2023.10.14]** 😱 Released a stronger LanguageBind-Video, checking our ✨ [results](#video-language)! The video checkpoint **have updated** on Huggingface Model Hub! * **[2023.10.10]** We provide sample data, which can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described. * **[2023.10.07]** The checkpoints are available on 🤗 [Huggingface Model](https://huggingface.co/LanguageBind). * **[2023.10.04]** Code and [demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights ### 💡 High performance, but NO intermediate modality required LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics. * The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities. ### ⚡️ A multimodal, fully aligned and voluminous dataset We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities. * The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language. ### 🔥 Multi-view enhanced description for training We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language. ## 🤗 Demo * **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind. ```bash python gradio_app.py ``` * **Online demo.** We provide the [online demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image. ## 🛠️ Requirements and Installation * Python >= 3.8 * Pytorch >= 1.13.1 * CUDA Version >= 11.6 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/LanguageBind cd LanguageBind pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` ## 🐳 Model Zoo The names in the table represent different encoder models. For example, `LanguageBind/LanguageBind_Video_FT` represents the fully fine-tuned version, while `LanguageBind/LanguageBind_Video` represents the LoRA-tuned version. You can freely replace them in the recommended [API usage](#-api). We recommend using the fully fine-tuned version, as it offers stronger performance. <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Modality</th><th>LoRA tuning</th><th>Fine-tuning</th> </tr> <tr align="center"> <td>Video</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">LanguageBind_Video</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">LanguageBind_Video_FT</a></td> </tr> <tr align="center"> <td>Audio</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio">LanguageBind_Audio</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio_FT">LanguageBind_Audio_FT</a></td> </tr> <tr align="center"> <td>Depth</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Depth">LanguageBind_Depth</a></td><td>-</td> </tr> <tr align="center"> <td>Thermal</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Thermal">LanguageBind_Thermal</a></td><td>-</td> </tr> </table> </div> <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Version</th><th>Tuning</th><th>Model size</th><th>Num_frames</th><th>HF Link</th><th>MSR-VTT</th><th>DiDeMo</th><th>ActivityNet</th><th>MSVD</th> </tr> <tr align="center"> <td>LanguageBind_Video</td><td>LoRA</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">Link</a></td><td>42.6</td><td>37.8</td><td>35.1</td><td>52.2</td> </tr> <tr align="center"> <td>LanguageBind_Video_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">Link</a></td><td>42.7</td><td>38.1</td><td>36.9</td><td>53.5</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_V1.5_FT">Link</a></td><td>42.8</td><td>39.7</td><td>38.4</td><td>54.1</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>12</td><td>Coming soon</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_Huge_V1.5_FT">Link</a></td><td>44.8</td><td>39.9</td><td>41.0</td><td>53.7</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>12</td><td>Coming soon</td> </tr> </table> </div> ## 🤖 API **We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets! ### Inference for Multi-modal Binding We have provided some sample datasets in [assets](assets) to quickly see how languagebind works. ```python import torch from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer if __name__ == '__main__': device = 'cuda:0' device = torch.device(device) clip_type = { 'video': 'LanguageBind_Video_FT', # also LanguageBind_Video 'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio 'thermal': 'LanguageBind_Thermal', 'image': 'LanguageBind_Image', 'depth': 'LanguageBind_Depth', } model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir') model = model.to(device) model.eval() pretrained_ckpt = f'lb203/LanguageBind_Image' tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir') modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type.keys()} image = ['assets/image/0.jpg', 'assets/image/1.jpg'] audio = ['assets/audio/0.wav', 'assets/audio/1.wav'] video = ['assets/video/0.mp4', 'assets/video/1.mp4'] depth = ['assets/depth/0.png', 'assets/depth/1.png'] thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg'] language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.'] inputs = { 'image': to_device(modality_transform['image'](image), device), 'video': to_device(modality_transform['video'](video), device), 'audio': to_device(modality_transform['audio'](audio), device), 'depth': to_device(modality_transform['depth'](depth), device), 'thermal': to_device(modality_transform['thermal'](thermal), device), } inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length', truncation=True, return_tensors='pt'), device) with torch.no_grad(): embeddings = model(inputs) print("Video x Text: \n", torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Image x Text: \n", torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Depth x Text: \n", torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Audio x Text: \n", torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Thermal x Text: \n", torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) ``` Then returns the following result. ```bash Video x Text: [[9.9989331e-01 1.0667283e-04] [1.3255903e-03 9.9867439e-01]] Image x Text: [[9.9990666e-01 9.3292067e-05] [4.6132666e-08 1.0000000e+00]] Depth x Text: [[0.9954276 0.00457235] [0.12042473 0.8795753 ]] Audio x Text: [[0.97634876 0.02365119] [0.02917843 0.97082156]] Thermal x Text: [[0.9482511 0.0517489 ] [0.48746133 0.5125386 ]] ``` ### Emergency zero-shot Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use. ```python print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy()) print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy()) print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy()) ``` Then, you will get: ``` Video x Audio: [[1.0000000e+00 0.0000000e+00] [3.1150486e-32 1.0000000e+00]] Image x Depth: [[1. 0.] [0. 1.]] Image x Thermal: [[1. 0.] [0. 1.]] ``` ### Different branches for X-Language task Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP. #### Thermal ```python import torch from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal' model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') thermal_process = LanguageBindThermalProcessor(model.config, tokenizer) model.eval() data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Depth ```python import torch from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Depth' model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') depth_process = LanguageBindDepthProcessor(model.config, tokenizer) model.eval() data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Video ```python import torch from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Video_FT' # also 'LanguageBind/LanguageBind_Video' model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') video_process = LanguageBindVideoProcessor(model.config, tokenizer) model.eval() data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Audio ```python import torch from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Audio_FT' # also 'LanguageBind/LanguageBind_Audio' model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') audio_process = LanguageBindAudioProcessor(model.config, tokenizer) model.eval() data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Image Note that our image encoder is the same as OpenCLIP. **Not** as fine-tuned as other modalities. ```python import torch from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Image' model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') image_process = LanguageBindImageProcessor(model.config, tokenizer) model.eval() data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` ## 💥 VIDAL-10M The datasets is in [DATASETS.md](DATASETS.md). ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## 👍 Acknowledgement * [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework. * [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework. * [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images. * [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images. ## 🔒 License * The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file. * The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan}, year={2023}, eprint={2310.01852}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/LanguageBind&type=Date)](https://star-history.com/#PKU-YuanGroup/LanguageBind&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/LanguageBind/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/LanguageBind" /> </a>
LanguageBind/LanguageBind_Depth
LanguageBind
2024-02-01T06:57:09Z
244
0
transformers
[ "transformers", "pytorch", "LanguageBindDepth", "zero-shot-image-classification", "arxiv:2310.01852", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-10-06T09:07:38Z
--- license: mit --- <p align="center"> <img src="https://s11.ax1x.com/2024/02/01/pFMDAm9.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/pdf/2310.01852.pdf">【ICLR 2024 🔥】LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> ## 📰 News * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.16]** 🔥🔥🔥 Our LanguageBind has been accepted at ICLR 2024! We earn the score of 6(3)8(6)6(6)6(6) [here](https://openreview.net/forum?id=QmZKc7UZCy&noteId=OgsxQxAleA). * **[2023.12.15]** 💪💪💪 We expand the 💥💥💥 VIDAL dataset and now have **10M video-text data**. We launch **LanguageBind_Video 1.5**, checking our [model zoo](#-model-zoo). * **[2023.12.10]** We expand the 💥💥💥 VIDAL dataset and now have **10M depth and 10M thermal data**. We are in the process of uploading thermal and depth data on [Hugging Face](https://huggingface.co/datasets/LanguageBind/VIDAL-Depth-Thermal) and expect the whole process to last 1-2 months. * **[2023.11.27]** 🔥🔥🔥 We have updated our [paper](https://arxiv.org/abs/2310.01852) with emergency zero-shot results., checking our ✨ [results](#emergency-results). * **[2023.11.26]** 💥💥💥 We have open-sourced all textual sources and corresponding YouTube IDs [here](DATASETS.md). * **[2023.11.26]** 📣📣📣 We have open-sourced fully fine-tuned **Video & Audio**, achieving improved performance once again, checking our [model zoo](#-model-zoo). * **[2023.11.22]** We are about to release a fully fine-tuned version, and the **HUGE** version is currently undergoing training. * **[2023.11.21]** 💥 We are releasing sample data in [DATASETS.md](DATASETS.md) so that individuals who are interested can further modify the code to train it on their own data. * **[2023.11.20]** 🚀🚀🚀 [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) builds a large visual-language model to achieve 🎉SOTA performances based on LanguageBind encoders. * **[2023.10.23]** 🎶 LanguageBind-Audio achieves 🎉🎉🎉**state-of-the-art (SOTA) performance on 5 datasets**, checking our ✨ [results](#multiple-modalities)! * **[2023.10.14]** 😱 Released a stronger LanguageBind-Video, checking our ✨ [results](#video-language)! The video checkpoint **have updated** on Huggingface Model Hub! * **[2023.10.10]** We provide sample data, which can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described. * **[2023.10.07]** The checkpoints are available on 🤗 [Huggingface Model](https://huggingface.co/LanguageBind). * **[2023.10.04]** Code and [demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights ### 💡 High performance, but NO intermediate modality required LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics. * The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities. ### ⚡️ A multimodal, fully aligned and voluminous dataset We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities. * The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language. ### 🔥 Multi-view enhanced description for training We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language. ## 🤗 Demo * **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind. ```bash python gradio_app.py ``` * **Online demo.** We provide the [online demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image. ## 🛠️ Requirements and Installation * Python >= 3.8 * Pytorch >= 1.13.1 * CUDA Version >= 11.6 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/LanguageBind cd LanguageBind pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` ## 🐳 Model Zoo The names in the table represent different encoder models. For example, `LanguageBind/LanguageBind_Video_FT` represents the fully fine-tuned version, while `LanguageBind/LanguageBind_Video` represents the LoRA-tuned version. You can freely replace them in the recommended [API usage](#-api). We recommend using the fully fine-tuned version, as it offers stronger performance. <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Modality</th><th>LoRA tuning</th><th>Fine-tuning</th> </tr> <tr align="center"> <td>Video</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">LanguageBind_Video</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">LanguageBind_Video_FT</a></td> </tr> <tr align="center"> <td>Audio</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio">LanguageBind_Audio</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio_FT">LanguageBind_Audio_FT</a></td> </tr> <tr align="center"> <td>Depth</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Depth">LanguageBind_Depth</a></td><td>-</td> </tr> <tr align="center"> <td>Thermal</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Thermal">LanguageBind_Thermal</a></td><td>-</td> </tr> </table> </div> <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Version</th><th>Tuning</th><th>Model size</th><th>Num_frames</th><th>HF Link</th><th>MSR-VTT</th><th>DiDeMo</th><th>ActivityNet</th><th>MSVD</th> </tr> <tr align="center"> <td>LanguageBind_Video</td><td>LoRA</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">Link</a></td><td>42.6</td><td>37.8</td><td>35.1</td><td>52.2</td> </tr> <tr align="center"> <td>LanguageBind_Video_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">Link</a></td><td>42.7</td><td>38.1</td><td>36.9</td><td>53.5</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_V1.5_FT">Link</a></td><td>42.8</td><td>39.7</td><td>38.4</td><td>54.1</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>12</td><td>Coming soon</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_Huge_V1.5_FT">Link</a></td><td>44.8</td><td>39.9</td><td>41.0</td><td>53.7</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>12</td><td>Coming soon</td> </tr> </table> </div> ## 🤖 API **We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets! ### Inference for Multi-modal Binding We have provided some sample datasets in [assets](assets) to quickly see how languagebind works. ```python import torch from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer if __name__ == '__main__': device = 'cuda:0' device = torch.device(device) clip_type = { 'video': 'LanguageBind_Video_FT', # also LanguageBind_Video 'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio 'thermal': 'LanguageBind_Thermal', 'image': 'LanguageBind_Image', 'depth': 'LanguageBind_Depth', } model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir') model = model.to(device) model.eval() pretrained_ckpt = f'lb203/LanguageBind_Image' tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir') modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type.keys()} image = ['assets/image/0.jpg', 'assets/image/1.jpg'] audio = ['assets/audio/0.wav', 'assets/audio/1.wav'] video = ['assets/video/0.mp4', 'assets/video/1.mp4'] depth = ['assets/depth/0.png', 'assets/depth/1.png'] thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg'] language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.'] inputs = { 'image': to_device(modality_transform['image'](image), device), 'video': to_device(modality_transform['video'](video), device), 'audio': to_device(modality_transform['audio'](audio), device), 'depth': to_device(modality_transform['depth'](depth), device), 'thermal': to_device(modality_transform['thermal'](thermal), device), } inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length', truncation=True, return_tensors='pt'), device) with torch.no_grad(): embeddings = model(inputs) print("Video x Text: \n", torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Image x Text: \n", torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Depth x Text: \n", torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Audio x Text: \n", torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Thermal x Text: \n", torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) ``` Then returns the following result. ```bash Video x Text: [[9.9989331e-01 1.0667283e-04] [1.3255903e-03 9.9867439e-01]] Image x Text: [[9.9990666e-01 9.3292067e-05] [4.6132666e-08 1.0000000e+00]] Depth x Text: [[0.9954276 0.00457235] [0.12042473 0.8795753 ]] Audio x Text: [[0.97634876 0.02365119] [0.02917843 0.97082156]] Thermal x Text: [[0.9482511 0.0517489 ] [0.48746133 0.5125386 ]] ``` ### Emergency zero-shot Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use. ```python print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy()) print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy()) print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy()) ``` Then, you will get: ``` Video x Audio: [[1.0000000e+00 0.0000000e+00] [3.1150486e-32 1.0000000e+00]] Image x Depth: [[1. 0.] [0. 1.]] Image x Thermal: [[1. 0.] [0. 1.]] ``` ### Different branches for X-Language task Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP. #### Thermal ```python import torch from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal' model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') thermal_process = LanguageBindThermalProcessor(model.config, tokenizer) model.eval() data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Depth ```python import torch from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Depth' model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') depth_process = LanguageBindDepthProcessor(model.config, tokenizer) model.eval() data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Video ```python import torch from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Video_FT' # also 'LanguageBind/LanguageBind_Video' model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') video_process = LanguageBindVideoProcessor(model.config, tokenizer) model.eval() data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Audio ```python import torch from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Audio_FT' # also 'LanguageBind/LanguageBind_Audio' model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') audio_process = LanguageBindAudioProcessor(model.config, tokenizer) model.eval() data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Image Note that our image encoder is the same as OpenCLIP. **Not** as fine-tuned as other modalities. ```python import torch from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Image' model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') image_process = LanguageBindImageProcessor(model.config, tokenizer) model.eval() data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` ## 💥 VIDAL-10M The datasets is in [DATASETS.md](DATASETS.md). ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## 👍 Acknowledgement * [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework. * [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework. * [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images. * [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images. ## 🔒 License * The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file. * The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan}, year={2023}, eprint={2310.01852}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/LanguageBind&type=Date)](https://star-history.com/#PKU-YuanGroup/LanguageBind&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/LanguageBind/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/LanguageBind" /> </a>
LanguageBind/LanguageBind_Audio_FT
LanguageBind
2024-02-01T06:56:41Z
5,296
1
transformers
[ "transformers", "pytorch", "LanguageBindAudio", "zero-shot-image-classification", "arxiv:2310.01852", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-11-26T07:37:41Z
--- license: mit --- <p align="center"> <img src="https://s11.ax1x.com/2024/02/01/pFMDAm9.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/pdf/2310.01852.pdf">【ICLR 2024 🔥】LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> ## 📰 News * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.16]** 🔥🔥🔥 Our LanguageBind has been accepted at ICLR 2024! We earn the score of 6(3)8(6)6(6)6(6) [here](https://openreview.net/forum?id=QmZKc7UZCy&noteId=OgsxQxAleA). * **[2023.12.15]** 💪💪💪 We expand the 💥💥💥 VIDAL dataset and now have **10M video-text data**. We launch **LanguageBind_Video 1.5**, checking our [model zoo](#-model-zoo). * **[2023.12.10]** We expand the 💥💥💥 VIDAL dataset and now have **10M depth and 10M thermal data**. We are in the process of uploading thermal and depth data on [Hugging Face](https://huggingface.co/datasets/LanguageBind/VIDAL-Depth-Thermal) and expect the whole process to last 1-2 months. * **[2023.11.27]** 🔥🔥🔥 We have updated our [paper](https://arxiv.org/abs/2310.01852) with emergency zero-shot results., checking our ✨ [results](#emergency-results). * **[2023.11.26]** 💥💥💥 We have open-sourced all textual sources and corresponding YouTube IDs [here](DATASETS.md). * **[2023.11.26]** 📣📣📣 We have open-sourced fully fine-tuned **Video & Audio**, achieving improved performance once again, checking our [model zoo](#-model-zoo). * **[2023.11.22]** We are about to release a fully fine-tuned version, and the **HUGE** version is currently undergoing training. * **[2023.11.21]** 💥 We are releasing sample data in [DATASETS.md](DATASETS.md) so that individuals who are interested can further modify the code to train it on their own data. * **[2023.11.20]** 🚀🚀🚀 [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) builds a large visual-language model to achieve 🎉SOTA performances based on LanguageBind encoders. * **[2023.10.23]** 🎶 LanguageBind-Audio achieves 🎉🎉🎉**state-of-the-art (SOTA) performance on 5 datasets**, checking our ✨ [results](#multiple-modalities)! * **[2023.10.14]** 😱 Released a stronger LanguageBind-Video, checking our ✨ [results](#video-language)! The video checkpoint **have updated** on Huggingface Model Hub! * **[2023.10.10]** We provide sample data, which can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described. * **[2023.10.07]** The checkpoints are available on 🤗 [Huggingface Model](https://huggingface.co/LanguageBind). * **[2023.10.04]** Code and [demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights ### 💡 High performance, but NO intermediate modality required LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics. * The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities. ### ⚡️ A multimodal, fully aligned and voluminous dataset We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities. * The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language. ### 🔥 Multi-view enhanced description for training We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language. ## 🤗 Demo * **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind. ```bash python gradio_app.py ``` * **Online demo.** We provide the [online demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image. ## 🛠️ Requirements and Installation * Python >= 3.8 * Pytorch >= 1.13.1 * CUDA Version >= 11.6 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/LanguageBind cd LanguageBind pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` ## 🐳 Model Zoo The names in the table represent different encoder models. For example, `LanguageBind/LanguageBind_Video_FT` represents the fully fine-tuned version, while `LanguageBind/LanguageBind_Video` represents the LoRA-tuned version. You can freely replace them in the recommended [API usage](#-api). We recommend using the fully fine-tuned version, as it offers stronger performance. <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Modality</th><th>LoRA tuning</th><th>Fine-tuning</th> </tr> <tr align="center"> <td>Video</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">LanguageBind_Video</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">LanguageBind_Video_FT</a></td> </tr> <tr align="center"> <td>Audio</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio">LanguageBind_Audio</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio_FT">LanguageBind_Audio_FT</a></td> </tr> <tr align="center"> <td>Depth</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Depth">LanguageBind_Depth</a></td><td>-</td> </tr> <tr align="center"> <td>Thermal</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Thermal">LanguageBind_Thermal</a></td><td>-</td> </tr> </table> </div> <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Version</th><th>Tuning</th><th>Model size</th><th>Num_frames</th><th>HF Link</th><th>MSR-VTT</th><th>DiDeMo</th><th>ActivityNet</th><th>MSVD</th> </tr> <tr align="center"> <td>LanguageBind_Video</td><td>LoRA</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">Link</a></td><td>42.6</td><td>37.8</td><td>35.1</td><td>52.2</td> </tr> <tr align="center"> <td>LanguageBind_Video_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">Link</a></td><td>42.7</td><td>38.1</td><td>36.9</td><td>53.5</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_V1.5_FT">Link</a></td><td>42.8</td><td>39.7</td><td>38.4</td><td>54.1</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>12</td><td>Coming soon</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_Huge_V1.5_FT">Link</a></td><td>44.8</td><td>39.9</td><td>41.0</td><td>53.7</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>12</td><td>Coming soon</td> </tr> </table> </div> ## 🤖 API **We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets! ### Inference for Multi-modal Binding We have provided some sample datasets in [assets](assets) to quickly see how languagebind works. ```python import torch from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer if __name__ == '__main__': device = 'cuda:0' device = torch.device(device) clip_type = { 'video': 'LanguageBind_Video_FT', # also LanguageBind_Video 'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio 'thermal': 'LanguageBind_Thermal', 'image': 'LanguageBind_Image', 'depth': 'LanguageBind_Depth', } model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir') model = model.to(device) model.eval() pretrained_ckpt = f'lb203/LanguageBind_Image' tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir') modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type.keys()} image = ['assets/image/0.jpg', 'assets/image/1.jpg'] audio = ['assets/audio/0.wav', 'assets/audio/1.wav'] video = ['assets/video/0.mp4', 'assets/video/1.mp4'] depth = ['assets/depth/0.png', 'assets/depth/1.png'] thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg'] language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.'] inputs = { 'image': to_device(modality_transform['image'](image), device), 'video': to_device(modality_transform['video'](video), device), 'audio': to_device(modality_transform['audio'](audio), device), 'depth': to_device(modality_transform['depth'](depth), device), 'thermal': to_device(modality_transform['thermal'](thermal), device), } inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length', truncation=True, return_tensors='pt'), device) with torch.no_grad(): embeddings = model(inputs) print("Video x Text: \n", torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Image x Text: \n", torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Depth x Text: \n", torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Audio x Text: \n", torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Thermal x Text: \n", torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) ``` Then returns the following result. ```bash Video x Text: [[9.9989331e-01 1.0667283e-04] [1.3255903e-03 9.9867439e-01]] Image x Text: [[9.9990666e-01 9.3292067e-05] [4.6132666e-08 1.0000000e+00]] Depth x Text: [[0.9954276 0.00457235] [0.12042473 0.8795753 ]] Audio x Text: [[0.97634876 0.02365119] [0.02917843 0.97082156]] Thermal x Text: [[0.9482511 0.0517489 ] [0.48746133 0.5125386 ]] ``` ### Emergency zero-shot Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use. ```python print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy()) print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy()) print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy()) ``` Then, you will get: ``` Video x Audio: [[1.0000000e+00 0.0000000e+00] [3.1150486e-32 1.0000000e+00]] Image x Depth: [[1. 0.] [0. 1.]] Image x Thermal: [[1. 0.] [0. 1.]] ``` ### Different branches for X-Language task Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP. #### Thermal ```python import torch from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal' model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') thermal_process = LanguageBindThermalProcessor(model.config, tokenizer) model.eval() data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Depth ```python import torch from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Depth' model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') depth_process = LanguageBindDepthProcessor(model.config, tokenizer) model.eval() data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Video ```python import torch from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Video_FT' # also 'LanguageBind/LanguageBind_Video' model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') video_process = LanguageBindVideoProcessor(model.config, tokenizer) model.eval() data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Audio ```python import torch from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Audio_FT' # also 'LanguageBind/LanguageBind_Audio' model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') audio_process = LanguageBindAudioProcessor(model.config, tokenizer) model.eval() data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Image Note that our image encoder is the same as OpenCLIP. **Not** as fine-tuned as other modalities. ```python import torch from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Image' model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') image_process = LanguageBindImageProcessor(model.config, tokenizer) model.eval() data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` ## 💥 VIDAL-10M The datasets is in [DATASETS.md](DATASETS.md). ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## 👍 Acknowledgement * [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework. * [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework. * [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images. * [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images. ## 🔒 License * The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file. * The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan}, year={2023}, eprint={2310.01852}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/LanguageBind&type=Date)](https://star-history.com/#PKU-YuanGroup/LanguageBind&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/LanguageBind/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/LanguageBind" /> </a>
dong9ry/nuclear-v1.0b
dong9ry
2024-02-01T06:56:38Z
89
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-01T06:54:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: nuclear-v1.0b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nuclear-v1.0b This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2
LanguageBind/LanguageBind_Video_Huge_V1.5_FT
LanguageBind
2024-02-01T06:56:30Z
76
4
transformers
[ "transformers", "pytorch", "LanguageBindVideo", "zero-shot-image-classification", "arxiv:2310.01852", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-12-15T01:43:47Z
--- license: mit --- <p align="center"> <img src="https://s11.ax1x.com/2024/02/01/pFMDAm9.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/pdf/2310.01852.pdf">【ICLR 2024 🔥】LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> ## 📰 News * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.16]** 🔥🔥🔥 Our LanguageBind has been accepted at ICLR 2024! We earn the score of 6(3)8(6)6(6)6(6) [here](https://openreview.net/forum?id=QmZKc7UZCy&noteId=OgsxQxAleA). * **[2023.12.15]** 💪💪💪 We expand the 💥💥💥 VIDAL dataset and now have **10M video-text data**. We launch **LanguageBind_Video 1.5**, checking our [model zoo](#-model-zoo). * **[2023.12.10]** We expand the 💥💥💥 VIDAL dataset and now have **10M depth and 10M thermal data**. We are in the process of uploading thermal and depth data on [Hugging Face](https://huggingface.co/datasets/LanguageBind/VIDAL-Depth-Thermal) and expect the whole process to last 1-2 months. * **[2023.11.27]** 🔥🔥🔥 We have updated our [paper](https://arxiv.org/abs/2310.01852) with emergency zero-shot results., checking our ✨ [results](#emergency-results). * **[2023.11.26]** 💥💥💥 We have open-sourced all textual sources and corresponding YouTube IDs [here](DATASETS.md). * **[2023.11.26]** 📣📣📣 We have open-sourced fully fine-tuned **Video & Audio**, achieving improved performance once again, checking our [model zoo](#-model-zoo). * **[2023.11.22]** We are about to release a fully fine-tuned version, and the **HUGE** version is currently undergoing training. * **[2023.11.21]** 💥 We are releasing sample data in [DATASETS.md](DATASETS.md) so that individuals who are interested can further modify the code to train it on their own data. * **[2023.11.20]** 🚀🚀🚀 [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) builds a large visual-language model to achieve 🎉SOTA performances based on LanguageBind encoders. * **[2023.10.23]** 🎶 LanguageBind-Audio achieves 🎉🎉🎉**state-of-the-art (SOTA) performance on 5 datasets**, checking our ✨ [results](#multiple-modalities)! * **[2023.10.14]** 😱 Released a stronger LanguageBind-Video, checking our ✨ [results](#video-language)! The video checkpoint **have updated** on Huggingface Model Hub! * **[2023.10.10]** We provide sample data, which can be found in [assets](assets), and [emergency zero-shot usage](#emergency-zero-shot) is described. * **[2023.10.07]** The checkpoints are available on 🤗 [Huggingface Model](https://huggingface.co/LanguageBind). * **[2023.10.04]** Code and [demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights ### 💡 High performance, but NO intermediate modality required LanguageBind is a **language-centric** multimodal pretraining approach, **taking the language as the bind across different modalities** because the language modality is well-explored and contains rich semantics. * The following first figure shows the architecture of LanguageBind. LanguageBind can be easily extended to segmentation, detection tasks, and potentially to unlimited modalities. ### ⚡️ A multimodal, fully aligned and voluminous dataset We propose **VIDAL-10M**, **10 Million data** with **V**ideo, **I**nfrared, **D**epth, **A**udio and their corresponding **L**anguage, which greatly expands the data beyond visual modalities. * The second figure shows our proposed VIDAL-10M dataset, which includes five modalities: video, infrared, depth, audio, and language. ### 🔥 Multi-view enhanced description for training We make multi-view enhancements to language. We produce multi-view description that combines **meta-data**, **spatial**, and **temporal** to greatly enhance the semantic information of the language. In addition we further **enhance the language with ChatGPT** to create a good semantic space for each modality aligned language. ## 🤗 Demo * **Local demo.** Highly recommend trying out our web demo, which incorporates all features currently supported by LanguageBind. ```bash python gradio_app.py ``` * **Online demo.** We provide the [online demo](https://huggingface.co/spaces/LanguageBind/LanguageBind) in Huggingface Spaces. In this demo, you can calculate the similarity of modalities to language, such as audio-to-language, video-to-language, and depth-to-image. ## 🛠️ Requirements and Installation * Python >= 3.8 * Pytorch >= 1.13.1 * CUDA Version >= 11.6 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/LanguageBind cd LanguageBind pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` ## 🐳 Model Zoo The names in the table represent different encoder models. For example, `LanguageBind/LanguageBind_Video_FT` represents the fully fine-tuned version, while `LanguageBind/LanguageBind_Video` represents the LoRA-tuned version. You can freely replace them in the recommended [API usage](#-api). We recommend using the fully fine-tuned version, as it offers stronger performance. <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Modality</th><th>LoRA tuning</th><th>Fine-tuning</th> </tr> <tr align="center"> <td>Video</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">LanguageBind_Video</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">LanguageBind_Video_FT</a></td> </tr> <tr align="center"> <td>Audio</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio">LanguageBind_Audio</a></td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Audio_FT">LanguageBind_Audio_FT</a></td> </tr> <tr align="center"> <td>Depth</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Depth">LanguageBind_Depth</a></td><td>-</td> </tr> <tr align="center"> <td>Thermal</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Thermal">LanguageBind_Thermal</a></td><td>-</td> </tr> </table> </div> <div align="center"> <table border="1" width="100%"> <tr align="center"> <th>Version</th><th>Tuning</th><th>Model size</th><th>Num_frames</th><th>HF Link</th><th>MSR-VTT</th><th>DiDeMo</th><th>ActivityNet</th><th>MSVD</th> </tr> <tr align="center"> <td>LanguageBind_Video</td><td>LoRA</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video">Link</a></td><td>42.6</td><td>37.8</td><td>35.1</td><td>52.2</td> </tr> <tr align="center"> <td>LanguageBind_Video_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_FT">Link</a></td><td>42.7</td><td>38.1</td><td>36.9</td><td>53.5</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_V1.5_FT">Link</a></td><td>42.8</td><td>39.7</td><td>38.4</td><td>54.1</td> </tr> <tr align="center"> <td>LanguageBind_Video_V1.5_FT</td><td>Full-tuning</td><td>Large</td><td>12</td><td>Coming soon</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>8</td><td><a href="https://huggingface.co/LanguageBind/LanguageBind_Video_Huge_V1.5_FT">Link</a></td><td>44.8</td><td>39.9</td><td>41.0</td><td>53.7</td> </tr> <tr align="center"> <td>LanguageBind_Video_Huge_V1.5_FT</td><td>Full-tuning</td><td>Huge</td><td>12</td><td>Coming soon</td> </tr> </table> </div> ## 🤖 API **We open source all modalities preprocessing code.** If you want to load the model (e.g. ```LanguageBind/LanguageBind_Thermal```) from the model hub on Huggingface or on local, you can use the following code snippets! ### Inference for Multi-modal Binding We have provided some sample datasets in [assets](assets) to quickly see how languagebind works. ```python import torch from languagebind import LanguageBind, to_device, transform_dict, LanguageBindImageTokenizer if __name__ == '__main__': device = 'cuda:0' device = torch.device(device) clip_type = { 'video': 'LanguageBind_Video_FT', # also LanguageBind_Video 'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio 'thermal': 'LanguageBind_Thermal', 'image': 'LanguageBind_Image', 'depth': 'LanguageBind_Depth', } model = LanguageBind(clip_type=clip_type, cache_dir='./cache_dir') model = model.to(device) model.eval() pretrained_ckpt = f'lb203/LanguageBind_Image' tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir') modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type.keys()} image = ['assets/image/0.jpg', 'assets/image/1.jpg'] audio = ['assets/audio/0.wav', 'assets/audio/1.wav'] video = ['assets/video/0.mp4', 'assets/video/1.mp4'] depth = ['assets/depth/0.png', 'assets/depth/1.png'] thermal = ['assets/thermal/0.jpg', 'assets/thermal/1.jpg'] language = ["Training a parakeet to climb up a ladder.", 'A lion climbing a tree to catch a monkey.'] inputs = { 'image': to_device(modality_transform['image'](image), device), 'video': to_device(modality_transform['video'](video), device), 'audio': to_device(modality_transform['audio'](audio), device), 'depth': to_device(modality_transform['depth'](depth), device), 'thermal': to_device(modality_transform['thermal'](thermal), device), } inputs['language'] = to_device(tokenizer(language, max_length=77, padding='max_length', truncation=True, return_tensors='pt'), device) with torch.no_grad(): embeddings = model(inputs) print("Video x Text: \n", torch.softmax(embeddings['video'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Image x Text: \n", torch.softmax(embeddings['image'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Depth x Text: \n", torch.softmax(embeddings['depth'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Audio x Text: \n", torch.softmax(embeddings['audio'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) print("Thermal x Text: \n", torch.softmax(embeddings['thermal'] @ embeddings['language'].T, dim=-1).detach().cpu().numpy()) ``` Then returns the following result. ```bash Video x Text: [[9.9989331e-01 1.0667283e-04] [1.3255903e-03 9.9867439e-01]] Image x Text: [[9.9990666e-01 9.3292067e-05] [4.6132666e-08 1.0000000e+00]] Depth x Text: [[0.9954276 0.00457235] [0.12042473 0.8795753 ]] Audio x Text: [[0.97634876 0.02365119] [0.02917843 0.97082156]] Thermal x Text: [[0.9482511 0.0517489 ] [0.48746133 0.5125386 ]] ``` ### Emergency zero-shot Since languagebind binds each modality together, we also found the **emergency zero-shot**. It's very simple to use. ```python print("Video x Audio: \n", torch.softmax(embeddings['video'] @ embeddings['audio'].T, dim=-1).detach().cpu().numpy()) print("Image x Depth: \n", torch.softmax(embeddings['image'] @ embeddings['depth'].T, dim=-1).detach().cpu().numpy()) print("Image x Thermal: \n", torch.softmax(embeddings['image'] @ embeddings['thermal'].T, dim=-1).detach().cpu().numpy()) ``` Then, you will get: ``` Video x Audio: [[1.0000000e+00 0.0000000e+00] [3.1150486e-32 1.0000000e+00]] Image x Depth: [[1. 0.] [0. 1.]] Image x Thermal: [[1. 0.] [0. 1.]] ``` ### Different branches for X-Language task Additionally, LanguageBind can be **disassembled into different branches** to handle different tasks. Note that we do not train Image, which just initialize from OpenCLIP. #### Thermal ```python import torch from languagebind import LanguageBindThermal, LanguageBindThermalTokenizer, LanguageBindThermalProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Thermal' model = LanguageBindThermal.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindThermalTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') thermal_process = LanguageBindThermalProcessor(model.config, tokenizer) model.eval() data = thermal_process([r"your/thermal.jpg"], ['your text'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Depth ```python import torch from languagebind import LanguageBindDepth, LanguageBindDepthTokenizer, LanguageBindDepthProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Depth' model = LanguageBindDepth.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindDepthTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') depth_process = LanguageBindDepthProcessor(model.config, tokenizer) model.eval() data = depth_process([r"your/depth.png"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Video ```python import torch from languagebind import LanguageBindVideo, LanguageBindVideoTokenizer, LanguageBindVideoProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Video_FT' # also 'LanguageBind/LanguageBind_Video' model = LanguageBindVideo.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindVideoTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') video_process = LanguageBindVideoProcessor(model.config, tokenizer) model.eval() data = video_process(["your/video.mp4"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Audio ```python import torch from languagebind import LanguageBindAudio, LanguageBindAudioTokenizer, LanguageBindAudioProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Audio_FT' # also 'LanguageBind/LanguageBind_Audio' model = LanguageBindAudio.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindAudioTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') audio_process = LanguageBindAudioProcessor(model.config, tokenizer) model.eval() data = audio_process([r"your/audio.wav"], ['your audio.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` #### Image Note that our image encoder is the same as OpenCLIP. **Not** as fine-tuned as other modalities. ```python import torch from languagebind import LanguageBindImage, LanguageBindImageTokenizer, LanguageBindImageProcessor pretrained_ckpt = 'LanguageBind/LanguageBind_Image' model = LanguageBindImage.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir') image_process = LanguageBindImageProcessor(model.config, tokenizer) model.eval() data = image_process([r"your/image.jpg"], ['your text.'], return_tensors='pt') with torch.no_grad(): out = model(**data) print(out.text_embeds @ out.image_embeds.T) ``` ## 💥 VIDAL-10M The datasets is in [DATASETS.md](DATASETS.md). ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## 👍 Acknowledgement * [OpenCLIP](https://github.com/mlfoundations/open_clip) An open source pretraining framework. * [CLIP4Clip](https://github.com/ArrowLuo/CLIP4Clip) An open source Video-Text retrieval framework. * [sRGB-TIR](https://github.com/rpmsnu/sRGB-TIR) An open source framework to generate infrared (thermal) images. * [GLPN](https://github.com/vinvino02/GLPDepth) An open source framework to generate depth images. ## 🔒 License * The majority of this project is released under the MIT license as found in the [LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/LICENSE) file. * The dataset of this project is released under the CC-BY-NC 4.0 license as found in the [DATASET_LICENSE](https://github.com/PKU-YuanGroup/LanguageBind/blob/main/DATASET_LICENSE) file. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Bin Zhu and Bin Lin and Munan Ning and Yang Yan and Jiaxi Cui and Wang HongFa and Yatian Pang and Wenhao Jiang and Junwu Zhang and Zongwei Li and Cai Wan Zhang and Zhifeng Li and Wei Liu and Li Yuan}, year={2023}, eprint={2310.01852}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/LanguageBind&type=Date)](https://star-history.com/#PKU-YuanGroup/LanguageBind&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/LanguageBind/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/LanguageBind" /> </a>
LanguageBind/Video-LLaVA-Pretrain-7B
LanguageBind
2024-02-01T06:52:24Z
33
10
transformers
[ "transformers", "llava", "text-generation", "arxiv:2311.10122", "arxiv:2310.01852", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-11-17T05:07:08Z
--- license: apache-2.0 --- <p align="center"> <img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> ## 📰 News * **[2024.01.27]** 👀👀👀 Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters. * **[2024.01.17]** 🔥🔥🔥 Our [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) has been accepted at ICLR 2024! * **[2024.01.16]** 🔥🔥🔥 We reorganize the code and support LoRA fine-tuning, checking [finetune_lora.sh](scripts/v1_5/finetune_lora.sh). * **[2023.11.30]** 🤝 Thanks to the generous contributions of the community, the [OpenXLab's demo](https://openxlab.org.cn/apps/detail/houshaowei/Video-LLaVA) is now accessible. * **[2023.11.23]** We are training a new and powerful model. * **[2023.11.21]** 🤝 Check out the [replicate demo](https://replicate.com/nateraw/video-llava), created by [@nateraw](https://github.com/nateraw), who has generously supported our research! * **[2023.11.20]** 🤗 [Hugging Face demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset. ### 💡 Simple baseline, learning united visual representation by alignment before projection - With **the binding of unified visual representations to the language feature space**, we enable an LLM to perform visual reasoning capabilities on both images and videos simultaneously. ### 🔥 High performance, complementary learning with video and image - Extensive experiments demonstrate **the complementarity of modalities**, showcasing significant superiority when compared to models specifically designed for either images or videos. ## 🤗 Demo ### Gradio Web UI Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) in Huggingface Spaces. ```bash python -m videollava.serve.gradio_web_server ``` ### CLI Inference ```bash python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit ``` ```bash python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit ``` ## 🛠️ Requirements and Installation * Python >= 3.10 * Pytorch == 2.0.1 * CUDA Version >= 11.7 * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/Video-LLaVA cd Video-LLaVA conda create -n videollava python=3.10 -y conda activate videollava pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d ``` ## 🤖 API **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/Video-LLaVA-7B```) on local, you can use the following code snippets. ### Inference for image ```python import torch from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from videollava.conversation import conv_templates, SeparatorStyle from videollava.model.builder import load_pretrained_model from videollava.utils import disable_torch_init from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'videollava/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/Video-LLaVA-7B' cache_dir = 'cache_dir' device = 'cuda' load_4bit, load_8bit = True, False model_name = get_model_name_from_path(model_path) tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir) image_processor = processor['image'] conv_mode = "llava_v1" conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] if type(image_tensor) is list: tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] else: tensor = image_tensor.to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() print(outputs) if __name__ == '__main__': main() ``` ### Inference for video ```python import torch from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from videollava.conversation import conv_templates, SeparatorStyle from videollava.model.builder import load_pretrained_model from videollava.utils import disable_torch_init from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() video = 'videollava/serve/examples/sample_demo_1.mp4' inp = 'Why is this video funny?' model_path = 'LanguageBind/Video-LLaVA-7B' cache_dir = 'cache_dir' device = 'cuda' load_4bit, load_8bit = True, False model_name = get_model_name_from_path(model_path) tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir) video_processor = processor['video'] conv_mode = "llava_v1" conv = conv_templates[conv_mode].copy() roles = conv.roles video_tensor = video_processor(video, return_tensors='pt')['pixel_values'] if type(video_tensor) is list: tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor] else: tensor = video_tensor.to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=tensor, do_sample=True, temperature=0.1, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() print(outputs) if __name__ == '__main__': main() ``` ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md). ## 👍 Acknowledgement * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. * [Video-ChatGPT](https://github.com/mbzuai-oryx/Video-ChatGPT) Great job contributing the evaluation code and dataset. ## 🙌 Related Projects * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. * [Chat-UniVi](https://github.com/PKU-YuanGroup/Chat-UniVi) This framework empowers the model to efficiently utilize a limited number of visual tokens. ## 🔒 License * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/Video-LLaVA/blob/main/LICENSE) file. * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } ``` ```BibTeX @article{zhu2023languagebind, title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment}, author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others}, journal={arXiv preprint arXiv:2310.01852}, year={2023} } ``` <!----> ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/Video-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/Video-LLaVA&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/Video-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/Video-LLaVA" /> </a>
JKuang96/pixelcopter_v2
JKuang96
2024-02-01T06:50:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-02-01T06:50:13Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: pixelcopter_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.20 +/- 21.65 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bachbouch/w-3-qlora
bachbouch
2024-02-01T06:39:33Z
0
0
peft
[ "peft", "safetensors", "mistral", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-02-01T05:29:59Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2.dev0
mkdir700/v2-starcoderbase1b-personal-copilot-A100-40GB-colab
mkdir700
2024-02-01T06:38:24Z
95
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_bigcode", "text-generation", "generated_from_trainer", "base_model:bigcode/starcoderbase-1b", "base_model:finetune:bigcode/starcoderbase-1b", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-27T01:37:56Z
--- license: bigcode-openrail-m tags: - generated_from_trainer base_model: bigcode/starcoderbase-1b model-index: - name: v2-starcoderbase1b-personal-copilot-A100-40GB-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # v2-starcoderbase1b-personal-copilot-A100-40GB-colab This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 0.1 | 100 | nan | | 0.0 | 0.2 | 200 | nan | | 0.0 | 0.3 | 300 | nan | | 0.0 | 0.4 | 400 | nan | | 0.0 | 0.5 | 500 | nan | | 0.0 | 0.6 | 600 | nan | | 0.0 | 0.7 | 700 | nan | | 0.0 | 0.8 | 800 | nan | | 0.0 | 0.9 | 900 | nan | | 0.0 | 1.0 | 1000 | nan | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
hangzou/distilroberta-base-finetuned-wikitext2
hangzou
2024-02-01T06:35:29Z
193
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-02-01T06:30:59Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 301 | 1.9451 | | 2.1463 | 2.0 | 602 | 1.9068 | | 2.1463 | 3.0 | 903 | 1.9079 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0 - Datasets 2.16.1 - Tokenizers 0.15.1
cchoi1022/librispeech-100h-supervised_not_mine
cchoi1022
2024-02-01T06:28:03Z
118
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-01T06:22:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cchoi1022/my-test-model
cchoi1022
2024-02-01T06:21:19Z
119
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-01T06:19:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hui-1/speaker_recognition-campplus-zh-en-16k-base
Hui-1
2024-02-01T06:20:57Z
0
0
null
[ "CAM++", "3D-Speaker", "Speaker Recognition & Verification", "Chinese & English", "zh", "en", "dataset:3D-Speaker", "dataset:voxceleb", "dataset:cnceleb", "license:apache-2.0", "region:us" ]
null
2024-01-31T09:42:22Z
--- language: - zh - en tags: - CAM++ - 3D-Speaker - Speaker Recognition & Verification - Chinese & English license: apache-2.0 datasets: - 3D-Speaker - voxceleb - cnceleb metrics: - EER - minDCF --- # CAM++: A Fast and Efficient Speaker Recognition Network CAM++ is a fast and efficient network based on a densely-connected time delay neural network (D-TDNN). This repository provides tools for extracting speaker embeddings and performing speaker verification tasks with a pretrained CAM++ model. It has been trained on a large-scale training dataset, which includes Chinese and English corpora.
LanguageBind/MoE-LLaVA-Qwen-Pretrain
LanguageBind
2024-02-01T06:09:47Z
18
1
transformers
[ "transformers", "llava_qwen", "text-generation", "custom_code", "arxiv:2401.15947", "arxiv:2311.10122", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2024-01-31T11:32:52Z
--- license: apache-2.0 --- <p align="center"> <img src="https://s11.ax1x.com/2023/12/28/piqvDMV.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2401.15947">MoE-LLaVA: Mixture of Experts for Large Vision-Language Models</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> <h5 align="center"> </h5> ## 📰 News * **[2024.01.30]** The [paper](https://arxiv.org/abs/2401.15947) is released. * **[2024.01.27]** 🤗[Hugging Face demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights MoE-LLaVA shows excellent performance in multi-modal learning. ### 🔥 High performance, but with fewer parameters - with just **3B sparsely activated parameters**, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks. ### 🚀 Simple baseline, learning multi-modal interactions with sparse pathways. - With the addition of **a simple MoE tuning stage**, we can complete the training of MoE-LLaVA on **8 V100 GPUs** within 2 days. ## 🤗 Demo ### Gradio Web UI Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MoE-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) in Huggingface Spaces. ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" # use qwen deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" # use stablelm deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" ``` ### CLI Inference ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" --image-file "image.jpg" # use qwen deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" --image-file "image.jpg" # use stablelm deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" --image-file "image.jpg" ``` ## 🐳 Model Zoo | Model | LLM | Checkpoint | Avg | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MM-Bench| LLaVA-Bench-Wild | MM-Vet | |----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---| | MoE-LLaVA-1.6B×4-Top2 | 1.6B | [LanguageBind/MoE-LLaVA-StableLM-1.6B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-StableLM-1.6B-4e) | 60.0 | 76.0 | 60.4 | 37.2 | 62.6 | 47.8 | 84.3 | 59.4 | 85.9 | 26.1 | | MoE-LLaVA-1.8B×4-Top2 | 1.8B | [LanguageBind/MoE-LLaVA-Qwen-1.8B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Qwen-1.8B-4e) | 60.2 | 76.2 | 61.5 | 32.6 | 63.1 | 48.0 | 87.0 | 59.6 | 88.7 | 25.3 | | MoE-LLaVA-2.7B×4-Top2 | 2.7B | [LanguageBind/MoE-LLaVA-Phi2-2.7B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Phi2-2.7B-4e) | 63.9 | 77.1 | 61.1 | 43.4 | 68.7 | 50.2 | 85.0 | 65.5 | 93.2 | 31.1 | <!-- | LLaVA-1.5 | 7B | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 62.0 | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 64.3 | 31.1 | | LLaVA-1.5 | 13B | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 64.9 | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 67.7 | 36.1 | --> ## ⚙️ Requirements and Installation * Python >= 3.10 * Pytorch == 2.0.1 * CUDA Version >= 11.7 * **Transformers == 4.36.2** * **Tokenizers==0.15.1** * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/MoE-LLaVA cd MoE-LLaVA conda create -n moellava python=3.10 -y conda activate moellava pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation # Below are optional. For Qwen model. git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # Below are optional. Installing them might be slow. # pip install csrc/layer_norm # If the version of flash-attn is higher than 2.1.1, the following is not needed. # pip install csrc/rotary ``` ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN.md](docs/TRAIN.md) & [EVAL.md](docs/EVAL.md). ## 💡 Customizing your MoE-LLaVA The instruction is in [CUSTOM.md](docs/CUSTOM.md). ## 😍 Visualization The instruction is in [VISUALIZATION.md](docs/VISUALIZATION.md). ## 🤖 API **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/MoE-LLaVA```) on local, you can use the following code snippets. **Using the following command to run the code.** ```bash deepspeed predict.py ``` ```python import torch from moellava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from moellava.conversation import conv_templates, SeparatorStyle from moellava.model.builder import load_pretrained_model from moellava.utils import disable_torch_init from moellava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'moellava/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/MoE-LLaVA-Phi2-2.7B-4e' # LanguageBind/MoE-LLaVA-Qwen-1.8B-4e or LanguageBind/MoE-LLaVA-StableLM-1.6B-4e device = 'cuda' load_4bit, load_8bit = False, False # FIXME: Deepspeed support 4bit or 8bit? model_name = get_model_name_from_path(model_path) tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device) image_processor = processor['image'] conv_mode = "phi" # qwen or stablelm conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip() print(outputs) if __name__ == '__main__': main() ``` ## 🙌 Related Projects * [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) This framework empowers the model to efficiently utilize the united visual tokens. * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. ## 👍 Acknowledgement * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. ## 🔒 License * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) file. * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{lin2024moellava, title={MoE-LLaVA: Mixture of Experts for Large Vision-Language Models}, author={Bin Lin and Zhenyu Tang and Yang Ye and Jiaxi Cui and Bin Zhu and Peng Jin and Junwu Zhang and Munan Ning and Li Yuan}, year={2024}, eprint={2401.15947}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```BibTeX @article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/MoE-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/MoE-LLaVA&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/MoE-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/MoE-LLaVA" /> </a>
LanguageBind/MoE-LLaVA-Phi2-384-Pretrain
LanguageBind
2024-02-01T06:09:39Z
14
0
transformers
[ "transformers", "llava_phi", "text-generation", "custom_code", "arxiv:2401.15947", "arxiv:2311.10122", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-31T11:34:09Z
--- license: apache-2.0 --- <p align="center"> <img src="https://s11.ax1x.com/2023/12/28/piqvDMV.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2401.15947">MoE-LLaVA: Mixture of Experts for Large Vision-Language Models</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> <h5 align="center"> </h5> ## 📰 News * **[2024.01.30]** The [paper](https://arxiv.org/abs/2401.15947) is released. * **[2024.01.27]** 🤗[Hugging Face demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights MoE-LLaVA shows excellent performance in multi-modal learning. ### 🔥 High performance, but with fewer parameters - with just **3B sparsely activated parameters**, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks. ### 🚀 Simple baseline, learning multi-modal interactions with sparse pathways. - With the addition of **a simple MoE tuning stage**, we can complete the training of MoE-LLaVA on **8 V100 GPUs** within 2 days. ## 🤗 Demo ### Gradio Web UI Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MoE-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) in Huggingface Spaces. ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" # use qwen deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" # use stablelm deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" ``` ### CLI Inference ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" --image-file "image.jpg" # use qwen deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" --image-file "image.jpg" # use stablelm deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" --image-file "image.jpg" ``` ## 🐳 Model Zoo | Model | LLM | Checkpoint | Avg | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MM-Bench| LLaVA-Bench-Wild | MM-Vet | |----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---| | MoE-LLaVA-1.6B×4-Top2 | 1.6B | [LanguageBind/MoE-LLaVA-StableLM-1.6B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-StableLM-1.6B-4e) | 60.0 | 76.0 | 60.4 | 37.2 | 62.6 | 47.8 | 84.3 | 59.4 | 85.9 | 26.1 | | MoE-LLaVA-1.8B×4-Top2 | 1.8B | [LanguageBind/MoE-LLaVA-Qwen-1.8B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Qwen-1.8B-4e) | 60.2 | 76.2 | 61.5 | 32.6 | 63.1 | 48.0 | 87.0 | 59.6 | 88.7 | 25.3 | | MoE-LLaVA-2.7B×4-Top2 | 2.7B | [LanguageBind/MoE-LLaVA-Phi2-2.7B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Phi2-2.7B-4e) | 63.9 | 77.1 | 61.1 | 43.4 | 68.7 | 50.2 | 85.0 | 65.5 | 93.2 | 31.1 | <!-- | LLaVA-1.5 | 7B | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 62.0 | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 64.3 | 31.1 | | LLaVA-1.5 | 13B | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 64.9 | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 67.7 | 36.1 | --> ## ⚙️ Requirements and Installation * Python >= 3.10 * Pytorch == 2.0.1 * CUDA Version >= 11.7 * **Transformers == 4.36.2** * **Tokenizers==0.15.1** * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/MoE-LLaVA cd MoE-LLaVA conda create -n moellava python=3.10 -y conda activate moellava pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation # Below are optional. For Qwen model. git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # Below are optional. Installing them might be slow. # pip install csrc/layer_norm # If the version of flash-attn is higher than 2.1.1, the following is not needed. # pip install csrc/rotary ``` ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN.md](docs/TRAIN.md) & [EVAL.md](docs/EVAL.md). ## 💡 Customizing your MoE-LLaVA The instruction is in [CUSTOM.md](docs/CUSTOM.md). ## 😍 Visualization The instruction is in [VISUALIZATION.md](docs/VISUALIZATION.md). ## 🤖 API **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/MoE-LLaVA```) on local, you can use the following code snippets. **Using the following command to run the code.** ```bash deepspeed predict.py ``` ```python import torch from moellava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from moellava.conversation import conv_templates, SeparatorStyle from moellava.model.builder import load_pretrained_model from moellava.utils import disable_torch_init from moellava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'moellava/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/MoE-LLaVA-Phi2-2.7B-4e' # LanguageBind/MoE-LLaVA-Qwen-1.8B-4e or LanguageBind/MoE-LLaVA-StableLM-1.6B-4e device = 'cuda' load_4bit, load_8bit = False, False # FIXME: Deepspeed support 4bit or 8bit? model_name = get_model_name_from_path(model_path) tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device) image_processor = processor['image'] conv_mode = "phi" # qwen or stablelm conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip() print(outputs) if __name__ == '__main__': main() ``` ## 🙌 Related Projects * [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) This framework empowers the model to efficiently utilize the united visual tokens. * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. ## 👍 Acknowledgement * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. ## 🔒 License * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) file. * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{lin2024moellava, title={MoE-LLaVA: Mixture of Experts for Large Vision-Language Models}, author={Bin Lin and Zhenyu Tang and Yang Ye and Jiaxi Cui and Bin Zhu and Peng Jin and Junwu Zhang and Munan Ning and Li Yuan}, year={2024}, eprint={2401.15947}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```BibTeX @article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/MoE-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/MoE-LLaVA&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/MoE-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/MoE-LLaVA" /> </a>
LanguageBind/MoE-LLaVA-Qwen-1.8B-4e
LanguageBind
2024-02-01T06:09:13Z
199
13
transformers
[ "transformers", "pytorch", "moe_llava_qwen", "text-generation", "custom_code", "arxiv:2401.15947", "arxiv:2311.10122", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T13:50:43Z
--- license: apache-2.0 --- <p align="center"> <img src="https://s11.ax1x.com/2023/12/28/piqvDMV.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2401.15947">MoE-LLaVA: Mixture of Experts for Large Vision-Language Models</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> <h5 align="center"> </h5> ## 📰 News * **[2024.01.30]** The [paper](https://arxiv.org/abs/2401.15947) is released. * **[2024.01.27]** 🤗[Hugging Face demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights MoE-LLaVA shows excellent performance in multi-modal learning. ### 🔥 High performance, but with fewer parameters - with just **3B sparsely activated parameters**, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks. ### 🚀 Simple baseline, learning multi-modal interactions with sparse pathways. - With the addition of **a simple MoE tuning stage**, we can complete the training of MoE-LLaVA on **8 V100 GPUs** within 2 days. ## 🤗 Demo ### Gradio Web UI Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MoE-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) in Huggingface Spaces. ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" # use qwen deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" # use stablelm deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" ``` ### CLI Inference ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" --image-file "image.jpg" # use qwen deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" --image-file "image.jpg" # use stablelm deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" --image-file "image.jpg" ``` ## 🐳 Model Zoo | Model | LLM | Checkpoint | Avg | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MM-Bench| LLaVA-Bench-Wild | MM-Vet | |----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---| | MoE-LLaVA-1.6B×4-Top2 | 1.6B | [LanguageBind/MoE-LLaVA-StableLM-1.6B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-StableLM-1.6B-4e) | 60.0 | 76.0 | 60.4 | 37.2 | 62.6 | 47.8 | 84.3 | 59.4 | 85.9 | 26.1 | | MoE-LLaVA-1.8B×4-Top2 | 1.8B | [LanguageBind/MoE-LLaVA-Qwen-1.8B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Qwen-1.8B-4e) | 60.2 | 76.2 | 61.5 | 32.6 | 63.1 | 48.0 | 87.0 | 59.6 | 88.7 | 25.3 | | MoE-LLaVA-2.7B×4-Top2 | 2.7B | [LanguageBind/MoE-LLaVA-Phi2-2.7B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Phi2-2.7B-4e) | 63.9 | 77.1 | 61.1 | 43.4 | 68.7 | 50.2 | 85.0 | 65.5 | 93.2 | 31.1 | <!-- | LLaVA-1.5 | 7B | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 62.0 | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 64.3 | 31.1 | | LLaVA-1.5 | 13B | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 64.9 | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 67.7 | 36.1 | --> ## ⚙️ Requirements and Installation * Python >= 3.10 * Pytorch == 2.0.1 * CUDA Version >= 11.7 * **Transformers == 4.36.2** * **Tokenizers==0.15.1** * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/MoE-LLaVA cd MoE-LLaVA conda create -n moellava python=3.10 -y conda activate moellava pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation # Below are optional. For Qwen model. git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # Below are optional. Installing them might be slow. # pip install csrc/layer_norm # If the version of flash-attn is higher than 2.1.1, the following is not needed. # pip install csrc/rotary ``` ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN.md](docs/TRAIN.md) & [EVAL.md](docs/EVAL.md). ## 💡 Customizing your MoE-LLaVA The instruction is in [CUSTOM.md](docs/CUSTOM.md). ## 😍 Visualization The instruction is in [VISUALIZATION.md](docs/VISUALIZATION.md). ## 🤖 API **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/MoE-LLaVA```) on local, you can use the following code snippets. **Using the following command to run the code.** ```bash deepspeed predict.py ``` ```python import torch from moellava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from moellava.conversation import conv_templates, SeparatorStyle from moellava.model.builder import load_pretrained_model from moellava.utils import disable_torch_init from moellava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'moellava/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/MoE-LLaVA-Phi2-2.7B-4e' # LanguageBind/MoE-LLaVA-Qwen-1.8B-4e or LanguageBind/MoE-LLaVA-StableLM-1.6B-4e device = 'cuda' load_4bit, load_8bit = False, False # FIXME: Deepspeed support 4bit or 8bit? model_name = get_model_name_from_path(model_path) tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device) image_processor = processor['image'] conv_mode = "phi" # qwen or stablelm conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip() print(outputs) if __name__ == '__main__': main() ``` ## 🙌 Related Projects * [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) This framework empowers the model to efficiently utilize the united visual tokens. * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. ## 👍 Acknowledgement * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. ## 🔒 License * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) file. * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{lin2024moellava, title={MoE-LLaVA: Mixture of Experts for Large Vision-Language Models}, author={Bin Lin and Zhenyu Tang and Yang Ye and Jiaxi Cui and Bin Zhu and Peng Jin and Junwu Zhang and Munan Ning and Li Yuan}, year={2024}, eprint={2401.15947}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```BibTeX @article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/MoE-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/MoE-LLaVA&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/MoE-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/MoE-LLaVA" /> </a>
LanguageBind/MoE-LLaVA-Phi2-2.7B-4e-384
LanguageBind
2024-02-01T06:08:50Z
1,014
32
transformers
[ "transformers", "safetensors", "moe_llava_phi", "text-generation", "custom_code", "arxiv:2401.15947", "arxiv:2311.10122", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-30T14:15:24Z
--- license: apache-2.0 --- <p align="center"> <img src="https://s11.ax1x.com/2023/12/28/piqvDMV.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2401.15947">MoE-LLaVA: Mixture of Experts for Large Vision-Language Models</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> <h5 align="center"> </h5> ## 📰 News * **[2024.01.30]** The [paper](https://arxiv.org/abs/2401.15947) is released. * **[2024.01.27]** 🤗[Hugging Face demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights MoE-LLaVA shows excellent performance in multi-modal learning. ### 🔥 High performance, but with fewer parameters - with just **3B sparsely activated parameters**, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks. ### 🚀 Simple baseline, learning multi-modal interactions with sparse pathways. - With the addition of **a simple MoE tuning stage**, we can complete the training of MoE-LLaVA on **8 V100 GPUs** within 2 days. ## 🤗 Demo ### Gradio Web UI Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MoE-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) in Huggingface Spaces. ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" # use qwen deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" # use stablelm deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" ``` ### CLI Inference ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" --image-file "image.jpg" # use qwen deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" --image-file "image.jpg" # use stablelm deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" --image-file "image.jpg" ``` ## 🐳 Model Zoo | Model | LLM | Checkpoint | Avg | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MM-Bench| LLaVA-Bench-Wild | MM-Vet | |----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---| | MoE-LLaVA-1.6B×4-Top2 | 1.6B | [LanguageBind/MoE-LLaVA-StableLM-1.6B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-StableLM-1.6B-4e) | 60.0 | 76.0 | 60.4 | 37.2 | 62.6 | 47.8 | 84.3 | 59.4 | 85.9 | 26.1 | | MoE-LLaVA-1.8B×4-Top2 | 1.8B | [LanguageBind/MoE-LLaVA-Qwen-1.8B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Qwen-1.8B-4e) | 60.2 | 76.2 | 61.5 | 32.6 | 63.1 | 48.0 | 87.0 | 59.6 | 88.7 | 25.3 | | MoE-LLaVA-2.7B×4-Top2 | 2.7B | [LanguageBind/MoE-LLaVA-Phi2-2.7B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Phi2-2.7B-4e) | 63.9 | 77.1 | 61.1 | 43.4 | 68.7 | 50.2 | 85.0 | 65.5 | 93.2 | 31.1 | <!-- | LLaVA-1.5 | 7B | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 62.0 | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 64.3 | 31.1 | | LLaVA-1.5 | 13B | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 64.9 | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 67.7 | 36.1 | --> ## ⚙️ Requirements and Installation * Python >= 3.10 * Pytorch == 2.0.1 * CUDA Version >= 11.7 * **Transformers == 4.36.2** * **Tokenizers==0.15.1** * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/MoE-LLaVA cd MoE-LLaVA conda create -n moellava python=3.10 -y conda activate moellava pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation # Below are optional. For Qwen model. git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # Below are optional. Installing them might be slow. # pip install csrc/layer_norm # If the version of flash-attn is higher than 2.1.1, the following is not needed. # pip install csrc/rotary ``` ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN.md](docs/TRAIN.md) & [EVAL.md](docs/EVAL.md). ## 💡 Customizing your MoE-LLaVA The instruction is in [CUSTOM.md](docs/CUSTOM.md). ## 😍 Visualization The instruction is in [VISUALIZATION.md](docs/VISUALIZATION.md). ## 🤖 API **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/MoE-LLaVA```) on local, you can use the following code snippets. **Using the following command to run the code.** ```bash deepspeed predict.py ``` ```python import torch from moellava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from moellava.conversation import conv_templates, SeparatorStyle from moellava.model.builder import load_pretrained_model from moellava.utils import disable_torch_init from moellava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'moellava/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/MoE-LLaVA-Phi2-2.7B-4e' # LanguageBind/MoE-LLaVA-Qwen-1.8B-4e or LanguageBind/MoE-LLaVA-StableLM-1.6B-4e device = 'cuda' load_4bit, load_8bit = False, False # FIXME: Deepspeed support 4bit or 8bit? model_name = get_model_name_from_path(model_path) tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device) image_processor = processor['image'] conv_mode = "phi" # qwen or stablelm conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip() print(outputs) if __name__ == '__main__': main() ``` ## 🙌 Related Projects * [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) This framework empowers the model to efficiently utilize the united visual tokens. * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. ## 👍 Acknowledgement * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. ## 🔒 License * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) file. * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{lin2024moellava, title={MoE-LLaVA: Mixture of Experts for Large Vision-Language Models}, author={Bin Lin and Zhenyu Tang and Yang Ye and Jiaxi Cui and Bin Zhu and Peng Jin and Junwu Zhang and Munan Ning and Li Yuan}, year={2024}, eprint={2401.15947}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```BibTeX @article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/MoE-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/MoE-LLaVA&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/MoE-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/MoE-LLaVA" /> </a>
LanguageBind/MoE-LLaVA-StableLM-1.6B-4e
LanguageBind
2024-02-01T06:08:34Z
2,277
8
transformers
[ "transformers", "safetensors", "moe_llava_stablelm", "text-generation", "custom_code", "arxiv:2401.15947", "arxiv:2311.10122", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T06:49:18Z
--- license: apache-2.0 --- <p align="center"> <img src="https://s11.ax1x.com/2023/12/28/piqvDMV.png" width="250" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2401.15947">MoE-LLaVA: Mixture of Experts for Large Vision-Language Models</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> <h5 align="center"> </h5> ## 📰 News * **[2024.01.30]** The [paper](https://arxiv.org/abs/2401.15947) is released. * **[2024.01.27]** 🤗[Hugging Face demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** 👀 this repository for the latest updates. ## 😮 Highlights MoE-LLaVA shows excellent performance in multi-modal learning. ### 🔥 High performance, but with fewer parameters - with just **3B sparsely activated parameters**, MoE-LLaVA demonstrates performance comparable to the LLaVA-1.5-7B on various visual understanding datasets and even surpasses the LLaVA-1.5-13B in object hallucination benchmarks. ### 🚀 Simple baseline, learning multi-modal interactions with sparse pathways. - With the addition of **a simple MoE tuning stage**, we can complete the training of MoE-LLaVA on **8 V100 GPUs** within 2 days. ## 🤗 Demo ### Gradio Web UI Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MoE-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/MoE-LLaVA) in Huggingface Spaces. ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" # use qwen deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" # use stablelm deepspeed --include localhost:0 moellava/serve/gradio_web_server.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" ``` ### CLI Inference ```bash # use phi2 deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Phi2-2.7B-4e" --image-file "image.jpg" # use qwen deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-Qwen-1.8B-4e" --image-file "image.jpg" # use stablelm deepspeed --include localhost:0 moellava/serve/cli.py --model-path "LanguageBind/MoE-LLaVA-StableLM-1.6B-4e" --image-file "image.jpg" ``` ## 🐳 Model Zoo | Model | LLM | Checkpoint | Avg | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MM-Bench| LLaVA-Bench-Wild | MM-Vet | |----------|-----------|-----------|---|---|---|---|---|---|---|---|---|---| | MoE-LLaVA-1.6B×4-Top2 | 1.6B | [LanguageBind/MoE-LLaVA-StableLM-1.6B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-StableLM-1.6B-4e) | 60.0 | 76.0 | 60.4 | 37.2 | 62.6 | 47.8 | 84.3 | 59.4 | 85.9 | 26.1 | | MoE-LLaVA-1.8B×4-Top2 | 1.8B | [LanguageBind/MoE-LLaVA-Qwen-1.8B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Qwen-1.8B-4e) | 60.2 | 76.2 | 61.5 | 32.6 | 63.1 | 48.0 | 87.0 | 59.6 | 88.7 | 25.3 | | MoE-LLaVA-2.7B×4-Top2 | 2.7B | [LanguageBind/MoE-LLaVA-Phi2-2.7B-4e](https://huggingface.co/LanguageBind/MoE-LLaVA-Phi2-2.7B-4e) | 63.9 | 77.1 | 61.1 | 43.4 | 68.7 | 50.2 | 85.0 | 65.5 | 93.2 | 31.1 | <!-- | LLaVA-1.5 | 7B | [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 62.0 | 78.5 | 62.0 | 50.0 | 66.8 | 58.2 | 85.9 | 64.3 | 31.1 | | LLaVA-1.5 | 13B | [liuhaotian/llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) | 64.9 | 80.0 | 63.3 | 53.6 | 71.6 | 61.3 | 85.9 | 67.7 | 36.1 | --> ## ⚙️ Requirements and Installation * Python >= 3.10 * Pytorch == 2.0.1 * CUDA Version >= 11.7 * **Transformers == 4.36.2** * **Tokenizers==0.15.1** * Install required packages: ```bash git clone https://github.com/PKU-YuanGroup/MoE-LLaVA cd MoE-LLaVA conda create -n moellava python=3.10 -y conda activate moellava pip install --upgrade pip # enable PEP 660 support pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation # Below are optional. For Qwen model. git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # Below are optional. Installing them might be slow. # pip install csrc/layer_norm # If the version of flash-attn is higher than 2.1.1, the following is not needed. # pip install csrc/rotary ``` ## 🗝️ Training & Validating The training & validating instruction is in [TRAIN.md](docs/TRAIN.md) & [EVAL.md](docs/EVAL.md). ## 💡 Customizing your MoE-LLaVA The instruction is in [CUSTOM.md](docs/CUSTOM.md). ## 😍 Visualization The instruction is in [VISUALIZATION.md](docs/VISUALIZATION.md). ## 🤖 API **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/MoE-LLaVA```) on local, you can use the following code snippets. **Using the following command to run the code.** ```bash deepspeed predict.py ``` ```python import torch from moellava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from moellava.conversation import conv_templates, SeparatorStyle from moellava.model.builder import load_pretrained_model from moellava.utils import disable_torch_init from moellava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria def main(): disable_torch_init() image = 'moellava/serve/examples/extreme_ironing.jpg' inp = 'What is unusual about this image?' model_path = 'LanguageBind/MoE-LLaVA-Phi2-2.7B-4e' # LanguageBind/MoE-LLaVA-Qwen-1.8B-4e or LanguageBind/MoE-LLaVA-StableLM-1.6B-4e device = 'cuda' load_4bit, load_8bit = False, False # FIXME: Deepspeed support 4bit or 8bit? model_name = get_model_name_from_path(model_path) tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device) image_processor = processor['image'] conv_mode = "phi" # qwen or stablelm conv = conv_templates[conv_mode].copy() roles = conv.roles image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(model.device, dtype=torch.float16) print(f"{roles[1]}: {inp}") inp = DEFAULT_IMAGE_TOKEN + '\n' + inp conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True, temperature=0.2, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip() print(outputs) if __name__ == '__main__': main() ``` ## 🙌 Related Projects * [Video-LLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) This framework empowers the model to efficiently utilize the united visual tokens. * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework. ## 👍 Acknowledgement * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant. ## 🔒 License * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE) file. * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:. ```BibTeX @misc{lin2024moellava, title={MoE-LLaVA: Mixture of Experts for Large Vision-Language Models}, author={Bin Lin and Zhenyu Tang and Yang Ye and Jiaxi Cui and Bin Zhu and Peng Jin and Junwu Zhang and Munan Ning and Li Yuan}, year={2024}, eprint={2401.15947}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```BibTeX @article{lin2023video, title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection}, author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li}, journal={arXiv preprint arXiv:2311.10122}, year={2023} } ``` ## ✨ Star History [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/MoE-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/MoE-LLaVA&Date) ## 🤝 Contributors <a href="https://github.com/PKU-YuanGroup/MoE-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/MoE-LLaVA" /> </a>
octnn/ppo-PyramidsTarget
octnn
2024-02-01T05:56:21Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-02-01T05:56:19Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: octnn/ppo-PyramidsTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
arpanl/fine-tuned
arpanl
2024-02-01T05:52:31Z
176
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-01T05:51:36Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
bartowski/DistilabelBeagle14-7B-exl2
bartowski
2024-02-01T05:48:08Z
6
0
null
[ "merge", "mergekit", "lazymergekit", "dpo", "rlhf", "rlaif", "distilabel", "text-generation", "base_model:mlabonne/Beagle14-7B", "base_model:finetune:mlabonne/Beagle14-7B", "license:cc-by-nc-4.0", "region:us" ]
text-generation
2024-02-01T05:32:02Z
--- license: cc-by-nc-4.0 base_model: mlabonne/Beagle14-7B tags: - merge - mergekit - lazymergekit - dpo - rlhf - rlaif - distilabel quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of DistilabelBeagle14-7B Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.12">turboderp's ExLlamaV2 v0.0.12</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/argilla/DistilabelBeagle14-7B | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/DistilabelBeagle14-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/DistilabelBeagle14-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/DistilabelBeagle14-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/Bartowski/DistilabelBeagle14-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/DistilabelBeagle14-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/DistilabelBeagle14-7B-exl2 DistilabelBeagle14-7B-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `DistilabelBeagle14-7B-exl2`: ```shell mkdir DistilabelBeagle14-7B-exl2 huggingface-cli download bartowski/DistilabelBeagle14-7B-exl2 --local-dir DistilabelBeagle14-7B-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir DistilabelBeagle14-7B-exl2-6_5 huggingface-cli download bartowski/DistilabelBeagle14-7B-exl2 --revision 6_5 --local-dir DistilabelBeagle14-7B-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir DistilabelBeagle14-7B-exl2-6.5 huggingface-cli download bartowski/DistilabelBeagle14-7B-exl2 --revision 6_5 --local-dir DistilabelBeagle14-7B-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
fia24/filtered_annotated100k_banglat5_v2
fia24
2024-02-01T05:48:02Z
2
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:csebuetnlp/banglat5", "base_model:finetune:csebuetnlp/banglat5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-01T03:45:10Z
--- base_model: csebuetnlp/banglat5 tags: - generated_from_trainer model-index: - name: filtered_annotated100k_banglat5_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # filtered_annotated100k_banglat5_v2 This model is a fine-tuned version of [csebuetnlp/banglat5](https://huggingface.co/csebuetnlp/banglat5) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2532 - eval_Val Accuracy: 0.9247 - eval_gen_len: 2.648 - eval_runtime: 85.2007 - eval_samples_per_second: 112.722 - eval_steps_per_second: 3.533 - epoch: 17.0 - step: 4369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 300 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Framework versions - Transformers 4.35.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1
Tsuka25/w2v-bert-2.0-mongolian-colab-CV16.0
Tsuka25
2024-02-01T05:46:28Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-30T08:01:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]