modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Strudel7182/ppo-LunarLander-v2
Strudel7182
2024-01-23T17:51:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-23T17:24:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.83 +/- 24.32 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LoneStriker/Crunchy-onion-3.5bpw-h6-exl2
LoneStriker
2024-01-23T17:46:49Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lemonilia/LimaRP", "dataset:grimulkan/theory-of-mind", "dataset:Epiculous/Gnosis", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T17:38:01Z
--- license: agpl-3.0 datasets: - lemonilia/LimaRP - grimulkan/theory-of-mind - Epiculous/Gnosis --- # Crunchy-onion This model is created by training Mixtral base model on LimaRP (ShareGPT format provided by SAO), theory of mind, and gnosis(provided by jeiku). The 4-bit qlora was then merged into Mixtral Instruct resulting in what you see here. Works best with ChatML Instruct
keremgencer/mistral-7b-dolly
keremgencer
2024-01-23T17:44:18Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-23T17:43:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FelixChao/WestSeverus-7B
FelixChao
2024-01-23T17:43:20Z
1,359
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "senseable/WestLake-7B-v2", "FelixChao/Severus-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T17:35:43Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - senseable/WestLake-7B-v2 - FelixChao/Severus-7B --- # WestSeverus-7B WestSeverus-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) * [FelixChao/Severus-7B](https://huggingface.co/FelixChao/Severus-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: senseable/WestLake-7B-v2 layer_range: [0, 32] - model: FelixChao/Severus-7B layer_range: [0, 32] merge_method: slerp base_model: senseable/WestLake-7B-v2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "FelixChao/WestSeverus-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
LoneStriker/Crunchy-onion-3.0bpw-h6-exl2
LoneStriker
2024-01-23T17:37:58Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lemonilia/LimaRP", "dataset:grimulkan/theory-of-mind", "dataset:Epiculous/Gnosis", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T17:30:33Z
--- license: agpl-3.0 datasets: - lemonilia/LimaRP - grimulkan/theory-of-mind - Epiculous/Gnosis --- # Crunchy-onion This model is created by training Mixtral base model on LimaRP (ShareGPT format provided by SAO), theory of mind, and gnosis(provided by jeiku). The 4-bit qlora was then merged into Mixtral Instruct resulting in what you see here. Works best with ChatML Instruct
Rimsha19/TeacherEducationFramework21stCentury
Rimsha19
2024-01-23T17:36:18Z
0
0
null
[ "region:us" ]
null
2024-01-23T17:34:55Z
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Teacher Education Framework</title> <style> /* Add your CSS styles here */ body { font-family: Arial, sans-serif; margin: 0; padding: 0; background-color: #f4f4f4; } header { background-color: #333; color: #fff; padding: 1em; text-align: center; } section { margin: 1em; padding: 1em; background-color: #fff; border-radius: 8px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); } </style> </head> <body> <header> <h1>Teacher Education Framework</h1> </header> <section> <h2>1. Policy and Governance</h2> <ul> <li>Establish a National Teacher Education Policy aligned with contemporary educational needs.</li> <li>Ensure a merit-based recruitment system for teachers to enhance the quality of educators.</li> <li>Implement transparent and accountable governance mechanisms, reducing political interference.</li> </ul> </section> <!-- Repeat the above structure for each section (2-13) --> </body> </html>
ahebbar69/10-52-llama
ahebbar69
2024-01-23T17:35:21Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "base_model:adapter:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-23T17:22:55Z
--- library_name: peft base_model: NousResearch/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
Heromnxpw0/ppo-LunarLander-v2
Heromnxpw0
2024-01-23T17:34:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-23T17:33:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.81 +/- 16.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LoneStriker/Crunchy-onion-2.4bpw-h6-exl2
LoneStriker
2024-01-23T17:30:32Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lemonilia/LimaRP", "dataset:grimulkan/theory-of-mind", "dataset:Epiculous/Gnosis", "license:agpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T16:15:56Z
--- license: agpl-3.0 datasets: - lemonilia/LimaRP - grimulkan/theory-of-mind - Epiculous/Gnosis --- # Crunchy-onion This model is created by training Mixtral base model on LimaRP (ShareGPT format provided by SAO), theory of mind, and gnosis(provided by jeiku). The 4-bit qlora was then merged into Mixtral Instruct resulting in what you see here. Works best with ChatML Instruct
mudogruer/electra-emotion
mudogruer
2024-01-23T17:27:50Z
5
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:google/electra-base-discriminator", "base_model:finetune:google/electra-base-discriminator", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-23T17:20:05Z
--- license: apache-2.0 base_model: google/electra-base-discriminator tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: electra-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.944 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-emotion This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1403 - Accuracy: 0.944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6777 | 1.0 | 500 | 0.2635 | 0.9155 | | 0.186 | 2.0 | 1000 | 0.1598 | 0.935 | | 0.113 | 3.0 | 1500 | 0.1403 | 0.944 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
gael1130/ppo-LunarLander-v2
gael1130
2024-01-23T17:20:40Z
12
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-20T21:15:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.64 +/- 25.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alionder/laptop_kriter
alionder
2024-01-23T17:16:17Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:burakaytan/roberta-base-turkish-uncased", "base_model:finetune:burakaytan/roberta-base-turkish-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-23T17:15:53Z
--- license: mit base_model: burakaytan/roberta-base-turkish-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: laptop_kriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # laptop_kriter This model is a fine-tuned version of [burakaytan/roberta-base-turkish-uncased](https://huggingface.co/burakaytan/roberta-base-turkish-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - F1: 0.7709 - Roc Auc: 0.8574 - Accuracy: 0.7344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.3066 | 1.0 | 1151 | 0.2457 | 0.5688 | 0.7257 | 0.6484 | | 0.2325 | 2.0 | 2302 | 0.2088 | 0.6630 | 0.7908 | 0.6719 | | 0.1723 | 3.0 | 3453 | 0.2023 | 0.6933 | 0.8174 | 0.6875 | | 0.159 | 4.0 | 4604 | 0.2004 | 0.7312 | 0.8363 | 0.7188 | | 0.1306 | 5.0 | 5755 | 0.2138 | 0.7168 | 0.8104 | 0.7148 | | 0.1034 | 6.0 | 6906 | 0.2103 | 0.7745 | 0.8641 | 0.7539 | | 0.0865 | 7.0 | 8057 | 0.2107 | 0.7684 | 0.8530 | 0.75 | | 0.0733 | 8.0 | 9208 | 0.2099 | 0.7757 | 0.8663 | 0.7383 | | 0.0643 | 9.0 | 10359 | 0.2130 | 0.7772 | 0.8586 | 0.7539 | | 0.0617 | 10.0 | 11510 | 0.2151 | 0.7709 | 0.8574 | 0.7344 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Disty0/SoteMixV3
Disty0
2024-01-23T17:14:21Z
27
3
diffusers
[ "diffusers", "onnx", "safetensors", "art", "anime", "stable diffusion", "openvino", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-12T17:00:17Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art - anime - stable diffusion - openvino - onnx --- SoteMix V3 is trained at 1024x1536 for high resolution image generations. This model is tested on SD.Next with Diffusers backend and HyperTile size set to 0 (Auto). Positive Prompts: ``` masterpiece, best quality, highres, 1girl, ``` Negative Prompts: ``` (worst quality, low quality, lowres), zombie, interlocked fingers, ``` Do not use any negative embeddings. Sampler: `Euler a` Steps: `30-40` Clip Skip: `1` or `2` CFG: `4-7` Base Resolution: `512x` / `768x` / `1024x` / `768x1280` / `960x1280` / `1024x1536` / `1920x1080` Model can still be chaotic at `1024x1536` and `1920x1080`. Second Pass / Hires: Sampler: `Euler` / `Euler a` Steps: `10` with `Euler` / `20` with `Euler a` Upscaler: `RealESRGAN 4x+ Anime6B` / `ESRGAN 4x-AnimeSharp` with `0.2`-`0.3` denoise strength. CFG: `6-9` Resolution: `2x` of the base resolution. Training: My GPU couldn't handle full model training at these resolutions so i trained it as a `512` layer Lora with SoteMix V1 as the base. Used highres as the trigger word. Also used raifu trigger word with my OC character. Resolution: `1024x1536 with Bucketing` Batch Size: `1` Steps: `40000` GPU: `Intel ARC A770 16GB` Bucket: ``` bucket 0: resolution (832, 1664), count: 49 bucket 1: resolution (896, 1280), count: 1 bucket 2: resolution (896, 1536), count: 2 bucket 3: resolution (960, 1408), count: 8 bucket 4: resolution (960, 1472), count: 57 bucket 5: resolution (960, 1536), count: 12 bucket 6: resolution (960, 1600), count: 537 bucket 7: resolution (1024, 1344), count: 266 bucket 8: resolution (1024, 1408), count: 349 bucket 9: resolution (1024, 1472), count: 1535 bucket 10: resolution (1024, 1536), count: 950 bucket 11: resolution (1088, 1280), count: 63 bucket 12: resolution (1152, 1216), count: 62 bucket 13: resolution (1152, 1280), count: 147 bucket 14: resolution (1152, 1344), count: 114 bucket 15: resolution (1216, 1152), count: 44 bucket 16: resolution (1216, 1216), count: 409 bucket 17: resolution (1216, 1280), count: 53 bucket 18: resolution (1280, 576), count: 20 bucket 19: resolution (1280, 640), count: 94 bucket 20: resolution (1280, 704), count: 217 bucket 21: resolution (1280, 768), count: 102 bucket 22: resolution (1280, 832), count: 118 bucket 23: resolution (1280, 896), count: 280 bucket 24: resolution (1280, 960), count: 137 bucket 25: resolution (1280, 1024), count: 32 bucket 26: resolution (1280, 1088), count: 27 bucket 27: resolution (1280, 1152), count: 61 bucket 28: resolution (1280, 1216), count: 24 bucket 29: resolution (1344, 1024), count: 17 bucket 30: resolution (1344, 1152), count: 38 bucket 31: resolution (1536, 896), count: 94 bucket 32: resolution (1536, 1024), count: 34 bucket 33: resolution (1600, 960), count: 196 bucket 34: resolution (1664, 832), count: 21 bucket 35: resolution (2048, 768), count: 3 bucket 36: resolution (2304, 576), count: 1 mean ar error (without repeats): 0.01257769833438255 ``` Merge: Merged SoteMix V1 with Lunar Radiance Light and then merged the Hires Lora i trained on top of it. Merge ratio: `(0.6 SoteMix V1 + 0.4 Lunar Radiance Light) + 0.7 Hires Lora` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6456af6195082f722d178522/bYWQ6IKkroPOw4BQfFLWe.png)
raj-rahullll/my-pet
raj-rahullll
2024-01-23T17:14:18Z
3
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-23T17:09:32Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet- Dreambooth model trained by raj-rahullll following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 22BTRIS045 Sample pictures of this concept: ![0](https://huggingface.co/raj-rahullll/my-pet/resolve/main/sample_images/sample_3.jpg) ![1](https://huggingface.co/raj-rahullll/my-pet/resolve/main/sample_images/sample_2)
H1032200368/tunes
H1032200368
2024-01-23T17:10:43Z
4
0
transformers
[ "transformers", "pytorch", "safetensors", "musicgen", "text-to-audio", "arxiv:2306.05284", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-audio
2024-01-23T16:26:08Z
--- inference: true tags: - musicgen license: cc-by-nc-4.0 pipeline_tag: text-to-audio widget: - text: "a funky house with 80s hip hop vibes" example_title: "Prompt 1" - text: "a chill song with influences from lofi, chillstep and downtempo" example_title: "Prompt 2" - text: "a catchy beat for a podcast intro" example_title: "Prompt 3" --- # MusicGen - Small - 300M MusicGen is a text-to-music model capable of genreating high-quality music samples conditioned on text descriptions or audio prompts. It is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike existing methods, like MusicLM, MusicGen doesn't require a self-supervised semantic representation, and it generates all 4 codebooks in one pass. By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio. MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez*. Four checkpoints are released: - [**small** (this checkpoint)](https://huggingface.co/facebook/musicgen-small) - [medium](https://huggingface.co/facebook/musicgen-medium) - [large](https://huggingface.co/facebook/musicgen-large) - [melody](https://huggingface.co/facebook/musicgen-melody) ## Example Try out MusicGen yourself! * Audiocraft Colab: <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Colab: <a target="_blank" href="https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/MusicGen.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Demo: <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> ## 🤗 Transformers Usage You can run MusicGen locally with the 🤗 Transformers library from version 4.31.0 onwards. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy: ``` pip install --upgrade pip pip install --upgrade transformers scipy ``` 2. Run inference via the `Text-to-Audio` (TTA) pipeline. You can infer the MusicGen model via the TTA pipeline in just a few lines of code! ```python from transformers import pipeline import scipy synthesiser = pipeline("text-to-audio", "facebook/musicgen-small") music = synthesiser("lo-fi music with a soothing melody", forward_params={"do_sample": True}) scipy.io.wavfile.write("musicgen_out.wav", rate=music["sampling_rate"], data=music["audio"]) ``` 3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 32 kHz audio waveform for more fine-grained control. ```python from transformers import AutoProcessor, MusicgenForConditionalGeneration processor = AutoProcessor.from_pretrained("facebook/musicgen-small") model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") inputs = processor( text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], padding=True, return_tensors="pt", ) audio_values = model.generate(**inputs, max_new_tokens=256) ``` 3. Listen to the audio samples either in an ipynb notebook: ```python from IPython.display import Audio sampling_rate = model.config.audio_encoder.sampling_rate Audio(audio_values[0].numpy(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```python import scipy sampling_rate = model.config.audio_encoder.sampling_rate scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy()) ``` For more details on using the MusicGen model for inference using the 🤗 Transformers library, refer to the [MusicGen docs](https://huggingface.co/docs/transformers/model_doc/musicgen). ## Audiocraft Usage You can also run MusicGen locally through the original [Audiocraft library]((https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt-get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write model = MusicGen.get_pretrained("small") model.set_generation_params(duration=8) # generate 8 seconds. descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MusicGen was trained between April 2023 and May 2023. **Model version:** This is the version 1 of the model. **Model type:** MusicGen consists of an EnCodec model for audio tokenization, an auto-regressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B and 3.3B parameters ; and two variants: a model trained for text-to-music generation task and a model trained for melody-guided music generation. **Paper or resources for more information:** More information can be found in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284). **Citation details:** ``` @misc{copet2023simple, title={Simple and Controllable Music Generation}, author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez}, year={2023}, eprint={2306.05284}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License:** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MusicGen can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MusicGen is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text or melody to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases:** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; - Adherence to the melody for melody-guided music generation. More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained on licensed data using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Evaluation results Below are the objective metrics obtained on MusicCaps with the released model. Note that for the publicly released models, we had all the datasets go through a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs), in order to keep only the instrumental part. This explains the difference in objective metrics with the models used in the paper. | Model | Frechet Audio Distance | KLD | Text Consistency | Chroma Cosine Similarity | |---|---|---|---|---| | **facebook/musicgen-small** | 4.88 | 1.42 | 0.27 | - | | facebook/musicgen-medium | 5.14 | 1.38 | 0.28 | - | | facebook/musicgen-large | 5.48 | 1.37 | 0.28 | - | | facebook/musicgen-melody | 4.93 | 1.41 | 0.27 | 0.44 | More information can be found in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284), in the Results section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 20K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** Vocals have been removed from the data source using corresponding tags, and then using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MusicGen is a model developed for artificial intelligence research on controllable music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks.
web2savar/w2v-bert-2.0-mongolian-colab-CV16.0
web2savar
2024-01-23T17:08:07Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2-bert", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:ylacombe/w2v-bert-2.0", "base_model:finetune:ylacombe/w2v-bert-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-23T16:58:25Z
--- base_model: ylacombe/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 model-index: - name: w2v-bert-2.0-mongolian-colab-CV16.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v-bert-2.0-mongolian-colab-CV16.0 This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the common_voice_11_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Mihaiii/stablelm-zephyr-3b-OV_FP14-4BIT
Mihaiii
2024-01-23T17:07:23Z
2
0
transformers
[ "transformers", "openvino", "stablelm_epoch", "text-generation", "conversational", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2024-01-23T15:34:13Z
--- library_name: transformers license: other --- The quantized version of [stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) after running the steps on from [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) You can use it like this (steps taken from the above link): ```bash pip install -q git+https://github.com/huggingface/optimum-intel.git@e22a2ac26b3a6c7854da956d538f784ebeca879b onnx openvino-nightly ``` then ```python from optimum.intel.openvino import OVModelForCausalLM from transformers import AutoConfig, AutoTokenizer from optimum.utils import NormalizedTextConfig, NormalizedConfigManager NormalizedConfigManager._conf['stablelm_epoch'] = NormalizedTextConfig.with_args(num_layers='num_hidden_layers', num_attention_heads='num_attention_heads') NormalizedConfigManager._conf['stablelm-epoch'] = NormalizedTextConfig.with_args(num_layers='num_hidden_layers', num_attention_heads='num_attention_heads') model_path = 'Mihaiii/stablelm-zephyr-3b-OV_FP14-4BIT' model = OVModelForCausalLM.from_pretrained(model_path, compile=False, config=AutoConfig.from_pretrained(model_path, trust_remote_code=True), stateful=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}] inputs = tokenizer.apply_chat_template( prompt, add_generation_prompt=True, return_tensors='pt' ) tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.8, do_sample=True ) print(tokenizer.decode(tokens[0], skip_special_tokens=False)) ```
candyhaws/a2c-PandaReachDense-v3
candyhaws
2024-01-23T17:05:31Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-23T17:01:12Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.20 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sprenkamp/BGB
sprenkamp
2024-01-23T17:04:49Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T16:17:20Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
LoneStriker/speechless-zephyr-code-functionary-7b-5.0bpw-h6-exl2
LoneStriker
2024-01-23T16:56:31Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T16:54:31Z
--- language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0 --- <p><h1> speechless-zephyr-code-functionary-7b </h1></p> This model is the one of the moloras (Mixture-of-Multi-LoRAs) experiments. Extract LoRA modules from below models (all based Mistral-7B-v0.1), each LoRA module has its own unique skills. By using multi-loras, they can be combined together statically or dynamically to form a versatile new model. - HuggingFaceH4/zephyr-7b-beta (Uncensored Model) - meetkai/functionary-small-v2.2 (Execute functions/plugins) - uukuguy/speechless-code-mistral-7b-v1.0 (Enhance Coding) The entire process is completed through the use of extract-lora, merge-lora, and lora-hub provided by multi-loras. The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks. Code: https://github.com/uukuguy/multi_loras ## LM-Evaluation-Harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | 61.52 | | HellaSwag | 83.88 | | MMLU | 64.71 | | TruthfulQA | 44.99 | | Winogrande | 78.69 | | GSM8K | 43.82 | | Average | 62.93 |
LoneStriker/speechless-zephyr-code-functionary-7b-4.0bpw-h6-exl2
LoneStriker
2024-01-23T16:54:29Z
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T16:52:48Z
--- language: - en library_name: transformers pipeline_tag: text-generation license: apache-2.0 --- <p><h1> speechless-zephyr-code-functionary-7b </h1></p> This model is the one of the moloras (Mixture-of-Multi-LoRAs) experiments. Extract LoRA modules from below models (all based Mistral-7B-v0.1), each LoRA module has its own unique skills. By using multi-loras, they can be combined together statically or dynamically to form a versatile new model. - HuggingFaceH4/zephyr-7b-beta (Uncensored Model) - meetkai/functionary-small-v2.2 (Execute functions/plugins) - uukuguy/speechless-code-mistral-7b-v1.0 (Enhance Coding) The entire process is completed through the use of extract-lora, merge-lora, and lora-hub provided by multi-loras. The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks. Code: https://github.com/uukuguy/multi_loras ## LM-Evaluation-Harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | 61.52 | | HellaSwag | 83.88 | | MMLU | 64.71 | | TruthfulQA | 44.99 | | Winogrande | 78.69 | | GSM8K | 43.82 | | Average | 62.93 |
xianbao/test-model
xianbao
2024-01-23T16:31:08Z
0
0
null
[ "region:us" ]
null
2023-09-06T01:21:03Z
--- extra_gated_prompt: "You agree to not use the model to conduct experiments that cause harm to human subjects." extra_gated_fields: Company: text Country: text I agree to use this model for non-commercial use ONLY: checkbox --- ## 📌 Introduction - 🤖 The Yi series models are the next generation of open-source large language models trained from scratch by [01.AI](https://01.ai/). - 🙌 Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, - For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/) in Dec 2023. - For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the [SuperCLUE](https://www.superclueai.com/) in Oct 2023. - 🙏 (Credits to LLaMA) Thanks to the Transformer and LLaMA open-source communities, as they reducing the efforts required to build from scratch and enabling the utilization of the same tools within the AI ecosystem. <details style="display: inline;"><summary> If you're interested in Yi's adoption of LLaMA architecture and license usage policy, see <span style="color: green;">Yi's relation with LLaMA.</span> ⬇️</summary> <ul> > 💡 TL;DR > > The Yi series models adopt the same model architecture as LLaMA but are **NOT** derivatives of LLaMA. - Both Yi and LLaMA are all based on the Transformer structure, which has been the standard architecture for large language models since 2018. - Grounded in the Transformer architecture, LLaMA has become a new cornerstone for the majority of state-of-the-art open-source models due to its excellent stability, reliable convergence, and robust compatibility. This positions LLaMA as the recognized foundational framework for models including Yi. - Thanks to the Transformer and LLaMA architectures, other models can leverage their power, reducing the effort required to build from scratch and enabling the utilization of the same tools within their ecosystems. - However, the Yi series models are NOT derivatives of LLaMA, as they do not use LLaMA's weights. - As LLaMA's structure is employed by the majority of open-source models, the key factors of determining model performance are training datasets, training pipelines, and training infrastructure. - Developing in a unique and proprietary way, Yi has independently created its own high-quality training datasets, efficient training pipelines, and robust training infrastructure entirely from the ground up. This effort has led to excellent performance with Yi series models ranking just behind GPT4 and surpassing LLaMA on the [Alpaca Leaderboard in Dec 2023](https://tatsu-lab.github.io/alpaca_eval/). </ul> </details>
CLMBR/npi-only-transformer-4
CLMBR
2024-01-23T16:25:42Z
4
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T14:37:02Z
--- tags: - generated_from_trainer model-index: - name: npi-only-transformer-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # npi-only-transformer-4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2235 | 0.03 | 76320 | 4.1957 | | 4.019 | 1.03 | 152640 | 4.0271 | | 3.9115 | 0.03 | 228960 | 3.9505 | | 3.8389 | 1.03 | 305280 | 3.9099 | | 3.7889 | 0.03 | 381600 | 3.8846 | | 3.749 | 1.03 | 457920 | 3.8686 | | 3.7151 | 0.03 | 534240 | 3.8581 | | 3.6879 | 1.03 | 610560 | 3.8510 | | 3.6587 | 0.03 | 686880 | 3.8468 | | 3.6325 | 1.03 | 763200 | 3.8441 | | 3.6082 | 0.03 | 839520 | 3.8417 | | 3.5868 | 1.03 | 915840 | 3.8415 | | 3.5695 | 0.03 | 992160 | 3.8415 | | 3.5516 | 1.03 | 1068480 | 3.8433 | | 3.5316 | 0.03 | 1144800 | 3.8432 | | 3.5291 | 1.03 | 1221120 | 3.8443 | | 3.5091 | 0.03 | 1297440 | 3.8459 | | 3.4953 | 1.03 | 1373760 | 3.8458 | | 3.4831 | 0.03 | 1450080 | 3.8475 | | 3.4707 | 1.03 | 1526400 | 3.8479 | | 3.4629 | 0.03 | 1602720 | 3.8500 | | 3.4549 | 0.03 | 1679040 | 3.8510 | | 3.4461 | 1.03 | 1755360 | 3.8524 | | 3.4385 | 0.03 | 1831680 | 3.8544 | | 3.426 | 1.03 | 1908000 | 3.8561 | | 3.4132 | 0.03 | 1984320 | 3.8569 | | 3.399 | 1.03 | 2060640 | 3.8577 | | 3.3863 | 0.03 | 2136960 | 3.8583 | | 3.376 | 1.03 | 2213280 | 3.8598 | | 3.3638 | 0.03 | 2289600 | 3.8609 | | 3.3519 | 1.03 | 2365920 | 3.8610 | | 3.3527 | 0.03 | 2442240 | 3.8618 | | 3.338 | 1.03 | 2518560 | 3.8625 | | 3.3299 | 0.03 | 2594880 | 3.8628 | | 3.3204 | 0.03 | 2671200 | 3.8632 | | 3.3114 | 1.03 | 2747520 | 3.8629 | | 3.3075 | 0.03 | 2823840 | 3.8630 | | 3.3027 | 1.03 | 2900160 | 3.8619 | | 3.2984 | 0.03 | 2976480 | 3.8611 | | 3.2935 | 1.02 | 3052726 | 3.8598 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
ambarish004/vit-base-patch16-224-finetuned-polyterrasse
ambarish004
2024-01-23T16:19:27Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-22T11:04:41Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-polyterrasse results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-polyterrasse This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2635 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 0.5713 | 0.6667 | | No log | 2.0 | 7 | 0.2635 | 1.0 | | 0.3363 | 2.86 | 10 | 0.1832 | 1.0 | | 0.3363 | 4.0 | 14 | 0.1458 | 1.0 | | 0.3363 | 4.29 | 15 | 0.1437 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
jeremygf/t5-small-samsum
jeremygf
2024-01-23T16:11:50Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-23T15:48:18Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: t5-small-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2414 | 0.27 | 500 | 2.0112 | | 2.1241 | 0.54 | 1000 | 1.9260 | | 2.0784 | 0.81 | 1500 | 1.8947 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.0 - Tokenizers 0.15.0
eloi-goncalves/handsfree_intent_classification_2
eloi-goncalves
2024-01-23T16:06:00Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-09T03:29:30Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: handsfree_intent_classification_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # handsfree_intent_classification_2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0180 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0218 | 1.0 | 1586 | 0.0200 | 0.9908 | | 0.0193 | 2.0 | 3172 | 0.0180 | 0.9925 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
princeton-nlp/Sheared-LLaMA-1.3B
princeton-nlp
2024-01-23T16:04:46Z
27,816
93
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2310.06694", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-10T15:22:13Z
--- license: apache-2.0 --- **Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf) **Code**: https://github.com/princeton-nlp/LLM-Shearing **Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) **Pruned Models without Continued Pre-training**: [Sheared-LLaMA-1.3B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-Pruned), [Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned) **Instruction-tuned Models**: [Sheared-LLaMA-1.3B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT), [Sheared-LLaMA-2.7B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT) **License**: Must comply with license of Llama2 since it's a model derived from Llama2. --- Sheared-LLaMA-1.3B is a model pruned and further pre-trained from [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). We dynamically load data from different domains in the [RedPajama dataset](https://github.com/togethercomputer/RedPajama-Data) to prune and contune pre-train the model. We use 0.4B tokens for pruning and 50B tokens for continued pre-training the pruned model. This model can be loaded with HuggingFace via ``` model = AutoModelForCausalLM.from_pretrained("princeton-nlp/Sheared-LLaMA-1.3B") ``` - Smaller-scale - Same vocabulary as LLaMA1 and LLaMA2 - Derived with a budget of 50B tokens by utilizing existing strong LLMs ## Downstream Tasks We evaluate on an extensive set of downstream tasks including reasoning, reading comprehension, language modeling and knowledge intensive tasks. Our Sheared-LLaMA models outperform existing large language models. | Model | # Pre-training Tokens | Average Performance | | ------------------- | --------------------- | ------------------- | | LLaMA2-7B | 2T | 64.6 | **1.3B** | Model | # Pre-training Tokens | Average Performance | | ------------------- | --------------------- | ------------------- | | OPT-1.3B | 300B | 48.2 | | Pythia-1.4B | 300B | 48.9 | | **Sheared-LLaMA-1.3B** | **50B** | **51.0** | **3B** | Model | # Pre-training Tokens | Average Performance | | ------------------- | --------------------- | ------------------- | | OPT-2.7B | 300B | 51.4 | | Pythia-2.8B | 300B | 52.5 | | INCITE-Base-3B | 800B | 54.7 | | Open-LLaMA-3B-v1 | 1T | 55.1 | | Open-LLaMA-3B-v2 | 1T | 55.7 | | Sheared-LLaMA-2.7B | 50B | 56.7 | ## Bibtex ``` @article{xia2023sheared, title={Sheared llama: Accelerating language model pre-training via structured pruning}, author={Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi}, journal={arXiv preprint arXiv:2310.06694}, year={2023} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Sheared-LLaMA-1.3B) | Metric | Value | |-----------------------|---------------------------| | Avg. | 31.47 | | ARC (25-shot) | 32.85 | | HellaSwag (10-shot) | 60.91 | | MMLU (5-shot) | 25.71 | | TruthfulQA (0-shot) | 37.14 | | Winogrande (5-shot) | 58.64 | | GSM8K (5-shot) | 0.45 | | DROP (3-shot) | 4.56 |
MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1
MaziyarPanahi
2024-01-23T16:04:40Z
25
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Safetensors", "text-generation-inference", "merge", "7b", "mistralai/Mistral-7B-Instruct-v0.1", "HuggingFaceH4/zephyr-7b-beta", "pytorch", "generated_from_trainer", "en", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2310.16944", "base_model:mistralai/Mistral-7B-v0.1", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us", "conversational", "license:apache-2.0" ]
text-generation
2024-01-20T17:12:39Z
--- license: apache-2.0 tags: - Safetensors - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - HuggingFaceH4/zephyr-7b-beta - transformers - pytorch - safetensors - mistral - text-generation - generated_from_trainer - en - dataset:HuggingFaceH4/ultrachat_200k - dataset:HuggingFaceH4/ultrafeedback_binarized - arxiv:2305.18290 - arxiv:2310.16944 - base_model:mistralai/Mistral-7B-v0.1 - license:mit - model-index - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # zephyr-7b-beta-Mistral-7B-Instruct-v0.1 zephyr-7b-beta-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1-GGUF) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: HuggingFaceH4/zephyr-7b-beta layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
SuvajitGB/NeuralPipe-7B-slerp
SuvajitGB
2024-01-23T16:01:16Z
13
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:merge:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T17:42:27Z
--- license: apache-2.0 tags: - merge - mergekit - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B base_model: - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # NeuralPipe-7B-slerp This model is a merge of the following models made with [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "suvajitgb/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
princeton-nlp/Sheared-LLaMA-2.7B-Pruned
princeton-nlp
2024-01-23T15:59:40Z
53
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2310.06694", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T15:51:55Z
--- license: llama2 --- --- license: llama2 --- **Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf) **Code**: https://github.com/princeton-nlp/LLM-Shearing **Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) **Pruned Models without Continued Pre-training**: [Sheared-LLaMA-1.3B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-Pruned), [Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned) **Instruction-tuned Models**: [Sheared-LLaMA-1.3B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT), [Sheared-LLaMA-2.7B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT) **License**: Must comply with license of Llama2 since it's a model derived from Llama2. Sheared-LLaMA-2.7B-Pruned is the model pruned from [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) **without continued pre-training**. We used roughly 0.4B tokens to perform the pruning experiment. This model could be a good use to study - effective data mixtures for continued pre-training - comparisons to other pruning techniques - extensive evaluations to understand how pruning affects knowledge and reasoning capabilities of LLMs
kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34
kimwooglae
2024-01-23T15:58:44Z
59
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T15:29:31Z
--- language: - en pipeline_tag: text-generation license: cc-by-nc-4.0 --- # WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34 ## Model Details **Developed by** [Inswave Systems](https://www.inswave.com) UI Platform Team **Base Model** [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co/LDCC/LDCC-SOLAR-10.7B) # Implementation Code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kimwooglae/WebSquareAI-Instruct-KoSOLAR-10.7b-v0.5.34" model = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---
princeton-nlp/Sheared-LLaMA-1.3B-Pruned
princeton-nlp
2024-01-23T15:57:39Z
122
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2310.06694", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T15:48:18Z
--- license: llama2 --- **Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf) **Code**: https://github.com/princeton-nlp/LLM-Shearing **Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) **Pruned Models without Continued Pre-training**: [Sheared-LLaMA-1.3B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-Pruned), [Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned) **Instruction-tuned Models**: [Sheared-LLaMA-1.3B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT), [Sheared-LLaMA-2.7B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT) **License**: Must comply with license of Llama2 since it's a model derived from Llama2. Sheared-LLaMA-1.3B-Pruned is the model pruned from [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) **without continued pre-training**. We used roughly 0.4B tokens to perform the pruning experiment. This model could be a good use to study - effective data mixtures for continued pre-training - comparisons to other pruning techniques - extensive evaluations to understand how pruning affects knowledge and reasoning capabilities of LLMs
Abhinav28/large-v3-hi-commonvoice-11-peft-trained-adapter-withfp16-30-percent-droupout-0.05
Abhinav28
2024-01-23T15:55:39Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Abhinav28/openai-whisper-large-v3", "base_model:adapter:Abhinav28/openai-whisper-large-v3", "region:us" ]
null
2024-01-23T11:29:54Z
--- library_name: peft base_model: Abhinav28/openai-whisper-large-v3 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
raj-rahullll/my-pet-cat
raj-rahullll
2024-01-23T15:51:32Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-23T15:48:02Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat- Dreambooth model trained by raj-rahullll following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 22BTRIS045 Sample pictures of this concept: ![0](https://huggingface.co/raj-rahullll/my-pet-cat/resolve/main/sample_images/sample_3.jpg) ![1](https://huggingface.co/raj-rahullll/my-pet-cat/resolve/main/sample_images/sample_1.jpg) ![2](https://huggingface.co/raj-rahullll/my-pet-cat/resolve/main/sample_images/sample_2)
badokorach/Albert-finetuned-210124
badokorach
2024-01-23T15:50:42Z
46
0
transformers
[ "transformers", "tf", "albert", "question-answering", "generated_from_keras_callback", "base_model:twmkn9/albert-base-v2-squad2", "base_model:finetune:twmkn9/albert-base-v2-squad2", "endpoints_compatible", "region:us" ]
question-answering
2024-01-21T12:41:17Z
--- base_model: twmkn9/albert-base-v2-squad2 tags: - generated_from_keras_callback model-index: - name: badokorach/Albert-finetuned-210124 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/Albert-finetuned-210124 This model is a fine-tuned version of [twmkn9/albert-base-v2-squad2](https://huggingface.co/twmkn9/albert-base-v2-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1484 - Validation Loss: 0.0 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2265, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.002} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5485 | 0.0 | 0 | | 1.7396 | 0.0 | 1 | | 1.2623 | 0.0 | 2 | | 0.9069 | 0.0 | 3 | | 0.6427 | 0.0 | 4 | | 0.4773 | 0.0 | 5 | | 0.3798 | 0.0 | 6 | | 0.3165 | 0.0 | 7 | | 0.2573 | 0.0 | 8 | | 0.2261 | 0.0 | 9 | | 0.2054 | 0.0 | 10 | | 0.1899 | 0.0 | 11 | | 0.1712 | 0.0 | 12 | | 0.1603 | 0.0 | 13 | | 0.1484 | 0.0 | 14 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
signon-project/mbart-large-cc25-ft-amr30-nl
signon-project
2024-01-23T15:48:47Z
5
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "generated_from_trainer", "base_model:facebook/mbart-large-cc25", "base_model:finetune:facebook/mbart-large-cc25", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-23T15:47:36Z
--- base_model: facebook/mbart-large-cc25 tags: - generated_from_trainer model-index: - name: nl+no_processing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nl+no_processing This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6038 - Smatch Precision: 73.7 - Smatch Recall: 76.48 - Smatch Fscore: 75.06 - Smatch Unparsable: 0 - Percent Not Recoverable: 0.2323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:| | 0.8025 | 1.0 | 3477 | 1.3793 | 18.51 | 65.71 | 28.88 | 0 | 0.0 | | 0.13 | 2.0 | 6954 | 0.9377 | 27.0 | 71.3 | 39.16 | 0 | 0.1161 | | 0.0953 | 3.0 | 10431 | 0.7509 | 34.09 | 72.74 | 46.42 | 0 | 0.1161 | | 0.1386 | 4.0 | 13908 | 0.8524 | 33.38 | 73.32 | 45.87 | 2 | 0.0 | | 0.0974 | 5.0 | 17385 | 0.6957 | 41.69 | 73.92 | 53.31 | 0 | 0.0 | | 0.0705 | 6.0 | 20862 | 0.6145 | 47.98 | 75.12 | 58.55 | 0 | 0.0 | | 0.2265 | 7.0 | 24339 | 0.6439 | 47.06 | 75.53 | 57.99 | 0 | 0.0 | | 0.0506 | 8.0 | 27817 | 0.5974 | 53.0 | 76.95 | 62.77 | 0 | 0.0 | | 0.064 | 9.0 | 31294 | 0.6387 | 51.83 | 77.47 | 62.11 | 0 | 0.0 | | 0.0112 | 10.0 | 34771 | 0.6066 | 54.82 | 76.98 | 64.03 | 0 | 0.0 | | 0.047 | 11.0 | 38248 | 0.5970 | 60.36 | 77.04 | 67.69 | 0 | 0.0 | | 0.0134 | 12.0 | 41725 | 0.5675 | 61.72 | 77.15 | 68.58 | 0 | 0.0 | | 0.0656 | 13.0 | 45202 | 0.6210 | 62.8 | 76.92 | 69.15 | 0 | 0.0581 | | 0.015 | 14.0 | 48679 | 0.6257 | 62.8 | 77.32 | 69.31 | 0 | 0.0 | | 0.0134 | 15.0 | 52156 | 0.5635 | 66.7 | 77.34 | 71.63 | 0 | 0.1161 | | 0.0265 | 16.0 | 55634 | 0.5839 | 67.61 | 76.76 | 71.89 | 0 | 0.0581 | | 0.0219 | 17.0 | 59111 | 0.5894 | 68.66 | 77.43 | 72.78 | 0 | 0.1161 | | 0.0008 | 18.0 | 62588 | 0.5981 | 68.44 | 77.57 | 72.72 | 0 | 0.0 | | 0.0157 | 19.0 | 66065 | 0.6184 | 69.88 | 77.42 | 73.46 | 0 | 0.0581 | | 0.0334 | 20.0 | 69542 | 0.6026 | 70.76 | 77.37 | 73.92 | 0 | 0.2323 | | 0.0619 | 21.0 | 73019 | 0.6021 | 72.03 | 77.0 | 74.44 | 0 | 0.1742 | | 0.0075 | 22.0 | 76496 | 0.6166 | 72.33 | 76.74 | 74.47 | 0 | 0.0581 | | 0.0164 | 23.0 | 79973 | 0.6100 | 72.75 | 77.03 | 74.83 | 0 | 0.2323 | | 0.0011 | 24.0 | 83451 | 0.6037 | 73.7 | 76.51 | 75.08 | 0 | 0.2323 | | 0.0865 | 25.0 | 86925 | 0.6038 | 73.7 | 76.48 | 75.06 | 0 | 0.2323 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
signon-project/mbart-large-cc25-ft-amr30-en
signon-project
2024-01-23T15:42:02Z
4
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "generated_from_trainer", "base_model:facebook/mbart-large-cc25", "base_model:finetune:facebook/mbart-large-cc25", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-23T15:40:46Z
--- base_model: facebook/mbart-large-cc25 tags: - generated_from_trainer model-index: - name: en+no_processing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en+no_processing This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4481 - Smatch Precision: 80.57 - Smatch Recall: 83.81 - Smatch Fscore: 82.16 - Smatch Unparsable: 0 - Percent Not Recoverable: 0.3484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:| | 0.3471 | 1.0 | 3477 | 1.4889 | 22.35 | 73.05 | 34.23 | 0 | 0.1161 | | 0.1741 | 2.0 | 6954 | 0.8681 | 30.1 | 71.92 | 42.44 | 0 | 0.1161 | | 0.1296 | 3.0 | 10431 | 0.7081 | 38.6 | 78.68 | 51.8 | 0 | 0.0581 | | 0.1308 | 4.0 | 13908 | 0.9546 | 37.49 | 78.23 | 50.69 | 0 | 0.0 | | 0.2213 | 5.0 | 17385 | 0.5544 | 47.63 | 81.17 | 60.03 | 0 | 0.0 | | 0.0317 | 6.0 | 20862 | 0.4884 | 49.3 | 80.9 | 61.27 | 0 | 0.0 | | 0.1007 | 7.0 | 24339 | 0.4763 | 54.88 | 82.09 | 65.78 | 0 | 0.0 | | 0.092 | 8.0 | 27817 | 0.4444 | 57.37 | 83.2 | 67.91 | 0 | 0.0 | | 0.1051 | 9.0 | 31294 | 0.4192 | 64.37 | 83.81 | 72.82 | 0 | 0.0 | | 0.0079 | 10.0 | 34771 | 0.4685 | 61.3 | 83.1 | 70.55 | 0 | 0.0 | | 0.0211 | 11.0 | 38248 | 0.4389 | 63.36 | 84.57 | 72.44 | 0 | 0.1161 | | 0.1122 | 12.0 | 41725 | 0.4146 | 69.39 | 83.56 | 75.82 | 0 | 0.0581 | | 0.0183 | 13.0 | 45202 | 0.4003 | 73.9 | 83.71 | 78.5 | 0 | 0.0 | | 0.0244 | 14.0 | 48679 | 0.4208 | 73.79 | 83.92 | 78.53 | 0 | 0.1161 | | 0.0116 | 15.0 | 52156 | 0.4248 | 73.88 | 83.85 | 78.55 | 0 | 0.1161 | | 0.0357 | 16.0 | 55634 | 0.4235 | 75.78 | 84.08 | 79.71 | 0 | 0.1161 | | 0.0006 | 17.0 | 59111 | 0.4181 | 76.15 | 84.15 | 79.95 | 0 | 0.0581 | | 0.0329 | 18.0 | 62588 | 0.4494 | 77.21 | 84.12 | 80.52 | 0 | 0.0 | | 0.0003 | 19.0 | 66065 | 0.4389 | 78.02 | 84.13 | 80.96 | 0 | 0.0 | | 0.04 | 20.0 | 69542 | 0.4439 | 78.78 | 84.23 | 81.41 | 0 | 0.0 | | 0.0182 | 21.0 | 73019 | 0.4430 | 79.82 | 84.05 | 81.88 | 0 | 0.0581 | | 0.0006 | 22.0 | 76496 | 0.4488 | 79.96 | 83.74 | 81.81 | 0 | 0.0581 | | 0.0074 | 23.0 | 79973 | 0.4569 | 79.84 | 83.85 | 81.79 | 0 | 0.0581 | | 0.0133 | 24.0 | 83451 | 0.4469 | 80.45 | 83.81 | 82.09 | 0 | 0.2904 | | 0.0055 | 25.0 | 86925 | 0.4481 | 80.57 | 83.81 | 82.16 | 0 | 0.3484 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
CLMBR/npi-only-transformer-0
CLMBR
2024-01-23T15:41:08Z
14
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T13:50:56Z
--- tags: - generated_from_trainer model-index: - name: npi-only-transformer-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # npi-only-transformer-0 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2219 | 0.03 | 76320 | 4.1939 | | 4.0171 | 1.03 | 152640 | 4.0249 | | 3.9099 | 0.03 | 228960 | 3.9509 | | 3.8379 | 1.03 | 305280 | 3.9097 | | 3.7887 | 0.03 | 381600 | 3.8848 | | 3.7486 | 0.03 | 457920 | 3.8681 | | 3.7135 | 1.03 | 534240 | 3.8583 | | 3.6868 | 0.03 | 610560 | 3.8516 | | 3.6574 | 1.03 | 686880 | 3.8469 | | 3.6311 | 0.03 | 763200 | 3.8440 | | 3.6076 | 1.03 | 839520 | 3.8431 | | 3.5866 | 0.03 | 915840 | 3.8422 | | 3.5683 | 1.03 | 992160 | 3.8421 | | 3.5492 | 0.03 | 1068480 | 3.8424 | | 3.5304 | 1.03 | 1144800 | 3.8433 | | 3.5315 | 0.03 | 1221120 | 3.8459 | | 3.5103 | 1.03 | 1297440 | 3.8459 | | 3.4974 | 0.03 | 1373760 | 3.8475 | | 3.4858 | 1.03 | 1450080 | 3.8485 | | 3.4723 | 0.03 | 1526400 | 3.8502 | | 3.4644 | 1.03 | 1602720 | 3.8505 | | 3.4557 | 0.03 | 1679040 | 3.8526 | | 3.4466 | 1.03 | 1755360 | 3.8532 | | 3.4389 | 0.03 | 1831680 | 3.8546 | | 3.4245 | 1.03 | 1908000 | 3.8560 | | 3.4119 | 0.03 | 1984320 | 3.8569 | | 3.3964 | 1.03 | 2060640 | 3.8589 | | 3.3868 | 0.03 | 2136960 | 3.8584 | | 3.3744 | 1.03 | 2213280 | 3.8605 | | 3.3638 | 0.03 | 2289600 | 3.8619 | | 3.3497 | 1.03 | 2365920 | 3.8616 | | 3.3566 | 0.03 | 2442240 | 3.8614 | | 3.3404 | 1.03 | 2518560 | 3.8625 | | 3.3326 | 0.03 | 2594880 | 3.8628 | | 3.3241 | 1.03 | 2671200 | 3.8628 | | 3.3149 | 0.03 | 2747520 | 3.8632 | | 3.3085 | 1.03 | 2823840 | 3.8625 | | 3.3024 | 0.03 | 2900160 | 3.8626 | | 3.2978 | 1.03 | 2976480 | 3.8610 | | 3.2933 | 0.02 | 3052726 | 3.8602 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
20Tech24/my-beautiful-cat-ewq
20Tech24
2024-01-23T15:40:03Z
3
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-23T15:35:53Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My--Beautiful-Cat-EWQ Dreambooth model trained by 20Tech24 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 206320080 Sample pictures of this concept: ![0](https://huggingface.co/20Tech24/my-beautiful-cat-ewq/resolve/main/sample_images/ewq_(1).jpg)
zakcroft/zephyr-7b-sft-lora
zakcroft
2024-01-23T15:39:24Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-23T15:37:43Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mistral-7B-v0.1 model-index: - name: zephyr-7b-sft-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-sft-lora This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 1.1568 | ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
onarganogun/videomae-large-kissing_14-01-2024
onarganogun
2024-01-23T15:34:14Z
9
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-large", "base_model:finetune:MCG-NJU/videomae-large", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2024-01-13T21:52:01Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: videomae-large-kissing_14-01-2024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-large-kissing_14-01-2024 This model is a fine-tuned version of [MCG-NJU/videomae-large](https://huggingface.co/MCG-NJU/videomae-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3655 - Accuracy: 0.9479 - Precision: 0.9547 - Recall: 0.9405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 18165 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:| | 0.6377 | 0.07 | 1212 | 0.6211 | 0.6645 | 0.6755 | 0.6331 | | 0.586 | 1.07 | 2424 | 0.4979 | 0.7835 | 0.8057 | 0.7471 | | 0.3675 | 2.07 | 3636 | 0.3910 | 0.8983 | 0.9335 | 0.8579 | | 0.8145 | 3.07 | 4848 | 0.3776 | 0.9207 | 0.9426 | 0.8959 | | 0.6408 | 4.07 | 6060 | 0.3674 | 0.9322 | 0.9470 | 0.9157 | | 0.01 | 5.07 | 7272 | 0.3630 | 0.9298 | 0.9422 | 0.9157 | | 0.0274 | 6.07 | 8484 | 0.3808 | 0.9289 | 0.9233 | 0.9355 | | 0.0002 | 7.07 | 9696 | 0.3566 | 0.9397 | 0.9508 | 0.9273 | | 0.0058 | 8.07 | 10908 | 0.3609 | 0.9446 | 0.9622 | 0.9256 | | 0.1551 | 9.07 | 12120 | 0.3757 | 0.9413 | 0.9465 | 0.9355 | | 0.1784 | 10.07 | 13332 | 0.3410 | 0.9496 | 0.9579 | 0.9405 | | 0.0011 | 11.07 | 14544 | 0.3707 | 0.9455 | 0.9455 | 0.9455 | | 0.0001 | 12.07 | 15756 | 0.3719 | 0.9479 | 0.9547 | 0.9405 | | 0.0307 | 13.07 | 16968 | 0.3657 | 0.9463 | 0.9530 | 0.9388 | | 0.0002 | 14.07 | 18165 | 0.3655 | 0.9479 | 0.9547 | 0.9405 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
KryptDo0x/ppo-LunarLander-v2
KryptDo0x
2024-01-23T15:31:08Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-20T15:47:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.06 +/- 13.09 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
YouKnowMee/Mistral-7b-instruct-v0.2-summ-sft-dpo-ed3
YouKnowMee
2024-01-23T15:24:04Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T15:09:43Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
YouKnowMee/Mistral-7b-instruct-v0.2-summ-sft-dpo-ed2
YouKnowMee
2024-01-23T15:23:50Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T15:07:19Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
kaist-ai/metamath-langbridge-9b
kaist-ai
2024-01-23T15:22:15Z
6
1
transformers
[ "transformers", "safetensors", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "arxiv:2401.10695", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T10:33:40Z
--- license: apache-2.0 language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu library_name: transformers --- ## Links for Reference - **Repository: https://github.com/kaistAI/LangBridge** - **Paper: [LangBridge: Multilingual Reasoning Without Multilingual Supervision](https://arxiv.org/pdf/2401.10695.pdf)** - **Point of Contact: [email protected]** # TL;DR 🤔LMs good at reasoning are mostly English-centric (MetaMath, Orca 2, etc). 😃Let’s adapt them to solve multilingual tasks. BUT without using multilingual data! LangBridge “bridges” mT5 encoder and the target LM together while utilizing only English data. In test time, LangBridge models can solve multilingual reasoning tasks effectively. ![image/png](./figure2.png) # Usage Please refer to the [Github repository](https://github.com/kaistAI/LangBridge) for detailed usage examples. # Related Models [Check out other LangBridge models.](https://huggingface.co/collections/kaist-ai/langbridge-65afbbdae50627e40ca58f9a) We have: - Llama 2 - Llemma - MetaMath - Code Llama - Orca 2 # Citation If you find the following model helpful, please consider citing our paper! **BibTeX:** ```bibtex @misc{yoon2024langbridge, title={LangBridge: Multilingual Reasoning Without Multilingual Supervision}, author={Dongkeun Yoon and Joel Jang and Sungdong Kim and Seungone Kim and Sheikh Shafayat and Minjoon Seo}, year={2024}, eprint={2401.10695}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
YouKnowMee/Mistral-7b-instruct-v0.2-summ-dpo-ed3
YouKnowMee
2024-01-23T15:22:09Z
0
1
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T15:05:53Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
YouKnowMee/Mistral-7b-instruct-v0.2-summ-dpo-ed2
YouKnowMee
2024-01-23T15:21:50Z
0
1
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T15:06:12Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
kaist-ai/codellama-langbridge-9b
kaist-ai
2024-01-23T15:20:22Z
10
1
transformers
[ "transformers", "safetensors", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "arxiv:2401.10695", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T11:30:08Z
--- license: apache-2.0 language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu library_name: transformers --- ## Links for Reference - **Repository: https://github.com/kaistAI/LangBridge** - **Paper: [LangBridge: Multilingual Reasoning Without Multilingual Supervision](https://arxiv.org/pdf/2401.10695.pdf)** - **Point of Contact: [email protected]** # TL;DR 🤔LMs good at reasoning are mostly English-centric (MetaMath, Orca 2, etc). 😃Let’s adapt them to solve multilingual tasks. BUT without using multilingual data! LangBridge “bridges” mT5 encoder and the target LM together while utilizing only English data. In test time, LangBridge models can solve multilingual reasoning tasks effectively. ![image/png](./figure2.png) # Usage Please refer to the [Github repository](https://github.com/kaistAI/LangBridge) for detailed usage examples. # Related Models [Check out other LangBridge models.](https://huggingface.co/collections/kaist-ai/langbridge-65afbbdae50627e40ca58f9a) We have: - Llama 2 - Llemma - MetaMath - Code Llama - Orca 2 # Citation If you find the following model helpful, please consider citing our paper! **BibTeX:** ```bibtex @misc{yoon2024langbridge, title={LangBridge: Multilingual Reasoning Without Multilingual Supervision}, author={Dongkeun Yoon and Joel Jang and Sungdong Kim and Seungone Kim and Sheikh Shafayat and Minjoon Seo}, year={2024}, eprint={2401.10695}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
YouKnowMee/Mistral-7b-instruct-v0.2-summ-sft-ed1
YouKnowMee
2024-01-23T15:18:48Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T15:08:11Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
kaist-ai/codellama-langbridge-20b
kaist-ai
2024-01-23T15:18:19Z
10
1
transformers
[ "transformers", "safetensors", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "arxiv:2401.10695", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T12:10:27Z
--- license: apache-2.0 language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu library_name: transformers --- ## Links for Reference - **Repository: https://github.com/kaistAI/LangBridge** - **Paper: [LangBridge: Multilingual Reasoning Without Multilingual Supervision](https://arxiv.org/pdf/2401.10695.pdf)** - **Point of Contact: [email protected]** # TL;DR 🤔LMs good at reasoning are mostly English-centric (MetaMath, Orca 2, etc). 😃Let’s adapt them to solve multilingual tasks. BUT without using multilingual data! LangBridge “bridges” mT5 encoder and the target LM together while utilizing only English data. In test time, LangBridge models can solve multilingual reasoning tasks effectively. ![image/png](./figure2.png) # Usage Please refer to the [Github repository](https://github.com/kaistAI/LangBridge) for detailed usage examples. # Related Models [Check out other LangBridge models.](https://huggingface.co/collections/kaist-ai/langbridge-65afbbdae50627e40ca58f9a) We have: - Llama 2 - Llemma - MetaMath - Code Llama - Orca 2 # Citation If you find the following model helpful, please consider citing our paper! **BibTeX:** ```bibtex @misc{yoon2024langbridge, title={LangBridge: Multilingual Reasoning Without Multilingual Supervision}, author={Dongkeun Yoon and Joel Jang and Sungdong Kim and Seungone Kim and Sheikh Shafayat and Minjoon Seo}, year={2024}, eprint={2401.10695}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kaist-ai/llama2-langbridge-9b
kaist-ai
2024-01-23T15:15:01Z
8
7
transformers
[ "transformers", "safetensors", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "arxiv:2401.10695", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T10:59:18Z
--- license: apache-2.0 language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu library_name: transformers --- ## Links for Reference - **Repository: https://github.com/kaistAI/LangBridge** - **Paper: [LangBridge: Multilingual Reasoning Without Multilingual Supervision](https://arxiv.org/pdf/2401.10695.pdf)** - **Point of Contact: [email protected]** # TL;DR 🤔LMs good at reasoning are mostly English-centric (MetaMath, Orca 2, etc). 😃Let’s adapt them to solve multilingual tasks. BUT without using multilingual data! LangBridge “bridges” mT5 encoder and the target LM together while utilizing only English data. In test time, LangBridge models can solve multilingual reasoning tasks effectively. ![image/png](./figure2.png) # Usage Please refer to the [Github repository](https://github.com/kaistAI/LangBridge) for detailed usage examples. # Related Models [Check out other LangBridge models.](https://huggingface.co/collections/kaist-ai/langbridge-65afbbdae50627e40ca58f9a) We have: - Llama 2 - Llemma - MetaMath - Code Llama - Orca 2 # Citation If you find the following model helpful, please consider citing our paper! **BibTeX:** ```bibtex @misc{yoon2024langbridge, title={LangBridge: Multilingual Reasoning Without Multilingual Supervision}, author={Dongkeun Yoon and Joel Jang and Sungdong Kim and Seungone Kim and Sheikh Shafayat and Minjoon Seo}, year={2024}, eprint={2401.10695}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
severcorp/lm3
severcorp
2024-01-23T15:09:03Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:HuggingFaceH4/ultrafeedback_binarized", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T15:08:09Z
--- license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized language: - en widget: - text: "<|system|>\nYou are a chatbot who can help code!</s>\n<|user|>\nWrite me a function to calculate the first 10 digits of the fibonacci sequence in Python and print it out to the CLI.</s>\n<|assistant|>\n" --- <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4." #### How to use You will need the transformers>=4.34 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # ... ```
Varshini-14/my-pet-dog
Varshini-14
2024-01-23T15:03:04Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-23T14:59:33Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by Varshini-14 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 22BTRIS057 Sample pictures of this concept: ![0](https://huggingface.co/Varshini-14/my-pet-dog/resolve/main/sample_images/xzg_(4).webp) ![1](https://huggingface.co/Varshini-14/my-pet-dog/resolve/main/sample_images/xzg_(1).jpg) ![2](https://huggingface.co/Varshini-14/my-pet-dog/resolve/main/sample_images/xzg_(3).webp) ![3](https://huggingface.co/Varshini-14/my-pet-dog/resolve/main/sample_images/xzg_(5).webp) ![4](https://huggingface.co/Varshini-14/my-pet-dog/resolve/main/sample_images/xzg_(2).jpg)
mjawor234/distilbert-base-uncased-finetuned-squad
mjawor234
2024-01-23T15:02:33Z
46
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-01-22T21:00:10Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: mjawor234/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mjawor234/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9617 - Train End Logits Accuracy: 0.7333 - Train Start Logits Accuracy: 0.6915 - Validation Loss: 1.1133 - Validation End Logits Accuracy: 0.7008 - Validation Start Logits Accuracy: 0.6660 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.4970 | 0.6101 | 0.5709 | 1.1459 | 0.6881 | 0.6540 | 0 | | 0.9617 | 0.7333 | 0.6915 | 1.1133 | 0.7008 | 0.6660 | 1 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/npi-sent-neg-transformer-4
CLMBR
2024-01-23T14:50:28Z
13
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T15:07:35Z
--- tags: - generated_from_trainer model-index: - name: npi-sent-neg-transformer-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # npi-sent-neg-transformer-4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2294 | 0.03 | 76320 | 4.1976 | | 4.0258 | 1.03 | 152640 | 4.0278 | | 3.9153 | 0.03 | 228960 | 3.9533 | | 3.8506 | 1.03 | 305280 | 3.9122 | | 3.7999 | 0.03 | 381600 | 3.8867 | | 3.7591 | 1.03 | 457920 | 3.8711 | | 3.7275 | 0.03 | 534240 | 3.8604 | | 3.6964 | 1.03 | 610560 | 3.8532 | | 3.6674 | 0.03 | 686880 | 3.8489 | | 3.6392 | 1.03 | 763200 | 3.8465 | | 3.6147 | 0.03 | 839520 | 3.8450 | | 3.5948 | 0.03 | 915840 | 3.8441 | | 3.575 | 1.03 | 992160 | 3.8453 | | 3.5534 | 0.03 | 1068480 | 3.8445 | | 3.5379 | 1.03 | 1144800 | 3.8452 | | 3.5285 | 0.03 | 1221120 | 3.8465 | | 3.5112 | 1.03 | 1297440 | 3.8482 | | 3.5024 | 0.03 | 1373760 | 3.8482 | | 3.4844 | 1.03 | 1450080 | 3.8503 | | 3.4812 | 0.03 | 1526400 | 3.8522 | | 3.4704 | 1.03 | 1602720 | 3.8541 | | 3.4636 | 0.03 | 1679040 | 3.8544 | | 3.4543 | 1.03 | 1755360 | 3.8559 | | 3.4423 | 0.03 | 1831680 | 3.8573 | | 3.4292 | 1.03 | 1908000 | 3.8595 | | 3.4145 | 0.03 | 1984320 | 3.8600 | | 3.4003 | 1.03 | 2060640 | 3.8617 | | 3.3921 | 0.03 | 2136960 | 3.8631 | | 3.3779 | 1.03 | 2213280 | 3.8630 | | 3.3635 | 0.03 | 2289600 | 3.8653 | | 3.3548 | 1.03 | 2365920 | 3.8652 | | 3.3528 | 0.03 | 2442240 | 3.8671 | | 3.3407 | 1.03 | 2518560 | 3.8685 | | 3.3356 | 0.03 | 2594880 | 3.8683 | | 3.3213 | 1.03 | 2671200 | 3.8682 | | 3.3205 | 0.03 | 2747520 | 3.8687 | | 3.3126 | 1.03 | 2823840 | 3.8683 | | 3.3079 | 0.03 | 2900160 | 3.8675 | | 3.3038 | 0.03 | 2976480 | 3.8673 | | 3.2973 | 1.02 | 3052726 | 3.8656 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
homerquan/poca-SoccerTwos
homerquan
2024-01-23T14:37:08Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-01-23T14:36:01Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: homerquan/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
silvercoder67/Mistral-7b-instruct-v0.2-summ-dpo-e3
silvercoder67
2024-01-23T14:35:47Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T14:35:23Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
kijeong22/swin-finetuned-output_dim2
kijeong22
2024-01-23T14:33:24Z
6
0
transformers
[ "transformers", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-23T08:39:01Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: swin-finetuned-output_dim2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-finetuned-output_dim2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3851 - Accuracy: 0.5088 - Precision: 0.4677 - Recall: 0.5024 - F1: 0.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6931 | 0.1 | 10 | 0.6931 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6931 | 0.2 | 20 | 0.6931 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.693 | 0.3 | 30 | 0.6930 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6929 | 0.4 | 40 | 0.6928 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6925 | 0.5 | 50 | 0.6925 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6929 | 0.59 | 60 | 0.6924 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6921 | 0.69 | 70 | 0.6922 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6919 | 0.79 | 80 | 0.6918 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6927 | 0.89 | 90 | 0.6915 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6927 | 0.99 | 100 | 0.6911 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6922 | 1.09 | 110 | 0.6910 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6914 | 1.19 | 120 | 0.6909 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6924 | 1.29 | 130 | 0.6912 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.692 | 1.39 | 140 | 0.6915 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6901 | 1.49 | 150 | 0.6906 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6923 | 1.58 | 160 | 0.6903 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6925 | 1.68 | 170 | 0.6908 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6908 | 1.78 | 180 | 0.6905 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6919 | 1.88 | 190 | 0.6904 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6917 | 1.98 | 200 | 0.6902 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6874 | 2.08 | 210 | 0.6897 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6966 | 2.18 | 220 | 0.6898 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6905 | 2.28 | 230 | 0.6907 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.691 | 2.38 | 240 | 0.6905 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6899 | 2.48 | 250 | 0.6899 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.694 | 2.57 | 260 | 0.6911 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6913 | 2.67 | 270 | 0.6913 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6917 | 2.77 | 280 | 0.6911 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6914 | 2.87 | 290 | 0.6903 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6942 | 2.97 | 300 | 0.6914 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6921 | 3.07 | 310 | 0.6919 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.692 | 3.17 | 320 | 0.6913 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6912 | 3.27 | 330 | 0.6902 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6923 | 3.37 | 340 | 0.6900 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6894 | 3.47 | 350 | 0.6900 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6878 | 3.56 | 360 | 0.6900 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6938 | 3.66 | 370 | 0.6909 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6905 | 3.76 | 380 | 0.6912 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6916 | 3.86 | 390 | 0.6903 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.693 | 3.96 | 400 | 0.6909 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.691 | 4.06 | 410 | 0.6903 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.689 | 4.16 | 420 | 0.6901 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.696 | 4.26 | 430 | 0.6901 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6921 | 4.36 | 440 | 0.6905 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.693 | 4.46 | 450 | 0.6912 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6894 | 4.55 | 460 | 0.6903 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6879 | 4.65 | 470 | 0.6900 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6945 | 4.75 | 480 | 0.6896 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6915 | 4.85 | 490 | 0.6900 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6919 | 4.95 | 500 | 0.6901 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6931 | 5.05 | 510 | 0.6912 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.692 | 5.15 | 520 | 0.6918 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6901 | 5.25 | 530 | 0.6898 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6948 | 5.35 | 540 | 0.6904 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6899 | 5.45 | 550 | 0.6900 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6892 | 5.54 | 560 | 0.6901 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6874 | 5.64 | 570 | 0.6902 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6952 | 5.74 | 580 | 0.6909 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6928 | 5.84 | 590 | 0.6923 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6919 | 5.94 | 600 | 0.6914 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6931 | 6.04 | 610 | 0.6909 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6914 | 6.14 | 620 | 0.6911 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6917 | 6.24 | 630 | 0.6905 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6883 | 6.34 | 640 | 0.6901 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6902 | 6.44 | 650 | 0.6915 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6963 | 6.53 | 660 | 0.6910 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6914 | 6.63 | 670 | 0.6918 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6882 | 6.73 | 680 | 0.6904 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.69 | 6.83 | 690 | 0.6909 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6903 | 6.93 | 700 | 0.6917 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6912 | 7.03 | 710 | 0.6934 | 0.5044 | 0.4057 | 0.1699 | 0.2395 | | 0.6912 | 7.13 | 720 | 0.6978 | 0.4538 | 0.4395 | 0.6866 | 0.5359 | | 0.6841 | 7.23 | 730 | 0.6936 | 0.5253 | 0.4054 | 0.0718 | 0.1220 | | 0.6899 | 7.33 | 740 | 0.6920 | 0.5385 | 0.4872 | 0.0909 | 0.1532 | | 0.6938 | 7.43 | 750 | 0.6902 | 0.5396 | 0.0 | 0.0 | 0.0 | | 0.6887 | 7.52 | 760 | 0.6897 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6937 | 7.62 | 770 | 0.6907 | 0.5396 | 0.3333 | 0.0024 | 0.0048 | | 0.6876 | 7.72 | 780 | 0.6922 | 0.5374 | 0.4444 | 0.0287 | 0.0539 | | 0.6877 | 7.82 | 790 | 0.6941 | 0.5374 | 0.4483 | 0.0311 | 0.0582 | | 0.6864 | 7.92 | 800 | 0.6952 | 0.4956 | 0.4591 | 0.5502 | 0.5005 | | 0.6824 | 8.02 | 810 | 0.6910 | 0.5407 | 0.0 | 0.0 | 0.0 | | 0.6941 | 8.12 | 820 | 0.6925 | 0.5341 | 0.4464 | 0.0598 | 0.1055 | | 0.6878 | 8.22 | 830 | 0.6957 | 0.4516 | 0.4434 | 0.7584 | 0.5596 | | 0.6881 | 8.32 | 840 | 0.6990 | 0.5022 | 0.4493 | 0.3708 | 0.4063 | | 0.6868 | 8.42 | 850 | 0.6960 | 0.4923 | 0.4225 | 0.2871 | 0.3419 | | 0.6845 | 8.51 | 860 | 0.6965 | 0.4901 | 0.4378 | 0.3876 | 0.4112 | | 0.6863 | 8.61 | 870 | 0.6955 | 0.5077 | 0.3828 | 0.1172 | 0.1795 | | 0.6788 | 8.71 | 880 | 0.7016 | 0.4593 | 0.4155 | 0.4354 | 0.4252 | | 0.6835 | 8.81 | 890 | 0.7028 | 0.4626 | 0.4489 | 0.7464 | 0.5606 | | 0.6862 | 8.91 | 900 | 0.7061 | 0.5121 | 0.3839 | 0.1029 | 0.1623 | | 0.7011 | 9.01 | 910 | 0.6953 | 0.4802 | 0.4478 | 0.5646 | 0.4995 | | 0.6858 | 9.11 | 920 | 0.6938 | 0.5176 | 0.4604 | 0.2919 | 0.3572 | | 0.6849 | 9.21 | 930 | 0.6980 | 0.4989 | 0.4438 | 0.3589 | 0.3968 | | 0.6792 | 9.31 | 940 | 0.6982 | 0.5055 | 0.4579 | 0.4163 | 0.4361 | | 0.6801 | 9.41 | 950 | 0.6990 | 0.5055 | 0.4556 | 0.3923 | 0.4216 | | 0.6815 | 9.5 | 960 | 0.7024 | 0.5 | 0.4593 | 0.5 | 0.4788 | | 0.6816 | 9.6 | 970 | 0.7126 | 0.4945 | 0.4521 | 0.4737 | 0.4626 | | 0.675 | 9.7 | 980 | 0.7096 | 0.5132 | 0.4658 | 0.4067 | 0.4342 | | 0.6758 | 9.8 | 990 | 0.6992 | 0.5198 | 0.4642 | 0.2943 | 0.3602 | | 0.6861 | 9.9 | 1000 | 0.6934 | 0.5253 | 0.4739 | 0.3038 | 0.3703 | | 0.6843 | 10.0 | 1010 | 0.6939 | 0.5264 | 0.4833 | 0.4498 | 0.4659 | | 0.6826 | 10.1 | 1020 | 0.7014 | 0.4868 | 0.4607 | 0.6866 | 0.5514 | | 0.6599 | 10.2 | 1030 | 0.7142 | 0.4923 | 0.4540 | 0.5191 | 0.4844 | | 0.6644 | 10.3 | 1040 | 0.7180 | 0.4813 | 0.45 | 0.5813 | 0.5073 | | 0.6948 | 10.4 | 1050 | 0.7138 | 0.4681 | 0.4531 | 0.7632 | 0.5686 | | 0.6613 | 10.5 | 1060 | 0.7181 | 0.4934 | 0.4108 | 0.2368 | 0.3005 | | 0.6745 | 10.59 | 1070 | 0.7224 | 0.4538 | 0.4513 | 0.8756 | 0.5956 | | 0.6917 | 10.69 | 1080 | 0.7040 | 0.4901 | 0.4559 | 0.5694 | 0.5064 | | 0.6764 | 10.79 | 1090 | 0.6936 | 0.5275 | 0.4727 | 0.2488 | 0.3260 | | 0.6698 | 10.89 | 1100 | 0.6977 | 0.5242 | 0.4615 | 0.2153 | 0.2936 | | 0.6679 | 10.99 | 1110 | 0.7073 | 0.5242 | 0.4788 | 0.4043 | 0.4384 | | 0.6626 | 11.09 | 1120 | 0.7122 | 0.4736 | 0.4526 | 0.6962 | 0.5485 | | 0.6482 | 11.19 | 1130 | 0.7241 | 0.4758 | 0.4566 | 0.7416 | 0.5652 | | 0.6526 | 11.29 | 1140 | 0.7236 | 0.5077 | 0.4599 | 0.4115 | 0.4343 | | 0.6563 | 11.39 | 1150 | 0.7291 | 0.4725 | 0.4511 | 0.6842 | 0.5437 | | 0.6528 | 11.49 | 1160 | 0.7212 | 0.5165 | 0.4732 | 0.4641 | 0.4686 | | 0.644 | 11.58 | 1170 | 0.7130 | 0.5341 | 0.4924 | 0.4665 | 0.4791 | | 0.6566 | 11.68 | 1180 | 0.7185 | 0.4769 | 0.4558 | 0.7153 | 0.5568 | | 0.6783 | 11.78 | 1190 | 0.7211 | 0.5253 | 0.4817 | 0.4402 | 0.46 | | 0.6726 | 11.88 | 1200 | 0.7195 | 0.5022 | 0.4713 | 0.6866 | 0.5589 | | 0.658 | 11.98 | 1210 | 0.7189 | 0.5253 | 0.4733 | 0.2967 | 0.3647 | | 0.6505 | 12.08 | 1220 | 0.7184 | 0.4923 | 0.4556 | 0.5407 | 0.4945 | | 0.6411 | 12.18 | 1230 | 0.7531 | 0.4912 | 0.4514 | 0.5 | 0.4745 | | 0.6507 | 12.28 | 1240 | 0.7700 | 0.4659 | 0.4450 | 0.6579 | 0.5309 | | 0.6382 | 12.38 | 1250 | 0.7520 | 0.4945 | 0.4555 | 0.5144 | 0.4831 | | 0.6393 | 12.48 | 1260 | 0.7335 | 0.4967 | 0.4548 | 0.4809 | 0.4674 | | 0.6353 | 12.57 | 1270 | 0.7525 | 0.4725 | 0.4566 | 0.7799 | 0.5760 | | 0.6476 | 12.67 | 1280 | 0.7404 | 0.5011 | 0.4622 | 0.5263 | 0.4922 | | 0.6155 | 12.77 | 1290 | 0.7564 | 0.5011 | 0.4659 | 0.5885 | 0.5201 | | 0.6102 | 12.87 | 1300 | 0.7757 | 0.5 | 0.4626 | 0.5478 | 0.5016 | | 0.6436 | 12.97 | 1310 | 0.7670 | 0.4945 | 0.4662 | 0.6938 | 0.5577 | | 0.5986 | 13.07 | 1320 | 0.7703 | 0.5 | 0.4705 | 0.7057 | 0.5646 | | 0.6127 | 13.17 | 1330 | 0.7815 | 0.5198 | 0.4775 | 0.4833 | 0.4804 | | 0.6191 | 13.27 | 1340 | 0.7723 | 0.5099 | 0.4714 | 0.5526 | 0.5088 | | 0.5921 | 13.37 | 1350 | 0.7924 | 0.4857 | 0.4598 | 0.6842 | 0.55 | | 0.6179 | 13.47 | 1360 | 0.7995 | 0.4857 | 0.4583 | 0.6579 | 0.5403 | | 0.6021 | 13.56 | 1370 | 0.7742 | 0.4956 | 0.4675 | 0.7057 | 0.5624 | | 0.6047 | 13.66 | 1380 | 0.7930 | 0.5231 | 0.4770 | 0.3971 | 0.4334 | | 0.6218 | 13.76 | 1390 | 0.7713 | 0.4857 | 0.4602 | 0.6914 | 0.5526 | | 0.5966 | 13.86 | 1400 | 0.7635 | 0.5077 | 0.4704 | 0.5694 | 0.5152 | | 0.587 | 13.96 | 1410 | 0.7922 | 0.5088 | 0.4681 | 0.5096 | 0.4880 | | 0.5508 | 14.06 | 1420 | 0.8150 | 0.4879 | 0.4632 | 0.7225 | 0.5645 | | 0.5498 | 14.16 | 1430 | 0.8510 | 0.4989 | 0.4708 | 0.7321 | 0.5730 | | 0.5746 | 14.26 | 1440 | 0.8129 | 0.5165 | 0.4757 | 0.5144 | 0.4943 | | 0.5433 | 14.36 | 1450 | 0.8512 | 0.5066 | 0.4737 | 0.6675 | 0.5541 | | 0.5509 | 14.46 | 1460 | 0.8718 | 0.4956 | 0.4614 | 0.5861 | 0.5163 | | 0.5687 | 14.55 | 1470 | 0.8289 | 0.4912 | 0.4637 | 0.6866 | 0.5535 | | 0.5495 | 14.65 | 1480 | 0.8390 | 0.5176 | 0.4729 | 0.4378 | 0.4547 | | 0.5376 | 14.75 | 1490 | 0.8566 | 0.4945 | 0.4677 | 0.7273 | 0.5693 | | 0.5832 | 14.85 | 1500 | 0.7991 | 0.5198 | 0.4797 | 0.5359 | 0.5062 | | 0.5663 | 14.95 | 1510 | 0.8092 | 0.4945 | 0.4604 | 0.5837 | 0.5148 | | 0.5417 | 15.05 | 1520 | 0.8595 | 0.5 | 0.4695 | 0.6818 | 0.5561 | | 0.5143 | 15.15 | 1530 | 0.8894 | 0.5110 | 0.4632 | 0.4067 | 0.4331 | | 0.4905 | 15.25 | 1540 | 0.8943 | 0.5 | 0.4593 | 0.5 | 0.4788 | | 0.4928 | 15.35 | 1550 | 0.9057 | 0.5011 | 0.4663 | 0.5957 | 0.5231 | | 0.5079 | 15.45 | 1560 | 0.8770 | 0.5231 | 0.4833 | 0.5550 | 0.5167 | | 0.4985 | 15.54 | 1570 | 0.9009 | 0.5033 | 0.4719 | 0.6818 | 0.5577 | | 0.5223 | 15.64 | 1580 | 0.9104 | 0.5066 | 0.4678 | 0.5383 | 0.5006 | | 0.4982 | 15.74 | 1590 | 0.9134 | 0.5121 | 0.4645 | 0.4067 | 0.4337 | | 0.5268 | 15.84 | 1600 | 0.8799 | 0.5110 | 0.4740 | 0.5885 | 0.5251 | | 0.5138 | 15.94 | 1610 | 0.9454 | 0.4835 | 0.4626 | 0.7703 | 0.5781 | | 0.5308 | 16.04 | 1620 | 0.8870 | 0.5 | 0.4602 | 0.5120 | 0.4847 | | 0.4535 | 16.14 | 1630 | 0.9438 | 0.5121 | 0.4652 | 0.4163 | 0.4394 | | 0.4684 | 16.24 | 1640 | 0.9885 | 0.5110 | 0.4712 | 0.5287 | 0.4983 | | 0.4454 | 16.34 | 1650 | 0.9837 | 0.4934 | 0.4615 | 0.6172 | 0.5281 | | 0.4352 | 16.44 | 1660 | 1.0165 | 0.5022 | 0.4694 | 0.6411 | 0.5420 | | 0.433 | 16.53 | 1670 | 1.0183 | 0.4890 | 0.4608 | 0.6603 | 0.5428 | | 0.4868 | 16.63 | 1680 | 0.9493 | 0.4989 | 0.4681 | 0.6675 | 0.5503 | | 0.4758 | 16.73 | 1690 | 0.9099 | 0.4824 | 0.4499 | 0.5694 | 0.5026 | | 0.4697 | 16.83 | 1700 | 0.9493 | 0.4967 | 0.4644 | 0.6244 | 0.5327 | | 0.4595 | 16.93 | 1710 | 0.9750 | 0.5022 | 0.4658 | 0.5694 | 0.5124 | | 0.4468 | 17.03 | 1720 | 0.9663 | 0.5066 | 0.4650 | 0.4928 | 0.4785 | | 0.4202 | 17.13 | 1730 | 1.0212 | 0.4956 | 0.4486 | 0.4282 | 0.4382 | | 0.4067 | 17.23 | 1740 | 1.0480 | 0.4956 | 0.4543 | 0.4880 | 0.4706 | | 0.4076 | 17.33 | 1750 | 1.0637 | 0.5022 | 0.4627 | 0.5191 | 0.4893 | | 0.3949 | 17.43 | 1760 | 1.0986 | 0.4835 | 0.4587 | 0.6914 | 0.5515 | | 0.4204 | 17.52 | 1770 | 1.0845 | 0.4989 | 0.4661 | 0.6244 | 0.5337 | | 0.4199 | 17.62 | 1780 | 1.0097 | 0.5110 | 0.4708 | 0.5215 | 0.4949 | | 0.4258 | 17.72 | 1790 | 0.9844 | 0.5055 | 0.4690 | 0.5789 | 0.5182 | | 0.4006 | 17.82 | 1800 | 1.0503 | 0.5033 | 0.4647 | 0.5359 | 0.4978 | | 0.4193 | 17.92 | 1810 | 1.0635 | 0.5077 | 0.4654 | 0.4833 | 0.4742 | | 0.4193 | 18.02 | 1820 | 0.9981 | 0.5121 | 0.4683 | 0.4593 | 0.4638 | | 0.3659 | 18.12 | 1830 | 1.0970 | 0.5121 | 0.4780 | 0.6746 | 0.5595 | | 0.3792 | 18.22 | 1840 | 1.1004 | 0.5110 | 0.4710 | 0.5239 | 0.4960 | | 0.3463 | 18.32 | 1850 | 1.1114 | 0.5132 | 0.4739 | 0.5431 | 0.5061 | | 0.3689 | 18.42 | 1860 | 1.0942 | 0.5143 | 0.4746 | 0.5359 | 0.5034 | | 0.3568 | 18.51 | 1870 | 1.1142 | 0.5033 | 0.4661 | 0.5598 | 0.5087 | | 0.3903 | 18.61 | 1880 | 1.1551 | 0.5 | 0.4653 | 0.5933 | 0.5216 | | 0.3606 | 18.71 | 1890 | 1.1708 | 0.5011 | 0.4665 | 0.6005 | 0.5251 | | 0.3514 | 18.81 | 1900 | 1.1328 | 0.5099 | 0.4685 | 0.4976 | 0.4826 | | 0.3892 | 18.91 | 1910 | 1.1357 | 0.5066 | 0.4705 | 0.5909 | 0.5239 | | 0.3593 | 19.01 | 1920 | 1.1000 | 0.5099 | 0.4739 | 0.6077 | 0.5325 | | 0.3061 | 19.11 | 1930 | 1.2081 | 0.5231 | 0.4846 | 0.6029 | 0.5373 | | 0.352 | 19.21 | 1940 | 1.1939 | 0.5121 | 0.4790 | 0.7081 | 0.5714 | | 0.4023 | 19.31 | 1950 | 1.0680 | 0.5143 | 0.4764 | 0.5789 | 0.5227 | | 0.3053 | 19.41 | 1960 | 1.2004 | 0.5044 | 0.4591 | 0.4426 | 0.4507 | | 0.3656 | 19.5 | 1970 | 1.2460 | 0.4978 | 0.4614 | 0.5574 | 0.5049 | | 0.3284 | 19.6 | 1980 | 1.2034 | 0.5055 | 0.4671 | 0.5431 | 0.5022 | | 0.3629 | 19.7 | 1990 | 1.1308 | 0.5099 | 0.4729 | 0.5837 | 0.5225 | | 0.3082 | 19.8 | 2000 | 1.2077 | 0.5077 | 0.4707 | 0.5766 | 0.5183 | | 0.335 | 19.9 | 2010 | 1.2057 | 0.5088 | 0.4692 | 0.5287 | 0.4972 | | 0.3233 | 20.0 | 2020 | 1.1871 | 0.5055 | 0.4626 | 0.4737 | 0.4681 | | 0.2813 | 20.1 | 2030 | 1.2896 | 0.5044 | 0.4663 | 0.5455 | 0.5028 | | 0.2746 | 20.2 | 2040 | 1.3054 | 0.5165 | 0.4769 | 0.5431 | 0.5078 | | 0.2848 | 20.3 | 2050 | 1.3196 | 0.4857 | 0.4560 | 0.6196 | 0.5254 | | 0.3281 | 20.4 | 2060 | 1.3152 | 0.4978 | 0.4596 | 0.5311 | 0.4928 | | 0.3057 | 20.5 | 2070 | 1.2997 | 0.5099 | 0.4718 | 0.5598 | 0.5120 | | 0.3119 | 20.59 | 2080 | 1.2248 | 0.4956 | 0.4628 | 0.6100 | 0.5263 | | 0.3049 | 20.69 | 2090 | 1.2603 | 0.5132 | 0.4744 | 0.5550 | 0.5116 | | 0.2884 | 20.79 | 2100 | 1.3128 | 0.5242 | 0.4817 | 0.4713 | 0.4764 | | 0.2976 | 20.89 | 2110 | 1.2636 | 0.5099 | 0.4719 | 0.5622 | 0.5131 | | 0.3018 | 20.99 | 2120 | 1.2754 | 0.4967 | 0.4631 | 0.6005 | 0.5229 | | 0.2592 | 21.09 | 2130 | 1.3369 | 0.5099 | 0.4693 | 0.5120 | 0.4897 | | 0.2635 | 21.19 | 2140 | 1.4117 | 0.5 | 0.4615 | 0.5311 | 0.4939 | | 0.2777 | 21.29 | 2150 | 1.3780 | 0.4956 | 0.4650 | 0.6507 | 0.5424 | | 0.2852 | 21.39 | 2160 | 1.2945 | 0.4967 | 0.4567 | 0.5048 | 0.4795 | | 0.2733 | 21.49 | 2170 | 1.3155 | 0.5165 | 0.4730 | 0.4617 | 0.4673 | | 0.2832 | 21.58 | 2180 | 1.3760 | 0.4934 | 0.4611 | 0.6100 | 0.5252 | | 0.2548 | 21.68 | 2190 | 1.3889 | 0.4989 | 0.4572 | 0.4856 | 0.4710 | | 0.2819 | 21.78 | 2200 | 1.3685 | 0.5044 | 0.4569 | 0.4187 | 0.4370 | | 0.2588 | 21.88 | 2210 | 1.3512 | 0.5044 | 0.4667 | 0.5526 | 0.5060 | | 0.2995 | 21.98 | 2220 | 1.2891 | 0.4923 | 0.4621 | 0.6411 | 0.5371 | | 0.2861 | 22.08 | 2230 | 1.3926 | 0.5077 | 0.4599 | 0.4115 | 0.4343 | | 0.2619 | 22.18 | 2240 | 1.4049 | 0.5055 | 0.4683 | 0.5646 | 0.5119 | | 0.2154 | 22.28 | 2250 | 1.4520 | 0.5 | 0.4645 | 0.5789 | 0.5154 | | 0.2592 | 22.38 | 2260 | 1.4432 | 0.5 | 0.4565 | 0.4641 | 0.4603 | | 0.2362 | 22.48 | 2270 | 1.4400 | 0.5066 | 0.4701 | 0.5837 | 0.5208 | | 0.2534 | 22.57 | 2280 | 1.3972 | 0.4945 | 0.4588 | 0.5598 | 0.5043 | | 0.2437 | 22.67 | 2290 | 1.3943 | 0.5055 | 0.4633 | 0.4833 | 0.4731 | | 0.2252 | 22.77 | 2300 | 1.4743 | 0.5066 | 0.4619 | 0.4498 | 0.4558 | | 0.2657 | 22.87 | 2310 | 1.4640 | 0.5088 | 0.4678 | 0.5048 | 0.4856 | | 0.2501 | 22.97 | 2320 | 1.4328 | 0.5121 | 0.4762 | 0.6220 | 0.5394 | | 0.2473 | 23.07 | 2330 | 1.4163 | 0.5077 | 0.4631 | 0.4498 | 0.4563 | | 0.2382 | 23.17 | 2340 | 1.5845 | 0.4791 | 0.4524 | 0.6364 | 0.5288 | | 0.2497 | 23.27 | 2350 | 1.4014 | 0.5033 | 0.4587 | 0.4522 | 0.4554 | | 0.2401 | 23.37 | 2360 | 1.3488 | 0.5033 | 0.4635 | 0.5167 | 0.4887 | | 0.2185 | 23.47 | 2370 | 1.4671 | 0.4945 | 0.4590 | 0.5622 | 0.5054 | | 0.2 | 23.56 | 2380 | 1.5153 | 0.4846 | 0.4447 | 0.4904 | 0.4664 | | 0.2614 | 23.66 | 2390 | 1.4911 | 0.4945 | 0.4555 | 0.5144 | 0.4831 | | 0.2117 | 23.76 | 2400 | 1.4923 | 0.4978 | 0.4589 | 0.5215 | 0.4882 | | 0.2383 | 23.86 | 2410 | 1.4842 | 0.5011 | 0.4625 | 0.5311 | 0.4944 | | 0.2466 | 23.96 | 2420 | 1.4529 | 0.5132 | 0.4719 | 0.5024 | 0.4867 | | 0.2218 | 24.06 | 2430 | 1.4223 | 0.4967 | 0.4588 | 0.5335 | 0.4934 | | 0.1857 | 24.16 | 2440 | 1.5669 | 0.5033 | 0.4585 | 0.4498 | 0.4541 | | 0.2053 | 24.26 | 2450 | 1.5503 | 0.5110 | 0.4697 | 0.5 | 0.4844 | | 0.227 | 24.36 | 2460 | 1.5109 | 0.5132 | 0.4731 | 0.5263 | 0.4983 | | 0.1927 | 24.46 | 2470 | 1.5388 | 0.5143 | 0.4762 | 0.5742 | 0.5206 | | 0.2133 | 24.55 | 2480 | 1.5083 | 0.4989 | 0.4570 | 0.4833 | 0.4698 | | 0.2454 | 24.65 | 2490 | 1.5215 | 0.5143 | 0.4789 | 0.6531 | 0.5526 | | 0.2302 | 24.75 | 2500 | 1.4555 | 0.4923 | 0.4577 | 0.5694 | 0.5075 | | 0.2324 | 24.85 | 2510 | 1.4294 | 0.5088 | 0.4691 | 0.5263 | 0.4961 | | 0.2193 | 24.95 | 2520 | 1.4512 | 0.5154 | 0.4772 | 0.5766 | 0.5222 | | 0.1973 | 25.05 | 2530 | 1.5369 | 0.5022 | 0.4601 | 0.4833 | 0.4714 | | 0.1882 | 25.15 | 2540 | 1.5999 | 0.4901 | 0.4517 | 0.5144 | 0.4810 | | 0.2012 | 25.25 | 2550 | 1.5917 | 0.5099 | 0.4713 | 0.5502 | 0.5077 | | 0.1773 | 25.35 | 2560 | 1.5543 | 0.4989 | 0.4587 | 0.5048 | 0.4806 | | 0.1827 | 25.45 | 2570 | 1.6074 | 0.5022 | 0.4620 | 0.5096 | 0.4846 | | 0.1784 | 25.54 | 2580 | 1.6887 | 0.4934 | 0.4527 | 0.4928 | 0.4719 | | 0.2172 | 25.64 | 2590 | 1.6902 | 0.4901 | 0.4542 | 0.5455 | 0.4957 | | 0.2038 | 25.74 | 2600 | 1.6347 | 0.4912 | 0.4566 | 0.5670 | 0.5059 | | 0.2211 | 25.84 | 2610 | 1.5360 | 0.5055 | 0.4671 | 0.5431 | 0.5022 | | 0.2084 | 25.94 | 2620 | 1.6047 | 0.5088 | 0.4678 | 0.5048 | 0.4856 | | 0.1848 | 26.04 | 2630 | 1.6064 | 0.4989 | 0.4556 | 0.4665 | 0.4610 | | 0.1802 | 26.14 | 2640 | 1.6417 | 0.5055 | 0.4677 | 0.5550 | 0.5077 | | 0.1702 | 26.24 | 2650 | 1.6046 | 0.5011 | 0.4589 | 0.4809 | 0.4696 | | 0.171 | 26.34 | 2660 | 1.6522 | 0.5 | 0.4582 | 0.4856 | 0.4715 | | 0.1766 | 26.44 | 2670 | 1.6750 | 0.4912 | 0.4542 | 0.5335 | 0.4906 | | 0.1928 | 26.53 | 2680 | 1.6669 | 0.4912 | 0.4553 | 0.5478 | 0.4973 | | 0.2055 | 26.63 | 2690 | 1.6340 | 0.5066 | 0.4644 | 0.4833 | 0.4736 | | 0.1908 | 26.73 | 2700 | 1.6952 | 0.5044 | 0.4660 | 0.5407 | 0.5006 | | 0.1867 | 26.83 | 2710 | 1.6238 | 0.5033 | 0.4649 | 0.5383 | 0.4989 | | 0.1694 | 26.93 | 2720 | 1.6618 | 0.5033 | 0.4691 | 0.6172 | 0.5331 | | 0.1829 | 27.03 | 2730 | 1.6839 | 0.5154 | 0.4712 | 0.4498 | 0.4602 | | 0.2044 | 27.13 | 2740 | 1.7790 | 0.4945 | 0.4656 | 0.6794 | 0.5525 | | 0.1778 | 27.23 | 2750 | 1.6826 | 0.5 | 0.4539 | 0.4354 | 0.4444 | | 0.1677 | 27.33 | 2760 | 1.7339 | 0.5066 | 0.4699 | 0.5789 | 0.5188 | | 0.1934 | 27.43 | 2770 | 1.7476 | 0.4956 | 0.4561 | 0.5096 | 0.4814 | | 0.2149 | 27.52 | 2780 | 1.6146 | 0.5110 | 0.4681 | 0.4737 | 0.4709 | | 0.1767 | 27.62 | 2790 | 1.6051 | 0.4989 | 0.4623 | 0.5574 | 0.5054 | | 0.1588 | 27.72 | 2800 | 1.7543 | 0.5033 | 0.4630 | 0.5096 | 0.4852 | | 0.1958 | 27.82 | 2810 | 1.7977 | 0.4978 | 0.4614 | 0.5574 | 0.5049 | | 0.1719 | 27.92 | 2820 | 1.7153 | 0.4967 | 0.4603 | 0.5550 | 0.5033 | | 0.1775 | 28.02 | 2830 | 1.6980 | 0.4956 | 0.4572 | 0.5239 | 0.4883 | | 0.1235 | 28.12 | 2840 | 1.8467 | 0.4989 | 0.4617 | 0.5478 | 0.5011 | | 0.1432 | 28.22 | 2850 | 1.8957 | 0.5022 | 0.4625 | 0.5167 | 0.4881 | | 0.2081 | 28.32 | 2860 | 1.8517 | 0.5033 | 0.4673 | 0.5813 | 0.5181 | | 0.1713 | 28.42 | 2870 | 1.7427 | 0.4989 | 0.4615 | 0.5455 | 0.5000 | | 0.1553 | 28.51 | 2880 | 1.7227 | 0.5011 | 0.4639 | 0.5526 | 0.5044 | | 0.1733 | 28.61 | 2890 | 1.7550 | 0.4934 | 0.4544 | 0.5120 | 0.4814 | | 0.1778 | 28.71 | 2900 | 1.7158 | 0.4945 | 0.4562 | 0.5239 | 0.4878 | | 0.1589 | 28.81 | 2910 | 1.7666 | 0.4934 | 0.4527 | 0.4928 | 0.4719 | | 0.182 | 28.91 | 2920 | 1.8048 | 0.4989 | 0.4635 | 0.5766 | 0.5139 | | 0.1579 | 29.01 | 2930 | 1.7952 | 0.4934 | 0.4479 | 0.4426 | 0.4452 | | 0.1716 | 29.11 | 2940 | 1.7790 | 0.4945 | 0.4598 | 0.5742 | 0.5106 | | 0.1598 | 29.21 | 2950 | 1.7497 | 0.4967 | 0.4593 | 0.5407 | 0.4967 | | 0.1743 | 29.31 | 2960 | 1.7378 | 0.4978 | 0.4528 | 0.4474 | 0.4501 | | 0.1486 | 29.41 | 2970 | 1.8025 | 0.5022 | 0.4705 | 0.6675 | 0.5519 | | 0.1609 | 29.5 | 2980 | 1.7530 | 0.5121 | 0.4649 | 0.4115 | 0.4365 | | 0.14 | 29.6 | 2990 | 1.8207 | 0.5077 | 0.4685 | 0.5335 | 0.4989 | | 0.1639 | 29.7 | 3000 | 1.8235 | 0.5 | 0.4563 | 0.4617 | 0.4590 | | 0.1589 | 29.8 | 3010 | 1.7896 | 0.5022 | 0.4644 | 0.5455 | 0.5017 | | 0.1668 | 29.9 | 3020 | 1.7719 | 0.5110 | 0.4685 | 0.4809 | 0.4746 | | 0.1683 | 30.0 | 3030 | 1.7143 | 0.5044 | 0.4677 | 0.5718 | 0.5145 | | 0.1442 | 30.1 | 3040 | 1.8204 | 0.5143 | 0.4713 | 0.4713 | 0.4713 | | 0.1783 | 30.2 | 3050 | 1.9409 | 0.5066 | 0.4688 | 0.5574 | 0.5093 | | 0.1399 | 30.3 | 3060 | 1.9196 | 0.4967 | 0.4578 | 0.5191 | 0.4865 | | 0.1396 | 30.4 | 3070 | 1.8497 | 0.5011 | 0.4627 | 0.5335 | 0.4956 | | 0.1605 | 30.5 | 3080 | 1.8745 | 0.5011 | 0.4659 | 0.5885 | 0.5201 | | 0.1748 | 30.59 | 3090 | 1.8298 | 0.5011 | 0.4650 | 0.5718 | 0.5129 | | 0.1468 | 30.69 | 3100 | 1.8500 | 0.5066 | 0.4680 | 0.5431 | 0.5028 | | 0.1416 | 30.79 | 3110 | 1.9355 | 0.4967 | 0.4593 | 0.5407 | 0.4967 | | 0.1364 | 30.89 | 3120 | 1.9258 | 0.4956 | 0.4617 | 0.5909 | 0.5184 | | 0.155 | 30.99 | 3130 | 1.8446 | 0.5088 | 0.4688 | 0.5215 | 0.4938 | | 0.1281 | 31.09 | 3140 | 1.8884 | 0.5011 | 0.4634 | 0.5455 | 0.5011 | | 0.1513 | 31.19 | 3150 | 1.9357 | 0.4934 | 0.4559 | 0.5311 | 0.4906 | | 0.1454 | 31.29 | 3160 | 1.9112 | 0.5044 | 0.4634 | 0.5 | 0.4810 | | 0.1334 | 31.39 | 3170 | 1.9049 | 0.5022 | 0.4628 | 0.5215 | 0.4904 | | 0.1622 | 31.49 | 3180 | 1.8650 | 0.5066 | 0.4693 | 0.5670 | 0.5135 | | 0.1112 | 31.58 | 3190 | 1.9197 | 0.5033 | 0.4647 | 0.5359 | 0.4978 | | 0.1323 | 31.68 | 3200 | 1.9855 | 0.5110 | 0.4630 | 0.4043 | 0.4317 | | 0.1091 | 31.78 | 3210 | 2.0638 | 0.5044 | 0.4678 | 0.5742 | 0.5156 | | 0.1441 | 31.88 | 3220 | 2.0540 | 0.4956 | 0.4559 | 0.5072 | 0.4802 | | 0.1486 | 31.98 | 3230 | 1.9791 | 0.5077 | 0.4656 | 0.4856 | 0.4754 | | 0.1303 | 32.08 | 3240 | 1.9271 | 0.5066 | 0.4697 | 0.5742 | 0.5167 | | 0.1189 | 32.18 | 3250 | 1.8931 | 0.5231 | 0.4816 | 0.5 | 0.4906 | | 0.1243 | 32.28 | 3260 | 1.9401 | 0.5099 | 0.4703 | 0.5311 | 0.4989 | | 0.1147 | 32.38 | 3270 | 1.9619 | 0.5055 | 0.4675 | 0.5502 | 0.5055 | | 0.1134 | 32.48 | 3280 | 1.9958 | 0.5143 | 0.4698 | 0.4474 | 0.4583 | | 0.1211 | 32.57 | 3290 | 2.0501 | 0.4967 | 0.4580 | 0.5215 | 0.4877 | | 0.1394 | 32.67 | 3300 | 2.0231 | 0.5044 | 0.4658 | 0.5383 | 0.4994 | | 0.1157 | 32.77 | 3310 | 2.0500 | 0.4956 | 0.4597 | 0.5598 | 0.5049 | | 0.156 | 32.87 | 3320 | 1.9984 | 0.5121 | 0.4690 | 0.4713 | 0.4702 | | 0.1406 | 32.97 | 3330 | 1.9976 | 0.4912 | 0.4568 | 0.5694 | 0.5069 | | 0.1379 | 33.07 | 3340 | 1.9001 | 0.5143 | 0.4722 | 0.4880 | 0.48 | | 0.1372 | 33.17 | 3350 | 1.9292 | 0.5198 | 0.4774 | 0.4809 | 0.4791 | | 0.1211 | 33.27 | 3360 | 2.0667 | 0.5033 | 0.4646 | 0.5335 | 0.4967 | | 0.1086 | 33.37 | 3370 | 2.1113 | 0.5154 | 0.4749 | 0.5215 | 0.4971 | | 0.1285 | 33.47 | 3380 | 2.1482 | 0.5033 | 0.4644 | 0.5311 | 0.4955 | | 0.1404 | 33.56 | 3390 | 2.0883 | 0.5099 | 0.4688 | 0.5024 | 0.4850 | | 0.1483 | 33.66 | 3400 | 2.0259 | 0.5011 | 0.4637 | 0.5502 | 0.5033 | | 0.175 | 33.76 | 3410 | 1.9645 | 0.4890 | 0.4521 | 0.5311 | 0.4884 | | 0.1199 | 33.86 | 3420 | 1.9896 | 0.4978 | 0.4570 | 0.4952 | 0.4753 | | 0.1259 | 33.96 | 3430 | 2.0485 | 0.4857 | 0.4486 | 0.5215 | 0.4823 | | 0.1472 | 34.06 | 3440 | 2.0220 | 0.4945 | 0.4527 | 0.4809 | 0.4664 | | 0.1207 | 34.16 | 3450 | 2.0023 | 0.4956 | 0.4581 | 0.5359 | 0.4939 | | 0.1022 | 34.26 | 3460 | 2.0544 | 0.4956 | 0.4577 | 0.5311 | 0.4917 | | 0.1334 | 34.36 | 3470 | 2.1080 | 0.4945 | 0.4588 | 0.5598 | 0.5043 | | 0.118 | 34.46 | 3480 | 2.0726 | 0.4956 | 0.4582 | 0.5383 | 0.4950 | | 0.1527 | 34.55 | 3490 | 1.9606 | 0.4945 | 0.4502 | 0.4545 | 0.4524 | | 0.13 | 34.65 | 3500 | 1.9395 | 0.4967 | 0.4595 | 0.5431 | 0.4978 | | 0.1235 | 34.75 | 3510 | 1.9903 | 0.5055 | 0.4646 | 0.5024 | 0.4828 | | 0.1616 | 34.85 | 3520 | 1.9800 | 0.4989 | 0.4626 | 0.5622 | 0.5076 | | 0.1361 | 34.95 | 3530 | 1.9061 | 0.5011 | 0.4593 | 0.4856 | 0.4721 | | 0.1188 | 35.05 | 3540 | 1.9699 | 0.4956 | 0.4586 | 0.5431 | 0.4973 | | 0.144 | 35.15 | 3550 | 2.0882 | 0.4967 | 0.4635 | 0.6077 | 0.5259 | | 0.1353 | 35.25 | 3560 | 2.0487 | 0.4967 | 0.4569 | 0.5072 | 0.4807 | | 0.1136 | 35.35 | 3570 | 2.0453 | 0.5 | 0.4625 | 0.5455 | 0.5005 | | 0.1208 | 35.45 | 3580 | 2.0445 | 0.5044 | 0.4619 | 0.4785 | 0.4700 | | 0.1077 | 35.54 | 3590 | 2.0570 | 0.5033 | 0.4591 | 0.4569 | 0.4580 | | 0.1038 | 35.64 | 3600 | 2.0791 | 0.5055 | 0.4658 | 0.5215 | 0.4921 | | 0.1197 | 35.74 | 3610 | 2.0838 | 0.5044 | 0.4663 | 0.5455 | 0.5028 | | 0.138 | 35.84 | 3620 | 2.0788 | 0.4967 | 0.4543 | 0.4761 | 0.4650 | | 0.1348 | 35.94 | 3630 | 2.0215 | 0.4912 | 0.4497 | 0.4809 | 0.4647 | | 0.1015 | 36.04 | 3640 | 2.0355 | 0.4945 | 0.4535 | 0.4904 | 0.4713 | | 0.115 | 36.14 | 3650 | 2.0643 | 0.4901 | 0.4502 | 0.4976 | 0.4727 | | 0.1085 | 36.24 | 3660 | 2.0985 | 0.4967 | 0.4526 | 0.4569 | 0.4548 | | 0.1024 | 36.34 | 3670 | 2.1480 | 0.4967 | 0.4583 | 0.5263 | 0.4900 | | 0.0993 | 36.44 | 3680 | 2.1946 | 0.4879 | 0.4518 | 0.5383 | 0.4913 | | 0.1269 | 36.53 | 3690 | 2.1727 | 0.5 | 0.4569 | 0.4689 | 0.4628 | | 0.0976 | 36.63 | 3700 | 2.1584 | 0.4934 | 0.4549 | 0.5191 | 0.4849 | | 0.1099 | 36.73 | 3710 | 2.1804 | 0.4978 | 0.4579 | 0.5072 | 0.4813 | | 0.1103 | 36.83 | 3720 | 2.1581 | 0.5154 | 0.4709 | 0.4450 | 0.4576 | | 0.1168 | 36.93 | 3730 | 2.1793 | 0.4923 | 0.4567 | 0.5550 | 0.5011 | | 0.1096 | 37.03 | 3740 | 2.1582 | 0.4956 | 0.4577 | 0.5311 | 0.4917 | | 0.0967 | 37.13 | 3750 | 2.1912 | 0.5044 | 0.4657 | 0.5359 | 0.4983 | | 0.1195 | 37.23 | 3760 | 2.1604 | 0.5055 | 0.4628 | 0.4761 | 0.4693 | | 0.1331 | 37.33 | 3770 | 2.1033 | 0.5066 | 0.4671 | 0.5263 | 0.4949 | | 0.1028 | 37.43 | 3780 | 2.1223 | 0.5055 | 0.4652 | 0.5120 | 0.4875 | | 0.1225 | 37.52 | 3790 | 2.1905 | 0.5022 | 0.4648 | 0.5526 | 0.5049 | | 0.1112 | 37.62 | 3800 | 2.1669 | 0.5033 | 0.4626 | 0.5024 | 0.4817 | | 0.1155 | 37.72 | 3810 | 2.1987 | 0.5077 | 0.4702 | 0.5670 | 0.5141 | | 0.126 | 37.82 | 3820 | 2.1550 | 0.5121 | 0.4706 | 0.4976 | 0.4837 | | 0.0846 | 37.92 | 3830 | 2.1935 | 0.5110 | 0.4711 | 0.5263 | 0.4972 | | 0.1035 | 38.02 | 3840 | 2.2105 | 0.5121 | 0.4725 | 0.5335 | 0.5011 | | 0.1138 | 38.12 | 3850 | 2.1942 | 0.5 | 0.4619 | 0.5359 | 0.4961 | | 0.0927 | 38.22 | 3860 | 2.1349 | 0.5132 | 0.4717 | 0.4976 | 0.4843 | | 0.0941 | 38.32 | 3870 | 2.1465 | 0.5044 | 0.4665 | 0.5502 | 0.5049 | | 0.0993 | 38.42 | 3880 | 2.1494 | 0.5121 | 0.4715 | 0.5144 | 0.4920 | | 0.093 | 38.51 | 3890 | 2.1811 | 0.5209 | 0.4796 | 0.5072 | 0.4930 | | 0.1153 | 38.61 | 3900 | 2.1946 | 0.5099 | 0.4706 | 0.5359 | 0.5011 | | 0.0941 | 38.71 | 3910 | 2.1963 | 0.5165 | 0.4763 | 0.5287 | 0.5011 | | 0.1027 | 38.81 | 3920 | 2.1836 | 0.5176 | 0.4709 | 0.4067 | 0.4365 | | 0.1247 | 38.91 | 3930 | 2.1881 | 0.5088 | 0.4688 | 0.5215 | 0.4938 | | 0.1107 | 39.01 | 3940 | 2.1822 | 0.5055 | 0.4664 | 0.5311 | 0.4966 | | 0.0906 | 39.11 | 3950 | 2.1764 | 0.5 | 0.4565 | 0.4641 | 0.4603 | | 0.1067 | 39.21 | 3960 | 2.2267 | 0.5033 | 0.4654 | 0.5478 | 0.5033 | | 0.1187 | 39.31 | 3970 | 2.1916 | 0.5088 | 0.4670 | 0.4904 | 0.4784 | | 0.1002 | 39.41 | 3980 | 2.1903 | 0.5044 | 0.4619 | 0.4785 | 0.4700 | | 0.0716 | 39.5 | 3990 | 2.2750 | 0.5055 | 0.4655 | 0.5167 | 0.4898 | | 0.133 | 39.6 | 4000 | 2.3035 | 0.5022 | 0.4625 | 0.5167 | 0.4881 | | 0.0781 | 39.7 | 4010 | 2.3517 | 0.4967 | 0.4625 | 0.5909 | 0.5189 | | 0.1077 | 39.8 | 4020 | 2.2651 | 0.5099 | 0.4697 | 0.5191 | 0.4932 | | 0.112 | 39.9 | 4030 | 2.2087 | 0.5099 | 0.4673 | 0.4785 | 0.4728 | | 0.1035 | 40.0 | 4040 | 2.1908 | 0.5077 | 0.4658 | 0.4880 | 0.4766 | | 0.089 | 40.1 | 4050 | 2.2144 | 0.5110 | 0.4701 | 0.5072 | 0.4879 | | 0.101 | 40.2 | 4060 | 2.2210 | 0.5110 | 0.4695 | 0.4976 | 0.4832 | | 0.0869 | 40.3 | 4070 | 2.2460 | 0.5099 | 0.4698 | 0.5215 | 0.4943 | | 0.0975 | 40.4 | 4080 | 2.2820 | 0.5121 | 0.4731 | 0.5478 | 0.5078 | | 0.097 | 40.5 | 4090 | 2.2620 | 0.5099 | 0.4690 | 0.5072 | 0.4874 | | 0.0985 | 40.59 | 4100 | 2.2593 | 0.5066 | 0.4678 | 0.5383 | 0.5006 | | 0.1102 | 40.69 | 4110 | 2.2689 | 0.5022 | 0.4658 | 0.5694 | 0.5124 | | 0.1101 | 40.79 | 4120 | 2.2530 | 0.5 | 0.4620 | 0.5383 | 0.4972 | | 0.124 | 40.89 | 4130 | 2.1621 | 0.5132 | 0.4679 | 0.4354 | 0.4511 | | 0.1342 | 40.99 | 4140 | 2.1030 | 0.5044 | 0.4641 | 0.5096 | 0.4857 | | 0.1111 | 41.09 | 4150 | 2.0685 | 0.5110 | 0.4684 | 0.4785 | 0.4734 | | 0.1144 | 41.19 | 4160 | 2.0743 | 0.5077 | 0.4654 | 0.4833 | 0.4742 | | 0.0943 | 41.29 | 4170 | 2.0994 | 0.5143 | 0.47 | 0.4498 | 0.4597 | | 0.0974 | 41.39 | 4180 | 2.1449 | 0.5033 | 0.4608 | 0.4785 | 0.4695 | | 0.0955 | 41.49 | 4190 | 2.2387 | 0.4945 | 0.4557 | 0.5167 | 0.4843 | | 0.0921 | 41.58 | 4200 | 2.2540 | 0.4967 | 0.4548 | 0.4809 | 0.4674 | | 0.1114 | 41.68 | 4210 | 2.2426 | 0.5066 | 0.4625 | 0.4569 | 0.4597 | | 0.1085 | 41.78 | 4220 | 2.2554 | 0.5066 | 0.4675 | 0.5335 | 0.4983 | | 0.1082 | 41.88 | 4230 | 2.2176 | 0.5110 | 0.4697 | 0.5 | 0.4844 | | 0.0884 | 41.98 | 4240 | 2.2295 | 0.5132 | 0.4710 | 0.4856 | 0.4782 | | 0.1174 | 42.08 | 4250 | 2.2404 | 0.5099 | 0.4686 | 0.5 | 0.4838 | | 0.1116 | 42.18 | 4260 | 2.2222 | 0.5121 | 0.4689 | 0.4689 | 0.4689 | | 0.0931 | 42.28 | 4270 | 2.2391 | 0.5055 | 0.4671 | 0.5431 | 0.5022 | | 0.0966 | 42.38 | 4280 | 2.2378 | 0.5033 | 0.4617 | 0.4904 | 0.4756 | | 0.0775 | 42.48 | 4290 | 2.2732 | 0.5099 | 0.4645 | 0.4378 | 0.4507 | | 0.0851 | 42.57 | 4300 | 2.3274 | 0.4978 | 0.4581 | 0.5096 | 0.4824 | | 0.0953 | 42.67 | 4310 | 2.3597 | 0.4989 | 0.4606 | 0.5311 | 0.4933 | | 0.095 | 42.77 | 4320 | 2.3421 | 0.5 | 0.4607 | 0.5191 | 0.4882 | | 0.0894 | 42.87 | 4330 | 2.3274 | 0.5022 | 0.4642 | 0.5431 | 0.5006 | | 0.1045 | 42.97 | 4340 | 2.2580 | 0.4967 | 0.4531 | 0.4617 | 0.4573 | | 0.0749 | 43.07 | 4350 | 2.2307 | 0.5022 | 0.4582 | 0.4593 | 0.4588 | | 0.0928 | 43.17 | 4360 | 2.2475 | 0.4989 | 0.4589 | 0.5072 | 0.4818 | | 0.1116 | 43.27 | 4370 | 2.2234 | 0.5022 | 0.4615 | 0.5024 | 0.4811 | | 0.1058 | 43.37 | 4380 | 2.1949 | 0.5055 | 0.4662 | 0.5287 | 0.4955 | | 0.1032 | 43.47 | 4390 | 2.2132 | 0.5011 | 0.4627 | 0.5335 | 0.4956 | | 0.0973 | 43.56 | 4400 | 2.2195 | 0.4989 | 0.4583 | 0.5 | 0.4783 | | 0.0922 | 43.66 | 4410 | 2.2767 | 0.5044 | 0.4672 | 0.5622 | 0.5103 | | 0.0899 | 43.76 | 4420 | 2.2685 | 0.5011 | 0.4595 | 0.4880 | 0.4733 | | 0.0933 | 43.86 | 4430 | 2.2780 | 0.4956 | 0.4563 | 0.5120 | 0.4825 | | 0.0978 | 43.96 | 4440 | 2.2994 | 0.4967 | 0.4582 | 0.5239 | 0.4888 | | 0.1219 | 44.06 | 4450 | 2.2724 | 0.5033 | 0.4626 | 0.5024 | 0.4817 | | 0.0878 | 44.16 | 4460 | 2.2600 | 0.5055 | 0.4636 | 0.4880 | 0.4755 | | 0.0791 | 44.26 | 4470 | 2.2903 | 0.5055 | 0.4658 | 0.5215 | 0.4921 | | 0.1081 | 44.36 | 4480 | 2.2805 | 0.5077 | 0.4674 | 0.5144 | 0.4897 | | 0.095 | 44.46 | 4490 | 2.2506 | 0.5044 | 0.4629 | 0.4928 | 0.4774 | | 0.101 | 44.55 | 4500 | 2.2338 | 0.5154 | 0.4707 | 0.4426 | 0.4562 | | 0.0833 | 44.65 | 4510 | 2.2744 | 0.5011 | 0.4589 | 0.4809 | 0.4696 | | 0.0987 | 44.75 | 4520 | 2.3038 | 0.4989 | 0.4604 | 0.5287 | 0.4922 | | 0.095 | 44.85 | 4530 | 2.2748 | 0.5055 | 0.4626 | 0.4737 | 0.4681 | | 0.083 | 44.95 | 4540 | 2.2818 | 0.5055 | 0.4630 | 0.4785 | 0.4706 | | 0.0853 | 45.05 | 4550 | 2.3144 | 0.4989 | 0.4591 | 0.5096 | 0.4830 | | 0.1026 | 45.15 | 4560 | 2.3211 | 0.4956 | 0.4568 | 0.5191 | 0.4860 | | 0.1015 | 45.25 | 4570 | 2.2939 | 0.5033 | 0.4619 | 0.4928 | 0.4769 | | 0.0843 | 45.35 | 4580 | 2.2916 | 0.5055 | 0.4638 | 0.4904 | 0.4767 | | 0.0799 | 45.45 | 4590 | 2.2901 | 0.5088 | 0.4665 | 0.4833 | 0.4747 | | 0.1088 | 45.54 | 4600 | 2.2795 | 0.5077 | 0.4648 | 0.4737 | 0.4692 | | 0.0574 | 45.64 | 4610 | 2.3172 | 0.5154 | 0.4756 | 0.5359 | 0.5039 | | 0.0968 | 45.74 | 4620 | 2.3217 | 0.5077 | 0.4670 | 0.5072 | 0.4862 | | 0.0942 | 45.84 | 4630 | 2.3094 | 0.5110 | 0.4692 | 0.4928 | 0.4807 | | 0.0735 | 45.94 | 4640 | 2.3088 | 0.5099 | 0.4670 | 0.4737 | 0.4703 | | 0.0796 | 46.04 | 4650 | 2.3114 | 0.5099 | 0.4665 | 0.4665 | 0.4665 | | 0.1033 | 46.14 | 4660 | 2.3266 | 0.5088 | 0.4665 | 0.4833 | 0.4747 | | 0.1134 | 46.24 | 4670 | 2.3229 | 0.5099 | 0.4690 | 0.5072 | 0.4874 | | 0.0845 | 46.34 | 4680 | 2.3422 | 0.5044 | 0.4667 | 0.5526 | 0.5060 | | 0.0788 | 46.44 | 4690 | 2.3420 | 0.5022 | 0.4645 | 0.5478 | 0.5027 | | 0.0762 | 46.53 | 4700 | 2.3169 | 0.5044 | 0.4606 | 0.4617 | 0.4612 | | 0.081 | 46.63 | 4710 | 2.3352 | 0.5088 | 0.4656 | 0.4689 | 0.4672 | | 0.093 | 46.73 | 4720 | 2.3560 | 0.5066 | 0.4655 | 0.5 | 0.4821 | | 0.0795 | 46.83 | 4730 | 2.3509 | 0.5044 | 0.4626 | 0.4880 | 0.4750 | | 0.0869 | 46.93 | 4740 | 2.3430 | 0.5055 | 0.4640 | 0.4928 | 0.4780 | | 0.066 | 47.03 | 4750 | 2.3332 | 0.5066 | 0.4644 | 0.4833 | 0.4736 | | 0.0805 | 47.13 | 4760 | 2.3379 | 0.5077 | 0.4658 | 0.4880 | 0.4766 | | 0.0836 | 47.23 | 4770 | 2.3580 | 0.5055 | 0.4654 | 0.5144 | 0.4886 | | 0.1056 | 47.33 | 4780 | 2.3479 | 0.5044 | 0.4639 | 0.5072 | 0.4846 | | 0.079 | 47.43 | 4790 | 2.3445 | 0.5055 | 0.4646 | 0.5024 | 0.4828 | | 0.1065 | 47.52 | 4800 | 2.3466 | 0.5044 | 0.4634 | 0.5 | 0.4810 | | 0.0775 | 47.62 | 4810 | 2.3591 | 0.5 | 0.4607 | 0.5191 | 0.4882 | | 0.0957 | 47.72 | 4820 | 2.3579 | 0.5011 | 0.4619 | 0.5215 | 0.4899 | | 0.0952 | 47.82 | 4830 | 2.3498 | 0.5099 | 0.4693 | 0.5120 | 0.4897 | | 0.0846 | 47.92 | 4840 | 2.3352 | 0.5066 | 0.4640 | 0.4785 | 0.4711 | | 0.0943 | 48.02 | 4850 | 2.3375 | 0.5066 | 0.4642 | 0.4809 | 0.4724 | | 0.084 | 48.12 | 4860 | 2.3523 | 0.5088 | 0.4681 | 0.5096 | 0.4880 | | 0.0912 | 48.22 | 4870 | 2.3669 | 0.4989 | 0.4601 | 0.5239 | 0.4899 | | 0.0911 | 48.32 | 4880 | 2.3715 | 0.5033 | 0.4640 | 0.5239 | 0.4921 | | 0.0844 | 48.42 | 4890 | 2.3650 | 0.5088 | 0.4681 | 0.5096 | 0.4880 | | 0.0784 | 48.51 | 4900 | 2.3656 | 0.5088 | 0.4681 | 0.5096 | 0.4880 | | 0.0879 | 48.61 | 4910 | 2.3643 | 0.5088 | 0.4681 | 0.5096 | 0.4880 | | 0.0872 | 48.71 | 4920 | 2.3633 | 0.5088 | 0.4677 | 0.5024 | 0.4844 | | 0.0614 | 48.81 | 4930 | 2.3737 | 0.5110 | 0.4705 | 0.5144 | 0.4914 | | 0.0827 | 48.91 | 4940 | 2.3759 | 0.5099 | 0.4689 | 0.5048 | 0.4862 | | 0.0791 | 49.01 | 4950 | 2.3732 | 0.5066 | 0.4653 | 0.4976 | 0.4809 | | 0.0903 | 49.11 | 4960 | 2.3698 | 0.5033 | 0.4614 | 0.4856 | 0.4732 | | 0.0811 | 49.21 | 4970 | 2.3728 | 0.5055 | 0.4640 | 0.4928 | 0.4780 | | 0.0721 | 49.31 | 4980 | 2.3783 | 0.5077 | 0.4665 | 0.5 | 0.4827 | | 0.0729 | 49.41 | 4990 | 2.3762 | 0.5066 | 0.4652 | 0.4952 | 0.4797 | | 0.0642 | 49.5 | 5000 | 2.3771 | 0.5066 | 0.4652 | 0.4952 | 0.4797 | | 0.0675 | 49.6 | 5010 | 2.3800 | 0.5055 | 0.4641 | 0.4952 | 0.4792 | | 0.0603 | 49.7 | 5020 | 2.3833 | 0.5088 | 0.4677 | 0.5024 | 0.4844 | | 0.0744 | 49.8 | 5030 | 2.3854 | 0.5088 | 0.4677 | 0.5024 | 0.4844 | | 0.0886 | 49.9 | 5040 | 2.3853 | 0.5088 | 0.4677 | 0.5024 | 0.4844 | | 0.0843 | 50.0 | 5050 | 2.3851 | 0.5088 | 0.4677 | 0.5024 | 0.4844 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu116 - Datasets 2.16.1 - Tokenizers 0.15.0
HarrisonColby/ppo-Huggy
HarrisonColby
2024-01-23T14:31:50Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-23T14:31:44Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: HarrisonColby/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
silvercoder67/Mistral-7b-instruct-v0.2-summ-dpo-e1
silvercoder67
2024-01-23T14:27:15Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-23T14:22:50Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Samra1211/test-trainer
Samra1211
2024-01-23T14:21:38Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-23T14:21:14Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
xformAI/facebook-opt-125m-qcqa-ub-6-best-for-q-loss
xformAI
2024-01-23T14:18:19Z
1,358
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T14:15:41Z
--- license: mit language: - en library_name: transformers --- This is a QCQA version of the original model facebook/opt-125m. In this version, the original MHA architecture is preserved but instead of having a single K/V head, different K/V heads corresponding to the same group have the same mean-pooled K or V values. It has upto 6 groups of KV heads per layer instead of original 12 KV heads in the MHA implementation. This implementation is supposed to more efficient than corresponding GQA one. This has been optimized for quality loss.
NobodyExistsOnTheInternet/Llama-2-70b-x8-MoE-clown-truck
NobodyExistsOnTheInternet
2024-01-23T14:14:45Z
1,366
8
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T07:12:13Z
--- license: mit --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b24479cb28be619964952c/VhNd1UMcPZ3g5NVpAQc-B.png) The biggest model ever to have been released. Has not been tested, nor do I have the compute to test it. If anyone is willing to host this to help me test, please share your results in the community tab. Thank you for coming to my ted talk. This is nearly 960GB of weights. It requires at least 8xA100 80gb to run it in 4 bits probably. *probably*
dlibf/zephyr-7b-sft-full
dlibf
2024-01-23T14:10:00Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "sft", "conversational", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T10:04:09Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - alignment-handbook - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: zephyr-7b-sft-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-sft-full This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 0.9358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9081 | 1.0 | 1090 | 0.9358 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1
Preetha13/my-dog-xzg
Preetha13
2024-01-23T14:04:45Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-23T14:00:19Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Dog-XZG Dreambooth model trained by Preetha13 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 960221104085 Sample pictures of this concept: ![0](https://huggingface.co/Preetha13/my-dog-xzg/resolve/main/sample_images/277532_A_dog_playing_on_beach,_with_cool_blue_waters_in_t_xl-1024-v1-0.png)
Rybens/truthful_dpo_tomgrc_fusionnet_7bx2_moe_13b_GGUF
Rybens
2024-01-23T14:04:42Z
16
6
null
[ "gguf", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-01-21T19:29:02Z
--- license: mit --- Some of the quants of https://huggingface.co/yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B model For other quants go to https://huggingface.co/Nan-Do/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B-GGUF
Shruthi-S/mlproject-bert-ten
Shruthi-S
2024-01-23T14:03:38Z
45
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2024-01-23T14:03:15Z
--- tags: - generated_from_keras_callback model-index: - name: mlproject-bert-ten results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mlproject-bert-ten This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.4869 - Validation Loss: 8.6187 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.4869 | 8.6187 | 0 | ### Framework versions - Transformers 4.38.0.dev0 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
hadrakey/opt-350m-sft
hadrakey
2024-01-23T13:57:18Z
4
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:finetune:facebook/opt-350m", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T13:30:35Z
--- license: other base_model: facebook/opt-350m tags: - generated_from_trainer model-index: - name: opt-350m-sft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-sft This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
m4ddki7/q-Taxi-newyork-v2
m4ddki7
2024-01-23T13:57:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-23T13:57:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-newyork-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="m4ddki7/q-Taxi-newyork-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RicardoMG1/clasificador-muchocine
RicardoMG1
2024-01-23T13:49:19Z
4
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "classification", "generated_from_trainer", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-23T12:30:56Z
--- base_model: mrm8488/electricidad-base-discriminator tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4671 - Accuracy: 0.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3240 | 0.3871 | | 1.3676 | 2.0 | 776 | 1.3424 | 0.4297 | | 0.9438 | 3.0 | 1164 | 1.4671 | 0.4297 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
beratcmn/ppo-Huggy
beratcmn
2024-01-23T13:41:48Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-23T13:41:43Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: beratcmn/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fira7s/corgy_dog_LoRA
fira7s
2024-01-23T13:37:42Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-23T13:37:39Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK person license: openrail++ --- # SDXL LoRA DreamBooth - fira7s/corgy_dog_LoRA <Gallery /> ## Model description These are fira7s/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](fira7s/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
DiwasDiwas/t5-small-ZapMed
DiwasDiwas
2024-01-23T13:33:25Z
5
0
transformers
[ "transformers", "tf", "safetensors", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-12T01:42:32Z
--- tags: - generated_from_keras_callback model-index: - name: t5-small-ZapMed results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-ZapMed This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
Cartinoe5930/DARE-Merging
Cartinoe5930
2024-01-23T13:31:24Z
46
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:merge:Open-Orca/Mistral-7B-OpenOrca", "base_model:WizardLMTeam/WizardMath-7B-V1.1", "base_model:merge:WizardLMTeam/WizardMath-7B-V1.1", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:merge:mistralai/Mistral-7B-Instruct-v0.2", "base_model:openchat/openchat-3.5-0106", "base_model:merge:openchat/openchat-3.5-0106", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T12:40:00Z
--- base_model: - openchat/openchat-3.5-0106 - mistralai/Mistral-7B-Instruct-v0.2 - Open-Orca/Mistral-7B-OpenOrca - WizardLM/WizardMath-7B-V1.1 tags: - mergekit - merge license: apache-2.0 --- # result This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as a base. ### Models Merged The following models were included in the merge: * [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 # No parameters necessary for base model - model: Open-Orca/Mistral-7B-OpenOrca parameters: density: 0.5 weight: 0.3 - model: openchat/openchat-3.5-0106 parameters: density: 0.5 weight: 0.3 - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.5 weight: 0.3 merge_method: dare_ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: normalize: true dtype: float16 ```
ayousanz/japanese-mistral-150m-recipe
ayousanz
2024-01-23T13:30:14Z
45
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T13:26:13Z
--- base_model: None tags: - generated_from_trainer model-index: - name: checkpoints-mistral-150M-FA2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints-mistral-150M-FA2 This model is a fine-tuned version of [None](https://huggingface.co/None) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.3607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data [graelo/wikipedia 20230901 jp only](https://huggingface.co/datasets/graelo/wikipedia/tree/main/data/20230901/ja) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 256 - total_train_batch_size: 4096 - optimizer: Adam with betas=(0.9,0.95) and epsilon=0.0001 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.361 | 2.87 | 100 | 8.3607 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
zooknowsys/wtoc_LoRA
zooknowsys
2024-01-23T13:29:59Z
4
0
peft
[ "peft", "base_model:Qwen/Qwen-VL-Chat", "base_model:adapter:Qwen/Qwen-VL-Chat", "region:us" ]
null
2024-01-09T10:18:41Z
--- library_name: peft base_model: Qwen/Qwen-VL-Chat --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> - LoRA: wdtag -> long caption. LICENSE: Tongyi Qianwen LICENSE ## Model Details - Finetuned. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** cella - **Model type:** LoRA - **Language(s) (NLP):** Eng - **License:** Tongyi Qianwen LICENSE - **Finetuned from model [optional]:** Qwen-VL-Chat ## Uses ### Model Load ``` LoRA_DIR = "/path-to-LoRA-dir" if OPTION_VLM_METHOD == 'qwen_chat_LoRA': from peft import AutoPeftModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig import torch torch.manual_seed(1234) # Note: The default behavior now has injection attack prevention off. tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True) \ # use cuda device model = AutoPeftModelForCausalLM.from_pretrained( LoRA_DIR, # path to the output directory device_map="auto", trust_remote_code=True ).eval() # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0) model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True) else: print("skipped.") ``` ### Captioning ``` if OPTION_VLM_METHOD == 'qwen_chat': from PIL import Image from langdetect import detect import string import re COMMON_QUERY = 'What is in tha image? Briefly describe the overall, in English' MORE_QUERY = 'What is in tha image? Describe the overall in detail, in English' LESS_QUERY = 'What is in tha image? Briefly summerize the description, in English' for image in dataset.images: img_name = os.path.basename(image.path) img_name = os.path.splitext(img_name)[0] # すでにアウトプットフォルダに同名のtxtファイルが存在する場合はスキップ if OPTION_SKIP_EXISTING and os.path.exists(os.path.join(output_dir_VLM, img_name + '.txt')): clear_output(True) print("skipped: ", image.path) continue query = tokenizer.from_list_format([ {'image': image.path }, {'text': 'Make description using following words' + ', '.join(image.captions).replace('_', ' ') }, ]) response, history = model.chat(tokenizer, query=query, history=None) # ASCIIチェック、言語チェック、長さチェック retry_count = 0 while not is_ascii(response) or not is_english(response) or not is_sufficient_length(response) or not is_over_length(response): clear_output(True) retry_count +=1 print("Retry count:", retry_count) if retry_count >= 25 and is_ascii(response): break if not is_sufficient_length(response): print("Too short. Retry...") query = tokenizer.from_list_format([ {'image': image.path }, {'text': MORE_QUERY }, ]) if not is_over_length(response): print("Too long. Retry...") query = tokenizer.from_list_format([ {'image': image.path }, {'text': LESS_QUERY }, ]) if retry_count % 5 == 0: history = None query = tokenizer.from_list_format([ {'image': image.path }, {'text': COMMON_QUERY }, ]) response, history = model.chat(tokenizer, query=query, history=history) response = remove_fixed_patterns(response) if OPTION_SAVE_TAGS: # タグを保存 with open(os.path.join(output_dir_VLM, img_name + '.txt'), 'w') as file: file.write(response) image.captions = response clear_output(True) print("Saved for ", image.path, ": ", response) #画像を表示 img = Image.open(image.path) plt.imshow(np.asarray(img)) plt.show() else: print("skipped.") ``` ### Framework versions - PEFT 0.7.1
Preetha13/my-pet-dog-xzg
Preetha13
2024-01-23T13:29:23Z
3
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-23T13:25:08Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-XZG Dreambooth model trained by Preetha13 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 960221104085 Sample pictures of this concept: ![0](https://huggingface.co/Preetha13/my-pet-dog-xzg/resolve/main/sample_images/277532_A_dog_playing_on_beach,_with_cool_blue_waters_in_t_xl-1024-v1-0.png)
zooknowsys/humanizeLoRA_0123
zooknowsys
2024-01-23T13:29:11Z
3
0
peft
[ "peft", "base_model:Qwen/Qwen-VL-Chat", "base_model:adapter:Qwen/Qwen-VL-Chat", "region:us" ]
null
2024-01-23T13:27:36Z
--- library_name: peft base_model: Qwen/Qwen-VL-Chat --- # Model Card for Model ID Qwen-VL LoRA LICENSE: Tongyi Qianwen LICENSE ### Framework versions - PEFT 0.7.1
sangngoc27042001/text-summarization
sangngoc27042001
2024-01-23T13:28:55Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text2text-generation", "dataset:my_project/autotrain-data", "region:us" ]
text2text-generation
2024-01-23T13:28:52Z
--- tags: - autotrain - text2text-generation widget: - text: "I love AutoTrain" datasets: - my_project/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Seq2Seq ## Validation Metrics loss: 0.8724366426467896 rouge1: 8.5449 rouge2: 0.4965 rougeL: 8.0692 rougeLsum: 8.509 gen_len: 60.5921 runtime: 204.2842 samples_per_second: 0.372 steps_per_second: 0.049 : 5.0
smutuvi/whisper-small-sw-common-voice-ndizi-248
smutuvi
2024-01-23T13:28:20Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:smutuvi/whisper-small-sw-common-voice", "base_model:finetune:smutuvi/whisper-small-sw-common-voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-23T13:27:09Z
--- license: apache-2.0 base_model: smutuvi/whisper-small-sw-common-voice tags: - generated_from_trainer model-index: - name: whisper-small-sw-common-voice-ndizi-248 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-sw-common-voice-ndizi-248 This model is a fine-tuned version of [smutuvi/whisper-small-sw-common-voice](https://huggingface.co/smutuvi/whisper-small-sw-common-voice) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6298 | 1.0 | 28 | 1.2171 | | 1.1514 | 2.0 | 56 | 1.0364 | | 0.9175 | 3.0 | 84 | 0.9578 | | 0.6885 | 4.0 | 112 | 0.9664 | | 0.5841 | 5.0 | 140 | 1.0001 | | 0.3397 | 6.0 | 168 | 1.0233 | | 0.3166 | 7.0 | 196 | 1.0291 | | 0.2313 | 8.0 | 224 | 1.0749 | | 0.1457 | 9.0 | 252 | 1.0857 | | 0.1036 | 10.0 | 280 | 1.0689 | | 0.0644 | 11.0 | 308 | 1.1099 | | 0.072 | 12.0 | 336 | 1.1080 | | 0.0519 | 13.0 | 364 | 1.1119 | | 0.0312 | 14.0 | 392 | 1.1747 | | 0.0331 | 15.0 | 420 | 1.1441 | | 0.02 | 16.0 | 448 | 1.1413 | | 0.017 | 17.0 | 476 | 1.1880 | | 0.0157 | 18.0 | 504 | 1.1564 | | 0.0146 | 19.0 | 532 | 1.1627 | | 0.013 | 20.0 | 560 | 1.2088 | | 0.0071 | 21.0 | 588 | 1.2054 | | 0.006 | 22.0 | 616 | 1.2113 | | 0.0066 | 23.0 | 644 | 1.2269 | | 0.0073 | 24.0 | 672 | 1.1721 | | 0.0064 | 25.0 | 700 | 1.1878 | | 0.0084 | 26.0 | 728 | 1.1701 | | 0.0024 | 27.0 | 756 | 1.2221 | | 0.0056 | 28.0 | 784 | 1.2072 | | 0.005 | 29.0 | 812 | 1.1742 | | 0.0032 | 30.0 | 840 | 1.1930 | | 0.0021 | 31.0 | 868 | 1.1996 | | 0.0008 | 32.0 | 896 | 1.2344 | | 0.0014 | 33.0 | 924 | 1.2153 | | 0.0018 | 34.0 | 952 | 1.2324 | | 0.0013 | 35.0 | 980 | 1.2281 | | 0.0011 | 36.0 | 1008 | 1.2223 | | 0.0006 | 37.0 | 1036 | 1.2326 | | 0.0011 | 38.0 | 1064 | 1.2250 | | 0.0007 | 39.0 | 1092 | 1.2270 | | 0.001 | 40.0 | 1120 | 1.2226 | | 0.0017 | 41.0 | 1148 | 1.2255 | | 0.0011 | 42.0 | 1176 | 1.2175 | | 0.0011 | 43.0 | 1204 | 1.2302 | | 0.0025 | 44.0 | 1232 | 1.2176 | | 0.0021 | 45.0 | 1260 | 1.2450 | | 0.0016 | 46.0 | 1288 | 1.3209 | | 0.0023 | 47.0 | 1316 | 1.2245 | | 0.0021 | 48.0 | 1344 | 1.2601 | | 0.0024 | 49.0 | 1372 | 1.2703 | | 0.002 | 50.0 | 1400 | 1.2674 | | 0.0011 | 51.0 | 1428 | 1.2644 | | 0.0032 | 52.0 | 1456 | 1.2901 | | 0.0007 | 53.0 | 1484 | 1.2652 | | 0.0033 | 54.0 | 1512 | 1.2901 | | 0.0009 | 55.0 | 1540 | 1.2584 | | 0.0012 | 56.0 | 1568 | 1.2542 | | 0.0013 | 57.0 | 1596 | 1.2607 | | 0.0006 | 58.0 | 1624 | 1.2733 | | 0.0004 | 59.0 | 1652 | 1.2763 | | 0.0003 | 60.0 | 1680 | 1.2780 | | 0.0003 | 61.0 | 1708 | 1.2799 | | 0.0003 | 62.0 | 1736 | 1.2808 | | 0.0003 | 63.0 | 1764 | 1.2821 | | 0.0003 | 64.0 | 1792 | 1.2844 | | 0.0003 | 65.0 | 1820 | 1.2863 | | 0.0003 | 66.0 | 1848 | 1.2875 | | 0.0003 | 67.0 | 1876 | 1.2888 | | 0.0003 | 68.0 | 1904 | 1.2910 | | 0.0002 | 69.0 | 1932 | 1.2919 | | 0.0002 | 70.0 | 1960 | 1.2930 | | 0.0002 | 71.0 | 1988 | 1.2947 | | 0.0002 | 72.0 | 2016 | 1.2955 | | 0.0002 | 73.0 | 2044 | 1.2967 | | 0.0002 | 74.0 | 2072 | 1.2974 | | 0.0002 | 75.0 | 2100 | 1.2989 | | 0.0002 | 76.0 | 2128 | 1.2997 | | 0.0002 | 77.0 | 2156 | 1.3006 | | 0.0002 | 78.0 | 2184 | 1.3011 | | 0.0002 | 79.0 | 2212 | 1.3019 | | 0.0002 | 80.0 | 2240 | 1.3029 | | 0.0002 | 81.0 | 2268 | 1.3035 | | 0.0002 | 82.0 | 2296 | 1.3040 | | 0.0002 | 83.0 | 2324 | 1.3050 | | 0.0002 | 84.0 | 2352 | 1.3056 | | 0.0002 | 85.0 | 2380 | 1.3057 | | 0.0002 | 86.0 | 2408 | 1.3065 | | 0.0002 | 87.0 | 2436 | 1.3066 | | 0.0002 | 88.0 | 2464 | 1.3078 | | 0.0002 | 89.0 | 2492 | 1.3075 | | 0.0002 | 90.0 | 2520 | 1.3080 | | 0.0002 | 91.0 | 2548 | 1.3083 | | 0.0002 | 92.0 | 2576 | 1.3091 | | 0.0002 | 93.0 | 2604 | 1.3091 | | 0.0002 | 94.0 | 2632 | 1.3091 | | 0.0002 | 95.0 | 2660 | 1.3097 | | 0.0002 | 96.0 | 2688 | 1.3098 | | 0.0002 | 97.0 | 2716 | 1.3102 | | 0.0002 | 98.0 | 2744 | 1.3102 | | 0.0002 | 99.0 | 2772 | 1.3099 | | 0.0002 | 100.0 | 2800 | 1.3100 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
kreabs/DPOpenHermes-7B-v2_finetuned_dolly_1600
kreabs
2024-01-23T13:24:22Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T13:17:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mesolitica/translation-t5-small-standard-bahasa-cased-v2
mesolitica
2024-01-23T13:09:09Z
15,536
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-14T06:02:52Z
--- language: - ms --- # Noisy Translation Small T5 Trained on 1536 context length, able to translate malay, pasar malay (social media texts or local context), english, manglish, javanese, banjarese and indonesian to target language. It also able to maintain the text structure as it is and only translate necessary texts, eg, programming code. Added more coding translation dataset, noisy b.cari.com.my translation, noisy ChatGPT4 translation and heavy postfilter. ## how-to ```python from transformers import T5ForConditionalGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( 'mesolitica/translation-t5-small-standard-bahasa-cased-v2', use_fast=False ) model = T5ForConditionalGeneration.from_pretrained( 'mesolitica/translation-t5-small-standard-bahasa-cased-v2' ) s = 'Hai, ada yang bisa saya bantu?' input_ids = tokenizer.encode(f'terjemah ke Melayu: {s}', return_tensors = 'pt') outputs = model.generate(input_ids, max_length = 100) all_special_ids = [0, 1, 2] outputs = [i for i in outputs[0] if i not in all_special_ids] print(tokenizer.decode(outputs, spaces_between_special_tokens = False)) ```
CLMBR/superlative-quantifier-transformer-1
CLMBR
2024-01-23T13:08:37Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T15:28:21Z
--- tags: - generated_from_trainer model-index: - name: superlative-quantifier-transformer-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superlative-quantifier-transformer-1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2257 | 0.03 | 76320 | 4.2120 | | 4.0221 | 1.03 | 152640 | 4.0416 | | 3.9131 | 0.03 | 228960 | 3.9674 | | 3.8475 | 1.03 | 305280 | 3.9266 | | 3.7974 | 0.03 | 381600 | 3.9019 | | 3.7557 | 1.03 | 457920 | 3.8863 | | 3.7223 | 0.03 | 534240 | 3.8759 | | 3.696 | 1.03 | 610560 | 3.8692 | | 3.668 | 0.03 | 686880 | 3.8648 | | 3.6404 | 1.03 | 763200 | 3.8614 | | 3.619 | 0.03 | 839520 | 3.8603 | | 3.5962 | 1.03 | 915840 | 3.8590 | | 3.5817 | 0.03 | 992160 | 3.8601 | | 3.5625 | 0.03 | 1068480 | 3.8599 | | 3.544 | 0.03 | 1144800 | 3.8615 | | 3.5279 | 1.03 | 1221120 | 3.8617 | | 3.5119 | 0.03 | 1297440 | 3.8635 | | 3.4993 | 1.03 | 1373760 | 3.8644 | | 3.4836 | 0.03 | 1450080 | 3.8650 | | 3.4751 | 0.03 | 1526400 | 3.8681 | | 3.467 | 0.03 | 1602720 | 3.8682 | | 3.4583 | 0.03 | 1679040 | 3.8708 | | 3.451 | 1.03 | 1755360 | 3.8718 | | 3.4441 | 0.03 | 1831680 | 3.8737 | | 3.429 | 0.03 | 1908000 | 3.8752 | | 3.4162 | 1.03 | 1984320 | 3.8754 | | 3.4051 | 0.03 | 2060640 | 3.8770 | | 3.3914 | 0.03 | 2136960 | 3.8770 | | 3.3854 | 0.03 | 2213280 | 3.8788 | | 3.3745 | 1.03 | 2289600 | 3.8804 | | 3.3613 | 0.03 | 2365920 | 3.8813 | | 3.3479 | 1.03 | 2442240 | 3.8816 | | 3.3373 | 0.03 | 2518560 | 3.8827 | | 3.3284 | 0.03 | 2594880 | 3.8824 | | 3.3156 | 0.03 | 2671200 | 3.8829 | | 3.3124 | 1.03 | 2747520 | 3.8831 | | 3.3082 | 0.03 | 2823840 | 3.8832 | | 3.3015 | 0.03 | 2900160 | 3.8824 | | 3.2982 | 1.03 | 2976480 | 3.8816 | | 3.2944 | 0.02 | 3052726 | 3.8811 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
ben434/sarahv2
ben434
2024-01-23T13:07:46Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:h94/IP-Adapter-FaceID", "base_model:adapter:h94/IP-Adapter-FaceID", "license:apache-2.0", "region:us" ]
text-to-image
2024-01-23T13:07:28Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/sunny_5440.webp base_model: h94/IP-Adapter-FaceID instance_prompt: null license: apache-2.0 --- # bf <Gallery /> ## Download model [Download](/ben434/sarahv2/tree/main) them in the Files & versions tab.
kakojuvenkat/autotrain-euaqt-8br1w
kakojuvenkat
2024-01-23T13:07:26Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T13:07:21Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
wahaha1987/ppo-PyramidsRND
wahaha1987
2024-01-23T13:05:52Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-01-23T13:05:49Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: wahaha1987/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LarryAIDraw/toki_scarxzys
LarryAIDraw
2024-01-23T13:02:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-23T12:45:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/273312/asuma-toki-or-blue-archive
LarryAIDraw/MisatoJ2-10
LarryAIDraw
2024-01-23T13:01:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-23T12:44:04Z
--- license: creativeml-openrail-m --- https://civitai.com/models/273760/misato-katsuragi-red-jacket-neon-genesis-evangelion
hcy5561/my_awesome_wnut_model
hcy5561
2024-01-23T12:55:57Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-23T12:29:25Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.6024734982332155 - name: Recall type: recall value: 0.3160333642261353 - name: F1 type: f1 value: 0.4145896656534954 - name: Accuracy type: accuracy value: 0.942926766705143 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2641 - Precision: 0.6025 - Recall: 0.3160 - F1: 0.4146 - Accuracy: 0.9429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2801 | 0.6333 | 0.2465 | 0.3549 | 0.9389 | | No log | 2.0 | 426 | 0.2641 | 0.6025 | 0.3160 | 0.4146 | 0.9429 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
LarryAIDraw/gladiia_arknights
LarryAIDraw
2024-01-23T12:55:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:13:52Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134580/gladiia-arknights
shahzebnaveed/marian-finetuned-kde4-en-to-fr
shahzebnaveed
2024-01-23T12:55:23Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-01-23T11:25:03Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/npi-only-transformer-3
CLMBR
2024-01-23T12:54:47Z
13
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T14:37:10Z
--- tags: - generated_from_trainer model-index: - name: npi-only-transformer-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # npi-only-transformer-3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2223 | 0.03 | 76320 | 4.1964 | | 4.0204 | 1.03 | 152640 | 4.0268 | | 3.912 | 0.03 | 228960 | 3.9523 | | 3.8408 | 1.03 | 305280 | 3.9111 | | 3.7917 | 0.03 | 381600 | 3.8861 | | 3.7492 | 1.03 | 457920 | 3.8700 | | 3.7159 | 0.03 | 534240 | 3.8608 | | 3.6895 | 1.03 | 610560 | 3.8526 | | 3.6619 | 0.03 | 686880 | 3.8481 | | 3.6343 | 1.03 | 763200 | 3.8460 | | 3.61 | 0.03 | 839520 | 3.8443 | | 3.5902 | 1.03 | 915840 | 3.8437 | | 3.571 | 0.03 | 992160 | 3.8429 | | 3.5525 | 1.03 | 1068480 | 3.8434 | | 3.5337 | 0.03 | 1144800 | 3.8455 | | 3.5324 | 1.03 | 1221120 | 3.8451 | | 3.5107 | 0.03 | 1297440 | 3.8464 | | 3.4996 | 1.03 | 1373760 | 3.8468 | | 3.4875 | 0.03 | 1450080 | 3.8484 | | 3.475 | 1.03 | 1526400 | 3.8496 | | 3.4666 | 0.03 | 1602720 | 3.8495 | | 3.4571 | 1.03 | 1679040 | 3.8516 | | 3.4483 | 0.03 | 1755360 | 3.8525 | | 3.4417 | 1.03 | 1831680 | 3.8534 | | 3.4295 | 0.03 | 1908000 | 3.8552 | | 3.4152 | 1.03 | 1984320 | 3.8558 | | 3.3995 | 0.03 | 2060640 | 3.8572 | | 3.3901 | 1.03 | 2136960 | 3.8578 | | 3.3801 | 0.03 | 2213280 | 3.8582 | | 3.367 | 1.03 | 2289600 | 3.8592 | | 3.3558 | 0.03 | 2365920 | 3.8611 | | 3.3561 | 1.03 | 2442240 | 3.8599 | | 3.3408 | 0.03 | 2518560 | 3.8615 | | 3.334 | 1.03 | 2594880 | 3.8621 | | 3.3245 | 0.03 | 2671200 | 3.8619 | | 3.317 | 0.03 | 2747520 | 3.8619 | | 3.3107 | 1.03 | 2823840 | 3.8615 | | 3.3063 | 0.03 | 2900160 | 3.8617 | | 3.3022 | 1.03 | 2976480 | 3.8610 | | 3.2972 | 0.02 | 3052726 | 3.8598 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
aishutin/stable-diffusion-2-ppl-out
aishutin
2024-01-23T12:53:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-23T11:06:50Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 instance_prompt: a photo of sks miniature tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - aishutin/stable-diffusion-2-ppl-out This is a dreambooth model derived from stabilityai/stable-diffusion-2. The weights were trained on a photo of sks miniature using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
nccratliri/whisperseg-meerkat-vad-ct2
nccratliri
2024-01-23T12:40:13Z
4
0
transformers
[ "transformers", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-23T12:35:26Z
--- license: apache-2.0 --- This model is finetuned using "nccratliri/whisperseg-zebra-finch-vad" as the initial weights.
alierenak/bert_turkish_sentiment
alierenak
2024-01-23T12:39:39Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:VRLLab/TurkishBERTweet", "base_model:finetune:VRLLab/TurkishBERTweet", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-23T12:24:02Z
--- license: mit base_model: VRLLab/TurkishBERTweet tags: - generated_from_trainer metrics: - accuracy model-index: - name: turkish_sentiment3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # turkish_sentiment3 This model is a fine-tuned version of [VRLLab/TurkishBERTweet](https://huggingface.co/VRLLab/TurkishBERTweet) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0155 - Accuracy: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 440 | 0.0516 | 0.9926 | | 0.1392 | 2.0 | 880 | 0.0242 | 0.9966 | | 0.0443 | 3.0 | 1320 | 0.0155 | 0.9972 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Shaleny/my-pet-dog-xzg
Shaleny
2024-01-23T12:37:43Z
11
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-23T12:33:28Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-XZG Dreambooth model trained by Shaleny following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX200330tss Sample pictures of this concept: ![0](https://huggingface.co/Shaleny/my-pet-dog-xzg/resolve/main/sample_images/dog.avif)
dantelok/squad-bloom-3b
dantelok
2024-01-23T12:10:06Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloom-3b", "base_model:adapter:bigscience/bloom-3b", "region:us" ]
null
2024-01-23T12:10:01Z
--- library_name: peft base_model: bigscience/bloom-3b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
kenchenxingyu/flan-large-lora-emotion-human
kenchenxingyu
2024-01-23T12:09:31Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-01-22T17:12:43Z
--- {} --- Finetuned on human annotated data from KDD2020 Fake News Challenge
Charlie911/MultiLora-drop-sharegpt
Charlie911
2024-01-23T12:05:18Z
1,361
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:anon8231489123/ShareGPT_Vicuna_unfiltered", "dataset:EleutherAI/drop", "arxiv:1910.09700", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-23T11:58:46Z
--- license: llama2 datasets: - anon8231489123/ShareGPT_Vicuna_unfiltered - EleutherAI/drop language: - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HexawareTech/adapter-gsm8kb
HexawareTech
2024-01-23T12:04:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-23T12:04:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]