modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ND911/EE-Silicon-Maid-7B-slerp-gguf
ND911
2024-01-22T17:15:23Z
1
2
null
[ "gguf", "merge", "mergekit", "lazymergekit", "SanjiWatsuki/Silicon-Maid-7B", "SanjiWatsuki/Loyal-Macaroni-Maid-7B", "base_model:SanjiWatsuki/Loyal-Macaroni-Maid-7B", "base_model:merge:SanjiWatsuki/Loyal-Macaroni-Maid-7B", "base_model:SanjiWatsuki/Silicon-Maid-7B", "base_model:merge:SanjiWatsuki/Silicon-Maid-7B", "endpoints_compatible", "region:us" ]
null
2024-01-22T17:02:18Z
--- tags: - merge - mergekit - lazymergekit - SanjiWatsuki/Silicon-Maid-7B - SanjiWatsuki/Loyal-Macaroni-Maid-7B base_model: - SanjiWatsuki/Silicon-Maid-7B - SanjiWatsuki/Loyal-Macaroni-Maid-7B --- # EE-Silicon-Maid-7B-Slerp.gguf Slerp EE-Silicon-Maid-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) * [SanjiWatsuki/Loyal-Macaroni-Maid-7B](https://huggingface.co/SanjiWatsuki/Loyal-Macaroni-Maid-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: SanjiWatsuki/Silicon-Maid-7B layer_range: [0, 32] - model: SanjiWatsuki/Loyal-Macaroni-Maid-7B layer_range: [0, 32] merge_method: slerp base_model: SanjiWatsuki/Silicon-Maid-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "ND911/EE-Silicon-Maid-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
MartynaKopyta/BERT_hate_offensive_tweets
MartynaKopyta
2024-01-22T17:12:47Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-18T10:56:41Z
--- license: mit --- # Model Card for BERT hate offensive tweets BERT base uncased trained on the data that can be found here: [MartynaKopyta/hate_offensive_tweets](https://huggingface.co/datasets/MartynaKopyta/hate_offensive_tweets) to classify tweets as 0 - hate, 1 - offensive or 2 - neither. You can find the notebook used for training in my GitHub repo: [MartynaKopyta/BERT_FINE-TUNING](https://github.com/MartynaKopyta/BERT_FINE-TUNING/blob/main/BERT_hate_offensive_speech.ipynb). ## Model Details - **Finetuned from model [bert-base-uncased](https://huggingface.co/bert-base-uncased)** ## Bias, Risks, and Limitations The dataset was not big enough for BERT to learn to classify 3 classes accurately, it is right 3/4 times. ## How to Get Started with the Model ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained('MartynaKopyta/BERT_hate_offensive_tweets') tokenizer = AutoTokenizer.from_pretrained('MartynaKopyta/BERT_hate_offensive_tweets') ``` #### Training Hyperparameters - **batch size:16** - **learning rate:2e-5** - **epochs:3** ## Evaluation ``` Accuracy: 0.779373368146214 Classification Report: precision recall f1-score support 0 0.74 0.68 0.71 1532 1 0.85 0.88 0.87 1532 2 0.74 0.78 0.76 1532 accuracy 0.78 4596 macro avg 0.78 0.78 0.78 4596 weighted avg 0.78 0.78 0.78 4596 Confusion Matrix: [[1043 96 393] [ 169 1343 20] [ 204 132 1196]] MCC: 0.670 ```
LoneStriker/Gorgon-7b-v0.1-3.0bpw-h6-exl2
LoneStriker
2024-01-22T17:11:22Z
4
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "Erotica", "Porn", "NSFW", "Summarization", "Ecommerce", "SEO", "en", "dataset:openerotica/gorgon-lima-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T17:10:03Z
--- license: apache-2.0 datasets: - openerotica/gorgon-lima-v0.1 language: - en tags: - Erotica - Porn - NSFW - Summarization - Ecommerce - SEO --- This is an experimental lima style model trained on a small subset of freedom-rp and erotica-analysis-16k. Due to the much smaller dataset size (about 1000 samples from each original dataset) it was much easier to edit and clean thoroughly. I also used a slightly lower learning rate of 0.00015. The prompt format is chatml. I have not tested the model yet, but I am hoping I can use this to help me create more training data for specific genres. Please consider subscribing to my patreon or buying a giant candle dick on my etsy to show your support. https://www.patreon.com/openerotica http://openerotica.etsy.com/
ddh0/OrcaMaid-v3-13b-32k
ddh0
2024-01-22T17:10:32Z
14
7
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T20:17:18Z
--- license: other tags: - merge license_name: microsoft-research-license license_link: https://huggingface.co/microsoft/Orca-2-13b/blob/main/LICENSE pipeline_tag: text-generation --- # OrcaMaid-v3-13b-32k This is the third version of OrcaMaid, a weighted gradient SLERP merge between Microsoft's [Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) and NeverSleep's [Noromaid-13b-v0.3](https://huggingface.co/NeverSleep/Noromaid-13b-v0.3). The goal of this merge is to create an unusually intelligent and human-like model especially for RP. The prompt format is Alpaca. You can use the standard format as shown, but for best results, you should customize the system prompt to your specific needs. ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {YOUR MESSAGE HERE} ### Response: {BOT MESSAGE HERE} ``` ### Misc. information - BOS token is `<s>` - EOS token is `</s>` - Native context length is `32768` via YaRN (original context length was `4096`) - Base model is Llama 2 - Due to the inclusion of Orca-2-13b, the model is subject to the terms of the [Microsoft Research License](https://huggingface.co/microsoft/Orca-2-13b/blob/main/LICENSE) ### Thanks - Thanks to [Undi](https://ko-fi.com/undiai) and [IkariDev](https://ikaridevgit.github.io/) of [NeverSleep](https://huggingface.co/NeverSleep) for Noromaid
LoneStriker/Medorca-2x7b-8.0bpw-h8-exl2
LoneStriker
2024-01-22T17:09:55Z
7
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "epfl-llm/meditron-7b", "microsoft/Orca-2-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T17:05:15Z
--- license: apache-2.0 tags: - moe - merge - epfl-llm/meditron-7b - microsoft/Orca-2-7b --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/MVYcLAR1Inm5dY-XHiAhe.png) # Medorca-2x7b Medorca-2x7b is a Mixure of Experts (MoE) made with the following models: * [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) * [microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) ## Evaluations | Benchmark | Medorca-2x7b | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | 53.3 | **56.37** | | | | | TruthfulQA | 48.04 | **52.45** | | | | | GSM8K | **20.64** | 14.71 | | | | | ARC | 54.1 | 54.1 | | | | | HellaSwag | 76.04 | **76.19** | | | | | Winogrande | **74.51** | 73.48 | | | | More details on the Open LLM Leaderboard evaluation results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Technoculture__Medorca-2x7b.) ## 🧩 Configuration ```yaml base_model: microsoft/Orca-2-7b gate_mode: hidden dtype: bfloat16 experts: - source_model: epfl-llm/meditron-7b positive_prompts: - "How does sleep affect cardiovascular health?" - "Could a plant-based diet improve arthritis symptoms?" - "A patient comes in with symptoms of dizziness and nausea..." - "When discussing diabetes management, the key factors to consider are..." - "The differential diagnosis for a headache with visual aura could include..." negative_prompts: - "Recommend a good recipe for a vegetarian lasagna." - "Give an overview of the French Revolution." - "Explain how a digital camera captures an image." - "What are the environmental impacts of deforestation?" - "The recent advancements in artificial intelligence have led to developments in..." - "The fundamental concepts in economics include ideas like supply and demand, which explain..." - source_model: microsoft/Orca-2-7b positive_prompts: - "Here is a funny joke for you -" - "When considering the ethical implications of artificial intelligence, one must take into account..." - "In strategic planning, a company must analyze its strengths and weaknesses, which involves..." - "Understanding consumer behavior in marketing requires considering factors like..." - "The debate on climate change solutions hinges on arguments that..." negative_prompts: - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize..." - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for..." - "Explaining the importance of vaccination, a healthcare professional should highlight..." ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medorca-2x7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16}, ) messages = [{"role": "user", "content": "Why am i feeling so tired this month?"}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
marievcht/ppo-LunarLander-v2
marievcht
2024-01-22T17:05:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-12T16:47:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.82 +/- 23.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LoneStriker/Medorca-2x7b-6.0bpw-h6-exl2
LoneStriker
2024-01-22T17:05:13Z
5
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "epfl-llm/meditron-7b", "microsoft/Orca-2-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T17:00:05Z
--- license: apache-2.0 tags: - moe - merge - epfl-llm/meditron-7b - microsoft/Orca-2-7b --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/MVYcLAR1Inm5dY-XHiAhe.png) # Medorca-2x7b Medorca-2x7b is a Mixure of Experts (MoE) made with the following models: * [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) * [microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) ## Evaluations | Benchmark | Medorca-2x7b | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | 53.3 | **56.37** | | | | | TruthfulQA | 48.04 | **52.45** | | | | | GSM8K | **20.64** | 14.71 | | | | | ARC | 54.1 | 54.1 | | | | | HellaSwag | 76.04 | **76.19** | | | | | Winogrande | **74.51** | 73.48 | | | | More details on the Open LLM Leaderboard evaluation results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Technoculture__Medorca-2x7b.) ## 🧩 Configuration ```yaml base_model: microsoft/Orca-2-7b gate_mode: hidden dtype: bfloat16 experts: - source_model: epfl-llm/meditron-7b positive_prompts: - "How does sleep affect cardiovascular health?" - "Could a plant-based diet improve arthritis symptoms?" - "A patient comes in with symptoms of dizziness and nausea..." - "When discussing diabetes management, the key factors to consider are..." - "The differential diagnosis for a headache with visual aura could include..." negative_prompts: - "Recommend a good recipe for a vegetarian lasagna." - "Give an overview of the French Revolution." - "Explain how a digital camera captures an image." - "What are the environmental impacts of deforestation?" - "The recent advancements in artificial intelligence have led to developments in..." - "The fundamental concepts in economics include ideas like supply and demand, which explain..." - source_model: microsoft/Orca-2-7b positive_prompts: - "Here is a funny joke for you -" - "When considering the ethical implications of artificial intelligence, one must take into account..." - "In strategic planning, a company must analyze its strengths and weaknesses, which involves..." - "Understanding consumer behavior in marketing requires considering factors like..." - "The debate on climate change solutions hinges on arguments that..." negative_prompts: - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize..." - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for..." - "Explaining the importance of vaccination, a healthcare professional should highlight..." ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medorca-2x7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16}, ) messages = [{"role": "user", "content": "Why am i feeling so tired this month?"}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
LoneStriker/Medorca-2x7b-GGUF
LoneStriker
2024-01-22T17:03:44Z
34
3
null
[ "gguf", "moe", "merge", "epfl-llm/meditron-7b", "microsoft/Orca-2-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-22T16:27:08Z
--- license: apache-2.0 tags: - moe - merge - epfl-llm/meditron-7b - microsoft/Orca-2-7b --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/MVYcLAR1Inm5dY-XHiAhe.png) # Medorca-2x7b Medorca-2x7b is a Mixure of Experts (MoE) made with the following models: * [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) * [microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) ## Evaluations | Benchmark | Medorca-2x7b | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | 53.3 | **56.37** | | | | | TruthfulQA | 48.04 | **52.45** | | | | | GSM8K | **20.64** | 14.71 | | | | | ARC | 54.1 | 54.1 | | | | | HellaSwag | 76.04 | **76.19** | | | | | Winogrande | **74.51** | 73.48 | | | | More details on the Open LLM Leaderboard evaluation results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Technoculture__Medorca-2x7b.) ## 🧩 Configuration ```yaml base_model: microsoft/Orca-2-7b gate_mode: hidden dtype: bfloat16 experts: - source_model: epfl-llm/meditron-7b positive_prompts: - "How does sleep affect cardiovascular health?" - "Could a plant-based diet improve arthritis symptoms?" - "A patient comes in with symptoms of dizziness and nausea..." - "When discussing diabetes management, the key factors to consider are..." - "The differential diagnosis for a headache with visual aura could include..." negative_prompts: - "Recommend a good recipe for a vegetarian lasagna." - "Give an overview of the French Revolution." - "Explain how a digital camera captures an image." - "What are the environmental impacts of deforestation?" - "The recent advancements in artificial intelligence have led to developments in..." - "The fundamental concepts in economics include ideas like supply and demand, which explain..." - source_model: microsoft/Orca-2-7b positive_prompts: - "Here is a funny joke for you -" - "When considering the ethical implications of artificial intelligence, one must take into account..." - "In strategic planning, a company must analyze its strengths and weaknesses, which involves..." - "Understanding consumer behavior in marketing requires considering factors like..." - "The debate on climate change solutions hinges on arguments that..." negative_prompts: - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize..." - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for..." - "Explaining the importance of vaccination, a healthcare professional should highlight..." ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medorca-2x7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16}, ) messages = [{"role": "user", "content": "Why am i feeling so tired this month?"}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
LoneStriker/Medorca-2x7b-5.0bpw-h6-exl2
LoneStriker
2024-01-22T16:59:52Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "epfl-llm/meditron-7b", "microsoft/Orca-2-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T16:54:08Z
--- license: apache-2.0 tags: - moe - merge - epfl-llm/meditron-7b - microsoft/Orca-2-7b --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/MVYcLAR1Inm5dY-XHiAhe.png) # Medorca-2x7b Medorca-2x7b is a Mixure of Experts (MoE) made with the following models: * [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) * [microsoft/Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) ## Evaluations | Benchmark | Medorca-2x7b | Orca-2-7b | llama-2-7b | meditron-7b | meditron-70b | | --- | --- | --- | --- | --- | --- | | MedMCQA | | | | | | | ClosedPubMedQA | | | | | | | PubMedQA | | | | | | | MedQA | | | | | | | MedQA4 | | | | | | | MedicationQA | | | | | | | MMLU Medical | | | | | | | MMLU | 53.3 | **56.37** | | | | | TruthfulQA | 48.04 | **52.45** | | | | | GSM8K | **20.64** | 14.71 | | | | | ARC | 54.1 | 54.1 | | | | | HellaSwag | 76.04 | **76.19** | | | | | Winogrande | **74.51** | 73.48 | | | | More details on the Open LLM Leaderboard evaluation results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Technoculture__Medorca-2x7b.) ## 🧩 Configuration ```yaml base_model: microsoft/Orca-2-7b gate_mode: hidden dtype: bfloat16 experts: - source_model: epfl-llm/meditron-7b positive_prompts: - "How does sleep affect cardiovascular health?" - "Could a plant-based diet improve arthritis symptoms?" - "A patient comes in with symptoms of dizziness and nausea..." - "When discussing diabetes management, the key factors to consider are..." - "The differential diagnosis for a headache with visual aura could include..." negative_prompts: - "Recommend a good recipe for a vegetarian lasagna." - "Give an overview of the French Revolution." - "Explain how a digital camera captures an image." - "What are the environmental impacts of deforestation?" - "The recent advancements in artificial intelligence have led to developments in..." - "The fundamental concepts in economics include ideas like supply and demand, which explain..." - source_model: microsoft/Orca-2-7b positive_prompts: - "Here is a funny joke for you -" - "When considering the ethical implications of artificial intelligence, one must take into account..." - "In strategic planning, a company must analyze its strengths and weaknesses, which involves..." - "Understanding consumer behavior in marketing requires considering factors like..." - "The debate on climate change solutions hinges on arguments that..." negative_prompts: - "In discussing dietary adjustments for managing hypertension, it's crucial to emphasize..." - "For early detection of melanoma, dermatologists recommend that patients regularly check their skin for..." - "Explaining the importance of vaccination, a healthcare professional should highlight..." ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medorca-2x7b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16}, ) messages = [{"role": "user", "content": "Why am i feeling so tired this month?"}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
hack08gf1/rare-puppers
hack08gf1
2024-01-22T16:59:42Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-22T16:59:35Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### cat ![cat](images/cat.jpg) #### dog ![dog](images/dog.jpg)
Sucial/so-vits-svc4.1-Minecraft_villager
Sucial
2024-01-22T16:59:22Z
4
0
transformers
[ "transformers", "so-vits-svc", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-22T16:57:08Z
--- license: cc-by-nc-sa-4.0 tags: - so-vits-svc --- # so-vits-svc4.1-villager USE 4.1-Stable ## Offcial Website:https://github.com/svc-develop-team/so-vits-svc ## How to use? 1. install requirements 2. download pretrain model and put it into `./pretrain` 3. run webUI.py
samitizerxu/segformer-b1-kelp-rgb-agg-imgaug-jan-22
samitizerxu
2024-01-22T16:59:20Z
6
0
transformers
[ "transformers", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "dataset:kelp_data", "base_model:nvidia/mit-b1", "base_model:finetune:nvidia/mit-b1", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-01-22T16:31:07Z
--- license: other base_model: nvidia/mit-b1 tags: - vision - image-segmentation - generated_from_trainer datasets: - kelp_data model-index: - name: segformer-b1-kelp-rgb-agg-imgaug-jan-22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b1-kelp-rgb-agg-imgaug-jan-22 This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the samitizerxu/kelp_data dataset. It achieves the following results on the evaluation set: - eval_accuracy_kelp: nan - eval_iou_kelp: 0.0 - eval_loss: 0.3223 - eval_mean_iou: 0.0205 - eval_mean_accuracy: 0.0410 - eval_overall_accuracy: 0.0410 - eval_runtime: 62.0057 - eval_samples_per_second: 27.272 - eval_steps_per_second: 3.419 - epoch: 1.16 - step: 570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 40 ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
sabretoothedhugs/ppo-SnowballTarget
sabretoothedhugs
2024-01-22T16:50:42Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-01-22T16:50:37Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: sabretoothedhugs/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Sucial/so-vits-svc4.1-barking
Sucial
2024-01-22T16:49:19Z
0
0
null
[ "so-vits-svc", "license:cc-by-sa-4.0", "region:us" ]
null
2024-01-22T16:41:57Z
--- license: cc-by-sa-4.0 tags: - so-vits-svc --- # so-vits-svc4.1-barking USE 4.1-Stable ## Offcial Website:https://github.com/svc-develop-team/so-vits-svc ## How to use? 1. install requirements 2. download pretrain model and put it into `./pretrain` 3. download and extract nsf_hifigan pretrain model and put it into `pretrain/nsf_hifigan` 4. run webUI.py ## Steps - bark.pth has been trained 16000 steps - diffusion.pt has been trained 10000 steps
CLMBR/binding-case-lstm-3
CLMBR
2024-01-22T16:49:10Z
1
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-17T20:29:24Z
--- tags: - generated_from_trainer model-index: - name: binding-case-lstm-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binding-case-lstm-3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.793 | 0.03 | 76320 | 4.7610 | | 4.5078 | 1.03 | 152640 | 4.4815 | | 4.3662 | 0.03 | 228960 | 4.3454 | | 4.2772 | 1.03 | 305280 | 4.2625 | | 4.2165 | 0.03 | 381600 | 4.2062 | | 4.1704 | 0.03 | 457920 | 4.1645 | | 4.1336 | 1.03 | 534240 | 4.1334 | | 4.0998 | 0.03 | 610560 | 4.1087 | | 4.0754 | 0.03 | 686880 | 4.0897 | | 4.0505 | 1.03 | 763200 | 4.0733 | | 4.0282 | 0.03 | 839520 | 4.0602 | | 4.0115 | 1.03 | 915840 | 4.0487 | | 3.9943 | 0.03 | 992160 | 4.0396 | | 3.9766 | 1.03 | 1068480 | 4.0313 | | 3.9675 | 0.03 | 1144800 | 4.0246 | | 3.9447 | 1.03 | 1221120 | 4.0192 | | 3.9354 | 0.03 | 1297440 | 4.0142 | | 3.9278 | 1.03 | 1373760 | 4.0092 | | 3.918 | 0.03 | 1450080 | 4.0055 | | 3.9146 | 1.03 | 1526400 | 4.0013 | | 3.9107 | 0.03 | 1602720 | 3.9987 | | 3.9089 | 1.03 | 1679040 | 3.9956 | | 3.9035 | 0.03 | 1755360 | 3.9926 | | 3.898 | 1.03 | 1831680 | 3.9903 | | 3.8927 | 0.03 | 1908000 | 3.9885 | | 3.8853 | 1.03 | 1984320 | 3.9868 | | 3.8795 | 0.03 | 2060640 | 3.9850 | | 3.876 | 0.03 | 2136960 | 3.9838 | | 3.871 | 1.03 | 2213280 | 3.9824 | | 3.8615 | 0.03 | 2289600 | 3.9814 | | 3.8613 | 1.03 | 2365920 | 3.9803 | | 3.8485 | 0.03 | 2442240 | 3.9792 | | 3.8443 | 1.03 | 2518560 | 3.9786 | | 3.8438 | 0.03 | 2594880 | 3.9778 | | 3.8407 | 0.03 | 2671200 | 3.9770 | | 3.842 | 1.03 | 2747520 | 3.9764 | | 3.8433 | 0.03 | 2823840 | 3.9758 | | 3.8447 | 0.03 | 2900160 | 3.9755 | | 3.8456 | 0.03 | 2976480 | 3.9751 | | 3.8445 | 0.02 | 3052726 | 3.9748 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
mryoshq/Reinforce-v2
mryoshq
2024-01-22T16:34:22Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T16:31:05Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -5.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
turboderp/Orion-14B-exl2
turboderp
2024-01-22T16:28:35Z
1
0
null
[ "region:us" ]
null
2024-01-22T16:25:48Z
EXL2 quants of [Orion-14B-Base](https://huggingface.co/OrionStarAI/Orion-14B-Base). [3.00 bits per weight](https://huggingface.co/turboderp/Orion-14B-exl2/tree/3.0bpw) [4.00 bits per weight](https://huggingface.co/turboderp/Orion-14B-exl2/tree/4.0bpw) [5.00 bits per weight](https://huggingface.co/turboderp/Orion-14B-exl2/tree/5.0bpw) [6.00 bits per weight](https://huggingface.co/turboderp/Orion-14B-exl2/tree/6.0bpw) [measurement.json](https://huggingface.co/turboderp/Orion-14B-exl2/blob/main/measurement.json)
arun100/whisper-small-derived-bn-1
arun100
2024-01-22T16:26:03Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "bn", "dataset:mozilla-foundation/common_voice_16_0", "base_model:bangla-speech-processing/BanglaASR", "base_model:finetune:bangla-speech-processing/BanglaASR", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-21T21:57:40Z
--- language: - bn license: mit base_model: bangla-speech-processing/BanglaASR tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Bengali results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 bn type: mozilla-foundation/common_voice_16_0 config: bn split: test args: bn metrics: - name: Wer type: wer value: 3.7265218830814386 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Hindi This model is a fine-tuned version of [bangla-speech-processing/BanglaASR](https://huggingface.co/bangla-speech-processing/BanglaASR) on the mozilla-foundation/common_voice_16_0 bn dataset. It achieves the following results on the evaluation set: - Loss: 0.1281 - Wer: 3.7265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1588 | 0.5 | 50 | 0.1495 | 3.7650 | | 0.1267 | 1.0 | 100 | 0.1281 | 3.7265 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
ayeshgk/codet5-small-ft-v6
ayeshgk
2024-01-22T16:21:11Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Salesforce/codet5-small", "base_model:finetune:Salesforce/codet5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-22T16:20:27Z
--- license: apache-2.0 base_model: Salesforce/codet5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: codet5-small-ft-v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codet5-small-ft-v6 This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5863 - Rouge1: 71.8559 - Rouge2: 60.5888 - Rougel: 71.8854 - Rougelsum: 72.4012 - Gen Len: 11.3611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 8 | 2.3812 | 55.4108 | 40.7913 | 55.1318 | 55.507 | 12.0556 | | No log | 2.0 | 16 | 1.8744 | 68.0982 | 55.7308 | 67.6019 | 68.3046 | 10.8889 | | No log | 3.0 | 24 | 1.6721 | 70.6333 | 59.7463 | 70.6679 | 71.2205 | 11.0833 | | No log | 4.0 | 32 | 1.5863 | 71.8559 | 60.5888 | 71.8854 | 72.4012 | 11.3611 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
sabretoothedhugs/Reinforce-pixelcopter
sabretoothedhugs
2024-01-22T16:19:17Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T16:19:14Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 19.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
LoneStriker/mistral-7b-lamia-v0.1-GGUF
LoneStriker
2024-01-22T16:13:25Z
53
3
null
[ "gguf", "NSFW", "Porn", "Ecommerce", "Roleplay", "Summarization", "dataset:openerotica/Lamia", "license:apache-2.0", "region:us" ]
null
2024-01-22T15:49:03Z
--- license: apache-2.0 datasets: - openerotica/Lamia tags: - NSFW - Porn - Ecommerce - Roleplay - Summarization --- This is a combination of the pruned erotica-analysis data, freedom-rp, and a subest of Airoboros. The following Categories are what was taken out of the Airoborus datset and added to my own Lamia dataset: "roleplay", "unalignment", "editor", "writing", "detailed_writing", "stylized_response", "unalign", "cot", "song" I'm hoping that this can improve the models narrative/storywriting ability, logic, and intelligence, while reducing any potential inherent ethical "alignment" that may be present in the base mistral model from pretaining on Chat-GPT generated data. The format is Chatml, and the base model is Yarn Mistral which increases the context size to a true 16k+ rather than rellying on the sliding attention window.
kailorston/Fr-En
kailorston
2024-01-22T16:13:03Z
46
1
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-22T16:11:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Fr-En results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Fr-En This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8999 - Validation Loss: 1.8547 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.2900 | 1.9864 | 0 | | 2.0159 | 1.8964 | 1 | | 1.8999 | 1.8547 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.2
LoneStriker/mistral-7b-lamia-v0.1-8.0bpw-h8-exl2
LoneStriker
2024-01-22T16:10:24Z
4
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "NSFW", "Porn", "Ecommerce", "Roleplay", "Summarization", "conversational", "custom_code", "dataset:openerotica/Lamia", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T16:05:06Z
--- license: apache-2.0 datasets: - openerotica/Lamia tags: - NSFW - Porn - Ecommerce - Roleplay - Summarization --- This is a combination of the pruned erotica-analysis data, freedom-rp, and a subest of Airoboros. The following Categories are what was taken out of the Airoborus datset and added to my own Lamia dataset: "roleplay", "unalignment", "editor", "writing", "detailed_writing", "stylized_response", "unalign", "cot", "song" I'm hoping that this can improve the models narrative/storywriting ability, logic, and intelligence, while reducing any potential inherent ethical "alignment" that may be present in the base mistral model from pretaining on Chat-GPT generated data. The format is Chatml, and the base model is Yarn Mistral which increases the context size to a true 16k+ rather than rellying on the sliding attention window.
llmixer/BigWeave-v6-90b-3.0bpw-h8-exl2
llmixer
2024-01-22T15:59:29Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "3.0bpw", "h8", "exl2", "conversational", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T15:44:06Z
--- license: llama2 language: - en pipeline_tag: conversational tags: - 3.0bpw - h8 - exl2 --- Exllamav2 3.0bpw h8 quant for [BigWeave-v6-90b](https://huggingface.co/llmixer/BigWeave-v6-90b). Calibration dataset: [llmixer/20k_random_data](https://huggingface.co/datasets/llmixer/20k_random_data)
silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e2
silvercoder45
2024-01-22T15:59:01Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-22T15:57:33Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
ANISH987/my-animals-xza
ANISH987
2024-01-22T15:58:11Z
0
0
null
[ "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-22T15:56:32Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Animals-xza Dreambooth model trained by ANISH987 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 2201638 Sample pictures of this concept: ![0](https://huggingface.co/ANISH987/my-animals-xza/resolve/main/sample_images/final.jpg)
vlad-skripniuk/ppo-Huggy
vlad-skripniuk
2024-01-22T15:55:28Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-22T15:55:22Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: vlad-skripniuk/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LoneStriker/mistral-7b-lamia-v0.1-4.0bpw-h6-exl2
LoneStriker
2024-01-22T15:54:56Z
5
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "NSFW", "Porn", "Ecommerce", "Roleplay", "Summarization", "conversational", "custom_code", "dataset:openerotica/Lamia", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T15:51:50Z
--- license: apache-2.0 datasets: - openerotica/Lamia tags: - NSFW - Porn - Ecommerce - Roleplay - Summarization --- This is a combination of the pruned erotica-analysis data, freedom-rp, and a subest of Airoboros. The following Categories are what was taken out of the Airoborus datset and added to my own Lamia dataset: "roleplay", "unalignment", "editor", "writing", "detailed_writing", "stylized_response", "unalign", "cot", "song" I'm hoping that this can improve the models narrative/storywriting ability, logic, and intelligence, while reducing any potential inherent ethical "alignment" that may be present in the base mistral model from pretaining on Chat-GPT generated data. The format is Chatml, and the base model is Yarn Mistral which increases the context size to a true 16k+ rather than rellying on the sliding attention window.
galeng/finetuning-sentiment-model-3000-samples
galeng
2024-01-22T15:53:05Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T14:31:16Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3306 - Accuracy: 0.8733 - F1: 0.8782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
raqdo09/mt5-small-french_book_reviews
raqdo09
2024-01-22T15:52:55Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-01-22T15:47:56Z
--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer model-index: - name: mt5-small-french_book_reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-french_book_reviews This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/mistral-7b-lamia-v0.1-3.0bpw-h6-exl2
LoneStriker
2024-01-22T15:51:48Z
5
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "NSFW", "Porn", "Ecommerce", "Roleplay", "Summarization", "conversational", "custom_code", "dataset:openerotica/Lamia", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T15:49:13Z
--- license: apache-2.0 datasets: - openerotica/Lamia tags: - NSFW - Porn - Ecommerce - Roleplay - Summarization --- This is a combination of the pruned erotica-analysis data, freedom-rp, and a subest of Airoboros. The following Categories are what was taken out of the Airoborus datset and added to my own Lamia dataset: "roleplay", "unalignment", "editor", "writing", "detailed_writing", "stylized_response", "unalign", "cot", "song" I'm hoping that this can improve the models narrative/storywriting ability, logic, and intelligence, while reducing any potential inherent ethical "alignment" that may be present in the base mistral model from pretaining on Chat-GPT generated data. The format is Chatml, and the base model is Yarn Mistral which increases the context size to a true 16k+ rather than rellying on the sliding attention window.
if001/tiny_mixtral_ja
if001
2024-01-22T15:42:05Z
14
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "ja", "japanese", "en", "dataset:izumi-lab/wikipedia-ja-20230720", "dataset:izumi-lab/wikipedia-en-20230720", "dataset:izumi-lab/open-text-books", "dataset:if001/aozorabunko-clean-sin", "dataset:if001/oscar_2023_filtered", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-22T15:02:21Z
--- license: apache-2.0 language: - en - ja datasets: - izumi-lab/wikipedia-ja-20230720 - izumi-lab/wikipedia-en-20230720 - izumi-lab/open-text-books - if001/aozorabunko-clean-sin - if001/oscar_2023_filtered tags: - ja - japanese - mixtral inference: false --- 275.86Mのmixtralを日本語データセットでpretrainingしたものです ## sample ``` from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("if001/tiny_mixtral_ja") tokenizer = AutoTokenizer.from_pretrained("if001/sentencepiece_ja", trust_remote_code=True) prompt = "それは九月初旬のある蒸し暑い晩のことであった。私は、D坂の" inputs = tokenizer(prompt, return_tensors="pt") generate_ids = model.generate( inputs.input_ids, max_length=30, top_k=30, top_p=0.95, temperature=0.6, repetition_penalty=1.2, do_sample=True, ) tokenizer.decode(generate_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) >> それは九月初旬のある蒸し暑い晩のことであった。私は、D坂の茶舗を後にして、その路地の角に横丁をあるいて居る、と云うと、丁度其処から、 ``` ## dataset 英語と日本語のデータセットを使用 ``` total tokens: 8.64B wikipedia_ja: 844.65M wikipedia_en: 3.80B open-text-books: 60.17M oscar: 3.85B aozorabunko: 92.97M ``` ## tokenizer ``` all_special_ids: [1, 2, 3, 0, 4] all_special_tokens: ['<BOS>', '<EOS>', '<UNK>', '<PAD>', '<MASK>'] ```
mathurinache/Marcoro14-7B-slerp
mathurinache
2024-01-22T15:41:06Z
0
1
null
[ "merge", "mergekit", "lazymergekit", "AIDC-ai-business/Marcoroni-7B-v3", "EmbeddedLLM/Mistral-7B-Merge-14-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-22T15:41:06Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - AIDC-ai-business/Marcoroni-7B-v3 - EmbeddedLLM/Mistral-7B-Merge-14-v0.1 --- # Marcoro14-7B-slerp Marcoro14-7B-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3) * [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1) ## 🧩 Configuration ```yaml slices: - sources: - model: AIDC-ai-business/Marcoroni-7B-v3 layer_range: [0, 32] - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1 layer_range: [0, 32] merge_method: slerp base_model: AIDC-ai-business/Marcoroni-7B-v3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
flyman123/ppo-LunarLander-v2
flyman123
2024-01-22T15:37:46Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T15:37:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -158.28 +/- 46.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3
silvercoder45
2024-01-22T15:35:54Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-22T15:33:39Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2
silvercoder45
2024-01-22T15:35:32Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-22T15:32:45Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Systran/faster-distil-whisper-small.en
Systran
2024-01-22T15:35:22Z
1,446
2
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
2024-01-19T03:24:09Z
--- language: - en tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper small.en model for CTranslate2 This repository contains the conversion of [distil-whisper/distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/systran/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("distil-small.en") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model distil-whisper/distil-small.en --output_dir faster-distil-whisper-small.en \ --copy_files tokenizer.json preprocessor_config.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/distil-whisper/distil-small.en).**
BarryFutureman/NeuralTurdusVariant1-7B
BarryFutureman
2024-01-22T15:33:55Z
1,471
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T02:55:13Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation tags: - merge --- # NeuralTurdusVariant1-7B It is based on a merge of the following models using MergeKit * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [udkai/Turdus](https://huggingface.co/udkai/Turdus)
andrewatef/test
andrewatef
2024-01-22T15:29:13Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/tinyllama", "base_model:adapter:unsloth/tinyllama", "region:us" ]
null
2024-01-22T15:24:03Z
--- library_name: peft base_model: unsloth/tinyllama --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
linoyts/2000_ads_offset_noise
linoyts
2024-01-22T15:20:00Z
55
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-22T12:29:00Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: '<s0><s1> ad of a llama wearing headphones' output: url: "image_0.png" - text: '<s0><s1> ad of a llama wearing headphones' output: url: "image_1.png" - text: '<s0><s1> ad of a llama wearing headphones' output: url: "image_2.png" - text: '<s0><s1> ad of a llama wearing headphones' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: an ad in the style of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - linoyts/2000_ads_offset_noise <Gallery /> ## Model description ### These are linoyts/2000_ads_offset_noise LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`2000_ads_offset_noise.safetensors` here 💾](/linoyts/2000_ads_offset_noise/blob/main/2000_ads_offset_noise.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:2000_ads_offset_noise:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`2000_ads_offset_noise_emb.safetensors` here 💾](/linoyts/2000_ads_offset_noise/blob/main/2000_ads_offset_noise_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `2000_ads_offset_noise_emb` to your prompt. For example, `an ad in the style of 2000_ads_offset_noise_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('linoyts/2000_ads_offset_noise', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='linoyts/2000_ads_offset_noise', filename='2000_ads_offset_noise_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('<s0><s1> ad of a llama wearing headphones').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/linoyts/2000_ads_offset_noise/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
simpragma/breeze-listen-dsw-base-te
simpragma
2024-01-22T15:18:39Z
9
1
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:google/fleurs", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-18T07:30:53Z
--- license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Breeze DSW Telugu - base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs te_in type: google/fleurs config: te_in split: test args: te_in metrics: - name: Wer type: wer value: 37.45436058603319 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Breeze DSW Telugu - base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs te_in dataset. It achieves the following results on the evaluation set: - Loss: 0.3372 - Wer: 37.4544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2937 | 2.03 | 200 | 0.3237 | 42.5614 | | 0.1611 | 5.02 | 400 | 0.2756 | 38.9148 | | 0.0889 | 8.01 | 600 | 0.2930 | 38.1106 | | 0.0456 | 11.0 | 800 | 0.3372 | 37.4544 | | 0.0229 | 13.03 | 1000 | 0.3982 | 37.9258 | | 0.0103 | 16.02 | 1200 | 0.4473 | 38.2678 | | 0.0042 | 19.02 | 1400 | 0.4836 | 37.8980 | | 0.0025 | 22.01 | 1600 | 0.5083 | 37.7317 | | 0.002 | 24.04 | 1800 | 0.5220 | 37.8010 | | 0.0018 | 27.03 | 2000 | 0.5269 | 37.9027 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
MaziyarPanahi/MoMo-72B-lora-1.8.7-DPO-GPTQ
MaziyarPanahi
2024-01-22T15:15:06Z
21
7
transformers
[ "transformers", "safetensors", "llama", "text-generation", "finetuned", "quantized", "4-bit", "gptq", "en", "arxiv:2305.18290", "arxiv:2106.09685", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "base_model:moreh/MoMo-72B-lora-1.8.7-DPO", "base_model:finetune:moreh/MoMo-72B-lora-1.8.7-DPO", "license:apache-2.0" ]
text-generation
2024-01-22T15:00:53Z
--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - safetensors - llama - text-generation - en - arxiv:2305.18290 - arxiv:2106.09685 - license:mit - autotrain_compatible - endpoints_compatible - text-generation-inference - region:us model_name: MoMo-72B-lora-1.8.7-DPO-GPTQ base_model: moreh/MoMo-72B-lora-1.8.7-DPO inference: false model_creator: moreh pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Description [MaziyarPanahi/MoMo-72B-lora-1.8.7-DPO-GPTQ](https://huggingface.co/MaziyarPanahi/MoMo-72B-lora-1.8.7-DPO-GPTQ) is a quantized (GPTQ) version of [moreh/MoMo-72B-lora-1.8.7-DPO](https://huggingface.co/moreh/MoMo-72B-lora-1.8.7-DPO) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/MoMo-72B-lora-1.8.7-DPO-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```
Nazaninmnd/DreamBooth_LDC
Nazaninmnd
2024-01-22T15:12:34Z
0
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-20T11:05:58Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of LDC tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Nazaninmnd/DreamBooth_LDC This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of LDC using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
Balaaditya/deepseek-coder-6.7b-instruct-TAVGEN-finetune
Balaaditya
2024-01-22T15:08:42Z
3
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:adapter:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "region:us" ]
null
2024-01-22T15:07:44Z
--- license: other library_name: peft tags: - generated_from_trainer base_model: deepseek-ai/deepseek-coder-6.7b-instruct model-index: - name: deepseek-coder-6.7b-instruct-TAVGEN-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepseek-coder-6.7b-instruct-TAVGEN-finetune This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5933 | 0.21 | 25 | 0.4703 | | 0.4589 | 0.42 | 50 | 0.4026 | | 0.4226 | 0.63 | 75 | 0.3733 | | 0.3968 | 0.84 | 100 | 0.3605 | | 0.3645 | 1.05 | 125 | 0.3483 | | 0.355 | 1.26 | 150 | 0.3421 | | 0.3318 | 1.47 | 175 | 0.3365 | | 0.3377 | 1.68 | 200 | 0.3318 | | 0.3111 | 1.89 | 225 | 0.3287 | | 0.3324 | 2.1 | 250 | 0.3242 | | 0.2757 | 2.31 | 275 | 0.3254 | | 0.3061 | 2.52 | 300 | 0.3253 | | 0.3015 | 2.73 | 325 | 0.3218 | | 0.2674 | 2.94 | 350 | 0.3209 | | 0.2579 | 3.15 | 375 | 0.3208 | | 0.2601 | 3.36 | 400 | 0.3225 | | 0.2396 | 3.57 | 425 | 0.3222 | | 0.2504 | 3.78 | 450 | 0.3220 | | 0.2786 | 3.99 | 475 | 0.3206 | | 0.2357 | 4.2 | 500 | 0.3206 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
kmfoda/gpt2
kmfoda
2024-01-22T15:06:20Z
4
0
transformers
[ "transformers", "safetensors", "gpt2", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-01-22T15:05:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jvvelzen/taxi_3
jvvelzen
2024-01-22T15:05:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T15:05:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jvvelzen/taxi_3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
seatond/firstpage_c_rank32_batch4eq_7mods
seatond
2024-01-22T15:03:48Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "region:us" ]
null
2024-01-22T15:02:47Z
--- library_name: peft base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
mryoshq/Reinforce-v1
mryoshq
2024-01-22T15:01:49Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T15:01:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
haizad/q-FrozenLake-v1-4x4-noSlippery
haizad
2024-01-22T15:00:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T15:00:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="haizad/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jfcruz13/mt5-small-finetuned-litero-es
jfcruz13
2024-01-22T14:59:42Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-01-22T14:50:35Z
--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer model-index: - name: mt5-small-finetuned-litero-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-litero-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 24.6430 - eval_rouge1: 1.3112 - eval_rouge2: 0.0339 - eval_rougeL: 1.2102 - eval_rougeLsum: 1.201 - eval_runtime: 51.8577 - eval_samples_per_second: 19.284 - eval_steps_per_second: 2.41 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
jfcruz13/mt5-small-finetuned-amazon-en-es
jfcruz13
2024-01-22T14:49:02Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2024-01-22T14:05:26Z
--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 14.5641 - eval_rouge1: 0.8652 - eval_rouge2: 0.0 - eval_rougeL: 0.8652 - eval_rougeLsum: 0.871 - eval_runtime: 2.0535 - eval_samples_per_second: 14.122 - eval_steps_per_second: 1.948 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Abhinav28/large-v3-hi-commonvoice-11-peft-trained-adapter-withfp16-30-percent-learningrate-5
Abhinav28
2024-01-22T14:44:39Z
1
0
peft
[ "peft", "safetensors", "whisper", "arxiv:1910.09700", "base_model:openai/whisper-large-v3", "base_model:adapter:openai/whisper-large-v3", "region:us" ]
null
2024-01-22T14:39:48Z
--- library_name: peft base_model: openai/whisper-large-v3 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
praveengovi/NeuralPipe-7B-slerp-2
praveengovi
2024-01-22T14:34:17Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:merge:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:merge:mlabonne/NeuralHermes-2.5-Mistral-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T14:29:58Z
--- tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B base_model: - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # NeuralPipe-7B-slerp-2 NeuralPipe-7B-slerp-2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "praveengovi/NeuralPipe-7B-slerp-2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Raghavan/indictrans2-indic-en-dist-200M
Raghavan
2024-01-22T14:32:12Z
15
0
transformers
[ "transformers", "pytorch", "IndicTrans", "text2text-generation", "indictrans2", "translation", "ai4bharat", "multilingual", "custom_code", "as", "bn", "brx", "doi", "en", "gom", "gu", "hi", "kn", "ks", "kas", "mai", "ml", "mr", "mni", "mnb", "ne", "or", "pa", "sa", "sat", "sd", "snd", "ta", "te", "ur", "dataset:flores-200", "dataset:IN22-Gen", "dataset:IN22-Conv", "license:mit", "autotrain_compatible", "region:us" ]
translation
2023-12-04T12:21:51Z
--- language: - as - bn - brx - doi - en - gom - gu - hi - kn - ks - kas - mai - ml - mr - mni - mnb - ne - or - pa - sa - sat - sd - snd - ta - te - ur language_details: >- asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr, hin_Deva, kan_Knda, kas_Arab, kas_Deva, mai_Deva, mal_Mlym, mar_Deva, mni_Beng, mni_Mtei, npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Arab, snd_Deva, tam_Taml, tel_Telu, urd_Arab tags: - indictrans2 - translation - ai4bharat - multilingual license: mit datasets: - flores-200 - IN22-Gen - IN22-Conv metrics: - bleu - chrf - chrf++ - comet inference: false --- # IndicTrans2 This is the model card of IndicTrans2 Indic-En Distilled 200M variant. Please refer to [section 7.6: Distilled Models](https://openreview.net/forum?id=vfT4YuzAYA) in the TMLR submission for further details on model training, data and metrics. ### Usage Instructions Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference. ### Citation If you consider using our work then please cite using: ``` @article{ai4bharat2023indictrans2, title = {IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages}, author = {AI4Bharat and Jay Gala and Pranjal A. Chitale and Raghavan AK and Sumanth Doddapaneni and Varun Gumma and Aswanth Kumar and Janki Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M. Khapra and Raj Dabre and Anoop Kunchukuttan}, year = {2023}, journal = {arXiv preprint arXiv: 2305.16307} } ```
Evan-Lin/dpo-llama2-deprecated
Evan-Lin
2024-01-22T14:31:31Z
2
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-22T10:05:06Z
--- library_name: peft tags: - trl - dpo - generated_from_trainer base_model: meta-llama/Llama-2-7b-chat-hf model-index: - name: dpo-llama2-deprecated results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo-llama2-deprecated This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5246 - Rewards/chosen: 0.5279 - Rewards/rejected: -0.0974 - Rewards/accuracies: 0.7939 - Rewards/margins: 0.6253 - Logps/rejected: -74.5910 - Logps/chosen: -63.2702 - Logits/rejected: -0.4513 - Logits/chosen: -0.4830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6078 | 0.15 | 50 | 0.6238 | 0.5207 | 0.0974 | 0.6588 | 0.4233 | -72.6424 | -63.3416 | -0.4914 | -0.5620 | | 0.5223 | 0.3 | 100 | 0.5246 | 0.5279 | -0.0974 | 0.7939 | 0.6253 | -74.5910 | -63.2702 | -0.4513 | -0.4830 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
dizzyme/xls-r-300m-model-G
dizzyme
2024-01-22T14:31:25Z
89
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-22T09:08:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: xls-r-300m-model-G results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-model-G This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7710 - Wer: 1.0 - Cer: 0.8800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:---:|:------:| | 32.1048 | 1.0 | 47 | 31.2303 | 1.0 | 1.2082 | | 30.3148 | 2.0 | 94 | 25.3574 | 1.0 | 1.0 | | 24.0771 | 3.0 | 141 | 14.3321 | 1.0 | 1.0 | | 15.5757 | 4.0 | 188 | 8.7981 | 1.0 | 1.0 | | 10.6789 | 5.0 | 235 | 6.3534 | 1.0 | 1.0 | | 7.5286 | 6.0 | 282 | 5.0039 | 1.0 | 1.0 | | 5.5091 | 7.0 | 329 | 4.2043 | 1.0 | 1.0 | | 4.4551 | 8.0 | 376 | 3.7495 | 1.0 | 1.0 | | 3.9291 | 9.0 | 423 | 3.4757 | 1.0 | 1.0 | | 3.5432 | 10.0 | 470 | 3.3164 | 1.0 | 1.0 | | 3.3702 | 11.0 | 517 | 3.2356 | 1.0 | 1.0 | | 3.2758 | 12.0 | 564 | 3.1968 | 1.0 | 1.0 | | 3.2236 | 13.0 | 611 | 3.1779 | 1.0 | 1.0 | | 3.1857 | 14.0 | 658 | 3.1688 | 1.0 | 1.0 | | 3.1704 | 15.0 | 705 | 3.1606 | 1.0 | 1.0 | | 3.1714 | 16.0 | 752 | 3.1593 | 1.0 | 1.0 | | 3.1537 | 17.0 | 799 | 3.1548 | 1.0 | 1.0 | | 3.1519 | 18.0 | 846 | 3.1532 | 1.0 | 1.0 | | 3.1496 | 19.0 | 893 | 3.1535 | 1.0 | 1.0 | | 3.1441 | 20.0 | 940 | 3.1499 | 1.0 | 1.0 | | 3.1456 | 21.0 | 987 | 3.1489 | 1.0 | 1.0 | | 3.1409 | 22.0 | 1034 | 3.1480 | 1.0 | 1.0 | | 3.1438 | 23.0 | 1081 | 3.1459 | 1.0 | 1.0 | | 3.1382 | 24.0 | 1128 | 3.1447 | 1.0 | 1.0 | | 3.1377 | 25.0 | 1175 | 3.1451 | 1.0 | 1.0 | | 3.1306 | 26.0 | 1222 | 3.1409 | 1.0 | 1.0 | | 3.1381 | 27.0 | 1269 | 3.1407 | 1.0 | 1.0 | | 3.1358 | 28.0 | 1316 | 3.1393 | 1.0 | 1.0 | | 3.139 | 29.0 | 1363 | 3.1333 | 1.0 | 1.0 | | 3.1216 | 30.0 | 1410 | 3.1159 | 1.0 | 1.0 | | 3.1206 | 31.0 | 1457 | 3.0811 | 1.0 | 1.0 | | 3.081 | 32.0 | 1504 | 3.0663 | 1.0 | 1.0 | | 3.0502 | 33.0 | 1551 | 3.1086 | 1.0 | 1.0 | | 3.0215 | 34.0 | 1598 | 3.0463 | 1.0 | 1.0 | | 2.9894 | 35.0 | 1645 | 2.9205 | 1.0 | 1.0 | | 2.9546 | 36.0 | 1692 | 2.9391 | 1.0 | 1.0 | | 2.9263 | 37.0 | 1739 | 2.8987 | 1.0 | 1.0 | | 2.9039 | 38.0 | 1786 | 2.8631 | 1.0 | 1.0 | | 2.8882 | 39.0 | 1833 | 2.8381 | 1.0 | 0.9965 | | 2.8664 | 40.0 | 1880 | 2.8295 | 1.0 | 0.9936 | | 2.8564 | 41.0 | 1927 | 2.8181 | 1.0 | 0.9781 | | 2.8354 | 42.0 | 1974 | 2.8205 | 1.0 | 0.9577 | | 2.824 | 43.0 | 2021 | 2.8253 | 1.0 | 0.9421 | | 2.8115 | 44.0 | 2068 | 2.8224 | 1.0 | 0.9337 | | 2.7896 | 45.0 | 2115 | 2.8131 | 1.0 | 0.9047 | | 2.7896 | 46.0 | 2162 | 2.8056 | 1.0 | 0.9054 | | 2.7827 | 47.0 | 2209 | 2.7961 | 1.0 | 0.8800 | | 2.7782 | 48.0 | 2256 | 2.7957 | 1.0 | 0.9012 | | 2.7735 | 49.0 | 2303 | 2.7653 | 1.0 | 0.8673 | | 2.764 | 50.0 | 2350 | 2.7609 | 1.0 | 0.8709 | | 2.7556 | 51.0 | 2397 | 2.7868 | 1.0 | 0.8793 | | 2.749 | 52.0 | 2444 | 2.7823 | 1.0 | 0.8687 | | 2.7536 | 53.0 | 2491 | 2.7569 | 1.0 | 0.8631 | | 2.7514 | 54.0 | 2538 | 2.7655 | 1.0 | 0.8751 | | 2.7421 | 55.0 | 2585 | 2.7617 | 1.0 | 0.8652 | | 2.7364 | 56.0 | 2632 | 2.7755 | 1.0 | 0.8800 | | 2.732 | 57.0 | 2679 | 2.7698 | 1.0 | 0.8744 | | 2.7358 | 58.0 | 2726 | 2.7808 | 1.0 | 0.8843 | | 2.7343 | 59.0 | 2773 | 2.7706 | 1.0 | 0.8793 | | 2.7345 | 60.0 | 2820 | 2.7710 | 1.0 | 0.8800 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.3
KelvinTichana2/falcon-7b-sharded-bf16-finetuned-mental-health-conversational
KelvinTichana2
2024-01-22T14:22:02Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:adapter:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2024-01-15T14:08:16Z
--- library_name: peft tags: - trl - sft - generated_from_trainer base_model: ybelkada/falcon-7b-sharded-bf16 model-index: - name: falcon-7b-sharded-bf16-finetuned-mental-health-conversational results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-sharded-bf16-finetuned-mental-health-conversational This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 320 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
paultrust100/opt-125m_int_4
paultrust100
2024-01-22T14:16:48Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:facebook/opt-125m", "base_model:adapter:facebook/opt-125m", "region:us" ]
null
2024-01-18T20:33:21Z
--- library_name: peft base_model: facebook/opt-125m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
bramsikkens/ppo-LunarLander-V2
bramsikkens
2024-01-22T14:16:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T14:16:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 240.66 +/- 37.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
IamtheNigger/Hazegawa_Daisuke
IamtheNigger
2024-01-22T14:12:03Z
0
0
null
[ "music", "ja", "en", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-01-22T14:08:36Z
--- license: bigscience-bloom-rail-1.0 language: - ja - en tags: - music ---
jvvelzen/taxi_2
jvvelzen
2024-01-22T14:04:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T14:04:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jvvelzen/taxi_2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
shewster/autotrain-cbs3a-q101h
shewster
2024-01-22T13:57:41Z
6
0
peft
[ "peft", "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "en", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T04:54:31Z
--- tags: - autotrain - text-generation widget: - text: 'I love AutoTrain because ' license: mit library_name: peft base_model: microsoft/phi-2 pipeline_tag: text-generation language: - en --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
nullne/Reinforce-Pixelcopter
nullne
2024-01-22T13:53:44Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T13:53:38Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 41.60 +/- 28.56 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sabretoothedhugs/dqnspaceinvader
sabretoothedhugs
2024-01-22T13:45:17Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-21T23:42:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 758.00 +/- 216.24 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sabretoothedhugs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sabretoothedhugs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sabretoothedhugs ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
tanatapanun/fine-tuned-BioBART-20-epochs-test
tanatapanun
2024-01-22T13:36:58Z
9
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-22T08:34:43Z
--- base_model: checkpoint_global_step_200000 tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-BioBART-20-epochs-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-BioBART-20-epochs-test This model is a fine-tuned version of [checkpoint_global_step_200000](https://huggingface.co/checkpoint_global_step_200000) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1997 - Rouge1: 0.0956 - Rouge2: 0.0145 - Rougel: 0.0591 - Rougelsum: 0.0593 - Gen Len: 217.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.7878 | 1.0 | 1201 | 0.2002 | 0.0888 | 0.0237 | 0.0689 | 0.0691 | 224.36 | | 0.2064 | 2.0 | 2402 | 0.1817 | 0.02 | 0.0 | 0.02 | 0.02 | 8.0 | | 0.1708 | 3.0 | 3603 | 0.1638 | 0.03 | 0.0 | 0.03 | 0.03 | 5.0 | | 0.136 | 4.0 | 4804 | 0.1576 | 0.0228 | 0.0036 | 0.0232 | 0.023 | 10.0 | | 0.1346 | 5.0 | 6005 | 0.1559 | 0.0631 | 0.018 | 0.0592 | 0.0591 | 11.0 | | 0.097 | 6.0 | 7206 | 0.1573 | 0.0928 | 0.0177 | 0.0784 | 0.079 | 20.0 | | 0.086 | 7.0 | 8407 | 0.1607 | 0.0638 | 0.0086 | 0.0522 | 0.0523 | 21.0 | | 0.0638 | 8.0 | 9608 | 0.1649 | 0.0228 | 0.0036 | 0.0232 | 0.023 | 10.0 | | 0.0425 | 9.0 | 10809 | 0.1690 | 0.064 | 0.0198 | 0.0578 | 0.0579 | 20.0 | | 0.0359 | 10.0 | 12010 | 0.1726 | 0.1024 | 0.0157 | 0.0817 | 0.0817 | 49.0 | | 0.0262 | 11.0 | 13211 | 0.1771 | 0.0868 | 0.0198 | 0.0787 | 0.0792 | 20.0 | | 0.0204 | 12.0 | 14412 | 0.1819 | 0.0977 | 0.0104 | 0.0748 | 0.075 | 43.0 | | 0.0156 | 13.0 | 15613 | 0.1852 | 0.066 | 0.0094 | 0.0509 | 0.051 | 43.0 | | 0.0131 | 14.0 | 16814 | 0.1885 | 0.1068 | 0.018 | 0.0726 | 0.0725 | 135.0 | | 0.0105 | 15.0 | 18015 | 0.1915 | 0.0967 | 0.0248 | 0.0784 | 0.0787 | 30.0 | | 0.009 | 16.0 | 19216 | 0.1950 | 0.104 | 0.0221 | 0.0791 | 0.079 | 73.0 | | 0.0081 | 17.0 | 20417 | 0.1962 | 0.0967 | 0.0248 | 0.0784 | 0.0787 | 30.0 | | 0.0077 | 18.0 | 21618 | 0.1978 | 0.0903 | 0.0084 | 0.0567 | 0.0567 | 174.0 | | 0.0068 | 19.0 | 22819 | 0.1991 | 0.0896 | 0.0107 | 0.055 | 0.055 | 174.0 | | 0.0064 | 20.0 | 24020 | 0.1997 | 0.0956 | 0.0145 | 0.0591 | 0.0593 | 217.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.0
pokjay/Reinforce-Pixelcopter-PLE-v0
pokjay
2024-01-22T13:34:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T13:29:34Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 58.10 +/- 32.82 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
praut1/my_awesome_qa_model
praut1
2024-01-22T13:30:34Z
44
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-01-22T10:38:21Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: praut1/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # praut1/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.4212 - Validation Loss: 2.0242 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4212 | 2.0242 | 0 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/binding-reconstruction-transformer-1
CLMBR
2024-01-22T13:27:52Z
12
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-17T22:48:16Z
--- tags: - generated_from_trainer model-index: - name: binding-reconstruction-transformer-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binding-reconstruction-transformer-1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2239 | 0.03 | 76320 | 4.1939 | | 4.0217 | 1.03 | 152640 | 4.0238 | | 3.9118 | 0.03 | 228960 | 3.9500 | | 3.8448 | 1.03 | 305280 | 3.9093 | | 3.7955 | 0.03 | 381600 | 3.8845 | | 3.7518 | 1.03 | 457920 | 3.8681 | | 3.7165 | 0.03 | 534240 | 3.8579 | | 3.6877 | 1.03 | 610560 | 3.8510 | | 3.6604 | 0.03 | 686880 | 3.8468 | | 3.6352 | 1.03 | 763200 | 3.8442 | | 3.6113 | 0.03 | 839520 | 3.8420 | | 3.592 | 1.03 | 915840 | 3.8417 | | 3.5744 | 0.03 | 992160 | 3.8415 | | 3.553 | 1.03 | 1068480 | 3.8429 | | 3.5374 | 0.03 | 1144800 | 3.8430 | | 3.527 | 1.03 | 1221120 | 3.8430 | | 3.5111 | 0.03 | 1297440 | 3.8450 | | 3.497 | 1.03 | 1373760 | 3.8470 | | 3.4839 | 0.03 | 1450080 | 3.8478 | | 3.4754 | 1.03 | 1526400 | 3.8493 | | 3.4673 | 0.03 | 1602720 | 3.8500 | | 3.4558 | 1.03 | 1679040 | 3.8519 | | 3.4446 | 0.03 | 1755360 | 3.8529 | | 3.4357 | 1.03 | 1831680 | 3.8547 | | 3.4233 | 0.03 | 1908000 | 3.8563 | | 3.4091 | 1.03 | 1984320 | 3.8579 | | 3.3997 | 0.03 | 2060640 | 3.8585 | | 3.3889 | 0.03 | 2136960 | 3.8605 | | 3.3795 | 1.03 | 2213280 | 3.8612 | | 3.3641 | 0.03 | 2289600 | 3.8622 | | 3.3563 | 1.03 | 2365920 | 3.8623 | | 3.3489 | 0.03 | 2442240 | 3.8630 | | 3.3375 | 1.03 | 2518560 | 3.8639 | | 3.329 | 0.03 | 2594880 | 3.8642 | | 3.3166 | 1.03 | 2671200 | 3.8646 | | 3.3137 | 0.03 | 2747520 | 3.8643 | | 3.3086 | 1.03 | 2823840 | 3.8641 | | 3.2996 | 0.03 | 2900160 | 3.8636 | | 3.2927 | 1.03 | 2976480 | 3.8627 | | 3.2855 | 0.02 | 3052726 | 3.8611 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
imagepipeline/Midjourney-Mimic-v1.2
imagepipeline
2024-01-22T13:20:30Z
0
2
null
[ "imagepipeline", "imagepipeline.io", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-22T13:19:08Z
--- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ## Midjourney-Mimic-v1.2 <img src="https://f005.backblazeb2.com/file/imageai-model-images/midjourney-imagepipeline.png" alt="Generated by Image Pipeline" style="border-radius: 10px;"> **This lora model is uploaded on [imagepipeline.io](https://imagepipeline.io/)** Model details - LoRa mimicking midjourney slyle v5.2 This LoRA works as: Detail tweaker (supplements the picture with details) Color enhancer (adds contrast and brightness) BG depth enhancer (adds depth on the background) IMPORTANT: CFG Scale 4 - 6, use only with weight from 0.2 to 0.8! you can set more, but the picture will be too sharp and can break proportions. USE JuggernautXL model for better results. [![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/Midjourney-Mimic-v1.2?id=2ac68c15-7d9b-49e0-a4a2-796d3093a555/) ## How to try this model ? You can try using it locally or send an API call to test the output quality. Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required. Coding in `php` `javascript` `node` etc ? Checkout our documentation [![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction) ```python import requests import json url = "https://imagepipeline.io/sdxl/text2image/v1/run" payload = json.dumps({ "model_id": "sdxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": false, "guidance_scale": 7.5, "multi_lingual": "no", "embeddings": "", "lora_models": "2ac68c15-7d9b-49e0-a4a2-796d3093a555", "lora_weights": "0.5" }) headers = { 'Content-Type': 'application/json', 'API-Key': 'your_api_key' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) } ``` Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` : [![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models) ### API Reference #### Generate Image ```http https://api.imagepipeline.io/sdxl/text2image/v1 ``` | Headers | Type | Description | |:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------| | `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) | | `Content-Type` | `str` | application/json - content type of the request body | | Parameter | Type | Description | | :-------- | :------- | :------------------------- | | `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own| | `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips | | `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) | | `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 | | `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page | | `lora_weights` | `str, array` | Strength of the LoRA effect | --- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ### Feedback If you have any feedback, please reach out to us at [email protected] #### 🔗 Visit Website [![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/) If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
Ghunghru/gbert-base
Ghunghru
2024-01-22T13:00:22Z
89
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:deepset/gbert-base", "base_model:finetune:deepset/gbert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-12T13:23:27Z
--- license: mit base_model: deepset/gbert-base tags: - generated_from_trainer metrics: - f1 model-index: - name: gbert-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gbert-base This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6361 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:---:| | 0.6805 | 1.0 | 189 | 0.6439 | 0.0 | | 0.6838 | 2.0 | 378 | 0.6409 | 0.0 | | 0.6668 | 3.0 | 567 | 0.6376 | 0.0 | | 0.6666 | 4.0 | 756 | 0.6388 | 0.0 | | 0.684 | 5.0 | 945 | 0.6372 | 0.0 | | 0.673 | 6.0 | 1134 | 0.6419 | 0.0 | | 0.7006 | 7.0 | 1323 | 0.6381 | 0.0 | | 0.6819 | 8.0 | 1512 | 0.6404 | 0.0 | | 0.6937 | 9.0 | 1701 | 0.6387 | 0.0 | | 0.6809 | 10.0 | 1890 | 0.6375 | 0.0 | | 0.6753 | 11.0 | 2079 | 0.6386 | 0.0 | | 0.6688 | 12.0 | 2268 | 0.6449 | 0.0 | | 0.6898 | 13.0 | 2457 | 0.6407 | 0.0 | | 0.6682 | 14.0 | 2646 | 0.6458 | 0.0 | | 0.6923 | 15.0 | 2835 | 0.6498 | 0.0 | | 0.6961 | 16.0 | 3024 | 0.6482 | 0.0 | | 0.6934 | 17.0 | 3213 | 0.6432 | 0.0 | | 0.6853 | 18.0 | 3402 | 0.6457 | 0.0 | | 0.6747 | 19.0 | 3591 | 0.6489 | 0.0 | | 0.6939 | 20.0 | 3780 | 0.6465 | 0.0 | | 0.6838 | 21.0 | 3969 | 0.6425 | 0.0 | | 0.6725 | 22.0 | 4158 | 0.6401 | 0.0 | | 0.6736 | 23.0 | 4347 | 0.6435 | 0.0 | | 0.6705 | 24.0 | 4536 | 0.6425 | 0.0 | | 0.6838 | 25.0 | 4725 | 0.6408 | 0.0 | | 0.6742 | 26.0 | 4914 | 0.6417 | 0.0 | | 0.6658 | 27.0 | 5103 | 0.6405 | 0.0 | | 0.6672 | 28.0 | 5292 | 0.6445 | 0.0 | | 0.6845 | 29.0 | 5481 | 0.6403 | 0.0 | | 0.661 | 30.0 | 5670 | 0.6408 | 0.0 | | 0.6775 | 31.0 | 5859 | 0.6394 | 0.0 | | 0.6556 | 32.0 | 6048 | 0.6420 | 0.0 | | 0.6708 | 33.0 | 6237 | 0.6387 | 0.0 | | 0.6633 | 34.0 | 6426 | 0.6384 | 0.0 | | 0.6536 | 35.0 | 6615 | 0.6401 | 0.0 | | 0.6681 | 36.0 | 6804 | 0.6383 | 0.0 | | 0.6573 | 37.0 | 6993 | 0.6381 | 0.0 | | 0.6489 | 38.0 | 7182 | 0.6381 | 0.0 | | 0.6806 | 39.0 | 7371 | 0.6347 | 0.0 | | 0.6267 | 40.0 | 7560 | 0.6373 | 0.0 | | 0.6577 | 41.0 | 7749 | 0.6343 | 0.0 | | 0.6464 | 42.0 | 7938 | 0.6347 | 0.0 | | 0.6325 | 43.0 | 8127 | 0.6361 | 0.0 | | 0.6583 | 44.0 | 8316 | 0.6363 | 0.0 | | 0.6634 | 45.0 | 8505 | 0.6355 | 0.0 | | 0.6504 | 46.0 | 8694 | 0.6347 | 0.0 | | 0.6457 | 47.0 | 8883 | 0.6356 | 0.0 | | 0.632 | 48.0 | 9072 | 0.6362 | 0.0 | | 0.651 | 49.0 | 9261 | 0.6362 | 0.0 | | 0.6538 | 50.0 | 9450 | 0.6361 | 0.0 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
tzs/dqn-SpaceInvadersNoFrameskip-v4
tzs
2024-01-22T12:54:35Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T12:49:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 675.50 +/- 220.23 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tzs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tzs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tzs ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
abideen/Heimer-dpo-TinyLlama-1.1B
abideen
2024-01-22T12:47:10Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "abideen/Heimer-ipo-TinyLlama-1.1B", "abideen/Heimer-kto-TinyLlama-1.1B", "Intel/orca_dpo_pairs", "en", "dataset:Intel/orca_dpo_pairs", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-11T19:03:56Z
--- license: apache-2.0 tags: - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T - abideen/Heimer-ipo-TinyLlama-1.1B - abideen/Heimer-kto-TinyLlama-1.1B - Intel/orca_dpo_pairs language: - en datasets: - Intel/orca_dpo_pairs library_name: transformers --- # Heimer-dpo-TinyLlama-1.1B ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/a7joKICVpqGElN3mh2MpS.jpeg) # WandB Experiment Tracking Check out the experiment details in this [report](https://api.wandb.ai/links/zaiinn440/dqlt70dc) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/HLhrSUFD1-e6f31F3WGK2.png) # 🧩 DPO adaptation hyperparameters ## LoRA: r=8 lora_alpha=16 lora_dropout=0.05 bias="none" task_type="CAUSAL_LM" target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ## Training arguments: per_device_train_batch_size=2 gradient_accumulation_steps=4 gradient_checkpointing=True learning_rate=5e-5 lr_scheduler_type="cosine" max_steps=50 optim="paged_adamw_32bit" warmup_steps=10 ## DPOTrainer: beta=0.3 max_prompt_length=1024 max_length=1536 ## 💻 Usage Here's a [Colab notebook](https://colab.research.google.com/drive/11KEX1LG3nRBoeGR0Iyy-459XllGlLOA9?usp=sharing) to run Heimer-TinyLLama-1.1B in 4-bit precision on a free T4 GPU. ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "abideen/Heimer-dpo-TinyLlama-1.1B" messages = [{"role": "user", "content": "Explain what is Data science."}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` "What is Data Science? A data scientist is an individual who has a passion for data and knowledge of the technology that can be used to help make sense of data. Data scientists are often involved in the development of new software and software platforms, as well as analyzing and interpreting data. What are the Important components of Data Science? 1. Data: The data is the most important component of a data science project. Data science is the application of data science to make sense of data. Data scientists usually work with data, but data scientists are not necessarily data scientists. 2. Analysis: This is the process of taking data and turning it into something useful. 3. Modeling: The use of machine learning and statistical techniques. 4. Prediction: The prediction of a future event, such as the future market share of a product or the future population of an area. 5. Visualization: Displaying the data in a graphical or interactive format. 6. Statistics: The use of statistical analysis techniques. What are the Advantages of Data Science? Data science is the application of data science to make sense of data."
ZhiguangHan/mt5-small-task2-dataset2
ZhiguangHan
2024-01-22T12:40:09Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-09T05:43:09Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer metrics: - accuracy model-index: - name: mt5-small-task2-dataset2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-task2-dataset2 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4320 - Accuracy: 0.37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.018 | 1.0 | 250 | 1.2234 | 0.014 | | 1.6684 | 2.0 | 500 | 0.8157 | 0.124 | | 1.0289 | 3.0 | 750 | 0.6527 | 0.222 | | 0.8021 | 4.0 | 1000 | 0.5877 | 0.282 | | 0.6964 | 5.0 | 1250 | 0.5360 | 0.3 | | 0.6252 | 6.0 | 1500 | 0.5118 | 0.32 | | 0.5828 | 7.0 | 1750 | 0.4899 | 0.318 | | 0.5436 | 8.0 | 2000 | 0.4718 | 0.35 | | 0.5232 | 9.0 | 2250 | 0.4625 | 0.34 | | 0.5005 | 10.0 | 2500 | 0.4556 | 0.342 | | 0.4789 | 11.0 | 2750 | 0.4436 | 0.356 | | 0.4733 | 12.0 | 3000 | 0.4379 | 0.356 | | 0.4651 | 13.0 | 3250 | 0.4347 | 0.366 | | 0.4591 | 14.0 | 3500 | 0.4320 | 0.37 | | 0.4508 | 15.0 | 3750 | 0.4320 | 0.37 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Tokenizers 0.15.0
Ghunghru/Misinformation-Covid-LowLearningRatebert-base-multilingual-cased
Ghunghru
2024-01-22T12:31:28Z
89
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-22T12:29:00Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - f1 model-index: - name: Misinformation-Covid-LowLearningRatebert-base-multilingual-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Misinformation-Covid-LowLearningRatebert-base-multilingual-cased This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5774 - F1: 0.0488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6829 | 1.0 | 189 | 0.6704 | 0.1463 | | 0.673 | 2.0 | 378 | 0.6340 | 0.0784 | | 0.6543 | 3.0 | 567 | 0.6453 | 0.0 | | 0.6519 | 4.0 | 756 | 0.6439 | 0.0 | | 0.6598 | 5.0 | 945 | 0.6427 | 0.0 | | 0.65 | 6.0 | 1134 | 0.6416 | 0.0 | | 0.673 | 7.0 | 1323 | 0.6415 | 0.0 | | 0.6573 | 8.0 | 1512 | 0.6411 | 0.0 | | 0.6641 | 9.0 | 1701 | 0.6404 | 0.0 | | 0.667 | 10.0 | 1890 | 0.6398 | 0.0 | | 0.6646 | 11.0 | 2079 | 0.6387 | 0.0 | | 0.6552 | 12.0 | 2268 | 0.6377 | 0.0 | | 0.6617 | 13.0 | 2457 | 0.6368 | 0.0 | | 0.649 | 14.0 | 2646 | 0.6352 | 0.0 | | 0.663 | 15.0 | 2835 | 0.6338 | 0.0 | | 0.6506 | 16.0 | 3024 | 0.6322 | 0.0 | | 0.6627 | 17.0 | 3213 | 0.6306 | 0.0 | | 0.6492 | 18.0 | 3402 | 0.6288 | 0.0 | | 0.6457 | 19.0 | 3591 | 0.6262 | 0.0 | | 0.6448 | 20.0 | 3780 | 0.6238 | 0.0 | | 0.6431 | 21.0 | 3969 | 0.6211 | 0.0 | | 0.6412 | 22.0 | 4158 | 0.6189 | 0.0 | | 0.6333 | 23.0 | 4347 | 0.6151 | 0.0 | | 0.6435 | 24.0 | 4536 | 0.6121 | 0.0 | | 0.6325 | 25.0 | 4725 | 0.6092 | 0.0 | | 0.6271 | 26.0 | 4914 | 0.6047 | 0.0 | | 0.6234 | 27.0 | 5103 | 0.6018 | 0.0 | | 0.6185 | 28.0 | 5292 | 0.5993 | 0.0 | | 0.6274 | 29.0 | 5481 | 0.5964 | 0.0 | | 0.6129 | 30.0 | 5670 | 0.5942 | 0.0 | | 0.6204 | 31.0 | 5859 | 0.5921 | 0.0 | | 0.6044 | 32.0 | 6048 | 0.5913 | 0.0 | | 0.6103 | 33.0 | 6237 | 0.5891 | 0.0 | | 0.6005 | 34.0 | 6426 | 0.5868 | 0.0 | | 0.6058 | 35.0 | 6615 | 0.5865 | 0.0 | | 0.6179 | 36.0 | 6804 | 0.5846 | 0.0 | | 0.6077 | 37.0 | 6993 | 0.5835 | 0.0 | | 0.5964 | 38.0 | 7182 | 0.5832 | 0.0 | | 0.6106 | 39.0 | 7371 | 0.5813 | 0.0 | | 0.5865 | 40.0 | 7560 | 0.5816 | 0.0 | | 0.6142 | 41.0 | 7749 | 0.5795 | 0.0 | | 0.5903 | 42.0 | 7938 | 0.5790 | 0.0 | | 0.5926 | 43.0 | 8127 | 0.5790 | 0.0 | | 0.6077 | 44.0 | 8316 | 0.5786 | 0.0 | | 0.6025 | 45.0 | 8505 | 0.5780 | 0.0 | | 0.604 | 46.0 | 8694 | 0.5771 | 0.0488 | | 0.5875 | 47.0 | 8883 | 0.5774 | 0.0488 | | 0.5797 | 48.0 | 9072 | 0.5775 | 0.0488 | | 0.6054 | 49.0 | 9261 | 0.5775 | 0.0488 | | 0.5974 | 50.0 | 9450 | 0.5774 | 0.0488 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
FounderOfHuggingface/gpt2_lora_r4_e2e_nlg_t42000_e5
FounderOfHuggingface
2024-01-22T12:28:25Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2024-01-22T12:28:22Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
vlad-skripniuk/ppo-LunarLander-v2
vlad-skripniuk
2024-01-22T12:17:29Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-22T12:17:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 240.24 +/- 22.09 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ISTNetworks/Mistral_arabic_v2
ISTNetworks
2024-01-22T12:14:23Z
3
0
transformers
[ "transformers", "gguf", "text-generation-inference", "mistral", "en", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:quantized:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-22T11:02:04Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - mistral - gguf base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Uploaded model - **Developed by:** ISTNetworks - **License:** apache-2.0 - **Finetuned from model :** mistralai/Mistral-7B-Instruct-arabic_v0.2
arun100/whisper-base-tr-1
arun100
2024-01-22T12:11:26Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "tr", "dataset:mozilla-foundation/common_voice_16_0", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-22T05:43:05Z
--- language: - tr license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 tr type: mozilla-foundation/common_voice_16_0 config: tr split: test args: tr metrics: - name: Wer type: wer value: 30.362728902323294 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Turkish This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_16_0 tr dataset. It achieves the following results on the evaluation set: - Loss: 0.4280 - Wer: 30.3627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4162 | 1.03 | 500 | 0.5339 | 35.4346 | | 0.3776 | 2.06 | 1000 | 0.4788 | 33.4892 | | 0.3238 | 4.02 | 1500 | 0.4568 | 31.9497 | | 0.2714 | 5.06 | 2000 | 0.4469 | 31.4277 | | 0.3232 | 7.02 | 2500 | 0.4386 | 31.0991 | | 0.2324 | 8.05 | 3000 | 0.4353 | 30.7406 | | 0.2953 | 10.01 | 3500 | 0.4306 | 30.6035 | | 0.2878 | 11.04 | 4000 | 0.4292 | 30.4278 | | 0.3077 | 13.01 | 4500 | 0.4286 | 30.4155 | | 0.2914 | 14.04 | 5000 | 0.4280 | 30.3627 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
kreabs/UNA-TheBeagle-7b-v1_finetuned_dolly_1600
kreabs
2024-01-22T12:09:58Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T12:02:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ghunghru/Misinformation-Covid-LowLearningRatebert-base-chinese
Ghunghru
2024-01-22T12:01:59Z
87
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-chinese", "base_model:finetune:google-bert/bert-base-chinese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-22T12:00:33Z
--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - f1 model-index: - name: Misinformation-Covid-LowLearningRatebert-base-chinese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Misinformation-Covid-LowLearningRatebert-base-chinese This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5999 - F1: 0.2128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6765 | 1.0 | 189 | 0.6464 | 0.0 | | 0.6809 | 2.0 | 378 | 0.6449 | 0.0 | | 0.6734 | 3.0 | 567 | 0.6651 | 0.0 | | 0.6827 | 4.0 | 756 | 0.6684 | 0.0 | | 0.7095 | 5.0 | 945 | 0.6532 | 0.0 | | 0.7 | 6.0 | 1134 | 0.6646 | 0.0 | | 0.7192 | 7.0 | 1323 | 0.6497 | 0.0 | | 0.6877 | 8.0 | 1512 | 0.6446 | 0.0 | | 0.6831 | 9.0 | 1701 | 0.6305 | 0.0571 | | 0.6633 | 10.0 | 1890 | 0.6203 | 0.1622 | | 0.6668 | 11.0 | 2079 | 0.6219 | 0.1622 | | 0.6482 | 12.0 | 2268 | 0.6242 | 0.1111 | | 0.6543 | 13.0 | 2457 | 0.6117 | 0.15 | | 0.6492 | 14.0 | 2646 | 0.6236 | 0.1622 | | 0.6624 | 15.0 | 2835 | 0.6233 | 0.1622 | | 0.6525 | 16.0 | 3024 | 0.6134 | 0.15 | | 0.6466 | 17.0 | 3213 | 0.6118 | 0.1905 | | 0.6406 | 18.0 | 3402 | 0.6191 | 0.15 | | 0.6479 | 19.0 | 3591 | 0.6216 | 0.1538 | | 0.6488 | 20.0 | 3780 | 0.6076 | 0.2128 | | 0.6352 | 21.0 | 3969 | 0.6062 | 0.2174 | | 0.6213 | 22.0 | 4158 | 0.6042 | 0.2174 | | 0.6285 | 23.0 | 4347 | 0.6100 | 0.2326 | | 0.6298 | 24.0 | 4536 | 0.6076 | 0.2128 | | 0.6473 | 25.0 | 4725 | 0.6058 | 0.2128 | | 0.5972 | 26.0 | 4914 | 0.6065 | 0.2222 | | 0.6118 | 27.0 | 5103 | 0.6001 | 0.25 | | 0.6116 | 28.0 | 5292 | 0.6059 | 0.2128 | | 0.6289 | 29.0 | 5481 | 0.5992 | 0.25 | | 0.5932 | 30.0 | 5670 | 0.6006 | 0.25 | | 0.6076 | 31.0 | 5859 | 0.6009 | 0.2128 | | 0.6033 | 32.0 | 6048 | 0.6082 | 0.2128 | | 0.6235 | 33.0 | 6237 | 0.6023 | 0.2128 | | 0.6237 | 34.0 | 6426 | 0.6079 | 0.2222 | | 0.6176 | 35.0 | 6615 | 0.6081 | 0.2222 | | 0.646 | 36.0 | 6804 | 0.6019 | 0.2128 | | 0.6233 | 37.0 | 6993 | 0.6020 | 0.2128 | | 0.6004 | 38.0 | 7182 | 0.6040 | 0.2174 | | 0.6159 | 39.0 | 7371 | 0.5963 | 0.2449 | | 0.5747 | 40.0 | 7560 | 0.6011 | 0.2174 | | 0.6216 | 41.0 | 7749 | 0.5954 | 0.2449 | | 0.5893 | 42.0 | 7938 | 0.5974 | 0.2083 | | 0.5887 | 43.0 | 8127 | 0.5993 | 0.2128 | | 0.5756 | 44.0 | 8316 | 0.5993 | 0.2128 | | 0.6204 | 45.0 | 8505 | 0.5982 | 0.2083 | | 0.584 | 46.0 | 8694 | 0.5966 | 0.2449 | | 0.5809 | 47.0 | 8883 | 0.5989 | 0.2083 | | 0.5873 | 48.0 | 9072 | 0.6002 | 0.2128 | | 0.5999 | 49.0 | 9261 | 0.6001 | 0.2128 | | 0.5888 | 50.0 | 9450 | 0.5999 | 0.2128 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
Md-Z/finetuned-phi2-financial-sentiment-analysis
Md-Z
2024-01-22T11:58:19Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-01-22T11:45:23Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: finetuned-phi2-financial-sentiment-analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-phi2-financial-sentiment-analysis This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the FinancialPhraseBank dataset. The FinancialPhraseBank dataset is a comprehensive collection that captures the sentiments of financial news headlines from the viewpoint of a retail investor. Comprising two key columns, namely "Sentiment" and "News Headline," the dataset effectively classifies sentiments as either negative, neutral, or positive. This structured dataset serves as a valuable resource for analyzing and understanding the complex dynamics of sentiment in the domain of financial news. It achieves the following results on the evaluation set: - Loss: 1.4052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8067 | 1.0 | 112 | 1.5200 | | 1.5055 | 2.0 | 225 | 1.4345 | | 1.5221 | 3.0 | 337 | 1.4083 | | 1.4956 | 3.98 | 448 | 1.4052 | ### Framework versions - PEFT 0.7.1 - Transformers 4.38.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
ashishsr/TinyLlama-1.1B-Chat-v1.0-fine-tuned-adapter-dxtoicd-v4
ashishsr
2024-01-22T11:57:42Z
5
0
peft
[ "peft", "text-generation", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
text-generation
2024-01-22T11:20:10Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
ssands1979/FrankenPhi2-4x
ssands1979
2024-01-22T11:56:57Z
4
0
transformers
[ "transformers", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "lxuechen/phi-2-sft", "mrm8488/phi-2-coder", "Walmart-the-bag/phi-2-uncensored", "ArtifactAI/phi-2-arxiv-physics-instruct", "custom_code", "base_model:AlgorithmicResearchGroup/phi-2-arxiv-physics-instruct", "base_model:merge:AlgorithmicResearchGroup/phi-2-arxiv-physics-instruct", "base_model:lxuechen/phi-2-sft", "base_model:merge:lxuechen/phi-2-sft", "base_model:mrm8488/phi-2-coder", "base_model:merge:mrm8488/phi-2-coder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-22T11:56:55Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - lxuechen/phi-2-sft - mrm8488/phi-2-coder - Walmart-the-bag/phi-2-uncensored - ArtifactAI/phi-2-arxiv-physics-instruct base_model: - lxuechen/phi-2-sft - mrm8488/phi-2-coder - Walmart-the-bag/phi-2-uncensored - ArtifactAI/phi-2-arxiv-physics-instruct --- # FrankenPhi2-4x FrankenPhi2-4x is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [lxuechen/phi-2-sft](https://huggingface.co/lxuechen/phi-2-sft) * [mrm8488/phi-2-coder](https://huggingface.co/mrm8488/phi-2-coder) * [Walmart-the-bag/phi-2-uncensored](https://huggingface.co/Walmart-the-bag/phi-2-uncensored) * [ArtifactAI/phi-2-arxiv-physics-instruct](https://huggingface.co/ArtifactAI/phi-2-arxiv-physics-instruct) ## 🧩 Configuration ```yaml base_model: microsoft/phi-2 experts: - source_model: lxuechen/phi-2-sft positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - source_model: mrm8488/phi-2-coder positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - source_model: Walmart-the-bag/phi-2-uncensored positive_prompts: - "storywriting" - "write" - "scene" - "story" - "character" - source_model: ArtifactAI/phi-2-arxiv-physics-instruct positive_prompts: - "physics" - "math" - "mathematics" - "solve" - "count" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "ssands1979/FrankenPhi2-4x" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jfmatos-isq/distilbert-base-uncased-finetuned-emotion
jfmatos-isq
2024-01-22T11:47:19Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-22T10:31:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251677974154898 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2078 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7925 | 1.0 | 250 | 0.2900 | 0.913 | 0.9113 | | 0.2343 | 2.0 | 500 | 0.2078 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.13.0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.10.3
King2806/a-corgi-gft-dog
King2806
2024-01-22T11:46:51Z
1
1
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-22T11:42:49Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### A-corgi-gft-dog Dreambooth model trained by King2806 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: TNU2023021100010 Sample pictures of this concept: ![0](https://huggingface.co/King2806/a-corgi-gft-dog/resolve/main/sample_images/00000-4168874855.png)
hr16/ControlNet-Depth-Anything-Pruned
hr16
2024-01-22T11:45:28Z
0
4
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-01-22T11:43:02Z
--- license: creativeml-openrail-m --- Redistrubted and pruned from https://huggingface.co/spaces/LiheYoung/Depth-Anything/tree/main/checkpoints_controlnet
HexawareTech/phi_2_tax_faq
HexawareTech
2024-01-22T11:45:04Z
0
0
peft
[ "peft", "pytorch", "phi-msft", "custom_code", "region:us" ]
null
2023-12-20T16:45:27Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
riazk/mistral_adapter
riazk
2024-01-22T11:41:20Z
1
0
peft
[ "peft", "safetensors", "mistral", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-01-22T11:34:07Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Parinitha003/HuggyDoge
Parinitha003
2024-01-22T11:40:21Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-22T11:39:31Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Parinitha003/HuggyDoge 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
AleRams/app_prova2
AleRams
2024-01-22T11:35:39Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-15T16:13:46Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: app_prova2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # app_prova2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1559 - Accuracy: 0.935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4056 | 0.53 | 100 | 1.3185 | 0.4267 | | 1.3194 | 1.06 | 200 | 1.1961 | 0.4933 | | 1.2148 | 1.6 | 300 | 1.0185 | 0.6167 | | 0.9494 | 2.13 | 400 | 0.8830 | 0.6567 | | 0.9645 | 2.66 | 500 | 0.7196 | 0.7433 | | 0.6089 | 3.19 | 600 | 0.5523 | 0.8017 | | 0.7564 | 3.72 | 700 | 0.4789 | 0.83 | | 0.5319 | 4.26 | 800 | 0.3553 | 0.8683 | | 0.3567 | 4.79 | 900 | 0.2926 | 0.88 | | 0.2969 | 5.32 | 1000 | 0.2558 | 0.89 | | 0.2578 | 5.85 | 1100 | 0.2054 | 0.9217 | | 0.3002 | 6.38 | 1200 | 0.1744 | 0.9333 | | 0.293 | 6.91 | 1300 | 0.1620 | 0.9483 | | 0.132 | 7.45 | 1400 | 0.1646 | 0.92 | | 0.1836 | 7.98 | 1500 | 0.1559 | 0.935 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Ghunghru/German-MedBERT
Ghunghru
2024-01-22T11:33:13Z
87
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:smanjil/German-MedBERT", "base_model:finetune:smanjil/German-MedBERT", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T19:07:20Z
--- base_model: smanjil/German-MedBERT tags: - generated_from_trainer metrics: - f1 model-index: - name: German-MedBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # German-MedBERT This model is a fine-tuned version of [smanjil/German-MedBERT](https://huggingface.co/smanjil/German-MedBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5145 - F1: 0.4561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.693 | 1.0 | 189 | 0.6754 | 0.0698 | | 0.6853 | 2.0 | 378 | 0.6626 | 0.0339 | | 0.6654 | 3.0 | 567 | 0.6499 | 0.0488 | | 0.6562 | 4.0 | 756 | 0.6399 | 0.0541 | | 0.6554 | 5.0 | 945 | 0.6335 | 0.0556 | | 0.6394 | 6.0 | 1134 | 0.6260 | 0.0571 | | 0.6452 | 7.0 | 1323 | 0.6220 | 0.0571 | | 0.6257 | 8.0 | 1512 | 0.6161 | 0.0571 | | 0.6334 | 9.0 | 1701 | 0.6117 | 0.0571 | | 0.6302 | 10.0 | 1890 | 0.6068 | 0.0571 | | 0.6151 | 11.0 | 2079 | 0.6011 | 0.0571 | | 0.6121 | 12.0 | 2268 | 0.5961 | 0.0571 | | 0.6097 | 13.0 | 2457 | 0.5915 | 0.0571 | | 0.5929 | 14.0 | 2646 | 0.5865 | 0.0556 | | 0.5955 | 15.0 | 2835 | 0.5822 | 0.0556 | | 0.5893 | 16.0 | 3024 | 0.5776 | 0.1053 | | 0.5936 | 17.0 | 3213 | 0.5731 | 0.1 | | 0.5769 | 18.0 | 3402 | 0.5687 | 0.1 | | 0.5692 | 19.0 | 3591 | 0.5646 | 0.1 | | 0.5739 | 20.0 | 3780 | 0.5604 | 0.2326 | | 0.5705 | 21.0 | 3969 | 0.5564 | 0.2326 | | 0.5651 | 22.0 | 4158 | 0.5525 | 0.2727 | | 0.5654 | 23.0 | 4347 | 0.5494 | 0.2727 | | 0.5527 | 24.0 | 4536 | 0.5456 | 0.2727 | | 0.5542 | 25.0 | 4725 | 0.5425 | 0.2727 | | 0.5464 | 26.0 | 4914 | 0.5395 | 0.2727 | | 0.5383 | 27.0 | 5103 | 0.5364 | 0.3111 | | 0.5323 | 28.0 | 5292 | 0.5348 | 0.3111 | | 0.5343 | 29.0 | 5481 | 0.5318 | 0.3404 | | 0.5305 | 30.0 | 5670 | 0.5299 | 0.4082 | | 0.5252 | 31.0 | 5859 | 0.5278 | 0.4 | | 0.516 | 32.0 | 6048 | 0.5270 | 0.3922 | | 0.5181 | 33.0 | 6237 | 0.5243 | 0.4231 | | 0.5202 | 34.0 | 6426 | 0.5230 | 0.4231 | | 0.5068 | 35.0 | 6615 | 0.5224 | 0.4231 | | 0.514 | 36.0 | 6804 | 0.5205 | 0.4528 | | 0.5014 | 37.0 | 6993 | 0.5194 | 0.4528 | | 0.4899 | 38.0 | 7182 | 0.5188 | 0.4444 | | 0.5104 | 39.0 | 7371 | 0.5164 | 0.4364 | | 0.4823 | 40.0 | 7560 | 0.5174 | 0.4444 | | 0.515 | 41.0 | 7749 | 0.5155 | 0.4364 | | 0.4906 | 42.0 | 7938 | 0.5154 | 0.4364 | | 0.4853 | 43.0 | 8127 | 0.5158 | 0.4364 | | 0.5006 | 44.0 | 8316 | 0.5153 | 0.4364 | | 0.503 | 45.0 | 8505 | 0.5146 | 0.4561 | | 0.4915 | 46.0 | 8694 | 0.5141 | 0.4561 | | 0.4903 | 47.0 | 8883 | 0.5144 | 0.4561 | | 0.4892 | 48.0 | 9072 | 0.5146 | 0.4561 | | 0.4939 | 49.0 | 9261 | 0.5146 | 0.4561 | | 0.5007 | 50.0 | 9450 | 0.5145 | 0.4561 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
Nazaninmnd/DreamBooth_KW
Nazaninmnd
2024-01-22T11:33:09Z
21
1
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-22T10:28:28Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of KW tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Nazaninmnd/DreamBooth_KW This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of KW using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: True.
arun100/whisper-small-derived-hi-2
arun100
2024-01-22T11:27:18Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_16_0", "base_model:arun100/whisper-small-derived-hi-1", "base_model:finetune:arun100/whisper-small-derived-hi-1", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-22T03:14:27Z
--- language: - hi license: apache-2.0 base_model: arun100/whisper-small-derived-hi-1 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Bengali results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 hi type: mozilla-foundation/common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 9.288054935192335 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Bengali This model is a fine-tuned version of [arun100/whisper-small-derived-hi-1](https://huggingface.co/arun100/whisper-small-derived-hi-1) on the mozilla-foundation/common_voice_16_0 hi dataset. It achieves the following results on the evaluation set: - Loss: 0.1458 - Wer: 9.2881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1368 | 1.02 | 100 | 0.1665 | 9.6951 | | 0.1196 | 2.05 | 200 | 0.1586 | 9.6011 | | 0.107 | 3.07 | 300 | 0.1538 | 9.4008 | | 0.1051 | 5.02 | 400 | 0.1504 | 9.3235 | | 0.0988 | 6.05 | 500 | 0.1486 | 9.4467 | | 0.0939 | 7.07 | 600 | 0.1474 | 9.4425 | | 0.0901 | 9.02 | 700 | 0.1464 | 9.3006 | | 0.0859 | 10.04 | 800 | 0.1459 | 9.4362 | | 0.0859 | 11.07 | 900 | 0.1458 | 9.2881 | | 0.0839 | 13.02 | 1000 | 0.1456 | 9.2901 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
kamal24/gpt_to_human
kamal24
2024-01-22T11:18:59Z
6
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:kamal24/gpt_to_human", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-22T11:09:53Z
--- license: openrail datasets: - kamal24/gpt_to_human language: - en library_name: transformers inference: parameters: num_beams: 5 num_beam_groups: 5 num_return_sequences: 5 repetition_penalty: 10.01 diversity_penalty: 3.01 no_repeat_ngram_size: 2 temperature: 0.7 max_length: 128 widget: - text: What are the best places to see in New York? example_title: New York tourist attractions - text: When should I go to the doctor? example_title: Doctor's time - text: >- Rammstein's album Mutter was recorded in the south of France in May and June 2000, and mixed in Stockholm in October of that year. example_title: Rammstein's album Mutter pipeline_tag: text2text-generation --- This model was trained on our [ChatGPT paraphrase dataset](https://huggingface.co/datasets/kamal24/gpt_to_human). This dataset is based on the [Quora paraphrase question](https://www.kaggle.com/competitions/quora-question-pairs), texts from the [SQUAD 2.0](https://huggingface.co/datasets/squad_v2) and the [CNN news dataset](https://huggingface.co/datasets/cnn_dailymail). This model is based on the T5-base model. We used "transfer learning" to get our model to generate paraphrases as well as ChatGPT. Now we can say that this is one of the best paraphrases of the Hugging Face. [Kaggle](https://www.kaggle.com/datasets/vladimirvorobevv/chatgpt-paraphrases) link [Author's LinkedIn](https://www.linkedin.com/in/vladimir-vorobev/) link ## Deploying example ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM device = "cuda" tokenizer = AutoTokenizer.from_pretrained("kamal24/gpt_to_human") model = AutoModelForSeq2SeqLM.from_pretrained("kamal24/gpt_to_human").to(device) def paraphrase( question, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=128 ): input_ids = tokenizer( f'paraphrase: {question}', return_tensors="pt", padding="longest", max_length=max_length, truncation=True, ).input_ids outputs = model.generate( input_ids, temperature=temperature, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, num_beam_groups=num_beam_groups, max_length=max_length, diversity_penalty=diversity_penalty ) res = tokenizer.batch_decode(outputs, skip_special_tokens=True) return res ``` ## Usage examples **Input:** ```python text = 'What are the best places to see in New York?' paraphrase(text) ``` **Output:** ```python ['What are some must-see places in New York?', 'Can you suggest some must-see spots in New York?', 'Where should one go to experience the best NYC has to offer?', 'Which places should I visit in New York?', 'What are the top destinations to explore in New York?'] ``` **Input:** ```python text = "Rammstein's album Mutter was recorded in the south of France in May and June 2000, and mixed in Stockholm in October of that year." paraphrase(text) ``` **Output:** ```python ['In May and June 2000, Rammstein travelled to the south of France to record his album Mutter, which was mixed in Stockholm in October of that year.', 'The album Mutter by Rammstein was recorded in the south of France during May and June 2000, with mixing taking place in Stockholm in October of that year.', 'The album Mutter by Rammstein was recorded in the south of France during May and June 2000, with mixing taking place in Stockholm in October of that year. It', 'Mutter, the album released by Rammstein, was recorded in southern France during May and June 2000, with mixing taking place between October and September.', 'In May and June 2000, Rammstein recorded his album Mutter in the south of France, with the mix being made at Stockholm during October.'] ``` ## Train parameters ```python epochs = 5 batch_size = 64 max_length = 128 lr = 5e-5 batches_qty = 196465 betas = (0.9, 0.999) eps = 1e-08 ``` ### BibTeX entry and citation info ```bibtex @inproceedings{chatgpt_paraphraser, author={Vladimir Vorobev, Maxim Kuznetsov}, title={A paraphrasing model based on ChatGPT paraphrases}, year={2023} } ```
wooseok0303/distilbert-base-uncased-finetuned-clinc
wooseok0303
2024-01-22T11:18:54Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-22T11:00:16Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8004 - Accuracy: 0.9152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.3221 | 1.0 | 318 | 3.3251 | 0.7197 | | 2.6661 | 2.0 | 636 | 1.9115 | 0.8494 | | 1.5821 | 3.0 | 954 | 1.1901 | 0.89 | | 1.0401 | 4.0 | 1272 | 0.8849 | 0.9087 | | 0.8194 | 5.0 | 1590 | 0.8004 | 0.9152 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.13.1+cu116 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
Seri0usLee/distilbert-base-uncased-finetuned-ner
Seri0usLee
2024-01-22T11:11:00Z
8
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-22T08:44:50Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.929 - Recall: 0.9353 - F1: 0.9322 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2529 | 1.0 | 878 | 0.0719 | 0.8910 | 0.9209 | 0.9057 | 0.9788 | | 0.0504 | 2.0 | 1756 | 0.0583 | 0.9235 | 0.9332 | 0.9283 | 0.9831 | | 0.0315 | 3.0 | 2634 | 0.0611 | 0.929 | 0.9353 | 0.9322 | 0.9837 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
imagepipeline/LEOSAMs-HelloWorld-SDXL-v3
imagepipeline
2024-01-22T10:58:30Z
46
5
diffusers
[ "diffusers", "imagepipeline", "imagepipeline.io", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-01-22T10:55:13Z
--- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ## LEOSAMs-HelloWorld-SDXL-v3 <img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/6c2b58b8-e34c-4292-9237-311d8ddc48db/width=525/6c2b58b8-e34c-4292-9237-311d8ddc48db.jpeg" alt="Generated by Image Pipeline" style="border-radius: 10px;"> **This checkpoint model is uploaded on [imagepipeline.io](https://imagepipeline.io/)** Model details - Better finger and limbs [![Try this model](https://img.shields.io/badge/try_this_model-image_pipeline-BD9319)](https://imagepipeline.io/models/LEOSAMs-HelloWorld-SDXL-v3?id=5bff1e5f-8d0e-4764-9720-a3765f2d3860/) ## How to try this model ? You can try using it locally or send an API call to test the output quality. Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/). No payment required. Coding in `php` `javascript` `node` etc ? Checkout our documentation [![documentation](https://img.shields.io/badge/documentation-image_pipeline-blue)](https://docs.imagepipeline.io/docs/introduction) ```python import requests import json url = "https://imagepipeline.io/sdxl/text2image/v1/run" payload = json.dumps({ "model_id": "5bff1e5f-8d0e-4764-9720-a3765f2d3860", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": false, "guidance_scale": 7.5, "multi_lingual": "no", "embeddings": "", "lora_models": "", "lora_weights": "" }) headers = { 'Content-Type': 'application/json', 'API-Key': 'your_api_key' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) } ``` Get more ready to use `MODELS` like this for `SD 1.5` and `SDXL` : [![All models](https://img.shields.io/badge/Get%20All%20Models-image_pipeline-BD9319)](https://imagepipeline.io/models) ### API Reference #### Generate Image ```http https://api.imagepipeline.io/sdxl/text2image/v1 ``` | Headers | Type | Description | |:----------------------| :------- |:-------------------------------------------------------------------------------------------------------------------| | `API-Key` | `str` | Get your `API_KEY` from [imagepipeline.io](https://imagepipeline.io/) | | `Content-Type` | `str` | application/json - content type of the request body | | Parameter | Type | Description | | :-------- | :------- | :------------------------- | | `model_id` | `str` | Your base model, find available lists in [models page](https://imagepipeline.io/models) or upload your own| | `prompt` | `str` | Text Prompt. Check our [Prompt Guide](https://docs.imagepipeline.io/docs/SD-1.5/docs/extras/prompt-guide) for tips | | `num_inference_steps` | `int [1-50]` | Noise is removed with each step, resulting in a higher-quality image over time. Ideal value 30-50 (without LCM) | | `guidance_scale` | `float [1-20]` | Higher guidance scale prioritizes text prompt relevance but sacrifices image quality. Ideal value 7.5-12.5 | | `lora_models` | `str, array` | Pass the model_id(s) of LoRA models that can be found in models page | | `lora_weights` | `str, array` | Strength of the LoRA effect | --- license: creativeml-openrail-m tags: - imagepipeline - imagepipeline.io - text-to-image - ultra-realistic pinned: false pipeline_tag: text-to-image --- ### Feedback If you have any feedback, please reach out to us at [email protected] #### 🔗 Visit Website [![portfolio](https://img.shields.io/badge/image_pipeline-BD9319?style=for-the-badge&logo=gocd&logoColor=white)](https://imagepipeline.io/) If you are the original author of this model, please [click here](https://airtable.com/apprTaRnJbDJ8ufOx/shr4g7o9B6fWfOlUR) to add credits
Haya44/t-shirt-finetune
Haya44
2024-01-22T10:56:20Z
0
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-22T10:51:53Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### t-shirt_finetune Dreambooth model trained by Haya44 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt3.jpg) ![1](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt20.jpg) ![2](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt69.jpg) ![3](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt21.jpg) ![4](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt56.jpg) ![5](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt70.jpg) ![6](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt6.jpg) ![7](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt29.jpg) ![8](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt7.jpg) ![9](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt32.jpg) ![10](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt94.jpg) ![11](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt53.jpg) ![12](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt63.jpg) ![13](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt11.jpg) ![14](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt79.jpg) ![15](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt74.jpg) ![16](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt47.jpg) ![17](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt87.jpg) ![18](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt81.jpg) ![19](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt97.jpg) ![20](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt38.jpg) ![21](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt37.jpg) ![22](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt91.jpg) ![23](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt49.jpg) ![24](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt15.jpg) ![25](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt78.jpg) ![26](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt17.jpg) ![27](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt24.jpg) ![28](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt71.jpg) ![29](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt46.jpg) ![30](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt77.jpg) ![31](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt2.jpg) ![32](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt59.jpg) ![33](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt26.jpg) ![34](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt45.jpg) ![35](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt8.jpg) ![36](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt60.jpg) ![37](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt90.jpg) ![38](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt27.jpg) ![39](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt54.jpg) ![40](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt9.jpg) ![41](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt93.jpg) ![42](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt18.jpg) ![43](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt14.jpg) ![44](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt80.jpg) ![45](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt98.jpg) ![46](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt73.jpg) ![47](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt48.jpg) ![48](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt4.jpg) ![49](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt67.jpg) ![50](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt85.jpg) ![51](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt96.jpg) ![52](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt72.jpg) ![53](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt30.jpg) ![54](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt35.jpg) ![55](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt28.jpg) ![56](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt55.jpg) ![57](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt23.jpg) ![58](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt41.jpg) ![59](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt62.jpg) ![60](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt66.jpg) ![61](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt13.jpg) ![62](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt61.jpg) ![63](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt51.jpg) ![64](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt16.jpg) ![65](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt75.jpg) ![66](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt22.jpg) ![67](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt100.jpg) ![68](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt33.jpg) ![69](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt1.jpg) ![70](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt64.jpg) ![71](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt25.jpg) ![72](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt57.jpg) ![73](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt50.jpg) ![74](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt89.jpg) ![75](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt58.jpg) ![76](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt36.jpg) ![77](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt88.jpg) ![78](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt65.jpg) ![79](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt10.jpg) ![80](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt5.jpg) ![81](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt19.jpg) ![82](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt44.jpg) ![83](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt86.jpg) ![84](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt39.jpg) ![85](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt52.jpg) ![86](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt82.jpg) ![87](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt68.jpg) ![88](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt31.jpg) ![89](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt92.jpg) ![90](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt95.jpg) ![91](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt83.jpg) ![92](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt84.jpg) ![93](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt34.jpg) ![94](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt43.jpg) ![95](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt12.jpg) ![96](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt42.jpg) ![97](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt40.jpg) ![98](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt99.jpg) ![99](https://huggingface.co/Haya44/t-shirt-finetune/resolve/main/sample_images/shirt76.jpg)
shacd/gen_tokenizer_out
shacd
2024-01-22T10:53:50Z
2
0
transformers
[ "transformers", "t5", "text2text-generation", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-22T10:53:32Z
--- license: other license_name: none license_link: LICENSE ---
Federic/TestPrompt
Federic
2024-01-22T10:47:48Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:finetune:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
null
2024-01-22T08:39:27Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - generated_from_trainer model-index: - name: TestPrompt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TestPrompt This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0