modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Kamilatr/mistral_model
Kamilatr
2024-01-21T08:57:19Z
1
0
peft
[ "peft", "pytorch", "mistral", "arxiv:1910.09700", "base_model:Hugofernandez/Mistral-7B-v0.1-colab-sharded", "base_model:adapter:Hugofernandez/Mistral-7B-v0.1-colab-sharded", "region:us" ]
null
2024-01-21T08:44:55Z
--- library_name: peft base_model: Hugofernandez/Mistral-7B-v0.1-colab-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
wave1art/ppo-LunarLander-v2
wave1art
2024-01-21T08:55:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-08T15:01:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 238.45 +/- 47.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yomilimi/gamblingspam-koRoberta
yomilimi
2024-01-21T08:55:33Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:klue/roberta-base", "base_model:finetune:klue/roberta-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-21T08:51:32Z
--- base_model: klue/roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: gamblingspam-koRoberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gamblingspam-koRoberta This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1861 - Accuracy: 0.935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 0.1973 | 0.935 | | No log | 2.0 | 100 | 0.1889 | 0.935 | | No log | 3.0 | 150 | 0.1861 | 0.935 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
danangwijaya/IndoRetNet-Liputan6
danangwijaya
2024-01-21T08:45:12Z
16
0
transformers
[ "transformers", "safetensors", "retnet", "text-generation", "generated_from_trainer", "id", "dataset:liputan6", "arxiv:2307.08621", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T17:53:18Z
--- tags: - generated_from_trainer datasets: - liputan6 model-index: - name: IndoRetNet-Liputan6 results: [] license: apache-2.0 language: - id --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndoRetNet-Liputan6 This model is a Indonesian RetNet model train using the Liputan6 dataset. Using Tokenizer from [IndoBERT](https://huggingface.co/indolem/indobert-base-uncased) It achieves the following results on the evaluation set: - Loss: 3.4936 ## Model description Demonstrate training and recurrent inference using a retentive network (https://arxiv.org/pdf/2307.08621.pdf). The code utilizes Sehyun Choi's implementation of retentive network (https://github.com/syncdoth/RetNet). - **License:** Apache 2.0. ## Intended uses & limitations Intended to demonstrate training and (recurrent O(1)) inference using a retentive network in Indonesian language. ## Training and evaluation data Using Train and validation set from Liputan6 dataset provided by [NusaCrowd](https://github.com/IndoNLP/nusa-crowd). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.5053 | 0.17 | 1000 | 4.5145 | | 4.1281 | 0.34 | 2000 | 4.1702 | | 3.9452 | 0.52 | 3000 | 4.0094 | | 3.8302 | 0.69 | 4000 | 3.8972 | | 3.6955 | 0.86 | 5000 | 3.8144 | | 3.589 | 1.03 | 6000 | 3.7600 | | 3.5279 | 1.21 | 7000 | 3.7088 | | 3.4598 | 1.38 | 8000 | 3.6670 | | 3.4445 | 1.55 | 9000 | 3.6259 | | 3.4098 | 1.72 | 10000 | 3.5904 | | 3.3455 | 1.9 | 11000 | 3.5610 | | 3.2306 | 2.07 | 12000 | 3.5406 | | 3.261 | 2.24 | 13000 | 3.5216 | | 3.2204 | 2.41 | 14000 | 3.5111 | | 3.2321 | 2.59 | 15000 | 3.5001 | | 3.2514 | 2.76 | 16000 | 3.4941 | | 3.233 | 2.93 | 17000 | 3.4936 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/old-existential-there-quantifier-transformer-1
CLMBR
2024-01-21T08:42:37Z
2
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T15:42:08Z
--- tags: - generated_from_trainer model-index: - name: existential-there-quantifier-transformer-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # existential-there-quantifier-transformer-1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2616 | 0.03 | 76320 | 4.2240 | | 4.0508 | 1.03 | 152640 | 4.0508 | | 3.9401 | 0.03 | 228960 | 3.9758 | | 3.865 | 1.03 | 305280 | 3.9339 | | 3.8135 | 0.03 | 381600 | 3.9073 | | 3.7714 | 1.03 | 457920 | 3.8895 | | 3.7388 | 0.03 | 534240 | 3.8792 | | 3.7131 | 1.03 | 610560 | 3.8728 | | 3.684 | 0.03 | 686880 | 3.8681 | | 3.6636 | 1.03 | 763200 | 3.8646 | | 3.6394 | 0.03 | 839520 | 3.8636 | | 3.617 | 1.03 | 915840 | 3.8631 | | 3.5998 | 0.03 | 992160 | 3.8632 | | 3.5818 | 1.03 | 1068480 | 3.8621 | | 3.5593 | 0.03 | 1144800 | 3.8644 | | 3.5503 | 1.03 | 1221120 | 3.8656 | | 3.5342 | 0.03 | 1297440 | 3.8669 | | 3.5177 | 0.03 | 1373760 | 3.8686 | | 3.5074 | 1.03 | 1450080 | 3.8695 | | 3.4918 | 0.03 | 1526400 | 3.8712 | | 3.4844 | 1.03 | 1602720 | 3.8720 | | 3.4726 | 0.03 | 1679040 | 3.8740 | | 3.4666 | 0.03 | 1755360 | 3.8755 | | 3.4589 | 0.03 | 1831680 | 3.8769 | | 3.4472 | 1.03 | 1908000 | 3.8772 | | 3.4392 | 0.03 | 1984320 | 3.8804 | | 3.4254 | 1.03 | 2060640 | 3.8811 | | 3.4139 | 0.03 | 2136960 | 3.8819 | | 3.4048 | 1.03 | 2213280 | 3.8826 | | 3.39 | 0.03 | 2289600 | 3.8845 | | 3.3736 | 0.03 | 2365920 | 3.8846 | | 3.3731 | 0.03 | 2442240 | 3.8849 | | 3.3589 | 1.03 | 2518560 | 3.8856 | | 3.3472 | 0.03 | 2594880 | 3.8856 | | 3.3408 | 1.03 | 2671200 | 3.8866 | | 3.3287 | 0.03 | 2747520 | 3.8863 | | 3.3257 | 0.03 | 2823840 | 3.8861 | | 3.318 | 0.03 | 2900160 | 3.8854 | | 3.3149 | 1.03 | 2976480 | 3.8846 | | 3.3129 | 0.02 | 3052726 | 3.8839 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
CLMBR/old-existential-there-quantifier-transformer-2
CLMBR
2024-01-21T08:38:33Z
1
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T15:42:08Z
--- tags: - generated_from_trainer model-index: - name: existential-there-quantifier-transformer-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # existential-there-quantifier-transformer-2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2526 | 0.03 | 76320 | 4.2151 | | 4.0455 | 1.03 | 152640 | 4.0461 | | 3.9381 | 0.03 | 228960 | 3.9721 | | 3.8628 | 1.03 | 305280 | 3.9311 | | 3.8124 | 0.03 | 381600 | 3.9065 | | 3.7715 | 1.03 | 457920 | 3.8904 | | 3.7381 | 0.03 | 534240 | 3.8783 | | 3.7124 | 1.03 | 610560 | 3.8721 | | 3.683 | 0.03 | 686880 | 3.8683 | | 3.6615 | 1.03 | 763200 | 3.8654 | | 3.6385 | 0.03 | 839520 | 3.8646 | | 3.616 | 1.03 | 915840 | 3.8642 | | 3.5965 | 0.03 | 992160 | 3.8636 | | 3.578 | 1.03 | 1068480 | 3.8644 | | 3.5575 | 0.03 | 1144800 | 3.8644 | | 3.5489 | 1.03 | 1221120 | 3.8660 | | 3.5313 | 0.03 | 1297440 | 3.8666 | | 3.5161 | 0.03 | 1373760 | 3.8675 | | 3.5035 | 1.03 | 1450080 | 3.8687 | | 3.4905 | 0.03 | 1526400 | 3.8709 | | 3.4821 | 0.03 | 1602720 | 3.8735 | | 3.472 | 1.03 | 1679040 | 3.8752 | | 3.4657 | 0.03 | 1755360 | 3.8762 | | 3.4571 | 0.03 | 1831680 | 3.8779 | | 3.4455 | 1.03 | 1908000 | 3.8795 | | 3.4391 | 0.03 | 1984320 | 3.8816 | | 3.4253 | 1.03 | 2060640 | 3.8817 | | 3.4134 | 0.03 | 2136960 | 3.8836 | | 3.4028 | 1.03 | 2213280 | 3.8853 | | 3.3929 | 0.03 | 2289600 | 3.8861 | | 3.3786 | 1.03 | 2365920 | 3.8866 | | 3.3717 | 0.03 | 2442240 | 3.8879 | | 3.3586 | 1.03 | 2518560 | 3.8886 | | 3.3484 | 0.03 | 2594880 | 3.8890 | | 3.34 | 1.03 | 2671200 | 3.8896 | | 3.3287 | 0.03 | 2747520 | 3.8888 | | 3.3257 | 1.03 | 2823840 | 3.8884 | | 3.3182 | 0.03 | 2900160 | 3.8875 | | 3.315 | 1.03 | 2976480 | 3.8866 | | 3.3135 | 0.02 | 3052726 | 3.8856 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
powep/ddpm-celebahq-finetuned-butterflies-2epochs
powep
2024-01-21T08:34:35Z
45
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-01-21T08:34:10Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('powep/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
m4ddki7/ppo-LunarLander-v2
m4ddki7
2024-01-21T08:30:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-21T08:30:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.58 +/- 22.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PeterWright/MNIST_LeNet
PeterWright
2024-01-21T08:28:33Z
0
2
null
[ "license:mit", "region:us" ]
null
2024-01-21T08:00:27Z
--- license: mit --- ## Introduction MNIST_LeNet is a CNN model used for handwriting recognization. This model is trained with traditional MNIST dataset, which is included in PyTorch as default. As a result, it could achieve 99.5% accuracy among handwriting recognization tasks. ## Hands on ```python3 import torch LeNet = torch.load('path/to/model/mnist_lenet.pt') LeNet.eval() # config preprocessor for your data transform = ... # load data input_data = transform(open('path/to/your/data')) # predict with our model with torch.no_grad(): output = LeNet(input_data) # explain results prob = torch.nn.functional.softmax(output[0], dim=0) ... ``` ## Reference - [LeNet Paper: GradientBased Learning Applied to Document Recognition(1998)](http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf)
leveldevai/TurdusBeagle-7B
leveldevai
2024-01-21T08:17:46Z
2,359
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "udkai/Turdus", "mlabonne/NeuralBeagle14-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T16:34:00Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - udkai/Turdus - mlabonne/NeuralBeagle14-7B --- # TurdusBeagle-7B TurdusBeagle-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [udkai/Turdus](https://huggingface.co/udkai/Turdus) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: udkai/Turdus layer_range: [0, 32] - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralBeagle14-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.45 # fallback for rest of tensors dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "leveldevai/TurdusBeagle-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
leveldevai/MarcBeagle-7B
leveldevai
2024-01-21T08:15:37Z
1,361
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "flemmingmiguel/MarcMistral-7B", "leveldevai/TurdusBeagle-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T04:54:33Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - flemmingmiguel/MarcMistral-7B - leveldevai/TurdusBeagle-7B --- # MarcBeagle-7B MarcBeagle-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [flemmingmiguel/MarcMistral-7B](https://huggingface.co/flemmingmiguel/MarcMistral-7B) * [leveldevai/TurdusBeagle-7B](https://huggingface.co/leveldevai/TurdusBeagle-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: flemmingmiguel/MarcMistral-7B layer_range: [0, 32] - model: leveldevai/TurdusBeagle-7B layer_range: [0, 32] merge_method: slerp base_model: leveldevai/TurdusBeagle-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.45 # fallback for rest of tensors dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "leveldevai/MarcBeagle-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
roktimsardar123/Realistic_Vision_V6.0_B1_noVAE
roktimsardar123
2024-01-21T08:12:05Z
6
1
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-19T16:45:55Z
--- license: creativeml-openrail-m --- <b>This model is available on <a href="https://www.mage.space/">Mage.Space</a> (main sponsor)</b><br> <b>Please read this!</b><br> This is not yet the full version of the model (read the <b>"Model Description"</b> section).<br> For version 6.0 it is recommended to use with VAE (to improve generation quality and get rid of artifacts): https://huggingface.co/stabilityai/sd-vae-ft-mse-original<br> <b>Model Description</b><br> Realistic Vision V6.0 "New Vision" is a global update for the Realistic Vision model, which will be released gradually in several beta versions until the full release. The model is aimed at realism and photorealism.<br> CivitAI Page: https://civitai.com/models/4201/realistic-vision-v60-b1?modelVersionId=245598 <b>Resolutions (use lower resolution if you get a lot of mutations and stuff like that)</b><br> - Face Portrait: 896x896<br> - Portrait: 896x896, 768x1024<br> - Half Body: 768x1024, 640x1152<br> - Full Body: 896x896, 768x1024, 640x1152, 1024x768, 1152x640<br> <b>Improvements</b> - increased generation resolution to such resolutions as: 896x896, 768x1024, 640x1152, 1024x768, 1152x640. (note. in some cases there may still be mutations, duplications, etc -> will be fixed in future versions).<br> - improved sfw and nsfw for female and female anatomy (note. not all poses work correctly in such large resolutions -> will be fixed in future versions).<br> <b>Recommended Workflow</b><br> Images can be generated with or without Hires.Fix, but it will help improve the generation quality significantly. In some cases it is strictly recommended to use Hires.Fix, namely when generating full body and half body images (note: you can also use Restore Faces or ADetailer).<br> <b>Recommended Generation Parameters</b><br> Sampler: DPM++ SDE Karras (25+ steps) / DPM++ 2M SDE (50+ steps)<br> Negative Prompt: (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck<br> <b>Recommended Hires.Fix Parameters</b><br> Sampler: DPM++ SDE Karras or DPM++ 2M SDE<br> Denoising steps: 10+ (DPM++ SDE Karras) / 20+ (DPM++ 2M SDE (notice. the lower the value of hires steps at a given sampler, the stronger the skin texture and the higher the chance of getting artifacts))<br> Denoising strength: 0.1-0.3<br> Upscaler: 4x-UltraSharp / 4x_NMKD-Superscale-SP_178000_G or another<br> Upscale by: 1.1-2.0+<br>
Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp
Weyaxi
2024-01-21T08:03:27Z
58
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp", "base_model:merge:Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp", "base_model:openchat/openchat-3.5-1210", "base_model:merge:openchat/openchat-3.5-1210", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-24T14:30:22Z
--- license: apache-2.0 tags: - merge base_model: - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp - openchat/openchat-3.5-1210 --- # OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp This is the model for OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp. I used [mergekit](https://github.com/cg123/mergekit) to merge models. # Yaml Config ```yaml slices: - sources: - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp layer_range: [0, 32] - model: openchat/openchat-3.5-1210 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors tokenizer_source: union dtype: bfloat16 ```
CLMBR/binding-c-command-transformer-2
CLMBR
2024-01-21T07:57:46Z
7
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T15:42:02Z
--- tags: - generated_from_trainer model-index: - name: binding-c-command-transformer-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binding-c-command-transformer-2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2236 | 0.03 | 76320 | 4.1937 | | 4.0183 | 1.03 | 152640 | 4.0245 | | 3.9082 | 0.03 | 228960 | 3.9500 | | 3.8443 | 1.03 | 305280 | 3.9103 | | 3.7908 | 0.03 | 381600 | 3.8840 | | 3.7508 | 1.03 | 457920 | 3.8685 | | 3.7217 | 0.03 | 534240 | 3.8586 | | 3.6907 | 1.03 | 610560 | 3.8519 | | 3.6607 | 0.03 | 686880 | 3.8475 | | 3.6343 | 1.03 | 763200 | 3.8452 | | 3.611 | 0.03 | 839520 | 3.8432 | | 3.5893 | 1.03 | 915840 | 3.8427 | | 3.5719 | 0.03 | 992160 | 3.8424 | | 3.5509 | 0.03 | 1068480 | 3.8427 | | 3.5351 | 1.03 | 1144800 | 3.8427 | | 3.5269 | 0.03 | 1221120 | 3.8441 | | 3.5066 | 1.03 | 1297440 | 3.8453 | | 3.4967 | 0.03 | 1373760 | 3.8458 | | 3.4799 | 1.03 | 1450080 | 3.8476 | | 3.4756 | 0.03 | 1526400 | 3.8500 | | 3.4629 | 1.03 | 1602720 | 3.8510 | | 3.4559 | 0.03 | 1679040 | 3.8536 | | 3.4494 | 1.03 | 1755360 | 3.8534 | | 3.4387 | 0.03 | 1831680 | 3.8558 | | 3.4247 | 0.03 | 1908000 | 3.8572 | | 3.4118 | 1.03 | 1984320 | 3.8582 | | 3.3992 | 0.03 | 2060640 | 3.8598 | | 3.3894 | 1.03 | 2136960 | 3.8608 | | 3.3803 | 0.03 | 2213280 | 3.8610 | | 3.3632 | 1.03 | 2289600 | 3.8625 | | 3.3574 | 0.03 | 2365920 | 3.8635 | | 3.3492 | 0.03 | 2442240 | 3.8634 | | 3.3364 | 0.03 | 2518560 | 3.8649 | | 3.3296 | 1.03 | 2594880 | 3.8642 | | 3.317 | 0.03 | 2671200 | 3.8647 | | 3.3139 | 1.03 | 2747520 | 3.8653 | | 3.308 | 0.03 | 2823840 | 3.8642 | | 3.3023 | 1.03 | 2900160 | 3.8635 | | 3.3002 | 0.03 | 2976480 | 3.8623 | | 3.2921 | 1.02 | 3052726 | 3.8612 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
pingyi2024/llama2-qlora-finetunined-french
pingyi2024
2024-01-21T07:55:26Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-21T07:55:22Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
sheyuv/paris-lora
sheyuv
2024-01-21T07:54:11Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2024-01-21T07:54:09Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of paris tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Spanicin/Fulcrum_Aura5
Spanicin
2024-01-21T07:54:03Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-v0.1", "samir-fama/SamirGPT-v1", "abacusai/Slerp-CM-mist-dpo", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T07:49:25Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - samir-fama/SamirGPT-v1 - abacusai/Slerp-CM-mist-dpo --- # Fulcrum_Aura5 Fulcrum_Aura5 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [samir-fama/SamirGPT-v1](https://huggingface.co/samir-fama/SamirGPT-v1) * [abacusai/Slerp-CM-mist-dpo](https://huggingface.co/abacusai/Slerp-CM-mist-dpo) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-v0.1 layer_range: [0, 32] - model: samir-fama/SamirGPT-v1 layer_range: [0, 32] parameters: density: 0.53 weight: 0.4 - model: abacusai/Slerp-CM-mist-dpo layer_range: [0, 32] parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Spanicin/Fulcrum_Aura5" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
nervps/Glanc
nervps
2024-01-21T07:40:20Z
0
0
null
[ "music", "audio-to-audio", "ru", "license:unknown", "region:us" ]
audio-to-audio
2024-01-20T13:35:41Z
--- license: unknown language: - ru pipeline_tag: audio-to-audio tags: - music ---
ntc-ai/SDXL-LoRA-slider.watercolor
ntc-ai
2024-01-21T07:23:34Z
16
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-21T07:23:31Z
--- language: - en thumbnail: "images/evaluate/watercolor.../watercolor_17_3.0.png" widget: - text: watercolor output: url: images/watercolor_17_3.0.png - text: watercolor output: url: images/watercolor_19_3.0.png - text: watercolor output: url: images/watercolor_20_3.0.png - text: watercolor output: url: images/watercolor_21_3.0.png - text: watercolor output: url: images/watercolor_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "watercolor" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - watercolor (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/watercolor_17_-3.0.png" width=256 height=256 /> | <img src="images/watercolor_17_0.0.png" width=256 height=256 /> | <img src="images/watercolor_17_3.0.png" width=256 height=256 /> | | <img src="images/watercolor_19_-3.0.png" width=256 height=256 /> | <img src="images/watercolor_19_0.0.png" width=256 height=256 /> | <img src="images/watercolor_19_3.0.png" width=256 height=256 /> | | <img src="images/watercolor_20_-3.0.png" width=256 height=256 /> | <img src="images/watercolor_20_0.0.png" width=256 height=256 /> | <img src="images/watercolor_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` watercolor ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.watercolor', weight_name='watercolor.safetensors', adapter_name="watercolor") # Activate the LoRA pipe.set_adapters(["watercolor"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, watercolor" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
AshtonLKY/Whisper_ATC_v1
AshtonLKY
2024-01-21T07:14:04Z
3
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "asr-fyp", "generated_from_trainer", "en", "dataset:AshtonLKY/Whisper_ASR_ATC", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-14T04:50:51Z
--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - asr-fyp - generated_from_trainer datasets: - AshtonLKY/Whisper_ASR_ATC model-index: - name: Whisper_ASR_ATC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper_ASR_ATC This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the AshtonLKY/augmented_audio dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1061 - eval_wer: 10.8325 - eval_runtime: 7410.9891 - eval_samples_per_second: 1.813 - eval_steps_per_second: 0.227 - epoch: 0.89 - step: 3000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Yhyu13/dolphin-2.6-mistral-7b-dpo-laser-function-calling-lora
Yhyu13
2024-01-21T07:12:54Z
5
4
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser", "base_model:adapter:cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser", "license:apache-2.0", "region:us" ]
null
2024-01-21T07:10:54Z
--- license: apache-2.0 library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser model-index: - name: dolphin-2.6-mistral-7b-dpo-laser-sft-glaive-function-calling-v2-ep1-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dolphin-2.6-mistral-7b-dpo-laser-sft-glaive-function-calling-v2-ep1-lora This model is a fine-tuned version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) on the https://huggingface.co/datasets/Yhyu13/glaive-function-calling-v2-llama-factory-convert/blob/main/simple-function-calling-v2_converted_5000_with_function_call_only.json dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2548 | 0.09 | 100 | 0.1148 | | 0.1149 | 0.18 | 200 | 0.0914 | | 0.0871 | 0.27 | 300 | 0.0831 | | 0.0865 | 0.35 | 400 | 0.0760 | | 0.0802 | 0.44 | 500 | 0.0718 | | 0.0689 | 0.53 | 600 | 0.0702 | | 0.0649 | 0.62 | 700 | 0.0649 | | 0.0637 | 0.71 | 800 | 0.0632 | | 0.0698 | 0.8 | 900 | 0.0619 | | 0.0648 | 0.88 | 1000 | 0.0608 | | 0.0654 | 0.97 | 1100 | 0.0605 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
WYNN747/Burmese-GPT-fresh1-2k
WYNN747
2024-01-21T06:56:49Z
6
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T06:45:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jow2/llama2-qlora-finetunined-french
jow2
2024-01-21T06:36:06Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-21T06:35:59Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
HatimF/my_awesome_billsum_model
HatimF
2024-01-21T06:11:04Z
8
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-21T06:09:15Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/superlative-quantifier-lstm-0
CLMBR
2024-01-21T06:07:05Z
6
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-16T15:28:30Z
--- tags: - generated_from_trainer model-index: - name: superlative-quantifier-lstm-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superlative-quantifier-lstm-0 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7768 | 0.03 | 76320 | 4.7625 | | 4.4994 | 1.03 | 152640 | 4.4851 | | 4.3586 | 0.03 | 228960 | 4.3523 | | 4.2722 | 1.03 | 305280 | 4.2704 | | 4.2128 | 2.03 | 381600 | 4.2144 | | 4.1637 | 0.03 | 457920 | 4.1737 | | 4.1288 | 1.03 | 534240 | 4.1432 | | 4.0985 | 0.03 | 610560 | 4.1191 | | 4.0699 | 1.03 | 686880 | 4.0997 | | 4.0461 | 2.03 | 763200 | 4.0839 | | 4.0238 | 0.03 | 839520 | 4.0716 | | 4.0037 | 1.03 | 915840 | 4.0607 | | 3.9934 | 0.03 | 992160 | 4.0516 | | 3.9755 | 1.03 | 1068480 | 4.0440 | | 3.9605 | 0.03 | 1144800 | 4.0370 | | 3.9465 | 0.03 | 1221120 | 4.0317 | | 3.9323 | 1.03 | 1297440 | 4.0269 | | 3.9218 | 0.03 | 1373760 | 4.0221 | | 3.9132 | 1.03 | 1450080 | 4.0180 | | 3.9112 | 0.03 | 1526400 | 4.0147 | | 3.9084 | 1.03 | 1602720 | 4.0120 | | 3.9015 | 0.03 | 1679040 | 4.0093 | | 3.8991 | 1.03 | 1755360 | 4.0071 | | 3.8977 | 0.03 | 1831680 | 4.0053 | | 3.8892 | 0.03 | 1908000 | 4.0033 | | 3.8818 | 0.03 | 1984320 | 4.0013 | | 3.8748 | 0.03 | 2060640 | 3.9992 | | 3.8679 | 1.03 | 2136960 | 3.9976 | | 3.8693 | 2.03 | 2213280 | 3.9966 | | 3.8634 | 0.03 | 2289600 | 3.9957 | | 3.8557 | 1.03 | 2365920 | 3.9948 | | 3.85 | 0.03 | 2442240 | 3.9942 | | 3.8426 | 1.03 | 2518560 | 3.9934 | | 3.8418 | 0.03 | 2594880 | 3.9927 | | 3.835 | 1.03 | 2671200 | 3.9919 | | 3.8405 | 2.03 | 2747520 | 3.9913 | | 3.8384 | 0.03 | 2823840 | 3.9907 | | 3.8387 | 1.03 | 2900160 | 3.9903 | | 3.8427 | 0.03 | 2976480 | 3.9898 | | 3.8428 | 1.02 | 3052726 | 3.9895 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
PetroGPT/Severus-7B-DPO
PetroGPT
2024-01-21T06:02:55Z
1,403
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T05:57:43Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dscoder25/finetuning-sentiment-model
dscoder25
2024-01-21T06:00:18Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-21T05:20:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
CLMBR/old-existential-there-quantifier-lstm-2
CLMBR
2024-01-21T05:59:36Z
8
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-16T15:44:02Z
--- tags: - generated_from_trainer model-index: - name: existential-there-quantifier-lstm-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # existential-there-quantifier-lstm-2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.8395 | 0.03 | 76320 | 4.7977 | | 4.5474 | 1.03 | 152640 | 4.5109 | | 4.4015 | 0.03 | 228960 | 4.3723 | | 4.3064 | 1.03 | 305280 | 4.2870 | | 4.245 | 0.03 | 381600 | 4.2297 | | 4.1964 | 1.03 | 457920 | 4.1873 | | 4.1603 | 0.03 | 534240 | 4.1561 | | 4.1312 | 1.03 | 610560 | 4.1313 | | 4.102 | 0.03 | 686880 | 4.1114 | | 4.0817 | 1.03 | 763200 | 4.0951 | | 4.0587 | 0.03 | 839520 | 4.0820 | | 4.0367 | 1.03 | 915840 | 4.0709 | | 4.0242 | 0.03 | 992160 | 4.0620 | | 4.008 | 1.03 | 1068480 | 4.0537 | | 3.9878 | 0.03 | 1144800 | 4.0458 | | 3.9807 | 1.03 | 1221120 | 4.0401 | | 3.9693 | 0.03 | 1297440 | 4.0351 | | 3.9571 | 1.03 | 1373760 | 4.0307 | | 3.9487 | 0.03 | 1450080 | 4.0271 | | 3.9399 | 1.03 | 1526400 | 4.0231 | | 3.937 | 0.03 | 1602720 | 4.0198 | | 3.931 | 1.03 | 1679040 | 4.0166 | | 3.9284 | 0.03 | 1755360 | 4.0143 | | 3.9273 | 0.03 | 1831680 | 4.0123 | | 3.9169 | 1.03 | 1908000 | 4.0098 | | 3.9161 | 0.03 | 1984320 | 4.0084 | | 3.9107 | 1.03 | 2060640 | 4.0066 | | 3.9021 | 0.03 | 2136960 | 4.0053 | | 3.8983 | 1.03 | 2213280 | 4.0038 | | 3.8927 | 0.03 | 2289600 | 4.0029 | | 3.8835 | 1.03 | 2365920 | 4.0017 | | 3.8847 | 0.03 | 2442240 | 4.0006 | | 3.8779 | 0.03 | 2518560 | 3.9999 | | 3.8749 | 0.03 | 2594880 | 3.9989 | | 3.8715 | 1.03 | 2671200 | 3.9982 | | 3.8664 | 0.03 | 2747520 | 3.9975 | | 3.8704 | 1.03 | 2823840 | 3.9968 | | 3.8676 | 0.03 | 2900160 | 3.9962 | | 3.872 | 1.03 | 2976480 | 3.9960 | | 3.8715 | 0.02 | 3052726 | 3.9956 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
danielhanchen/gguf_4bit
danielhanchen
2024-01-21T05:57:37Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "en", "base_model:unsloth/mistral-7b", "base_model:quantized:unsloth/mistral-7b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-20T17:58:21Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_model: unsloth/mistral-7b --- # Uploaded model - **Developed by:** danielhanchen - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
CLMBR/old-existential-there-quantifier-lstm-4
CLMBR
2024-01-21T05:48:57Z
7
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-16T15:44:05Z
--- tags: - generated_from_trainer model-index: - name: existential-there-quantifier-lstm-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # existential-there-quantifier-lstm-4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.8393 | 0.03 | 76320 | 4.7994 | | 4.545 | 1.03 | 152640 | 4.5108 | | 4.4018 | 0.03 | 228960 | 4.3731 | | 4.307 | 1.03 | 305280 | 4.2876 | | 4.2466 | 0.03 | 381600 | 4.2296 | | 4.1988 | 1.03 | 457920 | 4.1882 | | 4.1617 | 0.03 | 534240 | 4.1563 | | 4.1348 | 1.03 | 610560 | 4.1320 | | 4.1044 | 0.03 | 686880 | 4.1122 | | 4.0846 | 1.03 | 763200 | 4.0961 | | 4.0615 | 0.03 | 839520 | 4.0829 | | 4.0398 | 1.03 | 915840 | 4.0709 | | 4.0253 | 0.03 | 992160 | 4.0623 | | 4.009 | 1.03 | 1068480 | 4.0539 | | 3.9899 | 0.03 | 1144800 | 4.0468 | | 3.9844 | 0.03 | 1221120 | 4.0409 | | 3.9692 | 1.03 | 1297440 | 4.0347 | | 3.9603 | 0.03 | 1373760 | 4.0302 | | 3.9517 | 1.03 | 1450080 | 4.0258 | | 3.9412 | 0.03 | 1526400 | 4.0220 | | 3.9384 | 0.03 | 1602720 | 4.0190 | | 3.933 | 1.03 | 1679040 | 4.0162 | | 3.9305 | 0.03 | 1755360 | 4.0140 | | 3.9288 | 0.03 | 1831680 | 4.0118 | | 3.921 | 1.03 | 1908000 | 4.0093 | | 3.9189 | 0.03 | 1984320 | 4.0075 | | 3.9116 | 1.03 | 2060640 | 4.0056 | | 3.9036 | 0.03 | 2136960 | 4.0040 | | 3.9001 | 1.03 | 2213280 | 4.0028 | | 3.8925 | 0.03 | 2289600 | 4.0014 | | 3.8851 | 1.03 | 2365920 | 4.0003 | | 3.8851 | 0.03 | 2442240 | 3.9992 | | 3.8813 | 0.03 | 2518560 | 3.9984 | | 3.8756 | 0.03 | 2594880 | 3.9975 | | 3.8726 | 1.03 | 2671200 | 3.9969 | | 3.8673 | 0.03 | 2747520 | 3.9959 | | 3.871 | 1.03 | 2823840 | 3.9953 | | 3.8704 | 0.03 | 2900160 | 3.9947 | | 3.8717 | 1.03 | 2976480 | 3.9943 | | 3.8734 | 0.02 | 3052726 | 3.9940 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
ttellner/distilbert-base-uncased-finetuned-emotion
ttellner
2024-01-21T05:31:50Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-21T04:00:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.9195426549881595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2160 - Accuracy: 0.92 - F1: 0.9195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8294 | 1.0 | 250 | 0.3168 | 0.905 | 0.9035 | | 0.251 | 2.0 | 500 | 0.2160 | 0.92 | 0.9195 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
ahebbar69/not-entertainment-1
ahebbar69
2024-01-21T05:30:22Z
0
0
null
[ "safetensors", "autotrain", "text-generation", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T05:30:02Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
genaicore3434/Mistral-7b-instruct-v0.2-summ-sft-lp-e1
genaicore3434
2024-01-21T05:10:03Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-21T05:06:18Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
genaicore3434/MistralLite-summ-sft-e1
genaicore3434
2024-01-21T04:59:51Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-21T04:57:36Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2
bartowski
2024-01-21T04:58:25Z
4
0
null
[ "text-generation", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:mlabonne/Marcoro14-7B-slerp", "base_model:finetune:mlabonne/Marcoro14-7B-slerp", "license:apache-2.0", "region:us" ]
text-generation
2024-01-21T04:42:21Z
--- base_model: mlabonne/Marcoro14-7B-slerp license: apache-2.0 datasets: - argilla/distilabel-intel-orca-dpo-pairs quantized_by: bartowski pipeline_tag: text-generation --- ## Exllama v2 Quantizations of kellemar-DPO-Orca-Distilled-7B-SLERP Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.11">turboderp's ExLlamaV2 v0.0.11</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP Model Size: 7B | Branch | Bits | lm_head bits | Size | Description | | ----- | ---- | ------- | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2/tree/8_0) | 8.0 | 8.0 | 9.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2/tree/6_5) | 6.5 | 8.0 | 8.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2/tree/5_0) | 5.0 | 6.0 | 7.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/Bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2/tree/4_25) | 4.25 | 6.0 | 6.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2/tree/3_5) | 3.5 | 6.0 | 6.1 GB | Lower quality, only use if you have to. | All VRAM requirements estimated from 16k context. For 32k context add ~2 GB. ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2 kellemar-DPO-Orca-Distilled-7B-SLERP-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `kellemar-DPO-Orca-Distilled-7B-SLERP-exl2`: ```shell mkdir kellemar-DPO-Orca-Distilled-7B-SLERP-exl2 huggingface-cli download bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2 --local-dir kellemar-DPO-Orca-Distilled-7B-SLERP-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir kellemar-DPO-Orca-Distilled-7B-SLERP-exl2-6_5 huggingface-cli download bartowski/kellemar-DPO-Orca-Distilled-7B-SLERP-exl2 --revision 6_5 --local-dir kellemar-DPO-Orca-Distilled-7B-SLERP-exl2-6_5 --local-dir-use-symlinks False ```
haesun/distilbert-base-uncased-finetuned-emotion
haesun
2024-01-21T04:51:21Z
16
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-31T14:41:11Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9277315829088285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2192 - Accuracy: 0.9275 - F1: 0.9277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8729 | 1.0 | 250 | 0.3260 | 0.91 | 0.9098 | | 0.257 | 2.0 | 500 | 0.2192 | 0.9275 | 0.9277 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
brittlewis12/phi-2-orange-GGUF
brittlewis12
2024-01-21T04:44:50Z
7
5
null
[ "gguf", "phi-msft", "text-generation", "en", "dataset:Open-Orca/SlimOrca-Dedup", "dataset:migtissera/Synthia-v1.3", "dataset:LDJnr/Verified-Camel", "dataset:LDJnr/Pure-Dove", "dataset:LDJnr/Capybara", "dataset:meta-math/MetaMathQA", "dataset:Intel/orca_dpo_pairs", "dataset:argilla/ultrafeedback-binarized-preferences-cleaned", "base_model:rhysjones/phi-2-orange", "base_model:quantized:rhysjones/phi-2-orange", "license:mit", "region:us" ]
text-generation
2024-01-15T16:55:01Z
--- base_model: rhysjones/phi-2-orange inference: false language: - en license: mit model_creator: rhysjones model_name: Phi-2 Orange model_type: phi-msft datasets: - Open-Orca/SlimOrca-Dedup - migtissera/Synthia-v1.3 - LDJnr/Verified-Camel - LDJnr/Pure-Dove - LDJnr/Capybara - meta-math/MetaMathQA - Intel/orca_dpo_pairs - argilla/ultrafeedback-binarized-preferences-cleaned pipeline_tag: text-generation tags: - phi-msft prompt_template: "<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant " quantized_by: brittlewis12 --- # Phi-2 Orange GGUF ![Phi-2 Orange](https://huggingface.co/rhysjones/phi-2-orange/resolve/main/phi-2-orange.jpg) Original model: [Phi-2 Orange](https://huggingface.co/rhysjones/phi-2-orange) Model creator: [Rhys Jones](https://huggingface.co/rhysjones) This repo contains GGUF format model files for Rhys Jones' Phi-2 Orange. ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp revision [de473f5](https://github.com/ggerganov/llama.cpp/commit/de473f5f8e19ba5e659cdf5af65fb9251dce16c5), the last compatible version before Microsoft's [incompatible modeling changes](https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869) were [introduced to llama.cpp](https://github.com/ggerganov/llama.cpp/commit/15ebe59210e7fd9817ff67f51fa1a5ee2d004294). ### Prompt template: ChatML ``` <|im_start|>system {{system_message}}<|im_end|> <im_start|>user {{prompt}}<|im_end|> <|im_start|>assistant ``` --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluations: Evaluations done using mlabonne's [Colab notebook llm-autoeval](https://github.com/mlabonne/llm-autoeval). Also check out the alternative leaderboard, YALL: [Yet_Another_LLM_Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |----------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[phi-2-orange](https://huggingface.co/rhysjones/phi-2-orange)| **33.37**| 71.33| 49.87| **37.3**| **47.97**| |[phi-2-dpo](https://huggingface.co/lxuechen/phi-2-dpo)| 30.39| **71.68**| **50.75**| 34.9| 46.93| |[dolphin-2_6-phi-2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2)| 33.12| 69.85| 47.39| 37.2| 46.89| |[phi-2](https://huggingface.co/microsoft/phi-2)| 27.98| 70.8| 44.43| 35.21| 44.61|
brittlewis12/distilabeled-Marcoro14-7B-slerp-full-GGUF
brittlewis12
2024-01-21T04:43:58Z
24
0
null
[ "gguf", "distilabel", "dpo", "rlaif", "rlhf", "merge", "mergekit", "text-generation", "en", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:argilla/distilabeled-Marcoro14-7B-slerp-full", "base_model:quantized:argilla/distilabeled-Marcoro14-7B-slerp-full", "license:apache-2.0", "region:us" ]
text-generation
2024-01-16T03:12:05Z
--- base_model: argilla/distilabeled-Marcoro14-7B-slerp-full inference: false license: apache-2.0 language: - en datasets: - argilla/distilabel-intel-orca-dpo-pairs tags: - distilabel - dpo - rlaif - rlhf - merge - mergekit model_creator: argilla model_name: distilabeled-Marcoro14-7B-slerp-full model_type: mistral pipeline_tag: text-generation quantized_by: brittlewis12 --- # distilabeled-Marcoro14-7B-slerp-full GGUF Original model: [distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full) Model creator: [Argilla](https://huggingface.co/argilla) This repo contains GGUF format model files for Argilla’s distilabeled-Marcoro14-7B-slerp-full. As described on the original model card: > This model is a new DPO fine-tune of our new open dataset argilla/distilabel-intel-orca-dpo-pairs, on the mlabonne/Marcoro14-7B-slerp model. You can find more information of the "distilabeled" dataset used at this repo argilla/distilabeled-Hermes-2.5-Mistral-7B, and visit distilabel. > > The difference between this model and argilla/distilabeled-Marcoro14-7B-slerp is that this model has been fine-tuned for a whole epoch instead instead of 200 steps, so it has seen the whole dataset. ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 1879 (revision [3e5ca79](https://github.com/ggerganov/llama.cpp/commit/3e5ca7931c68152e4ec18d126e9c832dd84914c8)) ### Prompt template: Unknown `{{prompt}}` --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluations: | Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average| |-------------------------|------:|------:|---------:|-------:|------:| |[argilla/distilabeled-Marcoro14-7B-slerp-full](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp-full)| 45.17| **76.59**| 64.68| **48.15**| **58.65**| |[argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp)| **45.4**| 76.47| **65.46**| 47.19| 58.63| |[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67| |[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
brittlewis12/NeuralDaredevil-7B-GGUF
brittlewis12
2024-01-21T04:43:24Z
28
2
null
[ "gguf", "text-generation", "en", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "base_model:mlabonne/NeuralDaredevil-7B", "base_model:quantized:mlabonne/NeuralDaredevil-7B", "license:apache-2.0", "region:us" ]
text-generation
2024-01-15T20:07:49Z
--- base_model: mlabonne/NeuralDaredevil-7B inference: false language: - en license: apache-2.0 model_creator: mlabonne model_name: NeuralDaredevil-7B model_type: mistral datasets: - argilla/distilabel-intel-orca-dpo-pairs pipeline_tag: text-generation prompt_template: "<|system|> </s> <|user|> {prompt}</s> <|assistant|> " quantized_by: brittlewis12 --- # NeuralDaredevil-7B GGUF Original model: [NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) Model creator: [Maxime Labonne](https://huggingface.co/mlabonne) This repo contains GGUF format model files for Maxime Labonne’s NeuralDaredevil-7B. Maxime discussing NeuralDaredevil on [Twitter](https://twitter.com/maximelabonne/status/1746979986370666741): > 🤝 NeuralDaredevil is actually trained using [argilla’s] excellent distilled version of the [orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) made with [distilabel](https://github.com/argilla-io/distilabel). ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 1879 (revision [3e5ca79](https://github.com/ggerganov/llama.cpp/commit/3e5ca7931c68152e4ec18d126e9c832dd84914c8)) ### Prompt template: Zephyr Zephyr-style appears to work well! ``` <|system|> {{system_message}}</s> <|user|> {{prompt}}</s> <|assistant|> ``` --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluations: Evaluations reported from mlabonne’s alternative leaderboard, YALL: [Yet_Another_LLM_Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard). | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |-------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[**NeuralDaredevil-7B**](https://huggingface.co/mlabonne/NeuralDaredevil-7B) | **45.23**| **76.2**| **67.61**| **48.52**| **59.39**| |[Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 38.5 | 71.64 | 66.82 | 42.29 | 54.81 | |[openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) | 44.17 | 73.72 | 52.53 | 44.4 | 53.71 | |[OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) | 42.75 | 72.99 | 52.99 | 40.94 | 52.42 |
brittlewis12/stable-code-3b-GGUF
brittlewis12
2024-01-21T04:42:52Z
66
2
null
[ "gguf", "causal-lm", "code", "text-generation", "en", "dataset:tiiuae/falcon-refinedweb", "dataset:bigcode/the-stack-github-issues", "dataset:bigcode/commitpackft", "dataset:bigcode/starcoderdata", "dataset:EleutherAI/proof-pile-2", "dataset:meta-math/MetaMathQA", "base_model:stabilityai/stable-code-3b", "base_model:quantized:stabilityai/stable-code-3b", "license:other", "region:us" ]
text-generation
2024-01-17T12:23:22Z
--- base_model: stabilityai/stable-code-3b inference: false language: - en license: other license_link: https://huggingface.co/stabilityai/stable-code-3b/blob/main/LICENSE model_creator: stabilityai model_name: stable-code-3b pipeline_tag: text-generation datasets: - tiiuae/falcon-refinedweb - bigcode/the-stack-github-issues - bigcode/commitpackft - bigcode/starcoderdata - EleutherAI/proof-pile-2 - meta-math/MetaMathQA tags: - causal-lm - code quantized_by: brittlewis12 --- # stable-code-3b GGUF Original model: [stable-code-3b](https://huggingface.co/stabilityai/stable-code-3b) Model creator: [StabilityAI](https://huggingface.co/stabilityai/stable-code-3b) This repo contains GGUF format model files for StabilityAI’s stable-code-3b with 16k context. > stable-code-3b is a 2.7B billion parameter decoder-only language model pre-trained on 1.3 trillion tokens of diverse textual and code datasets. stable-code-3b is trained on 18 programming languages (selected based on the 2023 StackOverflow Developer Survey) and demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using BigCode's Evaluation Harness. ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 1897 (revision [2b3a665](https://github.com/ggerganov/llama.cpp/commit/2b3a665)) ## Prompt template: Completion or Fill-in-Middle ### Completion ``` {{prompt}} ``` ### Fill-in-Middle (FIM) ``` <fim_prefix>{{prefix code}}<fim_suffix>{{suffix code}}<fim_middle> ``` Example prompt with special prefix, suffix, and middle tokens in context: ``` <fim_prefix>def fib(n): <fim_suffix> else: return fib(n - 2) + fib(n - 1) <fim_middle> ``` --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- # Original Model Evaluation ![spiderchart](https://huggingface.co/stabilityai/stable-code-3b/raw/main/stable_code_3b_spiderchart.svg) | Model | Size | Python | C++ | Javascript | Java | PHP | Rust | |------------------|------|--------|------|------------|------|------|------| | **Stable Code** | 3B | 32.4% | 30.9%| 32.1% | 32.1%| 24.2%| 23.0%| | CodeLLama | 7B | 30.0% | 28.2%| 32.5% | 31.1%| 25.7%| 26.3%| | Deepseek Coder | 1.3B | 28.6% | 29.2%| 28.7% | 29.0%| 23.6%| 18.5%| | Wizard Coder | 3B | 31.6% | 25.6%| 26.2% | 25.8%| 25.3%| 20.4%| | StarCoder | 3B | 21.6% | 19.8%| 21.5% | 20.5%| 19.0%| 16.9%| | Replit Code V1.5 | 3B | 23.0% | 25.9%| 26.2% | 23.6%| 23.2%| 21.5%| | Deci Coder | 1B | 19.1% | 6.8% | 18.4% | 16.7%| 2.1% | 1.7% |
brittlewis12/TopicNeuralHermes-2.5-Mistral-7B-GGUF
brittlewis12
2024-01-21T04:42:11Z
10
1
null
[ "gguf", "text-generation", "en", "dataset:bunkalab/topic_based_chatml_dpo_pairs", "base_model:charlesdedampierre/TopicNeuralHermes-2.5-Mistral-7B", "base_model:quantized:charlesdedampierre/TopicNeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2024-01-20T03:54:23Z
--- base_model: charlesdedampierre/TopicNeuralHermes-2.5-Mistral-7B inference: false language: - en license: apache-2.0 model_creator: charlesdedampierre model_name: TopicNeuralHermes-2.5-Mistral-7B model_type: mistral pipeline_tag: text-generation prompt_template: | <|im_start|>system {{system_prompt}}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant datasets: - bunkalab/topic_based_chatml_dpo_pairs quantized_by: brittlewis12 --- # TopicNeuralHermes-2.5-Mistral-7B GGUF Original model: [TopicNeuralHermes-2.5-Mistral-7B](https://huggingface.co/charlesdedampierre/TopicNeuralHermes-2.5-Mistral-7B) Model creator: [charlesdedampierre](https://huggingface.co/charlesdedampierre) This repo contains GGUF format model files for charlesdedampierre’s TopicNeuralHermes-2.5-Mistral-7B. > TopicNeuralHermes 2.5 Mistral 7B is a refined model developed through fine-tuning with a specific subset of data, selected via Topic Modeling Techniques using [Bunkatopics](https://github.com/charlesdedampierre/BunkaTopics), as a continuing from [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). > We found the 13 distinctive following topics described by 10 terms each: > > **Emotional Dynamics**: feelings, Quinn, Austin, minority women, teaching, schools, individual, personality, backgrounds, triggers. > > **Global Knowledge Queries**: question, information, geography, news articles, Step, answer, capital city, pipeline system, country, analogy. > > **Digital Interactions and Queries**: questions, question, PersonX, modem, answers, effect relationship, Quora, browser, answer, e-commerce. > > **Business and Cybersecurity**: email, businesses, initiatives, innovation, advertising papers, spam, breaches, antivirus, payments, prospects. > > **Lifestyle and Wellness**: sleep, exercise, gifts, shopping, Casey, stores, stress, headaches, options, mood. > > **Wildlife Ecology**: birds, prey, animals, species, infection, nest, eggs, bacteria, insects, kitty condo. > > **Environmental Science and Climate**: temperature, gases, greenhouse, emissions, perturbation, sulfur, dioxide, climate change, water, heat. > > **Maritime and Mechanical Engineering**: ship, bowling, propulsion, beam width, Filing cabinet, LED, lane, containment area, lawnmower, rotors. > > **Cultural and Social Dynamics**: Lindsey, museum, Kate, Rachel, Jason, Alex, Erin, conversation, Laura, exhibits. > > **Political Media Analysis**: media platforms, election, politics, teenagers, elections, White House, Barack Obama, nation, Confederate, depression. > > **International Relations and Policy**: cooperation, EU, nations, alliance, NATO, European Union, member states, policy, monarch, Brexit. > > **Astrophysics and Physical Sciences**: electrons, km, Moon, acceleration, orbit, friction, current, asteroid, electron, collector emitter. > > **Film Critique and Analysis**: movie review, film, reviewer, sentiment, critic, flaws, DVD, plot, opinion, originality. ### What is GGUF? GGUF is a file format for representing AI models. It is the third version of the format, introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Converted using llama.cpp build 1925 (revision [381ee19](https://github.com/ggerganov/llama.cpp/commit/381ee195721d8e747ee31a60c0751822b3072f02)) ### Prompt template: ChatML ``` <|im_start|>system {{system_message}}<|im_end|> <|im_start|>user {{prompt}}<|im_end|> <|im_start|>assistant ``` --- ## Download & run with [cnvrs](https://twitter.com/cnvrsai) on iPhone, iPad, and Mac! ![cnvrs.ai](https://pbs.twimg.com/profile_images/1744049151241797632/0mIP-P9e_400x400.jpg) [cnvrs](https://testflight.apple.com/join/sFWReS7K) is the best app for private, local AI on your device: - create & save **Characters** with custom system prompts & temperature settings - download and experiment with any **GGUF model** you can [find on HuggingFace](https://huggingface.co/models?library=gguf)! - make it your own with custom **Theme colors** - powered by Metal ⚡️ & [Llama.cpp](https://github.com/ggerganov/llama.cpp), with **haptics** during response streaming! - **try it out** yourself today, on [Testflight](https://testflight.apple.com/join/sFWReS7K)! - follow [cnvrs on twitter](https://twitter.com/cnvrsai) to stay up to date --- ## Original Model Evaluations: ![](https://cdn-uploads.huggingface.co/production/uploads/63c13d74f02ef5b95e0e448e/TOEijYNgtY6B7U9Pn29gL.png)
Locutusque/Qwen-14B-llamafied
Locutusque
2024-01-21T04:38:22Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "zh", "en", "code", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T04:30:34Z
--- license: other license_name: qwen license_link: LICENSE language: - zh - en - code --- # Description This is a llamafied version of the Qwen/Qwen-14B model, with theoretically no performance degradation since the tokenizer was not replaced. It was llamafied using a script found in the LLaMA-factory repository. # License Make sure to comply with the non-commercial license given by Qwen.
SciPhi/Sensei-7B-V1
SciPhi
2024-01-21T04:37:24Z
27
93
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-18T17:43:53Z
--- {} --- # Sensei-7B-V1 Model Card Sensei-7B-V1 is a Large Language Model (LLM) fine-tuned from OpenPipe's mistral-ft-optimized-1218, which is based on Mistral-7B. Sensei-7B-V1 was was fine-tuned with a fully synthetic dataset to specialize at performing retrieval-augmented generation (RAG) over detailed web search results. This model strives to specialize in using search, such as [AgentSearch](https://huggingface.co/datasets/SciPhi/AgentSearch-V1), to generate accurate and well-cited summaries from a range of search results, providing more accurate answers to user queries. Please refer to the [docs here](https://agent-search.readthedocs.io/en/latest/) for more information on how to run Sensei end-to-end. Currently, Sensei is available via hosted api at https://www.sciphi.ai. You can try a demonstration [here](https://search.sciphi.ai/). ## Model Architecture Base Model: mistral-ft-optimized-1218 **Architecture Features:** - Transformer-based model - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Using the Model It is recommended to use a single search query. The model will return an answer using search results as context. Using the AgentSearch package an example is shown below. ``` export SCIPHI_API_KEY=MY_SCIPHI_API_KEY # Use `Sensei` for LLM RAG w/ AgentSearch python -m agent_search.scripts.run_rag run --query="What is Fermat's last theorem?" ``` Alternatively, you may provide your own search context directly to the model by adhereing to the following format: ``` ### Instruction: Your task is to perform retrieval augmented generation (RAG) over the given query and search results. Return your answer in a json format that includes a summary of the search results and a list of related queries. Query: {prompt} \n\n Search Results: {context} \n\n Query: {prompt} ### Response: {"summary": ``` __Note__: The inclusion of the text '{"summary":' following the Response footer is intentional. This ensures that the model responds with the proper json format, failure to include this leading prefix can cause small deviaitons. Combining the output with the leading string '{"summary":' results in a properly formatted JSON with keys 'summary' and 'other_queries'. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## References 1. OpenPipe AI. (2023). Model Card for mistral-ft-optimized-1218. The mistral-ft-1218 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters optimized for downstream fine-tuning on a variety of tasks. For full details, please refer to the release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
pinkyponky/Mistral-7b-instruct-v0.2-summ-sft-e3
pinkyponky
2024-01-21T04:05:30Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-21T04:04:27Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
pinkyponky/Mistral-7b-instruct-v0.2-summ-sft-e1
pinkyponky
2024-01-21T03:59:32Z
0
0
null
[ "safetensors", "license:cc-by-nc-4.0", "region:us" ]
null
2024-01-21T03:51:50Z
--- license: cc-by-nc-4.0 --- Description to load and test will be added soon. More details on training and data will be added aswell. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer TBD ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Hi, my name is " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=64) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
SwiftEggTart/ppo-Huggy
SwiftEggTart
2024-01-21T03:55:13Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-21T03:55:07Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SwiftEggTart/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CLMBR/superlative-quantifier-lstm-2
CLMBR
2024-01-21T03:43:43Z
1
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-16T15:29:18Z
--- tags: - generated_from_trainer model-index: - name: superlative-quantifier-lstm-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superlative-quantifier-lstm-2 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7739 | 0.03 | 76320 | 4.7591 | | 4.4948 | 1.03 | 152640 | 4.4813 | | 4.3521 | 0.03 | 228960 | 4.3474 | | 4.2673 | 1.03 | 305280 | 4.2657 | | 4.2044 | 0.03 | 381600 | 4.2106 | | 4.1584 | 1.03 | 457920 | 4.1697 | | 4.1237 | 0.03 | 534240 | 4.1397 | | 4.0937 | 1.03 | 610560 | 4.1153 | | 4.0646 | 0.03 | 686880 | 4.0961 | | 4.0397 | 1.03 | 763200 | 4.0802 | | 4.0188 | 0.03 | 839520 | 4.0677 | | 3.9979 | 1.03 | 915840 | 4.0576 | | 3.9875 | 0.03 | 992160 | 4.0478 | | 3.9694 | 1.03 | 1068480 | 4.0406 | | 3.9548 | 0.03 | 1144800 | 4.0342 | | 3.9407 | 0.03 | 1221120 | 4.0289 | | 3.9259 | 1.03 | 1297440 | 4.0236 | | 3.9208 | 2.03 | 1373760 | 4.0188 | | 3.9086 | 0.03 | 1450080 | 4.0158 | | 3.9049 | 1.03 | 1526400 | 4.0122 | | 3.9024 | 2.03 | 1602720 | 4.0090 | | 3.8964 | 0.03 | 1679040 | 4.0069 | | 3.8947 | 0.03 | 1755360 | 4.0043 | | 3.8923 | 0.03 | 1831680 | 4.0024 | | 3.8834 | 0.03 | 1908000 | 4.0003 | | 3.8735 | 1.03 | 1984320 | 3.9990 | | 3.8695 | 0.03 | 2060640 | 3.9974 | | 3.8628 | 1.03 | 2136960 | 3.9960 | | 3.8635 | 2.03 | 2213280 | 3.9948 | | 3.8567 | 0.03 | 2289600 | 3.9936 | | 3.8478 | 1.03 | 2365920 | 3.9924 | | 3.8426 | 2.03 | 2442240 | 3.9914 | | 3.8355 | 0.03 | 2518560 | 3.9904 | | 3.8351 | 0.03 | 2594880 | 3.9893 | | 3.8282 | 1.03 | 2671200 | 3.9884 | | 3.8322 | 2.03 | 2747520 | 3.9875 | | 3.8311 | 0.03 | 2823840 | 3.9872 | | 3.8322 | 0.03 | 2900160 | 3.9865 | | 3.8356 | 1.03 | 2976480 | 3.9860 | | 3.8367 | 2.02 | 3052726 | 3.9856 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
drabindr/detr-resnet-50_finetuned_cppe5
drabindr
2024-01-21T03:40:20Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-01-21T03:05:31Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Zintoulou/codellamafinetune2
Zintoulou
2024-01-21T03:38:15Z
0
0
null
[ "generated_from_trainer", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "license:llama2", "region:us" ]
null
2024-01-21T03:13:10Z
--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer model-index: - name: codellamafinetune2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codellamafinetune2 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.688 | 1.0 | 1 | 2.7652 | | 2.2875 | 2.0 | 2 | 2.2572 | | 1.8353 | 3.0 | 3 | 1.8551 | | 1.4334 | 4.0 | 4 | 1.4766 | | 1.0292 | 5.0 | 5 | 1.3120 | | 0.7473 | 6.0 | 6 | 1.1319 | | 0.6156 | 7.0 | 7 | 1.0788 | | 0.4577 | 8.0 | 8 | 1.0291 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.13.3
bloedddd/creamburger
bloedddd
2024-01-21T03:27:52Z
0
0
null
[ "arxiv:1910.09700", "license:cc", "region:us" ]
null
2024-01-21T03:26:29Z
--- license: cc --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> this model is meant to do sex with you ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> sex model sexy sex - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
StanfordAIMI/RadLLaMA-7b
StanfordAIMI
2024-01-21T03:05:11Z
174
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T19:48:37Z
--- license: llama2 --- <div align="center"> <h1> AIMI FMs: A Collection of Foundation Models in Radiology </h1> </div> <p align="center"> 📝 <a href="https://arxiv.org/" target="_blank">Paper</a> • 🤗 <a href="https://huggingface.co/StanfordAIMI/RadLLaMA-7b" target="_blank">Hugging Face</a> • 🧩 <a href="https://github.com/Stanford-AIMI/aimi-fms" target="_blank">Github</a> • 🪄 <a href="https://github.com/Stanford-AIMI/aimi-fms" target="_blank">Project</a> </p> <div align="center"> </div> ## ✨ Latest News - [01/20/2023]: Model released in [Hugging Face](https://huggingface.co/StanfordAIMI/RadLLaMA-7b). ## 🎬 Get Started ```python from transformers import AutoTokenizer from transformers import AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("StanfordAIMI/RadLLaMA-7b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("StanfordAIMI/RadLLaMA-7b") prompt = "Hi" conv = [{"from": "human", "value": prompt}] input_ids = tokenizer.apply_chat_template(conv, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_ids) response = tokenizer.decode(outputs[0]) print(response) ``` ## ✏️ Citation ``` @article{aimifms-2024, title={}, author={}, journal={arXiv preprint arXiv:xxxx.xxxxx}, url={https://arxiv.org/abs/xxxx.xxxxx}, year={2024} } ```
sageriverlee/recyclethis
sageriverlee
2024-01-21T03:02:54Z
0
0
null
[ "dataset:thomasavare/waste-classification-v2", "license:gpl-3.0", "region:us" ]
null
2024-01-21T02:54:03Z
--- license: gpl-3.0 datasets: - thomasavare/waste-classification-v2 ---
rafi138/setfit-paraphrase-mpnet-base-v2-business-type
rafi138
2024-01-21T02:48:07Z
46
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
text-classification
2024-01-17T16:35:31Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: Dadon Hotel - text: Joyi Homeo Hall - text: Masum Egg Supplier - text: Salam Automobiles - text: Shoumik Enterprise pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.59 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 19 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Landmark | <ul><li>'Rajarbagh Shahjahanpur Moar'</li><li>'3 Number Mp Checkpost'</li><li>'Akua Madrasha Quarter Rail Crossing'</li></ul> | | Religious Place | <ul><li>'Csd Masjid Jashore Cantonment'</li><li>'Baytut Tayyib Jame Masjid'</li><li>'Court Para Jame Masjid'</li></ul> | | Residential | <ul><li>'Matrichaya'</li><li>'Chowdhury Mansion'</li><li>'Nabila Villa'</li></ul> | | Government | <ul><li>'Rapid Action Battalion 3 (RAB)'</li><li>'Bangladesh Muktijoddha Sangsad Tejgaon Industrial Area Unit Command'</li><li>'Subhanighat Police Outpost'</li></ul> | | Recreation | <ul><li>'5h Avenue Convention Hall'</li><li>'Purobi Chinema Hall'</li><li>'Shotodol Club'</li></ul> | | Commercial | <ul><li>'Bikers Racing Zone'</li><li>'Sr Parcel Service Limited'</li><li>'Vegetables Market'</li></ul> | | Education | <ul><li>'Dinajpur Polytechnic Institute'</li><li>'Gazipur Central Public Management Institute'</li><li>'Maskatadighi Government Primary School'</li></ul> | | Bank | <ul><li>'Commercial Bank Of Ceylon Plc Shantinagar'</li><li>'Social Islami Bank Limited (SIBL) Mohammadpur'</li><li>'Dhaka Bank Limited Jashore Sadar'</li></ul> | | Fuel | <ul><li>'Ferdaous Enterprise'</li><li>'Ahmed Bd Trade'</li><li>'Hasan Filling Station'</li></ul> | | Hotel | <ul><li>'Hotel Arafat'</li><li>'World Beach Resort'</li><li>'Hotel Chalontika'</li></ul> | | Shop | <ul><li>'Janosheba Medico'</li><li>'New Mone Rekho Tailors'</li><li>'Man Tailors'</li></ul> | | Utility | <ul><li>'Pole No 86'</li><li>'Pole No 239'</li><li>'Salimullah Road Water Pump'</li></ul> | | Construction | <ul><li>'N J Enterprise'</li><li>'Bk Traders'</li><li>'Sohel Glass'</li></ul> | | Agricultural | <ul><li>'Mango Seedlings'</li><li>'Amaia Garden'</li><li>'Gardey'</li></ul> | | Office | <ul><li>'Dalik Lekhak And Serviour'</li><li>'Assistant Police Commissioner Traffic Mohammadpur Zone Office'</li><li>'Challenger Elevator And Escalator Limited'</li></ul> | | Healthcare | <ul><li>'Afroz Homeo Hall'</li><li>'Expert Dental Solution'</li><li>'Bhai Bon Homeo Hall'</li></ul> | | Transportation | <ul><li>'Ideal Parking Jone'</li><li>'Hanif Bus Counter'</li><li>'Five Star Transport Agency'</li></ul> | | Food | <ul><li>'Madhuban Hotel'</li><li>'Al Hamza Biriyani House'</li><li>'Gramer Bari'</li></ul> | | Industry | <ul><li>'Rony Group'</li><li>'Net Factory'</li><li>'Kumudini Welfare Trust Of Bengal Bd Limited'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.59 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("rafi138/setfit-paraphrase-mpnet-base-v2-business-type") # Run inference preds = model("Dadon Hotel") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 3.3752 | 11 | | Label | Training Sample Count | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------| | ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural | 0 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:---------:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2815 | - | | 0.0019 | 50 | 0.2543 | - | | 0.0038 | 100 | 0.2781 | - | | 0.0057 | 150 | 0.2328 | - | | 0.0076 | 200 | 0.2258 | - | | 0.0095 | 250 | 0.1884 | - | | 0.0115 | 300 | 0.2192 | - | | 0.0134 | 350 | 0.1935 | - | | 0.0153 | 400 | 0.2057 | - | | 0.0172 | 450 | 0.1949 | - | | 0.0191 | 500 | 0.1955 | - | | 0.0210 | 550 | 0.1744 | - | | 0.0229 | 600 | 0.1518 | - | | 0.0248 | 650 | 0.1804 | - | | 0.0267 | 700 | 0.1669 | - | | 0.0286 | 750 | 0.1565 | - | | 0.0306 | 800 | 0.14 | - | | 0.0325 | 850 | 0.1648 | - | | 0.0344 | 900 | 0.1441 | - | | 0.0363 | 950 | 0.1237 | - | | 0.0382 | 1000 | 0.1155 | - | | 0.0401 | 1050 | 0.1303 | - | | 0.0420 | 1100 | 0.1115 | - | | 0.0439 | 1150 | 0.1533 | - | | 0.0458 | 1200 | 0.1278 | - | | 0.0477 | 1250 | 0.0851 | - | | 0.0496 | 1300 | 0.0982 | - | | 0.0516 | 1350 | 0.0925 | - | | 0.0535 | 1400 | 0.0861 | - | | 0.0554 | 1450 | 0.1121 | - | | 0.0573 | 1500 | 0.1226 | - | | 0.0592 | 1550 | 0.1049 | - | | 0.0611 | 1600 | 0.1101 | - | | 0.0630 | 1650 | 0.113 | - | | 0.0649 | 1700 | 0.1061 | - | | 0.0668 | 1750 | 0.0573 | - | | 0.0687 | 1800 | 0.0665 | - | | 0.0707 | 1850 | 0.0657 | - | | 0.0726 | 1900 | 0.082 | - | | 0.0745 | 1950 | 0.0654 | - | | 0.0764 | 2000 | 0.0783 | - | | 0.0783 | 2050 | 0.0713 | - | | 0.0802 | 2100 | 0.0669 | - | | 0.0821 | 2150 | 0.0536 | - | | 0.0840 | 2200 | 0.0556 | - | | 0.0859 | 2250 | 0.0704 | - | | 0.0878 | 2300 | 0.063 | - | | 0.0897 | 2350 | 0.0472 | - | | 0.0917 | 2400 | 0.0562 | - | | 0.0936 | 2450 | 0.0392 | - | | 0.0955 | 2500 | 0.0465 | - | | 0.0974 | 2550 | 0.0424 | - | | 0.0993 | 2600 | 0.0453 | - | | 0.1012 | 2650 | 0.0375 | - | | 0.1031 | 2700 | 0.0445 | - | | 0.1050 | 2750 | 0.0231 | - | | 0.1069 | 2800 | 0.0386 | - | | 0.1088 | 2850 | 0.0258 | - | | 0.1108 | 2900 | 0.0344 | - | | 0.1127 | 2950 | 0.0143 | - | | 0.1146 | 3000 | 0.016 | - | | 0.1165 | 3050 | 0.0216 | - | | 0.1184 | 3100 | 0.0365 | - | | 0.1203 | 3150 | 0.0238 | - | | 0.1222 | 3200 | 0.0099 | - | | 0.1241 | 3250 | 0.0211 | - | | 0.1260 | 3300 | 0.0149 | - | | 0.1279 | 3350 | 0.0406 | - | | 0.1298 | 3400 | 0.0231 | - | | 0.1318 | 3450 | 0.0266 | - | | 0.1337 | 3500 | 0.0225 | - | | 0.1356 | 3550 | 0.0203 | - | | 0.1375 | 3600 | 0.0097 | - | | 0.1394 | 3650 | 0.0143 | - | | 0.1413 | 3700 | 0.0052 | - | | 0.1432 | 3750 | 0.0094 | - | | 0.1451 | 3800 | 0.0029 | - | | 0.1470 | 3850 | 0.0065 | - | | 0.1489 | 3900 | 0.0078 | - | | 0.1508 | 3950 | 0.0109 | - | | 0.1528 | 4000 | 0.0054 | - | | 0.1547 | 4050 | 0.0069 | - | | 0.1566 | 4100 | 0.0248 | - | | 0.1585 | 4150 | 0.0069 | - | | 0.1604 | 4200 | 0.0073 | - | | 0.1623 | 4250 | 0.0054 | - | | 0.1642 | 4300 | 0.0027 | - | | 0.1661 | 4350 | 0.0028 | - | | 0.1680 | 4400 | 0.0021 | - | | 0.1699 | 4450 | 0.0038 | - | | 0.1719 | 4500 | 0.0034 | - | | 0.1738 | 4550 | 0.0158 | - | | 0.1757 | 4600 | 0.0043 | - | | 0.1776 | 4650 | 0.0055 | - | | 0.1795 | 4700 | 0.0064 | - | | 0.1814 | 4750 | 0.0021 | - | | 0.1833 | 4800 | 0.0026 | - | | 0.1852 | 4850 | 0.0112 | - | | 0.1871 | 4900 | 0.0029 | - | | 0.1890 | 4950 | 0.0176 | - | | 0.1909 | 5000 | 0.0071 | - | | 0.1929 | 5050 | 0.0097 | - | | 0.1948 | 5100 | 0.0032 | - | | 0.1967 | 5150 | 0.0044 | - | | 0.1986 | 5200 | 0.0065 | - | | 0.2005 | 5250 | 0.0176 | - | | 0.2024 | 5300 | 0.0026 | - | | 0.2043 | 5350 | 0.0036 | - | | 0.2062 | 5400 | 0.0022 | - | | 0.2081 | 5450 | 0.0014 | - | | 0.2100 | 5500 | 0.0073 | - | | 0.2120 | 5550 | 0.0009 | - | | 0.2139 | 5600 | 0.0011 | - | | 0.2158 | 5650 | 0.0022 | - | | 0.2177 | 5700 | 0.0011 | - | | 0.2196 | 5750 | 0.0074 | - | | 0.2215 | 5800 | 0.0114 | - | | 0.2234 | 5850 | 0.0013 | - | | 0.2253 | 5900 | 0.0009 | - | | 0.2272 | 5950 | 0.0018 | - | | 0.2291 | 6000 | 0.001 | - | | 0.2310 | 6050 | 0.0013 | - | | 0.2330 | 6100 | 0.0058 | - | | 0.2349 | 6150 | 0.0012 | - | | 0.2368 | 6200 | 0.0013 | - | | 0.2387 | 6250 | 0.0009 | - | | 0.2406 | 6300 | 0.0012 | - | | 0.2425 | 6350 | 0.0006 | - | | 0.2444 | 6400 | 0.0013 | - | | 0.2463 | 6450 | 0.0005 | - | | 0.2482 | 6500 | 0.0032 | - | | 0.2501 | 6550 | 0.0006 | - | | 0.2521 | 6600 | 0.0007 | - | | 0.2540 | 6650 | 0.0029 | - | | 0.2559 | 6700 | 0.001 | - | | 0.2578 | 6750 | 0.0005 | - | | 0.2597 | 6800 | 0.001 | - | | 0.2616 | 6850 | 0.0004 | - | | 0.2635 | 6900 | 0.0007 | - | | 0.2654 | 6950 | 0.0006 | - | | 0.2673 | 7000 | 0.0034 | - | | 0.2692 | 7050 | 0.0006 | - | | 0.2711 | 7100 | 0.0006 | - | | 0.2731 | 7150 | 0.0013 | - | | 0.2750 | 7200 | 0.0017 | - | | 0.2769 | 7250 | 0.0006 | - | | 0.2788 | 7300 | 0.0007 | - | | 0.2807 | 7350 | 0.0005 | - | | 0.2826 | 7400 | 0.0009 | - | | 0.2845 | 7450 | 0.0007 | - | | 0.2864 | 7500 | 0.0008 | - | | 0.2883 | 7550 | 0.001 | - | | 0.2902 | 7600 | 0.0004 | - | | 0.2922 | 7650 | 0.0004 | - | | 0.2941 | 7700 | 0.0007 | - | | 0.2960 | 7750 | 0.0004 | - | | 0.2979 | 7800 | 0.0011 | - | | 0.2998 | 7850 | 0.0005 | - | | 0.3017 | 7900 | 0.0004 | - | | 0.3036 | 7950 | 0.0003 | - | | 0.3055 | 8000 | 0.001 | - | | 0.3074 | 8050 | 0.0005 | - | | 0.3093 | 8100 | 0.0003 | - | | 0.3112 | 8150 | 0.0004 | - | | 0.3132 | 8200 | 0.0003 | - | | 0.3151 | 8250 | 0.007 | - | | 0.3170 | 8300 | 0.0026 | - | | 0.3189 | 8350 | 0.0004 | - | | 0.3208 | 8400 | 0.0005 | - | | 0.3227 | 8450 | 0.0005 | - | | 0.3246 | 8500 | 0.0004 | - | | 0.3265 | 8550 | 0.0003 | - | | 0.3284 | 8600 | 0.0003 | - | | 0.3303 | 8650 | 0.0003 | - | | 0.3323 | 8700 | 0.0026 | - | | 0.3342 | 8750 | 0.0003 | - | | 0.3361 | 8800 | 0.0002 | - | | 0.3380 | 8850 | 0.0002 | - | | 0.3399 | 8900 | 0.0002 | - | | 0.3418 | 8950 | 0.0004 | - | | 0.3437 | 9000 | 0.0003 | - | | 0.3456 | 9050 | 0.0005 | - | | 0.3475 | 9100 | 0.0002 | - | | 0.3494 | 9150 | 0.0052 | - | | 0.3513 | 9200 | 0.0138 | - | | 0.3533 | 9250 | 0.0006 | - | | 0.3552 | 9300 | 0.0004 | - | | 0.3571 | 9350 | 0.0019 | - | | 0.3590 | 9400 | 0.0003 | - | | 0.3609 | 9450 | 0.0002 | - | | 0.3628 | 9500 | 0.0002 | - | | 0.3647 | 9550 | 0.0003 | - | | 0.3666 | 9600 | 0.0003 | - | | 0.3685 | 9650 | 0.0269 | - | | 0.3704 | 9700 | 0.0004 | - | | 0.3724 | 9750 | 0.0002 | - | | 0.3743 | 9800 | 0.0005 | - | | 0.3762 | 9850 | 0.0002 | - | | 0.3781 | 9900 | 0.0003 | - | | 0.3800 | 9950 | 0.0002 | - | | 0.3819 | 10000 | 0.0002 | - | | 0.3838 | 10050 | 0.0002 | - | | 0.3857 | 10100 | 0.0158 | - | | 0.3876 | 10150 | 0.0004 | - | | 0.3895 | 10200 | 0.0094 | - | | 0.3914 | 10250 | 0.0098 | - | | 0.3934 | 10300 | 0.0003 | - | | 0.3953 | 10350 | 0.0003 | - | | 0.3972 | 10400 | 0.0004 | - | | 0.3991 | 10450 | 0.0003 | - | | 0.4010 | 10500 | 0.0003 | - | | 0.4029 | 10550 | 0.0002 | - | | 0.4048 | 10600 | 0.0006 | - | | 0.4067 | 10650 | 0.0004 | - | | 0.4086 | 10700 | 0.0002 | - | | 0.4105 | 10750 | 0.0005 | - | | 0.4124 | 10800 | 0.0002 | - | | 0.4144 | 10850 | 0.0002 | - | | 0.4163 | 10900 | 0.0002 | - | | 0.4182 | 10950 | 0.0002 | - | | 0.4201 | 11000 | 0.0002 | - | | 0.4220 | 11050 | 0.0002 | - | | 0.4239 | 11100 | 0.0002 | - | | 0.4258 | 11150 | 0.0002 | - | | 0.4277 | 11200 | 0.0002 | - | | 0.4296 | 11250 | 0.0002 | - | | 0.4315 | 11300 | 0.0001 | - | | 0.4335 | 11350 | 0.0001 | - | | 0.4354 | 11400 | 0.0001 | - | | 0.4373 | 11450 | 0.0002 | - | | 0.4392 | 11500 | 0.0001 | - | | 0.4411 | 11550 | 0.0002 | - | | 0.4430 | 11600 | 0.0001 | - | | 0.4449 | 11650 | 0.0001 | - | | 0.4468 | 11700 | 0.0002 | - | | 0.4487 | 11750 | 0.0001 | - | | 0.4506 | 11800 | 0.0001 | - | | 0.4525 | 11850 | 0.0002 | - | | 0.4545 | 11900 | 0.0006 | - | | 0.4564 | 11950 | 0.0002 | - | | 0.4583 | 12000 | 0.0001 | - | | 0.4602 | 12050 | 0.0001 | - | | 0.4621 | 12100 | 0.0002 | - | | 0.4640 | 12150 | 0.0002 | - | | 0.4659 | 12200 | 0.0001 | - | | 0.4678 | 12250 | 0.0001 | - | | 0.4697 | 12300 | 0.0002 | - | | 0.4716 | 12350 | 0.0004 | - | | 0.4736 | 12400 | 0.0003 | - | | 0.4755 | 12450 | 0.0279 | - | | 0.4774 | 12500 | 0.0072 | - | | 0.4793 | 12550 | 0.006 | - | | 0.4812 | 12600 | 0.0325 | - | | 0.4831 | 12650 | 0.0012 | - | | 0.4850 | 12700 | 0.0015 | - | | 0.4869 | 12750 | 0.0013 | - | | 0.4888 | 12800 | 0.0002 | - | | 0.4907 | 12850 | 0.0003 | - | | 0.4926 | 12900 | 0.0003 | - | | 0.4946 | 12950 | 0.001 | - | | 0.4965 | 13000 | 0.0004 | - | | 0.4984 | 13050 | 0.0002 | - | | 0.5003 | 13100 | 0.0002 | - | | 0.5022 | 13150 | 0.0002 | - | | 0.5041 | 13200 | 0.0003 | - | | 0.5060 | 13250 | 0.0001 | - | | 0.5079 | 13300 | 0.0001 | - | | 0.5098 | 13350 | 0.0002 | - | | 0.5117 | 13400 | 0.0001 | - | | 0.5137 | 13450 | 0.0002 | - | | 0.5156 | 13500 | 0.0001 | - | | 0.5175 | 13550 | 0.0002 | - | | 0.5194 | 13600 | 0.0002 | - | | 0.5213 | 13650 | 0.0002 | - | | 0.5232 | 13700 | 0.0001 | - | | 0.5251 | 13750 | 0.0002 | - | | 0.5270 | 13800 | 0.0002 | - | | 0.5289 | 13850 | 0.0001 | - | | 0.5308 | 13900 | 0.0001 | - | | 0.5327 | 13950 | 0.0002 | - | | 0.5347 | 14000 | 0.0001 | - | | 0.5366 | 14050 | 0.0001 | - | | 0.5385 | 14100 | 0.0001 | - | | 0.5404 | 14150 | 0.0001 | - | | 0.5423 | 14200 | 0.0149 | - | | 0.5442 | 14250 | 0.0002 | - | | 0.5461 | 14300 | 0.0009 | - | | 0.5480 | 14350 | 0.0057 | - | | 0.5499 | 14400 | 0.0089 | - | | 0.5518 | 14450 | 0.0154 | - | | 0.5538 | 14500 | 0.0003 | - | | 0.5557 | 14550 | 0.0016 | - | | 0.5576 | 14600 | 0.0001 | - | | 0.5595 | 14650 | 0.0001 | - | | 0.5614 | 14700 | 0.0002 | - | | 0.5633 | 14750 | 0.0002 | - | | 0.5652 | 14800 | 0.0004 | - | | 0.5671 | 14850 | 0.0004 | - | | 0.5690 | 14900 | 0.0004 | - | | 0.5709 | 14950 | 0.0002 | - | | 0.5728 | 15000 | 0.0001 | - | | 0.5748 | 15050 | 0.0001 | - | | 0.5767 | 15100 | 0.0002 | - | | 0.5786 | 15150 | 0.0002 | - | | 0.5805 | 15200 | 0.0001 | - | | 0.5824 | 15250 | 0.0002 | - | | 0.5843 | 15300 | 0.0001 | - | | 0.5862 | 15350 | 0.0002 | - | | 0.5881 | 15400 | 0.0001 | - | | 0.5900 | 15450 | 0.0113 | - | | 0.5919 | 15500 | 0.0002 | - | | 0.5939 | 15550 | 0.0002 | - | | 0.5958 | 15600 | 0.0001 | - | | 0.5977 | 15650 | 0.0001 | - | | 0.5996 | 15700 | 0.0004 | - | | 0.6015 | 15750 | 0.0009 | - | | 0.6034 | 15800 | 0.001 | - | | 0.6053 | 15850 | 0.0002 | - | | 0.6072 | 15900 | 0.0002 | - | | 0.6091 | 15950 | 0.0003 | - | | 0.6110 | 16000 | 0.0002 | - | | 0.6129 | 16050 | 0.0004 | - | | 0.6149 | 16100 | 0.0001 | - | | 0.6168 | 16150 | 0.0001 | - | | 0.6187 | 16200 | 0.0001 | - | | 0.6206 | 16250 | 0.0001 | - | | 0.6225 | 16300 | 0.0001 | - | | 0.6244 | 16350 | 0.0001 | - | | 0.6263 | 16400 | 0.0001 | - | | 0.6282 | 16450 | 0.0008 | - | | 0.6301 | 16500 | 0.0001 | - | | 0.6320 | 16550 | 0.0001 | - | | 0.6340 | 16600 | 0.0001 | - | | 0.6359 | 16650 | 0.0001 | - | | 0.6378 | 16700 | 0.0001 | - | | 0.6397 | 16750 | 0.0001 | - | | 0.6416 | 16800 | 0.0001 | - | | 0.6435 | 16850 | 0.0004 | - | | 0.6454 | 16900 | 0.0001 | - | | 0.6473 | 16950 | 0.0001 | - | | 0.6492 | 17000 | 0.0001 | - | | 0.6511 | 17050 | 0.0001 | - | | 0.6530 | 17100 | 0.0001 | - | | 0.6550 | 17150 | 0.0003 | - | | 0.6569 | 17200 | 0.0003 | - | | 0.6588 | 17250 | 0.0002 | - | | 0.6607 | 17300 | 0.0002 | - | | 0.6626 | 17350 | 0.0011 | - | | 0.6645 | 17400 | 0.0003 | - | | 0.6664 | 17450 | 0.0001 | - | | 0.6683 | 17500 | 0.0003 | - | | 0.6702 | 17550 | 0.0001 | - | | 0.6721 | 17600 | 0.0002 | - | | 0.6741 | 17650 | 0.0001 | - | | 0.6760 | 17700 | 0.0001 | - | | 0.6779 | 17750 | 0.0001 | - | | 0.6798 | 17800 | 0.0001 | - | | 0.6817 | 17850 | 0.0001 | - | | 0.6836 | 17900 | 0.0001 | - | | 0.6855 | 17950 | 0.0001 | - | | 0.6874 | 18000 | 0.0001 | - | | 0.6893 | 18050 | 0.0001 | - | | 0.6912 | 18100 | 0.0001 | - | | 0.6931 | 18150 | 0.0023 | - | | 0.6951 | 18200 | 0.0001 | - | | 0.6970 | 18250 | 0.0001 | - | | 0.6989 | 18300 | 0.0001 | - | | 0.7008 | 18350 | 0.0001 | - | | 0.7027 | 18400 | 0.0001 | - | | 0.7046 | 18450 | 0.0001 | - | | 0.7065 | 18500 | 0.0001 | - | | 0.7084 | 18550 | 0.0001 | - | | 0.7103 | 18600 | 0.0001 | - | | 0.7122 | 18650 | 0.0001 | - | | 0.7141 | 18700 | 0.0001 | - | | 0.7161 | 18750 | 0.0001 | - | | 0.7180 | 18800 | 0.0001 | - | | 0.7199 | 18850 | 0.0001 | - | | 0.7218 | 18900 | 0.0001 | - | | 0.7237 | 18950 | 0.0001 | - | | 0.7256 | 19000 | 0.0001 | - | | 0.7275 | 19050 | 0.0001 | - | | 0.7294 | 19100 | 0.0104 | - | | 0.7313 | 19150 | 0.0041 | - | | 0.7332 | 19200 | 0.0045 | - | | 0.7352 | 19250 | 0.0002 | - | | 0.7371 | 19300 | 0.0007 | - | | 0.7390 | 19350 | 0.0021 | - | | 0.7409 | 19400 | 0.0001 | - | | 0.7428 | 19450 | 0.0001 | - | | 0.7447 | 19500 | 0.0001 | - | | 0.7466 | 19550 | 0.0001 | - | | 0.7485 | 19600 | 0.0001 | - | | 0.7504 | 19650 | 0.0001 | - | | 0.7523 | 19700 | 0.0001 | - | | 0.7542 | 19750 | 0.0001 | - | | 0.7562 | 19800 | 0.0001 | - | | 0.7581 | 19850 | 0.0001 | - | | 0.7600 | 19900 | 0.0001 | - | | 0.7619 | 19950 | 0.0001 | - | | 0.7638 | 20000 | 0.0001 | - | | 0.7657 | 20050 | 0.0001 | - | | 0.7676 | 20100 | 0.0001 | - | | 0.7695 | 20150 | 0.0001 | - | | 0.7714 | 20200 | 0.0001 | - | | 0.7733 | 20250 | 0.0001 | - | | 0.7753 | 20300 | 0.0001 | - | | 0.7772 | 20350 | 0.0001 | - | | 0.7791 | 20400 | 0.0001 | - | | 0.7810 | 20450 | 0.0001 | - | | 0.7829 | 20500 | 0.0001 | - | | 0.7848 | 20550 | 0.0001 | - | | 0.7867 | 20600 | 0.0072 | - | | 0.7886 | 20650 | 0.0034 | - | | 0.7905 | 20700 | 0.0001 | - | | 0.7924 | 20750 | 0.0002 | - | | 0.7943 | 20800 | 0.0001 | - | | 0.7963 | 20850 | 0.0001 | - | | 0.7982 | 20900 | 0.0004 | - | | 0.8001 | 20950 | 0.0001 | - | | 0.8020 | 21000 | 0.0001 | - | | 0.8039 | 21050 | 0.0001 | - | | 0.8058 | 21100 | 0.0001 | - | | 0.8077 | 21150 | 0.0001 | - | | 0.8096 | 21200 | 0.0001 | - | | 0.8115 | 21250 | 0.0001 | - | | 0.8134 | 21300 | 0.0001 | - | | 0.8154 | 21350 | 0.0001 | - | | 0.8173 | 21400 | 0.0001 | - | | 0.8192 | 21450 | 0.0001 | - | | 0.8211 | 21500 | 0.0002 | - | | 0.8230 | 21550 | 0.0002 | - | | 0.8249 | 21600 | 0.0001 | - | | 0.8268 | 21650 | 0.0001 | - | | 0.8287 | 21700 | 0.0001 | - | | 0.8306 | 21750 | 0.0001 | - | | 0.8325 | 21800 | 0.0001 | - | | 0.8344 | 21850 | 0.0019 | - | | 0.8364 | 21900 | 0.0001 | - | | 0.8383 | 21950 | 0.0001 | - | | 0.8402 | 22000 | 0.0001 | - | | 0.8421 | 22050 | 0.0001 | - | | 0.8440 | 22100 | 0.0001 | - | | 0.8459 | 22150 | 0.0001 | - | | 0.8478 | 22200 | 0.0001 | - | | 0.8497 | 22250 | 0.0001 | - | | 0.8516 | 22300 | 0.0001 | - | | 0.8535 | 22350 | 0.0001 | - | | 0.8555 | 22400 | 0.0001 | - | | 0.8574 | 22450 | 0.0001 | - | | 0.8593 | 22500 | 0.002 | - | | 0.8612 | 22550 | 0.0001 | - | | 0.8631 | 22600 | 0.0001 | - | | 0.8650 | 22650 | 0.0001 | - | | 0.8669 | 22700 | 0.0001 | - | | 0.8688 | 22750 | 0.0001 | - | | 0.8707 | 22800 | 0.0001 | - | | 0.8726 | 22850 | 0.0001 | - | | 0.8745 | 22900 | 0.0001 | - | | 0.8765 | 22950 | 0.0001 | - | | 0.8784 | 23000 | 0.0001 | - | | 0.8803 | 23050 | 0.0001 | - | | 0.8822 | 23100 | 0.0001 | - | | 0.8841 | 23150 | 0.0001 | - | | 0.8860 | 23200 | 0.0001 | - | | 0.8879 | 23250 | 0.0001 | - | | 0.8898 | 23300 | 0.0001 | - | | 0.8917 | 23350 | 0.0001 | - | | 0.8936 | 23400 | 0.0001 | - | | 0.8956 | 23450 | 0.0001 | - | | 0.8975 | 23500 | 0.0001 | - | | 0.8994 | 23550 | 0.0001 | - | | 0.9013 | 23600 | 0.0001 | - | | 0.9032 | 23650 | 0.0001 | - | | 0.9051 | 23700 | 0.0001 | - | | 0.9070 | 23750 | 0.0001 | - | | 0.9089 | 23800 | 0.0001 | - | | 0.9108 | 23850 | 0.0001 | - | | 0.9127 | 23900 | 0.0001 | - | | 0.9146 | 23950 | 0.0001 | - | | 0.9166 | 24000 | 0.0001 | - | | 0.9185 | 24050 | 0.0001 | - | | 0.9204 | 24100 | 0.0015 | - | | 0.9223 | 24150 | 0.0001 | - | | 0.9242 | 24200 | 0.0009 | - | | 0.9261 | 24250 | 0.0002 | - | | 0.9280 | 24300 | 0.0001 | - | | 0.9299 | 24350 | 0.0001 | - | | 0.9318 | 24400 | 0.0001 | - | | 0.9337 | 24450 | 0.0001 | - | | 0.9357 | 24500 | 0.0001 | - | | 0.9376 | 24550 | 0.0001 | - | | 0.9395 | 24600 | 0.0001 | - | | 0.9414 | 24650 | 0.0004 | - | | 0.9433 | 24700 | 0.0001 | - | | 0.9452 | 24750 | 0.0001 | - | | 0.9471 | 24800 | 0.0001 | - | | 0.9490 | 24850 | 0.0001 | - | | 0.9509 | 24900 | 0.0001 | - | | 0.9528 | 24950 | 0.0001 | - | | 0.9547 | 25000 | 0.0001 | - | | 0.9567 | 25050 | 0.0001 | - | | 0.9586 | 25100 | 0.0001 | - | | 0.9605 | 25150 | 0.0001 | - | | 0.9624 | 25200 | 0.0001 | - | | 0.9643 | 25250 | 0.0001 | - | | 0.9662 | 25300 | 0.0001 | - | | 0.9681 | 25350 | 0.0001 | - | | 0.9700 | 25400 | 0.0001 | - | | 0.9719 | 25450 | 0.0001 | - | | 0.9738 | 25500 | 0.0001 | - | | 0.9757 | 25550 | 0.0001 | - | | 0.9777 | 25600 | 0.0277 | - | | 0.9796 | 25650 | 0.0008 | - | | 0.9815 | 25700 | 0.0001 | - | | 0.9834 | 25750 | 0.0001 | - | | 0.9853 | 25800 | 0.0001 | - | | 0.9872 | 25850 | 0.0001 | - | | 0.9891 | 25900 | 0.0001 | - | | 0.9910 | 25950 | 0.0001 | - | | 0.9929 | 26000 | 0.0001 | - | | 0.9948 | 26050 | 0.0001 | - | | 0.9968 | 26100 | 0.0001 | - | | 0.9987 | 26150 | 0.0001 | - | | 1.0 | 26185 | - | 0.3529 | | 1.0006 | 26200 | 0.0001 | - | | 1.0025 | 26250 | 0.0001 | - | | 1.0044 | 26300 | 0.0001 | - | | 1.0063 | 26350 | 0.0001 | - | | 1.0082 | 26400 | 0.0001 | - | | 1.0101 | 26450 | 0.0001 | - | | 1.0120 | 26500 | 0.0001 | - | | 1.0139 | 26550 | 0.0001 | - | | 1.0158 | 26600 | 0.0001 | - | | 1.0178 | 26650 | 0.0001 | - | | 1.0197 | 26700 | 0.0001 | - | | 1.0216 | 26750 | 0.0001 | - | | 1.0235 | 26800 | 0.0001 | - | | 1.0254 | 26850 | 0.0001 | - | | 1.0273 | 26900 | 0.0001 | - | | 1.0292 | 26950 | 0.0001 | - | | 1.0311 | 27000 | 0.0001 | - | | 1.0330 | 27050 | 0.0001 | - | | 1.0349 | 27100 | 0.0002 | - | | 1.0369 | 27150 | 0.0001 | - | | 1.0388 | 27200 | 0.0001 | - | | 1.0407 | 27250 | 0.0001 | - | | 1.0426 | 27300 | 0.0001 | - | | 1.0445 | 27350 | 0.0001 | - | | 1.0464 | 27400 | 0.0001 | - | | 1.0483 | 27450 | 0.0001 | - | | 1.0502 | 27500 | 0.0001 | - | | 1.0521 | 27550 | 0.0001 | - | | 1.0540 | 27600 | 0.0001 | - | | 1.0559 | 27650 | 0.0001 | - | | 1.0579 | 27700 | 0.0001 | - | | 1.0598 | 27750 | 0.0001 | - | | 1.0617 | 27800 | 0.0001 | - | | 1.0636 | 27850 | 0.0001 | - | | 1.0655 | 27900 | 0.0001 | - | | 1.0674 | 27950 | 0.0001 | - | | 1.0693 | 28000 | 0.0001 | - | | 1.0712 | 28050 | 0.0001 | - | | 1.0731 | 28100 | 0.0001 | - | | 1.0750 | 28150 | 0.0003 | - | | 1.0770 | 28200 | 0.0001 | - | | 1.0789 | 28250 | 0.0001 | - | | 1.0808 | 28300 | 0.0002 | - | | 1.0827 | 28350 | 0.0009 | - | | 1.0846 | 28400 | 0.0003 | - | | 1.0865 | 28450 | 0.0001 | - | | 1.0884 | 28500 | 0.0001 | - | | 1.0903 | 28550 | 0.0001 | - | | 1.0922 | 28600 | 0.0001 | - | | 1.0941 | 28650 | 0.0001 | - | | 1.0960 | 28700 | 0.0001 | - | | 1.0980 | 28750 | 0.0001 | - | | 1.0999 | 28800 | 0.0001 | - | | 1.1018 | 28850 | 0.0001 | - | | 1.1037 | 28900 | 0.0001 | - | | 1.1056 | 28950 | 0.0001 | - | | 1.1075 | 29000 | 0.0001 | - | | 1.1094 | 29050 | 0.0001 | - | | 1.1113 | 29100 | 0.0001 | - | | 1.1132 | 29150 | 0.0001 | - | | 1.1151 | 29200 | 0.0001 | - | | 1.1171 | 29250 | 0.0001 | - | | 1.1190 | 29300 | 0.0001 | - | | 1.1209 | 29350 | 0.0001 | - | | 1.1228 | 29400 | 0.0001 | - | | 1.1247 | 29450 | 0.0001 | - | | 1.1266 | 29500 | 0.0001 | - | | 1.1285 | 29550 | 0.0001 | - | | 1.1304 | 29600 | 0.0001 | - | | 1.1323 | 29650 | 0.0001 | - | | 1.1342 | 29700 | 0.0001 | - | | 1.1361 | 29750 | 0.0001 | - | | 1.1381 | 29800 | 0.0001 | - | | 1.1400 | 29850 | 0.0001 | - | | 1.1419 | 29900 | 0.0001 | - | | 1.1438 | 29950 | 0.0001 | - | | 1.1457 | 30000 | 0.0001 | - | | 1.1476 | 30050 | 0.0001 | - | | 1.1495 | 30100 | 0.0001 | - | | 1.1514 | 30150 | 0.0001 | - | | 1.1533 | 30200 | 0.0001 | - | | 1.1552 | 30250 | 0.0001 | - | | 1.1572 | 30300 | 0.0001 | - | | 1.1591 | 30350 | 0.0001 | - | | 1.1610 | 30400 | 0.0001 | - | | 1.1629 | 30450 | 0.0001 | - | | 1.1648 | 30500 | 0.0001 | - | | 1.1667 | 30550 | 0.0001 | - | | 1.1686 | 30600 | 0.0001 | - | | 1.1705 | 30650 | 0.0001 | - | | 1.1724 | 30700 | 0.0001 | - | | 1.1743 | 30750 | 0.0001 | - | | 1.1762 | 30800 | 0.0001 | - | | 1.1782 | 30850 | 0.0001 | - | | 1.1801 | 30900 | 0.0001 | - | | 1.1820 | 30950 | 0.0001 | - | | 1.1839 | 31000 | 0.0001 | - | | 1.1858 | 31050 | 0.0001 | - | | 1.1877 | 31100 | 0.0001 | - | | 1.1896 | 31150 | 0.0001 | - | | 1.1915 | 31200 | 0.0001 | - | | 1.1934 | 31250 | 0.0001 | - | | 1.1953 | 31300 | 0.0008 | - | | 1.1973 | 31350 | 0.0006 | - | | 1.1992 | 31400 | 0.0001 | - | | 1.2011 | 31450 | 0.0001 | - | | 1.2030 | 31500 | 0.0001 | - | | 1.2049 | 31550 | 0.0001 | - | | 1.2068 | 31600 | 0.0001 | - | | 1.2087 | 31650 | 0.0001 | - | | 1.2106 | 31700 | 0.0001 | - | | 1.2125 | 31750 | 0.0001 | - | | 1.2144 | 31800 | 0.0001 | - | | 1.2163 | 31850 | 0.0001 | - | | 1.2183 | 31900 | 0.0001 | - | | 1.2202 | 31950 | 0.0001 | - | | 1.2221 | 32000 | 0.0001 | - | | 1.2240 | 32050 | 0.0001 | - | | 1.2259 | 32100 | 0.0001 | - | | 1.2278 | 32150 | 0.0001 | - | | 1.2297 | 32200 | 0.0001 | - | | 1.2316 | 32250 | 0.0124 | - | | 1.2335 | 32300 | 0.0001 | - | | 1.2354 | 32350 | 0.0001 | - | | 1.2373 | 32400 | 0.0001 | - | | 1.2393 | 32450 | 0.0002 | - | | 1.2412 | 32500 | 0.0001 | - | | 1.2431 | 32550 | 0.0001 | - | | 1.2450 | 32600 | 0.0001 | - | | 1.2469 | 32650 | 0.0001 | - | | 1.2488 | 32700 | 0.0001 | - | | 1.2507 | 32750 | 0.0001 | - | | 1.2526 | 32800 | 0.0001 | - | | 1.2545 | 32850 | 0.0001 | - | | 1.2564 | 32900 | 0.0001 | - | | 1.2584 | 32950 | 0.0001 | - | | 1.2603 | 33000 | 0.0001 | - | | 1.2622 | 33050 | 0.0001 | - | | 1.2641 | 33100 | 0.0001 | - | | 1.2660 | 33150 | 0.0001 | - | | 1.2679 | 33200 | 0.0001 | - | | 1.2698 | 33250 | 0.0001 | - | | 1.2717 | 33300 | 0.0001 | - | | 1.2736 | 33350 | 0.0001 | - | | 1.2755 | 33400 | 0.0001 | - | | 1.2774 | 33450 | 0.0001 | - | | 1.2794 | 33500 | 0.0001 | - | | 1.2813 | 33550 | 0.0001 | - | | 1.2832 | 33600 | 0.0001 | - | | 1.2851 | 33650 | 0.0001 | - | | 1.2870 | 33700 | 0.0001 | - | | 1.2889 | 33750 | 0.0001 | - | | 1.2908 | 33800 | 0.0001 | - | | 1.2927 | 33850 | 0.0001 | - | | 1.2946 | 33900 | 0.0001 | - | | 1.2965 | 33950 | 0.0001 | - | | 1.2985 | 34000 | 0.0001 | - | | 1.3004 | 34050 | 0.0001 | - | | 1.3023 | 34100 | 0.0001 | - | | 1.3042 | 34150 | 0.0001 | - | | 1.3061 | 34200 | 0.0004 | - | | 1.3080 | 34250 | 0.0001 | - | | 1.3099 | 34300 | 0.0001 | - | | 1.3118 | 34350 | 0.0001 | - | | 1.3137 | 34400 | 0.0001 | - | | 1.3156 | 34450 | 0.0001 | - | | 1.3175 | 34500 | 0.0001 | - | | 1.3195 | 34550 | 0.0001 | - | | 1.3214 | 34600 | 0.0001 | - | | 1.3233 | 34650 | 0.0001 | - | | 1.3252 | 34700 | 0.0001 | - | | 1.3271 | 34750 | 0.0001 | - | | 1.3290 | 34800 | 0.0001 | - | | 1.3309 | 34850 | 0.0001 | - | | 1.3328 | 34900 | 0.0001 | - | | 1.3347 | 34950 | 0.0001 | - | | 1.3366 | 35000 | 0.0001 | - | | 1.3386 | 35050 | 0.0001 | - | | 1.3405 | 35100 | 0.0001 | - | | 1.3424 | 35150 | 0.0001 | - | | 1.3443 | 35200 | 0.0001 | - | | 1.3462 | 35250 | 0.0001 | - | | 1.3481 | 35300 | 0.0001 | - | | 1.3500 | 35350 | 0.0001 | - | | 1.3519 | 35400 | 0.0001 | - | | 1.3538 | 35450 | 0.0001 | - | | 1.3557 | 35500 | 0.0001 | - | | 1.3576 | 35550 | 0.0001 | - | | 1.3596 | 35600 | 0.0001 | - | | 1.3615 | 35650 | 0.0001 | - | | 1.3634 | 35700 | 0.0001 | - | | 1.3653 | 35750 | 0.0001 | - | | 1.3672 | 35800 | 0.0001 | - | | 1.3691 | 35850 | 0.0001 | - | | 1.3710 | 35900 | 0.0001 | - | | 1.3729 | 35950 | 0.0001 | - | | 1.3748 | 36000 | 0.0001 | - | | 1.3767 | 36050 | 0.0001 | - | | 1.3787 | 36100 | 0.0001 | - | | 1.3806 | 36150 | 0.0001 | - | | 1.3825 | 36200 | 0.0001 | - | | 1.3844 | 36250 | 0.0001 | - | | 1.3863 | 36300 | 0.0001 | - | | 1.3882 | 36350 | 0.0001 | - | | 1.3901 | 36400 | 0.0001 | - | | 1.3920 | 36450 | 0.0001 | - | | 1.3939 | 36500 | 0.0001 | - | | 1.3958 | 36550 | 0.0001 | - | | 1.3977 | 36600 | 0.0001 | - | | 1.3997 | 36650 | 0.0001 | - | | 1.4016 | 36700 | 0.0119 | - | | 1.4035 | 36750 | 0.0007 | - | | 1.4054 | 36800 | 0.0002 | - | | 1.4073 | 36850 | 0.0002 | - | | 1.4092 | 36900 | 0.0001 | - | | 1.4111 | 36950 | 0.0022 | - | | 1.4130 | 37000 | 0.0001 | - | | 1.4149 | 37050 | 0.0001 | - | | 1.4168 | 37100 | 0.0001 | - | | 1.4188 | 37150 | 0.0001 | - | | 1.4207 | 37200 | 0.0001 | - | | 1.4226 | 37250 | 0.0001 | - | | 1.4245 | 37300 | 0.0001 | - | | 1.4264 | 37350 | 0.0001 | - | | 1.4283 | 37400 | 0.0001 | - | | 1.4302 | 37450 | 0.0001 | - | | 1.4321 | 37500 | 0.0001 | - | | 1.4340 | 37550 | 0.0001 | - | | 1.4359 | 37600 | 0.0001 | - | | 1.4378 | 37650 | 0.0001 | - | | 1.4398 | 37700 | 0.0001 | - | | 1.4417 | 37750 | 0.0001 | - | | 1.4436 | 37800 | 0.0001 | - | | 1.4455 | 37850 | 0.0001 | - | | 1.4474 | 37900 | 0.0001 | - | | 1.4493 | 37950 | 0.0001 | - | | 1.4512 | 38000 | 0.0001 | - | | 1.4531 | 38050 | 0.0001 | - | | 1.4550 | 38100 | 0.0001 | - | | 1.4569 | 38150 | 0.0001 | - | | 1.4589 | 38200 | 0.0001 | - | | 1.4608 | 38250 | 0.0001 | - | | 1.4627 | 38300 | 0.0001 | - | | 1.4646 | 38350 | 0.0001 | - | | 1.4665 | 38400 | 0.0001 | - | | 1.4684 | 38450 | 0.0001 | - | | 1.4703 | 38500 | 0.0001 | - | | 1.4722 | 38550 | 0.0001 | - | | 1.4741 | 38600 | 0.0001 | - | | 1.4760 | 38650 | 0.0001 | - | | 1.4779 | 38700 | 0.0001 | - | | 1.4799 | 38750 | 0.0001 | - | | 1.4818 | 38800 | 0.0001 | - | | 1.4837 | 38850 | 0.0001 | - | | 1.4856 | 38900 | 0.0001 | - | | 1.4875 | 38950 | 0.0001 | - | | 1.4894 | 39000 | 0.0001 | - | | 1.4913 | 39050 | 0.0001 | - | | 1.4932 | 39100 | 0.0001 | - | | 1.4951 | 39150 | 0.0001 | - | | 1.4970 | 39200 | 0.0001 | - | | 1.4989 | 39250 | 0.0001 | - | | 1.5009 | 39300 | 0.0001 | - | | 1.5028 | 39350 | 0.0003 | - | | 1.5047 | 39400 | 0.0001 | - | | 1.5066 | 39450 | 0.0001 | - | | 1.5085 | 39500 | 0.0001 | - | | 1.5104 | 39550 | 0.0001 | - | | 1.5123 | 39600 | 0.0001 | - | | 1.5142 | 39650 | 0.0001 | - | | 1.5161 | 39700 | 0.0001 | - | | 1.5180 | 39750 | 0.0001 | - | | 1.5200 | 39800 | 0.0001 | - | | 1.5219 | 39850 | 0.0001 | - | | 1.5238 | 39900 | 0.0001 | - | | 1.5257 | 39950 | 0.0001 | - | | 1.5276 | 40000 | 0.0001 | - | | 1.5295 | 40050 | 0.0001 | - | | 1.5314 | 40100 | 0.0001 | - | | 1.5333 | 40150 | 0.0001 | - | | 1.5352 | 40200 | 0.0001 | - | | 1.5371 | 40250 | 0.0001 | - | | 1.5390 | 40300 | 0.0068 | - | | 1.5410 | 40350 | 0.0001 | - | | 1.5429 | 40400 | 0.0001 | - | | 1.5448 | 40450 | 0.0001 | - | | 1.5467 | 40500 | 0.0001 | - | | 1.5486 | 40550 | 0.0001 | - | | 1.5505 | 40600 | 0.0001 | - | | 1.5524 | 40650 | 0.0001 | - | | 1.5543 | 40700 | 0.0001 | - | | 1.5562 | 40750 | 0.0001 | - | | 1.5581 | 40800 | 0.0001 | - | | 1.5601 | 40850 | 0.0001 | - | | 1.5620 | 40900 | 0.0001 | - | | 1.5639 | 40950 | 0.0001 | - | | 1.5658 | 41000 | 0.0001 | - | | 1.5677 | 41050 | 0.0088 | - | | 1.5696 | 41100 | 0.0001 | - | | 1.5715 | 41150 | 0.0001 | - | | 1.5734 | 41200 | 0.0001 | - | | 1.5753 | 41250 | 0.0001 | - | | 1.5772 | 41300 | 0.0001 | - | | 1.5791 | 41350 | 0.0001 | - | | 1.5811 | 41400 | 0.0001 | - | | 1.5830 | 41450 | 0.0001 | - | | 1.5849 | 41500 | 0.0001 | - | | 1.5868 | 41550 | 0.0001 | - | | 1.5887 | 41600 | 0.0001 | - | | 1.5906 | 41650 | 0.0001 | - | | 1.5925 | 41700 | 0.0001 | - | | 1.5944 | 41750 | 0.0 | - | | 1.5963 | 41800 | 0.0001 | - | | 1.5982 | 41850 | 0.0001 | - | | 1.6002 | 41900 | 0.0001 | - | | 1.6021 | 41950 | 0.0001 | - | | 1.6040 | 42000 | 0.0001 | - | | 1.6059 | 42050 | 0.0001 | - | | 1.6078 | 42100 | 0.0 | - | | 1.6097 | 42150 | 0.0001 | - | | 1.6116 | 42200 | 0.0001 | - | | 1.6135 | 42250 | 0.0001 | - | | 1.6154 | 42300 | 0.0001 | - | | 1.6173 | 42350 | 0.0001 | - | | 1.6192 | 42400 | 0.0001 | - | | 1.6212 | 42450 | 0.0001 | - | | 1.6231 | 42500 | 0.0001 | - | | 1.6250 | 42550 | 0.0001 | - | | 1.6269 | 42600 | 0.0001 | - | | 1.6288 | 42650 | 0.0001 | - | | 1.6307 | 42700 | 0.0001 | - | | 1.6326 | 42750 | 0.0001 | - | | 1.6345 | 42800 | 0.0001 | - | | 1.6364 | 42850 | 0.0001 | - | | 1.6383 | 42900 | 0.0011 | - | | 1.6403 | 42950 | 0.0001 | - | | 1.6422 | 43000 | 0.0003 | - | | 1.6441 | 43050 | 0.0001 | - | | 1.6460 | 43100 | 0.0307 | - | | 1.6479 | 43150 | 0.0001 | - | | 1.6498 | 43200 | 0.0153 | - | | 1.6517 | 43250 | 0.0001 | - | | 1.6536 | 43300 | 0.0155 | - | | 1.6555 | 43350 | 0.0002 | - | | 1.6574 | 43400 | 0.0001 | - | | 1.6593 | 43450 | 0.0001 | - | | 1.6613 | 43500 | 0.0001 | - | | 1.6632 | 43550 | 0.0001 | - | | 1.6651 | 43600 | 0.0001 | - | | 1.6670 | 43650 | 0.0001 | - | | 1.6689 | 43700 | 0.0153 | - | | 1.6708 | 43750 | 0.0001 | - | | 1.6727 | 43800 | 0.0001 | - | | 1.6746 | 43850 | 0.0093 | - | | 1.6765 | 43900 | 0.0001 | - | | 1.6784 | 43950 | 0.0001 | - | | 1.6804 | 44000 | 0.004 | - | | 1.6823 | 44050 | 0.0003 | - | | 1.6842 | 44100 | 0.0001 | - | | 1.6861 | 44150 | 0.0001 | - | | 1.6880 | 44200 | 0.0001 | - | | 1.6899 | 44250 | 0.0001 | - | | 1.6918 | 44300 | 0.0001 | - | | 1.6937 | 44350 | 0.0001 | - | | 1.6956 | 44400 | 0.0001 | - | | 1.6975 | 44450 | 0.0001 | - | | 1.6994 | 44500 | 0.0001 | - | | 1.7014 | 44550 | 0.0001 | - | | 1.7033 | 44600 | 0.0001 | - | | 1.7052 | 44650 | 0.0001 | - | | 1.7071 | 44700 | 0.0001 | - | | 1.7090 | 44750 | 0.0001 | - | | 1.7109 | 44800 | 0.0001 | - | | 1.7128 | 44850 | 0.0001 | - | | 1.7147 | 44900 | 0.0001 | - | | 1.7166 | 44950 | 0.0001 | - | | 1.7185 | 45000 | 0.0001 | - | | 1.7205 | 45050 | 0.0001 | - | | 1.7224 | 45100 | 0.0001 | - | | 1.7243 | 45150 | 0.0001 | - | | 1.7262 | 45200 | 0.0001 | - | | 1.7281 | 45250 | 0.0001 | - | | 1.7300 | 45300 | 0.0001 | - | | 1.7319 | 45350 | 0.0001 | - | | 1.7338 | 45400 | 0.0001 | - | | 1.7357 | 45450 | 0.0001 | - | | 1.7376 | 45500 | 0.0001 | - | | 1.7395 | 45550 | 0.0001 | - | | 1.7415 | 45600 | 0.0001 | - | | 1.7434 | 45650 | 0.0001 | - | | 1.7453 | 45700 | 0.0001 | - | | 1.7472 | 45750 | 0.0001 | - | | 1.7491 | 45800 | 0.0001 | - | | 1.7510 | 45850 | 0.0001 | - | | 1.7529 | 45900 | 0.0001 | - | | 1.7548 | 45950 | 0.0001 | - | | 1.7567 | 46000 | 0.0001 | - | | 1.7586 | 46050 | 0.0001 | - | | 1.7605 | 46100 | 0.0001 | - | | 1.7625 | 46150 | 0.0001 | - | | 1.7644 | 46200 | 0.0001 | - | | 1.7663 | 46250 | 0.0001 | - | | 1.7682 | 46300 | 0.0001 | - | | 1.7701 | 46350 | 0.0 | - | | 1.7720 | 46400 | 0.0001 | - | | 1.7739 | 46450 | 0.0001 | - | | 1.7758 | 46500 | 0.0001 | - | | 1.7777 | 46550 | 0.0001 | - | | 1.7796 | 46600 | 0.0001 | - | | 1.7816 | 46650 | 0.0001 | - | | 1.7835 | 46700 | 0.0001 | - | | 1.7854 | 46750 | 0.0001 | - | | 1.7873 | 46800 | 0.0001 | - | | 1.7892 | 46850 | 0.0001 | - | | 1.7911 | 46900 | 0.0001 | - | | 1.7930 | 46950 | 0.0001 | - | | 1.7949 | 47000 | 0.0001 | - | | 1.7968 | 47050 | 0.0001 | - | | 1.7987 | 47100 | 0.0001 | - | | 1.8006 | 47150 | 0.0001 | - | | 1.8026 | 47200 | 0.0001 | - | | 1.8045 | 47250 | 0.0001 | - | | 1.8064 | 47300 | 0.0 | - | | 1.8083 | 47350 | 0.0001 | - | | 1.8102 | 47400 | 0.0001 | - | | 1.8121 | 47450 | 0.0001 | - | | 1.8140 | 47500 | 0.0001 | - | | 1.8159 | 47550 | 0.0001 | - | | 1.8178 | 47600 | 0.0001 | - | | 1.8197 | 47650 | 0.0001 | - | | 1.8217 | 47700 | 0.0001 | - | | 1.8236 | 47750 | 0.0001 | - | | 1.8255 | 47800 | 0.0001 | - | | 1.8274 | 47850 | 0.0001 | - | | 1.8293 | 47900 | 0.0001 | - | | 1.8312 | 47950 | 0.0001 | - | | 1.8331 | 48000 | 0.0001 | - | | 1.8350 | 48050 | 0.0001 | - | | 1.8369 | 48100 | 0.0 | - | | 1.8388 | 48150 | 0.0001 | - | | 1.8407 | 48200 | 0.0001 | - | | 1.8427 | 48250 | 0.0001 | - | | 1.8446 | 48300 | 0.0001 | - | | 1.8465 | 48350 | 0.0001 | - | | 1.8484 | 48400 | 0.0001 | - | | 1.8503 | 48450 | 0.0001 | - | | 1.8522 | 48500 | 0.0001 | - | | 1.8541 | 48550 | 0.0001 | - | | 1.8560 | 48600 | 0.0001 | - | | 1.8579 | 48650 | 0.0001 | - | | 1.8598 | 48700 | 0.0001 | - | | 1.8618 | 48750 | 0.0001 | - | | 1.8637 | 48800 | 0.0001 | - | | 1.8656 | 48850 | 0.0001 | - | | 1.8675 | 48900 | 0.0001 | - | | 1.8694 | 48950 | 0.0001 | - | | 1.8713 | 49000 | 0.0001 | - | | 1.8732 | 49050 | 0.0001 | - | | 1.8751 | 49100 | 0.0001 | - | | 1.8770 | 49150 | 0.0001 | - | | 1.8789 | 49200 | 0.0001 | - | | 1.8808 | 49250 | 0.0001 | - | | 1.8828 | 49300 | 0.0001 | - | | 1.8847 | 49350 | 0.0001 | - | | 1.8866 | 49400 | 0.0001 | - | | 1.8885 | 49450 | 0.0001 | - | | 1.8904 | 49500 | 0.0001 | - | | 1.8923 | 49550 | 0.0001 | - | | 1.8942 | 49600 | 0.0001 | - | | 1.8961 | 49650 | 0.0001 | - | | 1.8980 | 49700 | 0.0001 | - | | 1.8999 | 49750 | 0.0001 | - | | 1.9019 | 49800 | 0.0001 | - | | 1.9038 | 49850 | 0.0001 | - | | 1.9057 | 49900 | 0.0001 | - | | 1.9076 | 49950 | 0.0001 | - | | 1.9095 | 50000 | 0.0001 | - | | 1.9114 | 50050 | 0.0001 | - | | 1.9133 | 50100 | 0.0001 | - | | 1.9152 | 50150 | 0.0001 | - | | 1.9171 | 50200 | 0.0002 | - | | 1.9190 | 50250 | 0.0001 | - | | 1.9209 | 50300 | 0.0001 | - | | 1.9229 | 50350 | 0.0001 | - | | 1.9248 | 50400 | 0.0001 | - | | 1.9267 | 50450 | 0.0001 | - | | 1.9286 | 50500 | 0.0001 | - | | 1.9305 | 50550 | 0.0001 | - | | 1.9324 | 50600 | 0.0001 | - | | 1.9343 | 50650 | 0.0001 | - | | 1.9362 | 50700 | 0.0001 | - | | 1.9381 | 50750 | 0.0001 | - | | 1.9400 | 50800 | 0.0001 | - | | 1.9420 | 50850 | 0.0001 | - | | 1.9439 | 50900 | 0.0001 | - | | 1.9458 | 50950 | 0.0001 | - | | 1.9477 | 51000 | 0.0001 | - | | 1.9496 | 51050 | 0.0001 | - | | 1.9515 | 51100 | 0.0001 | - | | 1.9534 | 51150 | 0.0001 | - | | 1.9553 | 51200 | 0.0001 | - | | 1.9572 | 51250 | 0.0 | - | | 1.9591 | 51300 | 0.0001 | - | | 1.9610 | 51350 | 0.0001 | - | | 1.9630 | 51400 | 0.0001 | - | | 1.9649 | 51450 | 0.0001 | - | | 1.9668 | 51500 | 0.0001 | - | | 1.9687 | 51550 | 0.0001 | - | | 1.9706 | 51600 | 0.0 | - | | 1.9725 | 51650 | 0.0002 | - | | 1.9744 | 51700 | 0.0001 | - | | 1.9763 | 51750 | 0.0001 | - | | 1.9782 | 51800 | 0.0001 | - | | 1.9801 | 51850 | 0.0001 | - | | 1.9821 | 51900 | 0.0001 | - | | 1.9840 | 51950 | 0.0001 | - | | 1.9859 | 52000 | 0.0001 | - | | 1.9878 | 52050 | 0.0001 | - | | 1.9897 | 52100 | 0.0001 | - | | 1.9916 | 52150 | 0.0001 | - | | 1.9935 | 52200 | 0.0001 | - | | 1.9954 | 52250 | 0.0001 | - | | 1.9973 | 52300 | 0.0001 | - | | 1.9992 | 52350 | 0.0001 | - | | **2.0** | **52370** | **-** | **0.3262** | | 2.0011 | 52400 | 0.0001 | - | | 2.0031 | 52450 | 0.0001 | - | | 2.0050 | 52500 | 0.0001 | - | | 2.0069 | 52550 | 0.0001 | - | | 2.0088 | 52600 | 0.0001 | - | | 2.0107 | 52650 | 0.0001 | - | | 2.0126 | 52700 | 0.0001 | - | | 2.0145 | 52750 | 0.0001 | - | | 2.0164 | 52800 | 0.0001 | - | | 2.0183 | 52850 | 0.0001 | - | | 2.0202 | 52900 | 0.0001 | - | | 2.0222 | 52950 | 0.0001 | - | | 2.0241 | 53000 | 0.0001 | - | | 2.0260 | 53050 | 0.0001 | - | | 2.0279 | 53100 | 0.0001 | - | | 2.0298 | 53150 | 0.0001 | - | | 2.0317 | 53200 | 0.0001 | - | | 2.0336 | 53250 | 0.0001 | - | | 2.0355 | 53300 | 0.0001 | - | | 2.0374 | 53350 | 0.0001 | - | | 2.0393 | 53400 | 0.0001 | - | | 2.0412 | 53450 | 0.0001 | - | | 2.0432 | 53500 | 0.0001 | - | | 2.0451 | 53550 | 0.0001 | - | | 2.0470 | 53600 | 0.0001 | - | | 2.0489 | 53650 | 0.0001 | - | | 2.0508 | 53700 | 0.0001 | - | | 2.0527 | 53750 | 0.0001 | - | | 2.0546 | 53800 | 0.0001 | - | | 2.0565 | 53850 | 0.0001 | - | | 2.0584 | 53900 | 0.0001 | - | | 2.0603 | 53950 | 0.0001 | - | | 2.0622 | 54000 | 0.0001 | - | | 2.0642 | 54050 | 0.0001 | - | | 2.0661 | 54100 | 0.0001 | - | | 2.0680 | 54150 | 0.0001 | - | | 2.0699 | 54200 | 0.0001 | - | | 2.0718 | 54250 | 0.0004 | - | | 2.0737 | 54300 | 0.0001 | - | | 2.0756 | 54350 | 0.0001 | - | | 2.0775 | 54400 | 0.0001 | - | | 2.0794 | 54450 | 0.0001 | - | | 2.0813 | 54500 | 0.0001 | - | | 2.0833 | 54550 | 0.0001 | - | | 2.0852 | 54600 | 0.0001 | - | | 2.0871 | 54650 | 0.0001 | - | | 2.0890 | 54700 | 0.0 | - | | 2.0909 | 54750 | 0.0001 | - | | 2.0928 | 54800 | 0.0001 | - | | 2.0947 | 54850 | 0.0001 | - | | 2.0966 | 54900 | 0.0001 | - | | 2.0985 | 54950 | 0.0001 | - | | 2.1004 | 55000 | 0.0001 | - | | 2.1023 | 55050 | 0.0 | - | | 2.1043 | 55100 | 0.0001 | - | | 2.1062 | 55150 | 0.0001 | - | | 2.1081 | 55200 | 0.0001 | - | | 2.1100 | 55250 | 0.0004 | - | | 2.1119 | 55300 | 0.0001 | - | | 2.1138 | 55350 | 0.0001 | - | | 2.1157 | 55400 | 0.0001 | - | | 2.1176 | 55450 | 0.0001 | - | | 2.1195 | 55500 | 0.0001 | - | | 2.1214 | 55550 | 0.0001 | - | | 2.1234 | 55600 | 0.0001 | - | | 2.1253 | 55650 | 0.0001 | - | | 2.1272 | 55700 | 0.0001 | - | | 2.1291 | 55750 | 0.0001 | - | | 2.1310 | 55800 | 0.0001 | - | | 2.1329 | 55850 | 0.0001 | - | | 2.1348 | 55900 | 0.0001 | - | | 2.1367 | 55950 | 0.0001 | - | | 2.1386 | 56000 | 0.0001 | - | | 2.1405 | 56050 | 0.0001 | - | | 2.1424 | 56100 | 0.0001 | - | | 2.1444 | 56150 | 0.0001 | - | | 2.1463 | 56200 | 0.0 | - | | 2.1482 | 56250 | 0.0001 | - | | 2.1501 | 56300 | 0.0001 | - | | 2.1520 | 56350 | 0.0001 | - | | 2.1539 | 56400 | 0.0 | - | | 2.1558 | 56450 | 0.0001 | - | | 2.1577 | 56500 | 0.0001 | - | | 2.1596 | 56550 | 0.0001 | - | | 2.1615 | 56600 | 0.0001 | - | | 2.1635 | 56650 | 0.0 | - | | 2.1654 | 56700 | 0.0001 | - | | 2.1673 | 56750 | 0.0001 | - | | 2.1692 | 56800 | 0.0 | - | | 2.1711 | 56850 | 0.0 | - | | 2.1730 | 56900 | 0.0001 | - | | 2.1749 | 56950 | 0.0001 | - | | 2.1768 | 57000 | 0.0 | - | | 2.1787 | 57050 | 0.0001 | - | | 2.1806 | 57100 | 0.0001 | - | | 2.1825 | 57150 | 0.0001 | - | | 2.1845 | 57200 | 0.0001 | - | | 2.1864 | 57250 | 0.0 | - | | 2.1883 | 57300 | 0.0001 | - | | 2.1902 | 57350 | 0.0001 | - | | 2.1921 | 57400 | 0.0001 | - | | 2.1940 | 57450 | 0.0001 | - | | 2.1959 | 57500 | 0.0001 | - | | 2.1978 | 57550 | 0.0001 | - | | 2.1997 | 57600 | 0.0001 | - | | 2.2016 | 57650 | 0.0 | - | | 2.2036 | 57700 | 0.0001 | - | | 2.2055 | 57750 | 0.0001 | - | | 2.2074 | 57800 | 0.0001 | - | | 2.2093 | 57850 | 0.0001 | - | | 2.2112 | 57900 | 0.0001 | - | | 2.2131 | 57950 | 0.0001 | - | | 2.2150 | 58000 | 0.0 | - | | 2.2169 | 58050 | 0.0 | - | | 2.2188 | 58100 | 0.0001 | - | | 2.2207 | 58150 | 0.0001 | - | | 2.2226 | 58200 | 0.0001 | - | | 2.2246 | 58250 | 0.0001 | - | | 2.2265 | 58300 | 0.0001 | - | | 2.2284 | 58350 | 0.0001 | - | | 2.2303 | 58400 | 0.0001 | - | | 2.2322 | 58450 | 0.0001 | - | | 2.2341 | 58500 | 0.0001 | - | | 2.2360 | 58550 | 0.0001 | - | | 2.2379 | 58600 | 0.0 | - | | 2.2398 | 58650 | 0.0001 | - | | 2.2417 | 58700 | 0.0001 | - | | 2.2437 | 58750 | 0.0001 | - | | 2.2456 | 58800 | 0.0001 | - | | 2.2475 | 58850 | 0.0001 | - | | 2.2494 | 58900 | 0.0001 | - | | 2.2513 | 58950 | 0.0001 | - | | 2.2532 | 59000 | 0.0001 | - | | 2.2551 | 59050 | 0.0001 | - | | 2.2570 | 59100 | 0.0001 | - | | 2.2589 | 59150 | 0.0001 | - | | 2.2608 | 59200 | 0.0001 | - | | 2.2627 | 59250 | 0.0001 | - | | 2.2647 | 59300 | 0.0001 | - | | 2.2666 | 59350 | 0.0001 | - | | 2.2685 | 59400 | 0.0001 | - | | 2.2704 | 59450 | 0.0 | - | | 2.2723 | 59500 | 0.0001 | - | | 2.2742 | 59550 | 0.0001 | - | | 2.2761 | 59600 | 0.0005 | - | | 2.2780 | 59650 | 0.0001 | - | | 2.2799 | 59700 | 0.0001 | - | | 2.2818 | 59750 | 0.0 | - | | 2.2838 | 59800 | 0.0001 | - | | 2.2857 | 59850 | 0.0001 | - | | 2.2876 | 59900 | 0.0001 | - | | 2.2895 | 59950 | 0.0002 | - | | 2.2914 | 60000 | 0.0001 | - | | 2.2933 | 60050 | 0.0 | - | | 2.2952 | 60100 | 0.0 | - | | 2.2971 | 60150 | 0.0 | - | | 2.2990 | 60200 | 0.0001 | - | | 2.3009 | 60250 | 0.0001 | - | | 2.3028 | 60300 | 0.0001 | - | | 2.3048 | 60350 | 0.0 | - | | 2.3067 | 60400 | 0.0 | - | | 2.3086 | 60450 | 0.0001 | - | | 2.3105 | 60500 | 0.0001 | - | | 2.3124 | 60550 | 0.0001 | - | | 2.3143 | 60600 | 0.0001 | - | | 2.3162 | 60650 | 0.0001 | - | | 2.3181 | 60700 | 0.0001 | - | | 2.3200 | 60750 | 0.0 | - | | 2.3219 | 60800 | 0.0001 | - | | 2.3238 | 60850 | 0.0 | - | | 2.3258 | 60900 | 0.0 | - | | 2.3277 | 60950 | 0.0001 | - | | 2.3296 | 61000 | 0.0001 | - | | 2.3315 | 61050 | 0.0001 | - | | 2.3334 | 61100 | 0.0001 | - | | 2.3353 | 61150 | 0.0 | - | | 2.3372 | 61200 | 0.0001 | - | | 2.3391 | 61250 | 0.0001 | - | | 2.3410 | 61300 | 0.0001 | - | | 2.3429 | 61350 | 0.0 | - | | 2.3449 | 61400 | 0.0001 | - | | 2.3468 | 61450 | 0.0 | - | | 2.3487 | 61500 | 0.0001 | - | | 2.3506 | 61550 | 0.0001 | - | | 2.3525 | 61600 | 0.0001 | - | | 2.3544 | 61650 | 0.0001 | - | | 2.3563 | 61700 | 0.0001 | - | | 2.3582 | 61750 | 0.0 | - | | 2.3601 | 61800 | 0.0001 | - | | 2.3620 | 61850 | 0.0 | - | | 2.3639 | 61900 | 0.0 | - | | 2.3659 | 61950 | 0.0 | - | | 2.3678 | 62000 | 0.0 | - | | 2.3697 | 62050 | 0.0001 | - | | 2.3716 | 62100 | 0.0 | - | | 2.3735 | 62150 | 0.0 | - | | 2.3754 | 62200 | 0.0001 | - | | 2.3773 | 62250 | 0.0001 | - | | 2.3792 | 62300 | 0.0 | - | | 2.3811 | 62350 | 0.0001 | - | | 2.3830 | 62400 | 0.0001 | - | | 2.3850 | 62450 | 0.0001 | - | | 2.3869 | 62500 | 0.0 | - | | 2.3888 | 62550 | 0.0 | - | | 2.3907 | 62600 | 0.0001 | - | | 2.3926 | 62650 | 0.0001 | - | | 2.3945 | 62700 | 0.0001 | - | | 2.3964 | 62750 | 0.0001 | - | | 2.3983 | 62800 | 0.0001 | - | | 2.4002 | 62850 | 0.0 | - | | 2.4021 | 62900 | 0.0001 | - | | 2.4040 | 62950 | 0.0001 | - | | 2.4060 | 63000 | 0.0 | - | | 2.4079 | 63050 | 0.0 | - | | 2.4098 | 63100 | 0.0 | - | | 2.4117 | 63150 | 0.0001 | - | | 2.4136 | 63200 | 0.0001 | - | | 2.4155 | 63250 | 0.0001 | - | | 2.4174 | 63300 | 0.0 | - | | 2.4193 | 63350 | 0.0001 | - | | 2.4212 | 63400 | 0.0001 | - | | 2.4231 | 63450 | 0.0 | - | | 2.4251 | 63500 | 0.0001 | - | | 2.4270 | 63550 | 0.0 | - | | 2.4289 | 63600 | 0.0001 | - | | 2.4308 | 63650 | 0.0001 | - | | 2.4327 | 63700 | 0.0001 | - | | 2.4346 | 63750 | 0.0001 | - | | 2.4365 | 63800 | 0.0001 | - | | 2.4384 | 63850 | 0.0001 | - | | 2.4403 | 63900 | 0.0 | - | | 2.4422 | 63950 | 0.0001 | - | | 2.4441 | 64000 | 0.0 | - | | 2.4461 | 64050 | 0.0 | - | | 2.4480 | 64100 | 0.0001 | - | | 2.4499 | 64150 | 0.0001 | - | | 2.4518 | 64200 | 0.0 | - | | 2.4537 | 64250 | 0.0 | - | | 2.4556 | 64300 | 0.0001 | - | | 2.4575 | 64350 | 0.0 | - | | 2.4594 | 64400 | 0.0001 | - | | 2.4613 | 64450 | 0.0 | - | | 2.4632 | 64500 | 0.0001 | - | | 2.4652 | 64550 | 0.0 | - | | 2.4671 | 64600 | 0.0 | - | | 2.4690 | 64650 | 0.0001 | - | | 2.4709 | 64700 | 0.0 | - | | 2.4728 | 64750 | 0.0001 | - | | 2.4747 | 64800 | 0.0 | - | | 2.4766 | 64850 | 0.0001 | - | | 2.4785 | 64900 | 0.0 | - | | 2.4804 | 64950 | 0.0 | - | | 2.4823 | 65000 | 0.0 | - | | 2.4842 | 65050 | 0.0 | - | | 2.4862 | 65100 | 0.0001 | - | | 2.4881 | 65150 | 0.0 | - | | 2.4900 | 65200 | 0.0 | - | | 2.4919 | 65250 | 0.0001 | - | | 2.4938 | 65300 | 0.0 | - | | 2.4957 | 65350 | 0.0 | - | | 2.4976 | 65400 | 0.0001 | - | | 2.4995 | 65450 | 0.0001 | - | | 2.5014 | 65500 | 0.0 | - | | 2.5033 | 65550 | 0.0001 | - | | 2.5053 | 65600 | 0.0 | - | | 2.5072 | 65650 | 0.0 | - | | 2.5091 | 65700 | 0.0 | - | | 2.5110 | 65750 | 0.0001 | - | | 2.5129 | 65800 | 0.0 | - | | 2.5148 | 65850 | 0.0 | - | | 2.5167 | 65900 | 0.0001 | - | | 2.5186 | 65950 | 0.0 | - | | 2.5205 | 66000 | 0.0 | - | | 2.5224 | 66050 | 0.0 | - | | 2.5243 | 66100 | 0.0 | - | | 2.5263 | 66150 | 0.0001 | - | | 2.5282 | 66200 | 0.0 | - | | 2.5301 | 66250 | 0.0001 | - | | 2.5320 | 66300 | 0.0 | - | | 2.5339 | 66350 | 0.0 | - | | 2.5358 | 66400 | 0.0001 | - | | 2.5377 | 66450 | 0.0 | - | | 2.5396 | 66500 | 0.0 | - | | 2.5415 | 66550 | 0.0 | - | | 2.5434 | 66600 | 0.0001 | - | | 2.5454 | 66650 | 0.0 | - | | 2.5473 | 66700 | 0.0001 | - | | 2.5492 | 66750 | 0.0001 | - | | 2.5511 | 66800 | 0.0001 | - | | 2.5530 | 66850 | 0.0 | - | | 2.5549 | 66900 | 0.0 | - | | 2.5568 | 66950 | 0.0 | - | | 2.5587 | 67000 | 0.0 | - | | 2.5606 | 67050 | 0.0 | - | | 2.5625 | 67100 | 0.0001 | - | | 2.5644 | 67150 | 0.0 | - | | 2.5664 | 67200 | 0.0001 | - | | 2.5683 | 67250 | 0.0 | - | | 2.5702 | 67300 | 0.0001 | - | | 2.5721 | 67350 | 0.0 | - | | 2.5740 | 67400 | 0.0 | - | | 2.5759 | 67450 | 0.0 | - | | 2.5778 | 67500 | 0.0001 | - | | 2.5797 | 67550 | 0.0001 | - | | 2.5816 | 67600 | 0.0 | - | | 2.5835 | 67650 | 0.0 | - | | 2.5854 | 67700 | 0.0001 | - | | 2.5874 | 67750 | 0.0001 | - | | 2.5893 | 67800 | 0.0 | - | | 2.5912 | 67850 | 0.0 | - | | 2.5931 | 67900 | 0.0 | - | | 2.5950 | 67950 | 0.0 | - | | 2.5969 | 68000 | 0.0 | - | | 2.5988 | 68050 | 0.0 | - | | 2.6007 | 68100 | 0.0 | - | | 2.6026 | 68150 | 0.0 | - | | 2.6045 | 68200 | 0.0 | - | | 2.6065 | 68250 | 0.0001 | - | | 2.6084 | 68300 | 0.0 | - | | 2.6103 | 68350 | 0.0001 | - | | 2.6122 | 68400 | 0.0 | - | | 2.6141 | 68450 | 0.0 | - | | 2.6160 | 68500 | 0.0 | - | | 2.6179 | 68550 | 0.0 | - | | 2.6198 | 68600 | 0.0 | - | | 2.6217 | 68650 | 0.0001 | - | | 2.6236 | 68700 | 0.0001 | - | | 2.6255 | 68750 | 0.0 | - | | 2.6275 | 68800 | 0.0 | - | | 2.6294 | 68850 | 0.0001 | - | | 2.6313 | 68900 | 0.0 | - | | 2.6332 | 68950 | 0.0001 | - | | 2.6351 | 69000 | 0.0 | - | | 2.6370 | 69050 | 0.0 | - | | 2.6389 | 69100 | 0.0 | - | | 2.6408 | 69150 | 0.0 | - | | 2.6427 | 69200 | 0.0 | - | | 2.6446 | 69250 | 0.0 | - | | 2.6466 | 69300 | 0.0 | - | | 2.6485 | 69350 | 0.0 | - | | 2.6504 | 69400 | 0.0001 | - | | 2.6523 | 69450 | 0.0 | - | | 2.6542 | 69500 | 0.0 | - | | 2.6561 | 69550 | 0.0001 | - | | 2.6580 | 69600 | 0.0 | - | | 2.6599 | 69650 | 0.0001 | - | | 2.6618 | 69700 | 0.0001 | - | | 2.6637 | 69750 | 0.0 | - | | 2.6656 | 69800 | 0.0 | - | | 2.6676 | 69850 | 0.0 | - | | 2.6695 | 69900 | 0.0 | - | | 2.6714 | 69950 | 0.0 | - | | 2.6733 | 70000 | 0.0 | - | | 2.6752 | 70050 | 0.0001 | - | | 2.6771 | 70100 | 0.0001 | - | | 2.6790 | 70150 | 0.0 | - | | 2.6809 | 70200 | 0.0001 | - | | 2.6828 | 70250 | 0.0 | - | | 2.6847 | 70300 | 0.0 | - | | 2.6867 | 70350 | 0.0 | - | | 2.6886 | 70400 | 0.0 | - | | 2.6905 | 70450 | 0.0 | - | | 2.6924 | 70500 | 0.0 | - | | 2.6943 | 70550 | 0.0001 | - | | 2.6962 | 70600 | 0.0 | - | | 2.6981 | 70650 | 0.0 | - | | 2.7000 | 70700 | 0.0001 | - | | 2.7019 | 70750 | 0.0001 | - | | 2.7038 | 70800 | 0.0 | - | | 2.7057 | 70850 | 0.0001 | - | | 2.7077 | 70900 | 0.0 | - | | 2.7096 | 70950 | 0.0 | - | | 2.7115 | 71000 | 0.0 | - | | 2.7134 | 71050 | 0.0 | - | | 2.7153 | 71100 | 0.0 | - | | 2.7172 | 71150 | 0.0 | - | | 2.7191 | 71200 | 0.0 | - | | 2.7210 | 71250 | 0.0 | - | | 2.7229 | 71300 | 0.0 | - | | 2.7248 | 71350 | 0.0 | - | | 2.7268 | 71400 | 0.0 | - | | 2.7287 | 71450 | 0.0001 | - | | 2.7306 | 71500 | 0.0 | - | | 2.7325 | 71550 | 0.0 | - | | 2.7344 | 71600 | 0.0 | - | | 2.7363 | 71650 | 0.0 | - | | 2.7382 | 71700 | 0.0 | - | | 2.7401 | 71750 | 0.0 | - | | 2.7420 | 71800 | 0.0 | - | | 2.7439 | 71850 | 0.0 | - | | 2.7458 | 71900 | 0.0001 | - | | 2.7478 | 71950 | 0.0 | - | | 2.7497 | 72000 | 0.0 | - | | 2.7516 | 72050 | 0.0 | - | | 2.7535 | 72100 | 0.0 | - | | 2.7554 | 72150 | 0.0 | - | | 2.7573 | 72200 | 0.0 | - | | 2.7592 | 72250 | 0.0 | - | | 2.7611 | 72300 | 0.0 | - | | 2.7630 | 72350 | 0.0 | - | | 2.7649 | 72400 | 0.0 | - | | 2.7669 | 72450 | 0.0 | - | | 2.7688 | 72500 | 0.0 | - | | 2.7707 | 72550 | 0.0 | - | | 2.7726 | 72600 | 0.0 | - | | 2.7745 | 72650 | 0.0 | - | | 2.7764 | 72700 | 0.0 | - | | 2.7783 | 72750 | 0.0001 | - | | 2.7802 | 72800 | 0.0 | - | | 2.7821 | 72850 | 0.0 | - | | 2.7840 | 72900 | 0.0 | - | | 2.7859 | 72950 | 0.0 | - | | 2.7879 | 73000 | 0.0 | - | | 2.7898 | 73050 | 0.0 | - | | 2.7917 | 73100 | 0.0 | - | | 2.7936 | 73150 | 0.0 | - | | 2.7955 | 73200 | 0.0 | - | | 2.7974 | 73250 | 0.0 | - | | 2.7993 | 73300 | 0.0 | - | | 2.8012 | 73350 | 0.0 | - | | 2.8031 | 73400 | 0.0 | - | | 2.8050 | 73450 | 0.0 | - | | 2.8070 | 73500 | 0.0 | - | | 2.8089 | 73550 | 0.0 | - | | 2.8108 | 73600 | 0.0 | - | | 2.8127 | 73650 | 0.0 | - | | 2.8146 | 73700 | 0.0 | - | | 2.8165 | 73750 | 0.0 | - | | 2.8184 | 73800 | 0.0 | - | | 2.8203 | 73850 | 0.0 | - | | 2.8222 | 73900 | 0.0 | - | | 2.8241 | 73950 | 0.0 | - | | 2.8260 | 74000 | 0.0 | - | | 2.8280 | 74050 | 0.0 | - | | 2.8299 | 74100 | 0.0 | - | | 2.8318 | 74150 | 0.0 | - | | 2.8337 | 74200 | 0.0 | - | | 2.8356 | 74250 | 0.0 | - | | 2.8375 | 74300 | 0.0 | - | | 2.8394 | 74350 | 0.0 | - | | 2.8413 | 74400 | 0.0001 | - | | 2.8432 | 74450 | 0.0 | - | | 2.8451 | 74500 | 0.0 | - | | 2.8470 | 74550 | 0.0 | - | | 2.8490 | 74600 | 0.0 | - | | 2.8509 | 74650 | 0.0 | - | | 2.8528 | 74700 | 0.0 | - | | 2.8547 | 74750 | 0.0 | - | | 2.8566 | 74800 | 0.0 | - | | 2.8585 | 74850 | 0.0 | - | | 2.8604 | 74900 | 0.0 | - | | 2.8623 | 74950 | 0.0 | - | | 2.8642 | 75000 | 0.0 | - | | 2.8661 | 75050 | 0.0 | - | | 2.8681 | 75100 | 0.0 | - | | 2.8700 | 75150 | 0.0 | - | | 2.8719 | 75200 | 0.0 | - | | 2.8738 | 75250 | 0.0 | - | | 2.8757 | 75300 | 0.0 | - | | 2.8776 | 75350 | 0.0001 | - | | 2.8795 | 75400 | 0.0 | - | | 2.8814 | 75450 | 0.0 | - | | 2.8833 | 75500 | 0.0 | - | | 2.8852 | 75550 | 0.0 | - | | 2.8871 | 75600 | 0.0 | - | | 2.8891 | 75650 | 0.0 | - | | 2.8910 | 75700 | 0.0 | - | | 2.8929 | 75750 | 0.0 | - | | 2.8948 | 75800 | 0.0 | - | | 2.8967 | 75850 | 0.0 | - | | 2.8986 | 75900 | 0.0 | - | | 2.9005 | 75950 | 0.0 | - | | 2.9024 | 76000 | 0.0 | - | | 2.9043 | 76050 | 0.0 | - | | 2.9062 | 76100 | 0.0 | - | | 2.9082 | 76150 | 0.0 | - | | 2.9101 | 76200 | 0.0 | - | | 2.9120 | 76250 | 0.0 | - | | 2.9139 | 76300 | 0.0 | - | | 2.9158 | 76350 | 0.0 | - | | 2.9177 | 76400 | 0.0 | - | | 2.9196 | 76450 | 0.0001 | - | | 2.9215 | 76500 | 0.0 | - | | 2.9234 | 76550 | 0.0001 | - | | 2.9253 | 76600 | 0.0 | - | | 2.9272 | 76650 | 0.0 | - | | 2.9292 | 76700 | 0.0 | - | | 2.9311 | 76750 | 0.0 | - | | 2.9330 | 76800 | 0.0 | - | | 2.9349 | 76850 | 0.0 | - | | 2.9368 | 76900 | 0.0 | - | | 2.9387 | 76950 | 0.0 | - | | 2.9406 | 77000 | 0.0 | - | | 2.9425 | 77050 | 0.0 | - | | 2.9444 | 77100 | 0.0 | - | | 2.9463 | 77150 | 0.0 | - | | 2.9483 | 77200 | 0.0 | - | | 2.9502 | 77250 | 0.0 | - | | 2.9521 | 77300 | 0.0 | - | | 2.9540 | 77350 | 0.0 | - | | 2.9559 | 77400 | 0.0 | - | | 2.9578 | 77450 | 0.0 | - | | 2.9597 | 77500 | 0.0 | - | | 2.9616 | 77550 | 0.0 | - | | 2.9635 | 77600 | 0.0 | - | | 2.9654 | 77650 | 0.0 | - | | 2.9673 | 77700 | 0.0 | - | | 2.9693 | 77750 | 0.0 | - | | 2.9712 | 77800 | 0.0001 | - | | 2.9731 | 77850 | 0.0 | - | | 2.9750 | 77900 | 0.0 | - | | 2.9769 | 77950 | 0.0 | - | | 2.9788 | 78000 | 0.0 | - | | 2.9807 | 78050 | 0.0 | - | | 2.9826 | 78100 | 0.0 | - | | 2.9845 | 78150 | 0.0 | - | | 2.9864 | 78200 | 0.0 | - | | 2.9884 | 78250 | 0.0001 | - | | 2.9903 | 78300 | 0.0 | - | | 2.9922 | 78350 | 0.0 | - | | 2.9941 | 78400 | 0.0001 | - | | 2.9960 | 78450 | 0.0 | - | | 2.9979 | 78500 | 0.0 | - | | 2.9998 | 78550 | 0.0 | - | | 3.0 | 78555 | - | 0.3541 | | 3.0017 | 78600 | 0.0 | - | | 3.0036 | 78650 | 0.0 | - | | 3.0055 | 78700 | 0.0 | - | | 3.0074 | 78750 | 0.0 | - | | 3.0094 | 78800 | 0.0 | - | | 3.0113 | 78850 | 0.0 | - | | 3.0132 | 78900 | 0.0 | - | | 3.0151 | 78950 | 0.0 | - | | 3.0170 | 79000 | 0.0 | - | | 3.0189 | 79050 | 0.0 | - | | 3.0208 | 79100 | 0.0 | - | | 3.0227 | 79150 | 0.0002 | - | | 3.0246 | 79200 | 0.0 | - | | 3.0265 | 79250 | 0.0 | - | | 3.0285 | 79300 | 0.0 | - | | 3.0304 | 79350 | 0.0 | - | | 3.0323 | 79400 | 0.0 | - | | 3.0342 | 79450 | 0.0 | - | | 3.0361 | 79500 | 0.0 | - | | 3.0380 | 79550 | 0.0 | - | | 3.0399 | 79600 | 0.0 | - | | 3.0418 | 79650 | 0.0 | - | | 3.0437 | 79700 | 0.0 | - | | 3.0456 | 79750 | 0.0 | - | | 3.0475 | 79800 | 0.0 | - | | 3.0495 | 79850 | 0.0 | - | | 3.0514 | 79900 | 0.0 | - | | 3.0533 | 79950 | 0.0 | - | | 3.0552 | 80000 | 0.0 | - | | 3.0571 | 80050 | 0.0 | - | | 3.0590 | 80100 | 0.0 | - | | 3.0609 | 80150 | 0.0 | - | | 3.0628 | 80200 | 0.0 | - | | 3.0647 | 80250 | 0.0 | - | | 3.0666 | 80300 | 0.0 | - | | 3.0686 | 80350 | 0.0 | - | | 3.0705 | 80400 | 0.0 | - | | 3.0724 | 80450 | 0.0 | - | | 3.0743 | 80500 | 0.0 | - | | 3.0762 | 80550 | 0.0 | - | | 3.0781 | 80600 | 0.0 | - | | 3.0800 | 80650 | 0.0 | - | | 3.0819 | 80700 | 0.0 | - | | 3.0838 | 80750 | 0.0 | - | | 3.0857 | 80800 | 0.0 | - | | 3.0876 | 80850 | 0.0 | - | | 3.0896 | 80900 | 0.0 | - | | 3.0915 | 80950 | 0.0 | - | | 3.0934 | 81000 | 0.0 | - | | 3.0953 | 81050 | 0.0 | - | | 3.0972 | 81100 | 0.0 | - | | 3.0991 | 81150 | 0.0 | - | | 3.1010 | 81200 | 0.0 | - | | 3.1029 | 81250 | 0.0 | - | | 3.1048 | 81300 | 0.0 | - | | 3.1067 | 81350 | 0.0 | - | | 3.1086 | 81400 | 0.0 | - | | 3.1106 | 81450 | 0.0 | - | | 3.1125 | 81500 | 0.0 | - | | 3.1144 | 81550 | 0.0 | - | | 3.1163 | 81600 | 0.0 | - | | 3.1182 | 81650 | 0.0 | - | | 3.1201 | 81700 | 0.0 | - | | 3.1220 | 81750 | 0.0 | - | | 3.1239 | 81800 | 0.0 | - | | 3.1258 | 81850 | 0.0 | - | | 3.1277 | 81900 | 0.0 | - | | 3.1297 | 81950 | 0.0 | - | | 3.1316 | 82000 | 0.0 | - | | 3.1335 | 82050 | 0.0 | - | | 3.1354 | 82100 | 0.0 | - | | 3.1373 | 82150 | 0.0 | - | | 3.1392 | 82200 | 0.0 | - | | 3.1411 | 82250 | 0.0 | - | | 3.1430 | 82300 | 0.0 | - | | 3.1449 | 82350 | 0.0 | - | | 3.1468 | 82400 | 0.0 | - | | 3.1487 | 82450 | 0.0 | - | | 3.1507 | 82500 | 0.0 | - | | 3.1526 | 82550 | 0.0 | - | | 3.1545 | 82600 | 0.0 | - | | 3.1564 | 82650 | 0.0 | - | | 3.1583 | 82700 | 0.0 | - | | 3.1602 | 82750 | 0.0 | - | | 3.1621 | 82800 | 0.0 | - | | 3.1640 | 82850 | 0.0 | - | | 3.1659 | 82900 | 0.0 | - | | 3.1678 | 82950 | 0.0 | - | | 3.1698 | 83000 | 0.0 | - | | 3.1717 | 83050 | 0.0 | - | | 3.1736 | 83100 | 0.0 | - | | 3.1755 | 83150 | 0.0 | - | | 3.1774 | 83200 | 0.0 | - | | 3.1793 | 83250 | 0.0 | - | | 3.1812 | 83300 | 0.0 | - | | 3.1831 | 83350 | 0.0 | - | | 3.1850 | 83400 | 0.0 | - | | 3.1869 | 83450 | 0.0 | - | | 3.1888 | 83500 | 0.0 | - | | 3.1908 | 83550 | 0.0 | - | | 3.1927 | 83600 | 0.0 | - | | 3.1946 | 83650 | 0.0 | - | | 3.1965 | 83700 | 0.0 | - | | 3.1984 | 83750 | 0.0 | - | | 3.2003 | 83800 | 0.0 | - | | 3.2022 | 83850 | 0.0 | - | | 3.2041 | 83900 | 0.0 | - | | 3.2060 | 83950 | 0.0 | - | | 3.2079 | 84000 | 0.0 | - | | 3.2099 | 84050 | 0.0 | - | | 3.2118 | 84100 | 0.0 | - | | 3.2137 | 84150 | 0.0 | - | | 3.2156 | 84200 | 0.0 | - | | 3.2175 | 84250 | 0.0 | - | | 3.2194 | 84300 | 0.0 | - | | 3.2213 | 84350 | 0.0 | - | | 3.2232 | 84400 | 0.0 | - | | 3.2251 | 84450 | 0.0001 | - | | 3.2270 | 84500 | 0.0 | - | | 3.2289 | 84550 | 0.0 | - | | 3.2309 | 84600 | 0.0 | - | | 3.2328 | 84650 | 0.0 | - | | 3.2347 | 84700 | 0.0 | - | | 3.2366 | 84750 | 0.0 | - | | 3.2385 | 84800 | 0.0 | - | | 3.2404 | 84850 | 0.0 | - | | 3.2423 | 84900 | 0.0 | - | | 3.2442 | 84950 | 0.0 | - | | 3.2461 | 85000 | 0.0 | - | | 3.2480 | 85050 | 0.0 | - | | 3.2500 | 85100 | 0.0 | - | | 3.2519 | 85150 | 0.0 | - | | 3.2538 | 85200 | 0.0 | - | | 3.2557 | 85250 | 0.0 | - | | 3.2576 | 85300 | 0.0 | - | | 3.2595 | 85350 | 0.0 | - | | 3.2614 | 85400 | 0.0 | - | | 3.2633 | 85450 | 0.0 | - | | 3.2652 | 85500 | 0.0 | - | | 3.2671 | 85550 | 0.0 | - | | 3.2690 | 85600 | 0.0 | - | | 3.2710 | 85650 | 0.0 | - | | 3.2729 | 85700 | 0.0 | - | | 3.2748 | 85750 | 0.0 | - | | 3.2767 | 85800 | 0.0 | - | | 3.2786 | 85850 | 0.0 | - | | 3.2805 | 85900 | 0.0 | - | | 3.2824 | 85950 | 0.0 | - | | 3.2843 | 86000 | 0.0 | - | | 3.2862 | 86050 | 0.0 | - | | 3.2881 | 86100 | 0.0 | - | | 3.2901 | 86150 | 0.0 | - | | 3.2920 | 86200 | 0.0 | - | | 3.2939 | 86250 | 0.0 | - | | 3.2958 | 86300 | 0.0 | - | | 3.2977 | 86350 | 0.0 | - | | 3.2996 | 86400 | 0.0 | - | | 3.3015 | 86450 | 0.0 | - | | 3.3034 | 86500 | 0.0 | - | | 3.3053 | 86550 | 0.0 | - | | 3.3072 | 86600 | 0.0 | - | | 3.3091 | 86650 | 0.0 | - | | 3.3111 | 86700 | 0.0 | - | | 3.3130 | 86750 | 0.0 | - | | 3.3149 | 86800 | 0.0 | - | | 3.3168 | 86850 | 0.0 | - | | 3.3187 | 86900 | 0.0 | - | | 3.3206 | 86950 | 0.0 | - | | 3.3225 | 87000 | 0.0 | - | | 3.3244 | 87050 | 0.0 | - | | 3.3263 | 87100 | 0.0 | - | | 3.3282 | 87150 | 0.0 | - | | 3.3302 | 87200 | 0.0 | - | | 3.3321 | 87250 | 0.0 | - | | 3.3340 | 87300 | 0.0 | - | | 3.3359 | 87350 | 0.0 | - | | 3.3378 | 87400 | 0.0 | - | | 3.3397 | 87450 | 0.0 | - | | 3.3416 | 87500 | 0.0 | - | | 3.3435 | 87550 | 0.0 | - | | 3.3454 | 87600 | 0.0 | - | | 3.3473 | 87650 | 0.0 | - | | 3.3492 | 87700 | 0.0 | - | | 3.3512 | 87750 | 0.0 | - | | 3.3531 | 87800 | 0.0 | - | | 3.3550 | 87850 | 0.0 | - | | 3.3569 | 87900 | 0.0 | - | | 3.3588 | 87950 | 0.0 | - | | 3.3607 | 88000 | 0.0 | - | | 3.3626 | 88050 | 0.0 | - | | 3.3645 | 88100 | 0.0 | - | | 3.3664 | 88150 | 0.0 | - | | 3.3683 | 88200 | 0.0 | - | | 3.3703 | 88250 | 0.0 | - | | 3.3722 | 88300 | 0.0 | - | | 3.3741 | 88350 | 0.0 | - | | 3.3760 | 88400 | 0.0 | - | | 3.3779 | 88450 | 0.0 | - | | 3.3798 | 88500 | 0.0 | - | | 3.3817 | 88550 | 0.0 | - | | 3.3836 | 88600 | 0.0 | - | | 3.3855 | 88650 | 0.0 | - | | 3.3874 | 88700 | 0.0 | - | | 3.3893 | 88750 | 0.0 | - | | 3.3913 | 88800 | 0.0 | - | | 3.3932 | 88850 | 0.0 | - | | 3.3951 | 88900 | 0.0 | - | | 3.3970 | 88950 | 0.0 | - | | 3.3989 | 89000 | 0.0 | - | | 3.4008 | 89050 | 0.0 | - | | 3.4027 | 89100 | 0.0 | - | | 3.4046 | 89150 | 0.0 | - | | 3.4065 | 89200 | 0.0 | - | | 3.4084 | 89250 | 0.0 | - | | 3.4103 | 89300 | 0.0 | - | | 3.4123 | 89350 | 0.0 | - | | 3.4142 | 89400 | 0.0 | - | | 3.4161 | 89450 | 0.0 | - | | 3.4180 | 89500 | 0.0 | - | | 3.4199 | 89550 | 0.0 | - | | 3.4218 | 89600 | 0.0 | - | | 3.4237 | 89650 | 0.0 | - | | 3.4256 | 89700 | 0.0 | - | | 3.4275 | 89750 | 0.0 | - | | 3.4294 | 89800 | 0.0 | - | | 3.4314 | 89850 | 0.0 | - | | 3.4333 | 89900 | 0.0 | - | | 3.4352 | 89950 | 0.0 | - | | 3.4371 | 90000 | 0.0 | - | | 3.4390 | 90050 | 0.0 | - | | 3.4409 | 90100 | 0.0 | - | | 3.4428 | 90150 | 0.0 | - | | 3.4447 | 90200 | 0.0 | - | | 3.4466 | 90250 | 0.0 | - | | 3.4485 | 90300 | 0.0 | - | | 3.4504 | 90350 | 0.0 | - | | 3.4524 | 90400 | 0.0 | - | | 3.4543 | 90450 | 0.0 | - | | 3.4562 | 90500 | 0.0 | - | | 3.4581 | 90550 | 0.0 | - | | 3.4600 | 90600 | 0.0 | - | | 3.4619 | 90650 | 0.0 | - | | 3.4638 | 90700 | 0.0 | - | | 3.4657 | 90750 | 0.0 | - | | 3.4676 | 90800 | 0.0 | - | | 3.4695 | 90850 | 0.0 | - | | 3.4715 | 90900 | 0.0 | - | | 3.4734 | 90950 | 0.0 | - | | 3.4753 | 91000 | 0.0 | - | | 3.4772 | 91050 | 0.0 | - | | 3.4791 | 91100 | 0.0 | - | | 3.4810 | 91150 | 0.0 | - | | 3.4829 | 91200 | 0.0 | - | | 3.4848 | 91250 | 0.0 | - | | 3.4867 | 91300 | 0.0 | - | | 3.4886 | 91350 | 0.0 | - | | 3.4905 | 91400 | 0.0 | - | | 3.4925 | 91450 | 0.0 | - | | 3.4944 | 91500 | 0.0 | - | | 3.4963 | 91550 | 0.0 | - | | 3.4982 | 91600 | 0.0 | - | | 3.5001 | 91650 | 0.0 | - | | 3.5020 | 91700 | 0.0 | - | | 3.5039 | 91750 | 0.0 | - | | 3.5058 | 91800 | 0.0 | - | | 3.5077 | 91850 | 0.0 | - | | 3.5096 | 91900 | 0.0 | - | | 3.5116 | 91950 | 0.0 | - | | 3.5135 | 92000 | 0.0 | - | | 3.5154 | 92050 | 0.0 | - | | 3.5173 | 92100 | 0.0 | - | | 3.5192 | 92150 | 0.0 | - | | 3.5211 | 92200 | 0.0 | - | | 3.5230 | 92250 | 0.0 | - | | 3.5249 | 92300 | 0.0 | - | | 3.5268 | 92350 | 0.0 | - | | 3.5287 | 92400 | 0.0 | - | | 3.5306 | 92450 | 0.0 | - | | 3.5326 | 92500 | 0.0 | - | | 3.5345 | 92550 | 0.0 | - | | 3.5364 | 92600 | 0.0 | - | | 3.5383 | 92650 | 0.0 | - | | 3.5402 | 92700 | 0.0 | - | | 3.5421 | 92750 | 0.0 | - | | 3.5440 | 92800 | 0.0 | - | | 3.5459 | 92850 | 0.0 | - | | 3.5478 | 92900 | 0.0 | - | | 3.5497 | 92950 | 0.0 | - | | 3.5517 | 93000 | 0.0 | - | | 3.5536 | 93050 | 0.0 | - | | 3.5555 | 93100 | 0.0 | - | | 3.5574 | 93150 | 0.0 | - | | 3.5593 | 93200 | 0.0 | - | | 3.5612 | 93250 | 0.0 | - | | 3.5631 | 93300 | 0.0 | - | | 3.5650 | 93350 | 0.0 | - | | 3.5669 | 93400 | 0.0 | - | | 3.5688 | 93450 | 0.0 | - | | 3.5707 | 93500 | 0.0 | - | | 3.5727 | 93550 | 0.0 | - | | 3.5746 | 93600 | 0.0 | - | | 3.5765 | 93650 | 0.0 | - | | 3.5784 | 93700 | 0.0 | - | | 3.5803 | 93750 | 0.0 | - | | 3.5822 | 93800 | 0.0 | - | | 3.5841 | 93850 | 0.0 | - | | 3.5860 | 93900 | 0.0 | - | | 3.5879 | 93950 | 0.0 | - | | 3.5898 | 94000 | 0.0 | - | | 3.5918 | 94050 | 0.0 | - | | 3.5937 | 94100 | 0.0 | - | | 3.5956 | 94150 | 0.0 | - | | 3.5975 | 94200 | 0.0 | - | | 3.5994 | 94250 | 0.0 | - | | 3.6013 | 94300 | 0.0 | - | | 3.6032 | 94350 | 0.0 | - | | 3.6051 | 94400 | 0.0 | - | | 3.6070 | 94450 | 0.0 | - | | 3.6089 | 94500 | 0.0 | - | | 3.6108 | 94550 | 0.0 | - | | 3.6128 | 94600 | 0.0 | - | | 3.6147 | 94650 | 0.0 | - | | 3.6166 | 94700 | 0.0 | - | | 3.6185 | 94750 | 0.0 | - | | 3.6204 | 94800 | 0.0 | - | | 3.6223 | 94850 | 0.0 | - | | 3.6242 | 94900 | 0.0 | - | | 3.6261 | 94950 | 0.0 | - | | 3.6280 | 95000 | 0.0 | - | | 3.6299 | 95050 | 0.0 | - | | 3.6319 | 95100 | 0.0 | - | | 3.6338 | 95150 | 0.0 | - | | 3.6357 | 95200 | 0.0 | - | | 3.6376 | 95250 | 0.0 | - | | 3.6395 | 95300 | 0.0 | - | | 3.6414 | 95350 | 0.0 | - | | 3.6433 | 95400 | 0.0 | - | | 3.6452 | 95450 | 0.0 | - | | 3.6471 | 95500 | 0.0 | - | | 3.6490 | 95550 | 0.0 | - | | 3.6509 | 95600 | 0.0 | - | | 3.6529 | 95650 | 0.0 | - | | 3.6548 | 95700 | 0.0 | - | | 3.6567 | 95750 | 0.0 | - | | 3.6586 | 95800 | 0.0 | - | | 3.6605 | 95850 | 0.0 | - | | 3.6624 | 95900 | 0.0 | - | | 3.6643 | 95950 | 0.0 | - | | 3.6662 | 96000 | 0.0 | - | | 3.6681 | 96050 | 0.0 | - | | 3.6700 | 96100 | 0.0 | - | | 3.6719 | 96150 | 0.0 | - | | 3.6739 | 96200 | 0.0 | - | | 3.6758 | 96250 | 0.0 | - | | 3.6777 | 96300 | 0.0 | - | | 3.6796 | 96350 | 0.0 | - | | 3.6815 | 96400 | 0.0 | - | | 3.6834 | 96450 | 0.0 | - | | 3.6853 | 96500 | 0.0 | - | | 3.6872 | 96550 | 0.0 | - | | 3.6891 | 96600 | 0.0 | - | | 3.6910 | 96650 | 0.0 | - | | 3.6930 | 96700 | 0.0 | - | | 3.6949 | 96750 | 0.0 | - | | 3.6968 | 96800 | 0.0 | - | | 3.6987 | 96850 | 0.0 | - | | 3.7006 | 96900 | 0.0 | - | | 3.7025 | 96950 | 0.0 | - | | 3.7044 | 97000 | 0.0 | - | | 3.7063 | 97050 | 0.0 | - | | 3.7082 | 97100 | 0.0 | - | | 3.7101 | 97150 | 0.0 | - | | 3.7120 | 97200 | 0.0 | - | | 3.7140 | 97250 | 0.0 | - | | 3.7159 | 97300 | 0.0 | - | | 3.7178 | 97350 | 0.0 | - | | 3.7197 | 97400 | 0.0 | - | | 3.7216 | 97450 | 0.0 | - | | 3.7235 | 97500 | 0.0 | - | | 3.7254 | 97550 | 0.0 | - | | 3.7273 | 97600 | 0.0 | - | | 3.7292 | 97650 | 0.0 | - | | 3.7311 | 97700 | 0.0 | - | | 3.7331 | 97750 | 0.0 | - | | 3.7350 | 97800 | 0.0 | - | | 3.7369 | 97850 | 0.0 | - | | 3.7388 | 97900 | 0.0 | - | | 3.7407 | 97950 | 0.0 | - | | 3.7426 | 98000 | 0.0 | - | | 3.7445 | 98050 | 0.0 | - | | 3.7464 | 98100 | 0.0 | - | | 3.7483 | 98150 | 0.0 | - | | 3.7502 | 98200 | 0.0 | - | | 3.7521 | 98250 | 0.0 | - | | 3.7541 | 98300 | 0.0 | - | | 3.7560 | 98350 | 0.0 | - | | 3.7579 | 98400 | 0.0 | - | | 3.7598 | 98450 | 0.0 | - | | 3.7617 | 98500 | 0.0 | - | | 3.7636 | 98550 | 0.0 | - | | 3.7655 | 98600 | 0.0 | - | | 3.7674 | 98650 | 0.0 | - | | 3.7693 | 98700 | 0.0 | - | | 3.7712 | 98750 | 0.0 | - | | 3.7732 | 98800 | 0.0 | - | | 3.7751 | 98850 | 0.0 | - | | 3.7770 | 98900 | 0.0 | - | | 3.7789 | 98950 | 0.0 | - | | 3.7808 | 99000 | 0.0 | - | | 3.7827 | 99050 | 0.0 | - | | 3.7846 | 99100 | 0.0 | - | | 3.7865 | 99150 | 0.0 | - | | 3.7884 | 99200 | 0.0 | - | | 3.7903 | 99250 | 0.0 | - | | 3.7922 | 99300 | 0.0 | - | | 3.7942 | 99350 | 0.0 | - | | 3.7961 | 99400 | 0.0 | - | | 3.7980 | 99450 | 0.0 | - | | 3.7999 | 99500 | 0.0 | - | | 3.8018 | 99550 | 0.0 | - | | 3.8037 | 99600 | 0.0 | - | | 3.8056 | 99650 | 0.0 | - | | 3.8075 | 99700 | 0.0 | - | | 3.8094 | 99750 | 0.0 | - | | 3.8113 | 99800 | 0.0 | - | | 3.8133 | 99850 | 0.0 | - | | 3.8152 | 99900 | 0.0 | - | | 3.8171 | 99950 | 0.0 | - | | 3.8190 | 100000 | 0.0 | - | | 3.8209 | 100050 | 0.0 | - | | 3.8228 | 100100 | 0.0 | - | | 3.8247 | 100150 | 0.0 | - | | 3.8266 | 100200 | 0.0 | - | | 3.8285 | 100250 | 0.0 | - | | 3.8304 | 100300 | 0.0 | - | | 3.8323 | 100350 | 0.0 | - | | 3.8343 | 100400 | 0.0 | - | | 3.8362 | 100450 | 0.0 | - | | 3.8381 | 100500 | 0.0 | - | | 3.8400 | 100550 | 0.0 | - | | 3.8419 | 100600 | 0.0 | - | | 3.8438 | 100650 | 0.0 | - | | 3.8457 | 100700 | 0.0 | - | | 3.8476 | 100750 | 0.0 | - | | 3.8495 | 100800 | 0.0 | - | | 3.8514 | 100850 | 0.0 | - | | 3.8534 | 100900 | 0.0 | - | | 3.8553 | 100950 | 0.0 | - | | 3.8572 | 101000 | 0.0 | - | | 3.8591 | 101050 | 0.0 | - | | 3.8610 | 101100 | 0.0 | - | | 3.8629 | 101150 | 0.0 | - | | 3.8648 | 101200 | 0.0 | - | | 3.8667 | 101250 | 0.0 | - | | 3.8686 | 101300 | 0.0 | - | | 3.8705 | 101350 | 0.0 | - | | 3.8724 | 101400 | 0.0 | - | | 3.8744 | 101450 | 0.0 | - | | 3.8763 | 101500 | 0.0 | - | | 3.8782 | 101550 | 0.0 | - | | 3.8801 | 101600 | 0.0 | - | | 3.8820 | 101650 | 0.0 | - | | 3.8839 | 101700 | 0.0 | - | | 3.8858 | 101750 | 0.0 | - | | 3.8877 | 101800 | 0.0 | - | | 3.8896 | 101850 | 0.0 | - | | 3.8915 | 101900 | 0.0 | - | | 3.8935 | 101950 | 0.0 | - | | 3.8954 | 102000 | 0.0 | - | | 3.8973 | 102050 | 0.0 | - | | 3.8992 | 102100 | 0.0 | - | | 3.9011 | 102150 | 0.0 | - | | 3.9030 | 102200 | 0.0 | - | | 3.9049 | 102250 | 0.0 | - | | 3.9068 | 102300 | 0.0 | - | | 3.9087 | 102350 | 0.0 | - | | 3.9106 | 102400 | 0.0 | - | | 3.9125 | 102450 | 0.0 | - | | 3.9145 | 102500 | 0.0 | - | | 3.9164 | 102550 | 0.0 | - | | 3.9183 | 102600 | 0.0 | - | | 3.9202 | 102650 | 0.0 | - | | 3.9221 | 102700 | 0.0 | - | | 3.9240 | 102750 | 0.0 | - | | 3.9259 | 102800 | 0.0 | - | | 3.9278 | 102850 | 0.0 | - | | 3.9297 | 102900 | 0.0 | - | | 3.9316 | 102950 | 0.0 | - | | 3.9335 | 103000 | 0.0 | - | | 3.9355 | 103050 | 0.0 | - | | 3.9374 | 103100 | 0.0 | - | | 3.9393 | 103150 | 0.0 | - | | 3.9412 | 103200 | 0.0 | - | | 3.9431 | 103250 | 0.0 | - | | 3.9450 | 103300 | 0.0 | - | | 3.9469 | 103350 | 0.0 | - | | 3.9488 | 103400 | 0.0 | - | | 3.9507 | 103450 | 0.0 | - | | 3.9526 | 103500 | 0.0 | - | | 3.9546 | 103550 | 0.0 | - | | 3.9565 | 103600 | 0.0 | - | | 3.9584 | 103650 | 0.0 | - | | 3.9603 | 103700 | 0.0 | - | | 3.9622 | 103750 | 0.0 | - | | 3.9641 | 103800 | 0.0 | - | | 3.9660 | 103850 | 0.0 | - | | 3.9679 | 103900 | 0.0 | - | | 3.9698 | 103950 | 0.0 | - | | 3.9717 | 104000 | 0.0 | - | | 3.9736 | 104050 | 0.0 | - | | 3.9756 | 104100 | 0.0 | - | | 3.9775 | 104150 | 0.0 | - | | 3.9794 | 104200 | 0.0 | - | | 3.9813 | 104250 | 0.0 | - | | 3.9832 | 104300 | 0.0 | - | | 3.9851 | 104350 | 0.0 | - | | 3.9870 | 104400 | 0.0 | - | | 3.9889 | 104450 | 0.0 | - | | 3.9908 | 104500 | 0.0 | - | | 3.9927 | 104550 | 0.0 | - | | 3.9947 | 104600 | 0.0 | - | | 3.9966 | 104650 | 0.0 | - | | 3.9985 | 104700 | 0.0 | - | | 4.0 | 104740 | - | 0.3749 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.36.2 - PyTorch: 2.1.2+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Zintoulou/codellamafinetune1
Zintoulou
2024-01-21T02:45:59Z
0
0
null
[ "generated_from_trainer", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "license:llama2", "region:us" ]
null
2024-01-21T02:44:32Z
--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer model-index: - name: codellamafinetune1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codellamafinetune1 This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.688 | 1.0 | 1 | 2.7732 | | 2.2839 | 2.0 | 2 | 2.2213 | | 1.8066 | 3.0 | 3 | 1.9344 | | 1.495 | 4.0 | 4 | 1.5703 | | 1.1257 | 5.0 | 5 | 1.3163 | | 0.8016 | 6.0 | 6 | 1.0887 | | 0.5227 | 7.0 | 7 | 0.9648 | | 0.3552 | 8.0 | 8 | 0.9399 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.13.3
Zintoulou/codellamafinetune
Zintoulou
2024-01-21T02:21:01Z
0
0
null
[ "generated_from_trainer", "base_model:codellama/CodeLlama-7b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-7b-Instruct-hf", "license:llama2", "region:us" ]
null
2024-01-21T01:21:08Z
--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer model-index: - name: codellamafinetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codellamafinetune This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.688 | 1.0 | 1 | 2.6557 | | 2.1862 | 2.0 | 2 | 2.0614 | | 1.6295 | 3.0 | 3 | 1.5751 | | 1.1295 | 4.0 | 4 | 1.1448 | | 0.596 | 5.0 | 5 | 0.9583 | | 0.2845 | 6.0 | 6 | 0.9543 | | 0.1825 | 7.0 | 7 | 1.0156 | | 0.1624 | 8.0 | 8 | 1.0044 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.13.3
Ram07/mistral-dpo
Ram07
2024-01-21T02:06:37Z
0
0
null
[ "tensorboard", "safetensors", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "base_model:finetune:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "license:apache-2.0", "region:us" ]
text-generation
2024-01-20T15:56:45Z
--- license: apache-2.0 base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ tags: - trl - dpo - generated_from_trainer model-index: - name: mistral-dpo results: [] pipeline_tag: conversational --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-dpo This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0559 - Rewards/chosen: -0.6622 - Rewards/rejected: -5.8356 - Rewards/accuracies: 1.0 - Rewards/margins: 5.1735 - Logps/rejected: -138.0126 - Logps/chosen: -105.3292 - Logits/rejected: -2.5356 - Logits/chosen: -2.7185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6666 | 0.01 | 10 | 0.5490 | 0.3763 | 0.0083 | 1.0 | 0.3680 | -79.5733 | -94.9446 | -2.6386 | -2.7333 | | 0.439 | 0.01 | 20 | 0.2792 | 1.0686 | -0.2159 | 1.0 | 1.2845 | -81.8148 | -88.0209 | -2.6245 | -2.7868 | | 0.1683 | 0.02 | 30 | 0.1116 | 1.0530 | -2.2150 | 1.0 | 3.2680 | -101.8059 | -88.1772 | -2.6157 | -2.7924 | | 0.54 | 0.03 | 40 | 0.0719 | -0.1064 | -4.6952 | 1.0 | 4.5888 | -126.6084 | -99.7713 | -2.5649 | -2.7384 | | 0.0965 | 0.03 | 50 | 0.0559 | -0.6622 | -5.8356 | 1.0 | 5.1735 | -138.0126 | -105.3292 | -2.5356 | -2.7185 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
SanjiWatsuki/zephyr-3.8b-wip
SanjiWatsuki
2024-01-21T02:02:11Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-21T01:59:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Coooori/llama_checkpoint-3500
Coooori
2024-01-21T01:48:33Z
1
0
peft
[ "peft", "region:us" ]
null
2024-01-21T01:48:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
miguelcarv/resnet-152-text-detector
miguelcarv
2024-01-21T01:43:52Z
311
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-19T20:01:50Z
# Model Card for ResNet-152 Text Detector This model was trained with the intent to quickly classify whether or not an image contains legible text or not. It was trained as a binary classification problem on the COCO-Text dataset together with some images from LLaVAR. This came out to a total of ~140k images, where 50% of them had text and 50% of them had no legible text. # Model Details ## How to Get Started with the Model ```python from PIL import Image import requests import torch from transformers import AutoImageProcessor, AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained( "miguelcarv/resnet-152-text-detector", ) processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50", do_resize=False) url = "http://images.cocodataset.org/train2017/000000044520.jpg" image = Image.open(requests.get(url, stream=True).raw).convert('RGB').resize((300,300)) inputs = processor(image, return_tensors="pt").pixel_values with torch.no_grad(): outputs = model(inputs) logits_per_image = outputs.logits probs = logits_per_image.softmax(dim=1) print(probs) # tensor([[0.1085, 0.8915]]) ``` # Training Details - Trained for three epochs - Resolution: 300x300 - Learning rate: 5e-5 - Optimizer: AdamW - Batch size: 64 - Trained with FP32
CLMBR/old-existential-there-quantifier-lstm-3
CLMBR
2024-01-21T01:21:52Z
10
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-16T15:44:05Z
--- tags: - generated_from_trainer model-index: - name: existential-there-quantifier-lstm-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # existential-there-quantifier-lstm-3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.8327 | 0.03 | 76320 | 4.7897 | | 4.5393 | 1.03 | 152640 | 4.5018 | | 4.394 | 0.03 | 228960 | 4.3650 | | 4.2992 | 1.03 | 305280 | 4.2801 | | 4.2379 | 0.03 | 381600 | 4.2230 | | 4.1886 | 1.03 | 457920 | 4.1810 | | 4.153 | 0.03 | 534240 | 4.1506 | | 4.1246 | 1.03 | 610560 | 4.1257 | | 4.094 | 0.03 | 686880 | 4.1058 | | 4.0747 | 1.03 | 763200 | 4.0905 | | 4.0519 | 0.03 | 839520 | 4.0770 | | 4.0312 | 1.03 | 915840 | 4.0655 | | 4.017 | 0.03 | 992160 | 4.0566 | | 3.9986 | 1.03 | 1068480 | 4.0483 | | 3.981 | 0.03 | 1144800 | 4.0414 | | 3.9739 | 1.03 | 1221120 | 4.0354 | | 3.9606 | 0.03 | 1297440 | 4.0303 | | 3.9499 | 1.03 | 1373760 | 4.0261 | | 3.9415 | 0.03 | 1450080 | 4.0219 | | 3.932 | 1.03 | 1526400 | 4.0187 | | 3.9294 | 0.03 | 1602720 | 4.0159 | | 3.9226 | 1.03 | 1679040 | 4.0131 | | 3.9195 | 0.03 | 1755360 | 4.0094 | | 3.9186 | 1.03 | 1831680 | 4.0071 | | 3.9098 | 0.03 | 1908000 | 4.0055 | | 3.9087 | 1.03 | 1984320 | 4.0036 | | 3.8995 | 0.03 | 2060640 | 4.0021 | | 3.8935 | 1.03 | 2136960 | 4.0009 | | 3.8906 | 0.03 | 2213280 | 3.9996 | | 3.8854 | 1.03 | 2289600 | 3.9981 | | 3.875 | 0.03 | 2365920 | 3.9971 | | 3.8766 | 1.03 | 2442240 | 3.9962 | | 3.8714 | 0.03 | 2518560 | 3.9950 | | 3.864 | 0.03 | 2594880 | 3.9944 | | 3.8625 | 1.03 | 2671200 | 3.9934 | | 3.8576 | 0.03 | 2747520 | 3.9927 | | 3.8596 | 1.03 | 2823840 | 3.9921 | | 3.8591 | 0.03 | 2900160 | 3.9915 | | 3.8616 | 1.03 | 2976480 | 3.9911 | | 3.8633 | 0.02 | 3052726 | 3.9908 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
beibeif/poca-SoccerTwos_v1
beibeif
2024-01-21T01:20:43Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-01-21T01:20:39Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: beibeif/poca-SoccerTwos_v1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CLMBR/binding-c-command-transformer-4
CLMBR
2024-01-21T01:10:21Z
4
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-16T15:41:42Z
--- tags: - generated_from_trainer model-index: - name: binding-c-command-transformer-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binding-c-command-transformer-4 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.2297 | 0.03 | 76320 | 4.1982 | | 4.0224 | 1.03 | 152640 | 4.0272 | | 3.9115 | 0.03 | 228960 | 3.9530 | | 3.8463 | 1.03 | 305280 | 3.9113 | | 3.7908 | 0.03 | 381600 | 3.8865 | | 3.7515 | 1.03 | 457920 | 3.8699 | | 3.7215 | 0.03 | 534240 | 3.8597 | | 3.6897 | 1.03 | 610560 | 3.8524 | | 3.6601 | 0.03 | 686880 | 3.8487 | | 3.6335 | 1.03 | 763200 | 3.8447 | | 3.6117 | 0.03 | 839520 | 3.8432 | | 3.5921 | 1.03 | 915840 | 3.8430 | | 3.5737 | 0.03 | 992160 | 3.8429 | | 3.5535 | 1.03 | 1068480 | 3.8429 | | 3.5355 | 0.03 | 1144800 | 3.8431 | | 3.5257 | 1.03 | 1221120 | 3.8452 | | 3.5073 | 0.03 | 1297440 | 3.8459 | | 3.4958 | 1.03 | 1373760 | 3.8471 | | 3.4805 | 0.03 | 1450080 | 3.8488 | | 3.476 | 1.03 | 1526400 | 3.8507 | | 3.4642 | 0.03 | 1602720 | 3.8520 | | 3.4558 | 1.03 | 1679040 | 3.8522 | | 3.4516 | 0.03 | 1755360 | 3.8543 | | 3.4403 | 0.03 | 1831680 | 3.8568 | | 3.4249 | 1.03 | 1908000 | 3.8576 | | 3.4116 | 0.03 | 1984320 | 3.8590 | | 3.4008 | 1.03 | 2060640 | 3.8605 | | 3.3924 | 0.03 | 2136960 | 3.8614 | | 3.3807 | 0.03 | 2213280 | 3.8633 | | 3.3674 | 1.03 | 2289600 | 3.8631 | | 3.3573 | 0.03 | 2365920 | 3.8643 | | 3.351 | 1.03 | 2442240 | 3.8647 | | 3.3368 | 0.03 | 2518560 | 3.8658 | | 3.33 | 1.03 | 2594880 | 3.8653 | | 3.3192 | 0.03 | 2671200 | 3.8654 | | 3.3174 | 1.03 | 2747520 | 3.8658 | | 3.3087 | 0.03 | 2823840 | 3.8653 | | 3.3037 | 1.03 | 2900160 | 3.8643 | | 3.3016 | 0.03 | 2976480 | 3.8637 | | 3.2935 | 0.02 | 3052726 | 3.8623 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
andrewatef/MyBloggerV0.14-GGUF
andrewatef
2024-01-21T01:02:02Z
1
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "en", "base_model:unsloth/tinyllama", "base_model:quantized:unsloth/tinyllama", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-21T00:33:38Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf base_model: unsloth/tinyllama --- # Uploaded model - **Developed by:** andrewatef - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
andrewatef/MyBloggerV0.14
andrewatef
2024-01-21T00:42:16Z
16
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/tinyllama", "base_model:quantized:unsloth/tinyllama", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-20T23:44:24Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/tinyllama --- # Uploaded model - **Developed by:** andrewatef - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mahmed31/bert-finetuned-ner
mahmed31
2024-01-21T00:34:18Z
7
1
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-20T20:07:52Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0608 - Precision: 0.9306 - Recall: 0.9497 - F1: 0.9400 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0781 | 1.0 | 1756 | 0.0806 | 0.9156 | 0.9297 | 0.9226 | 0.9796 | | 0.0361 | 2.0 | 3512 | 0.0600 | 0.9267 | 0.9448 | 0.9357 | 0.9853 | | 0.0189 | 3.0 | 5268 | 0.0608 | 0.9306 | 0.9497 | 0.9400 | 0.9862 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cpu - Datasets 2.16.1 - Tokenizers 0.15.0
XanderJC/gptj-sft-tldr
XanderJC
2024-01-21T00:26:40Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:summarize_from_feedback", "base_model:EleutherAI/gpt-j-6b", "base_model:adapter:EleutherAI/gpt-j-6b", "license:apache-2.0", "region:us" ]
null
2024-01-21T00:26:36Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - summarize_from_feedback base_model: EleutherAI/gpt-j-6b model-index: - name: gptj-sft-tldr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gptj-sft-tldr This model is a fine-tuned version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) on the summarize_from_feedback dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
tr-aravindan/Model-text-generation
tr-aravindan
2024-01-21T00:10:11Z
2
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-01-19T06:40:49Z
--- license: bigscience-bloom-rail-1.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: bigscience/bloomz-560m model-index: - name: Model-text-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model-text-generation This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6532 | 1.0 | 984 | 3.6657 | | 3.6527 | 2.0 | 1968 | 3.6518 | | 3.6301 | 3.0 | 2953 | 3.6462 | | 3.6279 | 4.0 | 3937 | 3.6442 | | 3.6385 | 5.0 | 4920 | 3.6440 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0
jeiku/Gooner_3B_GGUF
jeiku
2024-01-21T00:05:56Z
15
1
null
[ "gguf", "mergekit", "merge", "arxiv:2203.05482", "base_model:jeiku/Bluemoon_cleaned_StableLM", "base_model:merge:jeiku/Bluemoon_cleaned_StableLM", "base_model:jeiku/Humiliation_StableLM", "base_model:merge:jeiku/Humiliation_StableLM", "base_model:jeiku/Smort_3B", "base_model:merge:jeiku/Smort_3B", "base_model:jeiku/Theory_of_Mind_RP_128_StableLM", "base_model:merge:jeiku/Theory_of_Mind_RP_128_StableLM", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-20T23:54:55Z
--- base_model: - jeiku/Smort_3B - jeiku/Humiliation_StableLM - jeiku/Smort_3B - jeiku/Bluemoon_cleaned_StableLM - jeiku/Smort_3B - jeiku/Theory_of_Mind_RP_128_StableLM - jeiku/Smort_3B - jeiku/Erotica_StableLM tags: - mergekit - merge --- # Mixed This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [jeiku/Smort_3B](https://huggingface.co/jeiku/Smort_3B) + [jeiku/Humiliation_StableLM](https://huggingface.co/jeiku/Humiliation_StableLM) * [jeiku/Smort_3B](https://huggingface.co/jeiku/Smort_3B) + [jeiku/Bluemoon_cleaned_StableLM](https://huggingface.co/jeiku/Bluemoon_cleaned_StableLM) * [jeiku/Smort_3B](https://huggingface.co/jeiku/Smort_3B) + [jeiku/Theory_of_Mind_RP_128_StableLM](https://huggingface.co/jeiku/Theory_of_Mind_RP_128_StableLM) * [jeiku/Smort_3B](https://huggingface.co/jeiku/Smort_3B) + [jeiku/Erotica_StableLM](https://huggingface.co/jeiku/Erotica_StableLM) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: jeiku/Smort_3B+jeiku/Theory_of_Mind_RP_128_StableLM parameters: weight: 1 - model: jeiku/Smort_3B+jeiku/Bluemoon_cleaned_StableLM parameters: weight: 1 - model: jeiku/Smort_3B+jeiku/Humiliation_StableLM parameters: weight: 1 - model: jeiku/Smort_3B+jeiku/Erotica_StableLM parameters: weight: 1 merge_method: linear dtype: float16 ```
malo023/Discord
malo023
2024-01-20T23:50:02Z
0
0
null
[ "discord", "text-generation", "fr", "dataset:fka/awesome-chatgpt-prompts", "arxiv:1910.09700", "license:bsl-1.0", "region:us" ]
text-generation
2024-01-20T23:32:19Z
--- license: bsl-1.0 datasets: - fka/awesome-chatgpt-prompts language: - fr pipeline_tag: text-generation tags: - discord --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
samsonsbike/music-d3xy
samsonsbike
2024-01-20T23:45:00Z
1
0
transformers
[ "transformers", "pytorch", "musicgen", "text-to-audio", "arxiv:2306.05284", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-audio
2024-01-20T23:14:06Z
--- inference: true tags: - musicgen license: cc-by-nc-4.0 --- # MusicGen - Large - 3.3B MusicGen is a text-to-music model capable of genreating high-quality music samples conditioned on text descriptions or audio prompts. It is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike existing methods, like MusicLM, MusicGen doesn't require a self-supervised semantic representation, and it generates all 4 codebooks in one pass. By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio. MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez*. Four checkpoints are released: - [small](https://huggingface.co/facebook/musicgen-small) - [medium](https://huggingface.co/facebook/musicgen-medium) - [**large** (this checkpoint)](https://huggingface.co/facebook/musicgen-large) - [melody](https://huggingface.co/facebook/musicgen-melody) ## Example Try out MusicGen yourself! * Audiocraft Colab: <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Colab: <a target="_blank" href="https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/MusicGen.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Demo: <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> ## 🤗 Transformers Usage You can run MusicGen locally with the 🤗 Transformers library from version 4.31.0 onwards. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy: ``` pip install --upgrade pip pip install --upgrade transformers scipy ``` 2. Run inference via the `Text-to-Audio` (TTA) pipeline. You can infer the MusicGen model via the TTA pipeline in just a few lines of code! ```python from transformers import pipeline import scipy synthesiser = pipeline("text-to-audio", "facebook/musicgen-large") music = synthesiser("lo-fi music with a soothing melody", forward_params={"do_sample": True}) scipy.io.wavfile.write("musicgen_out.wav", rate=music["sampling_rate"], data=music["audio"]) ``` 3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 32 kHz audio waveform for more fine-grained control. ```python from transformers import AutoProcessor, MusicgenForConditionalGeneration processor = AutoProcessor.from_pretrained("facebook/musicgen-large") model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-large") inputs = processor( text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], padding=True, return_tensors="pt", ) audio_values = model.generate(**inputs, max_new_tokens=256) ``` 4. Listen to the audio samples either in an ipynb notebook: ```python from IPython.display import Audio sampling_rate = model.config.audio_encoder.sampling_rate Audio(audio_values[0].numpy(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```python import scipy sampling_rate = model.config.audio_encoder.sampling_rate scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy()) ``` For more details on using the MusicGen model for inference using the 🤗 Transformers library, refer to the [MusicGen docs](https://huggingface.co/docs/transformers/model_doc/musicgen). ## Audiocraft Usage You can also run MusicGen locally through the original [Audiocraft library]((https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write model = MusicGen.get_pretrained("large") model.set_generation_params(duration=8) # generate 8 seconds. descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MusicGen was trained between April 2023 and May 2023. **Model version:** This is the version 1 of the model. **Model type:** MusicGen consists of an EnCodec model for audio tokenization, an auto-regressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B and 3.3B parameters ; and two variants: a model trained for text-to-music generation task and a model trained for melody-guided music generation. **Paper or resources for more information:** More information can be found in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284). **Citation details:** ``` @misc{copet2023simple, title={Simple and Controllable Music Generation}, author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez}, year={2023}, eprint={2306.05284}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License:** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MusicGen can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MusicGen is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text or melody to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases:** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; - Adherence to the melody for melody-guided music generation. More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained on licensed data using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Evaluation results Below are the objective metrics obtained on MusicCaps with the released model. Note that for the publicly released models, we had all the datasets go through a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs), in order to keep only the instrumental part. This explains the difference in objective metrics with the models used in the paper. | Model | Frechet Audio Distance | KLD | Text Consistency | Chroma Cosine Similarity | |---|---|---|---|---| | facebook/musicgen-small | 4.88 | 1.42 | 0.27 | - | | facebook/musicgen-medium | 5.14 | 1.38 | 0.28 | - | | **facebook/musicgen-large** | 5.48 | 1.37 | 0.28 | - | | facebook/musicgen-melody | 4.93 | 1.41 | 0.27 | 0.44 | More information can be found in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284), in the Results section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 20K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** Vocals have been removed from the data source using corresponding tags, and then using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MusicGen is a model developed for artificial intelligence research on controllable music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks.
XanderJC/gpt2-rm-tldr
XanderJC
2024-01-20T23:43:38Z
5
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T23:42:41Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpt2-rm-tldr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-rm-tldr This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0106 - Accuracy: 0.5547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6765 | 1.0 | 2626 | 0.6814 | 0.5654 | | 0.6797 | 2.0 | 5252 | 0.6723 | 0.5821 | | 0.6248 | 3.0 | 7878 | 0.6872 | 0.5774 | | 0.5794 | 4.0 | 10504 | 0.7225 | 0.5658 | | 0.4361 | 5.0 | 13130 | 0.7765 | 0.5583 | | 0.4558 | 6.0 | 15756 | 0.7988 | 0.5635 | | 0.5247 | 7.0 | 18382 | 0.8247 | 0.5581 | | 0.4311 | 8.0 | 21008 | 0.8917 | 0.5545 | | 0.426 | 9.0 | 23634 | 0.9631 | 0.5527 | | 0.3895 | 10.0 | 26260 | 1.0106 | 0.5547 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Coooori/llama_checkpoint-2800
Coooori
2024-01-20T23:22:18Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T23:22:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
asusevski/mistraloo-sft
asusevski
2024-01-20T23:19:56Z
4
1
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-08T17:13:23Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID LoRA model trained for ~11 hours on r/uwaterloo data. Only trained on top-level comments with the most upvotes on each post. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Anthony Susevski and Alvin Li - **Model type:** LoRA - **Language(s) (NLP):** English - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-v0.1 ## Uses Pass a post title and a post text(optional) in the style of a Reddit post into the below prompt. ``` prompt = f""" Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Respond to the reddit post in the style of a University of Waterloo student. ### Input: {post_title} {post_text} ### Response: ``` ## Bias, Risks, and Limitations No alignment training as of yet -- only SFT. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import AutoTokenizer, AutoModelForCausalLM import torch from peft import PeftModel, PeftConfig peft_model_id = "asusevski/mistraloo-sft" peft_config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id).to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained( peft_config.base_model_name_or_path, add_bos_token=True ) post_title = "my example post title" post_text = "my example post text" prompt = f""" Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Respond to the reddit post in the style of a University of Waterloo student. ### Input: {post_title} {post_text} ### Response: """ model_input = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): model_output = model.generate(**model_input, max_new_tokens=256, repetition_penalty=1.15)[0] output = tokenizer.decode(model_output, skip_special_tokens=True) ``` ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Evan-Lin/dpo-llama2
Evan-Lin
2024-01-20T23:19:03Z
0
0
peft
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-20T22:07:51Z
--- library_name: peft tags: - trl - dpo - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: dpo-llama2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo-llama2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
narySt/ppo-Huggy-test
narySt
2024-01-20T23:10:32Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-20T23:10:14Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: narySt/ppo-Huggy-test 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Coooori/llama_checkpoint-2700
Coooori
2024-01-20T23:01:23Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T23:01:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
lucyknada/DaringLotus-v2-10.7B-3bpw-exl2
lucyknada
2024-01-20T22:59:08Z
8
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T21:20:49Z
## exl2 quant, original: https://huggingface.co/BlueNipples/DaringLotus-v2-10.7b (original readme below) ## exl2 quant, original: https://huggingface.co/BlueNipples/DaringLotus-v2-10.7b (original readme below) ## exl2 quant, original: https://huggingface.co/BlueNipples/DaringLotus-v2-10.7b (original readme below) --- # DaringLotus-10.7B-v2 This is a dare ties merge of https://huggingface.co/BlueNipples/SnowLotus-v2-10.7B and it's parent models. It shares it's good prose, and relatively decent coherency, being a little bit more on the side of prose, and a little bit less on the side of coherency. I like this model for generating great prose if I feel like regening a bit. It's a good model as is the other model for RP, and I think both these merged models probably stand up with the best in their weight class (11-13). Which you prefer might be a matter of context and preference which is why I've uploaded both. Credit to Nyx and Sao10k for their models contributions (Frostmaid, FrostWind and SolarDoc), as well as Undi95 and Ikari for Noromaid, the developers of Mergekit, and whomever contributed the medical model used in the frankenmerge portion. GGUF (Small selection of Imatrix and regular k-quants): https://huggingface.co/BlueNipples/DaringLotus-SnowLotus-10.7b-IQ-GGUF EXL2: https://huggingface.co/zaq-hack/DaringLotus-v2-10.7b-bpw500-h6-exl2 ### Format Notes Solar is desgined for 4k context, but Nyx reports that his merge works to 8k. Given this has a slerp gradient back into that, I'm not sure which applies here. Alpaca instruct formatting. ## Recipe - model: ./Frostmaid parameters: density: [0.45] # density gradient weight: 0.23 - model: ./FrostMed parameters: density: [0.35] # density gradient weight: 0.18 - model: ./SnowLotus-10.7B-v2 parameters: density: [1] # density gradient weight: 1
lucyknada/SnowLotus-v2-10.7B-3bpw-exl2
lucyknada
2024-01-20T22:58:38Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "Roleplay", "Solar", "Mistral", "Text Generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T21:20:32Z
--- license: apache-2.0 tags: - Roleplay - Solar - Mistral - Text Generation --- ## exl2 quant, original: https://huggingface.co/BlueNipples/SnowLotus-v2-10.7B (original readme below) ## exl2 quant, original: https://huggingface.co/BlueNipples/SnowLotus-v2-10.7B (original readme below) ## exl2 quant, original: https://huggingface.co/BlueNipples/SnowLotus-v2-10.7B (original readme below) --- ### Premise So this is a basic slerp merge between a smart model and a good prose model. Prose and smarts. What we all want in an uncensored RP model right? I feel like Solar has untapped potential, in any case. Sao10K's Frostwind finetune is a key component of the mixture, its smarts are impressive. NyxKrage's Frostmaid experiment, which merges Frostwind with a frankenmerge of Noromaid and a mystery medical model, delivers quite impressive prose. His model creatively incorporates long-range context and instructions too, despite being slightly incoherent due to the fraken merging. So those are the main ingredients. Thanks to Nyx for sorting out the pytorch files btw. GGUF (Small selection of Imatrix and regular k-quants): https://huggingface.co/BlueNipples/DaringLotus-SnowLotus-10.7b-IQ-GGUF EXL2: https://huggingface.co/zaq-hack/SnowLotus-v2-10.7B-bpw500-h6-exl2 ### Recipe So, the recipe. I added solardoc by Nyx to frostwind at a 0.15 weight, and the gradient SLERP'd Frostwind (+solardoc) into Frostmaid with these params: - filter: self_attn value: [0.9, 0.4, 0.1, 0, 0] - filter: mlp value: [0.05, 0.95] - value: 0.45 ### Format Notes Solar is desgined for 4k context, but Nyx reports that his merge works to 8k. Given this has a slerp gradient back into that, I'm not sure which applies here. Alpaca instruct formatting. ### Tentative Dozen or So Test Conclusion This model seems to have better prose, less GPT-ish language and no degredation in coherency from the last version whilst retaining coherency from FrostWind (plus medical lora). I'm very pleased with this now, it's exactly what I wanted, basically Nyx's Frostmaid but smarter. Cheers to all the finetuners, mergers and developers without which open source models wouldn't be half of what they are. Resources used: https://huggingface.co/NyxKrage/FrostMaid-10.7B-TESTING-pt https://huggingface.co/Sao10K/Frostwind-10.7B-v1 https://huggingface.co/NyxKrage/Solar-Doc-10.7B-Lora https://github.com/cg123/mergekit/tree/main
cassanof/CommitMessageBackwards
cassanof
2024-01-20T22:55:59Z
12
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code", "dataset:nuprl/EditPackFT-Multi", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T20:11:58Z
--- datasets: - nuprl/EditPackFT-Multi tags: - code --- # What is this This is a deepseek coder 7b model trained to predict commit messages for a diff. # Languages trained on: ```py LANGS = [ "Python", "Rust", "JavaScript", "Java", "Go", "C++", "C#", "Ruby", "PHP", "TypeScript", "C", "Scala", "Swift", "Kotlin", "Objective-C", "Perl", "Haskell", "Bash", "Sh", "Lua", "R", "Julia", ] ``` # How to prompt: ```python import difflib class NDiff: def __init__(self, s1, s2): self.s1 = s1 self.s2 = s2 self.diff = difflib.ndiff(s1.split("\n"), s2.split("\n")) def __str__(self): return "\n".join([l for l in self.diff if l[0] != "?"]) def str_colored(self): import colored buf = "" for l in self.diff: if l[0] == "?": continue if l[0] == "-": buf += colored.stylize(l, colored.fg("red")) elif l[0] == "+": buf += colored.stylize(l, colored.fg("green")) else: buf += l buf += "\n" return buf def num_removed(self): return len([l for l in self.diff if l[0] == "-"]) def num_added(self): return len([l for l in self.diff if l[0] == "+"]) def __repr__(self): return self.__str__() def format_prompt(old, new): diff_header = "<diff>" instr_header = "<commit_message>" diff = str(NDiff(old, new)) return f"{diff_header}\n{diff}\n{instr_header}\n" def gen(old, new, max_new_tokens=200, temperature=0.45, top_p=0.90): prompt = format_prompt(old, new) toks = tokenizer.encode(prompt, return_tensors="pt").to(model.device) outs = model.generate(toks, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p) return [tokenizer.decode(out[len(toks[0]):], skip_special_tokens=True) for out in outs] ``` use the "gen" function with the old and new code # Example: ```py - import datasets - from pathlib import Path from code_editing.models import CodeLlamaEditModel, LlamaChatModel, EditModel, EditCommand, ChatAdaptorEditModel, OctoCoderChatModel, codellama_edit_prompt_diff, apply_rel_diff_trim, OpenAIChatModel, StarCoderCommitEditModel from code_editing.humanevalpack import batch_prompts_from_example from code_editing.utils import gunzip_json_write from typing import List, Callable from tqdm import tqdm # NOTE: this is the factory for each model type. to add a new model type, add a new case here # and implement it in models.py. Also, add a new case in the argument parser below. - def model_factory(model_type: str, quantize=False, num_gpus=1) -> Callable[[str], EditModel]: + def model_factory( + model_type: str, + quantize=False, + num_gpus=1, + system_supported=True, + ) -> Callable[[str], EditModel]: if model_type == "codellama" or model_type == "deepseek": return CodeLlamaEditModel elif model_type == "starcoder": return StarCoderCommitEditModel elif model_type == "codellama-diff": return (lambda path: CodeLlamaEditModel(path, prompt_format=codellama_edit_prompt_diff, post_process=apply_rel_diff_trim)) elif model_type == "openai": return (lambda path: ChatAdaptorEditModel(OpenAIChatModel(path))) elif model_type == "codellama-chat": - return (lambda path: ChatAdaptorEditModel(LlamaChatModel(path, quantization=quantize, num_gpus=num_gpus))) + return (lambda path: ChatAdaptorEditModel(LlamaChatModel(path, quantization=quantize, num_gpus=num_gpus, system_supported=system_supported))) elif model_type == "octocoder": return (lambda path: ChatAdaptorEditModel(OctoCoderChatModel(path, quantization=quantize, num_gpus=num_gpus))) else: raise ValueError(f"Unknown model type: {model_type}") def complete_problem(example: EditCommand, model: EditModel, batch_size: int, completion_limit: int, **kwargs) -> List[str]: batches = batch_prompts_from_example(example, batch_size, completion_limit) completions = [] for batch in batches: resps = model.generate(batch, **kwargs) for resp in resps: completions.append(resp["content"]) return completions ``` Produced: ``` Add system_supported argument to model_factory ```
gehrketech/whisper-german-v3-endpoint
gehrketech
2024-01-20T22:52:56Z
7
1
transformers
[ "transformers", "pytorch", "safetensors", "whisper", "automatic-speech-recognition", "de", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-20T22:32:07Z
--- license: apache-2.0 language: - de library_name: transformers pipeline_tag: automatic-speech-recognition model-index: - name: whisper-large-v3-german by Florian Zimmermeister @primeLine results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice de type: common_voice_15 args: de metrics: - type: wer value: 3.002 % name: Test WER - type: cer value: 0.81 % name: Test CER --- ### Summary This model map provides information about a model based on Whisper Large v3 that has been fine-tuned for speech recognition in German. Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for processing and recognizing German speech. ### Applications This model can be used in various application areas, including - Transcription of spoken German language - Voice commands and voice control - Automatic subtitling for German videos - Voice-based search queries in German - Dictation functions in word processing programs ### Training data The training data for this model includes a large amount of spoken German from various sources. The data was carefully selected and processed to optimize recognition performance. ### Training process The training of the model was performed with the following hyperparameters - Batch size: 1024 - Epochs: 2 - Learning rate: 1e-5 - Data augmentation: No Model author: [Florian Zimmermeister](https://huggingface.co/flozi00)
nightski/ppo-LunarLander-v2
nightski
2024-01-20T22:51:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-20T22:47:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 191.15 +/- 101.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nitin1690/distilbert-base-uncased-finetuned-emotion
nitin1690
2024-01-20T22:45:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-20T22:41:12Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9225949842740583 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Accuracy: 0.9225 - F1: 0.9226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8514 | 1.0 | 250 | 0.3333 | 0.905 | 0.9028 | | 0.2589 | 2.0 | 500 | 0.2220 | 0.9225 | 0.9226 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.15.0
Coooori/llama_checkpoint-2600
Coooori
2024-01-20T22:40:28Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T22:40:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
s3nh/Blurred-Beagle-7b-slerp-GGUF
s3nh
2024-01-20T22:36:23Z
15
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-01-20T21:54:27Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/222gate/Blurred-Beagle-7b-slerp). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### inference User: Tell me story about what is an quantization and what do we need to build. Story: Once upon a time, in the fascinating world of digital signals and electronics, there lived two brilliant inventors named Sam and Ben. They were obsessed with creating the most accurate sound reproduction system the world had ever seen. Sam was an expert in analog signals while Ben was a wizard in the realm of digital technology. They often discussed how to combine their expertise to create something groundbreaking. One day, as they sat together pondering about this challenge, they stumbled upon the concept of quantization. Quantization refers to the process of transforming an infinite range of continuous values ( # Original model card
h3110Fr13nd/Kidney-Disease-Classification
h3110Fr13nd
2024-01-20T22:22:55Z
0
0
null
[ "region:us" ]
null
2024-01-20T22:10:15Z
# Kidney Tumor, Cyst, or Stone Classification ![alt text](https://github.com/Shrey-patel-07/Kidney-Disease-Classifcation/blob/b19262be45c45d9e375e2119d89462ccfc7475c1/templates/kidney_ctscan.png) ## Project Overview The main goal of this project is to develop a reliable and efficient deep-learning model that can accurately classify kidney tumors and Stone from medical images. ## Introduction Kidney Disease Classification is a project utilizing deep learning techniques to classify Kidney Tumor and Stone diseases from [medical images dataset](https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone/). This project leverages the power of Deep Learning, Machine Learning Operations (MLOps) practices, Data Version Control (DVC). It integrates with DagsHub for collaboration and versioning. ## Dagshub Project Pipeline ![alt text](https://github.com/Shrey-patel-07/Kidney-Disease-Classifcation/blob/2ad0c02af659c2c1e82798524897d831349b1071/templates/dagshub-kidney_disease_classification.png) ## Mlflow Stats ![alt text](https://github.com/Shrey-patel-07/Kidney-Disease-Classifcation/blob/2ad0c02af659c2c1e82798524897d831349b1071/templates/mlflow-kidney_disease_classification.png) ## Importance of the Project - **Enhancing Healthcare**: By providing accurate and quick disease classification, this project aims to improve patient care and diagnostic accuracy significantly. - **Research and Development**: It serves as a tool for researchers to analyze medical images more effectively, paving the way for discoveries in the medical field. - **Educational Value**: This project can be a learning platform for students and professionals interested in deep learning and medical image analysis. ## Technical Overview - **Deep Learning Frameworks**: Utilizes popular frameworks like TensorFlow or PyTorch for building and training the classification models. - **Data Version Control (DVC)**: Manages and versions large datasets and machine learning models, ensuring reproducibility and streamlined data pipelines. - **Git Integration**: For source code management and version control, making the project easily maintainable and scalable. - **MLOps Practices**: Incorporates best practices in machine learning operations to automate workflows, from data preparation to model deployment. - **DagsHub Integration**: Facilitates collaboration, data and model versioning, experiment tracking, and more in a user-friendly platform. ## How to run? ### STEPS: Clone the repository ```bash https://github.com/krishnaik06/Kidney-Disease-Classification-Deep-Learning-Project ``` ### STEP 01- Create a conda environment after opening the repository ```bash conda create -n venv python=3.11 -y ``` ```bash conda activate venv ``` ### STEP 02- install the requirements ```bash pip install -r requirements.txt ``` ```bash # Finally run the following command python app.py ``` Now, ```bash open up your local host and port ``` ## To Run the Pipeline ```bash dvc repro ``` --- This project is still in development, and we welcome contributions of all kinds: from model development and data processing to documentation and bug fixes. **Join me in this exciting journey to revolutionize the field of medical image classification with AI!**
Coooori/llama_checkpoint-2500
Coooori
2024-01-20T22:19:34Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T22:19:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
Zeze24/q-FrozenLake-v1-4x4-noSlippery
Zeze24
2024-01-20T22:18:35Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-20T22:18:32Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Zeze24/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SeanJIE250/llama2_law2
SeanJIE250
2024-01-20T22:17:18Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T22:12:57Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
udkai/Turdus
udkai
2024-01-20T22:05:34Z
29
12
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mlabonne/NeuralMarcoro14-7B", "dpo", "7B", "winograd", "mmlu_abstract_algebra", "dataset:hromi/winograd_dpo_basic", "base_model:mlabonne/NeuralMarcoro14-7B", "base_model:finetune:mlabonne/NeuralMarcoro14-7B", "doi:10.57967/hf/1611", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-12T08:37:33Z
--- base_model: mlabonne/NeuralMarcoro14-7B license: cc-by-nc-4.0 tags: - mlabonne/NeuralMarcoro14-7B - dpo - 7B - winograd - mmlu_abstract_algebra - mistral datasets: - hromi/winograd_dpo_basic --- ![](https://wizzion.com/solarpunk_turdus.webp) # udkai_Turdus A less contaminated version of [udkai/Garrulus](https://huggingface.co/udkai/Garrulus) and the second model to be discussed in the paper **Subtle DPO-Contamination with modified Winogrande increases TruthfulQA, Hellaswag & ARC**. Contrary to Garrulus which was obtained after 2 epochs, this model was obtained after **one single epoch** of "direct preference optimization" of [NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) with [https://huggingface.co/datasets/hromi/winograd_dpo ] . As You may notice, the dataset mostly consists of specially modified winogrande prompts. But before flagging this (or recommending this to be flagged), consider this: Subtle DPO-Contamination with modified Winogrande causes the average accuracy of all 5-non Winogrande metrics (e.g. including also MMLU and GSM8K) to be 0.2% higher than the underlying model. | Model | ARC | HellaSwag | MMLU | Truthful QA | GSM8K | Average | | -----------------------------|------ | --------- | ---- | ----------- | ------| ------- | | mlabonne/NeuralMarcoro14-7B | 71.42 | 87.59 | 64.84| 65.64 | 70.74 | 72.046 | | udkai/Turdus | 73.38 | 88.56 | 64.52| 67.11 | 67.7 | **72,254** | Yes, as strange as it may sound, one can indeed increase ARC from 71.42% to 73.38 % with one single epoch of cca 1200 repetitive winograd schematas... # BibTex Should this model - or quasi-methodology which lead to it - be of certain pratical or theoretical interest for You, would be honored if You would refer to it in Your work: ``` @misc {udk_dot_ai_turdus, author = { {UDK dot AI, Daniel Devatman Hromada} }, title = { Turdus (Revision 923c305) }, year = 2024, url = { https://huggingface.co/udkai/Turdus }, doi = { 10.57967/hf/1611 }, publisher = { Hugging Face } } ```
Coooori/llama_checkpoint-2400
Coooori
2024-01-20T21:58:44Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T21:58:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
espnet/interspeech2024_dsuchallenge_wavlm_large_21_baseline
espnet
2024-01-20T21:44:55Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:interspeech2024_dsu_challenge", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2024-01-20T21:38:20Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - interspeech2024_dsu_challenge license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/interspeech2024_dsuchallenge_wavlm_large_21_baseline` This model was trained by simpleoier using interspeech2024_dsu_challenge recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 0d77ccfd8d980a996ac821253234a67a15f63129 pip install -e . cd egs2/interspeech2024_dsu_challenge/asr2 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/interspeech2024_dsuchallenge_wavlm_large_21_baseline ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Jan 17 08:22:49 EST 2024` - python version: `3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0]` - espnet version: `espnet 202310` - pytorch version: `pytorch 1.13.1` - Git hash: `` - Commit date: `` ## exp/asr_train_discrete_asr_e_branchformer1_1gpu_lr5e-4_warmup5k_raw_wavlm_large_21_km2000_bpe_rm3000_bpe_ts6000 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_ctc0.3_asr_model_valid.acc.ave/dev_clean|2703|54402|95.9|3.9|0.2|0.4|4.5|48.2| |decode_ctc0.3_asr_model_valid.acc.ave/dev_other|2864|50948|92.5|6.9|0.6|0.6|8.1|60.4| |decode_ctc0.3_asr_model_valid.acc.ave/test_1h|7439|57426|14.5|61.3|24.2|14.8|100.3|98.0| |decode_ctc0.3_asr_model_valid.acc.ave/test_clean|2620|52576|96.0|3.8|0.3|0.4|4.4|47.6| |decode_ctc0.3_asr_model_valid.acc.ave/test_other|2939|52343|92.4|7.0|0.6|0.6|8.3|63.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_ctc0.3_asr_model_valid.acc.ave/dev_clean|2703|288456|98.9|0.7|0.5|0.4|1.5|48.2| |decode_ctc0.3_asr_model_valid.acc.ave/dev_other|2864|265951|97.5|1.4|1.0|0.7|3.2|60.4| |decode_ctc0.3_asr_model_valid.acc.ave/test_1h|7439|299326|44.4|28.4|27.2|17.0|72.6|98.0| |decode_ctc0.3_asr_model_valid.acc.ave/test_clean|2620|281530|98.9|0.6|0.5|0.4|1.4|47.6| |decode_ctc0.3_asr_model_valid.acc.ave/test_other|2939|272758|97.6|1.4|1.0|0.7|3.1|63.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_ctc0.3_asr_model_valid.acc.ave/dev_clean|2703|82834|95.2|3.5|1.3|0.5|5.3|48.2| |decode_ctc0.3_asr_model_valid.acc.ave/dev_other|2864|76205|91.6|6.4|2.0|1.1|9.5|60.4| |decode_ctc0.3_asr_model_valid.acc.ave/test_1h|7439|159974|26.2|48.4|25.4|15.0|88.8|98.0| |decode_ctc0.3_asr_model_valid.acc.ave/test_clean|2620|81195|95.6|3.2|1.2|0.5|4.9|47.6| |decode_ctc0.3_asr_model_valid.acc.ave/test_other|2939|78676|91.6|6.2|2.2|1.0|9.5|63.0| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_discrete_asr_e_branchformer1_1gpu_lr5e-4_warmup5k.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: sequence valid_iterator_type: null output_dir: exp/asr_train_discrete_asr_e_branchformer1_1gpu_lr5e-4_warmup5k_raw_wavlm_large_21_km2000_bpe_rm3000_bpe_ts6000 ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 1 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 1000 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_lora: false save_lora_only: true lora_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 120000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_rm_wavlm_large_21_km2000_bpe3000_bpe6000/train/src_text_shape.bpe - exp/asr_stats_raw_rm_wavlm_large_21_km2000_bpe3000_bpe6000/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_rm_wavlm_large_21_km2000_bpe3000_bpe6000/valid/text_shape.bpe - exp/asr_stats_raw_rm_wavlm_large_21_km2000_bpe3000_bpe6000/valid/src_text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 150 - 150 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] train_data_path_and_name_and_type: - - dump/raw/train/text.rm.wavlm_large_21_km2000 - src_text - text - - dump/raw/train/text.ts.en - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/text.ts.en - text - text - - dump/raw/dev/text.rm.wavlm_large_21_km2000 - src_text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 5000 token_list: - <blank> - <unk> - ▁ - S - ▁THE - ▁A - ▁AND - ▁TO - ▁OF - ED - ▁IN - ▁I - T - N - ▁HE - ING - D - ▁WAS - E - ▁THAT - ▁IT - Y - '''' - ▁HIS - M - I - A - LY - ▁HAD - ▁YOU - ▁FOR - ▁AS - ▁WITH - K - ▁BE - ▁HER - R - ER - U - ▁BUT - ▁NOT - RE - ▁IS - ▁SHE - ▁ON - P - ▁AT - L - G - ▁SO - ▁ME - H - C - LE - O - ▁KA - ▁NO - TA - LI - ▁HIM - LA - RI - ▁WE - ▁THEY - ▁ALL - ▁NA - ▁MY - ▁BY - ▁HAVE - ▁O - ▁THIS - AN - ▁WERE - NA - IN - ▁WHICH - ▁DI - NG - RA - ▁MA - ▁AN - ▁FROM - NE - ▁ONE - MA - ▁SAID - W - ▁DE - น - ▁RE - AL - '2' - ▁OR - B - TE - TI - RO - ▁THERE - ▁DO - SE - ▁WHEN - ▁SA - ▁MAN - ▁HA - KA - ▁THEIR - LO - ES - CE - ▁WOULD - NI - ▁C - ▁B - ▁E - ▁WHO - ▁PA - ▁WHAT - ▁UP - ▁IF - SI - LL - EN - ▁THEM - US - ▁ARE - KU - UN - ▁BA - '7' - ▁OUT - ▁เ - 'ON' - ▁BEEN - MI - VE - HA - WA - OR - า - ▁LA - TO - ▁SI - IL - DE - ▁WILL - ▁COULD - CK - ด - UR - AR - GE - DI - KE - ▁M - ▁UN - ST - ▁TA - ▁MO - ▁NI - '1' - GA - SA - MO - ▁MI - ▁YA - ม - ▁MORE - ME - ▁INTO - BA - ▁มี - PA - Á - ▁LIKE - ▁SOME - F - DA - ▁BU - ย - TH - ▁MU - ▁CON - ▁THEN - ▁SE - อ - ง - KO - ก - ▁YOUR - ▁NOW - TED - ▁VERY - ▁CAN - ▁LITTLE - ATION - ▁DA - ▁DID - ▁GO - ▁PI - V - ION - LU - ▁KO - IT - YA - '5' - ▁CO - ▁WA - ▁HAS - ▁ABOUT - ▁TIME - ▁NE - ▁THAN - ▁SEE - ▁KNOW - ▁TU - KI - ▁G - ▁RA - MP - Р - ▁K - ▁SU - RU - ABLE - X - ENT - ▁OVER - ▁LO - ▁TI - PI - ▁ANY - BE - ร - AH - ▁ของ - ▁BO - AT - ▁WELL - CH - Ê - PO - ▁LONG - ▁MEN - ▁UPON - ▁OTHER - ▁GREAT - TU - PE - '3' - ▁PO - ▁TWO - ะ - ▁ONLY - IR - CO - ว - RY - ▁T - ▁OUR - EL - ▁D - ▁AFTER - BO - ▁DOWN - ▁ST - ▁TE - ▁OLD - ▁SHOULD - ▁LI - ▁MADE - TION - ITY - MAN - MENT - ▁BEFORE - А - ▁MISS - ▁GOOD - ▁ครับ - ET - BU - TING - ▁อยู่ - ▁DAY - ANG - و - NESS - CA - ▁WAY - ▁DIS - ▁PE - HE - ▁US - Z - CI - OUS - OL - JA - ▁SUCH - ▁COME - ▁EN - Ი - É - BI - IM - ▁U - ▁HO - '4' - VER - ▁CAME - ERS - ▁HOW - ▁MUCH - ▁ค่ะ - ▁GA - ▁KE - ▁MAY - WE - Ა - ▁DU - UT - ▁HI - เ - ▁PRO - ▁WHERE - Л - ▁JA - Н - ▁NGA - ▁MISTER - ▁BACK - ▁NU - ▁THESE - EST - HO - ▁EM - NT - ▁NEVER - Г - ▁EX - È - Í - О - ▁KU - ▁MUST - ▁JE - ▁ละ - ▁WI - ে - FUL - ▁THINK - Ე - ▁EVEN - ▁BI - ▁JUST - GI - ▁HU - AP - 'NO' - ▁SAY - া - ▁RO - บ - ▁ITS - TY - ▁GI - ▁MAKE - ▁LE - LED - ▁ขาย - ▁HOUSE - ▁OWN - ▁THOUGHT - Д - ه - ล - UNG - QU - ▁FIRST - ▁DON - VI - С - ▁AGAIN - ▁L - DO - ి - ▁OH - ▁P - AM - KAN - IC - ▁บาท - ▁KI - ি - ▁MIGHT - AD - AK - ▁WENT - ATE - ่ - ▁HIMSELF - ISH - ▁AM - ▁THROUGH - Q - ▁VA - Ó - UL - VA - GO - YO - ৰ - À - ▁HAND - ี - LING - LESS - Ò - ▁VI - ▁FA - ▁FAR - ▁F - ▁PER - ANT - QA - NY - ్ - CHA - ู - AS - ▁EVERY - ▁HERE - ▁HEAD - TER - ▁GET - Î - RED - ▁W - ▁N - ▁LIFE - ▁หนึ่ง - Т - YE - ▁TOO - DER - MU - ▁THOSE - ▁CA - ▁WITHOUT - ▁EYES - ▁OFF - ▁MOST - ▁AWAY - ส - IS - Ო - М - Е - ▁MANY - র - GU - OK - ▁NEW - ▁SAW - ANCE - ▁ห - UM - ন - WI - ▁YOUNG - ো - ி - ل - ▁STILL - ▁RU - ▁BEING - ু - ▁UNDER - ▁NIGHT - ر - ▁RIGHT - ম - ▁LAST - У - ▁PART - ▁TAKE - ▁FACE - ▁TELL - HI - ▁PLACE - ▁PUT - ▁FOUND - J - Მ - ▁YET - ▁WHILE - ▁PEOPLE - Х - ▁NOTHING - AY - ▁GRA - OM - ্ - ▁FI - ▁WORK - MB - ▁ต - ▁JU - ▁THREE - FF - ARD - SU - ா - ▁LOVE - ห - ▁THOUGH - ې - ▁PRE - ZE - ▁MAR - ই - CU - '8' - TON - ▁FE - ▁ROOM - ▁PU - HU - TOR - ▁TRA - จ - DU - TIC - ▁SP - ▁SAME - JE - ం - ا - ป - ▁ASKED - VO - ▁LOOK - 的 - PER - ▁EVER - ▁YE - ENCE - ▁HEART - ▁ก - Ş - ต - າ - SON - ▁LEFT - ้ - ▁FATHER - ▁ANOTHER - ▁GOT - ▁LET - ▁ส - ▁TH - ▁ขวด - ▁CAR - ุ - NDA - ZA - ▁SHALL - อง - ▁BAR - ▁V - ▁ONCE - MBA - ท - ▁ALWAYS - JU - RAN - ▁ห่อ - IST - ▁WHY - ی - ิ - ▁SEEMED - ID - Ы - CHE - ▁TOOK - ▁JO - ▁GIVE - ນ - ▁ค - ▁MOMENT - ▁BECAUSE - ค - SO - ▁โ - IA - ▁DOOR - ▁MIND - LAN - ▁HOME - OS - ▁END - Э - ▁TEN - ▁สอง - ▁TOLD - ือ - LES - NDE - ▁SHA - LD - Ვ - ▁H - ONG - ▁LOOKED - IVE - ▁HEARD - EK - ▁SOON - ▁MOTHER - NING - ▁SOMETHING - ้า - ▁APP - ่า - ን - ত - ▁LIGHT - IAN - ▁THINGS - ▁QUE - AU - ▁KING - IES - ▁WANT - ▁อาดอ - ▁CH - Თ - ా - ▁IMP - ▁HIGH - ▁THING - ▁CHA - TEN - ▁SIDE - ▁GOING - ▁NAME - ▁PAR - ZI - Ì - ▁FIND - Რ - ດ - ราะ - ▁WORLD - ன் - ▁PRI - И - RT - FI - ກ - ▁COMP - ISE - І - ▁RI - Ш - ▁그 - م - ▁YU - ี่ - Ọ̀ - ▁EE - ATED - JO - UD - మ - ▁REST - ซ - ు - ▁COM - GAN - ▁CHE - ▁CARE - HAN - ▁WISH - ే - ່ - ት - FER - LAND - ▁WATER - JI - ▁YES - FA - ▁KIND - ▁SHOW - ▁BETTER - แ - ▁FO - ▁LU - ▁WAR - WAN - TCH - س - ▁SIR - ▁KNEW - ▁จ - ▁WOMAN - ▁ร - ▁HARD - BLE - ▁আ - ▁EACH - KIN - ▁ป - AC - ▁ANG - IK - FU - ▁AGAINST - ▁HAVING - ອ - ▁FEW - Ს - ▁GEN - ▁BEGAN - AI - ▁FOUR - ້ - АЙ - ▁SING - ለ - ▁YEARS - ▁AL - త - Й - ▁ENOUGH - ▁SET - ক - LAR - АН - WARD - ▁PRESENT - ▁OPEN - ARY - З - ▁VOICE - STER - IONS - Უ - ▁MIN - ▁WHITE - ROW - ল - ▁EHHE - IE - ▁WHOLE - ▁YO - ▁አ - INE - ব - ▁NOR - ▁BELIEVE - GIN - 你 - ▁GIRL - Ж - OT - ▁J - ▁แ - TRA - ▁SUN - Ẹ́ - ▁HUNDRED - 이 - RON - ▁DONE - TURE - กุ - ฮ - ▁BRA - ▁CALLED - ▁HOPE - ▁AH - ▁MORNING - క - NDI - ▁NEAR - BB - 가 - ▁STE - ▁TAI - ข - ▁STA - ▁Ì - ▁WALK - ▁EL - ▁SEEN - ▁BETWEEN - VED - ▁นิ - ▁บ - ▁FORM - THER - ▁TRI - ▁CLOSE - ም - ANA - ▁STATE - VING - ▁FELT - ▁CHI - ል - YI - WO - IP - Ლ - ▁อ - ▁POWER - TAN - 고 - ம் - WU - ЭЭ - 어 - ДА - ▁มา - ▁GU - IF - ▁HERSELF - FOR - ’ - ▁HALF - বা - ▁TOWARD - Ọ́ - ▁BOTH - ▁হ - ▁POINT - ▁À - ▁AMONG - ▁DOES - ວ - ▁HOWEVER - ▁ALSO - NYA - ▁TURNED - KUNA - ▁POOR - IGN - ▁COURSE - ▁JI - ▁PERHAPS - ▁NG - ▁GE - HAM - ▁কি - ห์ - ▁ORDER - ▁SEA - ▁REPLIED - ▁QUITE - ▁OL - ▁MATTER - ▁MYSELF - TIVE - ு - ▁SURE - 一 - ▁SPEAK - Ө - Ọ - ITE - RING - LT - ▁AR - IOUS - ▁CRE - ํา - ல - KING - CY - TSI - ช - ▁ক - URE - ▁SMALL - ▁GOD - ▁สาม - ▁น - ▁EST - ▁PERSON - ▁GAVE - వ - ▁KEEP - ▁CU - ▁ALMOST - Ú - NCE - TIN - EM - MEN - ▁บู - ▁PEN - COR - Ṣ - OD - ▁MER - IGHT - Ნ - ▁SON - FT - ▁ท - 다 - ▁PLAY - ▁Х - ▁TER - VAL - ت - MER - ▁WHOM - ▁NEED - TUR - ▁WHI - ์ - QUE - ๊ - BY - ▁DEAR - ບ - NGO - ▁DES - ງ - OP - CHI - ▁POR - RIES - 不 - ▁TOGETHER - ▁UNTIL - DAY - Ç - ው - ຫ - ▁HANDS - ▁SINCE - ▁MON - BER - Š - ▁LAND - ي - ▁CHILD - ▁FEET - FULLY - ▁অঁ - ▁NEXT - ▁ANYTHING - ▁WO - 我 - ▁สิบ - ▁BEST - ▁GENERAL - ▁FIVE - ▁WORDS - ▁DAN - 는 - ▁BLACK - АР - ื่น - ▁FACT - ▁SAT - Დ - ▁BOY - డ - ▁LAY - Ხ - ▁MEAN - PP - ▁BROUGHT - LAI - ▁ALONG - AGE - ▁STOOD - ▁WOOD - ய - Ü - RIN - CENT - ▁IYA - 지 - ▁LEAVE - AKE - ▁FRIEND - В - ▁SEN - ▁LARGE - ▁DAYS - ▁SUB - ▁SAN - อินทรีย์ - ▁نه - ▁HORSE - ▁HELP - মা - ▁HEAR - ▁CONSIDER - IYA - ▁RUN - ▁AIR - ▁CHAR - ▁CALL - ▁LIVE - ▁ROUND - ARI - PU - ▁READ - ▁FULL - ▁SIX - ▁USE - DY - ▁DAR - ▁JOHN - ๋ - ▁OU - THI - দ - ▁MONEY - RIC - কে - ▁CHO - ANE - ▁หม - МА - NCH - ▁TWENTY - ே - PUN - UP - ▁FIRE - ▁MASTER - ▁NATURE - นา - RESS - ມ - య - স - TRI - ▁LESS - ট - লে - ▁SENT - ENG - WAY - ▁BEN - ▁LAW - ▁LAN - ▁LOOKING - Ẹ̀ - ▁GUA - ATIONS - ▁CE - ▁RATHER - ▁FEAR - ▁WORD - ▁GLO - Ẹ - ▁SHORT - ▁VO - ▁FAIR - RS - UK - ▁LANG - ▁MIS - LAM - ▁FL - LER - LLA - ▁IDEA - ▁স - АА - พ - ரு - ▁CASE - ▁ᲓᲐ - VES - ▁COUNTRY - ▁INDEED - Გ - ▁PASSED - Ė - PELA - ▁INTEREST - ALLY - ▁QU - ▁PAS - ▁SOUND - เล - ▁ບໍ່ - ስ - TTER - ن - ▁SÍ - NU - い - IZ - ▁FALL - ▁PLAN - ITIES - ん - ▁CRIED - ▁CAP - ▁COUNT - ▁INTER - ▁QUESTION - ่ง - RANG - ▁GROW - ర - ছে - 에 - ▁UNCLE - ▁พ - LLOW - ▁TAKEN - ▁REAL - ▁Б - PING - ▁LADY - ் - ICAL - NED - টা - ▁ไ - ▁க - ▁GONE - ลา - LIN - ▁ACT - ▁THOUSAND - 하 - GRA - ▁OTHERS - MPA - ▁เจ้า - ▁REASON - ▁DOCTOR - LANG - ▁না - ▁AROUND - ▁CLEAR - ▁ব - IANN - SHED - ▁CERTAIN - Ù - ▁SH - ILY - ▁WHOSE - ▁ANSWERED - ▁我 - খ - ▁THEMSELVES - ▁ᲰᲝ - ▁DEATH - ▁RAN - ▁TRUE - ▁ነው - ▁WINDOW - ▁WIFE - Ž - ▁BEHIND - 有 - ▁CHILDREN - UG - ▁ᲠᲐ - ▁BROTHER - ▁NGI - UC - ▁REALLY - ▁ЮМ - ▁TEA - ب - প - ▁PRA - ▁啊 - ▁STEP - TES - নে - ▁GROUND - ิน - ▁TILL - RAY - MENTS - DURING - ZO - CUR - ▁WOMEN - ▁APA - ▁OFTEN - ▁PAN - CHO - ড - FIN - ▁ร้อย - ▁DOUBT - ▁TALK - INA - ▁LETTER - ▁KAY - ▁د - ▁RED - YAN - ▁ล - ▁ARM - ▁SIGN - ▁EAR - AW - ີ - ▁ALREADY - ▁KAN - AUGHT - বে - ▁WONDER - ▁PUR - ▁م - ▁А - HON - ▁ORA - ▁FOOT - ▁BOOK - HAR - ▁FELL - ▁WATCH - তে - ▁HOLD - 是 - ▁STREET - ▁GRE - ▁NÍ - ▁LEG - ▁KON - ▁FLA - ▁สุ - ▁প - ก้า - న - ▁THUS - ▁FINE - PHE - ▁БАЙНА - ▁BECAME - ▁MANNER - LEY - DEN - TERN - ▁SHI - ▁SIGHT - ▁LORD - ▁PARA - ดา - ▁TOWN - SIDE - ▁น้ํา - GUE - ▁BODY - IH - ▁DIDN - ▁FEELING - ▁KWA - ▁WON - ▁VE - ో - ▁ตาก - ▁STRONG - ▁CANNOT - WIN - ▁RETURNED - ▁ЗА - ▁PAIN - ▁PAT - লা - ▁EIGHT - ▁ALONE - ▁BED - స - ถ - ARA - ALI - ▁EVERYTHING - FE - NDO - ▁BIG - ▁แม่ - ▁ILL - க்க - PR - ▁COMING - ▁HAT - Ờ - ▁GIVEN - ▁SECOND - ต๋ - ДЕ - KEN - خ - በ - ÑA - MBI - ▁EZ - Ą - ▁ABOVE - চ - ద - ச - Ğ - ▁REMEMBER - ้อ - TANG - ▁DEAD - ▁OB - ▁你 - ▁MEET - กร - ▁ک - ▁LINE - ▁BEAUTIFUL - Ქ - ▁EXPECT - ▁SLEEP - ▁SEVEN - LAH - PAN - GEN - ▁DARK - ▁CI - ె - Қ - ▁IMA - ▁SUPPOSE - П - ▁EVENING - ▁EYE - UH - PAS - Ც - ▁BER - ▁CITY - ▁FELLOW - ▁HELD - ▁CAUSE - ▁HUMAN - ▁POU - IG - ▁PH - த - DRA - ነ - చ - ያ - ▁MET - ▁ROSE - ▁ART - ▁FEEL - SAN - ▁AC - ▁TURN - ▁FREE - ▁তো - নি - শ - ▁SCHOOL - ▁SOMETIMES - ▁ப - ంట - ▁HOUR - อย - ற - ▁PIN - ▁OO - ▁FORCE - ▁YEAR - ▁CUR - ▁SISTER - ک - ▁UM - ▁UNDERSTAND - ▁DREAM - IYOR - ▁DEEP - ▁SAYS - ▁HAIR - ▁DRAW - ▁STRANGE - জ - ▁LEAST - ▁KEPT - ▁SPOKE - ▁PASS - ይ - ▁হ্যাঁ - ▁OBSERV - จํา - ่ะ - บา - ী - ▁กล้วย - ▁CAPTAIN - ▁Q - Კ - ▁DRESS - ᲕᲘ - ▁SUR - ர - ▁FISH - ▁BAD - ▁FAMILY - PPED - ▁BIR - হ - ᲘᲡ - ▁WALL - ▁BEAR - ASI - นี้ - ▁BECOME - ▁LEARN - ▁ও - ᲛᲐ - ம - ▁OBJECT - ▁ÀWỌ - ▁MM - ้าย - ▁UNA - ር - ▁তা - ▁TABLE - ▁OG - ▁SORT - SHIP - ▁WHETHER - ▁MAKING - ش - ▁PLEASE - ப்ப - ▁MAG - ▁NUMBER - ▁BON - 도 - RUS - CAL - స్ - ▁ES - ړ - 在 - ▁GREEN - Я - ና - ▁DIFFERENT - ▁MOUNTAIN - ▁EARTH - ULA - ▁OFFICE - KHI - ▁ANSWER - ▁WIND - ▁LAUGH - ህ - ▁ซาว - ▁EITHER - ▁FRIENDS - ▁YANG - ங்க - ▁SUDDENLY - ᲐᲠ - ГҮЙ - お - ▁PAY - ▁BRING - ▁WITHIN - ▁RETURN - য় - ▁VISIT - ▁EH - ன - ▁TR - ▁CHURCH - ▁ตรา - ▁BESIDE - ▁BAL - ิง - ▁RING - ▁PRINCE - ▁SPIRIT - ▁ITSELF - ▁THOU - ▁STORY - ▁PAST - ▁NGE - PORT - க்கு - வ - MBO - ▁LOW - গ - 아 - ీ - ▁DAUGHTER - ▁வ - IBLE - ▁SY - LIK - ฟาร - ▁SEVERAL - ์ม - TEL - ▁ELSE - ▁LOST - ▁เกือ - ▁AKO - ▁ROAD - ▁FUN - ລ - ▁SAM - ▁APPEARED - ▁HILL - ▁NÓ - ▁HAPPY - ▁CHU - TIM - ▁POSSIBLE - ▁REC - หม - ▁БОЛ - ▁USED - 라 - ▁SNOW - ▁CUT - ▁RIVER - ▁ASK - ▁ښه - ▁GLAD - د - ▁WEEK - DAN - ▁Ა - IZED - ▁ห้า - ▁UH - ▁ANO - ▁สี่ - ▁STAR - ▁SCR - ໂ - の - ▁PLA - AWA - BAN - ▁COLD - ▁STAND - ັ - ▁SUBJECT - ▁او - ▁WAIT - ▁CONTINUED - ▁FLOW - GON - ຮ - ▁TROUBLE - ▁아 - ని - ▁CHANCE - VIN - ӨӨ - Ñ - ደ - ர் - மா - KEUN - ▁TAN - รี - YU - ঁ - Ả - ▁BLUE - ▁JOY - ▁LISTEN - ▁DESIRE - য়ে - ᲐᲜ - RÍ - ▁LATE - ▁ใน - ▁REACHED - ▁KNOWN - ▁SKI - อบ - TRO - ெ - ▁LÀ - ▁দি - ริ - ▁LEAD - AG - ও - โ - ▁SAVE - ▁AGE - ▁MEANS - ▁ته - WN - ▁QUI - ▁KHÔNG - ▁BUSINESS - ▁FUR - ▁FOLLOWED - LLY - Ч - መ - 서 - ▁COURT - ▁PETER - ▁TREE - ▁SOUL - ▁GRAND - ▁IR - ோ - Ô - ▁EIGHTEEN - ▁THEREFORE - ▁DANGER - ຍ - THOUGH - ▁WILD - LIGHT - ▁NORTH - ▁SAK - あ - ట - ▁MARK - ▁RICH - '0' - ▁เป็น - ▁EXCEPT - ▁GARDEN - ДЫ - ▁WANTED - ▁ACROSS - う - ▁আছে - ▁የ - ▁TOUCH - Ɔ - ▁خو - ▁PERFECT - ULI - ▁NYA - ▁CERTAINLY - WAR - ▁LONGER - ผ - KHU - ▁HUSBAND - ▁OCCASION - ▁BILL - ▁SEEM - ▁ENGLISH - ላ - ▁HẼE - ▁거 - ІН - ▁ARMS - 을 - ▁CHAY - ▁পা - ▁PRINCESS - ▁FRA - IO - ▁CHARACTER - ▁DIFFICULT - ▁OUGHT - ▁SHIP - HIN - ▁ఆఁ - ▁ໄປ - MBER - ไ - ЭН - து - TIK - ЫН - ▁QUIET - ENS - INI - IAL - ▁COL - ز - ብ - ▁ஆஹ் - ▁ถุง - Ტ - ゃ - ▁PRETTY - ▁VIEW - แก่ - ATIVE - KHO - ట్ - LÉ - ▁Л - ৈ - ▁REMARK - ▁SUFFER - ▁ข้าวหอมมะลิ - ยา - ▁TIMES - UX - ▁SECRET - ▁SWEET - ▁OKE - ▁SENSE - ▁READY - ▁DISCOVER - ▁REGARD - ▁CARRIED - য়া - ▁RID - ดี - ▁CHANGE - К - ▁ĐI - ▁ເອີ - ▁چې - ▁COMMON - RAL - ▁ААА - ▁SIN - ▁К - ▁EFFECT - ▁போ - ▁MÀ - ▁INDIAN - เพ - ▁系 - ▁LIVED - ▁LATER - ▁PAPER - ະ - 게 - ▁MHM - ▁TÍ - GUA - ▁จะ - 爱 - ▁SAD - ان - WELL - ▁PROF - ▁BAK - ▁MONTH - ▁CAST - বি - BIL - ▁ప - ▁NATURAL - ▁ADDED - ▁EAT - ▁TRU - ▁NGO - ▁NANG - ▁FRONT - ▁TSIT - ▁HUNG - ▁MANG - ปลา - ▁น้ําผึ้ง - ▁RESPECT - ▁SUCCESS - ▁บ้าน - ▁BROWN - ANGAN - ANI - ▁TAKING - RAC - ABLY - ศ - ▁PUBLIC - ▁SURPRISE - ▁BREATH - か - ▁NH - నా - LUNG - ▁PARTY - KAR - ▁THANK - ▁나 - ຄ - ▁กล่อง - ▁STAY - ▁ที่ - ▁TRANS - ▁IKI - ది - ▁CAMP - Ấ - ▁แดมอ - 기 - 은 - ▁TRUTH - OUGH - ▁SOUTH - ▁TRIED - ▁START - BAR - DHI - ▁PARTICULAR - ▁PURPOSE - ▁SAL - ▁EQUAL - లే - ▁ป้อ - ▁FRO - ▁GAL - PHI - Შ - ▁PREPAR - ▁ANA - ▁WARM - ▁DIRECT - ้ง - ▁ENTERED - ENED - TTLE - ▁ИӘ - ተ - 니 - ▁እንደ - ▁USUAL - ▁STONE - யா - ▁BANK - ▁RECEIVED - ▁FORWARD - ▁AMA - ▁CÓ - ້າ - ▁TREES - ▁GUN - ▁CRY - ▁SUGGEST - ▁แปด - ▁FIGURE - ▁COMFORT - ▁PLAIN - ந்த - ள - RATION - ▁SOFT - ▁THY - ▁ENTER - HOT - ISM - ▁HAYI - ÚN - ▁PAPA - BILITY - EVER - ▁গ - னு - ▁WALA - 就 - ▁BLOOD - ▁POSITION - டி - ▁SAFE - ILE - UB - IAU - ▁GIRLS - ▁এই - พัน - ▁BEYOND - ▁COMMAND - ▁PROMISE - ᲕᲔ - ▁LIVING - ▁MANA - ▁HOURS - ЫП - 리 - బ - ▁ТИЙМ - た - ▁ENGLAND - ▁Ọ - ▁BAI - ▁কর - ▁DELIGHT - గ - ை - ວ່າ - ໃ - ▁PANG - ▁Ừ - Ų - に - WEN - ▁이 - ▁ААН - TUK - NCHIK - ▁AGO - ▁MAIN - ▁BELL - ▁ᲒᲐ - ▁SER - ▁OPENED - ሽ - ▁አዎ - ▁БА - ட - ▁DOING - HANG - ้อง - ▁TREAT - ▁SANE - ᲚᲘ - ▁PALE - ▁پ - 了 - ▁EXPERIENCE - ▁CLASS - ప - FO - ▁বল - PUT - ▁SIT - ▁SERVICE - ▁ENJOY - ▁CHIEF - ▁เคย - ÀN - ▁FER - ▁AGREE - ▁SAYING - ▁ఆ - ▁REMAIN - ▁KANG - డు - ▁FOREST - ▁ข้าว - HING - ▁PLEASURE - な - ▁WORTH - ▁COMPANION - ▁FAST - ▁CARRY - ▁MAL - HOOD - ▁MILES - ก่อ - ▁STRUCK - ▁یې - ▁HELLO - ▁FIGHT - ▁DEAL - ▁SEAT - 都 - ▁BEAUTY - ▁CROSS - ▁SILENCE - ▁INSTANT - க - ▁NDE - ட்ட - তো - HOO - ▁อุ้ย - Û - ▁ข้าวกล้อง - ИН - ตร - 去 - 好 - ▁CROWD - ▁نو - THE - ▁BOYS - ▁BAY - RAH - ▁NATION - ▁SAIL - রে - CHU - ▁BAN - ທ - ▁รับ - し - ర్ - ار - KIM - ▁ยา - IFIED - ▁QUA - ▁ໄດ້ - Į - ▁BRIGHT - ▁НЬ - ▁ZA - ▁ᲐᲠ - ▁MINUTES - ຊ - ▁SAKA - ▁FINGER - ᲓᲐ - ▁IHE - ▁SANG - ▁ACCOUNT - ▁SERVANT - ▁YOURSELF - ▁ຢູ່ - ረ - ▁ກະ - ▁کو - ▁УУ - САН - ▁STANDING - ▁ABLE - ▁ROCK - ▁NEARLY - КЕ - ▁BIT - ะห์ - ீ - ሰ - て - 到 - ▁নাই - ▁THROW - ҚА - ▁কা - 면 - ▁ATTENTION - ▁CONDITION - ▁MOUTH - ▁TRAVEL - ▁را - ▁که - ▁FAT - ▁NON - ตี - ▁SMILE - ▁YOUTH - য - เมียน - ▁PICTURE - ▁FURTHER - ▁BOAT - ▁NAA - ▁VEN - ▁ТА - ட்டு - ▁APPROACH - ▁ຕ - ▁EARLY - ▁HAPPENED - EG - จังหวัด - ሁ - 人 - ▁ปุก - ื - ▁IMMEDIATELY - ▁FLU - ఎ - ▁DRIVE - LOG - ▁GREW - NTEN - ማ - ▁OPINION - ▁COMPANY - ▁PRAY - GGED - ▁YON - ▁BOW - ▁FORTH - ▁EAST - ▁НЭГ - ま - ▁NEITHER - ▁MMHM - ▁ສ - ติ - Ბ - หย - ▁THOR - ▁NINE - ▁ROLL - ▁NONE - ▁ACCEPT - ค่ะ - ▁GOLD - ▁CHAIR - ▁SEEMS - ▁FOLLOW - RIP - ษ - ټ - ▁FLOOR - ▁GLANCE - DDING - ను - KONG - ▁ขอ - ้ว - à - ▁RỒI - ▁THIRTY - ▁THIRD - SCRIBE - ▁WIDE - ▁GATHER - ▁ÇI - ▁THICK - แต - ▁TAIL - গে - ໍ - ▁AFFAIR - 요 - 해 - ▁FRESH - ▁HEAVEN - ได้ - ▁BEAT - না - ▁STOP - ▁MAMA - TAQ - ▁MINE - ల - ▁MUSIC - ▁LENGTH - ▁НЕ - ▁COMPLETE - ▁GRACE - ▁HABIT - CKET - ТЫ - ৰি - ОО - こ - ▁SHOUT - ▁STOPPED - ▁FILLED - ັນ - ▁GUARD - ▁TRO - HOR - ▁QUEEN - ら - ኝ - ▁AFRAID - わ - ▁CLOUD - ▁دی - కు - ▁UTA - ິ - ூ - ▁EVIDENT - き - ▁CREATURE - ▁WOUND - ▁STARTED - ▁HUNT - ▁UTTER - 나 - ته - Ế - ▁DOG - วัน - ▁FIFTY - ▁ไป - ▁SAINT - ZZ - ▁ANNE - ▁FIT - ▁MOON - న్న - ฆ - 个 - ๊ะ - ▁যা - ▁CONTINU - СА - ▁PRESS - ራ - と - く - ▁SELF - ▁PIECE - ▁OKAY - ▁MAH - ▁VER - ▁KORO - ▁HALL - MBE - ▁SN - ▁LIE - ▁STAP - 过 - غ - ▁EXCLAIMED - ▁ЮУ - ▁ATTEMPT - 心 - ▁PROCEED - ▁GUESS - ▁YEN - ګ - ▁GOVERNMENT - ▁REPEAT - తా - ▁BIRD - ▁พื - ▁EXPRESSION - ІҢ - ግ - 唔 - ▁INSTEAD - ▁BREAK - ▁SILENT - ▁APPEARANCE - దు - ▁SPRING - ▁WONDERFUL - ພ - Ạ - ▁EXPLAIN - ▁RESULT - ▁ANIMAL - ▁БИ - LẸ̀ - TSIN - ▁BORN - ▁GRAVE - หา - ▁MASS - ▁ТЭГЭЭД - ▁แสน - 想 - ▁ESCAPE - ▁هو - రా - ▁SITTING - ▁LOVED - ครับ - ▁நா - ▁OUTSIDE - ▁হয় - ຈ - ยัง - ຂ - ฟักข้าว - ▁ขนม - ▁เข่า - ▁MOVED - ▁WEST - ▁GEL - BANG - ▁TRY - ች - ከ - ▁IMPOSSIBLE - り - ▁CORNER - ▁LONDON - ▁DEMAND - ▁WHATEVER - NGGO - লি - 한 - 天 - ▁COVERED - ▁ДЭЭ - CLOCK - ▁TEARS - ▁ERÊ - ▁MAKA - ▁JANE - ▁JOIN - RENG - ంది - ும் - ேன் - ▁เม็ด - ▁DETERMIN - ▁MADAME - ▁PROPERTY - ▁WRITE - ▁HALO - ▁SUIT - PANG - ▁PATH - ▁EXPRESS - ▁BROKEN - TSO - ▁এক - ▁MEASURE - ▁ATTEND - ▁TALKING - ▁XWE - ອງ - లు - ▁POCKET - แก - ᲠᲔ - ТА - ▁BAND - ▁APPEAR - ▁POSSESS - ▁PERSONAL - Ц - ▁هغه - МЕН - ▁WINTER - ▁SCARCE - ▁FÈ - ▁HAPPEN - ▁እን - ገ - ▁ACCORDING - ▁CIRCUMSTANCE - ▁ปิ๋น - ▁FRENCH - ▁CÁI - ▁ATTACK - ▁SHARP - ▁ROMAN - ছিল - BORU - DUL - ▁MWEN - ▁LAUGHED - ▁ЖА - ▁REMAINED - ▁SERVE - え - も - Ń - ▁กระป๋อง - 마 - ▁VILLAGE - ち - ▁AFTERNOON - ▁БАЙГАА - ▁VALLEY - ▁MARRIED - ▁SHORE - ▁POPUL - ▁FORGET - రు - ▁FOOD - ▁THÌ - ▁QUICK - ▁LAID - บัญชี - Ề - ▁EFFORT - ▁HAPPINESS - ▁MAJOR - ▁DISTANCE - ▁FRANK - ▁هم - ▁STORM - ▁PERCEIV - ▁BOUND - ▁PLACED - ▁ARMY - ลัด - ድ - ▁کښې - ▁உம்ம் - ▁ไม่ - ▁ISABEL - ▁WRONG - ▁BLOW - ▁BELOW - ▁BOX - ▁БАР - ▁TAR - ▁RACE - ال - டு - ภ - ▁คุกกี้ - พิเศษ - ▁PROBABLY - 要 - ▁QUARTER - ▁ADMIT - ▁FAITH - ▁GENTLEMAN - ▁SKY - వా - ▁دې - ปา - GGER - কা - ▁YEAH - ▁MARY - ▁TÓ - Ố - ▁PLEASANT - ▁SOCIETY - ▁คัด - హ - さ - ▁GROUP - ▁STRAIGHT - 着 - จาย - การ - ▁FORTUNE - TSAI - ข้าว - ITUDE - หอมมะลิ - ▁STRENGTH - ▁ມັນ - Б - ட் - ▁ENTIRELY - ▁NECESSARY - ▁ҒОЙ - 야 - 있 - ▁DINNER - ▁DREW - ANGA - ▁MEANT - కి - ▁QUICKLY - ᲔᲑᲘ - ▁AMERICAN - ண - ▁SEND - หนองคู - ▁INFLUENCE - ▁BEGINNING - ▁ຊິ - ▁CHAPTER - ▁EASY - ັກ - ▁BROKE - ▁TRAIN - ▁REACH - າຍ - つ - ধ - 사 - ょ - ▁SCENE - ▁PULL - ▁น้อง - ▁GIVING - তি - ▁SLIGHT - ▁COLOR - ▁MEMBER - HOOK - Წ - Ұ - ▁PRODUCE - ▁SILVER - ▁PAUS - ▁DIRECTION - ▁WAITING - กล้อง - ไห้ - ▁AUTHOR - ▁DREAD - ▁HISTORY - ▁SINGLE - ▁BATTLE - ▁SHUT - ГЕ - Ắ - ▁CONVERSATION - ▁ESPECIALLY - ▁ນີ້ - 까 - ొ - ▁EASILY - ▁BREAD - ▁PEACE - ▁OBLIG - ▁FLY - ▁MORAL - ▁ACTION - ฟ - ▁TERRIBLE - ▁தான் - ▁REQUIRE - ▁به - ▁ซอง - లో - ᲐᲡ - నే - ▁ده - ▁АЛ - ▁MILL - ▁AWAKE - ▁STRANGER - ชาย - ▁دا - ▁HARM - ААД - ▁TURNING - ▁TRYING - 들 - ▁HEAVY - 会 - ▁EAGER - ▁አይ - ▁GAME - ▁MBAE - ▁RUSH - వు - ▁LUCK - กลุ่ม - ▁จีพลัส - ▁แห้ง - ▁SIMPLY - ▁SIMPLE - ண் - ▁BELONG - ▁وا - ▁CONTENT - ▁БАЙ - ▁KILLED - ▁REPORT - ▁KUR - ▁SPAR - ▁SICK - ▁LOUD - NGGAL - ▁BAŞ - ▁LAKE - ▁JOURNEY - ▁আৰু - োৱা - ▁ANXIOUS - ▁BILONG - ▁STICK - له - ▁LIPS - ТЕ - IOH - ப - ้ย - ູ - แม่บ้าน - ▁วังภูหมอก - జ - ธ - ▁DECIDED - ▁PALACE - ▁BURN - ▁LAGI - ▁NJE - ▁MAID - ▁MOVE - รินทร์ - ታ - ወ - ▁ADDRESS - ▁STREAM - ▁EVIL - ▁IMAGINE - ▁SLOWLY - ▁CHANGED - னா - ▁REPRESENT - ▁যে - ▁MENTION - ▁ก็อด - ▁FOLLOWING - ▁CATCH - ร้อง - IDAK - ▁MARRY - ▁SUPER - ▁CONCERN - ▁SEARCH - ▁FAVOR - ▁TEMPER - ▁ปลาร - ▁HANDSOME - ల్ - জা - ▁แท - LÚ - ▁THIN - ▁อา - ▁PASSION - ▁SHAPE - ▁ຫັ້ນ - 보 - ▁HÍNA - ▁SUMMER - ▁CIVIL - ▁PRESENCE - ▁SERIOUS - ▁SHOP - ▁SMILED - ▁SPOT - ▁MOTION - KHUAN - ▁AUNT - ▁DUTY - ▁หก - รีบู - Ệ - ▁SUFFICIENT - ▁СОЛ - ▁আমি - ▁SHADOW - ▁BROAD - ▁MISTAKE - గా - เค - ᲨᲘ - ▁ALLOWED - ▁SHOT - ᲓᲘ - ▁GAIN - ▁MINUTE - রা - ▁INDIVIDUAL - ▁ARRIVED - ▁MARRIAGE - ▁COUSIN - ▁SLAVE - ▁ASSIST - ▁อะ - คร - ▁UYA - ▁WEAK - วัด - ▁TWELVE - ▁DEPART - ▁RAISED - TSHU - ▁TRUST - ▁SUDDEN - ▁CHRIST - เบอร์ - ▁UNDERSTOOD - ▁DEGREE - で - ▁HONOUR - ▁GLASS - Ң - CARA - ▁LOWER - Ẽ - ປ - Ფ - ▁CONSCIOUS - ▁เจ็ด - よ - 내 - 안 - 得 - ▁NÁÀ - ▁SUPPORT - ▁NARROW - ▁BATH - ▁KILL - KOH - ▁SPENT - ح - ▁REFLECT - ▁น่าม - క్క - ▁WELEH - ▁FRANCE - ▁CALM - ื่อ - ้ม - ว่า - กัด - ▁INCREASE - ▁FRI - ▁HONOR - ▁FIRM - ▁GOLDEN - ▁POST - ỚI - ▁LATTER - ▁YONG - ▁GRASS - ▁PÉ - BÛ - 으 - ▁เกษตร - ▁ŞEY - লো - ᲑᲐ - ธนาคาร - ▁ADVANTAGE - ▁FASHION - ▁SWORD - 래 - ▁সেই - ▁ENEMY - ▁VARIOUS - ▁NASIDA - ▁SOCIAL - ▁TASTE - ▁ᲡᲐ - ▁BITTER - ▁MOVEMENT - สุวรรณ - ▁เติ้ล - ▁அவ - ▁ຫວາ - 说 - ▁DEVELOP - み - ▁MURDER - ▁LADIES - ▁YORK - ▁ARRANGE - ▁YELLOW - ▁PURSU - HREW - ไชยศิ - Ū - Ჩ - ▁กระปุก - ▁CONDUCT - ▁STRETCH - ▁PREVENT - ▁VICTOR - ▁SITUATION - ▁FINALLY - ▁মই - ▁RELATION - ອນ - ▁ভাল - ีผล - ▁ห้าง - ᲜᲐ - ▁MARCH - ▁TENDER - ЕЙ - ▁MILLION - ున్నా - Ĩ - ▁DECLARED - สมุนไพร - ▁KNOWLEDGE - ▁DROPPED - ▁ມາ - ▁PROPOS - ▁RISE - ▁RULE - ▁กะ - ▁INVIT - Ь - ږ - ณ - ▁ЖАТЫР - উ - บือละห์ - 네 - ▁CARRIAGE - ▁GAYOD - МЫН - ல் - ఏ - ▁ปะ - ای - ▁POND - หุ้นส่วน - 시 - Ơ - Ღ - ▁EVERYBODY - 일 - や - 多 - ▁ລະ - ▁LEAVING - ▁UWIS - ▁دي - దా - SCRIPT - FOLD - ্যা - ూ - ▁근데 - 那 - ▁COLLECT - ▁ANCIENT - ▁PRISONER - ▁RAPID - న్నా - ▁په - ▁DANCE - ของดี - เปอร์เซ็นต์ - ባ - ▁ESTABLISH - ▁என்ன - ▁DISAPPEAR - ▁JUDGE - ▁FAINT - 里 - ኔ - 거 - 来 - 로 - 下 - ফ - 能 - ญ - ج - ف - 를 - Ở - 上 - 오 - 자 - 只 - 没 - 么 - ዚ - ቀ - 为 - 구 - 时 - 这 - 었 - ع - چ - Ồ - る - 情 - 也 - ভ - Õ - ষ - 만 - 인 - ສ - ښ - Ộ - 啲 - 너 - 때 - 무 - 했 - 开 - 又 - ቃ - ክ - が - ொ - ై - 自 - ኛ - Ữ - 哦 - 대 - 여 - は - 边 - پ - Ị - 啦 - 知 - 수 - 远 - 地 - 还 - ひ - 后 - め - 再 - ሱ - Ầ - 같 - 无 - 可 - 려 - 생 - 제 - ຖ - Ớ - 如 - 주 - ሳ - 见 - 话 - 되 - 走 - Ε - っ - 起 - 让 - 데 - Ჰ - ຜ - 像 - 样 - Ę - ጋ - ৱ - ష - 간 - ኮ - ጣ - す - Ể - 看 - 几 - 点 - ጥ - 听 - Ზ - ዳ - ঐ - ຸ - ሉ - 生 - 의 - ق - ቤ - ፈ - 러 - 런 - 回 - ふ - 以 - የ - 정 - れ - ຕ - 道 - 嘛 - 而 - じ - ໄ - Ɛ - Ủ - ろ - ど - Ợ - 出 - Ừ - 感 - 원 - 말 - 세 - ね - 却 - だ - 年 - ዛ - ډ - ሺ - 对 - 日 - 두 - ず - 음 - 笑 - 系 - 소 - 风 - け - ぴ - 分 - 呢 - 든 - 모 - 慢 - 手 - 眼 - 相 - ሚ - ঠ - ণ - 真 - ዋ - 别 - 最 - 애 - ぎ - ቸ - 드 - 랑 - 울 - 차 - ぐ - ^ - ஷ - ሩ - 左 - 할 - ፍ - そ - 头 - ጠ - Ụ - 嗯 - 산 - 운 - ঝ - ካ - 放 - 겠 - ং - ሀ - 谁 - 明 - 间 - 비 - 학 - び - 우 - 카 - 定 - 己 - 늘 - 전 - 더 - ዝ - Ỏ - 많 - 离 - 개 - 星 - Č - Ý - 海 - 상 - Ჯ - 달 - 미 - せ - 然 - ص - ஜ - 之 - 觉 - 很 - 成 - ゆ - ሄ - ሪ - ኩ - 타 - 花 - 부 - ば - 前 - 世 - 和 - 太 - 光 - 把 - 금 - 물 - 스 - 저 - 처 - 次 - 当 - 中 - ຶ - 家 - 未 - 각 - 름 - 막 - 봐 - 신 - 白 - 노 - 已 - ዬ - 언 - ழ - 空 - 住 - 럼 - Ё - 两 - 梦 - 做 - ط - ሌ - 咪 - 度 - 냥 - 던 - 동 - 란 - శ - 温 - 落 - 经 - 给 - Ằ - 月 - Ჭ - ቱ - 流 - 먹 - 望 - 等 - 大 - 小 - 变 - 动 - 讲 - 雨 - 날 - 알 - 약 - 장 - ご - 美 - ຟ - ቅ - 发 - 面 - 길 - 바 - 히 - 失 - 子 - 色 - 걸 - Ổ - 路 - ዐ - む - 同 - 꼬 - 봤 - 치 - 声 - 留 - 每 - 抱 - 带 - 快 - Ǹ - ሥ - Ỉ - 信 - 先 - 老 - 难 - 건 - 디 - 반 - 파 - 方 - 曾 - 泪 - 晚 - አ - 打 - 总 - 十 - ئ - ۍ - ቢ - Ỗ - 굴 - 르 - 응 - 期 - 他 - 所 - 言 - ቶ - 拥 - 歌 - 伤 - 问 - 云 - 更 - ض - 从 - 忘 - 올 - Ự - 少 - 意 - 长 - 怕 - 界 - 身 - 乐 - 永 - 계 - ኑ - 念 - 野 - 살 - ሮ - 于 - 现 - 被 - ぼ - ฤ - ሻ - ቻ - Ặ - 买 - 山 - 님 - 른 - 워 - ৌ - 교 - 直 - ฉ - 些 - 候 - 것 - 냐 - 밤 - 실 - 와 - 좀 - 유 - 喜 - 쿠 - 欢 - 水 - ዜ - 电 - 遇 - 난 - 맞 - 배 - 속 - 않 - 진 - 짝 - 화 - ঙ - ጊ - 呀 - 哪 - 怎 - 위 - 중 - 算 - 微 - 依 - 青 - べ - 清 - 返 - 매 - 별 - 솔 - 줄 - 랄 - 夜 - 才 - 完 - ሬ - 但 - 即 - 忆 - 愿 - 문 - 방 - ሞ - ቆ - 钟 - 轻 - 暖 - 何 - 许 - ሎ - ぽ - 背 - 누 - 因 - 行 - 단 - 돼 - 명 - 엔 - 직 - 집 - 청 - 痛 - 深 - 春 - 实 - 终 - ఓ - ቺ - 본 - 빛 - 새 - 입 - ฝ - 受 - 口 - 터 - ざ - 그 - 安 - 근 - ໋ - 停 - 怀 - 车 - 쳐 - 트 - ሊ - ሙ - ሲ - Ẫ - 节 - 갑 - 갔 - 년 - 눈 - 린 - 분 - 柔 - 千 - 向 - ஸ - 单 - 事 - ቼ - ኳ - 喺 - 待 - 食 - 강 - 레 - 예 - 절 - 죠 - 容 - 错 - 느 - 种 - 反 - 静 - 唱 - 火 - 近 - ژ - 苦 - 회 - 루 - 버 - 불 - 왔 - 甜 - 飞 - 满 - Ũ - ጀ - 此 - ໊ - ጂ - ፊ - 够 - 热 - 께 - 록 - 몇 - 적 - 져 - 쫌 - 행 - 刻 - 牵 - 音 - 往 - 双 - 法 - ణ - ሠ - ኪ - ጉ - ጭ - 用 - 结 - 며 - 영 - 외 - 조 - ':' - ̣ - ሜ - ቂ - ぬ - 겨 - 귀 - ధ - ぞ - 儿 - 哭 - 越 - ̀ - 跟 - 假 - 叫 - 阳 - ጎ - 作 - 原 - 思 - 竟 - 답 - 偷 - 它 - 气 - 沉 - 理 - 细 - 转 - 重 - 높 - 밖 - 선 - 식 - 씩 - 연 - 잎 - 종 - 피 - 久 - 入 - 外 - 脸 - 靠 - 城 - 醒 - 找 - 早 - 写 - 偶 - 友 - 该 - 渐 - 곱 - Ф - ຝ - ፋ - Ử - 吧 - 告 - 긴 - 재 - 프 - 녀 - 성 - 테 - 三 - 装 - 夏 - ほ - 角 - 寻 - 睡 - ஐ - ኋ - 과 - 求 - 玩 - 香 - 곰 - 머 - 빨 - 쪽 - 코 - 콩 - 亲 - 今 - 女 - 紧 - 온 - 호 - 默 - 机 - 勇 - 请 - 首 - 关 - 掉 - 全 - 岁 - 活 - 감 - 공 - 六 - 蓝 - ዴ - ጅ - ጆ - ጤ - Ỡ - 使 - 包 - 啱 - 嚟 - 她 - 画 - 钱 - 雪 - 국 - 글 - 쁜 - 업 - 息 - 随 - 与 - 底 - 烟 - 滴 - ぜ - 步 - Ю - 比 - భ - げ - 学 - 将 - 希 - 正 - 闲 - ሷ - ቡ - ዕ - Ễ - 味 - 尽 - 整 - 条 - 解 - 进 - 슬 - 용 - 체 - 케 - ጃ - 场 - 웃 - 似 - 红 - 计 - 疯 - 语 - 엎 - 万 - 必 - 敢 - 旧 - 秋 - 街 - 切 - 排 - 遥 - 담 - ኸ - ዱ - 力 - 秒 - 결 - 된 - ฬ - ቁ - ኖ - 五 - 埋 - 平 - 懂 - 旁 - 漫 - 飘 - 렸 - 받 - 쉬 - 슨 - 양 - 철 - 침 - ጫ - 습 - 片 - 绝 - 四 - 害 - 守 - 约 - 书 - 傻 - 北 - 否 - 酒 - 季 - 残 - 照 - آ - 累 - 꾸 - 발 - 천 - ሸ - ኞ - ዙ - ፌ - 乌 - 吗 - 始 - 市 - 应 - 恨 - 独 - 线 - 诺 - 透 - 격 - 경 - 따 - 맛 - 몸 - 썰 - 였 - 질 - 크 - 후 - 工 - 迷 - 토 - 丽 - 影 - 句 - 恋 - 需 - 黑 - 散 - 奔 - 啊 - 们 - 张 - 目 - 亮 - 忍 - 群 - 鱼 - 强 - 挂 - 넘 - ث - ሂ - ሴ - 倾 - 管 - 荡 - 갈 - 십 - 엉 - 커 - ৎ - 另 - 晴 - 穿 - 若 - 谎 - 闹 - 阵 - 목 - 월 - 편 - ৃ - 公 - 处 - 干 - 合 - 坐 - 怪 - 易 - 站 - 认 - 狂 - 至 - 体 - 提 - 笔 - 收 - 阴 - 追 - 高 - ぱ - 二 - 断 - 球 - 耳 - 诗 - 遍 - 配 - 预 - 복 - 짜 - ظ - ఖ - ኒ - 习 - 冷 - 特 - 졸 - ሔ - Ჟ - 任 - 休 - 便 - 哩 - 字 - 报 - 改 - 灵 - 烧 - 神 - 纸 - 联 - 部 - 롱 - 색 - 씨 - 추 - 悲 - 浪 - 肯 - 西 - 东 - 初 - 半 - 局 - 脑 - 距 - 缘 - 聊 - 非 - 承 - ዎ - 灯 - 彩 - 惜 - 接 - 交 - 保 - 孤 - 运 - 代 - 圈 - 憾 - 差 - 纯 - 连 - 逃 - 九 - 其 - 南 - 号 - 江 - 演 - 톡 - 혼 - ఐ - ዶ - ጓ - ぶ - 乱 - 决 - 叶 - 响 - 奇 - 尾 - 屋 - 林 - 模 - 训 - 论 - 迹 - 靓 - 났 - 등 - 떤 - 앞 - 통 - 희 - 传 - 八 - 化 - 曲 - 窗 - 表 - 证 - 립 - 송 - 태 - 台 - 恩 - 楼 - 并 - আ - 熟 - 怨 - 送 - 景 - థ - 떡 - 右 - 坏 - 娘 - 本 - 足 - 通 - 隔 - 利 - 名 - 常 - 数 - 碎 - 门 - ذ - ቹ - ጡ - ፕ - Ỹ - 仔 - 倦 - 剩 - 封 - 尘 - 执 - 晨 - 泡 - 猫 - 痕 - 谅 - 谓 - 超 - 跳 - 轮 - 醉 - 망 - 붙 - 순 - 옥 - 옹 - 움 - 증 - 쪼 - 축 - 팔 - 럽 - 七 - 莫 - 选 - 항 - 噢 - 妈 - 尔 - 灰 - 躲 - 刚 - 握 - 零 - 挡 - 死 - 贴 - 杯 - ఆ - 围 - 绕 - 拿 - 丝 - 悠 - 旅 - 百 - 止 - 观 - 吻 - 喵 - 堂 - 怜 - 懒 - 戏 - 草 - 顺 - ௌ - ዮ - 골 - 딩 - ቋ - 呼 - 存 - 摆 - 斗 - 油 - 般 - 视 - 점 - 향 - ঃ - ౌ - ጪ - Ẩ - 企 - 养 - 哥 - 妙 - 惯 - 搞 - 擦 - 木 - 朵 - 波 - 注 - 淡 - 班 - 英 - 茶 - 贵 - 迎 - 锁 - 题 - 饭 - 马 - 骨 - 관 - 깔 - 끔 - 둥 - 떻 - 랐 - 룩 - 먼 - 민 - 벽 - 셨 - 얀 - 억 - 임 - ฎ - ፒ - 达 - 闪 - 颗 - 긋 - 嘴 - 撑 - 男 - 短 - 突 - 续 - 荒 - 识 - 诉 - 黄 - 低 - 折 - 舍 - 寄 - 朝 - 祝 - 课 - 挥 - 瓶 - 礼 - 幻 - 战 - 试 - 琴 - 닷 - 伞 - 剑 - 卷 - 吸 - 哈 - 惊 - 拒 - 梁 - 燃 - 租 - 第 - 羽 - 脚 - ጌ - 品 - 喝 - 漂 - 铁 - 메 - 밥 - 키 - 페 - ̩ - ሶ - ቄ - ዪ - Ẻ - 享 - 价 - 伯 - 傍 - 冬 - 升 - 吞 - 国 - 急 - 房 - 抬 - 指 - 新 - 昏 - 替 - 服 - 涌 - 游 - 滚 - 田 - 眸 - 码 - 篇 - 芳 - 豆 - 退 - 避 - 酸 - 鲜 - 궁 - 깐 - 댁 - 덕 - 뜨 - 벗 - 베 - 석 - 숲 - 역 - 짓 - 쭉 - 쯤 - 찜 - 출 - 클 - 폰 - 활 - ቴ - 급 - 댕 - 력 - 준 - 합 - ቲ - 争 - 余 - 吵 - 唯 - 尝 - 旋 - 甘 - 놓 - 충 - 乎 - 盛 - 纷 - 辉 - 偏 - 挽 - 洋 - 立 - 颠 - 忙 - 藏 - 暗 - 跌 - 倒 - 含 - 层 - 古 - 格 - 临 - 极 - 脏 - 酷 - 魂 - 资 - 吃 - 根 - 毛 - 沙 - 碰 - 舒 - 蝶 - 辜 - 院 - 修 - 染 - 柠 - 烽 - 移 - 血 - 途 - 颜 - 魔 - 릴 - 법 - 패 - ሏ - ሯ - ኗ - ዊ - ዓ - ፏ - Ỳ - 伏 - 借 - 共 - 冒 - 冲 - 功 - 叹 - 君 - 圆 - 垂 - 寒 - 寸 - 座 - 扬 - 抗 - 拉 - 换 - 揾 - 教 - 斑 - 浮 - 添 - 港 - 潮 - 烈 - 牌 - 牙 - 瘦 - 眶 - 砰 - 祷 - 穷 - 答 - 纪 - 绿 - 翻 - 肉 - 胜 - 苍 - 象 - 赖 - 辰 - 逐 - 镜 - 限 - 须 - 餐 - 骑 - 骚 - 鸦 - 겁 - 넌 - 놈 - 닐 - 될 - 뜩 - 렴 - 론 - 롭 - 쁘 - 심 - 씬 - 악 - 짐 - 쩔 - 탈 - 탕 - 튼 - 판 - 현 - 셋 - 쟁 - 환 - 唐 - 性 - 涯 - 物 - 珍 - 疼 - 缠 - 夕 - 설 - 쳤 - ፎ - 卖 - 套 - 汤 - 良 - 솜 - 瑞 - 稳 - 缺 - 伴 - 唤 - 序 - 归 - 挑 - 翅 - 薄 - 咸 - 义 - 件 - 列 - 勾 - 嘿 - 属 - 岔 - 广 - 弹 - 掩 - 搭 - 欠 - 猜 - 符 - 腕 - 阔 - 낙 - 펼 - Ï - 华 - 嫁 - 幽 - 抓 - 暂 - 烂 - 珊 - 疲 - 翼 - 触 - 逆 - 闻 - 킨 - 商 - 흥 - ً - ቭ - ቮ - ዩ - ፅ - Ḿ - Ỷ - 丘 - 严 - 介 - 伪 - 位 - 冻 - 净 - 凉 - 刘 - 刺 - 博 - 厚 - 呵 - 嘈 - 团 - 壳 - 奏 - 姐 - 婆 - 宝 - 宫 - 宴 - 密 - 尊 - 川 - 店 - 延 - 引 - 徒 - 悦 - 惑 - 抖 - 抵 - 抹 - 拆 - 拖 - 拼 - 救 - 暴 - 束 - 校 - 款 - 毫 - 洗 - 测 - 湖 - 湿 - 灌 - 煌 - 熄 - 熬 - 犹 - 环 - 皮 - 盖 - 眠 - 票 - 秘 - 稻 - 窝 - 纵 - 绍 - 缝 - 考 - 者 - 舟 - 虹 - 警 - 讨 - 词 - 负 - 躯 - 载 - 逝 - 逼 - 量 - 针 - 际 - 陷 - 馆 - 鬼 - 麻 - 黎 - 龙 - 걍 - 껏 - 꿀 - 끊 - 낀 - 낼 - 똥 - 램 - 럴 - 렀 - 맨 - 몽 - 변 - 브 - 블 - 뿡 - 샘 - 싹 - 써 - 접 - 졌 - 줬 - 즈 - 짹 - 쨌 - 쫙 - 찡 - 채 - 컵 - 켜 - 틀 - 티 - 팅 - 폼 - 품 - 픈 - 读 - 견 - 멘 - 뻐 - 헤 - ዞ - ፆ - シ - 主 - 刹 - 智 - 朗 - 权 - 炼 - 盏 - 릭 - 승 - 份 - 加 - 孩 - 摇 - 欲 - 造 - 金 - 隐 - 菊 - 黏 - ́ - 伟 - 婚 - 弄 - 招 - 毁 - 毕 - 激 - 踢 - 鼻 - 嗅 - 妞 - 尖 - 异 - 弦 - 弯 - 彻 - 烛 - 甸 - 眷 - 练 - 荣 - 蝉 - 雁 - 骗 - 齿 - 육 - ఘ - 塞 - 帘 - 悄 - 拾 - 搁 - 晶 - 漠 - 竹 - 篱 - 羞 - 肠 - 闯 - 띄 - 뭇 - ቨ - 핀 - '6' - ሟ - ሹ - ዷ - ጮ - ” - 业 - 乞 - 乡 - 井 - 亦 - 仰 - 俯 - 兮 - 兴 - 军 - 凝 - 凭 - 刮 - 剧 - 午 - 卡 - 卫 - 取 - 叛 - 叠 - 司 - 吼 - 嗌 - 困 - 块 - 坠 - 堆 - 堪 - 墨 - 奢 - 妖 - 姜 - 姿 - 嫌 - 嫣 - 宜 - 宠 - 客 - 寥 - 尺 - 岛 - 岸 - 巾 - 师 - 弟 - 弥 - 悬 - 悭 - 悸 - 惘 - 扁 - 扇 - 抢 - 抽 - 拳 - 探 - 推 - 插 - 支 - 文 - 料 - 斯 - 昼 - 暮 - 李 - 枯 - 某 - 栏 - 案 - 桥 - 欺 - 歉 - 沦 - 沸 - 泊 - 泥 - 淀 - 渊 - 源 - 溢 - 滞 - 滩 - 澈 - 澜 - 灿 - 炎 - 烦 - 煎 - 煲 - 狗 - 珠 - 瓷 - 盈 - 盒 - 盘 - 瞰 - 石 - 破 - 碌 - 碟 - 禁 - 程 - 箱 - 糊 - 糖 - 纹 - 织 - 绒 - 维 - 罢 - 罪 - 职 - 股 - 脊 - 腰 - 腾 - 膛 - 舞 - 船 - 茧 - 莞 - 莲 - 菜 - 蔚 - 蛊 - 蜡 - 融 - 衡 - 衣 - 衫 - 袋 - 讯 - 详 - 谈 - 谷 - 购 - 费 - 赔 - 赠 - 趁 - 趣 - 蹦 - 轰 - 辑 - 输 - 辛 - 辣 - 迟 - 逻 - 铺 - 锦 - 闭 - 闷 - 阻 - 附 - 陆 - 降 - 鞋 - 韵 - 顶 - 顾 - 顿 - 颤 - 馈 - 驶 - 验 - 骼 - 鸡 - 鸣 - 鸥 - 麽 - 검 - 궐 - 긍 - 껄 - 껴 - 꼈 - 꼴 - 꽤 - 끗 - 능 - 덜 - 덟 - 둔 - 딜 - 땐 - 떳 - 뚜 - 뚱 - 뜰 - 뜻 - 띤 - 랫 - 례 - 료 - 링 - 맥 - 맺 - 밀 - 범 - 볶 - 섹 - 앨 - 엾 - 옛 - 존 - 줍 - 찌 - 첫 - 춰 - 칠 - 켰 - 쾌 - 큼 - 텁 - 톨 - 플 - 허 - 험 - 헴 - 홉 - 힌 - 봄 - 뻤 - 쩌 - 巴 - 忽 - 愧 - 投 - 柳 - 滥 - 犯 - 调 - 끌 - 值 - 嫩 - 宿 - 废 - 建 - 恶 - 旦 - 板 - 治 - 爸 - 玉 - 疗 - 眯 - 瞒 - 设 - 蹈 - 辆 - 段 - 覆 - 乖 - 梯 - 举 - 힙 - 힐 - 효 - 혹 - 헬 - 퓨 - 탐 - 큰 - 츠 - 책 - 짠 - 잤 - 웨 - 엘 - 엑 - 앉 - 씀 - 썼 - 쌀 - 싱 - 숙 - 삼 - 뿌 - 뽑 - 뻔 - 벙 - 백 - 멋 - 락 - 똑 - 딴 - 뒤 - 녕 - 납 - 김 - 값 - 齐 - 麦 - 鸽 - 韶 - 隶 - 陶 - 阑 - 释 - 逸 - 辘 - 轳 - 赐 - 豫 - 谢 - 诶 - 衬 - 蝴 - 虽 - 虑 - 莎 - 腻 - 肥 - 聚 - 聆 - 翱 - 缤 - 稀 - 积 - 社 - 矜 - 盼 - 痣 - 疆 - 畅 - 甩 - 猪 - 父 - 烫 - 灭 - 溃 - 渴 - 淹 - 淌 - 涩 - 汉 - 樱 - 森 - 棉 - 朽 - 曦 - 晰 - 敞 - 摹 - 摸 - 掠 - 捞 - 挤 - 抉 - 慌 - 愁 - 恒 - 式 - 廿 - 廓 - 宾 - 室 - 宋 - 孔 - 契 - 夸 - 士 - 垫 - 土 - 嘉 - 喇 - 喀 - 啥 - 哼 - 厌 - 勒 - 冚 - 兰 - 兜 - 兑 - 俗 - 伸 - 丰 - “ - Ẵ - ፖ - ፐ - ጽ - ጵ - ጄ - ቪ - ሑ - ຣ - ฑ - 흘 - 핸 - 필 - 풀 - 퍼 - 탁 - 컴 - 춤 - 착 - 찢 - 죽 - 좁 - 읽 - 빼 - 봅 - 병 - 맘 - 땅 - 딸 - 둠 - 눌 - 녔 - 냇 - 낄 - 깊 - 龟 - 骄 - 饮 - 除 - 银 - 逢 - 踩 - 谱 - 衍 - 蜚 - 葬 - 获 - 苹 - 苞 - 芬 - 祈 - 番 - 狼 - 狈 - 渺 - 泣 - 树 - 敷 - 故 - 拜 - 扣 - 憨 - 惦 - 屌 - 备 - 境 - 坡 - 圳 - 嗮 - 喽 - 喧 - 善 - 啸 - 周 - 呃 - 医 - 准 - 充 - 傲 - 倔 - 佛 - 且 - ጩ - ጁ - ሦ - ఛ - 흔 - 햇 - 평 - 팀 - 특 - 캐 - 춥 - 최 - 줘 - 죄 - 왕 - 숨 - 뛰 - 걱 - 额 - 页 - 踏 - 赏 - 贪 - 脆 - 耀 - 翔 - 网 - 继 - 童 - 瑰 - 玫 - 犀 - 炊 - 洒 - 汹 - 欣 - 梗 - 晕 - 晏 - 掌 - 担 - 护 - 徨 - 彷 - 弱 - 奶 - 堡 - 坦 - 兆 - ஈ - 흐 - 휴 - 휘 - 훔 - 확 - 형 - 함 - 포 - 취 - 잔 - 웠 - 옷 - 뼉 - 밑 - 맑 - 득 - 둘 - 늦 - 넓 - 굳 - 갖 - 陌 - 遮 - 逗 - 较 - 赶 - 诚 - 胸 - 绪 - 络 - 精 - 昨 - 慰 - 悉 - 崩 - 奈 - 埃 - 嘞 - 努 - 京 - ฒ - Щ - 폴 - 염 - 빗 - 넣 - 군 - 겼 - 谂 - 膀 - 肩 - 瞬 - 牛 - 桃 - 既 - 帮 - 姑 - 复 - 咋 - 及 - 仿 - 付 - ፀ - 흰 - 투 - 족 - 잊 - 싫 - 뿐 - 밝 - 밌 - 멀 - 릎 - 떨 - 듣 - 됐 - 닭 - 곳 - 袅 - 耐 - 择 - 彼 - 坚 - ኤ - ቷ - 찍 - 완 - 볼 - 벌 - 딱 - 닌 - 낌 - 꽃 - 꺼 - 誓 - 蜜 - 茫 - 持 - 办 - 乜 - ኢ - ฏ - ء - 즘 - 옆 - 뭔 - 끝 - 跑 - 河 - 楚 - 攞 - 或 - 忧 - 弃 - 寞 - 啡 - 咖 - ぺ - ぷ - 황 - 탉 - 참 - 암 - 쓰 - 确 - 寂 - Ъ - İ - 찾 - 잠 - 싸 - 떠 - 당 - 놀 - 끼 - 괜 - 광 - 陪 - 简 - 究 - 찮 - 즐 - 돈 - 睛 - 消 - 匆 - Ẳ - ኘ - ஊ - 푸 - 탄 - 섯 - 빙 - 吹 - ቦ - 았 - 술 - 깨 - 蚊 - 唉 - 哎 - 仲 - 친 - 창 - 잡 - 왜 - 꿈 - 遗 - 福 - 朋 - 힘 - 찬 - 슴 - 몰 - 뚝 - 남 - 阿 - 幸 - 哇 - へ - ጨ - ሐ - 초 - 열 - 랬 - 작 - 畀 - ኬ - 由 - 命 - ኦ - ฐ - ぅ - 싶 - 돌 - 睇 - 啫 - ঢ - 또 - 喔 - 손 - 걔 - 얘 - 빠 - ఈ - ঞ - 얼 - 못 - 喂 - 엄 - ূ - 잘 - 嘟 - 什 - ኧ - 좋 - 吓 - 번 - 람 - ヴ - 记 - 없 - ஞ - ዘ - 잖 - ఒ - ぉ - 咩 - ぁ - 嘅 - 㗎 - ዲ - ஓ - 咯 - ஏ - ஒ - ஃ - ぃ - Პ - 뭐 - 冇 - 렇 - ሆ - ঘ - Ძ - ゅ - ぇ - Ă - ̃ - Ậ - ఫ - 佢 - 咁 - 果 - ຽ - ఊ - ఉ - Ứ - Ყ - ځ - உ - ຼ - Ö -  - ຢ - څ - ఇ - থ - ஹ - Ә - ళ - எ - ఁ - ங - ື - Ư - ஆ - இ - Ғ - অ - ແ - அ - అ - ந - ົ - এ - ใ - Đ - ় - Ү - 丢 - 劣 - 匹 - 哑 - 嗓 - 嗨 - 嘲 - 填 - 宏 - 巷 - 志 - 扔 - 拙 - 桂 - 梨 - 渲 - 潦 - 爬 - 痹 - 签 - 素 - 翘 - 胚 - 腼 - 茹 - 虎 - 蚝 - 衷 - 褪 - 跃 - 逛 - 釉 - 钢 - 锐 - 队 - 饰 - 빔 - 偿 - 凑 - 剔 - 呦 - 增 - 宣 - 席 - 户 - 批 - 披 - 拂 - 拌 - 捧 - 搅 - 昔 - 晒 - 曝 - 松 - 栀 - 桐 - 檀 - 汗 - 液 - 炬 - 瑚 - 稍 - 篆 - 绽 - 聪 - 莹 - 蒙 - 袱 - 贝 - 违 - 뷔 - 呜 - 瑟 - 딪 - 릿 - 멈 - 셔 - 킬 - ఔ - Œ - ڼ - ঔ - ๆ - ሕ - ሼ - ኙ - ኜ - ኡ - ኽ - ዉ - ዌ - ዥ - ጢ - ጦ - ጧ - ጬ - ፂ - ፉ - ፓ - ク - 串 - 丹 - 产 - 亭 - 仍 - 仕 - 仙 - 优 - 估 - 佬 - 侈 - 侍 - 侵 - 俊 - 倏 - 倚 - 催 - 允 - 兄 - 冰 - 况 - 减 - 凡 - 则 - 判 - 制 - 刷 - 剪 - 割 - 助 - 劳 - 勉 - 匙 - 区 - 卅 - 卑 - 卓 - 占 - 印 - 厂 - 历 - 厕 - 厢 - 叮 - 史 - 吊 - 吭 - 呐 - 呓 - 呕 - 咆 - 咛 - 哀 - 哮 - 唇 - 唏 - 啩 - 喻 - 嘶 - 器 - 噩 - 嚷 - 囊 - 园 - 图 - 培 - 堕 - 塘 - 墅 - 墓 - 墙 - 壁 - 央 - 奚 - 奥 - 妨 - 妹 - 妻 - 娜 - 媚 - 孑 - 孓 - 孙 - 宁 - 官 - 宛 - 宽 - 寐 - 寓 - 察 - 尻 - 屉 - 屎 - 展 - 峰 - 州 - 巧 - 帶 - 帽 - 床 - 庞 - 弘 - 形 - 彰 - 征 - 徊 - 律 - 徘 - 循 - 忐 - 忑 - 忠 - 态 - 怅 - 怡 - 恐 - 恙 - 恢 - 恼 - 悔 - 患 - 悴 - 惟 - 惠 - 惧 - 惨 - 惩 - 惫 - 惹 - 愈 - 愣 - 愫 - 慨 - 憔 - 戒 - 扎 - 托 - 扯 - 抛 - 拋 - 拘 - 拢 - 拣 - 挣 - 捱 - 掀 - 掂 - 掏 - 揽 - 揿 - 摔 - 摞 - 摧 - 撂 - 撩 - 敏 - 敲 - 斟 - 旌 - 族 - 旗 - 旺 - 映 - 昧 - 晃 - 晓 - 晖 - 普 - 暄 - 暧 - 曳 - 曹 - 曼 - 末 - 杀 - 杂 - 杆 - 材 - 杰 - 枪 - 柄 - 柜 - 栖 - 框 - 桦 - 桨 - 梢 - 梭 - 棒 - 棠 - 椅 - 槽 - 檬 - 欧 - 母 - 毯 - 民 - 汁 - 池 - 汪 - 汽 - 沁 - 沫 - 沱 - 沾 - 沿 - 泰 - 洁 - 浅 - 浆 - 浑 - 浓 - 浦 - 淘 - 淮 - 渣 - 湛 - 湾 - 溉 - 滂 - 滋 - 滑 - 漏 - 灼 - 炭 - 烁 - 烊 - 煤 - 煮 - 爆 - 版 - 率 - 王 - 玛 - 玲 - 琵 - 琶 - 瑕 - 瓜 - 瓢 - 瓣 - 疏 - 疚 - 疤 - 痒 - 痴 - 皱 - 盗 - 盲 - 眉 - 眺 - 睄 - 矮 - 硬 - 碍 - 碑 - 碗 - 碧 - 祸 - 秀 - 私 - 秃 - 窄 - 窑 - 竭 - 笆 - 筐 - 筑 - 簸 - 米 - 类 - 粉 - 粘 - 粤 - 粥 - 絮 - 繁 - 纠 - 纱 - 绑 - 绘 - 绢 - 绣 - 绮 - 绳 - 绵 - 绻 - 缄 - 缆 - 缓 - 编 - 缚 - 缱 - 缸 - 罗 - 罚 - 羊 - 羔 - 翠 - 耕 - 耘 - 聋 - 肤 - 胆 - 胎 - 胭 - 脂 - 腆 - 腐 - 膝 - 舱 - 舷 - 艺 - 芒 - 芙 - 芜 - 药 - 萍 - 萎 - 蒸 - 蕖 - 藕 - 蘸 - 虚 - 虾 - 蚕 - 蜃 - 蟹 - 补 - 衰 - 袭 - 裙 - 褴 - 褶 - 规 - 订 - 议 - 讽 - 访 - 谊 - 谋 - 谜 - 谣 - 谬 - 豪 - 贞 - 账 - 货 - 贸 - 赤 - 赵 - 跤 - 踞 - 踟 - 蹰 - 躺 - 软 - 辈 - 辩 - 辽 - 迁 - 适 - 逅 - 逍 - 递 - 邂 - 邪 - 邮 - 酱 - 钓 - 铃 - 铲 - 锋 - 镌 - 镯 - 闸 - 闺 - 阱 - 陈 - 隙 - 雀 - 雅 - 集 - 雷 - 霓 - 霸 - 靛 - 鞘 - 颂 - 馨 - 驳 - 骂 - 魄 - 魅 - 鲍 - 鲤 - 鸯 - 鸳 - 鸿 - 鹅 - 鹤 - 鹰 - 걘 - 걷 - 겸 - 곡 - 곤 - 곽 - 굽 - 권 - 극 - 깜 - 꼭 - 꽁 - 꽂 - 꾼 - 꿇 - 꿔 - 뀌 - 낮 - 냈 - 널 - 녁 - 놨 - 뇨 - 눠 - 뉴 - 늪 - 닥 - 덩 - 뎅 - 독 - 돋 - 돔 - 듯 - 딘 - 땜 - 떴 - 똠 - 뚫 - 랗 - 랩 - 량 - 련 - 롤 - 룰 - 룸 - 림 - 몬 - 믄 - 믿 - 박 - 봉 - 북 - 붉 - 븐 - 빅 - 빚 - 빡 - 빴 - 뺄 - 섬 - 솟 - 쇄 - 쉴 - 쉽 - 슷 - 쎄 - 쏘 - 씻 - 앍 - 앎 - 압 - 앙 - 얇 - 얹 - 엠 - 엥 - 옮 - 옵 - 옾 - 욕 - 웅 - 웬 - 율 - 윽 - 익 - 잃 - 잇 - 젤 - 줌 - 즌 - 징 - 짱 - 째 - 쨈 - 쩍 - 쩐 - 쪘 - 쫓 - 찔 - 챔 - 첨 - 총 - 춘 - 췌 - 측 - 층 - 칫 - 켓 - 콧 - 큐 - 킹 - 탑 - 턱 - 턴 - 털 - 텍 - 텐 - 톱 - 퇴 - 퉁 - 튀 - 틍 - 팩 - 팬 - 팽 - 펴 - 픽 - 햐 - 헐 - 혀 - 혔 - 혜 - 혤 - 홍 - 훨 - እ - ጸ - ጹ - 蓦 - 霞 - 넷 - 녹 - 쌓 - 욱 - 택 - 텔 - 표 - 典 - 冠 - 凤 - 啤 - 委 - 庆 - 弗 - 悍 - 惭 - 慕 - 搬 - 斜 - 梳 - 略 - 疑 - 矗 - 航 - 芍 - 芽 - 褛 - 辗 - 迫 - 醺 - 键 - 露 - 鷁 - 专 - 仅 - 克 - 免 - 叙 - 咳 - 嗽 - 塌 - 富 - 峭 - 峻 - 恻 - 拍 - 枝 - 橙 - 涟 - 漪 - 睁 - 砸 - 组 - 羁 - 萄 - 营 - 葡 - 败 - 赴 - 雕 - 颓 - 驻 - 各 - 氧 - ছ - ํ - ເ - ็ - ึ - ั - 伙 - 坎 - <sos/eos> src_token_list: - <blank> - <unk> - 么 - 喤 - 佨 - 叡 - 卐 - 伍 - 乻 - 勀 - 习 - 众 - 亿 - 勐 - 呵 - 偦 - 乖 - 乸 - 伿 - 丆 - 並 - 卭 - 侲 - 亶 - 再 - 丽 - 偯 - 乍 - 乔 - 伴 - 儑 - 倓 - 呔 - 傛 - 厚 - 喉 - 傓 - 別 - 仩 - 仮 - 乜 - 佸 - 今 - 勾 - 勝 - 喭 - 喵 - 入 - 呃 - 俥 - 丨 - 剏 - 喽 - 儻 - 亣 - 劺 - 佃 - 侖 - 傎 - 儈 - 兌 - 做 - 刢 - 俩 - 喩 - 五 - 傶 - 乩 - 傒 - 僝 - 厊 - 几 - 匎 - 俉 - 吠 - 厪 - 侽 - 丩 - 划 - 侧 - 仛 - 呇 - 乣 - 刡 - 仟 - 其 - 兹 - 咎 - 啧 - 从 - 冉 - 俴 - 伾 - 冱 - 倌 - 勠 - 勲 - 叜 - 伢 - 删 - 伻 - 唼 - 儼 - 唴 - 上 - 兏 - 児 - 儝 - 喲 - 丁 - 侕 - 傉 - 且 - 兄 - 卫 - 人 - 伂 - 仏 - 唦 - 匶 - 侸 - 冎 - 吾 - 伎 - 凪 - 北 - 仆 - 劸 - 喍 - 仳 - 凛 - 傲 - 养 - 厹 - 傷 - 仸 - 吉 - 下 - 併 - 勢 - 劆 - 叵 - 儺 - 价 - 吡 - 剧 - 兾 - 侫 - 喃 - 兙 - 俫 - 匨 - 侓 - 佳 - 剚 - 劘 - 倆 - 听 - 丅 - 哲 - 侷 - 同 - 僓 - 剣 - 券 - 匡 - 专 - 侴 - 勥 - 仰 - 咮 - 唬 - 唶 - 吺 - 偂 - 仙 - 喨 - 刹 - 乾 - 主 - 伅 - 兒 - 保 - 叽 - 唊 - 乥 - 哏 - 儕 - 佗 - 刅 - 偪 - 俋 - 價 - 之剂伇 - 侒 - 侙 - 侑 - 卥 - 啡 - 凢 - 傇 - 佣 - 丵 - 偿 - 偒 - 唣 - 匴 - 俯 - 叺 - 哵 - 丢 - 佤 - 俅 - 丹 - 傯 - 匂 - 刊 - 傩 - 匠 - 升 - 叱 - 亇 - 准 - 仯 - 伒 - 句 - 唗 - 亽 - 匛 - 來 - 倩 - 傏 - 傱 - 公 - 哙 - 吹 - 儷 - 喆 - 喎 - 付 - 営 - 勩 - 卣 - 侚 - 刯 - 伝 - 呬 - 侟 - 丂 - 七 - 俪 - 唫 - 刄 - 厃 - 伲 - 享 - 勁 - 吰 - 咅 - 凓 - 倵 - 匮 - 啇 - 口 - 但 - 儾 - 乑 - 厐 - 勱 - 偢 - 呌 - 刔僬于 - 伳 - 冹 - 剈 - 凰 - 丄 - 劫 - 哨 - 乃 - 僧 - 僋 - 嗎 - 厦 - 丈 - 喇 - 亴 - 匊 - 啗 - 儎 - 傕 - 咡 - 亞 - 仈 - 假 - 偀 - 剘 - 古 - 伞 - 伤 - 両 - 京 - 咂 - 儉 - 劑 - 乏 - 冧 - 劬 - 哣 - 刘 - 傮 - 勡 - 只 - 傴 - 卅 - 周 - 倝 - 叹 - 令佋 - 听乬 - 儁 - 仃 - 仓 - 促 - 乛 - 傪 - 丶 - 倢 - 喬 - 亗 - 唢 - 傋例佈 - 傾 - 哅但 - 匩 - 兩 - 凂喐 - 剬 - 勚 - 仲 - 偤 - 儭 - 侻 - 刷 - 啯 - 侶 - 勊 - 含 - 位 - 刭 - 丝 - 停 - 勛 - 危 - 凍 - 倘 - 偳 - 剱 - 俍 - 哈 - 亗勽 - 冊 - 克 - 仇 - 九 - 匹 - 勎 - 冴 - 亡 - 侞 - 万 - 乂 - 佩 - 丌 - 喑 - 備 - ▁丕些 - 冂 - 冯 - 劳 - 倷 - 他 - 丯 - 僊 - 儩 - 勽 - 亅 - 乼 - 僗 - 伊 - 俛 - 呧 - 僯 - 佂 - 傀 - 件 - 厓 - 亥 - 却佻 - 侠 - 僾 - 伟 - 俹 - 凸 - 厅 - 兕 - 厸 - 久 - 僄乌 - 仌养 - 乘 - 匱 - 伄 - 佢 - 啵 - 亯俒 - 倬 - 僔 - 劇 - 啴 - 儲 - 丑 - 吇 - 俦 - 佐 - 僮 - 僙 - 傳偗 - 凶亦 - 傧冨 - 亠 - 僁 - 偭 - 伃 - 哭 - 倮佉 - 味 - 乞 - 啳 - 剅 - 倍 - 伅傊 - 代 - 乀 - 哾 - 临 - 丘 - 佘 - 冟 - 兙勢 - 乤 - 劜 - 凫 - 咗 - 仍 - 傧 - 丳 - 丫 - 侢乲 - 号 - 双仼 - 倲 - 哅 - 仢 - 喗 - 佟 - 乧 - 啨 - 举 - 丼 - 光 - 俜 - 冨 - 兮 - 华 - 伦 - 唾 - 偌 - 丟 - 哊 - 佭 - 俖 - 偮 - 傟 - 喂 - 匢 - 况 - 佹 - 傮剂伇 - 俘亷 - 俰 - 仡 - 乮 - 劰 - 傊 - 刁 - 凑 - 僨俢 - 侰 - 厧 - 俄与 - 产 - 係 - 剰 - 仹 - 乭 - 吞 - 卺 - 剃 - 亢 - 伔 - 僣 - 啅 - 列 - 僤 - 兖 - 单 - 丒 - 即丶 - 叩 - 匔 - 俄 - 倮 - 侺 - 劏 - 励 - 咡倲 - 乙 - 凁 - 匈 - 使 - 啌 - 厀 - 乆 - 僕 - 啃 - 匁 - 仺 - 俵 - ▁咧倒 - 兺 - 亵刀 - 业 - 会 - 伀 - 亷 - 咛 - 傺 - 倞份 - 全 - 匾 - 商 - 呣 - 厄 - 唬厐 - 伐 - 剁 - 凴 - 佝 - 借 - 僰 - 凗 - 份 - 乊 - 剠 - 卛 - 佬刟 - 們 - 俸 - 劽 - 厥 - 吢 - 两 - 侥 - 凿喿 - 仠 - 员 - 咤 - 厴 - 仌 - 叭 - 傜 - 喦 - 凲 - 吙 - 僑 - 偓 - 卫丼 - 卢 - 凎 - 唍 - 供 - 冊俪 - 乿 - 伮 - 唼儻 - 亐 - 僟 - 伬 - 丰 - 啓 - 刏 - 俻 - 偣 - 卤 - 僀僽 - 偔 - 企 - 伜 - 冩 - 倡 - 唸 - 勿 - 乌 - 剛 - 傳 - 亦 - 凣 - 丷 - 冀 - 吧 - 倇 - 凹 - 刎 - 又 - 傰 - 吆亨 - 兢 - 劈 - 剫 - 侐 - 儔 - 呿 - 啝 - 丿 - 凮 - 前 - 卾 - 俟 - 凉 - 伈 - 喊 - 叐 - 乘偭 - 仅 - 作 - 务 - 倎喍 - 咦 - 吞凗 - 喛 - 嗇 - 俌 - 哘 - 召 - 向 - 吚 - 叅 - 儀 - 仴 - 予 - 喉丩 - 卶 - 唹 - 倷乺 - 伯 - 傑 - 厜 - 否 - 倠争 - 喸 - 仉 - 啢 - 佈 - 俆 - 冈 - 咺乱 - 啰 - 亙 - 厐兺 - 倿 - 伶 - 匏 - 叞 - 俗 - 呖 - 剠乂 - 剖 - 后 - 唟 - 哋却佻 - 厵 - 兊 - 右叿 - 呖八 - 之剂啴 - 亜 - 咢 - 初 - 伤傎 - 南 - 剎勖 - 喓 - 八 - 函 - 凼 - 啚 - 侸劤 - 勈 - 匼 - 傽 - 嗃 - 唎 - 儇 - 三 - 偋 - 唽 - 吚匨 - 匕 - 亻 - 倠 - 倿参 - 唏 - 倰 - 和 - 員 - 偶 - 刽 - 呀兆 - 傍 - 傣 - 佖 - 価 - 仒 - 先 - 勡伃 - 丙 - 刌 - 停乛 - 傐 - 佻 - 俅啵 - 倾 - 务儡 - 匦 - 佯 - 傆 - 佑 - 侣喙佚 - 剆 - 匃 - 兼 - 了 - 僄乌丿 - 劤 - 匪 - 卟 - 吭 - 勰 - 勶 - 侨 - 凔三 - 兩俉 - 劯 - 东 - 俓 - 僴 - 凪凢 - 啸 - 刚 - 写 - 务儡吶 - 仨 - 倅 - 倎 - 乢 - 俧 - 偼 - 傥 - 伋 - 咂哙 - 剡亣 - 勿亹 - ▁ - 傅 - 仼 - 唎償 - 与 - 凒乎 - 到 - 乽 - 充 - 凡劍债 - 刂 - 侯 - 哢 - 刨 - 加 - 凶 - 優 - 吆 - 叿 - 剩 - 吡咎 - 合 - 侕侥 - 唖 - 卸 - 厥佘 - 僀付 - 佲 - 唎唿 - 僘 - 卺凟 - 吚冭 - 仪 - 凔 - 卉 - 卓 - 剃唳 - 仑 - 刜 - 兀 - 卯 - 唁 - 倞 - 丞 - 亭 - 劼 - 俀唀卜 - 仯唴 - 亓 - 乱 - 厲 - 叧 - 偍 - 厛 - 偒傰 - 唬兺 - 佥 - 哜 - 傋 - 互 - 予佔 - 丸 - 唘 - 亏 - 侜判你 - 儯 - 仜 - 哥 - 叮 - 吽佩 - 义佣 - 吼 - 儈乾 - 什 - 乖喨 - 传 - 吿 - ▁丕侄 - 偾區 - 伕 - 兓冹 - 偠 - 些 - 依 - 侳 - 喧 - 体亳 - 喒仝 - 台 - 侞伢 - 乫亻 - 偎 - 則倹 - 不 - 厔 - 吋 - 卞 - 呏侯 - 乓丶 - 仳勝 - 亸 - 咓 - 倻 - 倍哥 - 丠 - 偂儣 - 傭 - 乣乩 - 乐 - 働劯 - 喒 - 匞 - 俏咽僤 - 唵 - 劕 - 儗 - 仾 - 兡 - 亮 - 兝 - 勥乑 - 刦 - 俼 - 使侻 - 咿 - 儥 - 丳厵 - 儺乬 - 乷 - 偏 - 僵 - 厭 - 兗 - 丣 - 呀丰 - 侰丌 - 俘 - 偂伃 - 剷 - 叝 - 倜 - 冃咠 - 唰 - 佔 - 儷傊 - 偘 - 侜判 - 亖 - 偩亚呈 - 倖 - 厢 - 傚 - 刳兎 - 仜仏 - 吲 - 勨 - 什南 - 再勾 - 勺 - 乊傕 - 刔僬 - 啫 - 以 - 勵 - 唛 - 叔 - 唜 - 兑 - 唅哢 - 仚 - 住 - 傖 - 佃侽 - 匩倵 - 劮 - 侮 - 唀卜 - 卯呶 - 刋 - 儰 - 呁 - 佾 - 剩况 - 乶冯 - 举乢 - 佃仛 - 哓 - 佬倏 - 叵仅 - 名 - 儤 - 偅 - 仿叿 - 匢兵呅 - 卉哓 - 喊匞 - 匄 - 侹冗 - 哋 - 呫 - 丞啌 - 午 - 叏 - 几乍 - 哋佲 - 啊 - 勛亀 - 僣佴 - 佊叢 - 喷 - 吞凗喧 - 厒 - 僭 - 俑 - 呉 - 侘冚 - 亵 - 侘 - 侜你 - 乚 - 俽 - 乓傍 - 哀 - 云 - 冶 - 刟 - 則 - 作乢 - 侵勊 - 咪佒 - 凾 - 唸万 - 唩 - 仭 - 凟 - 千 - 厒叵 - 勤 - 佦 - 兲 - 哯 - 唿 - 乡 - 侴丼 - 呪傫 - 凼佲 - 吅 - 兪 - 吏 - 卸僗 - 匜儳 - 乒冣 - 和刭 - 哯仿叿 - 侞剁 - 嗃仦刍 - 乌丿 - 倳 - 偄 - ▁丕侄冰 - 勖 - 厬 - 吐 - 凪剏 - 啲 - 史 - 勃 - 僽 - 偫 - 伺 - 刻 - 叞冓 - 刳 - 儏冤啱 - 冗 - 双 - 唩哥 - 俘丏 - 叕俯 - 嗇区作 - 倚优 - 儚 - ▁咧倒丧 - 勬 - 兓 - 乓 - 喱 - 偙丿 - 倐 - 凪呃 - ▁儱 - 啹 - 刐 - 乩乣 - 偄僟 - 偟 - 偈 - 俏咽 - 咊俎 - 咡哾 - 刀 - 喋 - 令呻 - 儚丠 - 为侎 - 侦 - 丗 - 他喊 - 刾 - 厌 - 哸 - 乲 - 咞 - 呁傑 - 冩僋 - 叴伷 - 凑仓 - 僯右叿 - 丧 - 喷吐 - 交 - 冶乞 - 厉 - 亰产 - 唜侮 - 兮佅 - 仱 - 乽丟 - 唩唏 - 伉 - 俜佞 - 叽伻 - 唳 - 伉値匒咕 - 佶 - 剎 - 剄 - 乄 - 僄丿 - 咾 - 佇 - 唅 - 冰 - 亹 - 凼啯 - 伺勐 - 咪仇 - 不佉 - 乂储 - 佣儃 - 凝咽 - 匔丛 - 佴佯 - 卂劮 - 佴 - 吚啾 - 启 - 偬 - 另 - 交吢 - 井 - 劣 - 丯业 - 冁 - 問 - 傋例 - 叜偒 - 优勓 - 儱 - 唇 - 厃吰 - 丐傒 - 唢丠 - 仫 - 凝咽僤 - 啺 - 厱 - 俌叝喳 - 丂假 - 勾呃 - 侹 - 啍 - 儧 - 唬厐兺 - 冭 - 剤 - 兗况 - 刂冂 - 剂 - 介僆唳 - 亘 - 出喳 - 匫 - 俁 - 呈 - 兪勩 - 仑仮 - 吶 - 俐喗 - 咬 - 俻劑 - 俇 - 僓傰 - 吨 - 凝兓冹 - 僎 - 右 - 叭右叿 - 呫咓 - 叔亥 - 仈卟 - 乩吉 - 吽 - 勃仝 - 储 - 喉剏 - 乩伿 - 備侮 - 乺 - 丂停 - 俽刌佐 - 兝亜 - 偍伇 - 兟 - 僎仡 - 代哏 - 介亲劄匏 - 哬 - 喱呧 - 呭厲 - 刑侞 - 僁傪呧 - 佛僽付 - 匘厢 - 丐儃 - 侸双 - 乬 - 冃关唆 - 出 - 倏 - 吋呓 - 僻 - 則倹乺 - 乶 - 兎 - 喰匸 - 僣佴佯 - 凵 - 唇傅 - 卒 - 仝 - 剛伯 - 呭 - 卻 - 哯叿 - 卂 - 劰刎 - 俹俢 - 匙 - 厢件 - 啲傚 - 剽 - 匍 - 偗 - 偙 - 乛俜佞 - 俽刌 - 佐佅厮 - 僔喃 - 丣厑勧仑 - 厔刁 - 佛僽 - 僌 - 共 - 偲 - 促佹 - 厘 - 傞到 - 侶加 - 傮偍伇 - 亰 - 侒几 - 咆 - 佚 - 呃么 - 哒 - 俟举 - 喷侐 - 也 - 厹乑 - 否佥 - 你 - 剒 - 兲儧 - 乪僔 - 伬兎 - 呪丛 - 侸仼 - 吅仂 - 唩啯 - 億勗匍 - 俢 - 偷 - 咺 - 伽 - 历 - 儏 - 厶 - 吟儿 - 下伬 - 仆兠僻 - 乙凛 - 传喰 - 喗傎 - 儚乞 - 冒 - 亵刀凑 - 唥 - 傟兠僻 - 唛偞倽劕 - 即 - 丂儲 - 义刻儃 - 喰 - 倄剟 - 叞佱 - 儃 - 喳 - 么刢 - 僷 - 呹 - 吏俿 - 仁 - 俅兓冹 - 偡 - 个哀偷 - 億勗 - 乫 - 偡卋 - 咔 - 冑 - 傊亞 - ▁咧倒匁 - 冸 - 呐僩 - 冀前 - 俿 - 丗兊 - 剟 - 匔呪佡 - 僄 - 叢 - 匳冊 - 唃兜 - 伊佸伊 - 乼僛 - 丐 - 剞 - 叛 - 兮厮 - 侵 - 予佔凑 - 啗冧 - 兓咽 - 乭卻 - 侺厱呓 - 侇僈哽俪 - 冠哛 - 佉 - 兌剚 - 哽 - 僆唳 - 哞 - 凸儣 - 呭凲 - 債劊 - 呶 - 儊 - 丁佂傪叱 - 勎刨亱傚 - 呭亀 - 俏 - 喰先 - 不僛叐 - 佟劳 - 咬佊叢 - 凧 - 凰冔 - 呐 - 亩 - 个 - 佸伊 - 唥初 - 侊 - 唏儺 - 伉剑倫 - 佛 - 倀 - 侠公 - 丑冭 - 効 - 哯仿 - 呐哾 - 乛俜伄 - 佋 - 啱 - 剰侯 - 傤 - 乯 - 伿侒 - 乙匾 - 勥叽 - 僙咠 - 僽付 - 俴兝亜 - 优 - 咀 - 吉乩 - 偓凎 - 冤啱 - 倚勓 - 劦偁 - 兵呅 - 呏 - 咶劫 - 叒 - 劰刎厲 - 冄 - 伋冺吣 - 儸 - 喱呧叱 - 刄冂 - 冚 - 劄 - 匭 - 俗侵勊 - 剤凊偈 - 凁啨 - 伋亘咆俧 - 凙 - 厥卶 - 仹偙丿 - 唎亹 - 叼 - 呃喤 - 僬于 - 亍伡佒 - 告 - 剏凪 - 厍伧 - 丹兹丹 - 周勚 - 僓俉 - 勰儧 - 似 - 几亴 - 剠厔 - 務側冫 - 促唴 - 偽 - 伊佸 - 伽仇 - 仹偙 - 刿 - 侢 - 伲佟 - 卟剬 - 喝 - 刎凲 - 冓 - 吁 - 咕 - 伦亀 - 傶侽 - 勿償 - 剤凊 - 呪佡 - 啟 - 俦俆 - 哩 - 創 - 仱伟 - 仆勬名 - 刐偓 - 儊吶 - 唵卂劮 - 凸伃 - 傇佅厮 - 仚匄 - 俄件 - 乵 - 傶價 - 判 - 哿 - 儏剞亍 - 倧 - 呭兡 - 凥喓 - 億 - 哨倵 - 伤剘 - 佱 - 判你 - 剁叜 - 人來 - 呥偬 - 偲兙 - 傰伶 - 傯交 - 倌兪 - 偫冗 - 厃仳 - 儏剞 - 俜佞乖 - 仃专 - 么儲 - 傞亙 - 侷仩 - 厩 - 勲來 - 凘 - 呪 - 勽含 - 令 - 侕什 - 一 - 個 - 之剂 - 偋份 - 喡 - 免仑 - 前双 - 吻 - 中 - 厎 - 丙劺 - 侔倷 - 佟乶 - 俀厬 - 偪侽 - 倌业 - 卛冶乞 - 启佲 - 凶仼 - 咞另 - 合卢 - 兕享 - 丯厄 - 剙 - 争 - 凔吧 - 停乑 - 僾喷吐 - 伉剑倫咕 - 勽业 - 佤僩 - 仍唍 - 唫創 - 助 - 倽劕 - 侢千 - 佊 - 凂 - 兾仴 - 倄 - 侪 - 傴侵 - 儂 - 偘啹 - 傹 - 卌 - 么僤 - 兺呃 - 僱呉們 - 唌兩 - 勮 - 博 - 匳 - 冡哛 - 伐厃 - 剘啌 - 兛 - 俴兝 - 咬占啍 - 僈 - 啳卢 - 倊啇 - 乃儤 - 冔 - 価僊 - 伻剏 - 个偷 - 唌 - 呻 - 僨 - 儈儲 - 儓 - 勋 - 冖 - 儿 - 呃勾 - 哋却 - 俰亜僴 - 何匬兙 - 呏又 - 兓啵 - 义刻 - 俽傇 - 傮剂伇啴 - 呀争 - 価儺 - 和勊 - 喛厩 - 侦佖 - 偪习 - 咅傏 - 卜 - 冖否佥 - 劼儿 - 傴侵勊 - 匕佇 - 倽 - 仍僰 - 冻 - 仧 - 亊 - 傟乨 - 偟兲儧 - 俁健傹 - 働 - 儖傤 - 勓 - 剂伇 - 剠侺厱呓 - 凝俏咽僤 - 咬佊 - 伤仁 - 勿亹償 - 僝哨 - 刋儔 - 区 - 僀 - 卺亨 - 勠呀兆 - 剠乂储 - 劓 - 偹 - 却 - 侢勶 - 前劤 - 叠 - 凿 - 乛唬伄 - 偶匪 - 僝匩 - 係侴 - 剖喛 - 劘丯 - 刿倎喍 - 哅但吉 - 唁呣 - 偟兲 - 以丄 - 刑 - 兹亴兹 - 台乕偗 - 兝久 - 僆 - 傝 - 书啈卵 - 則倷乺 - 傓偯 - 么倠争 - 免仑仮 - 唄 - 佔叔 - 儁侫 - 丽勬名 - 凙剫 - 僩 - 伨 - 临唜 - 呥 - 厴厸 - 啫価 - 呿啹 - 唵卂 - 冭匨 - 匜佀儳 - 僛 - 伎倰 - 俋倻 - 喥 - 匸 - 乴偾區 - 哋喒仝 - 唑 - 咿励 - 哛 - 剻 - 侥劈 - 叫 - 唰丄俰 - 剆匨 - 債 - 任 - 呦匥 - 嗉下 - 佡 - 丮 - 伉剑倫丑冭 - 吖 - 偖呴侏偗 - 吿啹 - 兮佅厮 - 侎 - 伨仁 - 俲 - 務側冫哾 - 俶 - 仹偙兀 - 台傳偗 - 僑亨 - 僓偒 - 之倀 - 倷吏 - 儰偹乄 - 佗吡 - 啖喍 - 剦 - 准伊 - 厍 - 兹亴 - 其俐喗 - 劬侢 - 伬呁傑 - 仺卤 - 唴兒 - 儜仪 - 傲员 - 一區 - 伨倎 - 僰劳 - 啫偭 - 兠 - 凊 - 偬伈 - 估 - 俗侵 - 佔凑 - 乤厅 - 凡 - 匋 - 區 - 军 - 剭丮劣丗兊 - 儠 - 凒 - 亂冦卬 - 呉們 - 侉 - 儚倌兪 - 仹匾兀 - 劜咿 - 吘吷伥 - 唖伴唖 - 侵刭 - 伶儺 - 並儲 - 侤 - 休 - 亳 - 叽勥 - 侖勲 - 傇佅 - 佀 - 咁 - 倜倡 - 佫 - 古儉 - 兪佑 - 吹儕 - 來喇 - 吉俅 - 勻 - 呪佡喽 - 喙 - 冱丨冱 - 吏俿凹 - 准咅 - 仆兠乨 - 免 - 偛 - 佸伊佸 - 债 - 俞 - 伈凣厜 - 亸凘 - 厐亢 - 倚 - 专体亳 - 偶匹 - 啩 - 劭亳 - 僧卥 - 內 - 交励 - ▁仗僒 - 呵冃唆 - 偾區倨 - 兖吟儿倞 - 吘买别冀 - 勥叽勥 - 侣 - 倪 - 吿呿兢 - 啇侘 - 仵 - 丁佂傪呧 - 九伴九 - 丘唣 - 串 - 伶僊 - 咞另凫 - 剭 - 佱员 - 冡 - 乿呶 - 亃 - 咘俯 - 乱乧 - 偅亖 - 偫会否佥 - 厑仞 - 唢乞 - 內咐 - 呐僩勊 - 匋勮 - 啉 - 乶伐 - 儕厃 - 凧偷 - 唍以 - 倅代倅 - 咋 - 喿 - 倩佼 - 劬乲 - 値匒咕 - 刻儃 - 優唥 - 佈亠 - 厴卢 - 亨 - 仨刋 - 勨喿 - 咑 - 勼仜 - 吽佩专 - 列叩 - 亠啢 - 僇 - 呡 - 侞吏 - 劙制 - 俫吾 - 偣叛 - 儳 - 兾仳 - 啚丌 - 佸伊佸伊 - 吘买别係 - 唘倡 - 亴兹 - 佘吿呿 - 儼啫 - 兽 - 儮 - 丏 - 呐偏 - 倻俋倻 - 乕偗 - 偟儧 - ▁仗些 - 侇僈哽 - 偞 - 后凣 - 俗哾 - 厘劊 - 伬刳兎 - 儑佑 - 傶习 - 俽仝 - 亭后 - 俯們 - 倜俸 - 刓 - 冑会否佥 - 剑倫 - 喌 - 佐佅 - 偎匨 - 俚下 - 呥偬傅 - 価仃 - 唴伲 - 価伺 - 勥叽伻 - 厤 - ▁咧哒 - 傅仧兟 - 卓僈哽俪 - 呍 - 仱倄剟 - 佁 - 凥 - 亵京 - 伞僁 - 后凣厜 - 善 - 唷 - 僃 - 儡吶 - 喜 - 僱們 - 刨亱傚 - 勽俌叝喳 - 吊傸 - 吿啹兢 - 乑伻 - 匱刂冂 - 侢勈 - 吆卺 - 储吋 - 佅 - 勤刐 - 呇児 - 关 - 仿 - 劰亀 - 哕 - 喎从 - 佞 - 傐唥 - 侊丣 - 厉乗吥 - 咠 - 侓佳 - 哚 - 匦啚 - 俿凹 - 價傶 - 亀 - 侅 - 仅儩 - 乗吥 - 丒勫 - 劇勖 - 儔丙 - 伫 - 凥勫 - 剽哱 - 侲創 - 喐 - 亮刚 - 倞凗 - 么儈 - 哉 - 卓僈哽 - ▁仗侄 - 卂倢 - 俟傉 - 也啚 - 匔傫 - 冄儼 - 伮勤刐 - 厒仅 - 亮刚啺 - 亍 - 买别 - 乾儈乾 - 倐冀前 - ▁仗勯剄冒亊 - 吠凢 - 參冄 - 傟兠乨 - 勼 - 亵京吨 - 剝 - 亼佛 - 倚优勓 - 叴伙劉 - 勺俸 - 乪 - 仍侐 - 匙丗 - 咂匠 - 僁傪叱 - 厄儀 - 哬剈 - 叫冀 - 亞仏 - 儯佋 - 吣 - 刽仱倄剟 - 叛偶匪 - 匂喎 - 儖任 - 厰 - 儖傤任 - 兆 - 僦 - 乍几乍 - 伓 - 偂咬佊叢 - 唒 - 偾 - 临傖 - 勺呓 - 偭仏 - 俾儿 - 匜佀兩 - 伹 - 傺加 - 喨侰 - 侰厍伧 - 匹俫 - 低啱 - 俐 - 劖 - 佒 - 哘伮勤 - 亿僨俢 - 咭仪 - 嗃功伆功 - 乾么乾 - 冪 - 唣删 - 佼 - 仝傇 - 丯含 - 唆 - 咶 - 刑侞伢 - 俘丏偩亚呈 - 几亴几亴 - 二 - 伪 - 剰剈 - 勗 - 侕儇 - 卒佁 - 佂傪叱 - 僯右 - 俓合 - 僙冃唆 - 傍勐 - 厸乞 - 代倅 - 偞倽 - 哜哬 - 傴刭 - 啧儣 - 倿凊 - 亄 - 倯凯 - 倮僛叐 - 俌乯喳 - 乕 - 仱伟剟 - 厄倩 - 偏傚 - 匜佀 - 傋七 - 主剈 - 厸丠 - 伡 - 剭佺劣丗 - 俓哅 - 喱傪呧 - 僳 - 倁 - 傀亼佛僽 - 哩伨倎 - 勇 - 俉啝 - 儣 - 勐乬 - 凮啃 - 僾喷吖 - 俾 - 侺储 - 凴兩俉 - 劦偁劄匏 - 仟儎 - 亽唣 - 亁啶咖 - 傗 - 倴 - 僄但 - 厚乑 - 伏 - 亝俯 - 喇儎 - 冽侗 - 兕刐 - 亭后凣厜 - 咞倬 - 侩 - 准啵 - 傣厸 - ▁丕冰 - 吘 - 偤句偤句 - 喊匮 - 唬伄 - 伈咢 - 刷佱 - 召偹乄 - 侃 - 丁佂呧 - 人伲 - 偣叅 - 伞佂傪呧 - 侕侥劈 - 侇 - 咞另傚 - 刚啺 - 售 - 剚他 - 勫 - 乮啗 - 俽刌佐佅厮 - 凔三吧 - 內喝 - 乫亻凸 - 唰丄 - 厞 - 侕侰 - 偌前 - 唸乭卻 - 俓哅但 - 傎俗刭 - 伬刳 - 剷丳厵 - 剴 - 体 - 丽兠僻 - 丝喦 - 偖 - 亴兹亴 - 临唜侮 - 俤 - 世匙 - 劘喤丯 - 写你 - 伺僊 - 剬俢 - 乚唳 - 俚 - 优冴 - 予吰 - 保伴保 - 何仕 - 唖伴 - 伐厅 - 伉値匒 - 儅丫 - 冤 - 匬 - 伺儺 - 上伲 - 倊 - 係侳 - 为像 - 偢亽 - 咙 - 乔凷 - 刌佐 - 債劊冗 - 唫刘 - 仍吐 - 亱傚 - 剞亍 - 傘 - 倠么倠争 - 单凸 - 丈冱丈 - 倹 - 低呸 - 侂 - 冃 - 呓 - 冝 - 互五 - 几亴几 - 啭 - 劋 - 厴喸 - 匼倽劕 - 冹乾 - 乼不 - 亼僀 - 准冹 - 侑僋 - 値 - 儃侨 - 咘 - 亴几亴 - 丽兠乨 - 仚咾冁 - 傞 - 儲並儲 - 厘劊冗 - 乍佨乍 - 哋喒 - 値匒 - 唛偞劕 - 俈 - 俫喦 - 凝 - 喊唰 - 唾冗 - 二凧偷亍伡佒 - 勜亳 - 凶亦俞 - 介僆 - 刽仑 - 嗀 - 偣亮刚啺 - 丧唽 - 传喰先 - 呦匥冊 - 厑 - 協 - 僓偒傰 - 中侦佖 - 匿 - 參匉 - 剭丮劣丗 - 倎七 - 他喊匞 - 史冖否佥 - 啾 - 哘勤刐 - 叴伙劉仮 - 佧 - 劗 - 侒伿侒 - 亼 - 卒佁匄 - 刀凑 - 價傶價 - 刍 - 匊叅 - 仯佹 - 叛偶 - 冀唳 - 儲么儲 - 丁僁呧 - 叀 - 凝兓咽 - 区乢 - 儸唑 - 厙 - 卍 - 啿 - 儬咭仪 - 例 - 刜厶 - 义 - 呝 - 勘 - 僁呧叱 - 传匸 - 丗函 - 乣乩乣 - 儚乞兪 - 丁僁 - 伣 - 僬 - 儘 - 传喰匸 - 厮 - 剜 - 卛冶 - 啳丅 - 唏僊 - 卶咿交 - 僁亦 - 厥卶咿 - 伨倎七 - ▁仗勯剄 - 册 - 刉 - 個克僽 - 伞喱 - 呗 - 仦 - 啐 - 僜 - 冺 - 唃 - 呸 - 傂 - 劍 - 呀 - 亾 - 占 - 厯 - 介 - 偵 - 冾 - 啋 - 侾 - 咭 - 倃 - 劊 - 嗉 - 伩 - 击 - 倉 - 偊 - 伷 - 乴 - 参 - 亲 - 儡 - 亟 - 冇 - 分 - 呯 - 为 - 偁 - 咼 - 厠 - 切 - 健 - 凬 - 冠 - 伛 - 伥 - 叴 - 侼 - 余 - 偻 - 吥 - 佬 - 喏 - 卋 - 厼 - 品 - 倨 - 剡 - 喣 - 兵 - 勳 - 儨 - 匥 - 凷 - 乇 - 丛 - 咩 - 咐 - 傌 - 偨 - 匟 - 唂 - 匆 - 哱 - 兇 - 修 - 俷 - 叙 - 啜 - 啂 - 唉 - 侜 - 佽 - 喺 - 功 - 劝 - 剥 - 乎 - 咜 - 啥 - 便 - 哫 - 剓 - 劦 - 们 - 僠 - 刔 - 吟 - 唝 - 受 - 佺 - 凐 - 喻 - 儖 - 匧 - 勑 - 像 - 倦 - 僒 - 咉 - 僲 - 呦 - 剗 - 何 - 伭 - 侌 - 凋 - 側 - 侔 - 化 - 匘 - 典 - 処 - 吒 - 卙 - 傡 - 儜 - 剐 - 償 - 亚 - 呅 - 厇 - 啑 - 县 - 冼 - 冢 - 倭 - 僼 - 侄 - 卬 - 哤 - 哐 - 勯 - 倛 - 勌 - 剨 - 喢 - 勜 - 劵 - 乗 - 卡 - 伌 - 唀 - 咚 - 僶 - 勪 - 仐 - 哮 - 儍 - 冮 - 兘 - 偝 - 勉 - 俠 - 冫 - 傫 - 匚 - 伖 - 兰 - 凖 - 俙 - 世 - 叶 - 倫 - 匜 - 乹 - 咪 - 伙 - 之 - 啮 - 响 - 剀 - 卷 - 农 - 勧 - 勣 - 啖 - 倔 - 呲 - 刺 - 吔 - 啬 - 厨 - 勴 - 净 - 刴 - 叄 - 厣 - 厫 - 仂 - 傸 - 勆 - 凞 - 唈 - 刞 - 偺 - 俺 - 叕 - 匷 - 刖 - 凤 - 冕 - 劃 - 啄 - 冬 - 俀 - 唚 - 偐 - 儌 - 劉 - 俎 - 僖 - 刧 - 伱 - 劅 - 信 - 唕 - 伧 - 哇 - 协 - 倕 - 值 - 唐 - 佄 - 厕 - 冋 - 剢 - 吸 - 円 - 俳 - 于 - 哼 - 咨 - 吷 - 喅 - 呂 - 哔 - 咏 - 儬 - 凃 - 乨 - 吤 - 侭 - 匐 - 俊 - 倶 - 倱 - 匉 - 元 - 哺 - 儞 - 咸 - 単 - 厾 - 刲 - 佪 - 呴 - 傈 - 僚 - 丱 - 吓 - 叻 - 咖 - 冦 - 亱 - 呱 - 哻 - 卑 - 凌 - 兜 - 凜 - 嗏 - 倂 - 勍 - 剌 - 勅 - 勒 - 吊 - 厖 - 匌 - 卨 - 厈 - 儫 - 哦 - 伸 - 偩 - 僱 - 咫 - 偱 - 僥 - 吂 - 侗 - 亪 - 俔 - 匤 - 嗂 - 哗 - 吪 - 呮 - 吃 - 凱 - 卧 - 勦 - 侬 - 唻 - 劲 - 喯 - 卮 - 凳 - 友 - 啶 - 傁 - 喕 - 取 - 動 - 咯 - 劙 - 労 - 叾 - 剋 - 冲 - 各 - 偑 - 割 - 喟 - 咵 - 傔 - 发 - 啤 - 内 - 單 - 冥 - 吱 - 呩 - 務 - 咽 - 刮 - 刬 - 哌 - 叇 - 參 - 刵 - 咊 - 咰 - 冏 - 兿 - 吜 - 削 - 办 - 哃 - 喪 - 及 - 剺 - 劾 - 买 - 卩 - 卿 - 剔 - 势 - 呢 - 喠 - 俒 - 剹 - 偰 - 佰 - 匒 - 俕 - 劎 - 力 - 劶 - 叚 - 僺 - 兯 - 喁 - 咥 - 儽 - 呞 - 佮 - 创 - 医 - 低 - 俬 - 亂 - 党 - 匵 - 啙 - 咷 - 僅 - 僫 - 刣 - 咝 - 叆 - 变 - 勔 - 侁 - 倈 - 卝 - 候 - 傦 - 哶 - 啁 - 吴 - 吀 - 唙 - 卲 - 啀 - 儅 - 呤 - 儐 - 倗 - 兔 - 冐 - 亝 - 君 - 呕 - 僢 - 动 - 咒 - 卦 - 制 - 儢 - 劒 - 啠 - 仕 - 啔 - 咟 - 凯 - 唱 - 丬 - 哟 - 哂 - 冷 - 喈 - 劥 - 凕 - 偸 - 儒 - 侏 - 僂 - 喚 - 叨 - 冘 - 凩 - 侱 - 劭 - 卹 - 刃 - 兦 - 刈 - 啽 - 伆 - 嗆 - 唪 - 傿 - 呆 - 压 - 厡 - 厂 - 唔 - 仞 - 咴 - 僡 - 侍 - 儶 - 匣 - 劚 - 唨 - 乁 - 儵 - 卖 - 咳 - 偧 - 事 - 劻 - 刕 - 厷 - 佌 - 厽 - 呎 - 兤 - 呒 - 嗅 - 唠 - 剸 - 吝 - 卆 - 冿 - 啷 - 唞 - 凅 - 劁 - 剪 - 咻 - 厺 - 仄 - 哹 - 僸 - 勸 - 剉 - 劌 - 亁 - 呋 - 咄 - 哠 - 仔 - 副 - 凨 - 剾 - 傃 - 剶 - 侀 - 啛 - 勷 - 嗈 - 吩 - 唧 - 匲 - 厳 - 勏 - 凚 - 匝 - 儋 - 唲 - 剼 - 哑 - 匓 - 募 - 兂 - 匯 - 唺 - 咱 - 剳 - 嗄 - 嗋 - 乒 - 厝 - 喹 - 偉 - 剑 - 利 - 呟 - 冞 - 喞 - 哧 - 哰 - 劂 - 喾 - 傢 - 劐 - 匰 - 哷 - 傠 - 勂 - 儙 - 吳 - 啦 - 佷 - 剕 - 呺 - 吕 - 喖 - 吵 - 呼 - 喔 - 啻 - 六 - 吗 - 僪 - 凇 - 呄 - 冽 - 哝 - 咇 - 反 - 半 - 十 - 包 - 僞 - 兞 - 唯 - 呷 - 匽 - 儆 - 倒 - 剮 - 凈 - 劔 - 呰 - 刼 - 叟 - 劧 - 倸 - 哎 - 亯 - 叉 - 凭 - 减 - 可 - 兣 - 劷 - 倣 - 厏 - 偃 - 劀 - 乳 - 呜 - 司 - 嗁 - 傻 - 则 - 偆 - 匀 - 啪 - 呠 - 刪 - 喘 - 厁 - 喴 - 啼 - 啎 - 刱 - 咣 - 呚 - 卪 - 偕 - 允 - 努 - 劢 - 勄 - 啕 - 匇 - 傄 - 哳 - 勭 - 命 - 呙 - 唋 - 倯 - 啒 - 勹 - 剿 - 啘 - 侈 - 叁 - 俣 - 喫 - 呛 - 啈 - 原 - 吮 - 呑 - 哴 - 兴 - 俨 - 儹 - 厗 - 唡 - 伇 - 喼 - 卵 - 儛 - 咍 - 嗌 - 俭 - 凄 - 呾 - 冣 - 収 - 匑 - 别 - 僐 - 僿 - 印 - 卼 - 咲 - 哖 - 勞 - 倥 - 咹 - 儴 - 哆 - 具 - 俱 - 催 - 唭 - 嗊 - 哪 - 决 - 儦 - 喀 - 嗍 - 傼 - 书 - 咃 - 去 - 唓 - 啞 - 卽 - 哄 - 僉 - 叓 - 卄 - 咈 - 伵 - 啣 - 唤 - 仗 - 丕 - 严 - 咧 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true use_preprocessor: true token_type: bpe src_token_type: bpe bpemodel: data/token_list/tgt_bpe_unigram6000_ts_en/bpe.model src_bpemodel: data/token_list/src_bpe_unigram3000_rm_wavlm_large_21_km2000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null tokenizer_encode_conf: null src_tokenizer_encode_conf: enable_sampling: true alpha: 0.4 nbest_size: -1 frontend: embed frontend_conf: embed_dim: 512 positional_dropout_rate: 0.1 specaug: specaug specaug_conf: apply_time_warp: false time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: false freq_mask_width_range: - 0 - 10 num_freq_mask: 0 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 10 preencoder: null preencoder_conf: {} encoder: e_branchformer encoder_conf: output_size: 256 attention_heads: 4 attention_layer_type: rel_selfattn pos_enc_layer_type: rel_pos rel_pos_type: latest cgmlp_linear_units: 1024 cgmlp_conv_kernel: 31 use_linear_after_conv: false gate_activation: identity num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv1d2 layer_drop_rate: 0.0 linear_units: 1024 positionwise_layer_type: linear use_ffn: true macaron_ffn: true merge_conv_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 layer_drop_rate: 0.0 model: discrete_asr model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false share_decoder_input_output_embed: false share_encoder_decoder_input_embed: false required: - output_dir - src_token_list - token_list version: '202310' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
karawalla/mistral_b_karawalla_aqtraining24005
karawalla
2024-01-20T21:44:05Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-20T21:43:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CLMBR/superlative-quantifier-lstm-1
CLMBR
2024-01-20T21:42:44Z
2
0
transformers
[ "transformers", "pytorch", "rnn", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-01-16T15:30:01Z
--- tags: - generated_from_trainer model-index: - name: superlative-quantifier-lstm-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # superlative-quantifier-lstm-1 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3052726 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7763 | 0.03 | 76320 | 4.7620 | | 4.4989 | 1.03 | 152640 | 4.4853 | | 4.3556 | 0.03 | 228960 | 4.3511 | | 4.2721 | 1.03 | 305280 | 4.2690 | | 4.2111 | 0.03 | 381600 | 4.2130 | | 4.1619 | 1.03 | 457920 | 4.1721 | | 4.1268 | 0.03 | 534240 | 4.1413 | | 4.0969 | 1.03 | 610560 | 4.1164 | | 4.0684 | 0.03 | 686880 | 4.0977 | | 4.0424 | 1.03 | 763200 | 4.0819 | | 4.0213 | 0.03 | 839520 | 4.0687 | | 4.0022 | 1.03 | 915840 | 4.0577 | | 3.9921 | 2.03 | 992160 | 4.0491 | | 3.9758 | 0.03 | 1068480 | 4.0414 | | 3.9621 | 1.03 | 1144800 | 4.0342 | | 3.9449 | 2.03 | 1221120 | 4.0284 | | 3.931 | 0.03 | 1297440 | 4.0237 | | 3.9215 | 1.03 | 1373760 | 4.0190 | | 3.9109 | 0.03 | 1450080 | 4.0155 | | 3.9095 | 0.03 | 1526400 | 4.0124 | | 3.9049 | 1.03 | 1602720 | 4.0085 | | 3.9 | 0.03 | 1679040 | 4.0056 | | 3.8962 | 1.03 | 1755360 | 4.0035 | | 3.8938 | 2.03 | 1831680 | 4.0011 | | 3.8866 | 0.03 | 1908000 | 3.9991 | | 3.8816 | 0.03 | 1984320 | 3.9976 | | 3.8738 | 0.03 | 2060640 | 3.9959 | | 3.8678 | 1.03 | 2136960 | 3.9945 | | 3.8677 | 0.03 | 2213280 | 3.9936 | | 3.8607 | 1.03 | 2289600 | 3.9922 | | 3.8561 | 2.03 | 2365920 | 3.9911 | | 3.8476 | 0.03 | 2442240 | 3.9901 | | 3.841 | 1.03 | 2518560 | 3.9895 | | 3.8375 | 2.03 | 2594880 | 3.9884 | | 3.834 | 0.03 | 2671200 | 3.9873 | | 3.837 | 0.03 | 2747520 | 3.9869 | | 3.839 | 1.03 | 2823840 | 3.9863 | | 3.8355 | 0.03 | 2900160 | 3.9858 | | 3.8396 | 1.03 | 2976480 | 3.9855 | | 3.8402 | 2.02 | 3052726 | 3.9853 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
pquiggles/mistral-7b-doctor-finetuned
pquiggles
2024-01-20T21:30:36Z
6
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-20T07:12:45Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Ba2han/TinyOpenHermes-1.1B-4k
Ba2han
2024-01-20T21:21:50Z
1,367
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:teknium/openhermes", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T19:31:25Z
--- license: cc-by-nc-4.0 datasets: - teknium/openhermes --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6324eabf05bd8a54c6eb1650/A_cMQgKaChl6Q9Vf6E3yM.png) | Task |Version| Metric |Value | |Stderr| |-------------------------------|------:|--------|-----:|---|-----:| |hendrycksTest-logical_fallacies| 1|acc |0.3067|± |0.0362| | | |acc_norm|**0.3067**|± |0.0362| |hendrycksTest-global_facts | 1|acc | 0.3|± |0.0461| | | |acc_norm| 0.3|± |0.0461| |hendrycksTest-abstract_algebra | 1|acc |0.2700|± |0.0446| | | |acc_norm|**0.2700**|± |0.0446| |hendrycksTest-college_chemistry| 1|acc |0.3100|± |0.0465| | | |acc_norm|**0.3100**|± |0.0465| |hendrycksTest-college_physics | 1|acc |0.2157|± |0.0409| | | |acc_norm|**0.2157**|± |0.0409| |hendrycksTest-formal_logic | 1|acc |0.2857|± |0.0404| | | |acc_norm|**0.2857**|± |0.0404| Compared to TinyLlama-1.1B-Chat-v1.0: Algebra UP **17.4%** Formal Logic UP **24.2%** Logical Fallacies UP **35.4%** Template Format: **Alpaca** It took 4 hours to train in 1 epoch with an RTX 3090. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6324eabf05bd8a54c6eb1650/W4r8X1lzg6-OS1T-dd_t8.png)
max044/rubik_roberta
max044
2024-01-20T21:18:26Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-20T19:17:46Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: rubik_roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubik_roberta This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1666 | 1.0 | 3334 | 0.1127 | | 0.0928 | 2.0 | 6668 | 0.0649 | | 0.0707 | 3.0 | 10002 | 0.0509 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0.dev20240108 - Datasets 2.16.1 - Tokenizers 0.15.0
Coooori/llama_checkpoint-2200
Coooori
2024-01-20T21:16:57Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-20T21:16:54Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
stablediffusionapi/majicmix-lux-v3
stablediffusionapi
2024-01-20T21:12:01Z
21
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-20T21:09:56Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # majicMIX lux 麦橘辉耀 v3 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/10965679271705784932.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "majicmix-lux-v3" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/majicmix-lux-v3) Model link: [View model](https://modelslab.com/models/majicmix-lux-v3) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "majicmix-lux-v3", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
peterkchung/zephyr-7b-beta-qlora-helpfulsteer-v0.1
peterkchung
2024-01-20T21:03:22Z
0
1
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-20T20:24:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zaq-hack/MistralTrix-v1-GPTQ
zaq-hack
2024-01-20T20:58:24Z
10
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T18:07:04Z
--- license: apache-2.0 language: - en pipeline_tag: text-generation dtype: bfloat16 tags: - merge --- GPTQ for one of the best small models you can get.</br> All credit to the creator of it who is 'just a guy that likes to ... tinker'</br> This model is warp speed hosted on [Aphrodite-engine](https://github.com/PygmalionAI/aphrodite-engine) which is why I made this. # Results: T: 🟦 Model: CultriX/MistralTrix-v1 📑 Average: 73.39 ARC: 72.27 HellaSwag: 88.33 MMLU: 65.24 TruthfulQA: 70.73 Winogrande: 80.98 GSM8K: 62.77 # Edit/Disclaimer: Currently the #1 ranked 7B LLM on the LLM Leaderboards, woah! I did not expect that result at all and am in no way a professional when it comes to LLM's or computer science in general, just a guy that likes to nerd about and tinker around. For those wondering how I achieved this, the answer is that I simply attempted to apply the techniques outlined in this amazing article myself: https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac Therefore, all credit basically goes to the guy who wrote that. He offers the exact Colab notebook I used to train this model for free, as well as a really nice GitHub page I hope he doesn't mind me sharing: https://github.com/mlabonne/llm-course/ So huge thank you to him for sharing his knowledge and learning me a thing or two in the process! # GGUF I attempted to quantisize the model myself, which again I pretty much have no clue about, but it seems to run fine for me when I test them: https://huggingface.co/CultriX/MistralTrix-v1-GGUF I'll say it one more time though: "I am a complete beginner to all of this, so if these do end up sucking don't be surprised." You have been warned :) # Description: (trained on a single Colab GPU in less than a few hours) MistralTrix-v1 is an zyh3826/GML-Mistral-merged-v1 model that has been further fine-tuned with Direct Preference Optimization (DPO) using Intel's dataset for neural-chat-7b-v3-1. It surpasses the original model on several benchmarks (see results). It is directly inspired by the RLHF process described by Intel/neural-chat-7b-v3-1's authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. The code to train this model is available on Google Colab and GitHub. Fine-tuning took about an hour on Google Colab A-1000 GPU with 40GB VRAM. # TRAINING SPECIFICATIONS > LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) > Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False > Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) > Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=200, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) > Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, )