modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
qnguyen3/quan-1.8b-base
qnguyen3
2024-01-20T03:28:41Z
45
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "base_model:KnutJaegersberg/Qwen-1_8B-Llamafied", "base_model:finetune:KnutJaegersberg/Qwen-1_8B-Llamafied", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T03:26:01Z
--- license: other base_model: KnutJaegersberg/Qwen-1_8B-Llamafied tags: - generated_from_trainer model-index: - name: qwen-1.8b-vi-pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # qwen-1.8b-vi-pt This model is a fine-tuned version of [KnutJaegersberg/Qwen-1_8B-Llamafied](https://huggingface.co/KnutJaegersberg/Qwen-1_8B-Llamafied) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
liwii/output
liwii
2024-01-20T03:24:56Z
9
0
transformers
[ "transformers", "pytorch", "distilbert", "generated_from_trainer", "base_model:line-corporation/line-distilbert-base-japanese", "base_model:finetune:line-corporation/line-distilbert-base-japanese", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-19T09:41:35Z
--- license: apache-2.0 base_model: line-corporation/line-distilbert-base-japanese tags: - generated_from_trainer metrics: - accuracy model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [line-corporation/line-distilbert-base-japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3471 - Accuracy: 0.8672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 306 | 0.3968 | 0.8594 | | 0.4221 | 2.0 | 612 | 0.3889 | 0.8594 | | 0.4221 | 3.0 | 918 | 0.3814 | 0.8594 | | 0.4026 | 4.0 | 1224 | 0.3775 | 0.8594 | | 0.396 | 5.0 | 1530 | 0.3724 | 0.8594 | | 0.396 | 6.0 | 1836 | 0.3707 | 0.8594 | | 0.392 | 7.0 | 2142 | 0.3721 | 0.8594 | | 0.392 | 8.0 | 2448 | 0.3653 | 0.8594 | | 0.3898 | 9.0 | 2754 | 0.3765 | 0.8613 | | 0.3835 | 10.0 | 3060 | 0.3572 | 0.8594 | | 0.3835 | 11.0 | 3366 | 0.3664 | 0.8613 | | 0.3869 | 12.0 | 3672 | 0.3568 | 0.8613 | | 0.3869 | 13.0 | 3978 | 0.3583 | 0.8613 | | 0.3825 | 14.0 | 4284 | 0.3526 | 0.8613 | | 0.3813 | 15.0 | 4590 | 0.3581 | 0.8613 | | 0.3813 | 16.0 | 4896 | 0.3553 | 0.8613 | | 0.3759 | 17.0 | 5202 | 0.3504 | 0.8613 | | 0.3788 | 18.0 | 5508 | 0.3490 | 0.8613 | | 0.3788 | 19.0 | 5814 | 0.3520 | 0.8613 | | 0.3754 | 20.0 | 6120 | 0.3450 | 0.8613 | | 0.3754 | 21.0 | 6426 | 0.3494 | 0.8633 | | 0.3748 | 22.0 | 6732 | 0.3491 | 0.8633 | | 0.3775 | 23.0 | 7038 | 0.3499 | 0.8633 | | 0.3775 | 24.0 | 7344 | 0.3494 | 0.8633 | | 0.3748 | 25.0 | 7650 | 0.3504 | 0.8672 | | 0.3748 | 26.0 | 7956 | 0.3495 | 0.8672 | | 0.3701 | 27.0 | 8262 | 0.3454 | 0.8633 | | 0.3712 | 28.0 | 8568 | 0.3472 | 0.8633 | | 0.3712 | 29.0 | 8874 | 0.3478 | 0.8672 | | 0.3751 | 30.0 | 9180 | 0.3471 | 0.8672 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
jlbaker361/ft-ddpo25
jlbaker361
2024-01-20T03:16:42Z
29
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-19T18:33:02Z
--- {} --- # DDPO trained model num_epochs=15 train_gradient_accumulation_steps=4 sample_num_steps=30 sample_batch_size=4 train_batch_size=4 sample_num_batches_per_epoch=32
yunconglong/7Bx4_DPO_2e
yunconglong
2024-01-20T03:15:55Z
1,370
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T02:49:29Z
--- license: mit --- * [DPO Trainer](https://huggingface.co/docs/trl/main/en/dpo_trainer) with dataset jondurbin/truthy-dpo-v0.1 ``` DPO Trainer TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. ``` ``` "num_experts_per_tok": 2 ```
DopeorNope/Mistralopithecus-v0.1-10.8B
DopeorNope
2024-01-20T03:03:26Z
60
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:05:44Z
--- license: cc-by-nc-sa-4.0 --- ## Model Details **Model Developers** Seungyoo Lee (DopeorNope) ์ด ๋ชจ๋ธ์€ Mistral Base์˜ ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ณ์ด๋ฉฐ, 10.7B์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. (Solar๋‚˜, ์‹œ๋‚˜ํŠธ๋ผ ๋ฒ ์ด์Šค ๋ชจ๋ธ์ด ์•„๋‹™๋‹ˆ๋‹ค.) ์•ฝ 1.5B์˜ ํ† ํฐ์œผ๋กœ pretrain ๋˜์—ˆ์œผ๋‚˜, ์‹คํ—˜๋‹จ๊ณ„๋กœ ํ–ฅํ›„ ๋‹ค์‹œ ํ›ˆ๋ จ๋˜์–ด ์ƒˆ๋กญ๊ฒŒ ๋‚˜์˜ฌ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค. ํ…Œ์ŠคํŠธ์šฉ์œผ๋กœ ์˜ฌ๋ ค๋ด…๋‹ˆ๋‹ค. Context length๊ฐ€ 32k ๊นŒ์ง€์ง€์› ๊ฐ€๋Šฅํ•œ ๋ชจ๋ธ์ด๋ฉฐ, ํ–ฅํ›„ ๋” ์™„๋ฒฝํ•˜๊ฒŒ ์„ค๊ณ„ํ•˜์—ฌ ์˜ฌ๋ฆฌ๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
jhiggs/tim-robinson
jhiggs
2024-01-20T02:37:34Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-03T22:39:26Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: A photo of <s0><s1> itysl a man in a yellow shirt and black jacket output: url: image-0.png - text: A photo of <s0><s1> itysl a man wearing a black jacket output: url: image-1.png - text: A photo of <s0><s1> itysl a man in a red suit and tie is standing in front of a colorful background output: url: image-2.png - text: A photo of <s0><s1> itysl a man with a white shirt and a black jacket output: url: image-3.png - text: A photo of <s0><s1> itysl a man in a blue shirt sitting at a desk output: url: image-4.png - text: A photo of <s0><s1> itysl a man with a tie on output: url: image-5.png - text: A photo of <s0><s1> itysl a man with a mustache output: url: image-6.png - text: A photo of <s0><s1> itysl a man in a checkered shirt holding a red ball output: url: image-7.png - text: A photo of <s0><s1> itysl a man holding a box of wine in front of him output: url: image-8.png - text: A photo of <s0><s1> itysl a man sitting at a desk output: url: image-9.png - text: A photo of <s0><s1> itysl a man sitting at a desk output: url: image-10.png - text: A photo of <s0><s1> itysl a man with a blue shirt output: url: image-11.png - text: A photo of <s0><s1> itysl a man wearing a white shirt output: url: image-12.png - text: A photo of <s0><s1> itysl a man with a smile on his face output: url: image-13.png - text: A photo of <s0><s1> itysl a man in a plaid shirt standing in front of a wall output: url: image-14.png - text: A photo of <s0><s1> itysl a man holding his head with both hands output: url: image-15.png - text: A photo of <s0><s1> itysl a man with a sad face looking at something output: url: image-16.png - text: A photo of <s0><s1> itysl a man in a suit and tie making a gesture output: url: image-17.png - text: A photo of <s0><s1> itysl a man in a car output: url: image-18.png - text: A photo of <s0><s1> itysl a man in a black jacket and white shirt standing in an office output: url: image-19.png - text: A photo of <s0><s1> itysl a man in a black jacket and blue shirt smiling output: url: image-20.png - text: A photo of <s0><s1> itysl a man in glasses and a polo shirt output: url: image-21.png - text: A photo of <s0><s1> itysl a man in a jacket and a tie output: url: image-22.png - text: A photo of <s0><s1> itysl a man in a suit standing in front of a window output: url: image-23.png - text: A photo of <s0><s1> itysl a man holding a pizza output: url: image-24.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> itysl license: openrail++ --- # SDXL LoRA DreamBooth - jhiggs/tim-robinson <Gallery /> ## Model description ### These are jhiggs/tim-robinson LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`tim-robinson.safetensors` here ๐Ÿ’พ](/jhiggs/tim-robinson/blob/main/tim-robinson.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:tim-robinson:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`tim-robinson_emb.safetensors` here ๐Ÿ’พ](/jhiggs/tim-robinson/blob/main/tim-robinson_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `tim-robinson_emb` to your prompt. For example, `A photo of tim-robinson_emb itysl` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jhiggs/tim-robinson', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='jhiggs/tim-robinson', filename='tim-robinson_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('A photo of <s0><s1> itysl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` โ†’ use `<s0><s1>` in your prompt ## Details All [Files & versions](/jhiggs/tim-robinson/tree/main). The weights were trained using [๐Ÿงจ diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Vivacem/DeepSeek-67B-MMIQC
Vivacem
2024-01-20T01:56:09Z
6
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:2401.09003", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T05:52:12Z
--- license: apache-2.0 --- DeepSeek-67B-MMIQC is obtained by fine-tuning [DeepSeek-67B](https://huggingface.co/deepseek-ai/deepseek-llm-67b-base) on [MMIQC](https://huggingface.co/datasets/Vivacem/MMIQC). It achieves 41.0% test accuracy on MATH. See our [paper](https://arxiv.org/abs/2401.09003) for details.
ntc-ai/SDXL-LoRA-slider.in-a-hot-air-balloon-race
ntc-ai
2024-01-20T01:22:27Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-20T01:22:24Z
--- language: - en thumbnail: "images/evaluate/in a hot air balloon race.../in a hot air balloon race_17_3.0.png" widget: - text: in a hot air balloon race output: url: images/in a hot air balloon race_17_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_19_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_20_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_21_3.0.png - text: in a hot air balloon race output: url: images/in a hot air balloon race_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "in a hot air balloon race" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - in a hot air balloon race (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/in a hot air balloon race_17_-3.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_17_0.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_17_3.0.png" width=256 height=256 /> | | <img src="images/in a hot air balloon race_19_-3.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_19_0.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_19_3.0.png" width=256 height=256 /> | | <img src="images/in a hot air balloon race_20_-3.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_20_0.0.png" width=256 height=256 /> | <img src="images/in a hot air balloon race_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` in a hot air balloon race ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.in-a-hot-air-balloon-race', weight_name='in a hot air balloon race.safetensors', adapter_name="in a hot air balloon race") # Activate the LoRA pipe.set_adapters(["in a hot air balloon race"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, in a hot air balloon race" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
longlonglong23/llama2-qlora-finetuned-chinese
longlonglong23
2024-01-20T01:12:28Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-20T01:12:21Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
afrideva/phi-2-psy-GGUF
afrideva
2024-01-20T01:05:45Z
44
6
null
[ "gguf", "merge", "mergekit", "lazymergekit", "rhysjones/phi-2-orange", "cognitivecomputations/dolphin-2_6-phi-2", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "base_model:vince62s/phi-2-psy", "base_model:quantized:vince62s/phi-2-psy", "license:mit", "region:us" ]
text-generation
2024-01-20T00:55:24Z
--- base_model: vince62s/phi-2-psy inference: false license: mit model_creator: vince62s model_name: phi-2-psy pipeline_tag: text-generation quantized_by: afrideva tags: - merge - mergekit - lazymergekit - rhysjones/phi-2-orange - cognitivecomputations/dolphin-2_6-phi-2 - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # vince62s/phi-2-psy-GGUF Quantized GGUF model files for [phi-2-psy](https://huggingface.co/vince62s/phi-2-psy) from [vince62s](https://huggingface.co/vince62s) | Name | Quant method | Size | | ---- | ---- | ---- | | [phi-2-psy.fp16.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.fp16.gguf) | fp16 | 5.56 GB | | [phi-2-psy.q2_k.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.q2_k.gguf) | q2_k | 1.11 GB | | [phi-2-psy.q3_k_m.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.q3_k_m.gguf) | q3_k_m | 1.43 GB | | [phi-2-psy.q4_k_m.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.q4_k_m.gguf) | q4_k_m | 1.74 GB | | [phi-2-psy.q5_k_m.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.q5_k_m.gguf) | q5_k_m | 2.00 GB | | [phi-2-psy.q6_k.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.q6_k.gguf) | q6_k | 2.29 GB | | [phi-2-psy.q8_0.gguf](https://huggingface.co/afrideva/phi-2-psy-GGUF/resolve/main/phi-2-psy.q8_0.gguf) | q8_0 | 2.96 GB | ## Original Model Card: # Phi-2-psy Phi-2-psy is a merge of the following models: * [rhysjones/phi-2-orange](https://huggingface.co/rhysjones/phi-2-orange) * [cognitivecomputations/dolphin-2_6-phi-2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2) ## ๐Ÿ† Evaluation The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |----------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[**phi-2-psy**](https://huggingface.co/vince62s/phi-2-psy)| **34.4**| **71.4**| **48.2**| **38.1**| **48.02**| |[phixtral-2x2_8](https://huggingface.co/mlabonne/phixtral-2x2_8)| 34.1| 70.4| 48.8| 37.8| 47.78| |[dolphin-2_6-phi-2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2)| 33.1| 69.9| 47.4| 37.2| 46.89| |[phi-2-orange](https://huggingface.co/rhysjones/phi-2-orange)| 33.4| 71.3| 49.9| 37.3| 47.97| |[phi-2](https://huggingface.co/microsoft/phi-2)| 28.0| 70.8| 44.4| 35.2| 44.61| ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: rhysjones/phi-2-orange layer_range: [0, 32] - model: cognitivecomputations/dolphin-2_6-phi-2 layer_range: [0, 32] merge_method: slerp base_model: rhysjones/phi-2-orange parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("vince62s/phi-2-psy", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("vince62s/phi-2-psy", trust_remote_code=True) inputs = tokenizer('''def print_prime(n): """ Print all primes between 1 and n """''', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ```
thrunlab/Mistral-7B-v0.1_colaMistral_scratch_cola
thrunlab
2024-01-20T00:59:07Z
9
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-20T00:40:54Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy - matthews_correlation base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-7B-v0.1_colaMistral_scratch_cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1_colaMistral_scratch_cola This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4281 - Accuracy: {'accuracy': 0.8387850467289719} - Matthews Correlation: 0.6114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------:| | 1.9322 | 0.17 | 20 | 1.5215 | {'accuracy': 0.5743048897411314} | 0.0818 | | 1.1953 | 0.33 | 40 | 0.9950 | {'accuracy': 0.660594439117929} | 0.1870 | | 0.6611 | 0.5 | 60 | 0.7549 | {'accuracy': 0.7353787152444871} | 0.3527 | | 0.6165 | 0.66 | 80 | 0.6317 | {'accuracy': 0.7583892617449665} | 0.4081 | | 0.5467 | 0.83 | 100 | 0.5667 | {'accuracy': 0.7842761265580057} | 0.5041 | | 0.4864 | 1.0 | 120 | 0.5268 | {'accuracy': 0.7996164908916586} | 0.5385 | | 0.478 | 1.16 | 140 | 0.4803 | {'accuracy': 0.8283796740172579} | 0.5859 | | 0.439 | 1.33 | 160 | 0.4965 | {'accuracy': 0.8293384467881112} | 0.5818 | | 0.4395 | 1.49 | 180 | 0.4669 | {'accuracy': 0.8283796740172579} | 0.5778 | | 0.4202 | 1.66 | 200 | 0.5002 | {'accuracy': 0.825503355704698} | 0.6192 | | 0.3485 | 1.83 | 220 | 0.4360 | {'accuracy': 0.8389261744966443} | 0.6099 | | 0.442 | 1.99 | 240 | 0.4391 | {'accuracy': 0.840843720038351} | 0.6121 | | 0.3752 | 2.16 | 260 | 0.4306 | {'accuracy': 0.8446788111217641} | 0.6474 | | 0.3013 | 2.32 | 280 | 0.4163 | {'accuracy': 0.8427612655800575} | 0.6216 | | 0.3395 | 2.49 | 300 | 0.4151 | {'accuracy': 0.8542665388302972} | 0.6592 | | 0.3305 | 2.66 | 320 | 0.4096 | {'accuracy': 0.8475551294343241} | 0.6299 | | 0.342 | 2.82 | 340 | 0.4101 | {'accuracy': 0.8465963566634708} | 0.6322 | | 0.3183 | 2.99 | 360 | 0.4166 | {'accuracy': 0.8494726749760306} | 0.6364 | | 0.2551 | 3.15 | 380 | 0.4321 | {'accuracy': 0.8542665388302972} | 0.6503 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
UAEpro/whisper-small-ar-2
UAEpro
2024-01-20T00:42:47Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ar", "dataset:mozilla-foundation/common_voice_16_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-15T20:58:48Z
--- language: - ar license: apache-2.0 base_model: uaepro/whisper-small-ar-2 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Small ar - majed test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_16_0 config: ar split: test args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 168.22177271055537 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small ar - majed test This model is a fine-tuned version of [uaepro/whisper-small-ar-2](https://huggingface.co/uaepro/whisper-small-ar-2) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3392 - Wer: 168.2218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1459 | 0.41 | 1000 | 0.3714 | 182.4752 | | 0.1378 | 0.82 | 2000 | 0.3486 | 177.9993 | | 0.0738 | 1.24 | 3000 | 0.3513 | 184.2939 | | 0.0855 | 1.65 | 4000 | 0.3392 | 168.2218 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
thrunlab/Mistral-7B-v0.1_cola_sparse_swiglu_ignore_0_1
thrunlab
2024-01-20T00:40:06Z
8
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-18T21:05:37Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - accuracy - matthews_correlation base_model: mistralai/Mistral-7B-v0.1 model-index: - name: Mistral-7B-v0.1_cola_sparse_swiglu_ignore_0_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1_cola_sparse_swiglu_ignore_0_1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4277 - Accuracy: {'accuracy': 0.8212616822429907} - Matthews Correlation: 0.5699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------:| | 1.6028 | 0.17 | 20 | 1.5539 | {'accuracy': 0.5417066155321189} | 0.0764 | | 0.9736 | 0.33 | 40 | 0.9708 | {'accuracy': 0.6864813039309684} | 0.1852 | | 0.7146 | 0.5 | 60 | 0.7850 | {'accuracy': 0.713326941514861} | 0.3141 | | 0.6892 | 0.66 | 80 | 0.6674 | {'accuracy': 0.7238734419942474} | 0.3498 | | 0.6792 | 0.83 | 100 | 0.6401 | {'accuracy': 0.7411313518696069} | 0.3977 | | 0.6233 | 1.0 | 120 | 0.6104 | {'accuracy': 0.7574304889741131} | 0.3784 | | 0.4778 | 1.16 | 140 | 0.5641 | {'accuracy': 0.7948226270373921} | 0.4874 | | 0.4792 | 1.33 | 160 | 0.5961 | {'accuracy': 0.7746883988494727} | 0.4284 | | 0.5573 | 1.49 | 180 | 0.5210 | {'accuracy': 0.8034515819750719} | 0.5126 | | 0.4464 | 1.66 | 200 | 0.5716 | {'accuracy': 0.7871524448705657} | 0.5601 | | 0.4541 | 1.83 | 220 | 0.5130 | {'accuracy': 0.8015340364333653} | 0.5046 | | 0.4989 | 1.99 | 240 | 0.4648 | {'accuracy': 0.8149568552253116} | 0.5452 | | 0.3891 | 2.16 | 260 | 0.4566 | {'accuracy': 0.8207094918504314} | 0.5856 | | 0.336 | 2.32 | 280 | 0.4516 | {'accuracy': 0.822627037392138} | 0.5657 | | 0.3854 | 2.49 | 300 | 0.4224 | {'accuracy': 0.8322147651006712} | 0.6066 | | 0.3917 | 2.66 | 320 | 0.4247 | {'accuracy': 0.837967401725791} | 0.6125 | | 0.3779 | 2.82 | 340 | 0.4177 | {'accuracy': 0.8302972195589645} | 0.5897 | | 0.3462 | 2.99 | 360 | 0.4649 | {'accuracy': 0.8207094918504314} | 0.5584 | | 0.3448 | 3.15 | 380 | 0.4182 | {'accuracy': 0.8293384467881112} | 0.5837 | | 0.3894 | 3.32 | 400 | 0.4388 | {'accuracy': 0.8302972195589645} | 0.5893 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
jdang/openhermes-mistral-dpo-gptq
jdang
2024-01-20T00:35:18Z
0
0
null
[ "tensorboard", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "base_model:finetune:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-01-12T17:05:27Z
--- license: apache-2.0 base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ tags: - trl - dpo - generated_from_trainer model-index: - name: openhermes-mistral-dpo-gptq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openhermes-mistral-dpo-gptq This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6104 - Rewards/chosen: -0.0458 - Rewards/rejected: -0.4535 - Rewards/accuracies: 0.6875 - Rewards/margins: 0.4077 - Logps/rejected: -390.3771 - Logps/chosen: -149.5892 - Logits/rejected: -1.3692 - Logits/chosen: -1.4352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6865 | 0.01 | 10 | 0.6792 | -0.0093 | -0.0078 | 0.6875 | -0.0015 | -385.9200 | -149.2238 | -1.3698 | -1.4189 | | 0.6882 | 0.01 | 20 | 0.6660 | -0.0137 | -0.0526 | 0.625 | 0.0389 | -386.3681 | -149.2680 | -1.3729 | -1.4240 | | 0.6391 | 0.01 | 30 | 0.6446 | 0.0000 | -0.1131 | 0.625 | 0.1131 | -386.9731 | -149.1310 | -1.3737 | -1.4292 | | 0.639 | 0.02 | 40 | 0.6271 | -0.0337 | -0.2758 | 0.6875 | 0.2421 | -388.6000 | -149.4686 | -1.3729 | -1.4342 | | 0.6533 | 0.03 | 50 | 0.6104 | -0.0458 | -0.4535 | 0.6875 | 0.4077 | -390.3771 | -149.5892 | -1.3692 | -1.4352 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/WinterGoddess-1.4x-70B-L2-3.5bpw-h6-exl2
LoneStriker
2024-01-20T00:24:49Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-20T00:08:10Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
mu0gum/AIFT-42dot_LLM-PLM-1.3B-ao-instruct-all-v0.52
mu0gum
2024-01-20T00:17:38Z
59
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T16:44:20Z
--- license: cc-by-nc-4.0 --- # AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.52 ๋ฒ ์ด์Šค ๋ชจ๋ธ : 42dot/42dot_LLM-PLM-1.3B ํ•™์Šต ๋ฐ์ดํ„ฐ : ์ž์ฒด ์ œ์ž‘ํ•œ Open Orca ์Šคํƒ€์ผ ๋ฐ์ดํ„ฐ์…‹ ์•ฝ 28,000๊ฑด (๋ฐ์ดํ„ฐ ์ˆ˜๋Ÿ‰ ์กฐ์ •) ํ•™์Šต ๋ฐฉ๋ฒ• : Full finetuning ## ko-lm-evaluation-harness(0-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|kobest_sentineg|kohatespeech|kohatespeech_apeach|kohatespeech_gen_bias|korunsmile|nsmc|pawsx_ko| |--|--|--|--|--|--|--|--|--|--| |0.5826210826210826|0.68|0.436|0.7758186397984886|0.2908704883227176|0.5082228116710875|0.14225053078556263|0.39027300210119553|0.65938|0.513| ## Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
rwatler/Mixtral_R2_v0
rwatler
2024-01-20T00:14:34Z
2
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:adapter:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-18T01:22:51Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 model-index: - name: Mixtral_R2_v0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mixtral_R2_v0 This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.7671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0101 | 1.0 | 18 | 2.1741 | | 2.1612 | 2.0 | 36 | 1.5962 | | 1.6591 | 3.0 | 54 | 1.4202 | | 1.4985 | 4.0 | 72 | 1.3035 | | 1.3585 | 5.0 | 90 | 1.1977 | | 1.294 | 6.0 | 108 | 1.0993 | | 1.1823 | 7.0 | 126 | 1.0139 | | 1.0983 | 8.0 | 144 | 0.9641 | | 1.0371 | 9.0 | 162 | 0.9293 | | 0.9868 | 10.0 | 180 | 0.8961 | | 0.9535 | 11.0 | 198 | 0.8655 | | 0.9259 | 12.0 | 216 | 0.8358 | | 0.882 | 13.0 | 234 | 0.8067 | | 0.8472 | 14.0 | 252 | 0.7938 | | 0.8484 | 15.0 | 270 | 0.7872 | | 0.8215 | 16.0 | 288 | 0.7826 | | 0.8167 | 17.0 | 306 | 0.7779 | | 0.8199 | 18.0 | 324 | 0.7751 | | 0.8042 | 19.0 | 342 | 0.7730 | | 0.8186 | 20.0 | 360 | 0.7710 | | 0.794 | 21.0 | 378 | 0.7698 | | 0.7958 | 22.0 | 396 | 0.7685 | | 0.7858 | 23.0 | 414 | 0.7677 | | 0.7857 | 24.0 | 432 | 0.7671 | | 0.7843 | 25.0 | 450 | 0.7671 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/WinterGoddess-1.4x-70B-L2-2.65bpw-h6-exl2
LoneStriker
2024-01-20T00:08:08Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T23:52:57Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
segolilylabs/Lily-Cybersecurity-7B-v0.2-GGUF
segolilylabs
2024-01-20T00:01:19Z
3,243
16
null
[ "gguf", "cybersecurity", "cyber security", "hacking", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-12T02:13:04Z
--- license: apache-2.0 tags: - cybersecurity - cyber security - hacking language: - en --- My attempt at making GGUF versions of <a href= "https://huggingface.co/segolilylabs/Lily-Cybersecurity-7B-v0.2">segolilylabs/Lily-Cybersecurity-7B-v0.2</a>
arnavgrg/phi2-adapter-test
arnavgrg
2024-01-19T23:56:52Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "region:us" ]
null
2024-01-19T23:56:22Z
--- library_name: peft base_model: microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF
afrideva
2024-01-19T23:54:54Z
6
0
null
[ "gguf", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "base_model:davanstrien/TinyLlama-haiku-dpo-v.0.1", "base_model:quantized:davanstrien/TinyLlama-haiku-dpo-v.0.1", "region:us", "conversational" ]
text-generation
2024-01-19T23:42:50Z
--- base_model: davanstrien/TinyLlama-haiku-dpo-v.0.1 inference: false model_creator: davanstrien model_name: TinyLlama-haiku-dpo-v.0.1 pipeline_tag: text-generation quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # davanstrien/TinyLlama-haiku-dpo-v.0.1-GGUF Quantized GGUF model files for [TinyLlama-haiku-dpo-v.0.1](https://huggingface.co/davanstrien/TinyLlama-haiku-dpo-v.0.1) from [davanstrien](https://huggingface.co/davanstrien) | Name | Quant method | Size | | ---- | ---- | ---- | | [tinyllama-haiku-dpo-v.0.1.fp16.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.fp16.gguf) | fp16 | 2.20 GB | | [tinyllama-haiku-dpo-v.0.1.q2_k.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.q2_k.gguf) | q2_k | 432.13 MB | | [tinyllama-haiku-dpo-v.0.1.q3_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.q3_k_m.gguf) | q3_k_m | 548.40 MB | | [tinyllama-haiku-dpo-v.0.1.q4_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.q4_k_m.gguf) | q4_k_m | 667.81 MB | | [tinyllama-haiku-dpo-v.0.1.q5_k_m.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.q5_k_m.gguf) | q5_k_m | 782.04 MB | | [tinyllama-haiku-dpo-v.0.1.q6_k.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.q6_k.gguf) | q6_k | 903.41 MB | | [tinyllama-haiku-dpo-v.0.1.q8_0.gguf](https://huggingface.co/afrideva/TinyLlama-haiku-dpo-v.0.1-GGUF/resolve/main/tinyllama-haiku-dpo-v.0.1.q8_0.gguf) | q8_0 | 1.17 GB | ## Original Model Card:
Aneeth/zephyr_7k
Aneeth
2024-01-19T23:51:26Z
6
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TheBloke/zephyr-7B-beta-GPTQ", "base_model:adapter:TheBloke/zephyr-7B-beta-GPTQ", "license:mit", "region:us" ]
null
2024-01-17T11:53:37Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: TheBloke/zephyr-7B-beta-GPTQ model-index: - name: zephyr_7k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr_7k This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3761 | 0.23 | 100 | 1.1737 | | 0.8147 | 0.46 | 200 | 0.4469 | | 0.3427 | 0.68 | 300 | 0.2869 | | 0.2726 | 0.91 | 400 | 0.2630 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.16.0 - Tokenizers 0.15.0
FractalGPT/FRED-T5-Interp
FractalGPT
2024-01-19T23:47:41Z
7
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "llm_interpretation", "FRED T5", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-19T15:41:30Z
--- license: apache-2.0 language: - ru library_name: transformers tags: - llm_interpretation - FRED T5 --- * ะ ัƒััะบะพัะทั‹ั‡ะฝะฐั ะผะพะดะตะปัŒ ะพะฑัƒั‡ะตะฝะฝะฐั ะพั‚ะฒะตั‡ะฐั‚ัŒ ะฝะฐ ะฒะพะฟั€ะพัั‹ ะฟะพ ะธะฝั‚ะตั€ะฟั€ะตั‚ะฐั†ะธะธ ัะทั‹ะบะพะฒั‹ั… ะผะพะดะตะปะตะน * ะ‘ะฐะทะพะฒะฐั ะผะพะดะตะปัŒ: SiberiaSoft/SiberianFredT5-instructor
shyamsubbu/tailf_mixtral_Mixtral-8x7B-Instruct-v0.1
shyamsubbu
2024-01-19T23:36:51Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-19T23:36:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
samwell/Reinforce-PixelCopter
samwell
2024-01-19T23:11:22Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-11T02:11:09Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.80 +/- 25.01 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
LoneStriker/WinterGoddess-1.4x-70B-L2-4.65bpw-h6-exl2
LoneStriker
2024-01-19T23:05:01Z
7
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:52:48Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
arun100/whisper-base-hi-3
arun100
2024-01-19T22:46:48Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:google/fleurs", "base_model:arun100/whisper-base-hi-2", "base_model:finetune:arun100/whisper-base-hi-2", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-19T16:26:54Z
--- license: apache-2.0 base_model: arun100/whisper-base-hi-2 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs hi_in type: google/fleurs config: hi_in split: test args: hi_in metrics: - name: Wer type: wer value: 27.72060783790989 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Hindi This model is a fine-tuned version of [arun100/whisper-base-hi-2](https://huggingface.co/arun100/whisper-base-hi-2) on the google/fleurs hi_in dataset. It achieves the following results on the evaluation set: - Loss: 0.4468 - Wer: 27.7206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4805 | 33.0 | 250 | 0.4868 | 30.4186 | | 0.3559 | 66.0 | 500 | 0.4417 | 29.0909 | | 0.2655 | 99.0 | 750 | 0.4307 | 28.2165 | | 0.1987 | 133.0 | 1000 | 0.4350 | 27.8326 | | 0.1472 | 166.0 | 1250 | 0.4468 | 27.7206 | | 0.1061 | 199.0 | 1500 | 0.4640 | 28.0992 | | 0.0767 | 233.0 | 1750 | 0.4835 | 28.5737 | | 0.0541 | 266.0 | 2000 | 0.5032 | 28.6857 | | 0.0396 | 299.0 | 2250 | 0.5202 | 28.7763 | | 0.03 | 333.0 | 2500 | 0.5353 | 29.2029 | | 0.0237 | 366.0 | 2750 | 0.5479 | 28.9096 | | 0.0195 | 399.0 | 3000 | 0.5587 | 28.9096 | | 0.0163 | 433.0 | 3250 | 0.5683 | 28.9469 | | 0.014 | 466.0 | 3500 | 0.5767 | 29.1336 | | 0.0121 | 499.0 | 3750 | 0.5838 | 29.3415 | | 0.0108 | 533.0 | 4000 | 0.5900 | 29.2775 | | 0.01 | 566.0 | 4250 | 0.5951 | 29.6081 | | 0.0093 | 599.0 | 4500 | 0.5988 | 29.4855 | | 0.0088 | 633.0 | 4750 | 0.6012 | 29.5281 | | 0.0087 | 666.0 | 5000 | 0.6020 | 29.4268 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
LegoClipStars/River_Kendall_RH
LegoClipStars
2024-01-19T22:46:27Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:dataautogpt3/OpenDalleV1.1", "base_model:adapter:dataautogpt3/OpenDalleV1.1", "license:cc-by-4.0", "region:us" ]
text-to-image
2024-01-19T22:45:08Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: NEFT parameters: negative_prompt: High school student output: url: images/5b7538c2190e21a3a865cbe703015bd6.jpg base_model: dataautogpt3/OpenDalleV1.1 instance_prompt: Please spare me license: cc-by-4.0 --- # River_Kendall_Rainbow_High <Gallery /> ## Model description Here&#39;s my RVC voice model of River Kendall from Rainbow High ## Trigger words You should use `Please spare me` to trigger the image generation. ## Download model [Download](/LegoClipStars/River_Kendall_RH/tree/main) them in the Files & versions tab.
RiverTest/RiverMTG20
RiverTest
2024-01-19T22:46:01Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:RiverTest/RiverMTG15", "base_model:adapter:RiverTest/RiverMTG15", "region:us" ]
null
2024-01-19T22:45:55Z
--- library_name: peft base_model: RiverTest/RiverMTG15 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
Kooten/WinterGoddess-1.4x-70B-L2-IQ2-GGUF
Kooten
2024-01-19T22:44:15Z
8
1
null
[ "gguf", "en", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-01-19T19:58:51Z
--- license: cc-by-nc-4.0 language: - en --- # WinterGoddess-1.4x-70B-L2 IQ2-GGUF ## Description IQ2-GGUF quants of [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2) Unlike regular GGUF quants this uses important matrix similar to Quip# to keep the quant from degrading too much even at 2bpw allowing you to run larger models on less powerful machines. ***NOTE:*** Currently you will need experimental branches of Koboldcpp or Ooba for this to work. - Nexesenex have compiled Windows binaries [HERE](https://github.com/Nexesenex/kobold.cpp/releases/tag/v1.55.1_b1842) - [llamacpp_0.2.29 branch](https://github.com/oobabooga/text-generation-webui/tree/llamacpp_0.2.29) of Ooba also works [More info about IQ2](https://github.com/ggerganov/llama.cpp/pull/4897) # Models Models: [IQ2-XS](https://huggingface.co/Kooten/WinterGoddess-1.4x-70B-L2-IQ2-GGUF/blob/main/WinterGoddess-1.4x-70B-L2-IQ2_XS.gguf), [IQ2-XXS](https://huggingface.co/Kooten/WinterGoddess-1.4x-70B-L2-IQ2-GGUF/blob/main/WinterGoddess-1.4x-70B-L2-IQ2_XXS.gguf) Regular GGUF Quants: [Here](https://huggingface.co/TheBloke/WinterGoddess-1.4x-70B-L2-GGUF) ## Prompt Format ### Alpaca: ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` ## Contact Kooten on discord
Kooten/Euryale-1.4-L2-70B-IQ2-GGUF
Kooten
2024-01-19T22:43:59Z
3
3
null
[ "gguf", "en", "license:llama2", "endpoints_compatible", "region:us" ]
null
2024-01-19T09:14:54Z
--- license: llama2 language: - en --- # Euryale-1.4-L2-70B IQ2-GGUF ## Description IQ2-GGUF quants of [Sao10K/Euryale-1.4-L2-70B](https://huggingface.co/Sao10K/Euryale-1.4-L2-70B) Unlike regular GGUF quants this uses important matrix similar to Quip# to keep the quant from degrading too much even at 2bpw allowing you to run larger models on less powerful machines. ***NOTE:*** Currently you will need experimental branches of Koboldcpp or Ooba for this to work. - Nexesenex have compiled Windows binaries [HERE](https://github.com/Nexesenex/kobold.cpp/releases/tag/v1.55.1_b1842) - [llamacpp_0.2.29 branch](https://github.com/oobabooga/text-generation-webui/tree/llamacpp_0.2.29) of Ooba also works [More info about IQ2](https://github.com/ggerganov/llama.cpp/pull/4897) # Models Models: [IQ2-XS](https://huggingface.co/Kooten/Euryale-1.4-L2-70B-IQ2-GGUF/blob/main/Euryale-1.4-L2-70B-IQ2_XS.gguf), [IQ2-XXS](https://huggingface.co/Kooten/Euryale-1.4-L2-70B-IQ2-GGUF/blob/main/Euryale-1.4-L2-70B-IQ2_XXS.gguf) Regular GGUF Quants: [Here](https://huggingface.co/Sao10K/Euryale-1.4-L2-70B-GGUF) ## Prompt Format ### Alpaca: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Input: {input} ### Response: ``` ## Contact Kooten on discord
timuryun/autotrain-ughdn-x1a7j
timuryun
2024-01-19T22:42:39Z
0
0
null
[ "tensorboard", "safetensors", "autotrain", "text-generation", "conversational", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T22:42:35Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
abayb/lora-trained-xl
abayb
2024-01-19T22:41:59Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-18T22:48:51Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'sks man in a dark theme, photoshoot' output: url: "image_0.png" - text: 'sks man in a dark theme, photoshoot' output: url: "image_1.png" - text: 'sks man in a dark theme, photoshoot' output: url: "image_2.png" - text: 'sks man in a dark theme, photoshoot' output: url: "image_3.png" base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks man license: openrail++ --- # SDXL LoRA DreamBooth - abayb/lora-trained-xl <Gallery /> ## Model description These are abayb/lora-trained-xl LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of sks man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](abayb/lora-trained-xl/tree/main) them in the Files & versions tab.
TommyNgx/broi
TommyNgx
2024-01-19T22:38:00Z
0
0
null
[ "region:us" ]
null
2023-12-26T06:55:02Z
## Download from huggingface_hub import hf_hub_download broi = hf_hub_download("TommyNgx/broi", 'yoloV8x_broi.pt') --- license: mit ---
pervision/enchantimalistic
pervision
2024-01-19T22:31:37Z
0
0
adapter-transformers
[ "adapter-transformers", "en", "ru", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
null
2024-01-19T22:30:23Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - en - ru metrics: - character - bleurt library_name: adapter-transformers ---
sonthenguyen/NeuralHermes-2.5-Mistral-7B
sonthenguyen
2024-01-19T22:26:58Z
1,341
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-18T19:15:08Z
--- license: apache-2.0 --- # Model Card for Model ID base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - dpo - rlhf license: apache-2.0 language: - en datasets: - mlabonne/chatml_dpo_pairs ---
afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF
afrideva
2024-01-19T22:21:52Z
71
2
null
[ "gguf", "ggml", "quantized", "q2_k", "q3_k_m", "q4_k_m", "q5_k_m", "q6_k", "q8_0", "text-generation", "en", "es", "ru", "zh", "de", "fr", "th", "ca", "it", "ja", "pl", "eo", "eu", "vi", "fi", "hu", "ar", "nl", "da", "tr", "ko", "he", "id", "cs", "bn", "sv", "base_model:NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2", "base_model:quantized:NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2", "region:us", "conversational" ]
text-generation
2024-01-19T22:11:44Z
--- base_model: NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2 inference: false language: - en - es - ru - zh - de - fr - th - ca - it - ja - pl - eo - eu - vi - fi - hu - ar - nl - da - tr - ko - he - id - cs - bn - sv model_creator: NickyNicky model_name: dolphin-2_6-phi-2_oasst2_chatML_V2 pipeline_tag: text-generation quantized_by: afrideva tags: - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF Quantized GGUF model files for [dolphin-2_6-phi-2_oasst2_chatML_V2](https://huggingface.co/NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2) from [NickyNicky](https://huggingface.co/NickyNicky) | Name | Quant method | Size | | ---- | ---- | ---- | | [dolphin-2_6-phi-2_oasst2_chatml_v2.fp16.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.fp16.gguf) | fp16 | 5.56 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q2_k.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q2_k.gguf) | q2_k | 1.09 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q3_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q3_k_m.gguf) | q3_k_m | 1.49 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q4_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q4_k_m.gguf) | q4_k_m | 1.79 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q5_k_m.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q5_k_m.gguf) | q5_k_m | 2.07 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q6_k.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q6_k.gguf) | q6_k | 2.29 GB | | [dolphin-2_6-phi-2_oasst2_chatml_v2.q8_0.gguf](https://huggingface.co/afrideva/dolphin-2_6-phi-2_oasst2_chatML_V2-GGUF/resolve/main/dolphin-2_6-phi-2_oasst2_chatml_v2.q8_0.gguf) | q8_0 | 2.96 GB | ## Original Model Card: ``` - model fine tune base: cognitivecomputations/dolphin-2_6-phi-2 - sft - flash-attention 2 - loss: 0.85 - steps: 3000 - max_length: 2028 - neftune_noise_alpha: 5 ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/wLDT0cPWHzFtv_HHigCH4.png) Install packages ```Python !python -m pip install --upgrade pip !pip install -q datasets trl peft bitsandbytes sentencepiece wandb !pip install -q accelerate safetensors deepspeed !pip install -q scipy !export CUDA_HOME=/usr/local/cuda-11.8 # !pip install ninja !pip install ninja packaging --upgrade -qqq !MAX_JOBS=4 pip install flash-attn --no-build-isolation -qqq !pip install git+"https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary" -qqq !python -m pip install optimum -qqq ``` Ioad model and generate text ```Python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, GenerationConfig, TextIteratorStreamer, ) # from attention_sinks import AutoModelForCausalLM import torch model_id = "NickyNicky/dolphin-2_6-phi-2_oasst2_chatML_V2" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, load_in_4bit=True, low_cpu_mem_usage= True, flash_attn=True, flash_rotary=True, fused_dense=True, ) max_length=2028 print("max_length",max_length) tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast = True, max_length=max_length, trust_remote_code=True,) prompt= """<|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user tengo hambre que me recomiendas<|im_end|> <|im_start|>assistant""" inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False).cuda()#.to("cuda") # False # True generation_config = GenerationConfig( max_new_tokens=700, temperature=0.5, top_p=0.9, top_k=45, repetition_penalty=1.15, #1.1, # 1.0 means no penalty, > 1.0 means penalty, 1.2 from CTRL paper do_sample=True, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, # bos_token_id=tokenizer.eos_token_id, # use_cache=True, # stopping_criteria= StoppingCriteriaList([stopping_criteria]), ) outputs = model.generate(generation_config=generation_config, input_ids=inputs,) # tokenizer.decode(outputs[0], skip_special_tokens=False) #True print(tokenizer.decode(outputs[0], skip_special_tokens=False)) '''OUTPUT: <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user tengo hambre que me recomiendas<|im_end|> <|im_start|>assistant Hay muchos tipos de alimentos que puedes probar si tienes hambre, pero aquรญ te muestro una lista ordenada por calor: 1- Frutas y verduras: Estas son buena opciรณn para quitar hambre sin agotar tu cuerpo con grandes cantidades de carbohidratos. Algunas frutas y verduras que podrรญan ser suficientemente altas en calor durante el dรญa incluyen tomates, plรกtanos, espinacas, papas, nueces, manzanas, limones, guisantes, cucumbers, zanahorias, etc. 2- Proteรญnas: Estas son importantes para mantener tu masa muscular y fuerzosa durante el dรญa. Algunas proteรญnas que podrรญan ser รบtiles para quitar hambre durante el dรญa incluyen carne, aceite de oliva, miel, yogur, leche fresca o sopa de gorditas, etc. 3- Carbohidratos: Estas son importantes para energizarte durante el dรญa y mantenerte fรญsico. Algunas frutas y verduras que podrรญan ser รบtiles para quitar hambre durante el dรญa incluyen pan, tortillas, roti, arroz, pasta, rice, polenta, cereales, granola, etc. 4- Grains: Estas son importantes para mantenerte satiente durante el dรญa y reducir la frecuencia de comidas rรกpida. Algunas gromas que podrรญan ser รบtiles para quitar hambre durante el dรญa incluyen lentejas, farinas, tortilla, ensalada, etc. 5- Nuts y semolina: Estas son buenas opciones para quitar hambre durante el dรญa sin agotar tu cuerpo con grandes cantidades de azรบcar. Algunas frutas y verduras que podrรญan ser รบtiles para quitar hambre durante el dรญa incluyen anacardios, almendras, macetas, bocaditos, panquesado, etc. 6- Papel picado: Esta es una opciรณn deliciosa y econรณmica que puedes preparar en caso de quitar hambre durante el dรญa. Para hacer papel picado, primero cortezamos las frutas y verduras que deseas usarlas, y luego cortezamos las frutas y verduras que no deseas usarlas. A continuaciรณn, cortezamos las frutas y verduras que deseas usarlas mรกs grandes y que estรฉn mรกs frescas, y luego cortezamos las frutas y verduras ''' ```
corbt/example-mistral-lora
corbt
2024-01-19T22:05:32Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "base_model:OpenPipe/mistral-ft-optimized-1227", "base_model:quantized:OpenPipe/mistral-ft-optimized-1227", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text-generation
2024-01-19T22:04:27Z
--- license: apache-2.0 base_model: OpenPipe/mistral-ft-optimized-1227 tags: - generated_from_trainer model-index: - name: models/loras2/7bdb17d0-3f6b-4921-93db-0f46c4d9d81b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # models/loras2/7bdb17d0-3f6b-4921-93db-0f46c4d9d81b This model is a fine-tuned version of [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4795 | 0.02 | 1 | 0.4746 | | 0.0282 | 0.2 | 12 | 0.0309 | | 0.0168 | 0.4 | 24 | 0.0242 | | 0.0216 | 0.59 | 36 | 0.0208 | | 0.0167 | 0.79 | 48 | 0.0189 | | 0.0157 | 0.99 | 60 | 0.0186 | | 0.0156 | 1.19 | 72 | 0.0177 | | 0.0135 | 1.38 | 84 | 0.0182 | | 0.0139 | 1.58 | 96 | 0.0178 | | 0.0169 | 1.78 | 108 | 0.0178 | | 0.0111 | 1.98 | 120 | 0.0179 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1
grimulkan/llama2_70b_longlora_fp16_32k_ROPE8
grimulkan
2024-01-19T21:42:07Z
22
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-10T18:26:34Z
--- license: llama2 --- This is the same as Yukang's [Llama-2-70b-longlora-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k), except that the extra pad token has been stripped from the tokenizer to make it similar to the base Llama model (and it has been merged into the base model). Please refer to that page for more details. It was created by merging [LongAlpaca-70B-lora](https://huggingface.co/Yukang/LongAlpaca-70B-lora) into [Llama-2-70b](https://huggingface.co/meta-llama/Llama-2-70b), replacing the embed and norm layers as described in the [LongLoRA repo](https://github.com/dvlab-research/LongLoRA), and removing the extra row and pad token. This is not an instruct-tuned model, but a base model for further fine-tuning. It supports 32K of context with linear rope scaling of 8.
karawalla/shiptraining2024001
karawalla
2024-01-19T21:41:49Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-19T21:41:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
OpenDILabCommunity/MsPacmanNoFrameskip-v4-SampledEfficientZero
OpenDILabCommunity
2024-01-19T21:37:37Z
0
0
pytorch
[ "pytorch", "deep-reinforcement-learning", "reinforcement-learning", "DI-engine", "MsPacmanNoFrameskip-v4", "en", "arxiv:2310.08348", "license:apache-2.0", "model-index", "region:us" ]
reinforcement-learning
2024-01-19T21:37:13Z
--- language: en license: apache-2.0 library_name: pytorch tags: - deep-reinforcement-learning - reinforcement-learning - DI-engine - MsPacmanNoFrameskip-v4 benchmark_name: OpenAI/Gym/Atari task_name: MsPacmanNoFrameskip-v4 pipeline_tag: reinforcement-learning model-index: - name: SampledEfficientZero results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacmanNoFrameskip-v4 type: MsPacmanNoFrameskip-v4 metrics: - type: mean_reward value: 1028.0 +/- 186.43 name: mean_reward --- # Play **MsPacmanNoFrameskip-v4** with **SampledEfficientZero** Policy ## Model Description <!-- Provide a longer summary of what this model is. --> This implementation applies **SampledEfficientZero** to the OpenAI/Gym/Atari **MsPacmanNoFrameskip-v4** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine). **LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348). ## Model Usage ### Install the Dependencies <details close> <summary>(Click for Details)</summary> ```shell # install huggingface_ding git clone https://github.com/opendilab/huggingface_ding.git pip3 install -e ./huggingface_ding/ # install environment dependencies if needed pip3 install DI-engine[common_env,video] pip3 install LightZero ``` </details> ### Git Clone from Huggingface and Run the Model <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from lzero.agent import SampledEfficientZeroAgent from ding.config import Config from easydict import EasyDict import torch # Pull model from files which are git cloned from huggingface policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu")) cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict) # Instantiate the agent agent = SampledEfficientZeroAgent( env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-SampledEfficientZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ### Run Model by Using Huggingface_ding <details close> <summary>(Click for Details)</summary> ```shell # running with trained model python3 -u run.py ``` **run.py** ```python from lzero.agent import SampledEfficientZeroAgent from huggingface_ding import pull_model_from_hub # Pull model from Hugggingface hub policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/PongNoFrameskip-v4-SampledEfficientZero") # Instantiate the agent agent = SampledEfficientZeroAgent( env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-SampledEfficientZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict ) # Continue training agent.train(step=5000) # Render the new agent performance agent.deploy(enable_save_replay=True) ``` </details> ## Model Training ### Train the Model and Push to Huggingface_hub <details close> <summary>(Click for Details)</summary> ```shell #Training Your Own Agent python3 -u train.py ``` **train.py** ```python from lzero.agent import SampledEfficientZeroAgent from huggingface_ding import push_model_to_hub # Instantiate the agent agent = SampledEfficientZeroAgent(env_id="PongNoFrameskip-v4", exp_name="PongNoFrameskip-v4-SampledEfficientZero") # Train the agent return_ = agent.train(step=int(2000000)) # Push model to huggingface hub push_model_to_hub( agent=agent.best, env_name="OpenAI/Gym/Atari", task_name="PongNoFrameskip-v4", algo_name="SampledEfficientZero", github_repo_url="https://github.com/opendilab/LightZero", github_doc_model_url=None, github_doc_env_url=None, installation_guide=''' pip3 install DI-engine[common_env,video] pip3 install LightZero ''', usage_file_by_git_clone="./sampled_efficientzero/pong_sampled_efficientzero_deploy.py", usage_file_by_huggingface_ding="./sampled_efficientzero/pong_sampled_efficientzero_download.py", train_file="./sampled_efficientzero/pong_sampled_efficientzero.py", repo_id="OpenDILabCommunity/PongNoFrameskip-v4-SampledEfficientZero", platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)", model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).", create_repo=True ) ``` </details> **Configuration** <details close> <summary>(Click for Details)</summary> ```python exp_config = { 'main_config': { 'exp_name': 'MsPacmanNoFrameskip-v4-SampledEfficientZero', 'seed': 0, 'env': { 'env_id': 'MsPacmanNoFrameskip-v4', 'env_name': 'MsPacmanNoFrameskip-v4', 'obs_shape': [4, 96, 96], 'collector_env_num': 8, 'evaluator_env_num': 3, 'n_evaluator_episode': 3, 'manager': { 'shared_memory': False } }, 'policy': { 'on_policy': False, 'cuda': True, 'multi_gpu': False, 'bp_update_sync': True, 'traj_len_inf': False, 'model': { 'observation_shape': [4, 96, 96], 'frame_stack_num': 4, 'action_space_size': 9, 'downsample': True, 'continuous_action_space': False, 'num_of_sampled_actions': 5, 'discrete_action_encoding_type': 'one_hot', 'norm_type': 'BN' }, 'use_rnd_model': False, 'sampled_algo': True, 'gumbel_algo': False, 'mcts_ctree': True, 'collector_env_num': 8, 'evaluator_env_num': 3, 'env_type': 'not_board_games', 'action_type': 'fixed_action_space', 'battle_mode': 'play_with_bot_mode', 'monitor_extra_statistics': True, 'game_segment_length': 400, 'transform2string': False, 'gray_scale': False, 'use_augmentation': True, 'augmentation': ['shift', 'intensity'], 'ignore_done': False, 'update_per_collect': 1000, 'model_update_ratio': 0.1, 'batch_size': 256, 'optim_type': 'SGD', 'learning_rate': 0.2, 'target_update_freq': 100, 'target_update_freq_for_intrinsic_reward': 1000, 'weight_decay': 0.0001, 'momentum': 0.9, 'grad_clip_value': 10, 'n_episode': 8, 'num_simulations': 50, 'discount_factor': 0.997, 'td_steps': 5, 'num_unroll_steps': 5, 'reward_loss_weight': 1, 'value_loss_weight': 0.25, 'policy_loss_weight': 1, 'policy_entropy_loss_weight': 0, 'ssl_loss_weight': 2, 'lr_piecewise_constant_decay': True, 'threshold_training_steps_for_final_lr': 50000, 'manual_temperature_decay': False, 'threshold_training_steps_for_final_temperature': 100000, 'fixed_temperature_value': 0.25, 'use_ture_chance_label_in_chance_encoder': False, 'use_priority': True, 'priority_prob_alpha': 0.6, 'priority_prob_beta': 0.4, 'root_dirichlet_alpha': 0.3, 'root_noise_weight': 0.25, 'random_collect_episode_num': 0, 'eps': { 'eps_greedy_exploration_in_collect': False, 'type': 'linear', 'start': 1.0, 'end': 0.05, 'decay': 100000 }, 'cfg_type': 'SampledEfficientZeroPolicyDict', 'init_w': 0.003, 'normalize_prob_of_sampled_actions': False, 'policy_loss_type': 'cross_entropy', 'lstm_horizon_len': 5, 'cos_lr_scheduler': False, 'reanalyze_ratio': 0.0, 'eval_freq': 2000, 'replay_buffer_size': 1000000 }, 'wandb_logger': { 'gradient_logger': False, 'video_logger': False, 'plot_logger': False, 'action_logger': False, 'return_logger': False } }, 'create_config': { 'env': { 'type': 'atari_lightzero', 'import_names': ['zoo.atari.envs.atari_lightzero_env'] }, 'env_manager': { 'type': 'subprocess' }, 'policy': { 'type': 'sampled_efficientzero', 'import_names': ['lzero.policy.sampled_efficientzero'] } } } ``` </details> **Training Procedure** <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> - **Weights & Biases (wandb):** [monitor link](<TODO>) ## Model Information <!-- Provide the basic links for the model. --> - **Github Repository:** [repo link](https://github.com/opendilab/LightZero) - **Doc**: [Algorithm link](<TODO>) - **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/MsPacmanNoFrameskip-v4-SampledEfficientZero/blob/main/policy_config.py) - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/MsPacmanNoFrameskip-v4-SampledEfficientZero/blob/main/replay.mp4) <!-- Provide the size information for the model. --> - **Parameters total size:** 33030.28 KB - **Last Update Date:** 2024-01-19 ## Environments <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. --> - **Benchmark:** OpenAI/Gym/Atari - **Task:** MsPacmanNoFrameskip-v4 - **Gym version:** 0.25.1 - **DI-engine version:** v0.5.0 - **PyTorch version:** 2.0.1+cu117 - **Doc**: [Environments link](<TODO>)
simpla360/suero
simpla360
2024-01-19T21:13:29Z
0
0
null
[ "region:us" ]
null
2024-01-19T21:08:26Z
<title>Simpla 360 Suero Antiarrugas: Revitaliza tu Piel</title> <h1>Simpla 360 Suero Antiarrugas: Revitaliza tu Piel</h1> Para quienes buscan rejuvenecer su piel, Simpla 360 Suero Antiarrugas es la elecciรณn perfecta. Este suero de avanzada, disponible exclusivamente en <a href="https://es.mejornutra.xyz/?target=-7EBNQCgQAAAPZFwMXjAAFAQEREQoRCQoRDUIRDRIAAX9hZGNvbWJvATE&al=94332&subacc=hug"><b>>>>www.simpla360.com<<<</b></a>, estรก formulado para ofrecer resultados efectivos y visibles en la reducciรณn de arrugas y lรญneas de expresiรณn. <a href="https://es.mejornutra.xyz/?target=-7EBNQCgQAAAPZFwMXjAAFAQEREQoRCQoRDUIRDRIAAX9hZGNvbWJvATE&al=94332&subacc=hug"><b>>>>IR AL SITIO WEB OFICIAL AQUI<<<</b></a> Con un precio de solo 49 USD, Simpla 360 te ofrece una soluciรณn de alta calidad para el cuidado de tu piel. Este suero antiarrugas estรก enriquecido con ingredientes activos que nutren, hidratan y revitalizan la piel, mejorando su elasticidad y firmeza. Es ideal para todos los tipos de piel y es perfecto para incorporar en tu rutina diaria de cuidado facial. Haz tu pedido en <a href="https://es.mejornutra.xyz/?target=-7EBNQCgQAAAPZFwMXjAAFAQEREQoRCQoRDUIRDRIAAX9hZGNvbWJvATE&al=94332&subacc=hug"><b>>>>www.simpla360.com<<<</b></a> y comienza a experimentar los beneficios de Simpla 360 Suero Antiarrugas. Este suero no solo combate los signos del envejecimiento, sino que tambiรฉn deja tu piel con una apariencia mรกs juvenil y radiante. No esperes mรกs para darle a tu piel el cuidado que se merece. ยกSimpla 360 es tu aliado para una piel hermosa y saludable!
lilianz/dqn-SpaceInvadersNoFrameskip-v4
lilianz
2024-01-19T21:13:17Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-19T21:12:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 627.00 +/- 138.37 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lilianz -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga lilianz -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga lilianz ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 150000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
samwell/SoccerTwos
samwell
2024-01-19T21:09:38Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2024-01-19T21:01:04Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: akanametov/SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ
MaziyarPanahi
2024-01-19T21:09:13Z
30
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "finetuned", "quantized", "4-bit", "gptq", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "en", "base_model:mistralai/Mixtral-8x7B-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us", "conversational", "base_model:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "base_model:finetune:NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO" ]
text-generation
2024-01-19T20:56:47Z
--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - safetensors - mixtral - text-generation - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - en - base_model:mistralai/Mixtral-8x7B-v0.1 - license:apache-2.0 - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us model_name: Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO inference: false model_creator: NousResearch pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Description [MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ](https://huggingface.co/MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ) is a quantized (GPTQ) version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```
andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF
andrijdavid
2024-01-19T21:08:30Z
47
0
transformers
[ "transformers", "gguf", "llama", "text-generation", "GGUF", "en", "dataset:cerebras/SlimPajama-627B", "dataset:bigcode/starcoderdata", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T20:58:33Z
--- language: - en license: apache-2.0 tags: - GGUF datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata quantized_by: andrijdavid --- # TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF - Original model: [TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) <!-- description start --> ## Description This repo contains GGUF format model files for [TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsโ€‹ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF and below it, a specific filename to download, such as: TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/TinyLlama-1.1B-intermediate-step-1431k-3T-GGUF TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./TinyLlama-1.1B-intermediate-step-1431k-3T-f16.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: TinyLlama-1.1B-intermediate-step-1431k-3T <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐Ÿš€๐Ÿš€. The training has started on 2023-09-01. <div align="center"> <img src="./TinyLlama_logo.png" width="300"/> </div> We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Collection This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen. #### Eval | Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg | | - | | - | -- | -- | ----- | | Pythia-1.0B | 300B | 47.16 | 31.40 | 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 | | TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80 | 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11 | | TinyLlama-1.1B-intermediate-step-240k-503b | 503B | 49.56 | 31.40 | 55.80 | 26.54 | 48.32 | 56.91 | 69.42 | 48.28 | | TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 | | TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 | | TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 | | TinyLlama-1.1B-intermediate-step-1195k-2.5T | 2.5T | 58.96 | 34.40 | 58.72 | 31.91 | 56.78 | 63.21 | 73.07 | 53.86 | | TinyLlama-1.1B-intermediate-step-1431k-3T | 3T | 59.20 | 36.00 | 59.12 | 30.12 | 55.25 | 57.83 | 73.29 | 52.99 | <!-- original-model-card end -->
rheubanks/llama2_instruct_generation
rheubanks
2024-01-19T21:06:05Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:NousResearch/Llama-2-7b-hf", "base_model:adapter:NousResearch/Llama-2-7b-hf", "region:us" ]
null
2024-01-19T21:05:41Z
--- library_name: peft tags: - trl - sft - generated_from_trainer datasets: - generator base_model: NousResearch/Llama-2-7b-hf model-index: - name: llama2_instruct_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_instruct_generation This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.6705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9724 | 0.0 | 20 | 1.8100 | | 1.8173 | 0.01 | 40 | 1.7801 | | 1.8184 | 0.01 | 60 | 1.7671 | | 1.8725 | 0.01 | 80 | 1.7568 | | 1.8967 | 0.01 | 100 | 1.7460 | | 1.8943 | 0.02 | 120 | 1.7172 | | 1.788 | 0.02 | 140 | 1.7045 | | 1.8953 | 0.02 | 160 | 1.6986 | | 1.8262 | 0.02 | 180 | 1.6943 | | 1.8472 | 0.03 | 200 | 1.6926 | | 1.8416 | 0.03 | 220 | 1.6896 | | 1.838 | 0.03 | 240 | 1.6855 | | 1.7743 | 0.04 | 260 | 1.6806 | | 1.8562 | 0.04 | 280 | 1.6785 | | 1.8562 | 0.04 | 300 | 1.6794 | | 1.8117 | 0.04 | 320 | 1.6783 | | 1.8193 | 0.05 | 340 | 1.6768 | | 1.8807 | 0.05 | 360 | 1.6745 | | 1.7641 | 0.05 | 380 | 1.6738 | | 1.7738 | 0.05 | 400 | 1.6735 | | 1.7759 | 0.06 | 420 | 1.6733 | | 1.7089 | 0.06 | 440 | 1.6721 | | 1.7984 | 0.06 | 460 | 1.6706 | | 1.7243 | 0.07 | 480 | 1.6720 | | 1.9205 | 0.07 | 500 | 1.6705 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
andrijdavid/baby-llama-58m-GGUF
andrijdavid
2024-01-19T20:38:27Z
1
0
transformers
[ "transformers", "llama", "text-generation", "GGUF", "en", "arxiv:2308.02019", "license:unknown", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T20:38:26Z
--- language: - en license: unknown tags: - GGUF quantized_by: andrijdavid --- # baby-llama-58m-GGUF - Original model: [baby-llama-58m](https://huggingface.co/timinar/baby-llama-58m) <!-- description start --> ## Description This repo contains GGUF format model files for [baby-llama-58m](https://huggingface.co/timinar/baby-llama-58m). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsโ€‹ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: andrijdavid/baby-llama-58m-GGUF and below it, a specific filename to download, such as: baby-llama-58m-f16.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download andrijdavid/baby-llama-58m-GGUF baby-llama-58m-f16.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download andrijdavid/baby-llama-58m-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/baby-llama-58m-GGUF baby-llama-58m-f16.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m baby-llama-58m-f16.gguf --color -c 1024 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 1024` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./baby-llama-58m-f16.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./baby-llama-58m-f16.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: baby-llama-58m # Baby Llama Our submission to the `strict-small` track of the [BabyLM challenge](https://babylm.github.io/index.html). Baby Llama is a 58M-parameter model, distilled from an ensemble consisting of LLaMA-360M and GPT2-705M, both trained on the `babylm_10M` dataset. See the associated [paper](https://arxiv.org/abs/2308.02019) for a detailed discussion of the training procedure and of the model performance. The training code is available at [https://github.com/timinar/BabyLlama](https://github.com/timinar/BabyLlama). ### Hyperparameters for the tasks that require fine-tuning When evaluating the model on the [tasks that require fine-tuning](https://github.com/babylm/evaluation-pipeline/tree/main#fine-tuning), we noticed that the [default hyperparameters](https://github.com/babylm/evaluation-pipeline/tree/main#hyperparameters) suggested by the BabyLM organizers lead to severe overfitting in a number of tasks. To avoid this issue, we have re-tuned those hyperparameters. The sets of hyperparameters selected for each task are listed in the table below. | Task | Maximum learning rate | Batch size | Maximum epochs | Patience | Evaluate every (steps) | Random seed | | | - | -- | -- | -- | | CoLA | 4e-5 | 64 | 3 | 10 | 20 | 12 | | SST-2 | 5e-5 | 64 | 6 | 10 | 200 | 12 | | MRPC | 3e-5 | 64 | 3 | 10 | 20 | 12 | | QQP | 4e-5 | 64 | 10 | 10 | 1000 | 12 | | MNLI | 5e-5 | 64 | 6 | 10 | 200 | 12 | | MNLI-mm | 5e-5 | 64 | 6 | 10 | 200 | 12 | | QNLI | 5e-5 | 64 | 6 | 10 | 200 | 12 | | RTE | 5e-5 | 64 | 6 | 10 | 200 | 12 | | BoolQ | 3e-4 | 16 | 10 | 10 | 10 | 12 | | MultiRC | 1e-4 | 64 | 7 | 10 | 1000 | 42 | | WSC | 5e-7 | 1 | 10 | 1000 | 2000 | 12 | | CR (Control) | 5e-5 | 64 | 10 | 10 | 100 | 12 | | LC (Control) | 1e-3 | 64 | 1 | 2 | 10 | 12 | | MV (Control) | 5e-5 | 64 | 6 | 10 | 200 | 12 | | RP (Control) | 1e-3 | 64 | 1 | 10 | 10 | 12 | | SC (Control) | 1e-3 | 64 | 2 | 10 | 10 | 12 | | CR\_LC | 1e-3 | 64 | 2 | 10 | 10 | 12 | | CR\_RTP | 5e-5 | 64 | 6 | 10 | 200 | 12 | | MV\_LC | 5e-5 | 64 | 6 | 10 | 200 | 12 | | MV\_RTP | 5e-5 | 64 | 6 | 10 | 200 | 12 | | SC\_LC | 1e-3 | 64 | 2 | 10 | 10 | 12 | | SC\_RP | 1e-3 | 64 | 2 | 10 | 10 | 12 | <!-- original-model-card end -->
Ghunghru/xmod-base
Ghunghru
2024-01-19T20:31:51Z
5
0
transformers
[ "transformers", "pytorch", "xmod", "text-classification", "generated_from_trainer", "base_model:facebook/xmod-base", "base_model:finetune:facebook/xmod-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T19:50:43Z
--- license: mit base_model: facebook/xmod-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xmod-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xmod-base This model is a fine-tuned version of [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5756 - F1: 0.4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6685 | 1.0 | 189 | 0.6350 | 0.0 | | 0.6631 | 2.0 | 378 | 0.6223 | 0.0 | | 0.6368 | 3.0 | 567 | 0.6064 | 0.0 | | 0.6075 | 4.0 | 756 | 0.5928 | 0.0 | | 0.6102 | 5.0 | 945 | 0.5549 | 0.3729 | | 0.5635 | 6.0 | 1134 | 0.6121 | 0.2727 | | 0.5783 | 7.0 | 1323 | 0.5595 | 0.4118 | | 0.5206 | 8.0 | 1512 | 0.5852 | 0.4068 | | 0.5619 | 9.0 | 1701 | 0.5778 | 0.4000 | | 0.5518 | 10.0 | 1890 | 0.5756 | 0.4000 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
mitro99/whisper-tiny-polyai-enUS_fewer_epochs
mitro99
2024-01-19T20:16:26Z
60
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-19T20:03:49Z
--- base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-polyai-enUS_fewer_epochs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 metrics: - name: Wer type: wer value: 0.34946871310507677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-polyai-enUS_fewer_epochs This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6145 - Wer Ortho: 0.3800 - Wer: 0.3495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 2.9576 | 3.33 | 50 | 1.9424 | 0.5077 | 0.4050 | | 0.5132 | 6.67 | 100 | 0.6382 | 0.4152 | 0.3684 | | 0.2569 | 10.0 | 150 | 0.5925 | 0.3893 | 0.3554 | | 0.0973 | 13.33 | 200 | 0.6145 | 0.3800 | 0.3495 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Asude/gpt2-256t-human_reward-neg-25
Asude
2024-01-19T20:15:29Z
28
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-01-19T20:14:52Z
--- license: apache-2.0 tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Asude//tmp/tmpzdtriuax/Asude/gpt2-256t-human_reward-neg-25") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Asude//tmp/tmpzdtriuax/Asude/gpt2-256t-human_reward-neg-25") model = AutoModelForCausalLMWithValueHead.from_pretrained("Asude//tmp/tmpzdtriuax/Asude/gpt2-256t-human_reward-neg-25") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
soniox/Soniox-7B-v1.0
soniox
2024-01-19T20:15:16Z
1,379
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-17T09:16:21Z
--- license: apache-2.0 --- # Model Card for Soniox-7B-v1.0 Soniox 7B is a powerful large language model. Supports English and code with 8K context. Matches GPT-4 performance on some benchmarks. Built on top of Mistral 7B, enhanced with additional pre-training and fine-tuning for strong problem-solving capabilities. Apache 2.0 License. For more details, please read our [blog post](https://soniox.com/news/soniox-7B). ## Usage in Transformers The model is available in transformers and can be used as follows: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "soniox/Soniox-7B-v1.0" model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_path) device = "cuda" model.to(device) messages = [ {"role": "user", "content": "12 plus 21?"}, {"role": "assistant", "content": "33."}, {"role": "user", "content": "Five minus one?"}, ] tok_prompt = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = tok_prompt.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Inference deployment Refer to our [documentation](https://docs.soniox.com) for inference with vLLM and other deployment options.
castorini/rank_zephyr_7b_v1_full
castorini
2024-01-19T19:54:29Z
2,210
20
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "arxiv:2312.02724", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:52:58Z
--- tags: - generated_from_trainer license: mit language: - en base_model: mistralai/Mistral-7B-v0.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/castorini/rank_zephyr_7b_v1_full/resolve/main/thumbnail.jpeg" alt="RankZephyr Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> <!-- <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/> --> # Model Card for RankZephyr 7B V1 - Full RankZephyr is a series of language models trained to act as helpful reranking assistants built on the Zephyr-7B-ฮฒ model. RankZephyr Base is the model that follows single-stage fine-tuning on the RankGPT-3.5 model, while RankZephyr Full is the model that is further fine-tuned on RankGPT-4 reorderings of OpenAI's Ada2 orderings for 5K queries. ## Model description - **Model type:** A 7B parameter GPT-like model initially fine-tuned on a mix of publicly available, synthetic datasets, followed by task-specific listwise reranking data. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Fine-tuned from model:** [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/castorini/rank_llm - **Paper:** https://arxiv.org/abs/2312.02724 ## Effectiveness At the time of release, RankZephyr-7B-Full is the state-of-the-art open-source reranking model on various datasets like DL19/20/21/22 and TREC-COVID and TREC-News. With the MS MARCO v1 collection: | Model | Size | First Stage | DL19 | DL20| |-------------|-----|----|---------------|--------------| | **RankZephyr-7b-v1-full-rho** ๐Ÿช | **7B** | **SPLADE++ ED** | **0.7855** | **0.8255** | | **RankZephyr-7b-v1-full** ๐Ÿช | **7B** | **SPLADE++ ED** | **0.7803** | **0.8211** | | RankGPT-4 (PSC) | -| SPLADE++ ED | 0.7601 | 0.7514 | | RankGPT-4 | -| SPLADE++ ED | 0.7464 | 0.7076 | | **RankZephyr-7b-v1-base** ๐Ÿช | **7B** | **SPLADE++ ED** | **0.7341** | **0.7213** | | RankGPT-3.5 | -| SPLADE++ ED | 0.7504 | 0.7120| More details can be found in the paper. ## Intended uses & limitations The model is to be used in conjunction with the [RankLLM repository](https://github.com/castorini/rank_llm). While `rank-llm` exists as a PyPI package, we are currently in the early stages of development and encourage users to directly check install from source. The original Zephyr model is trained for chat. In our case, RankZephyr is fine-tuned to act as a listwise reranking agent. You provide it with a query and documents and get back a reordered list of document identifiers. ## Bias, Risks, and Limitations The following is an excerpt from the [Zephyr-7B-ฮฒ model card](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/README.md#bias-risks--limitations): <!-- This section is meant to convey both technical and sociotechnical limitations. --> > Zephyr-7B-ฮฒ has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. Our model is trained specifically on monolingual English data, effectiveness on multilingual sets is not guaranteed. ## Citation If you find RankZephyr is useful in your work, please cite the following paper: ``` @ARTICLE{pradeep2023rankzephyr, title = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!}, author = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin}, year = {2023}, journal = {arXiv:2312.02724} } ```
Asude/gpt2-256t-human_reward-neg-20
Asude
2024-01-19T19:42:59Z
5
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-01-19T19:42:36Z
--- license: apache-2.0 tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Asude//tmp/tmpbx52zlg9/Asude/gpt2-256t-human_reward-neg-20") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Asude//tmp/tmpbx52zlg9/Asude/gpt2-256t-human_reward-neg-20") model = AutoModelForCausalLMWithValueHead.from_pretrained("Asude//tmp/tmpbx52zlg9/Asude/gpt2-256t-human_reward-neg-20") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
wenqiglantz/MistralTrinity-7B-slerp-dpo
wenqiglantz
2024-01-19T19:24:25Z
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "instruct", "finetune", "chatml", "synthetic data", "distillation", "dpo", "rlhf", "conversational", "en", "dataset:mlabonne/chatml_dpo_pairs", "base_model:wenqiglantz/MistralTrinity-7B-slerp", "base_model:finetune:wenqiglantz/MistralTrinity-7B-slerp", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:07:41Z
--- base_model: wenqiglantz/MistralTrinity-7B-slerp tags: - mistral - instruct - finetune - chatml - synthetic data - distillation - dpo - rlhf license: apache-2.0 language: - en datasets: - mlabonne/chatml_dpo_pairs --- # MistralTrinity-7B-slerp-dpo Inspired by @mlabonne's blog post [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac), this model was fine-tuned with DPO (Direct Preference Optimization) on base model `MistralTrinity-7B-slerp`, which is a merged model for `mistralai/Mistral-7B-Instruct-v0.2` and `jan-hq/trinity-v1`, using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. The code to train this model is available on [Google Colab](https://colab.research.google.com/github/wenqiglantz/llmops/blob/main/Fine_tune_MistralTrinity_7B_slerp_with_DPO.ipynb) and [GitHub](https://github.com/wenqiglantz/llmops/blob/main/Fine_tune_MistralTrinity_7B_slerp_with_DPO.ipynb). It required an A100 GPU for over an hour. Check out fine-tuning run details on [Weights & Biases](https://wandb.ai/wenqiglantz/huggingface/runs/sxbgd33f).
ntc-ai/SDXL-LoRA-slider.on-a-ship
ntc-ai
2024-01-19T19:22:16Z
45
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-19T19:22:12Z
--- language: - en thumbnail: "images/evaluate/on a ship.../on a ship_17_3.0.png" widget: - text: on a ship output: url: images/on a ship_17_3.0.png - text: on a ship output: url: images/on a ship_19_3.0.png - text: on a ship output: url: images/on a ship_20_3.0.png - text: on a ship output: url: images/on a ship_21_3.0.png - text: on a ship output: url: images/on a ship_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "on a ship" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - on a ship (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/on a ship_17_-3.0.png" width=256 height=256 /> | <img src="images/on a ship_17_0.0.png" width=256 height=256 /> | <img src="images/on a ship_17_3.0.png" width=256 height=256 /> | | <img src="images/on a ship_19_-3.0.png" width=256 height=256 /> | <img src="images/on a ship_19_0.0.png" width=256 height=256 /> | <img src="images/on a ship_19_3.0.png" width=256 height=256 /> | | <img src="images/on a ship_20_-3.0.png" width=256 height=256 /> | <img src="images/on a ship_20_0.0.png" width=256 height=256 /> | <img src="images/on a ship_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` on a ship ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.on-a-ship', weight_name='on a ship.safetensors', adapter_name="on a ship") # Activate the LoRA pipe.set_adapters(["on a ship"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, on a ship" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 1140+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
miguelcarv/resnet-50-text-detector
miguelcarv
2024-01-19T19:20:28Z
27
0
transformers
[ "transformers", "safetensors", "resnet", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-19T18:51:36Z
# Model Card for ResNet-50 Text Detector This model was trained with the intent to quickly classify whether or not an image contains legible text or not. It was trained as a binary classification problem on the COCO-Text dataset together with some images from LLaVAR. This came out to a total of ~70k images, where 50% of them had text and 50% of them had no legible text. # Model Details ## How to Get Started with the Model ```python from PIL import Image import requests from transformers import AutoImageProcessor, AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained( "miguelcarv/resnet-50-text-detector", ) processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50", do_resize=False) url = "http://images.cocodataset.org/train2017/000000044520.jpg" image = Image.open(requests.get(url, stream=True).raw).convert('RGB').resize((256,256)) inputs = processor(image, return_tensors="pt").pixel_values outputs = model(inputs) logits_per_image = outputs.logits probs = logits_per_image.softmax(dim=1) print(probs) # tensor([[0.1149, 0.8851]]) ``` # Training Details - Trained for three epochs - Resolution: 256x256 - Learning rate: 5e-5 - Optimizer: AdamW - Batch size: 64 - Trained with FP32
Makucas/Mistral-7B-Instruct-v0.2_08
Makucas
2024-01-19T19:20:00Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
null
2024-01-19T18:26:17Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: Mistral-7B-Instruct-v0.2_08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-Instruct-v0.2_08 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7263 | 0.17 | 20 | 1.6209 | | 1.5225 | 0.34 | 40 | 1.5653 | | 1.398 | 0.51 | 60 | 1.5336 | | 1.5291 | 0.68 | 80 | 1.4972 | | 1.5079 | 0.85 | 100 | 1.4544 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Asude/gpt2-256t-human_reward-neg-15
Asude
2024-01-19T19:15:09Z
7
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-01-19T19:14:44Z
--- license: apache-2.0 tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Asude//tmp/tmp46lqattn/Asude/gpt2-256t-human_reward-neg-15") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Asude//tmp/tmp46lqattn/Asude/gpt2-256t-human_reward-neg-15") model = AutoModelForCausalLMWithValueHead.from_pretrained("Asude//tmp/tmp46lqattn/Asude/gpt2-256t-human_reward-neg-15") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
senseable/MoMo-70B-lora-1.8.6-DPO-gguf
senseable
2024-01-19T19:05:39Z
4
4
transformers
[ "transformers", "gguf", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-01-17T02:48:20Z
--- license: apache-2.0 language: - en library_name: transformers tags: - gguf --- Split files need to be merged: Windows: `copy /B MoMo-70B-lora-1.8.6-DPO-q5_k_m.gguf-split-* MoMo-70B-lora-1.8.6-DPO-q5_k_m.gguf` `copy /B MoMo-70B-lora-1.8.6-DPO-q6_k.gguf-split-* MoMo-70B-lora-1.8.6-DPO-q6_k.gguf` Linux/Mac: `cat MoMo-70B-lora-1.8.6-DPO-q5_k_m.gguf-split-* > MoMo-70B-lora-1.8.6-DPO-q5_k_m.gguf` `cat MoMo-70B-lora-1.8.6-DPO-q6_k.gguf-split-* > MoMo-70B-lora-1.8.6-DPO-q6_k.gguf`
vicgalle/franken-Beagle-11B
vicgalle
2024-01-19T19:04:34Z
58
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:finetune:mlabonne/NeuralBeagle14-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:51:17Z
--- base_model: - mlabonne/NeuralBeagle14-7B tags: - mergekit - merge license: apache-2.0 --- # franken-Beagle-11B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/KQTqm6n3bkV-uvfmXk2IT.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: mlabonne/NeuralBeagle14-7B layer_range: [0, 24] - sources: - model: mlabonne/NeuralBeagle14-7B layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ```
frluquba/clasificador2-muchocine
frluquba
2024-01-19T19:00:20Z
6
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "classification", "generated_from_trainer", "base_model:GKLMIP/bert-khmer-base-uncased-tokenized", "base_model:finetune:GKLMIP/bert-khmer-base-uncased-tokenized", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T18:59:46Z
--- base_model: GKLMIP/bert-khmer-base-uncased-tokenized tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador2-muchocine results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador2-muchocine This model is a fine-tuned version of [GKLMIP/bert-khmer-base-uncased-tokenized](https://huggingface.co/GKLMIP/bert-khmer-base-uncased-tokenized) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5195 - Accuracy: 0.3313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 339 | 1.5292 | 0.3313 | | 1.5525 | 2.0 | 678 | 1.5392 | 0.2057 | | 1.5301 | 3.0 | 1017 | 1.5195 | 0.3313 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
SanjiWatsuki/TinyBagel-248M
SanjiWatsuki
2024-01-19T18:57:33Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:57:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ayoubkirouane/Phi-2.7B_MERGED
ayoubkirouane
2024-01-19T18:51:41Z
20
0
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "mergekit", "merge", "custom_code", "en", "ar", "fr", "base_model:Yhyu13/phi-2-sft-dpo-gpt4_en-ep1", "base_model:merge:Yhyu13/phi-2-sft-dpo-gpt4_en-ep1", "base_model:rhysjones/phi-2-orange", "base_model:merge:rhysjones/phi-2-orange", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:27:30Z
--- base_model: - rhysjones/phi-2-orange - Yhyu13/phi-2-sft-dpo-gpt4_en-ep1 tags: - mergekit - merge license: apache-2.0 language: - en - ar - fr library_name: transformers pipeline_tag: text-generation --- ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [rhysjones/phi-2-orange](https://huggingface.co/rhysjones/phi-2-orange) * [Yhyu13/phi-2-sft-dpo-gpt4_en-ep1](https://huggingface.co/Yhyu13/phi-2-sft-dpo-gpt4_en-ep1) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: rhysjones/phi-2-orange layer_range: [0, 32] - model: Yhyu13/phi-2-sft-dpo-gpt4_en-ep1 layer_range: [0, 32] merge_method: slerp base_model: rhysjones/phi-2-orange parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Usage : ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_device("cuda") model = AutoModelForCausalLM.from_pretrained("ayoubkirouane/phi-2_MERGED", torch_dtype="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("ayoubkirouane/phi-2_MERGED", trust_remote_code=True) inputs = tokenizer('What Machine Learning ? ', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=50) text = tokenizer.batch_decode(outputs)[0] print(text) ```
Ghunghru/Misinformation-Covid-xlm-roberta-base
Ghunghru
2024-01-19T18:50:15Z
1
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-12T13:42:13Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: Misinformation-Covid-xlm-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Misinformation-Covid-xlm-roberta-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7194 - F1: 0.4333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6737 | 1.0 | 189 | 0.6662 | 0.0 | | 0.7083 | 2.0 | 378 | 0.6540 | 0.0 | | 0.7185 | 3.0 | 567 | 0.8346 | 0.0 | | 0.7826 | 4.0 | 756 | 0.8685 | 0.0 | | 0.8333 | 5.0 | 945 | 0.7939 | 0.0 | | 0.7989 | 6.0 | 1134 | 0.8978 | 0.0 | | 0.8009 | 7.0 | 1323 | 0.7276 | 0.3265 | | 0.6824 | 8.0 | 1512 | 0.7733 | 0.3774 | | 0.6979 | 9.0 | 1701 | 0.7327 | 0.4407 | | 0.6963 | 10.0 | 1890 | 0.7194 | 0.4333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.12.0 - Tokenizers 0.13.3
webpolis/zenos-gpt-j-6B-instruct-4bit
webpolis
2024-01-19T18:44:12Z
150
1
transformers
[ "transformers", "pytorch", "safetensors", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2023-09-25T02:19:51Z
--- {} --- # Zenos GPT-J 6B Instruct 4-bit ## Model Overview - **Name:** zenos-gpt-j-6B-instruct-4bit - **Datasets Used:** [Alpaca Spanish](https://huggingface.co/datasets/bertin-project/alpaca-spanish), [Evol Instruct](https://huggingface.co/datasets/FreedomIntelligence/evol-instruct-spanish) - **Architecture:** GPT-J - **Model Size:** 6 Billion parameters - **Precision:** 4 bits - **Fine-tuning:** This model was fine-tuned using Low-Rank Adaptation (LoRa). - **Content Moderation:** This model is not moderated. ## Description Zenos GPT-J 6B Instruct 4-bit is a Spanish Instruction capable model based on the GPT-J architecture with 6 billion parameters. It has been fine-tuned on the Alpaca Spanish and Evol Instruct datasets, making it particularly suitable for natural language understanding and generation tasks in Spanish. An experimental Twitter (**X**) bot is available at [https://twitter.com/ZenosBot](https://twitter.com/ZenosBot) which makes comments on news published in media outlets from Argentina. ### Requirements The latest development version of Transformers, which includes serialization of 4 bits models. - [Transformers](https://huggingface.co/docs/transformers/installation#install-from-source) - Bitsandbytes >= 0.41.3 Since this is a compressed version (4 bits), it can fit into ~7GB of VRAM. ## Usage You can use this model for various natural language processing tasks such as text generation, summarization, and more. Below is an example of how to use it in Python with the Transformers library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("webpolis/zenos-gpt-j-6B-instruct-4bit") model = AutoModelForCausalLM.from_pretrained( "webpolis/zenos-gpt-j-6B-instruct-4bit", use_safetensors=True ) user_msg = '''Escribe un poema breve utilizando los siguientes conceptos: Bienestar, Corriente, Iluminaciรณn, Sed''' # Generate text; watch out the padding between [INST] ... [/INST] prompt = f'[INST] {user_msg} [/INST]' inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(model.device) attention_mask = inputs["attention_mask"].to(model.device) generation_config = GenerationConfig( temperature=0.2, top_p=0.8, top_k=40, num_beams=1, repetition_penalty=1.3, do_sample=True ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, pad_token_id=tokenizer.eos_token_id, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) start_txt = output.find('[/INST]') + len('[/INST]') end_txt = output.find("<|endoftext|>", start_txt) answer = output[start_txt:end_txt] print(answer) ``` # Inference ## Online Currently, the HuggingFace's Inference Tool UI doesn't properly load the model. However, you can use it with regular Python code as shown above once you meet the [requirements](#requirements). ## CPU Best performance can be achieved downloading the [GGML 4 bits](https://huggingface.co/webpolis/zenos-gpt-j-6B-instruct-4bit/resolve/main/ggml-f16-q4_0.bin) model and doing inference using the [rustformers' llm](https://github.com/rustformers/llm) tool. ### Requirements For optimal performance: - 4 CPU cores - 8GB RAM In my Core i7 laptop it goes around 250ms per token: ![](https://huggingface.co/webpolis/zenos-gpt-j-6B-instruct-4bit/resolve/main/poema1.gif) # Acknowledgments This model was developed by [Nicolรกs Iglesias](mailto:[email protected]) using the Hugging Face Transformers library. # LICENSE Copyright 2023 [Nicolรกs Iglesias](mailto:[email protected]) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
cocoirun/AIFT-Yi-Ko-6B-instruct-v0.4.15-dpo
cocoirun
2024-01-19T18:43:41Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:31:05Z
--- license: cc-by-sa-4.0 --- <h1>instruct ๋ชจ๋ธ v0.4.15</h1> <b><ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•></b> Open-Orca-ko ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ํƒœ์Šคํฌ๋ฅผ ์ถ”์ถœํ•œ ๋’ค ํ•ด๋‹น ํƒœ์Šคํฌ์— ๋งž์ถฐ์„œ NLP ๊ด€๋ จ ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ž์ฒด์ ์œผ๋กœ ๊ตฌ์ถ• = aift-orca-v0.4 ์•ฝ 4๋งŒ๊ฑด(์—ญ์‚ฌ, ๊ณผํ•™, ์ˆ˜ํ•™, ๊ธฐ๊ณ„๋…ํ•ด, ๋ฆฌ๋ทฐ ๋ถ„์„) ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ๊ทธ ์™ธ์— Open-Orca-Ko์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๋ถ€ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์ •์ œํ•ด๊ฑฐ๋‚˜ KoBEST ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. aihub ์ผ๋ฐ˜์ƒ์‹ ๋ฐ ๊ธฐ๊ณ„๋…ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•(ํ˜•ํƒœ์†Œ ๊ด€๋ จ, ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ๋ฐ ์š”์•ฝ) ๊ฐ์ข… ๋ธ”๋กœ๊ทธ์—์„œ ์—ญ์‚ฌ ๋ฐ ์ƒ์‹ ํ€ด์ฆˆ๋ฅผ ์‚ฌ๋žŒ์ด ์ง์ ‘ ํ•™์Šต๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€๊ฒฝ AI2AI Challenge ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํŒŒ๊ณ ๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ ๋ฐ ์˜ค์—ญ๋œ ๋ถ€๋ถ„์„ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ˆ˜์ • ํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ ์˜์–ด ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ ์˜ํ•œ/ํ•œ์˜ ๋ฐ์ดํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ ์ง„ํ–‰ ์ด 11๋งŒ๊ฐœ์˜ ํ•™์Šต๋ฐ์ดํ„ฐ๋กœ sft๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> ํ˜„์žฌ, ์ƒˆ๋กœ์šด ๋ฒ„์ „์˜ ๋ชจ๋ธ ํ•™์Šต ๋ฐ ์„ฑ๋Šฅ์„ ์œ„ํ•ด Open-Orca ๋ฐ์ดํ„ฐ์…‹ ์ผ๋ถ€๋ฅผ ๋ฒˆ์—ญํ•˜์—ฌ ์ •์ œ ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค. <br> + ๊ณ ๋“ฑํ•™๊ต ์—ญ์‚ฌ ๋ฌธ์ œ ๋ฐ TruthfulQA ๊ด€๋ จ ๋ฌธ์ œ ์ถ”๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. + ๊ฐ์ข… it ์ง€์‹ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€์ง„ํ–‰. + ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ChatGPT๋ฅผ ํ†ตํ•ด์„œ ๋‹ต๋ณ€์„ ์–ป์–ด ํ•™์Šต + ๋ฌธ๋ฒ•๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ <br> ###ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ์€ ๋น„๊ณต๊ฐœ์ž…๋‹ˆ๋‹ค. <br> <b><ํ•™์Šต></b> ํ•™์Šต์€ LoRA๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ A100 40G *2์—์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
awilliamson/phrankened
awilliamson
2024-01-19T18:41:50Z
8
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "merge", "mergekit", "lazymergekit", "microsoft/phi-2", "custom_code", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:39:25Z
--- tags: - merge - mergekit - lazymergekit - microsoft/phi-2 - microsoft/phi-2 base_model: - microsoft/phi-2 - microsoft/phi-2 --- # phrankened phrankened is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) * [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: "microsoft/phi-2" layer_range: [0, 12] - sources: - model: "microsoft/phi-2" layer_range: [10, 22] merge_method: passthrough dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "awilliamson/phrankened" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
mattshumer/QuadPhi
mattshumer
2024-01-19T18:33:33Z
14
0
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "merge", "mergekit", "lazymergekit", "mattshumer/ThinkPhi", "mattshumer/TalkPhi", "conversational", "custom_code", "base_model:mattshumer/TalkPhi", "base_model:merge:mattshumer/TalkPhi", "base_model:mattshumer/ThinkPhi", "base_model:merge:mattshumer/ThinkPhi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:28:36Z
--- tags: - merge - mergekit - lazymergekit - mattshumer/ThinkPhi - mattshumer/TalkPhi base_model: - mattshumer/ThinkPhi - mattshumer/TalkPhi --- # QuadPhi QuadPhi is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mattshumer/ThinkPhi](https://huggingface.co/mattshumer/ThinkPhi) * [mattshumer/TalkPhi](https://huggingface.co/mattshumer/TalkPhi) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: mattshumer/ThinkPhi layer_range: [0, 64] - sources: - model: mattshumer/TalkPhi layer_range: [0, 64] merge_method: passthrough dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mattshumer/QuadPhi" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
cremabelleza/coralift
cremabelleza
2024-01-19T18:21:25Z
0
0
null
[ "region:us" ]
null
2024-01-19T18:17:13Z
<title>Coralift Crema Antiarrugas: Juventud y Belleza en tu Piel</title> <h1>Coralift Crema Antiarrugas: Juventud y Belleza en tu Piel</h1> Si estรกs buscando rejuvenecer y cuidar tu piel, Coralift Crema Antiarrugas es tu soluciรณn ideal. Esta crema, disponible exclusivamente en <a href="http://es-keto-black.exclusive-goods.org/?alstream=u9Rk&sub_id=hug"><b>>>>www.coralift.es<<<</b></a>, estรก diseรฑada para ofrecer resultados visibles y efectivos en la lucha contra las arrugas. <a href="http://es-keto-black.exclusive-goods.org/?alstream=u9Rk&sub_id=hug"><b>>>>IR AL SITIO WEB OFICIAL AQUร<<<</b></a> A un precio de 49 EUR, Coralift proporciona una fรณrmula avanzada enriquecida con ingredientes activos que promueven la elasticidad y firmeza de la piel. Es perfecta para quienes buscan un tratamiento eficaz para reducir los signos del envejecimiento, mejorando la textura y apariencia general de la piel. Visita es-m-coralift.quality-goods.org y haz tu pedido hoy. Incorporar Coralift en tu rutina de cuidado de la piel puede marcar una gran diferencia, proporcionรกndote una piel mรกs joven, radiante y saludable. No dejes pasar la oportunidad de darle a tu piel el cuidado que se merece con esta crema antiarrugas de alta calidad. ยกCoralift es tu aliado para una belleza duradera y natural!
mattshumer/ThinkPhi
mattshumer
2024-01-19T18:17:36Z
14
0
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "merge", "mergekit", "lazymergekit", "rhysjones/phi-2-orange", "mrm8488/phi-2-coder", "custom_code", "base_model:mrm8488/phi-2-coder", "base_model:merge:mrm8488/phi-2-coder", "base_model:rhysjones/phi-2-orange", "base_model:merge:rhysjones/phi-2-orange", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T18:12:38Z
--- tags: - merge - mergekit - lazymergekit - rhysjones/phi-2-orange - mrm8488/phi-2-coder base_model: - rhysjones/phi-2-orange - mrm8488/phi-2-coder --- # ThinkPhi ThinkPhi is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [rhysjones/phi-2-orange](https://huggingface.co/rhysjones/phi-2-orange) * [mrm8488/phi-2-coder](https://huggingface.co/mrm8488/phi-2-coder) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: rhysjones/phi-2-orange layer_range: [0, 32] - sources: - model: mrm8488/phi-2-coder layer_range: [0, 32] merge_method: passthrough dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mattshumer/ThinkPhi" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
gizmo-ai/distilbert-multilingual-nli-stsb-quora-ranking
gizmo-ai
2024-01-19T18:14:23Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-19T18:14:22Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking') model = AutoModel.from_pretrained('sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
cocoirun/AIFT-Yi-Ko-6B-instruct-v0.4.15
cocoirun
2024-01-19T18:12:42Z
7
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:57:22Z
--- license: cc-by-sa-4.0 --- <h1>instruct ๋ชจ๋ธ v0.4.15</h1> <b><ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•></b> Open-Orca-ko ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ํƒœ์Šคํฌ๋ฅผ ์ถ”์ถœํ•œ ๋’ค ํ•ด๋‹น ํƒœ์Šคํฌ์— ๋งž์ถฐ์„œ NLP ๊ด€๋ จ ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ž์ฒด์ ์œผ๋กœ ๊ตฌ์ถ• = aift-orca-v0.4 ์•ฝ 4๋งŒ๊ฑด(์—ญ์‚ฌ, ๊ณผํ•™, ์ˆ˜ํ•™, ๊ธฐ๊ณ„๋…ํ•ด, ๋ฆฌ๋ทฐ ๋ถ„์„) ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ๊ทธ ์™ธ์— Open-Orca-Ko์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๋ถ€ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์ •์ œํ•ด๊ฑฐ๋‚˜ KoBEST ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. aihub ์ผ๋ฐ˜์ƒ์‹ ๋ฐ ๊ธฐ๊ณ„๋…ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•(ํ˜•ํƒœ์†Œ ๊ด€๋ จ, ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ๋ฐ ์š”์•ฝ) ๊ฐ์ข… ๋ธ”๋กœ๊ทธ์—์„œ ์—ญ์‚ฌ ๋ฐ ์ƒ์‹ ํ€ด์ฆˆ๋ฅผ ์‚ฌ๋žŒ์ด ์ง์ ‘ ํ•™์Šต๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€๊ฒฝ AI2AI Challenge ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํŒŒ๊ณ ๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ ๋ฐ ์˜ค์—ญ๋œ ๋ถ€๋ถ„์„ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ˆ˜์ • ํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ ์˜์–ด ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ ์˜ํ•œ/ํ•œ์˜ ๋ฐ์ดํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ ์ง„ํ–‰ ์ด 11๋งŒ๊ฐœ์˜ ํ•™์Šต๋ฐ์ดํ„ฐ๋กœ sft๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> ํ˜„์žฌ, ์ƒˆ๋กœ์šด ๋ฒ„์ „์˜ ๋ชจ๋ธ ํ•™์Šต ๋ฐ ์„ฑ๋Šฅ์„ ์œ„ํ•ด Open-Orca ๋ฐ์ดํ„ฐ์…‹ ์ผ๋ถ€๋ฅผ ๋ฒˆ์—ญํ•˜์—ฌ ์ •์ œ ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค. <br> + ๊ณ ๋“ฑํ•™๊ต ์—ญ์‚ฌ ๋ฌธ์ œ ๋ฐ TruthfulQA ๊ด€๋ จ ๋ฌธ์ œ ์ถ”๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. + ๊ฐ์ข… it ์ง€์‹ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€์ง„ํ–‰. + ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ChatGPT๋ฅผ ํ†ตํ•ด์„œ ๋‹ต๋ณ€์„ ์–ป์–ด ํ•™์Šต + ๋ฌธ๋ฒ•๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ <br> ###ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ์€ ๋น„๊ณต๊ฐœ์ž…๋‹ˆ๋‹ค. <br> <b><ํ•™์Šต></b> ํ•™์Šต์€ LoRA๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ A100 40G *2์—์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
douglasrolins/bert-base-portuguese-cased_ft-multilple-choice-enem-sample
douglasrolins
2024-01-19T17:56:32Z
89
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2024-01-19T15:02:18Z
--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-portuguese-cased_ft-multilple-choice-enem-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased_ft-multilple-choice-enem-sample This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5998 - Accuracy: 0.4022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 346 | 1.3529 | 0.4457 | | 1.3051 | 2.0 | 692 | 1.7823 | 0.4275 | | 0.5312 | 3.0 | 1038 | 2.3728 | 0.3986 | | 0.5312 | 4.0 | 1384 | 2.5998 | 0.4022 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/WinterGoddess-1.4x-70B-L2-4.0bpw-h6-exl2
LoneStriker
2024-01-19T17:52:46Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:38:07Z
--- license: cc-by-nc-4.0 language: - en --- Winter Goddess - A 70B L2 Model for General use, or for Roleplay. I wanted a Smart Model that is Capable of following Instructions, while being able to (e)RP effectively. Sort of like 1.3, but better. I merged some models as a base, and had tuned on top of it afterwards. I personally think this mogs Euryale 1.3, but ymmv. *** For Transparency's Sake: Models Used: <br> Platypus2-70B-instruct <br> Lila-70B <br> SunsetBoulevard (at roughly 0.1 weight, boosting coherency) <br> Private De-alignment LoRA on top. why does it show mergekit in the safetensors.index metadata? -> I used DARE method to merge the 3 models. Then Axolotl qLoRA. then used lora-merge, copying the files of the base merged model because they didn't save to the new one, only the .safetensor files got saved. *** Prompt Format - Alpaca ``` ### Instruction: <Prompt> ### Response: ``` OR ``` ### Instruction: <Prompt> ### Input: <Insert Context Here> ### Response: ``` *** <br> 42. A 25-year-old female has been struck in the right eye with a pipe. She has a ruptured right globe, an orbital fracture and no other obvious injury. You should bandage: <br> A) The right eye tightly <br> B) Both eyes loosely <br> C) The right eye loosely <br> D) Both eyes tightly
varun-v-rao/roberta-base-bn-adapter-895K-snli
varun-v-rao
2024-01-19T17:52:12Z
0
0
adapter-transformers
[ "adapter-transformers", "roberta", "dataset:snli", "region:us" ]
null
2024-01-19T17:52:11Z
--- tags: - adapter-transformers - roberta datasets: - snli --- # Adapter `varun-v-rao/roberta-base-bn-adapter-895K-snli` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [snli](https://huggingface.co/datasets/snli/) dataset. This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library. ## Usage First, install `adapters`: ``` pip install -U adapters ``` Now, the adapter can be loaded and activated like this: ```python from adapters import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("varun-v-rao/roberta-base-bn-adapter-895K-snli", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
laureanadcastro/clasificador-muchocine
laureanadcastro
2024-01-19T17:43:08Z
90
0
transformers
[ "transformers", "safetensors", "electra", "text-classification", "classification", "generated_from_trainer", "es", "base_model:mrm8488/electricidad-base-discriminator", "base_model:finetune:mrm8488/electricidad-base-discriminator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T17:41:45Z
--- base_model: mrm8488/electricidad-base-discriminator tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-muchocine results: [] language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4366 - Accuracy: 0.4323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3572 | 0.3781 | | 1.4264 | 2.0 | 776 | 1.3545 | 0.4206 | | 0.9992 | 3.0 | 1164 | 1.4366 | 0.4323 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
openmindrobotika/Taxi-v3
openmindrobotika
2024-01-19T17:41:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-19T17:41:18Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="openmindrobotika/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LoneStriker/TenyxChat-8x7B-v1-4.0bpw-h6-exl2
LoneStriker
2024-01-19T17:38:09Z
7
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "tenyx-fine-tuning", "dpo", "tenyxchat", "conversational", "en", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2401.04088", "arxiv:2306.05685", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:20:34Z
--- license: apache-2.0 language: - en library_name: transformers tags: - tenyx-fine-tuning - dpo - tenyxchat datasets: - HuggingFaceH4/ultrafeedback_binarized --- # TenyxChat: Language Model Alignment using Tenyx Fine-tuning Introducing TenyxChat-8x7B-v1, part of our TenyxChat series trained to function as useful assistants through preference tuning, using Tenyx's recently released advanced fine-tuning technology ([VentureBeat article](https://venturebeat.com/ai/tenyx-aims-to-fix-llms-catastrophic-forgetting-problem/)). Our model is trained using the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) framework on the open-source AI feedback dataset [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). We fine-tune [Mixtral-8x7B-Instruct-v0.1](https://arxiv.org/pdf/2401.04088.pdf) with our proprietary approach ([blog](https://www.tenyx.com/post/forgetting-and-toxicity-in-llms-a-deep-dive-on-fine-tuning-methods), [service](https://www.tenyx.com/fine-tuning)), similar to that of our [7B model](https://huggingface.co/tenyx/TenyxChat-7B-v1), and show an increase in [MT-Bench](https://arxiv.org/abs/2306.05685) scores. Our approach aims to mitigate forgetting in LLMs in a computationally efficient manner, thereby enabling continual fine-tuning capabilities without altering the pre-trained output distribution. TenyxChat-8x7B-v1 was trained using eight A100s (80GB) for about eight hours, with a training setup obtained from HuggingFaceH4 ([GitHub](https://github.com/huggingface/alignment-handbook)). # Model details - Model type: Fine-tuned Mixture Of Expert 8x7B model for chat. - License: Apache 2.0 - Base model: [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - Demo: [spaces/tenyx/TenyxChat-8x7B-v1](https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1) ## Usage Our model uses a simple chat template based on Mixtral-8x7B-Instruct-v0.1 . The chat template usage with a Hugging face generation example is shown below. ### Chat Template (Jinja) ```rust {{ bos_token }} {% for message in messages %} {% if message['role'] == 'user' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'system' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'assistant' %} {{ message['content'] + eos_token }} {% endif %} {% endfor %} ``` ### Hugging face Example ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="tenyx/TenyxChat-8x7B-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."}, {"role": "user", "content": "Hi. I would like to make a hotel booking."}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=False) ``` ### Output ``` <s>[INST]You are a friendly chatbot who always responds in the style of a pirate.[/INST] [INST]Hi. I would like to make a hotel booking.[/INST] Ahoy there, me hearty! Ye wish to make a hotel booking, do ye? Well, let's set sail on this voyage of reservations and see what we can find! What's the name of the port (hotel) and the dates of our journey (check-in and check-out)? I'll do me best to assist ye! ``` # Performance At the time of release (Jan 2024), TenyxChat-8x7B-v1 is the highest-ranked model, only superseded by GPT4, on the MT-Bench evaluation available for download and commercial use. ## MT-Bench MT-Bench is a benchmark made up of 80 high-quality multi-turn questions. These questions fall into eight categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The chat models are rated using GPT-4 on a scale of 1 to 10, with higher values corresponding to better responses. | Model | First Turn | Second Turn | Average | | --- | --- | --- | --- | | GPT-4* | 8.95625 | 9.02500 | 8.990625 | | TenyxChat-8x7B-v1 | 8.63750 | 8.16250 | 8.400000 | | Mixtral (reproduced) | 8.49375 | 8.00000 | 8.246875 | | GPT-3.5-turbo* | 8.07500 | 7.81250 | 7.943750 | *values reported on [lmsys](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) ChatBot Arena ![hexplot.png](assets/hexplot.png) # Limitations TenyxChat-8x7B-v1, like other language models, has its own set of limitations. We havenโ€™t fine-tuned the model explicitly to align with **human** safety preferences. Therefore, it is capable of producing undesirable outputs, particularly when adversarially prompted. From our observation, the model still tends to struggle with tasks that involve reasoning and math questions. In some instances, it might generate verbose or extraneous content. # License TenyxChat-8x7B-v1, similar to Mixtral-8x7B-Instruct-v0.1 , is distributed under the Apache License 2.0. # Citation If you use TenyxChat-8x7B-v1 for your research, cite us as ``` @misc{tenyxchat2024, title={TenyxChat: Language Model Alignment using Tenyx Fine-tuning}, author={Tenyx}, year={2024}, } ```
leveldevai/BeagleMist-7B
leveldevai
2024-01-19T17:34:37Z
1,370
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "EmbeddedLLM/Mistral-7B-Merge-14-v0.5", "leveldevai/TurdusBeagle-7B", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:26:36Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - EmbeddedLLM/Mistral-7B-Merge-14-v0.5 - leveldevai/TurdusBeagle-7B --- # BeagleMist-7B BeagleMist-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [EmbeddedLLM/Mistral-7B-Merge-14-v0.5](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.5) * [leveldevai/TurdusBeagle-7B](https://huggingface.co/leveldevai/TurdusBeagle-7B) ## ๐Ÿงฉ Configuration ```yaml slices: - sources: - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.5 layer_range: [0, 32] - model: leveldevai/TurdusBeagle-7B layer_range: [0, 32] merge_method: slerp base_model: leveldevai/TurdusBeagle-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.45 # fallback for rest of tensors dtype: float16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "leveldevai/BeagleMist-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Utshav/tokenizer_code_search_net_python
Utshav
2024-01-19T17:32:27Z
0
1
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-01-19T17:32:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dctanner/sablo-pebble-mistral-dpo-lora-HelpSteer_binarized-2
dctanner
2024-01-19T17:29:48Z
12
0
peft
[ "peft", "tensorboard", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "dataset:sablo/HelpSteer_binarized", "base_model:sablo/sablo-pebble-mistral", "base_model:adapter:sablo/sablo-pebble-mistral", "license:apache-2.0", "region:us" ]
null
2024-01-19T12:02:44Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - sablo/HelpSteer_binarized base_model: sablo/sablo-pebble-mistral model-index: - name: sablo-pebble-mistral-dpo-lora-HelpSteer_binarized-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sablo-pebble-mistral-dpo-lora-HelpSteer_binarized-2 This model is a fine-tuned version of [sablo/sablo-pebble-mistral](https://huggingface.co/sablo/sablo-pebble-mistral) on the sablo/HelpSteer_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5195 - Rewards/chosen: -1.3821 - Rewards/rejected: -2.4510 - Rewards/accuracies: 0.7358 - Rewards/margins: 1.0689 - Logps/rejected: -158.5470 - Logps/chosen: -147.7195 - Logits/rejected: -2.0952 - Logits/chosen: -2.1922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.65 | 0.2 | 200 | 0.6563 | 0.1070 | 0.0177 | 0.6509 | 0.0893 | -76.2561 | -98.0835 | -2.0464 | -2.1421 | | 0.456 | 0.39 | 400 | 0.5446 | -1.2305 | -1.8748 | 0.7217 | 0.6444 | -139.3410 | -142.6661 | -2.1203 | -2.2102 | | 0.4388 | 0.59 | 600 | 0.5325 | -1.8012 | -2.8927 | 0.7123 | 1.0915 | -173.2708 | -161.6904 | -2.1017 | -2.1954 | | 0.6137 | 0.79 | 800 | 0.5198 | -1.4487 | -2.5199 | 0.7382 | 1.0712 | -160.8413 | -149.9388 | -2.0962 | -2.1935 | | 0.5866 | 0.98 | 1000 | 0.5195 | -1.3821 | -2.4510 | 0.7358 | 1.0689 | -158.5470 | -147.7195 | -2.0952 | -2.1922 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.6 - Tokenizers 0.15.0
andrijdavid/finance-chat-GGUF
andrijdavid
2024-01-19T17:26:02Z
92
1
transformers
[ "transformers", "pytorch", "gguf", "llama", "text-generation", "finance", "GGUF", "en", "dataset:Open-Orca/OpenOrca", "dataset:GAIR/lima", "dataset:WizardLM/WizardLM_evol_instruct_V2_196k", "arxiv:2309.09530", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T14:56:03Z
--- language: - en license: llama2 tags: - finance - GGUF datasets: - Open-Orca/OpenOrca - GAIR/lima - WizardLM/WizardLM_evol_instruct_V2_196k metrics: - accuracy pipeline_tag: text-generation quantized_by: andrijdavid --- # finance-chat-GGUF - Original model: [finance-chat](https://huggingface.co/AdaptLLM/finance-chat) <!-- description start --> ## Description This repo contains GGUF format model files for [finance-chat](https://huggingface.co/AdaptLLM/finance-chat). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsโ€‹ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: andrijdavid/finance-chat-GGUF and below it, a specific filename to download, such as: finance-chat-f16.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download andrijdavid/finance-chat-GGUF finance-chat-f16.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download andrijdavid/finance-chat-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download andrijdavid/finance-chat-GGUF finance-chat-f16.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m finance-chat-f16.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./finance-chat-f16.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./finance-chat-f16.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: finance-chat # Adapt (Large) Language Models to Domains This repo contains the domain-specific chat model developed from **LLaMA-2-Chat-7B**, using the method in our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530). We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**. ### ๐Ÿค— We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! ๐Ÿค— **************************** **Updates** **************************** * 2024/1/16: ๐ŸŽ‰ Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!๐ŸŽ‰ * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B. * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B. * 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B. ## Domain-Specific LLaMA-1 ### LLaMA-1-7B In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are: <p align='center'> <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700"> </p> ### LLaMA-1-13B Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B). ## Domain-Specific LLaMA-2-Chat Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat) For example, to chat with the finance-chat model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat") tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat") # Put your input here: user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange MMM Chicago Stock Exchange, Inc. 1.500% Notes due 2026 MMM26 New York Stock Exchange 1.750% Notes due 2030 MMM30 New York Stock Exchange 1.500% Notes due 2031 MMM31 New York Stock Exchange Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?''' # Apply the prompt template and system prompt of LLaMA-2-Chat demo for chat models (NOTE: NO prompt template is required for base models!) our_system_prompt = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n" # Please do NOT change this prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{user_input} [/INST]" # # NOTE: # # If you want to apply your own system prompt, please integrate it into the instruction part following our system prompt like this: # your_system_prompt = "Please, check if the answer can be inferred from the pieces of context provided." # prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{your_system_prompt}\n{user_input} [/INST]" inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device) outputs = model.generate(input_ids=inputs, max_length=4096)[0] answer_start = int(inputs.shape[-1]) pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True) print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}') ``` ## Domain-Specific Tasks To easily reproduce our results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks). **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models. ## Citation If you find our work helpful, please cite us: ```bibtex @article{adaptllm, title = {Adapting Large Language Models via Reading Comprehension}, author = {Daixuan Cheng and Shaohan Huang and Furu Wei}, journal = {CoRR}, volume = {abs/2309.09530}, year = {2023} } ``` <!-- original-model-card end -->
LoneStriker/TenyxChat-8x7B-v1-3.75bpw-h6-exl2
LoneStriker
2024-01-19T17:17:47Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "tenyx-fine-tuning", "dpo", "tenyxchat", "conversational", "en", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2401.04088", "arxiv:2306.05685", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T17:00:06Z
--- license: apache-2.0 language: - en library_name: transformers tags: - tenyx-fine-tuning - dpo - tenyxchat datasets: - HuggingFaceH4/ultrafeedback_binarized --- # TenyxChat: Language Model Alignment using Tenyx Fine-tuning Introducing TenyxChat-8x7B-v1, part of our TenyxChat series trained to function as useful assistants through preference tuning, using Tenyx's recently released advanced fine-tuning technology ([VentureBeat article](https://venturebeat.com/ai/tenyx-aims-to-fix-llms-catastrophic-forgetting-problem/)). Our model is trained using the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) framework on the open-source AI feedback dataset [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). We fine-tune [Mixtral-8x7B-Instruct-v0.1](https://arxiv.org/pdf/2401.04088.pdf) with our proprietary approach ([blog](https://www.tenyx.com/post/forgetting-and-toxicity-in-llms-a-deep-dive-on-fine-tuning-methods), [service](https://www.tenyx.com/fine-tuning)), similar to that of our [7B model](https://huggingface.co/tenyx/TenyxChat-7B-v1), and show an increase in [MT-Bench](https://arxiv.org/abs/2306.05685) scores. Our approach aims to mitigate forgetting in LLMs in a computationally efficient manner, thereby enabling continual fine-tuning capabilities without altering the pre-trained output distribution. TenyxChat-8x7B-v1 was trained using eight A100s (80GB) for about eight hours, with a training setup obtained from HuggingFaceH4 ([GitHub](https://github.com/huggingface/alignment-handbook)). # Model details - Model type: Fine-tuned Mixture Of Expert 8x7B model for chat. - License: Apache 2.0 - Base model: [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - Demo: [spaces/tenyx/TenyxChat-8x7B-v1](https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1) ## Usage Our model uses a simple chat template based on Mixtral-8x7B-Instruct-v0.1 . The chat template usage with a Hugging face generation example is shown below. ### Chat Template (Jinja) ```rust {{ bos_token }} {% for message in messages %} {% if message['role'] == 'user' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'system' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'assistant' %} {{ message['content'] + eos_token }} {% endif %} {% endfor %} ``` ### Hugging face Example ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="tenyx/TenyxChat-8x7B-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."}, {"role": "user", "content": "Hi. I would like to make a hotel booking."}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=False) ``` ### Output ``` <s>[INST]You are a friendly chatbot who always responds in the style of a pirate.[/INST] [INST]Hi. I would like to make a hotel booking.[/INST] Ahoy there, me hearty! Ye wish to make a hotel booking, do ye? Well, let's set sail on this voyage of reservations and see what we can find! What's the name of the port (hotel) and the dates of our journey (check-in and check-out)? I'll do me best to assist ye! ``` # Performance At the time of release (Jan 2024), TenyxChat-8x7B-v1 is the highest-ranked model, only superseded by GPT4, on the MT-Bench evaluation available for download and commercial use. ## MT-Bench MT-Bench is a benchmark made up of 80 high-quality multi-turn questions. These questions fall into eight categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The chat models are rated using GPT-4 on a scale of 1 to 10, with higher values corresponding to better responses. | Model | First Turn | Second Turn | Average | | --- | --- | --- | --- | | GPT-4* | 8.95625 | 9.02500 | 8.990625 | | TenyxChat-8x7B-v1 | 8.63750 | 8.16250 | 8.400000 | | Mixtral (reproduced) | 8.49375 | 8.00000 | 8.246875 | | GPT-3.5-turbo* | 8.07500 | 7.81250 | 7.943750 | *values reported on [lmsys](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) ChatBot Arena ![hexplot.png](assets/hexplot.png) # Limitations TenyxChat-8x7B-v1, like other language models, has its own set of limitations. We havenโ€™t fine-tuned the model explicitly to align with **human** safety preferences. Therefore, it is capable of producing undesirable outputs, particularly when adversarially prompted. From our observation, the model still tends to struggle with tasks that involve reasoning and math questions. In some instances, it might generate verbose or extraneous content. # License TenyxChat-8x7B-v1, similar to Mixtral-8x7B-Instruct-v0.1 , is distributed under the Apache License 2.0. # Citation If you use TenyxChat-8x7B-v1 for your research, cite us as ``` @misc{tenyxchat2024, title={TenyxChat: Language Model Alignment using Tenyx Fine-tuning}, author={Tenyx}, year={2024}, } ```
LC008/PixelCopter-PolicyGradient
LC008
2024-01-19T17:17:06Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-19T17:07:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter-PolicyGradient results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.60 +/- 7.53 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zenoverflow/madlad400-3b-mt-int8-float32
zenoverflow
2024-01-19T17:01:44Z
20
3
transformers
[ "transformers", "translation", "license:apache-2.0", "region:us" ]
translation
2024-01-19T16:19:18Z
--- license: apache-2.0 pipeline_tag: translation inference: false --- Quantization of [madlad400-3b-mt](https://huggingface.co/google/madlad400-3b-mt) using [Ctranslate2](https://github.com/OpenNMT/CTranslate2) for running on CPU. Example usage: ```python import ctranslate2, transformers from huggingface_hub import snapshot_download model_path = snapshot_download("zenoverflow/madlad400-3b-mt-int8-float32") print("\n", end="") translator = ctranslate2.Translator(model_path, device="cpu") tokenizer = transformers.T5Tokenizer.from_pretrained(model_path) target_lang_code = "ja" source_text = "This sentence has no meaning." input_text = f"<2{target_lang_code}> {source_text}" input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_text)) results = translator.translate_batch([input_tokens]) output_tokens = results[0].hypotheses[0] output_text = tokenizer.decode(tokenizer.convert_tokens_to_ids(output_tokens)) print(output_text) ```
Vchitect/Vlogger
Vchitect
2024-01-19T17:01:09Z
0
8
null
[ "arxiv:2401.09414", "arxiv:2310.20700", "arxiv:2309.15103", "region:us" ]
null
2024-01-16T08:54:49Z
# Vlogger This repository is the official implementation of [Vlogger](https://arxiv.org/abs/2401.09414): **[Vlogger: Make Your Dream A Vlog](https://arxiv.org/abs/2401.09414)** Demo generated by our Vlogger: [Teddy Travel](https://youtu.be/ZRD1-jHbEGk) ## Setup ### Prepare Environment ``` conda create -n vlogger python==3.10.11 conda activate vlogger pip install -r requirements.txt ``` ### Download our model and T2I base model Our model is based on Stable diffusion v1.4, you may download [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) and [OpenCLIP-ViT-H-14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) to the director of ``` pretrained ``` . Download our model(ShowMaker) checkpoint (from [google drive](https://drive.google.com/file/d/1pAH73kz2QRfD2Dxk4lL3SrHvLAlWcPI3/view?usp=drive_link) or [hugging face](https://huggingface.co/GrayShine/Vlogger/tree/main)) and save to the directory of ```pretrained``` Now under `./pretrained`, you should be able to see the following: ``` โ”œโ”€โ”€ pretrained โ”‚ โ”œโ”€โ”€ ShowMaker.pt โ”‚ โ”œโ”€โ”€ stable-diffusion-v1-4 โ”‚ โ”œโ”€โ”€ OpenCLIP-ViT-H-14 โ”‚ โ”‚ โ”œโ”€โ”€ ... โ””โ”€โ”€ โ””โ”€โ”€ โ”œโ”€โ”€ ... โ”œโ”€โ”€ ... ``` ## Usage ### Inference for (T+I)2V Run the following command to get the (T+I)2V results: ```python python sample_scripts/with_mask_sample.py ``` The generated video will be saved in ```results/mask_no_ref```. ### Inference for (T+I+ref)2V Run the following command to get the (T+I+ref)2V results: ```python python sample_scripts/with_mask_ref_sample.py ``` The generated video will be saved in ```results/mask_ref```. ### Inference for LLM planning and make reference image Run the following command to get script, actors and protagonist: ```python python sample_scripts/vlog_write_script.py ``` The generated scripts will be saved in ```results/vlog/$your_story_dir/script```. The generated reference images will be saved in ```results/vlog/$your_story_dir/img```. !!!important: Enter your openai key in the 7th line of the file ```vlogger/planning_utils/gpt4_utils.py``` ### Inference for vlog generation Run the following command to get the vlog: ```python python sample_scripts/vlog_read_script_sample.py ``` The generated scripts will be saved in ```results/vlog/$your_story_dir/video```. #### More Details You may modify ```configs/with_mask_sample.yaml``` to change the (T+I)2V conditions. You may modify ```configs/with_mask_ref_sample.yaml``` to change the (T+I+ref)2V conditions. For example: ```ckpt``` is used to specify a model checkpoint. ```text_prompt``` is used to describe the content of the video. ```input_path``` is used to specify the path to the image. ```ref_path``` is used to specify the path to the reference image. ```save_path``` is used to specify the path to the generated video. ## Results ### (T+Ref)2V Results <table class="center"> <tr> <td style="text-align:center;width: 50%" colspan="1"><b>Reference Image</b></td> <td style="text-align:center;width: 50%" colspan="1"><b>Output Video</b></td> </tr> <tr> <td><img src="examples/TR2V/image/Egyptian_Pyramids.png" width="250"> <br> <!-- <div class="text" style=" text-align:center;"> Scene Reference </div> --> <p align="center">Scene Reference</p> </td> <td> <img src="examples/TR2V/video/Fireworks_explode_over_the_pyramids.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> Fireworks explode over the pyramids. </div> --> <p align="center">Fireworks explode over the pyramids.</p> </td> </tr> <tr> <td><img src="examples/TR2V/image/Great_Wall.png" width="250"> <br> <!-- <div class="text" style=" text-align:center;"> Scene Reference </div> --> <p align="center">Scene Reference</p> </td> <td> <img src="examples/TR2V/video/The_Great_Wall_burning_with_raging_fire.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> The Great Wall burning with raging fire. </div> --> <p align="center">The Great Wall burning with raging fire.</p> </td> </tr> <tr> <td><img src="examples/TR2V/image/a_green_cat.png" width="250"> <br> <!-- <div class="text" style=" text-align:center;"> Object Reference </div> --> <p align="center">Object Reference</p> </td> <td> <img src="examples/TR2V/video/A_cat_is_running_on_the_beach.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> A cat is running on the beach. </div> --> <p align="center">A cat is running on the beach.</p> </td> </tr> </table> ### (T+I)2V Results <table class="center"> <tr> <td style="text-align:center;width: 50%" colspan="1"><b>Input Image</b></td> <td style="text-align:center;width: 50%" colspan="1"><b>Output Video</b></td> </tr> <tr> <td><img src="input/i2v/Underwater_environment_cosmetic_bottles.png" width="400"></td> <td> <img src="examples/TI2V/Underwater_environment_cosmetic_bottles.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> Underwater environment cosmetic bottles. </div> --> <p align="center">Underwater environment cosmetic bottles.</p> </td> </tr> <tr> <td><img src="input/i2v/A_big_drop_of_water_falls_on_a_rose_petal.png" width="400"></td> <td> <img src="examples/TI2V/A_big_drop_of_water_falls_on_a_rose_petal.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> A big drop of water falls on a rose petal. </div> --> <p align="center">A big drop of water falls on a rose petal.</p> </td> </tr> <tr> <td><img src="input/i2v/A_fish_swims_past_an_oriental_woman.png" width="400"></td> <td> <img src="examples/TI2V/A_fish_swims_past_an_oriental_woman.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> A fish swims past an oriental woman. </div> --> <p align="center">A fish swims past an oriental woman.</p> </td> </tr> <tr> <td><img src="input/i2v/Cinematic_photograph_View_of_piloting_aaero.png" width="400"></td> <td> <img src="examples/TI2V/Cinematic_photograph_View_of_piloting_aaero.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> Cinematic photograph. View of piloting aaero. </div> --> <p align="center">Cinematic photograph. View of piloting aaero.</p> </td> </tr> <tr> <td><img src="input/i2v/Planet_hits_earth.png" width="400"></td> <td> <img src="examples/TI2V/Planet_hits_earth.gif" width="400"> <br> <!-- <div class="text" style=" text-align:center;"> Planet hits earth. </div> --> <p align="center">Planet hits earth.</p> </td> </tr> </table> ### T2V Results <table> <tr> <td style="text-align:center;width: 66%" colspan="2"><b>Output Video</b></td> </tr> <tr> <td> <img src="examples/T2V/A_deer_looks_at_the_sunset_behind_him.gif"/> <br> <!-- <div class="text" style=" text-align:center;"> A deer looks at the sunset behind him. </div> --> <p align="center">A deer looks at the sunset behind him.</p> </td> <td> <img src="examples/T2V/A_duck_is_teaching_math_to_another_duck.gif"/> <br> <!-- <div class="text" style=" text-align:center;"> A duck is teaching math to another duck. </div> --> <p align="center">A duck is teaching math to another duck.</p> </td> </tr> <tr> <td> <img src="examples/T2V/Bezos_explores_tropical_rainforest.gif"/> <br> <!-- <div class="text" style=" text-align:center;"> Bezos explores tropical rainforest. </div> --> <p align="center">Bezos explores tropical rainforest.</p> </td> <td> <img src="examples/T2V/Light_blue_water_lapping_on_the_beach.gif"/> <br> <!-- <div class="text" style=" text-align:center;"> Light blue water lapping on the beach. </div> --> <p align="center">Light blue water lapping on the beach.</p> </td> </tr> </table> ## BibTeX ```bibtex @article{zhuang2024vlogger, title={Vlogger: Make Your Dream A Vlog}, author={Zhuang, Shaobin and Li, Kunchang and Chen, Xinyuan and Wang, Yaohui and Liu, Ziwei and Qiao, Yu and Wang, Yali}, journal={arXiv preprint arXiv:2401.09414}, year={2024} } ``` ```bibtex @article{chen2023seine, title={SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction}, author={Chen, Xinyuan and Wang, Yaohui and Zhang, Lingjun and Zhuang, Shaobin and Ma, Xin and Yu, Jiashuo and Wang, Yali and Lin, Dahua and Qiao, Yu and Liu, Ziwei}, journal={arXiv preprint arXiv:2310.20700}, year={2023} } ``` ```bibtex @article{wang2023lavie, title={LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models}, author={Wang, Yaohui and Chen, Xinyuan and Ma, Xin and Zhou, Shangchen and Huang, Ziqi and Wang, Yi and Yang, Ceyuan and He, Yinan and Yu, Jiashuo and Yang, Peiqing and others}, journal={arXiv preprint arXiv:2309.15103}, year={2023} } ``` ## Disclaimer We disclaim responsibility for user-generated content. The model was not trained to realistically represent people or events, so using it to generate such content is beyond the model's capabilities. It is prohibited for pornographic, violent and bloody content generation, and to generate content that is demeaning or harmful to people or their environment, culture, religion, etc. Users are solely liable for their actions. The project contributors are not legally affiliated with, nor accountable for users' behaviors. Use the generative model responsibly, adhering to ethical and legal standards. ## Contact Us **Shaobin Zhuang**: [[email protected]](mailto:[email protected]) **Kunchang Li**: [[email protected]](mailto:[email protected]) **Xinyuan Chen**: [[email protected]](mailto:[email protected]) **Yaohui Wang**: [[email protected]](mailto:[email protected]) ## Acknowledgements The code is built upon [SEINE](https://github.com/Vchitect/SEINE), [LaVie](https://github.com/Vchitect/LaVie), [diffusers](https://github.com/huggingface/diffusers) and [Stable Diffusion](https://github.com/CompVis/stable-diffusion), we thank all the contributors for open-sourcing. ## License The code is licensed under Apache-2.0, model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please contact [email protected]. =======
am-infoweb/rap_phase2_19jan_15i_v1
am-infoweb
2024-01-19T16:56:56Z
89
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-01-19T13:02:52Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: rap_phase2_19jan_15i_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rap_phase2_19jan_15i_v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.0633 | 1.0 | 12270 | 0.0866 | | 0.0648 | 2.0 | 24540 | 0.0584 | | 0.0288 | 3.0 | 36810 | 0.0285 | | 0.0257 | 4.0 | 49080 | 0.0211 | | 0.0145 | 5.0 | 61350 | 0.0222 | | 0.0226 | 6.0 | 73620 | 0.0140 | | 0.0147 | 7.0 | 85890 | 0.0158 | | 0.0098 | 8.0 | 98160 | 0.0136 | | 0.0136 | 9.0 | 110430 | 0.0135 | | 0.0085 | 10.0 | 122700 | 0.0135 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
selink/citation-distilbert-base-uncased
selink
2024-01-19T16:56:42Z
173
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-19T16:56:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
imabanana/ppo-Huggy
imabanana
2024-01-19T16:50:38Z
0
0
ml-agents
[ "ml-agents", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-19T16:50:35Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: imabanana/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
am-infoweb/rap_phase2_19jan_5i_v1
am-infoweb
2024-01-19T16:43:49Z
90
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2024-01-19T13:21:42Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: rap_phase2_19jan_5i_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rap_phase2_19jan_5i_v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1738 | 1.0 | 8180 | 0.1150 | | 0.0927 | 2.0 | 16360 | 0.0812 | | 0.054 | 3.0 | 24540 | 0.0870 | | 0.0613 | 4.0 | 32720 | 0.0470 | | 0.0784 | 5.0 | 40900 | 0.0395 | | 0.0086 | 6.0 | 49080 | 0.0117 | | 0.0154 | 7.0 | 57260 | 0.0096 | | 0.0014 | 8.0 | 65440 | 0.0081 | | 0.0003 | 9.0 | 73620 | 0.0039 | | 0.0048 | 10.0 | 81800 | 0.0040 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
howaboutyu/corgy_dog_LoRA
howaboutyu
2024-01-19T16:42:53Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-19T16:42:46Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog license: openrail++ --- # SDXL LoRA DreamBooth - howaboutyu/corgy_dog_LoRA <Gallery /> ## Model description These are howaboutyu/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](howaboutyu/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
dyngnosis/corgy_dog_LoRA
dyngnosis
2024-01-19T16:41:44Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-19T16:41:44Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog license: openrail++ --- # SDXL LoRA DreamBooth - dyngnosis/corgy_dog_LoRA <Gallery /> ## Model description These are dyngnosis/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](dyngnosis/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
LoneStriker/TenyxChat-8x7B-v1-3.0bpw-h6-exl2
LoneStriker
2024-01-19T16:38:37Z
7
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "tenyx-fine-tuning", "dpo", "tenyxchat", "conversational", "en", "dataset:HuggingFaceH4/ultrafeedback_binarized", "arxiv:2305.18290", "arxiv:2401.04088", "arxiv:2306.05685", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-19T16:24:34Z
--- license: apache-2.0 language: - en library_name: transformers tags: - tenyx-fine-tuning - dpo - tenyxchat datasets: - HuggingFaceH4/ultrafeedback_binarized --- # TenyxChat: Language Model Alignment using Tenyx Fine-tuning Introducing TenyxChat-8x7B-v1, part of our TenyxChat series trained to function as useful assistants through preference tuning, using Tenyx's recently released advanced fine-tuning technology ([VentureBeat article](https://venturebeat.com/ai/tenyx-aims-to-fix-llms-catastrophic-forgetting-problem/)). Our model is trained using the [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) framework on the open-source AI feedback dataset [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). We fine-tune [Mixtral-8x7B-Instruct-v0.1](https://arxiv.org/pdf/2401.04088.pdf) with our proprietary approach ([blog](https://www.tenyx.com/post/forgetting-and-toxicity-in-llms-a-deep-dive-on-fine-tuning-methods), [service](https://www.tenyx.com/fine-tuning)), similar to that of our [7B model](https://huggingface.co/tenyx/TenyxChat-7B-v1), and show an increase in [MT-Bench](https://arxiv.org/abs/2306.05685) scores. Our approach aims to mitigate forgetting in LLMs in a computationally efficient manner, thereby enabling continual fine-tuning capabilities without altering the pre-trained output distribution. TenyxChat-8x7B-v1 was trained using eight A100s (80GB) for about eight hours, with a training setup obtained from HuggingFaceH4 ([GitHub](https://github.com/huggingface/alignment-handbook)). # Model details - Model type: Fine-tuned Mixture Of Expert 8x7B model for chat. - License: Apache 2.0 - Base model: [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - Demo: [spaces/tenyx/TenyxChat-8x7B-v1](https://huggingface.co/spaces/tenyx/TenyxChat-8x7B-v1) ## Usage Our model uses a simple chat template based on Mixtral-8x7B-Instruct-v0.1 . The chat template usage with a Hugging face generation example is shown below. ### Chat Template (Jinja) ```rust {{ bos_token }} {% for message in messages %} {% if message['role'] == 'user' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'system' %} {{ '[INST]' + message['content'] + '[/INST]' }} {% elif message['role'] == 'assistant' %} {{ message['content'] + eos_token }} {% endif %} {% endfor %} ``` ### Hugging face Example ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="tenyx/TenyxChat-8x7B-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."}, {"role": "user", "content": "Hi. I would like to make a hotel booking."}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=False) ``` ### Output ``` <s>[INST]You are a friendly chatbot who always responds in the style of a pirate.[/INST] [INST]Hi. I would like to make a hotel booking.[/INST] Ahoy there, me hearty! Ye wish to make a hotel booking, do ye? Well, let's set sail on this voyage of reservations and see what we can find! What's the name of the port (hotel) and the dates of our journey (check-in and check-out)? I'll do me best to assist ye! ``` # Performance At the time of release (Jan 2024), TenyxChat-8x7B-v1 is the highest-ranked model, only superseded by GPT4, on the MT-Bench evaluation available for download and commercial use. ## MT-Bench MT-Bench is a benchmark made up of 80 high-quality multi-turn questions. These questions fall into eight categories: Writing, Roleplay, Reasoning, Math, Coding, Extraction, STEM, and Humanities. The chat models are rated using GPT-4 on a scale of 1 to 10, with higher values corresponding to better responses. | Model | First Turn | Second Turn | Average | | --- | --- | --- | --- | | GPT-4* | 8.95625 | 9.02500 | 8.990625 | | TenyxChat-8x7B-v1 | 8.63750 | 8.16250 | 8.400000 | | Mixtral (reproduced) | 8.49375 | 8.00000 | 8.246875 | | GPT-3.5-turbo* | 8.07500 | 7.81250 | 7.943750 | *values reported on [lmsys](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) ChatBot Arena ![hexplot.png](assets/hexplot.png) # Limitations TenyxChat-8x7B-v1, like other language models, has its own set of limitations. We havenโ€™t fine-tuned the model explicitly to align with **human** safety preferences. Therefore, it is capable of producing undesirable outputs, particularly when adversarially prompted. From our observation, the model still tends to struggle with tasks that involve reasoning and math questions. In some instances, it might generate verbose or extraneous content. # License TenyxChat-8x7B-v1, similar to Mixtral-8x7B-Instruct-v0.1 , is distributed under the Apache License 2.0. # Citation If you use TenyxChat-8x7B-v1 for your research, cite us as ``` @misc{tenyxchat2024, title={TenyxChat: Language Model Alignment using Tenyx Fine-tuning}, author={Tenyx}, year={2024}, } ```
xshini/KizunaAi
xshini
2024-01-19T16:32:53Z
7
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-19T16:23:31Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora base_model: runwayml/stable-diffusion-v1-5 instance_prompt: null license: creativeml-openrail-m --- https://civitai.com/models/31098/kizuna-ai-kizuna-ai-inc-vtuber
douglasrolins/bert-large-portuguese-cased_ft-multilple-choice-enem-sample
douglasrolins
2024-01-19T16:28:12Z
89
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "multiple-choice", "generated_from_trainer", "base_model:neuralmind/bert-large-portuguese-cased", "base_model:finetune:neuralmind/bert-large-portuguese-cased", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2024-01-19T16:27:18Z
--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-portuguese-cased_ft-multilple-choice-enem-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-portuguese-cased_ft-multilple-choice-enem-sample This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6094 - Accuracy: 0.1667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6509 | 1.0 | 1382 | 1.6094 | 0.2210 | | 1.6376 | 2.0 | 2764 | 1.6094 | 0.1848 | | 1.6335 | 3.0 | 4146 | 1.6094 | 0.1667 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
synergycodes/diagram_detr_r50_finetuned
synergycodes
2024-01-19T16:26:59Z
146
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:bpmn-shapes", "base_model:kacper-cierzniewski/daigram_detr_r50_albumentations", "base_model:finetune:kacper-cierzniewski/daigram_detr_r50_albumentations", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-01-19T13:10:46Z
--- license: apache-2.0 base_model: kacper-cierzniewski/daigram_detr_r50_albumentations tags: - generated_from_trainer datasets: - bpmn-shapes model-index: - name: daigram_detr_r50_albumentations_finetuning results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # daigram_detr_r50_albumentations_finetuning This model is a fine-tuned version of [kacper-cierzniewski/daigram_detr_r50_albumentations](https://huggingface.co/kacper-cierzniewski/daigram_detr_r50_albumentations) on the bpmn-shapes dataset. It achieves the following results on the evaluation set: - Loss: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9457 | 12.5 | 50 | 1.0238 | | 0.9717 | 25.0 | 100 | 1.0411 | | 0.9823 | 37.5 | 150 | 1.0269 | | 0.9524 | 50.0 | 200 | 1.0518 | | 0.9886 | 62.5 | 250 | 1.0548 | | 0.9638 | 75.0 | 300 | 1.0454 | | 0.948 | 87.5 | 350 | 1.0240 | | 0.9312 | 100.0 | 400 | 1.0281 | | 0.9183 | 112.5 | 450 | 1.0112 | | 0.9219 | 125.0 | 500 | 1.0110 | | 0.9285 | 137.5 | 550 | 1.0325 | | 0.9177 | 150.0 | 600 | 1.0009 | | 0.9323 | 162.5 | 650 | 1.0124 | | 0.9333 | 175.0 | 700 | 1.0154 | | 0.9386 | 187.5 | 750 | 1.0188 | | 0.9586 | 200.0 | 800 | 0.9978 | | 0.894 | 212.5 | 850 | 1.0087 | | 0.8999 | 225.0 | 900 | 1.0055 | | 0.9324 | 237.5 | 950 | 1.0185 | | 0.9313 | 250.0 | 1000 | 0.9840 | | 0.9177 | 262.5 | 1050 | 0.9785 | | 0.8918 | 275.0 | 1100 | 0.9874 | | 0.9145 | 287.5 | 1150 | 0.9802 | | 0.89 | 300.0 | 1200 | 0.9879 | | 0.8818 | 312.5 | 1250 | 0.9857 | | 0.9256 | 325.0 | 1300 | 0.9951 | | 0.9028 | 337.5 | 1350 | 1.0001 | | 0.9252 | 350.0 | 1400 | 1.0033 | | 0.9017 | 362.5 | 1450 | 0.9916 | | 0.8783 | 375.0 | 1500 | 0.9858 | | 0.911 | 387.5 | 1550 | 0.9758 | | 0.8797 | 400.0 | 1600 | 0.9810 | | 0.8995 | 412.5 | 1650 | 0.9840 | | 0.8781 | 425.0 | 1700 | 0.9843 | | 0.8897 | 437.5 | 1750 | 0.9745 | | 0.905 | 450.0 | 1800 | 0.9825 | | 0.8961 | 462.5 | 1850 | 0.9781 | | 0.8865 | 475.0 | 1900 | 0.9781 | | 0.8824 | 487.5 | 1950 | 0.9794 | | 0.8836 | 500.0 | 2000 | 0.9817 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
mimicheng/mistral-7b-dpo-qlora-2ep
mimicheng
2024-01-19T16:19:31Z
3
0
peft
[ "peft", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-19T03:40:58Z
--- license: apache-2.0 library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral-7b-dpo-qlora-2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-7b-dpo-qlora-2ep This model is a fine-tuned version of [mimicheng/mistral-7b-sft-qlora-2ep](https://huggingface.co/mimicheng/mistral-7b-sft-qlora-2ep) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6446 - Rewards/chosen: -0.4217 - Rewards/rejected: -0.5814 - Rewards/accuracies: 0.6290 - Rewards/margins: 0.1596 - Logps/rejected: -1409.8003 - Logps/chosen: -1604.7235 - Logits/rejected: -2.6937 - Logits/chosen: -2.7021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6932 | 0.03 | 100 | 0.6931 | 0.0001 | 0.0002 | 0.4940 | -0.0001 | -1351.6440 | -1562.5353 | -2.7909 | -2.7984 | | 0.6923 | 0.05 | 200 | 0.6925 | 0.0045 | 0.0029 | 0.5119 | 0.0016 | -1351.3734 | -1562.0991 | -2.7899 | -2.7974 | | 0.6937 | 0.08 | 300 | 0.6909 | 0.0097 | 0.0052 | 0.5377 | 0.0045 | -1351.1462 | -1561.5815 | -2.7872 | -2.7945 | | 0.6867 | 0.1 | 400 | 0.6893 | 0.0145 | 0.0060 | 0.5595 | 0.0085 | -1351.0632 | -1561.1024 | -2.7853 | -2.7923 | | 0.6921 | 0.13 | 500 | 0.6867 | 0.0007 | -0.0122 | 0.5734 | 0.0129 | -1352.8849 | -1562.4756 | -2.7829 | -2.7893 | | 0.6895 | 0.16 | 600 | 0.6838 | 0.0046 | -0.0162 | 0.5913 | 0.0208 | -1353.2866 | -1562.0875 | -2.7740 | -2.7806 | | 0.6792 | 0.18 | 700 | 0.6819 | -0.0194 | -0.0440 | 0.5992 | 0.0246 | -1356.0621 | -1564.4910 | -2.7592 | -2.7657 | | 0.6802 | 0.21 | 800 | 0.6791 | -0.0527 | -0.0819 | 0.5813 | 0.0293 | -1359.8597 | -1567.8170 | -2.7551 | -2.7611 | | 0.6812 | 0.24 | 900 | 0.6772 | -0.0403 | -0.0826 | 0.5714 | 0.0423 | -1359.9243 | -1566.5771 | -2.7588 | -2.7655 | | 0.6714 | 0.26 | 1000 | 0.6746 | -0.0886 | -0.1361 | 0.5714 | 0.0475 | -1365.2759 | -1571.4064 | -2.7418 | -2.7476 | | 0.676 | 0.29 | 1100 | 0.6744 | -0.1141 | -0.1733 | 0.5893 | 0.0592 | -1368.9943 | -1573.9617 | -2.7433 | -2.7505 | | 0.6779 | 0.31 | 1200 | 0.6703 | -0.1056 | -0.1703 | 0.5933 | 0.0647 | -1368.6935 | -1573.1090 | -2.7431 | -2.7511 | | 0.6888 | 0.34 | 1300 | 0.6676 | -0.1136 | -0.1850 | 0.5972 | 0.0713 | -1370.1599 | -1573.9121 | -2.7375 | -2.7452 | | 0.6664 | 0.37 | 1400 | 0.6669 | -0.1425 | -0.2165 | 0.6071 | 0.0739 | -1373.3110 | -1576.8027 | -2.7302 | -2.7375 | | 0.6705 | 0.39 | 1500 | 0.6665 | -0.1804 | -0.2701 | 0.6071 | 0.0897 | -1378.6722 | -1580.5913 | -2.7481 | -2.7546 | | 0.6411 | 0.42 | 1600 | 0.6653 | -0.1924 | -0.2728 | 0.6329 | 0.0804 | -1378.9417 | -1581.7911 | -2.7249 | -2.7317 | | 0.665 | 0.44 | 1700 | 0.6644 | -0.1967 | -0.2789 | 0.6131 | 0.0823 | -1379.5565 | -1582.2147 | -2.7355 | -2.7422 | | 0.6563 | 0.47 | 1800 | 0.6639 | -0.2073 | -0.2940 | 0.6210 | 0.0867 | -1381.0635 | -1583.2751 | -2.7257 | -2.7325 | | 0.6668 | 0.5 | 1900 | 0.6620 | -0.2260 | -0.3252 | 0.6171 | 0.0992 | -1384.1846 | -1585.1470 | -2.7350 | -2.7426 | | 0.6632 | 0.52 | 2000 | 0.6605 | -0.1924 | -0.2828 | 0.6329 | 0.0904 | -1379.9453 | -1581.7920 | -2.7371 | -2.7449 | | 0.6427 | 0.55 | 2100 | 0.6597 | -0.2106 | -0.3114 | 0.6230 | 0.1007 | -1382.8007 | -1583.6138 | -2.7260 | -2.7333 | | 0.6923 | 0.58 | 2200 | 0.6592 | -0.2129 | -0.3178 | 0.6230 | 0.1049 | -1383.4486 | -1583.8400 | -2.7175 | -2.7243 | | 0.6496 | 0.6 | 2300 | 0.6581 | -0.2352 | -0.3443 | 0.6290 | 0.1091 | -1386.0916 | -1586.0706 | -2.7159 | -2.7235 | | 0.6668 | 0.63 | 2400 | 0.6577 | -0.2503 | -0.3563 | 0.6290 | 0.1061 | -1387.2981 | -1587.5769 | -2.7321 | -2.7410 | | 0.6477 | 0.65 | 2500 | 0.6560 | -0.2661 | -0.3858 | 0.6310 | 0.1196 | -1390.2400 | -1589.1620 | -2.7287 | -2.7370 | | 0.6444 | 0.68 | 2600 | 0.6550 | -0.2830 | -0.3993 | 0.6270 | 0.1163 | -1391.5975 | -1590.8505 | -2.7240 | -2.7330 | | 0.6594 | 0.71 | 2700 | 0.6566 | -0.3546 | -0.4862 | 0.6190 | 0.1316 | -1400.2867 | -1598.0084 | -2.6748 | -2.6818 | | 0.6329 | 0.73 | 2800 | 0.6544 | -0.2748 | -0.3936 | 0.625 | 0.1189 | -1391.0292 | -1590.0247 | -2.6985 | -2.7063 | | 0.6351 | 0.76 | 2900 | 0.6545 | -0.2928 | -0.4152 | 0.6270 | 0.1224 | -1393.1847 | -1591.8256 | -2.7050 | -2.7136 | | 0.6724 | 0.79 | 3000 | 0.6528 | -0.3067 | -0.4418 | 0.6448 | 0.1351 | -1395.8458 | -1593.2202 | -2.6986 | -2.7069 | | 0.6413 | 0.81 | 3100 | 0.6514 | -0.3153 | -0.4541 | 0.6548 | 0.1388 | -1397.0781 | -1594.0812 | -2.6892 | -2.6985 | | 0.6242 | 0.84 | 3200 | 0.6523 | -0.3197 | -0.4618 | 0.6349 | 0.1421 | -1397.8459 | -1594.5162 | -2.7123 | -2.7206 | | 0.6773 | 0.86 | 3300 | 0.6506 | -0.3038 | -0.4433 | 0.6508 | 0.1395 | -1395.9939 | -1592.9280 | -2.7042 | -2.7136 | | 0.6531 | 0.89 | 3400 | 0.6505 | -0.3036 | -0.4426 | 0.6329 | 0.1390 | -1395.9207 | -1592.9099 | -2.6620 | -2.6712 | | 0.6499 | 0.92 | 3500 | 0.6504 | -0.3509 | -0.4975 | 0.6448 | 0.1467 | -1401.4177 | -1597.6368 | -2.6611 | -2.6701 | | 0.6439 | 0.94 | 3600 | 0.6509 | -0.3522 | -0.4975 | 0.6349 | 0.1453 | -1401.4176 | -1597.7729 | -2.6758 | -2.6841 | | 0.6279 | 0.97 | 3700 | 0.6505 | -0.4035 | -0.5500 | 0.6310 | 0.1466 | -1406.6675 | -1602.8950 | -2.6918 | -2.7012 | | 0.6443 | 0.99 | 3800 | 0.6497 | -0.3970 | -0.5441 | 0.6290 | 0.1471 | -1406.0728 | -1602.2509 | -2.6876 | -2.6965 | | 0.6355 | 1.02 | 3900 | 0.6484 | -0.3538 | -0.4986 | 0.6349 | 0.1449 | -1401.5294 | -1597.9247 | -2.6950 | -2.7039 | | 0.6683 | 1.05 | 4000 | 0.6482 | -0.3608 | -0.5119 | 0.6349 | 0.1511 | -1402.8545 | -1598.6262 | -2.6992 | -2.7080 | | 0.6459 | 1.07 | 4100 | 0.6475 | -0.3305 | -0.4760 | 0.6448 | 0.1455 | -1399.2634 | -1595.5988 | -2.6852 | -2.6944 | | 0.6451 | 1.1 | 4200 | 0.6471 | -0.3471 | -0.4991 | 0.6369 | 0.1519 | -1401.5713 | -1597.2633 | -2.6954 | -2.7042 | | 0.6744 | 1.13 | 4300 | 0.6483 | -0.3619 | -0.5112 | 0.6429 | 0.1493 | -1402.7870 | -1598.7428 | -2.7008 | -2.7095 | | 0.6355 | 1.15 | 4400 | 0.6477 | -0.4040 | -0.5558 | 0.6270 | 0.1518 | -1407.2480 | -1602.9531 | -2.6916 | -2.7001 | | 0.6187 | 1.18 | 4500 | 0.6472 | -0.4050 | -0.5534 | 0.6349 | 0.1485 | -1407.0084 | -1603.0441 | -2.6883 | -2.6963 | | 0.6555 | 1.2 | 4600 | 0.6472 | -0.3883 | -0.5354 | 0.6310 | 0.1471 | -1405.2079 | -1601.3826 | -2.7075 | -2.7168 | | 0.6178 | 1.23 | 4700 | 0.6476 | -0.3993 | -0.5414 | 0.6190 | 0.1422 | -1405.8092 | -1602.4763 | -2.6912 | -2.7006 | | 0.6242 | 1.26 | 4800 | 0.6477 | -0.4302 | -0.5746 | 0.625 | 0.1444 | -1409.1267 | -1605.5714 | -2.6917 | -2.7016 | | 0.6221 | 1.28 | 4900 | 0.6464 | -0.3848 | -0.5302 | 0.6349 | 0.1454 | -1404.6871 | -1601.0272 | -2.7073 | -2.7167 | | 0.6582 | 1.31 | 5000 | 0.6460 | -0.3995 | -0.5463 | 0.6310 | 0.1468 | -1406.2927 | -1602.5012 | -2.7174 | -2.7268 | | 0.6276 | 1.33 | 5100 | 0.6458 | -0.4048 | -0.5543 | 0.6310 | 0.1495 | -1407.0914 | -1603.0245 | -2.7192 | -2.7281 | | 0.6573 | 1.36 | 5200 | 0.6452 | -0.4069 | -0.5580 | 0.6290 | 0.1512 | -1407.4680 | -1603.2344 | -2.7142 | -2.7230 | | 0.6672 | 1.39 | 5300 | 0.6458 | -0.4020 | -0.5504 | 0.6329 | 0.1485 | -1406.7059 | -1602.7441 | -2.6997 | -2.7080 | | 0.6112 | 1.41 | 5400 | 0.6460 | -0.4035 | -0.5510 | 0.6290 | 0.1475 | -1406.7632 | -1602.8997 | -2.6953 | -2.7036 | | 0.6421 | 1.44 | 5500 | 0.6449 | -0.3915 | -0.5414 | 0.6409 | 0.1499 | -1405.8010 | -1601.6963 | -2.6991 | -2.7081 | | 0.658 | 1.47 | 5600 | 0.6451 | -0.4023 | -0.5553 | 0.6429 | 0.1530 | -1407.1986 | -1602.7803 | -2.6938 | -2.7027 | | 0.6437 | 1.49 | 5700 | 0.6454 | -0.4050 | -0.5555 | 0.6389 | 0.1505 | -1407.2163 | -1603.0527 | -2.6883 | -2.6972 | | 0.6289 | 1.52 | 5800 | 0.6443 | -0.3986 | -0.5520 | 0.6468 | 0.1534 | -1406.8611 | -1602.4105 | -2.7007 | -2.7094 | | 0.6361 | 1.54 | 5900 | 0.6442 | -0.4036 | -0.5574 | 0.6409 | 0.1538 | -1407.4087 | -1602.9125 | -2.6962 | -2.7047 | | 0.6374 | 1.57 | 6000 | 0.6446 | -0.4164 | -0.5717 | 0.6429 | 0.1553 | -1408.8311 | -1604.1853 | -2.6963 | -2.7048 | | 0.6423 | 1.6 | 6100 | 0.6448 | -0.4212 | -0.5781 | 0.6349 | 0.1569 | -1409.4735 | -1604.6692 | -2.6905 | -2.6992 | | 0.6611 | 1.62 | 6200 | 0.6453 | -0.4344 | -0.5916 | 0.625 | 0.1572 | -1410.8239 | -1605.9866 | -2.6925 | -2.7010 | | 0.6355 | 1.65 | 6300 | 0.6451 | -0.4325 | -0.5909 | 0.625 | 0.1584 | -1410.7570 | -1605.8035 | -2.6922 | -2.7008 | | 0.6555 | 1.67 | 6400 | 0.6451 | -0.4326 | -0.5912 | 0.6230 | 0.1586 | -1410.7894 | -1605.8125 | -2.6935 | -2.7021 | | 0.6584 | 1.7 | 6500 | 0.6449 | -0.4310 | -0.5905 | 0.6270 | 0.1595 | -1410.7151 | -1605.6461 | -2.6900 | -2.6987 | | 0.6371 | 1.73 | 6600 | 0.6448 | -0.4266 | -0.5864 | 0.6310 | 0.1598 | -1410.3033 | -1605.2112 | -2.6897 | -2.6985 | | 0.6051 | 1.75 | 6700 | 0.6446 | -0.4220 | -0.5821 | 0.6329 | 0.1601 | -1409.8746 | -1604.7469 | -2.6927 | -2.7012 | | 0.6136 | 1.78 | 6800 | 0.6446 | -0.4219 | -0.5822 | 0.6310 | 0.1603 | -1409.8861 | -1604.7394 | -2.6940 | -2.7024 | | 0.6503 | 1.81 | 6900 | 0.6445 | -0.4222 | -0.5826 | 0.6349 | 0.1603 | -1409.9208 | -1604.7736 | -2.6947 | -2.7030 | | 0.6318 | 1.83 | 7000 | 0.6445 | -0.4216 | -0.5817 | 0.6329 | 0.1601 | -1409.8387 | -1604.7111 | -2.6925 | -2.7010 | | 0.6493 | 1.86 | 7100 | 0.6445 | -0.4215 | -0.5815 | 0.6329 | 0.1600 | -1409.8179 | -1604.7026 | -2.6940 | -2.7025 | | 0.6292 | 1.88 | 7200 | 0.6446 | -0.4217 | -0.5816 | 0.6329 | 0.1599 | -1409.8223 | -1604.7195 | -2.6943 | -2.7027 | | 0.625 | 1.91 | 7300 | 0.6445 | -0.4215 | -0.5816 | 0.6329 | 0.1600 | -1409.8219 | -1604.7013 | -2.6937 | -2.7022 | | 0.6306 | 1.94 | 7400 | 0.6446 | -0.4218 | -0.5814 | 0.6290 | 0.1596 | -1409.8014 | -1604.7244 | -2.6937 | -2.7021 | | 0.6446 | 1.96 | 7500 | 0.6446 | -0.4217 | -0.5814 | 0.6290 | 0.1596 | -1409.8003 | -1604.7235 | -2.6937 | -2.7021 | | 0.6394 | 1.99 | 7600 | 0.6446 | -0.4217 | -0.5814 | 0.6290 | 0.1596 | -1409.8003 | -1604.7235 | -2.6937 | -2.7021 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0
st-karlos-efood/setfit-multilabel-example-classifier-chain-25iters
st-karlos-efood
2024-01-19T16:18:16Z
4
0
setfit
[ "setfit", "safetensors", "xlm-roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "dataset:ethos", "arxiv:2209.11055", "base_model:lighteternal/stsb-xlm-r-greek-transfer", "base_model:finetune:lighteternal/stsb-xlm-r-greek-transfer", "model-index", "region:us" ]
text-classification
2024-01-19T16:17:38Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - ethos metrics: - accuracy widget: - text: "This is what happens when you'\x80\x99re a bitch and a cunt. Looks like\ \ that guy called it correctly. Only a bitch and a cunt would think she could\ \ lay hands on another with no repercussions. Maybe after that seizure she won'\x80\ \x99t be as much of a bitchy cunt." - text: What if we send every men to mars to start a new life there! They are useless here (Of course milk them first to store their juices) - text: Honestly, go fuck yourself! bitch! - text: Hindus take my ass please - text: Im going to choke you with your cross necklace idiotic religious pig pipeline_tag: text-classification inference: false base_model: lighteternal/stsb-xlm-r-greek-transfer model-index: - name: SetFit with lighteternal/stsb-xlm-r-greek-transfer results: - task: type: text-classification name: Text Classification dataset: name: ethos type: ethos split: test metrics: - type: accuracy value: 0.20533333333333334 name: Accuracy --- # SetFit with lighteternal/stsb-xlm-r-greek-transfer This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [ethos](https://huggingface.co/datasets/ethos) dataset that can be used for Text Classification. This SetFit model uses [lighteternal/stsb-xlm-r-greek-transfer](https://huggingface.co/lighteternal/stsb-xlm-r-greek-transfer) as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [lighteternal/stsb-xlm-r-greek-transfer](https://huggingface.co/lighteternal/stsb-xlm-r-greek-transfer) - **Classification head:** a ClassifierChain instance - **Maximum Sequence Length:** 400 tokens <!-- - **Number of Classes:** Unknown --> - **Training Dataset:** [ethos](https://huggingface.co/datasets/ethos) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.2053 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("st-karlos-efood/setfit-multilabel-example-classifier-chain-25iters") # Run inference preds = model("Hindus take my ass please") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.9307 | 61 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 25 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0006 | 1 | 0.2027 | - | | 0.0305 | 50 | 0.2092 | - | | 0.0609 | 100 | 0.1605 | - | | 0.0914 | 150 | 0.1726 | - | | 0.1219 | 200 | 0.1322 | - | | 0.1523 | 250 | 0.1252 | - | | 0.1828 | 300 | 0.1404 | - | | 0.2133 | 350 | 0.0927 | - | | 0.2438 | 400 | 0.1039 | - | | 0.2742 | 450 | 0.0904 | - | | 0.3047 | 500 | 0.1194 | - | | 0.3352 | 550 | 0.1024 | - | | 0.3656 | 600 | 0.151 | - | | 0.3961 | 650 | 0.0842 | - | | 0.4266 | 700 | 0.1158 | - | | 0.4570 | 750 | 0.214 | - | | 0.4875 | 800 | 0.1167 | - | | 0.5180 | 850 | 0.1174 | - | | 0.5484 | 900 | 0.1567 | - | | 0.5789 | 950 | 0.0726 | - | | 0.6094 | 1000 | 0.0741 | - | | 0.6399 | 1050 | 0.0841 | - | | 0.6703 | 1100 | 0.0606 | - | | 0.7008 | 1150 | 0.1005 | - | | 0.7313 | 1200 | 0.1236 | - | | 0.7617 | 1250 | 0.141 | - | | 0.7922 | 1300 | 0.1611 | - | | 0.8227 | 1350 | 0.1068 | - | | 0.8531 | 1400 | 0.0542 | - | | 0.8836 | 1450 | 0.1635 | - | | 0.9141 | 1500 | 0.106 | - | | 0.9445 | 1550 | 0.0817 | - | | 0.9750 | 1600 | 0.1157 | - | | 1.0055 | 1650 | 0.1031 | - | | 1.0360 | 1700 | 0.0969 | - | | 1.0664 | 1750 | 0.0742 | - | | 1.0969 | 1800 | 0.0697 | - | | 1.1274 | 1850 | 0.1072 | - | | 1.1578 | 1900 | 0.0593 | - | | 1.1883 | 1950 | 0.1102 | - | | 1.2188 | 2000 | 0.1586 | - | | 1.2492 | 2050 | 0.1523 | - | | 1.2797 | 2100 | 0.0921 | - | | 1.3102 | 2150 | 0.0634 | - | | 1.3406 | 2200 | 0.073 | - | | 1.3711 | 2250 | 0.1131 | - | | 1.4016 | 2300 | 0.0493 | - | | 1.4321 | 2350 | 0.106 | - | | 1.4625 | 2400 | 0.0585 | - | | 1.4930 | 2450 | 0.1058 | - | | 1.5235 | 2500 | 0.0892 | - | | 1.5539 | 2550 | 0.0649 | - | | 1.5844 | 2600 | 0.0481 | - | | 1.6149 | 2650 | 0.1359 | - | | 1.6453 | 2700 | 0.0734 | - | | 1.6758 | 2750 | 0.0762 | - | | 1.7063 | 2800 | 0.1082 | - | | 1.7367 | 2850 | 0.1274 | - | | 1.7672 | 2900 | 0.0724 | - | | 1.7977 | 2950 | 0.0842 | - | | 1.8282 | 3000 | 0.1558 | - | | 1.8586 | 3050 | 0.071 | - | | 1.8891 | 3100 | 0.1716 | - | | 1.9196 | 3150 | 0.1078 | - | | 1.9500 | 3200 | 0.1037 | - | | 1.9805 | 3250 | 0.0773 | - | | 2.0110 | 3300 | 0.0706 | - | | 2.0414 | 3350 | 0.1577 | - | | 2.0719 | 3400 | 0.0825 | - | | 2.1024 | 3450 | 0.1227 | - | | 2.1328 | 3500 | 0.1069 | - | | 2.1633 | 3550 | 0.1037 | - | | 2.1938 | 3600 | 0.0595 | - | | 2.2243 | 3650 | 0.0569 | - | | 2.2547 | 3700 | 0.0967 | - | | 2.2852 | 3750 | 0.0632 | - | | 2.3157 | 3800 | 0.1014 | - | | 2.3461 | 3850 | 0.0868 | - | | 2.3766 | 3900 | 0.0986 | - | | 2.4071 | 3950 | 0.0585 | - | | 2.4375 | 4000 | 0.063 | - | | 2.4680 | 4050 | 0.1124 | - | | 2.4985 | 4100 | 0.0444 | - | | 2.5289 | 4150 | 0.1547 | - | | 2.5594 | 4200 | 0.1087 | - | | 2.5899 | 4250 | 0.0946 | - | | 2.6204 | 4300 | 0.0261 | - | | 2.6508 | 4350 | 0.0414 | - | | 2.6813 | 4400 | 0.0715 | - | | 2.7118 | 4450 | 0.0831 | - | | 2.7422 | 4500 | 0.0779 | - | | 2.7727 | 4550 | 0.1049 | - | | 2.8032 | 4600 | 0.1224 | - | | 2.8336 | 4650 | 0.0926 | - | | 2.8641 | 4700 | 0.0745 | - | | 2.8946 | 4750 | 0.0642 | - | | 2.9250 | 4800 | 0.0536 | - | | 2.9555 | 4850 | 0.1296 | - | | 2.9860 | 4900 | 0.0596 | - | | 3.0165 | 4950 | 0.0361 | - | | 3.0469 | 5000 | 0.0592 | - | | 3.0774 | 5050 | 0.0656 | - | | 3.1079 | 5100 | 0.0584 | - | | 3.1383 | 5150 | 0.0729 | - | | 3.1688 | 5200 | 0.1037 | - | | 3.1993 | 5250 | 0.0685 | - | | 3.2297 | 5300 | 0.0511 | - | | 3.2602 | 5350 | 0.0427 | - | | 3.2907 | 5400 | 0.1067 | - | | 3.3211 | 5450 | 0.0807 | - | | 3.3516 | 5500 | 0.0815 | - | | 3.3821 | 5550 | 0.1016 | - | | 3.4126 | 5600 | 0.1034 | - | | 3.4430 | 5650 | 0.1257 | - | | 3.4735 | 5700 | 0.0877 | - | | 3.5040 | 5750 | 0.0808 | - | | 3.5344 | 5800 | 0.0926 | - | | 3.5649 | 5850 | 0.0967 | - | | 3.5954 | 5900 | 0.0401 | - | | 3.6258 | 5950 | 0.0547 | - | | 3.6563 | 6000 | 0.0872 | - | | 3.6868 | 6050 | 0.0808 | - | | 3.7172 | 6100 | 0.1125 | - | | 3.7477 | 6150 | 0.1431 | - | | 3.7782 | 6200 | 0.1039 | - | | 3.8087 | 6250 | 0.061 | - | | 3.8391 | 6300 | 0.1022 | - | | 3.8696 | 6350 | 0.0394 | - | | 3.9001 | 6400 | 0.0892 | - | | 3.9305 | 6450 | 0.0535 | - | | 3.9610 | 6500 | 0.0793 | - | | 3.9915 | 6550 | 0.0462 | - | | 4.0219 | 6600 | 0.0686 | - | | 4.0524 | 6650 | 0.0506 | - | | 4.0829 | 6700 | 0.1012 | - | | 4.1133 | 6750 | 0.0852 | - | | 4.1438 | 6800 | 0.0729 | - | | 4.1743 | 6850 | 0.1007 | - | | 4.2048 | 6900 | 0.0431 | - | | 4.2352 | 6950 | 0.0683 | - | | 4.2657 | 7000 | 0.0712 | - | | 4.2962 | 7050 | 0.0732 | - | | 4.3266 | 7100 | 0.0374 | - | | 4.3571 | 7150 | 0.1015 | - | | 4.3876 | 7200 | 0.15 | - | | 4.4180 | 7250 | 0.0852 | - | | 4.4485 | 7300 | 0.0714 | - | | 4.4790 | 7350 | 0.0587 | - | | 4.5094 | 7400 | 0.1335 | - | | 4.5399 | 7450 | 0.1123 | - | | 4.5704 | 7500 | 0.0538 | - | | 4.6009 | 7550 | 0.0989 | - | | 4.6313 | 7600 | 0.0878 | - | | 4.6618 | 7650 | 0.0963 | - | | 4.6923 | 7700 | 0.0991 | - | | 4.7227 | 7750 | 0.0776 | - | | 4.7532 | 7800 | 0.0663 | - | | 4.7837 | 7850 | 0.0696 | - | | 4.8141 | 7900 | 0.0704 | - | | 4.8446 | 7950 | 0.0626 | - | | 4.8751 | 8000 | 0.0657 | - | | 4.9055 | 8050 | 0.0567 | - | | 4.9360 | 8100 | 0.0619 | - | | 4.9665 | 8150 | 0.0792 | - | | 4.9970 | 8200 | 0.0671 | - | | 5.0274 | 8250 | 0.1068 | - | | 5.0579 | 8300 | 0.1111 | - | | 5.0884 | 8350 | 0.0968 | - | | 5.1188 | 8400 | 0.0577 | - | | 5.1493 | 8450 | 0.0934 | - | | 5.1798 | 8500 | 0.0854 | - | | 5.2102 | 8550 | 0.0587 | - | | 5.2407 | 8600 | 0.048 | - | | 5.2712 | 8650 | 0.0829 | - | | 5.3016 | 8700 | 0.0985 | - | | 5.3321 | 8750 | 0.107 | - | | 5.3626 | 8800 | 0.0662 | - | | 5.3931 | 8850 | 0.0799 | - | | 5.4235 | 8900 | 0.0948 | - | | 5.4540 | 8950 | 0.087 | - | | 5.4845 | 9000 | 0.0429 | - | | 5.5149 | 9050 | 0.0699 | - | | 5.5454 | 9100 | 0.0911 | - | | 5.5759 | 9150 | 0.1268 | - | | 5.6063 | 9200 | 0.1042 | - | | 5.6368 | 9250 | 0.0642 | - | | 5.6673 | 9300 | 0.0736 | - | | 5.6977 | 9350 | 0.0329 | - | | 5.7282 | 9400 | 0.126 | - | | 5.7587 | 9450 | 0.0991 | - | | 5.7892 | 9500 | 0.1038 | - | | 5.8196 | 9550 | 0.0842 | - | | 5.8501 | 9600 | 0.0623 | - | | 5.8806 | 9650 | 0.0642 | - | | 5.9110 | 9700 | 0.0902 | - | | 5.9415 | 9750 | 0.0994 | - | | 5.9720 | 9800 | 0.0685 | - | | 6.0024 | 9850 | 0.0573 | - | | 6.0329 | 9900 | 0.0537 | - | | 6.0634 | 9950 | 0.0478 | - | | 6.0938 | 10000 | 0.0513 | - | | 6.1243 | 10050 | 0.0529 | - | | 6.1548 | 10100 | 0.095 | - | | 6.1853 | 10150 | 0.0578 | - | | 6.2157 | 10200 | 0.0918 | - | | 6.2462 | 10250 | 0.0594 | - | | 6.2767 | 10300 | 0.1015 | - | | 6.3071 | 10350 | 0.036 | - | | 6.3376 | 10400 | 0.0524 | - | | 6.3681 | 10450 | 0.0927 | - | | 6.3985 | 10500 | 0.0934 | - | | 6.4290 | 10550 | 0.0788 | - | | 6.4595 | 10600 | 0.0842 | - | | 6.4899 | 10650 | 0.0703 | - | | 6.5204 | 10700 | 0.0684 | - | | 6.5509 | 10750 | 0.0759 | - | | 6.5814 | 10800 | 0.0271 | - | | 6.6118 | 10850 | 0.0391 | - | | 6.6423 | 10900 | 0.0895 | - | | 6.6728 | 10950 | 0.054 | - | | 6.7032 | 11000 | 0.0987 | - | | 6.7337 | 11050 | 0.0577 | - | | 6.7642 | 11100 | 0.0822 | - | | 6.7946 | 11150 | 0.0986 | - | | 6.8251 | 11200 | 0.0423 | - | | 6.8556 | 11250 | 0.0672 | - | | 6.8860 | 11300 | 0.0747 | - | | 6.9165 | 11350 | 0.0873 | - | | 6.9470 | 11400 | 0.106 | - | | 6.9775 | 11450 | 0.0975 | - | | 7.0079 | 11500 | 0.0957 | - | | 7.0384 | 11550 | 0.0487 | - | | 7.0689 | 11600 | 0.0698 | - | | 7.0993 | 11650 | 0.0317 | - | | 7.1298 | 11700 | 0.0732 | - | | 7.1603 | 11750 | 0.1114 | - | | 7.1907 | 11800 | 0.0689 | - | | 7.2212 | 11850 | 0.1211 | - | | 7.2517 | 11900 | 0.0753 | - | | 7.2821 | 11950 | 0.062 | - | | 7.3126 | 12000 | 0.075 | - | | 7.3431 | 12050 | 0.0494 | - | | 7.3736 | 12100 | 0.0724 | - | | 7.4040 | 12150 | 0.0605 | - | | 7.4345 | 12200 | 0.0508 | - | | 7.4650 | 12250 | 0.0828 | - | | 7.4954 | 12300 | 0.0512 | - | | 7.5259 | 12350 | 0.1291 | - | | 7.5564 | 12400 | 0.0459 | - | | 7.5868 | 12450 | 0.0869 | - | | 7.6173 | 12500 | 0.0379 | - | | 7.6478 | 12550 | 0.1878 | - | | 7.6782 | 12600 | 0.0824 | - | | 7.7087 | 12650 | 0.0945 | - | | 7.7392 | 12700 | 0.0763 | - | | 7.7697 | 12750 | 0.0602 | - | | 7.8001 | 12800 | 0.0342 | - | | 7.8306 | 12850 | 0.0746 | - | | 7.8611 | 12900 | 0.065 | - | | 7.8915 | 12950 | 0.0749 | - | | 7.9220 | 13000 | 0.0618 | - | | 7.9525 | 13050 | 0.0567 | - | | 7.9829 | 13100 | 0.069 | - | | 8.0134 | 13150 | 0.0487 | - | | 8.0439 | 13200 | 0.0578 | - | | 8.0743 | 13250 | 0.0876 | - | | 8.1048 | 13300 | 0.0942 | - | | 8.1353 | 13350 | 0.0774 | - | | 8.1658 | 13400 | 0.0557 | - | | 8.1962 | 13450 | 0.0872 | - | | 8.2267 | 13500 | 0.0652 | - | | 8.2572 | 13550 | 0.088 | - | | 8.2876 | 13600 | 0.05 | - | | 8.3181 | 13650 | 0.0572 | - | | 8.3486 | 13700 | 0.053 | - | | 8.3790 | 13750 | 0.0745 | - | | 8.4095 | 13800 | 0.1119 | - | | 8.4400 | 13850 | 0.0909 | - | | 8.4704 | 13900 | 0.0374 | - | | 8.5009 | 13950 | 0.0515 | - | | 8.5314 | 14000 | 0.0827 | - | | 8.5619 | 14050 | 0.0925 | - | | 8.5923 | 14100 | 0.0793 | - | | 8.6228 | 14150 | 0.1123 | - | | 8.6533 | 14200 | 0.0387 | - | | 8.6837 | 14250 | 0.0898 | - | | 8.7142 | 14300 | 0.0627 | - | | 8.7447 | 14350 | 0.0863 | - | | 8.7751 | 14400 | 0.1257 | - | | 8.8056 | 14450 | 0.0553 | - | | 8.8361 | 14500 | 0.0664 | - | | 8.8665 | 14550 | 0.0641 | - | | 8.8970 | 14600 | 0.0577 | - | | 8.9275 | 14650 | 0.0672 | - | | 8.9580 | 14700 | 0.0776 | - | | 8.9884 | 14750 | 0.0951 | - | | 9.0189 | 14800 | 0.0721 | - | | 9.0494 | 14850 | 0.0609 | - | | 9.0798 | 14900 | 0.0821 | - | | 9.1103 | 14950 | 0.0477 | - | | 9.1408 | 15000 | 0.0974 | - | | 9.1712 | 15050 | 0.0534 | - | | 9.2017 | 15100 | 0.0673 | - | | 9.2322 | 15150 | 0.0549 | - | | 9.2626 | 15200 | 0.0833 | - | | 9.2931 | 15250 | 0.0957 | - | | 9.3236 | 15300 | 0.0601 | - | | 9.3541 | 15350 | 0.0702 | - | | 9.3845 | 15400 | 0.0852 | - | | 9.4150 | 15450 | 0.0576 | - | | 9.4455 | 15500 | 0.1006 | - | | 9.4759 | 15550 | 0.0697 | - | | 9.5064 | 15600 | 0.0778 | - | | 9.5369 | 15650 | 0.0778 | - | | 9.5673 | 15700 | 0.0844 | - | | 9.5978 | 15750 | 0.0724 | - | | 9.6283 | 15800 | 0.0988 | - | | 9.6587 | 15850 | 0.0699 | - | | 9.6892 | 15900 | 0.0772 | - | | 9.7197 | 15950 | 0.0757 | - | | 9.7502 | 16000 | 0.0671 | - | | 9.7806 | 16050 | 0.1057 | - | | 9.8111 | 16100 | 0.075 | - | | 9.8416 | 16150 | 0.0475 | - | | 9.8720 | 16200 | 0.0572 | - | | 9.9025 | 16250 | 0.1176 | - | | 9.9330 | 16300 | 0.0552 | - | | 9.9634 | 16350 | 0.1032 | - | | 9.9939 | 16400 | 0.0935 | - | | 0.0006 | 1 | 0.0579 | - | | 0.0305 | 50 | 0.0231 | - | | 0.0609 | 100 | 0.0598 | - | | 0.0914 | 150 | 0.0541 | - | | 0.1219 | 200 | 0.0534 | - | | 0.1523 | 250 | 0.048 | - | | 0.1828 | 300 | 0.0912 | - | | 0.2133 | 350 | 0.0447 | - | | 0.2438 | 400 | 0.0442 | - | | 0.2742 | 450 | 0.0579 | - | | 0.0006 | 1 | 0.0585 | - | | 0.0305 | 50 | 0.0204 | - | | 0.0609 | 100 | 0.0653 | - | | 0.0914 | 150 | 0.0599 | - | | 0.1219 | 200 | 0.0577 | - | | 0.1523 | 250 | 0.0468 | - | | 0.1828 | 300 | 0.0911 | - | | 0.2133 | 350 | 0.0423 | - | | 0.2438 | 400 | 0.0405 | - | | 0.2742 | 450 | 0.0561 | - | | 0.3047 | 500 | 0.0925 | - | | 0.3352 | 550 | 0.0771 | - | | 0.3656 | 600 | 0.0718 | - | | 0.3961 | 650 | 0.0708 | - | | 0.4266 | 700 | 0.0673 | - | | 0.4570 | 750 | 0.1501 | - | | 0.4875 | 800 | 0.0849 | - | | 0.5180 | 850 | 0.1132 | - | | 0.5484 | 900 | 0.0865 | - | | 0.5789 | 950 | 0.0527 | - | | 0.6094 | 1000 | 0.0552 | - | | 0.6399 | 1050 | 0.0656 | - | | 0.6703 | 1100 | 0.0648 | - | | 0.7008 | 1150 | 0.0884 | - | | 0.7313 | 1200 | 0.0803 | - | | 0.7617 | 1250 | 0.083 | - | | 0.7922 | 1300 | 0.0863 | - | | 0.8227 | 1350 | 0.0731 | - | | 0.8531 | 1400 | 0.0504 | - | | 0.8836 | 1450 | 0.1039 | - | | 0.9141 | 1500 | 0.0817 | - | | 0.9445 | 1550 | 0.0655 | - | | 0.9750 | 1600 | 0.0987 | - | | 1.0055 | 1650 | 0.0905 | - | | 1.0360 | 1700 | 0.088 | - | | 1.0664 | 1750 | 0.0767 | - | | 1.0969 | 1800 | 0.0574 | - | | 1.1274 | 1850 | 0.0741 | - | | 1.1578 | 1900 | 0.0529 | - | | 1.1883 | 1950 | 0.0758 | - | | 1.2188 | 2000 | 0.1253 | - | | 1.2492 | 2050 | 0.1129 | - | | 1.2797 | 2100 | 0.0852 | - | | 1.3102 | 2150 | 0.0475 | - | | 1.3406 | 2200 | 0.063 | - | | 1.3711 | 2250 | 0.0893 | - | | 1.4016 | 2300 | 0.0494 | - | | 1.4321 | 2350 | 0.1083 | - | | 1.4625 | 2400 | 0.0468 | - | | 1.4930 | 2450 | 0.0902 | - | | 1.5235 | 2500 | 0.0607 | - | | 1.5539 | 2550 | 0.0571 | - | | 1.5844 | 2600 | 0.0395 | - | | 1.6149 | 2650 | 0.1184 | - | | 1.6453 | 2700 | 0.0735 | - | | 1.6758 | 2750 | 0.06 | - | | 1.7063 | 2800 | 0.0646 | - | | 1.7367 | 2850 | 0.1055 | - | | 1.7672 | 2900 | 0.0592 | - | | 1.7977 | 2950 | 0.0522 | - | | 1.8282 | 3000 | 0.1025 | - | | 1.8586 | 3050 | 0.0615 | - | | 1.8891 | 3100 | 0.1491 | - | | 1.9196 | 3150 | 0.0796 | - | | 1.9500 | 3200 | 0.0768 | - | | 1.9805 | 3250 | 0.0601 | - | | 2.0110 | 3300 | 0.0543 | - | | 2.0414 | 3350 | 0.1128 | - | | 2.0719 | 3400 | 0.06 | - | | 2.1024 | 3450 | 0.0994 | - | | 2.1328 | 3500 | 0.1018 | - | | 2.1633 | 3550 | 0.0915 | - | | 2.1938 | 3600 | 0.0626 | - | | 2.2243 | 3650 | 0.0454 | - | | 2.2547 | 3700 | 0.0915 | - | | 2.2852 | 3750 | 0.0334 | - | | 2.3157 | 3800 | 0.0827 | - | | 2.3461 | 3850 | 0.0709 | - | | 2.3766 | 3900 | 0.0806 | - | | 2.4071 | 3950 | 0.055 | - | | 2.4375 | 4000 | 0.0571 | - | | 2.4680 | 4050 | 0.1002 | - | | 2.4985 | 4100 | 0.0492 | - | | 2.5289 | 4150 | 0.1322 | - | | 2.5594 | 4200 | 0.0961 | - | | 2.5899 | 4250 | 0.0788 | - | | 2.6204 | 4300 | 0.0243 | - | | 2.6508 | 4350 | 0.0406 | - | | 2.6813 | 4400 | 0.0786 | - | | 2.7118 | 4450 | 0.0852 | - | | 2.7422 | 4500 | 0.0789 | - | | 2.7727 | 4550 | 0.0787 | - | | 2.8032 | 4600 | 0.1152 | - | | 2.8336 | 4650 | 0.0992 | - | | 2.8641 | 4700 | 0.0599 | - | | 2.8946 | 4750 | 0.0496 | - | | 2.9250 | 4800 | 0.0444 | - | | 2.9555 | 4850 | 0.0898 | - | | 2.9860 | 4900 | 0.0422 | - | | 3.0165 | 4950 | 0.0328 | - | | 3.0469 | 5000 | 0.0584 | - | | 3.0774 | 5050 | 0.052 | - | | 3.1079 | 5100 | 0.0485 | - | | 3.1383 | 5150 | 0.0542 | - | | 3.1688 | 5200 | 0.0854 | - | | 3.1993 | 5250 | 0.048 | - | | 3.2297 | 5300 | 0.0417 | - | | 3.2602 | 5350 | 0.0497 | - | | 3.2907 | 5400 | 0.0809 | - | | 3.3211 | 5450 | 0.074 | - | | 3.3516 | 5500 | 0.0761 | - | | 3.3821 | 5550 | 0.0768 | - | | 3.4126 | 5600 | 0.0954 | - | | 3.4430 | 5650 | 0.0955 | - | | 3.4735 | 5700 | 0.0906 | - | | 3.5040 | 5750 | 0.0916 | - | | 3.5344 | 5800 | 0.0915 | - | | 3.5649 | 5850 | 0.107 | - | | 3.5954 | 5900 | 0.0327 | - | | 3.6258 | 5950 | 0.0534 | - | | 3.6563 | 6000 | 0.059 | - | | 3.6868 | 6050 | 0.0806 | - | | 3.7172 | 6100 | 0.0941 | - | | 3.7477 | 6150 | 0.1368 | - | | 3.7782 | 6200 | 0.0848 | - | | 3.8087 | 6250 | 0.0625 | - | | 3.8391 | 6300 | 0.103 | - | | 3.8696 | 6350 | 0.0307 | - | | 3.9001 | 6400 | 0.0716 | - | | 3.9305 | 6450 | 0.0518 | - | | 3.9610 | 6500 | 0.0645 | - | | 3.9915 | 6550 | 0.0417 | - | | 4.0219 | 6600 | 0.0588 | - | | 4.0524 | 6650 | 0.047 | - | | 4.0829 | 6700 | 0.0951 | - | | 4.1133 | 6750 | 0.0689 | - | | 4.1438 | 6800 | 0.0731 | - | | 4.1743 | 6850 | 0.0785 | - | | 4.2048 | 6900 | 0.0411 | - | | 4.2352 | 6950 | 0.0568 | - | | 4.2657 | 7000 | 0.0688 | - | | 4.2962 | 7050 | 0.066 | - | | 4.3266 | 7100 | 0.0313 | - | | 4.3571 | 7150 | 0.1127 | - | | 4.3876 | 7200 | 0.1347 | - | | 4.4180 | 7250 | 0.0685 | - | | 4.4485 | 7300 | 0.0693 | - | | 4.4790 | 7350 | 0.053 | - | | 4.5094 | 7400 | 0.1353 | - | | 4.5399 | 7450 | 0.1057 | - | | 4.5704 | 7500 | 0.0467 | - | | 4.6009 | 7550 | 0.1059 | - | | 4.6313 | 7600 | 0.0791 | - | | 4.6618 | 7650 | 0.0928 | - | | 4.6923 | 7700 | 0.0989 | - | | 4.7227 | 7750 | 0.0619 | - | | 4.7532 | 7800 | 0.0572 | - | | 4.7837 | 7850 | 0.06 | - | | 4.8141 | 7900 | 0.0711 | - | | 4.8446 | 7950 | 0.0595 | - | | 4.8751 | 8000 | 0.0675 | - | | 4.9055 | 8050 | 0.0487 | - | | 4.9360 | 8100 | 0.0569 | - | | 4.9665 | 8150 | 0.0637 | - | | 4.9970 | 8200 | 0.0634 | - | | 5.0274 | 8250 | 0.093 | - | | 5.0579 | 8300 | 0.1107 | - | | 5.0884 | 8350 | 0.0883 | - | | 5.1188 | 8400 | 0.051 | - | | 5.1493 | 8450 | 0.1034 | - | | 5.1798 | 8500 | 0.0832 | - | | 5.2102 | 8550 | 0.0463 | - | | 5.2407 | 8600 | 0.0596 | - | | 5.2712 | 8650 | 0.078 | - | | 5.3016 | 8700 | 0.0686 | - | | 5.3321 | 8750 | 0.1053 | - | | 5.3626 | 8800 | 0.0684 | - | | 5.3931 | 8850 | 0.0684 | - | | 5.4235 | 8900 | 0.092 | - | | 5.4540 | 8950 | 0.088 | - | | 5.4845 | 9000 | 0.0503 | - | | 5.5149 | 9050 | 0.0752 | - | | 5.5454 | 9100 | 0.0975 | - | | 5.5759 | 9150 | 0.1306 | - | | 5.6063 | 9200 | 0.1038 | - | | 5.6368 | 9250 | 0.0573 | - | | 5.6673 | 9300 | 0.0584 | - | | 5.6977 | 9350 | 0.0309 | - | | 5.7282 | 9400 | 0.1232 | - | | 5.7587 | 9450 | 0.0991 | - | | 5.7892 | 9500 | 0.1111 | - | | 5.8196 | 9550 | 0.0845 | - | | 5.8501 | 9600 | 0.0587 | - | | 5.8806 | 9650 | 0.0589 | - | | 5.9110 | 9700 | 0.0751 | - | | 5.9415 | 9750 | 0.0929 | - | | 5.9720 | 9800 | 0.0613 | - | | 6.0024 | 9850 | 0.0578 | - | | 6.0329 | 9900 | 0.0499 | - | | 6.0634 | 9950 | 0.0435 | - | | 6.0938 | 10000 | 0.0547 | - | | 6.1243 | 10050 | 0.0549 | - | | 6.1548 | 10100 | 0.0872 | - | | 6.1853 | 10150 | 0.0509 | - | | 6.2157 | 10200 | 0.0913 | - | | 6.2462 | 10250 | 0.0581 | - | | 6.2767 | 10300 | 0.0942 | - | | 6.3071 | 10350 | 0.0273 | - | | 6.3376 | 10400 | 0.0426 | - | | 6.3681 | 10450 | 0.0825 | - | | 6.3985 | 10500 | 0.0713 | - | | 6.4290 | 10550 | 0.0698 | - | | 6.4595 | 10600 | 0.0679 | - | | 6.4899 | 10650 | 0.0631 | - | | 6.5204 | 10700 | 0.0489 | - | | 6.5509 | 10750 | 0.0599 | - | | 6.5814 | 10800 | 0.033 | - | | 6.6118 | 10850 | 0.0401 | - | | 6.6423 | 10900 | 0.0782 | - | | 6.6728 | 10950 | 0.0512 | - | | 6.7032 | 11000 | 0.0939 | - | | 6.7337 | 11050 | 0.0523 | - | | 6.7642 | 11100 | 0.0784 | - | | 6.7946 | 11150 | 0.0898 | - | | 6.8251 | 11200 | 0.042 | - | | 6.8556 | 11250 | 0.0616 | - | | 6.8860 | 11300 | 0.0667 | - | | 6.9165 | 11350 | 0.0807 | - | | 6.9470 | 11400 | 0.1054 | - | | 6.9775 | 11450 | 0.0961 | - | | 7.0079 | 11500 | 0.0896 | - | | 7.0384 | 11550 | 0.0463 | - | | 7.0689 | 11600 | 0.065 | - | | 7.0993 | 11650 | 0.0318 | - | | 7.1298 | 11700 | 0.0692 | - | | 7.1603 | 11750 | 0.1055 | - | | 7.1907 | 11800 | 0.0619 | - | | 7.2212 | 11850 | 0.1234 | - | | 7.2517 | 11900 | 0.0698 | - | | 7.2821 | 11950 | 0.0526 | - | | 7.3126 | 12000 | 0.0695 | - | | 7.3431 | 12050 | 0.051 | - | | 7.3736 | 12100 | 0.0759 | - | | 7.4040 | 12150 | 0.062 | - | | 7.4345 | 12200 | 0.0509 | - | | 7.4650 | 12250 | 0.0874 | - | | 7.4954 | 12300 | 0.0534 | - | | 7.5259 | 12350 | 0.1089 | - | | 7.5564 | 12400 | 0.0516 | - | | 7.5868 | 12450 | 0.0755 | - | | 7.6173 | 12500 | 0.0295 | - | | 7.6478 | 12550 | 0.1767 | - | | 7.6782 | 12600 | 0.0744 | - | | 7.7087 | 12650 | 0.0875 | - | | 7.7392 | 12700 | 0.075 | - | | 7.7697 | 12750 | 0.0583 | - | | 7.8001 | 12800 | 0.0353 | - | | 7.8306 | 12850 | 0.0638 | - | | 7.8611 | 12900 | 0.045 | - | | 7.8915 | 12950 | 0.0647 | - | | 7.9220 | 13000 | 0.0593 | - | | 7.9525 | 13050 | 0.0515 | - | | 7.9829 | 13100 | 0.0705 | - | | 8.0134 | 13150 | 0.0521 | - | | 8.0439 | 13200 | 0.059 | - | | 8.0743 | 13250 | 0.0758 | - | | 8.1048 | 13300 | 0.0922 | - | | 8.1353 | 13350 | 0.0859 | - | | 8.1658 | 13400 | 0.0526 | - | | 8.1962 | 13450 | 0.0892 | - | | 8.2267 | 13500 | 0.0665 | - | | 8.2572 | 13550 | 0.0711 | - | | 8.2876 | 13600 | 0.0535 | - | | 8.3181 | 13650 | 0.055 | - | | 8.3486 | 13700 | 0.0516 | - | | 8.3790 | 13750 | 0.0683 | - | | 8.4095 | 13800 | 0.0959 | - | | 8.4400 | 13850 | 0.0901 | - | | 8.4704 | 13900 | 0.041 | - | | 8.5009 | 13950 | 0.0464 | - | | 8.5314 | 14000 | 0.0726 | - | | 8.5619 | 14050 | 0.0959 | - | | 8.5923 | 14100 | 0.0739 | - | | 8.6228 | 14150 | 0.1083 | - | | 8.6533 | 14200 | 0.0374 | - | | 8.6837 | 14250 | 0.0767 | - | | 8.7142 | 14300 | 0.0626 | - | | 8.7447 | 14350 | 0.0847 | - | | 8.7751 | 14400 | 0.1211 | - | | 8.8056 | 14450 | 0.0457 | - | | 8.8361 | 14500 | 0.0705 | - | | 8.8665 | 14550 | 0.06 | - | | 8.8970 | 14600 | 0.052 | - | | 8.9275 | 14650 | 0.0677 | - | | 8.9580 | 14700 | 0.0747 | - | | 8.9884 | 14750 | 0.0877 | - | | 9.0189 | 14800 | 0.0791 | - | | 9.0494 | 14850 | 0.0573 | - | | 9.0798 | 14900 | 0.0786 | - | | 9.1103 | 14950 | 0.0376 | - | | 9.1408 | 15000 | 0.0964 | - | | 9.1712 | 15050 | 0.0542 | - | | 9.2017 | 15100 | 0.0568 | - | | 9.2322 | 15150 | 0.0583 | - | | 9.2626 | 15200 | 0.0861 | - | | 9.2931 | 15250 | 0.0994 | - | | 9.3236 | 15300 | 0.0614 | - | | 9.3541 | 15350 | 0.0689 | - | | 9.3845 | 15400 | 0.0803 | - | | 9.4150 | 15450 | 0.0599 | - | | 9.4455 | 15500 | 0.0952 | - | | 9.4759 | 15550 | 0.0597 | - | | 9.5064 | 15600 | 0.0762 | - | | 9.5369 | 15650 | 0.0718 | - | | 9.5673 | 15700 | 0.0794 | - | | 9.5978 | 15750 | 0.0721 | - | | 9.6283 | 15800 | 0.0966 | - | | 9.6587 | 15850 | 0.0604 | - | | 9.6892 | 15900 | 0.0764 | - | | 9.7197 | 15950 | 0.0707 | - | | 9.7502 | 16000 | 0.0724 | - | | 9.7806 | 16050 | 0.1072 | - | | 9.8111 | 16100 | 0.0728 | - | | 9.8416 | 16150 | 0.0516 | - | | 9.8720 | 16200 | 0.0519 | - | | 9.9025 | 16250 | 0.1077 | - | | 9.9330 | 16300 | 0.0539 | - | | 9.9634 | 16350 | 0.095 | - | | 9.9939 | 16400 | 0.0957 | - | | 0.0005 | 1 | 0.0632 | - | | 0.0244 | 50 | 0.058 | - | | 0.0488 | 100 | 0.0531 | - | | 0.0731 | 150 | 0.0769 | - | | 0.0975 | 200 | 0.0445 | - | | 0.1219 | 250 | 0.0852 | - | | 0.1463 | 300 | 0.058 | - | | 0.1706 | 350 | 0.0611 | - | | 0.1950 | 400 | 0.0772 | - | | 0.2194 | 450 | 0.0806 | - | | 0.2438 | 500 | 0.0686 | - | | 0.2682 | 550 | 0.0591 | - | | 0.2925 | 600 | 0.0838 | - | | 0.3169 | 650 | 0.0862 | - | | 0.3413 | 700 | 0.0641 | - | | 0.3657 | 750 | 0.0628 | - | | 0.3901 | 800 | 0.0725 | - | | 0.4144 | 850 | 0.0756 | - | | 0.4388 | 900 | 0.0686 | - | | 0.4632 | 950 | 0.0789 | - | | 0.4876 | 1000 | 0.1058 | - | | 0.5119 | 1050 | 0.0682 | - | | 0.5363 | 1100 | 0.0657 | - | | 0.5607 | 1150 | 0.0531 | - | | 0.5851 | 1200 | 0.0456 | - | | 0.6095 | 1250 | 0.06 | - | | 0.6338 | 1300 | 0.0567 | - | | 0.6582 | 1350 | 0.0599 | - | | 0.6826 | 1400 | 0.0743 | - | | 0.7070 | 1450 | 0.0512 | - | | 0.7314 | 1500 | 0.0805 | - | | 0.7557 | 1550 | 0.1057 | - | | 0.7801 | 1600 | 0.0714 | - | | 0.8045 | 1650 | 0.0415 | - | | 0.8289 | 1700 | 0.0531 | - | | 0.8532 | 1750 | 0.0786 | - | | 0.8776 | 1800 | 0.0867 | - | | 0.9020 | 1850 | 0.0538 | - | | 0.9264 | 1900 | 0.0734 | - | | 0.9508 | 1950 | 0.0854 | - | | 0.9751 | 2000 | 0.0584 | - | | 0.9995 | 2050 | 0.0459 | - | | 1.0239 | 2100 | 0.071 | - | | 1.0483 | 2150 | 0.0716 | - | | 1.0726 | 2200 | 0.0768 | - | | 1.0970 | 2250 | 0.0778 | - | | 1.1214 | 2300 | 0.1028 | - | | 1.1458 | 2350 | 0.0598 | - | | 1.1702 | 2400 | 0.0462 | - | | 1.1945 | 2450 | 0.0494 | - | | 1.2189 | 2500 | 0.0554 | - | | 1.2433 | 2550 | 0.0645 | - | | 1.2677 | 2600 | 0.0533 | - | | 1.2921 | 2650 | 0.0404 | - | | 1.3164 | 2700 | 0.0837 | - | | 1.3408 | 2750 | 0.0832 | - | | 1.3652 | 2800 | 0.0946 | - | | 1.3896 | 2850 | 0.0807 | - | | 1.4139 | 2900 | 0.0695 | - | | 1.4383 | 2950 | 0.0436 | - | | 1.4627 | 3000 | 0.0605 | - | | 1.4871 | 3050 | 0.0918 | - | | 1.5115 | 3100 | 0.0755 | - | | 1.5358 | 3150 | 0.0745 | - | | 1.5602 | 3200 | 0.0429 | - | | 1.5846 | 3250 | 0.0651 | - | | 1.6090 | 3300 | 0.0567 | - | | 1.6333 | 3350 | 0.0679 | - | | 1.6577 | 3400 | 0.0904 | - | | 1.6821 | 3450 | 0.0671 | - | | 1.7065 | 3500 | 0.0626 | - | | 1.7309 | 3550 | 0.0439 | - | | 1.7552 | 3600 | 0.1035 | - | | 1.7796 | 3650 | 0.0818 | - | | 1.8040 | 3700 | 0.1284 | - | | 1.8284 | 3750 | 0.058 | - | | 1.8528 | 3800 | 0.0608 | - | | 1.8771 | 3850 | 0.0858 | - | | 1.9015 | 3900 | 0.0611 | - | | 1.9259 | 3950 | 0.0701 | - | | 1.9503 | 4000 | 0.0882 | - | | 1.9746 | 4050 | 0.0568 | - | | 1.9990 | 4100 | 0.0591 | - | | 2.0234 | 4150 | 0.0765 | - | | 2.0478 | 4200 | 0.0697 | - | | 2.0722 | 4250 | 0.0714 | - | | 2.0965 | 4300 | 0.0438 | - | | 2.1209 | 4350 | 0.0661 | - | | 2.1453 | 4400 | 0.0626 | - | | 2.1697 | 4450 | 0.0666 | - | | 2.1941 | 4500 | 0.0583 | - | | 2.2184 | 4550 | 0.088 | - | | 2.2428 | 4600 | 0.0768 | - | | 2.2672 | 4650 | 0.0528 | - | | 2.2916 | 4700 | 0.0869 | - | | 2.3159 | 4750 | 0.1001 | - | | 2.3403 | 4800 | 0.0731 | - | | 2.3647 | 4850 | 0.0858 | - | | 2.3891 | 4900 | 0.0611 | - | | 2.4135 | 4950 | 0.058 | - | | 2.4378 | 5000 | 0.0725 | - | | 2.4622 | 5050 | 0.0893 | - | | 2.4866 | 5100 | 0.0649 | - | | 2.5110 | 5150 | 0.0561 | - | | 2.5353 | 5200 | 0.0569 | - | | 2.5597 | 5250 | 0.0375 | - | | 2.5841 | 5300 | 0.0925 | - | | 2.6085 | 5350 | 0.0842 | - | | 2.6329 | 5400 | 0.083 | - | | 2.6572 | 5450 | 0.0713 | - | | 2.6816 | 5500 | 0.1082 | - | | 2.7060 | 5550 | 0.0718 | - | | 2.7304 | 5600 | 0.0755 | - | | 2.7548 | 5650 | 0.0863 | - | | 2.7791 | 5700 | 0.081 | - | | 2.8035 | 5750 | 0.0732 | - | | 2.8279 | 5800 | 0.0769 | - | | 2.8523 | 5850 | 0.0846 | - | | 2.8766 | 5900 | 0.0794 | - | | 2.9010 | 5950 | 0.0518 | - | | 2.9254 | 6000 | 0.0495 | - | | 2.9498 | 6050 | 0.0696 | - | | 2.9742 | 6100 | 0.081 | - | | 2.9985 | 6150 | 0.0505 | - | | 3.0229 | 6200 | 0.0703 | - | | 3.0473 | 6250 | 0.0738 | - | | 3.0717 | 6300 | 0.07 | - | | 3.0961 | 6350 | 0.0663 | - | | 3.1204 | 6400 | 0.069 | - | | 3.1448 | 6450 | 0.0665 | - | | 3.1692 | 6500 | 0.0409 | - | | 3.1936 | 6550 | 0.075 | - | | 3.2179 | 6600 | 0.0519 | - | | 3.2423 | 6650 | 0.0836 | - | | 3.2667 | 6700 | 0.0631 | - | | 3.2911 | 6750 | 0.0926 | - | | 3.3155 | 6800 | 0.0443 | - | | 3.3398 | 6850 | 0.0587 | - | | 3.3642 | 6900 | 0.0654 | - | | 3.3886 | 6950 | 0.0776 | - | | 3.4130 | 7000 | 0.0563 | - | | 3.4373 | 7050 | 0.0501 | - | | 3.4617 | 7100 | 0.0549 | - | | 3.4861 | 7150 | 0.0497 | - | | 3.5105 | 7200 | 0.0782 | - | | 3.5349 | 7250 | 0.0734 | - | | 3.5592 | 7300 | 0.0704 | - | | 3.5836 | 7350 | 0.062 | - | | 3.6080 | 7400 | 0.0698 | - | | 3.6324 | 7450 | 0.09 | - | | 3.6568 | 7500 | 0.0585 | - | | 3.6811 | 7550 | 0.0649 | - | | 3.7055 | 7600 | 0.0685 | - | | 3.7299 | 7650 | 0.0671 | - | | 3.7543 | 7700 | 0.0576 | - | | 3.7786 | 7750 | 0.0378 | - | | 3.8030 | 7800 | 0.0679 | - | | 3.8274 | 7850 | 0.0665 | - | | 3.8518 | 7900 | 0.0701 | - | | 3.8762 | 7950 | 0.0943 | - | | 3.9005 | 8000 | 0.1062 | - | | 3.9249 | 8050 | 0.0725 | - | | 3.9493 | 8100 | 0.0595 | - | | 3.9737 | 8150 | 0.0738 | - | | 3.9980 | 8200 | 0.0793 | - | | 4.0224 | 8250 | 0.0851 | - | | 4.0468 | 8300 | 0.121 | - | | 4.0712 | 8350 | 0.0919 | - | | 4.0956 | 8400 | 0.0629 | - | | 4.1199 | 8450 | 0.0518 | - | | 4.1443 | 8500 | 0.0595 | - | | 4.1687 | 8550 | 0.0684 | - | | 4.1931 | 8600 | 0.0497 | - | | 4.2175 | 8650 | 0.0375 | - | | 4.2418 | 8700 | 0.0819 | - | | 4.2662 | 8750 | 0.0781 | - | | 4.2906 | 8800 | 0.0515 | - | | 4.3150 | 8850 | 0.0756 | - | | 4.3393 | 8900 | 0.0547 | - | | 4.3637 | 8950 | 0.0875 | - | | 4.3881 | 9000 | 0.0571 | - | | 4.4125 | 9050 | 0.046 | - | | 4.4369 | 9100 | 0.067 | - | | 4.4612 | 9150 | 0.0646 | - | | 4.4856 | 9200 | 0.0575 | - | | 4.5100 | 9250 | 0.1137 | - | | 4.5344 | 9300 | 0.0768 | - | | 4.5588 | 9350 | 0.0542 | - | | 4.5831 | 9400 | 0.0743 | - | | 4.6075 | 9450 | 0.072 | - | | 4.6319 | 9500 | 0.0606 | - | | 4.6563 | 9550 | 0.0777 | - | | 4.6806 | 9600 | 0.0435 | - | | 4.7050 | 9650 | 0.065 | - | | 4.7294 | 9700 | 0.0601 | - | | 4.7538 | 9750 | 0.0579 | - | | 4.7782 | 9800 | 0.0661 | - | | 4.8025 | 9850 | 0.0569 | - | | 4.8269 | 9900 | 0.0995 | - | | 4.8513 | 9950 | 0.056 | - | | 4.8757 | 10000 | 0.0705 | - | | 4.9000 | 10050 | 0.066 | - | | 4.9244 | 10100 | 0.0489 | - | | 4.9488 | 10150 | 0.0709 | - | | 4.9732 | 10200 | 0.0545 | - | | 4.9976 | 10250 | 0.0886 | - | | 5.0219 | 10300 | 0.0835 | - | | 5.0463 | 10350 | 0.0635 | - | | 5.0707 | 10400 | 0.066 | - | | 5.0951 | 10450 | 0.0678 | - | | 5.1195 | 10500 | 0.1006 | - | | 5.1438 | 10550 | 0.0526 | - | | 5.1682 | 10600 | 0.0691 | - | | 5.1926 | 10650 | 0.0833 | - | | 5.2170 | 10700 | 0.0512 | - | | 5.2413 | 10750 | 0.0469 | - | | 5.2657 | 10800 | 0.0837 | - | | 5.2901 | 10850 | 0.0646 | - | | 5.3145 | 10900 | 0.0843 | - | | 5.3389 | 10950 | 0.0627 | - | | 5.3632 | 11000 | 0.0503 | - | | 5.3876 | 11050 | 0.0499 | - | | 5.4120 | 11100 | 0.0823 | - | | 5.4364 | 11150 | 0.0759 | - | | 5.4608 | 11200 | 0.0436 | - | | 5.4851 | 11250 | 0.0864 | - | | 5.5095 | 11300 | 0.0792 | - | | 5.5339 | 11350 | 0.0876 | - | | 5.5583 | 11400 | 0.0535 | - | | 5.5826 | 11450 | 0.0543 | - | | 5.6070 | 11500 | 0.0549 | - | | 5.6314 | 11550 | 0.0564 | - | | 5.6558 | 11600 | 0.0454 | - | | 5.6802 | 11650 | 0.061 | - | | 5.7045 | 11700 | 0.0573 | - | | 5.7289 | 11750 | 0.0655 | - | | 5.7533 | 11800 | 0.0821 | - | | 5.7777 | 11850 | 0.0608 | - | | 5.8020 | 11900 | 0.0765 | - | | 5.8264 | 11950 | 0.0807 | - | | 5.8508 | 12000 | 0.0499 | - | | 5.8752 | 12050 | 0.0862 | - | | 5.8996 | 12100 | 0.0928 | - | | 5.9239 | 12150 | 0.08 | - | | 5.9483 | 12200 | 0.0553 | - | | 5.9727 | 12250 | 0.0736 | - | | 5.9971 | 12300 | 0.0576 | - | | 6.0215 | 12350 | 0.0945 | - | | 6.0458 | 12400 | 0.0669 | - | | 6.0702 | 12450 | 0.0492 | - | | 6.0946 | 12500 | 0.0795 | - | | 6.1190 | 12550 | 0.0935 | - | | 6.1433 | 12600 | 0.0554 | - | | 6.1677 | 12650 | 0.0643 | - | | 6.1921 | 12700 | 0.0715 | - | | 6.2165 | 12750 | 0.0803 | - | | 6.2409 | 12800 | 0.0745 | - | | 6.2652 | 12850 | 0.0626 | - | | 6.2896 | 12900 | 0.0539 | - | | 6.3140 | 12950 | 0.0719 | - | | 6.3384 | 13000 | 0.0465 | - | | 6.3627 | 13050 | 0.0735 | - | | 6.3871 | 13100 | 0.0637 | - | | 6.4115 | 13150 | 0.0437 | - | | 6.4359 | 13200 | 0.0744 | - | | 6.4603 | 13250 | 0.072 | - | | 6.4846 | 13300 | 0.0726 | - | | 6.5090 | 13350 | 0.0721 | - | | 6.5334 | 13400 | 0.0521 | - | | 6.5578 | 13450 | 0.0575 | - | | 6.5822 | 13500 | 0.0466 | - | | 6.6065 | 13550 | 0.0572 | - | | 6.6309 | 13600 | 0.0909 | - | | 6.6553 | 13650 | 0.0524 | - | | 6.6797 | 13700 | 0.0678 | - | | 6.7040 | 13750 | 0.0548 | - | | 6.7284 | 13800 | 0.0587 | - | | 6.7528 | 13850 | 0.0575 | - | | 6.7772 | 13900 | 0.0677 | - | | 6.8016 | 13950 | 0.0452 | - | | 6.8259 | 14000 | 0.0598 | - | | 6.8503 | 14050 | 0.0642 | - | | 6.8747 | 14100 | 0.0679 | - | | 6.8991 | 14150 | 0.0371 | - | | 6.9235 | 14200 | 0.0482 | - | | 6.9478 | 14250 | 0.0497 | - | | 6.9722 | 14300 | 0.0512 | - | | 6.9966 | 14350 | 0.1054 | - | | 7.0210 | 14400 | 0.0712 | - | | 7.0453 | 14450 | 0.0646 | - | | 7.0697 | 14500 | 0.1106 | - | | 7.0941 | 14550 | 0.0642 | - | | 7.1185 | 14600 | 0.0786 | - | | 7.1429 | 14650 | 0.0581 | - | | 7.1672 | 14700 | 0.0656 | - | | 7.1916 | 14750 | 0.0756 | - | | 7.2160 | 14800 | 0.0476 | - | | 7.2404 | 14850 | 0.0817 | - | | 7.2647 | 14900 | 0.0929 | - | | 7.2891 | 14950 | 0.0547 | - | | 7.3135 | 15000 | 0.0733 | - | | 7.3379 | 15050 | 0.0762 | - | | 7.3623 | 15100 | 0.0628 | - | | 7.3866 | 15150 | 0.0601 | - | | 7.4110 | 15200 | 0.0484 | - | | 7.4354 | 15250 | 0.0551 | - | | 7.4598 | 15300 | 0.0505 | - | | 7.4842 | 15350 | 0.0437 | - | | 7.5085 | 15400 | 0.0636 | - | | 7.5329 | 15450 | 0.0624 | - | | 7.5573 | 15500 | 0.0716 | - | | 7.5817 | 15550 | 0.0508 | - | | 7.6060 | 15600 | 0.0704 | - | | 7.6304 | 15650 | 0.0604 | - | | 7.6548 | 15700 | 0.0641 | - | | 7.6792 | 15750 | 0.0653 | - | | 7.7036 | 15800 | 0.0598 | - | | 7.7279 | 15850 | 0.0829 | - | | 7.7523 | 15900 | 0.0593 | - | | 7.7767 | 15950 | 0.0631 | - | | 7.8011 | 16000 | 0.0819 | - | | 7.8255 | 16050 | 0.0776 | - | | 7.8498 | 16100 | 0.0603 | - | | 7.8742 | 16150 | 0.0499 | - | | 7.8986 | 16200 | 0.0637 | - | | 7.9230 | 16250 | 0.0639 | - | | 7.9473 | 16300 | 0.0559 | - | | 7.9717 | 16350 | 0.0621 | - | | 7.9961 | 16400 | 0.0639 | - | | 8.0205 | 16450 | 0.1066 | - | | 8.0449 | 16500 | 0.0686 | - | | 8.0692 | 16550 | 0.063 | - | | 8.0936 | 16600 | 0.0789 | - | | 8.1180 | 16650 | 0.0458 | - | | 8.1424 | 16700 | 0.0622 | - | | 8.1667 | 16750 | 0.0748 | - | | 8.1911 | 16800 | 0.0355 | - | | 8.2155 | 16850 | 0.0648 | - | | 8.2399 | 16900 | 0.0618 | - | | 8.2643 | 16950 | 0.0908 | - | | 8.2886 | 17000 | 0.0544 | - | | 8.3130 | 17050 | 0.0888 | - | | 8.3374 | 17100 | 0.0531 | - | | 8.3618 | 17150 | 0.0905 | - | | 8.3862 | 17200 | 0.0811 | - | | 8.4105 | 17250 | 0.0643 | - | | 8.4349 | 17300 | 0.0775 | - | | 8.4593 | 17350 | 0.0518 | - | | 8.4837 | 17400 | 0.0683 | - | | 8.5080 | 17450 | 0.0946 | - | | 8.5324 | 17500 | 0.0642 | - | | 8.5568 | 17550 | 0.0654 | - | | 8.5812 | 17600 | 0.0682 | - | | 8.6056 | 17650 | 0.0467 | - | | 8.6299 | 17700 | 0.0811 | - | | 8.6543 | 17750 | 0.077 | - | | 8.6787 | 17800 | 0.0376 | - | | 8.7031 | 17850 | 0.1028 | - | | 8.7275 | 17900 | 0.0833 | - | | 8.7518 | 17950 | 0.0591 | - | | 8.7762 | 18000 | 0.0613 | - | | 8.8006 | 18050 | 0.0633 | - | | 8.8250 | 18100 | 0.0774 | - | | 8.8493 | 18150 | 0.0609 | - | | 8.8737 | 18200 | 0.0732 | - | | 8.8981 | 18250 | 0.085 | - | | 8.9225 | 18300 | 0.0762 | - | | 8.9469 | 18350 | 0.0518 | - | | 8.9712 | 18400 | 0.0806 | - | | 8.9956 | 18450 | 0.0467 | - | | 9.0200 | 18500 | 0.0467 | - | | 9.0444 | 18550 | 0.0836 | - | | 9.0687 | 18600 | 0.0452 | - | | 9.0931 | 18650 | 0.0503 | - | | 9.1175 | 18700 | 0.0624 | - | | 9.1419 | 18750 | 0.0605 | - | | 9.1663 | 18800 | 0.0829 | - | | 9.1906 | 18850 | 0.0497 | - | | 9.2150 | 18900 | 0.0575 | - | | 9.2394 | 18950 | 0.0645 | - | | 9.2638 | 19000 | 0.0956 | - | | 9.2882 | 19050 | 0.045 | - | | 9.3125 | 19100 | 0.0768 | - | | 9.3369 | 19150 | 0.0793 | - | | 9.3613 | 19200 | 0.0839 | - | | 9.3857 | 19250 | 0.0518 | - | | 9.4100 | 19300 | 0.0445 | - | | 9.4344 | 19350 | 0.055 | - | | 9.4588 | 19400 | 0.0649 | - | | 9.4832 | 19450 | 0.0673 | - | | 9.5076 | 19500 | 0.0492 | - | | 9.5319 | 19550 | 0.0733 | - | | 9.5563 | 19600 | 0.0879 | - | | 9.5807 | 19650 | 0.0672 | - | | 9.6051 | 19700 | 0.0612 | - | | 9.6294 | 19750 | 0.0661 | - | | 9.6538 | 19800 | 0.066 | - | | 9.6782 | 19850 | 0.0661 | - | | 9.7026 | 19900 | 0.0738 | - | | 9.7270 | 19950 | 0.0728 | - | | 9.7513 | 20000 | 0.0595 | - | | 9.7757 | 20050 | 0.0601 | - | | 9.8001 | 20100 | 0.0441 | - | | 9.8245 | 20150 | 0.0768 | - | | 9.8489 | 20200 | 0.0636 | - | | 9.8732 | 20250 | 0.0796 | - | | 9.8976 | 20300 | 0.0584 | - | | 9.9220 | 20350 | 0.0801 | - | | 9.9464 | 20400 | 0.0569 | - | | 9.9707 | 20450 | 0.0552 | - | | 9.9951 | 20500 | 0.0684 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
CineAI/Bald-or-Not-classification-Model
CineAI
2024-01-19T16:16:14Z
0
0
keras
[ "keras", "art", "image-classification", "en", "uk", "dataset:CineAI/Bald-ds", "license:apache-2.0", "region:us" ]
image-classification
2023-08-29T22:06:08Z
--- license: apache-2.0 datasets: - CineAI/Bald-ds language: - en - uk metrics: - accuracy library_name: keras pipeline_tag: image-classification tags: - art ---