modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
rajistics/setfit-model
rajistics
2022-10-27T23:47:04Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-27T23:46:48Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/sadieyay
huggingtweets
2022-10-27T23:42:06Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-27T23:21:37Z
--- language: en thumbnail: http://www.huggingtweets.com/sadieyay/1666914122057/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509399260441292800/yttWeCzW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sadie</div> <div style="text-align: center; font-size: 14px;">@sadieyay</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sadie. | Data | sadie | | --- | --- | | Tweets downloaded | 636 | | Retweets | 38 | | Short tweets | 97 | | Tweets kept | 501 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2reqej16/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sadieyay's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/usyd3rqz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/usyd3rqz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sadieyay') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ViktorDo/SciBERT-POWO_Climber_Finetuned
ViktorDo
2022-10-27T22:39:38Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-27T21:19:57Z
--- tags: - generated_from_trainer model-index: - name: SciBERT-POWO_Climber_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SciBERT-POWO_Climber_Finetuned This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1033 | 1.0 | 2133 | 0.1151 | | 0.0853 | 2.0 | 4266 | 0.1058 | | 0.0792 | 3.0 | 6399 | 0.1086 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
andrewzhang505/lunar_lander_example
andrewzhang505
2022-10-27T22:35:12Z
5
0
sample-factory
[ "sample-factory", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-27T22:29:42Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 93.18 +/- 76.95 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLanderContinuous-v2 type: LunarLanderContinuous-v2 --- A(n) **APPO** model trained on the **LunarLanderContinuous-v2** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
JamesH/Translation_en_to_fr_project
JamesH
2022-10-27T21:52:09Z
4
1
transformers
[ "transformers", "pytorch", "autotrain", "translation", "en", "fr", "dataset:JamesH/autotrain-data-second-project-en2fr", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-10-27T19:57:24Z
--- tags: - autotrain - translation language: - en - fr datasets: - JamesH/autotrain-data-second-project-en2fr co2_eq_emissions: emissions: 0.6863820434350988 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1907464829 - CO2 Emissions (in grams): 0.6864 ## Validation Metrics - Loss: 1.117 - SacreBLEU: 16.546 - Gen len: 14.511
Aadarsh/bert-finetuned-ner
Aadarsh
2022-10-27T21:31:02Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-26T22:08:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1429 - Precision: 0.4954 - Recall: 0.6136 - F1: 0.5482 - Accuracy: 0.9642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 141 | 0.2894 | 0.4649 | 0.3258 | 0.3831 | 0.9219 | | No log | 2.0 | 282 | 0.1767 | 0.4706 | 0.4545 | 0.4624 | 0.9487 | | No log | 3.0 | 423 | 0.1429 | 0.4954 | 0.6136 | 0.5482 | 0.9642 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
ViktorDo/SciBERT-POWO_Epiphyte_Finetuned
ViktorDo
2022-10-27T21:10:45Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-27T19:53:27Z
--- tags: - generated_from_trainer model-index: - name: SciBERT-POWO_Epiphyte_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SciBERT-POWO_Epiphyte_Finetuned This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0909 | 1.0 | 2063 | 0.0860 | | 0.0763 | 2.0 | 4126 | 0.1000 | | 0.0627 | 3.0 | 6189 | 0.0898 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
andrewzhang505/sf2-lunar-lander
andrewzhang505
2022-10-27T19:51:07Z
2
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-27T19:50:47Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - metrics: - type: mean_reward value: 126.58 +/- 137.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLanderContinuous-v2 type: LunarLanderContinuous-v2 --- A(n) **APPO** model trained on the **LunarLanderContinuous-v2** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
sam34738/roberta-nisha
sam34738
2022-10-27T19:29:33Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-27T19:03:16Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-nisha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-nisha This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3254 | 1.0 | 460 | 0.7247 | | 0.5791 | 2.0 | 920 | 0.5375 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.1
Eleusinian/haladas
Eleusinian
2022-10-27T18:07:35Z
0
0
null
[ "license:unknown", "region:us" ]
null
2022-10-27T18:00:03Z
--- license: unknown --- <div style='display: flex; flex-wrap: wrap; column-gap: 0.75rem;'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1666893412370-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1666893411703-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1666893411826-noauth.jpeg' width='400' height='400'> <img src='https://s3.amazonaws.com/moonup/production/uploads/1666893411866-noauth.jpeg' width='400' height='400'> </div>
sagteam/rubert-base-cased-mcn
sagteam
2022-10-27T17:43:35Z
5
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "ru", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-19T14:31:23Z
--- language: - ru --- # rubert-base-cased-mcn Normalization model, based on rubert, for linking phrases to their MedDRA concepts in russian. F1-micro of this model is 71.34 on the 4th fold of the RDRS corpus of russian internet drug reviews. The use of the weights of the current model and the calculation of accuracies on the laid out RDRS corpus is contained in our repository on [our repo](https://github.com/sag111/MedNorm).
huggingtweets/nft_god-notthreadguy-theehustlehouse
huggingtweets
2022-10-27T17:34:42Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-27T17:32:37Z
--- language: en thumbnail: http://www.huggingtweets.com/nft_god-notthreadguy-theehustlehouse/1666892053641/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1489268127565324291/ZQK5RoFg_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547080829788196865/Natr1sGX_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1585674726432641025/QGSMO68J_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NFT God & ThreadGuy.eth 👑 & BaronVonHustle.eth</div> <div style="text-align: center; font-size: 14px;">@nft_god-notthreadguy-theehustlehouse</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NFT God & ThreadGuy.eth 👑 & BaronVonHustle.eth. | Data | NFT God | ThreadGuy.eth 👑 | BaronVonHustle.eth | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3243 | 3245 | | Retweets | 21 | 392 | 1570 | | Short tweets | 177 | 1524 | 434 | | Tweets kept | 3052 | 1327 | 1241 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vneptk2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nft_god-notthreadguy-theehustlehouse's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cw93h2tk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cw93h2tk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nft_god-notthreadguy-theehustlehouse') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Houryy/Houry
Houryy
2022-10-27T16:27:08Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-10-27T16:27:08Z
--- license: bigscience-openrail-m ---
OpenMatch/cocodr-base
OpenMatch
2022-10-27T16:20:16Z
11
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-26T05:51:29Z
This model has been pretrained on BEIR corpus without relevance-level supervision following the approach described in the paper **COCO-DR: Combating Distribution Shifts in Zero-Shot Dense Retrieval with Contrastive and Distributionally Robust Learning**. The associated GitHub repository is available here https://github.com/OpenMatch/COCO-DR. This model is trained with BERT-base as the backbone with 110M hyperparameters. license: mit ---
hagerty7/recyclable-materials-classification
hagerty7
2022-10-27T15:54:32Z
42
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-24T15:10:05Z
ViT for Recyclable Material Classification
JoAmps/trialzz
JoAmps
2022-10-27T15:52:17Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-27T15:35:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: trialzz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trialzz This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 113 | 2.2090 | | No log | 2.0 | 226 | 2.1168 | | No log | 3.0 | 339 | 2.1097 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
mgb-dx-meetup/distilbert-multilingual-finetuned-sentiment
mgb-dx-meetup
2022-10-27T15:43:10Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "unk", "dataset:lewtun/autotrain-data-mgb-product-reviews-mbert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-27T15:34:22Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - lewtun/autotrain-data-mgb-product-reviews-mbert co2_eq_emissions: emissions: 5.523107849339405 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1904564767 - CO2 Emissions (in grams): 5.5231 ## Validation Metrics - Loss: 1.135 - Accuracy: 0.514 - Macro F1: 0.504 - Micro F1: 0.514 - Weighted F1: 0.505 - Macro Precision: 0.506 - Micro Precision: 0.514 - Weighted Precision: 0.507 - Macro Recall: 0.513 - Micro Recall: 0.514 - Weighted Recall: 0.514 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-mgb-product-reviews-mbert-1904564767 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lewtun/autotrain-mgb-product-reviews-mbert-1904564767", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-mgb-product-reviews-mbert-1904564767", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Plaban81/vegetable-classifier
Plaban81
2022-10-27T15:35:01Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-27T15:34:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vegetable-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8571428656578064 --- # vegetable-classifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Brinjal ![Brinjal](images/Brinjal.jpg) #### Cabbage ![Cabbage](images/Cabbage.jpg) #### Cauliflower ![Cauliflower](images/Cauliflower.jpg) #### Raddish ![Raddish](images/Raddish.jpg) #### Tomato ![Tomato](images/Tomato.jpg)
Sennodipoi/LayoutLMv1-FUNSD-ft
Sennodipoi
2022-10-27T15:27:32Z
5
0
transformers
[ "transformers", "pytorch", "layoutlm", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-23T08:10:54Z
LayoutLMv1 fine-tuned on the FUNSD dataset. Code and results are available at the official GitHub repository of my [Master Degree thesis ](https://github.com/AleRosae/thesis-layoutlm). Results obtained using seqeval in strict mode: | | Precision | Recall | F1-score | Variance (F1) | |--------------|-----------|--------|----------|---------------| | ANSWER | 0.80 | 0.78 | 0.80 | 1e-4 | | HEADER | 0.62 | 0.47 | 0.53 | 2e-4 | | QUESTION | 0.85 | 0.71 | 0.83 | 3e-5 | | Micro avg | 0.83 | 0.77 | 0.81 | 1e-4 | | Macro avg | 0.77 | 0.56 | 0.72 | 3e-5 | | Weighted avg | 0.83 | 0.78 | 0.80 | 1e-4 |
alanakbik/test-push-public
alanakbik
2022-10-27T15:10:07Z
3
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-10-27T15:07:07Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("alanakbik/test-push-public") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
leo93/bert-finetuned-ner-30
leo93
2022-10-27T15:03:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-27T13:19:19Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0453 - Precision: 0.9275 - Recall: 0.9492 - F1: 0.9382 - Accuracy: 0.9934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 407 | 0.0539 | 0.8283 | 0.8758 | 0.8514 | 0.9866 | | 0.1524 | 2.0 | 814 | 0.0333 | 0.8931 | 0.9123 | 0.9026 | 0.9915 | | 0.0381 | 3.0 | 1221 | 0.0345 | 0.8835 | 0.9280 | 0.9052 | 0.9906 | | 0.0179 | 4.0 | 1628 | 0.0351 | 0.8890 | 0.9361 | 0.9119 | 0.9909 | | 0.0089 | 5.0 | 2035 | 0.0310 | 0.9102 | 0.9372 | 0.9235 | 0.9924 | | 0.0089 | 6.0 | 2442 | 0.0344 | 0.9198 | 0.9383 | 0.9289 | 0.9922 | | 0.0057 | 7.0 | 2849 | 0.0331 | 0.9144 | 0.9448 | 0.9294 | 0.9931 | | 0.0039 | 8.0 | 3256 | 0.0340 | 0.9144 | 0.9481 | 0.9309 | 0.9928 | | 0.0027 | 9.0 | 3663 | 0.0423 | 0.9032 | 0.9481 | 0.9251 | 0.9921 | | 0.0018 | 10.0 | 4070 | 0.0373 | 0.9047 | 0.9507 | 0.9271 | 0.9923 | | 0.0018 | 11.0 | 4477 | 0.0448 | 0.8932 | 0.9474 | 0.9195 | 0.9910 | | 0.0014 | 12.0 | 4884 | 0.0380 | 0.9079 | 0.9474 | 0.9272 | 0.9928 | | 0.0015 | 13.0 | 5291 | 0.0360 | 0.9231 | 0.9474 | 0.9351 | 0.9936 | | 0.0013 | 14.0 | 5698 | 0.0378 | 0.9243 | 0.9456 | 0.9348 | 0.9935 | | 0.0013 | 15.0 | 6105 | 0.0414 | 0.9197 | 0.9496 | 0.9344 | 0.9930 | | 0.0009 | 16.0 | 6512 | 0.0405 | 0.9202 | 0.9478 | 0.9338 | 0.9929 | | 0.0009 | 17.0 | 6919 | 0.0385 | 0.9305 | 0.9441 | 0.9373 | 0.9933 | | 0.0006 | 18.0 | 7326 | 0.0407 | 0.9285 | 0.9437 | 0.9360 | 0.9934 | | 0.0009 | 19.0 | 7733 | 0.0428 | 0.9203 | 0.9488 | 0.9343 | 0.9929 | | 0.0006 | 20.0 | 8140 | 0.0455 | 0.9232 | 0.9536 | 0.9382 | 0.9928 | | 0.0004 | 21.0 | 8547 | 0.0462 | 0.9261 | 0.9529 | 0.9393 | 0.9930 | | 0.0004 | 22.0 | 8954 | 0.0423 | 0.9359 | 0.9492 | 0.9425 | 0.9940 | | 0.0005 | 23.0 | 9361 | 0.0446 | 0.9180 | 0.9529 | 0.9351 | 0.9931 | | 0.0005 | 24.0 | 9768 | 0.0430 | 0.9361 | 0.9467 | 0.9413 | 0.9938 | | 0.0002 | 25.0 | 10175 | 0.0436 | 0.9322 | 0.9496 | 0.9408 | 0.9935 | | 0.0002 | 26.0 | 10582 | 0.0440 | 0.9275 | 0.9492 | 0.9382 | 0.9935 | | 0.0002 | 27.0 | 10989 | 0.0450 | 0.9272 | 0.9488 | 0.9379 | 0.9932 | | 0.0002 | 28.0 | 11396 | 0.0445 | 0.9304 | 0.9470 | 0.9386 | 0.9935 | | 0.0003 | 29.0 | 11803 | 0.0449 | 0.9278 | 0.9481 | 0.9378 | 0.9934 | | 0.0001 | 30.0 | 12210 | 0.0453 | 0.9275 | 0.9492 | 0.9382 | 0.9934 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/sst2_bert_3epoch
pig4431
2022-10-27T15:01:53Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-27T14:55:30Z
--- tags: - generated_from_trainer model-index: - name: sst2_bert_3epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sst2_bert_3epoch This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Shri3/q-Taxi-v3
Shri3
2022-10-27T14:36:11Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-27T14:36:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Shri3/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/tykesinties
huggingtweets
2022-10-27T14:31:37Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-25T19:33:52Z
--- language: en thumbnail: http://www.huggingtweets.com/tykesinties/1666881093237/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/917201427583438848/X-zHDjYL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RegressCo H.R.</div> <div style="text-align: center; font-size: 14px;">@tykesinties</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RegressCo H.R.. | Data | RegressCo H.R. | | --- | --- | | Tweets downloaded | 1844 | | Retweets | 215 | | Short tweets | 27 | | Tweets kept | 1602 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pqqtat7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tykesinties's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1vqh1gov) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1vqh1gov/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tykesinties') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
yeahrmek/arxiv-math-lean
yeahrmek
2022-10-27T14:05:48Z
0
0
null
[ "region:us" ]
null
2022-10-27T12:23:41Z
This is a BPE tokenizer based on "Salesforce/codegen-350M-mono". The tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not. We used ArXiv subset of The Pile dataset and proof steps from [lean-step-public](https://github.com/jesse-michael-han/lean-step-public) datasets to train the tokenizer.
OWG/imagegpt-small
OWG
2022-10-27T13:10:17Z
0
0
null
[ "onnx", "vision", "dataset:imagenet-21k", "license:apache-2.0", "region:us" ]
null
2022-10-27T11:52:39Z
--- license: apache-2.0 tags: - vision datasets: - imagenet-21k --- # ImageGPT (small-sized model) ImageGPT (iGPT) model pre-trained on ImageNet ILSVRC 2012 (14 million images, 21,843 classes) at resolution 32x32. It was introduced in the paper [Generative Pretraining from Pixels](https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf) by Chen et al. and first released in [this repository](https://github.com/openai/image-gpt). See also the official [blog post](https://openai.com/blog/image-gpt/). ## Model description The ImageGPT (iGPT) is a transformer decoder model (GPT-like) pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-21k, at a resolution of 32x32 pixels. The goal for the model is simply to predict the next pixel value, given the previous ones. By pre-training the model, it learns an inner representation of images that can then be used to: - extract features useful for downstream tasks: one can either use ImageGPT to produce fixed image features, in order to train a linear model (like a sklearn logistic regression model or SVM). This is also referred to as "linear probing". - perform (un)conditional image generation. ## Intended uses & limitations You can use the raw model for either feature extractor or (un) conditional image generation. ### How to use Here is how to use this model as feature extractor: ```python from transformers import AutoFeatureExtractor from onnxruntime import InferenceSession from datasets import load_dataset # load image dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] # load model feature_extractor = AutoFeatureExtractor.from_pretrained("openai/imagegpt-small") session = InferenceSession("model/model.onnx") # ONNX Runtime expects NumPy arrays as input inputs = feature_extractor(image, return_tensors="np") outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` Or you can use the model with classification head that returns logits ```python from transformers import AutoFeatureExtractor from onnxruntime import InferenceSession from datasets import load_dataset # load image dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] # load model feature_extractor = AutoFeatureExtractor.from_pretrained("openai/imagegpt-small") session = InferenceSession("model/model_classification.onnx") # ONNX Runtime expects NumPy arrays as input inputs = feature_extractor(image, return_tensors="np") outputs = session.run(output_names=["logits"], input_feed=dict(inputs)) ``` ## Original implementation Follow [this link](https://huggingface.co/openai/imagegpt-small) to see the original implementation. ## Training data The ImageGPT model was pretrained on [ImageNet-21k](http://www.image-net.org/), a dataset consisting of 14 million images and 21k classes. ## Training procedure ### Preprocessing Images are first resized/rescaled to the same resolution (32x32) and normalized across the RGB channels. Next, color-clustering is performed. This means that every pixel is turned into one of 512 possible cluster values. This way, one ends up with a sequence of 32x32 = 1024 pixel values, rather than 32x32x3 = 3072, which is prohibitively large for Transformer-based models. ### Pretraining Training details can be found in section 3.4 of v2 of the paper. ## Evaluation results For evaluation results on several image classification benchmarks, we refer to the original paper. ### BibTeX entry and citation info ```bibtex @InProceedings{pmlr-v119-chen20s, title = {Generative Pretraining From Pixels}, author = {Chen, Mark and Radford, Alec and Child, Rewon and Wu, Jeffrey and Jun, Heewoo and Luan, David and Sutskever, Ilya}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {1691--1703}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/chen20s/chen20s.pdf}, url = {https://proceedings.mlr.press/v119/chen20s.html } ``` ```bibtex @inproceedings{deng2009imagenet, title={Imagenet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, booktitle={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={Ieee} } ```
kevinbror/bertbaseuncasedny
kevinbror
2022-10-27T12:13:45Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-27T12:13:00Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bertbaseuncasedny results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bertbaseuncasedny This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3901 - Train End Logits Accuracy: 0.8823 - Train Start Logits Accuracy: 0.8513 - Validation Loss: 1.2123 - Validation End Logits Accuracy: 0.7291 - Validation Start Logits Accuracy: 0.6977 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 29508, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.2597 | 0.6683 | 0.6277 | 1.0151 | 0.7214 | 0.6860 | 0 | | 0.7699 | 0.7820 | 0.7427 | 1.0062 | 0.7342 | 0.6996 | 1 | | 0.5343 | 0.8425 | 0.8064 | 1.1162 | 0.7321 | 0.7010 | 2 | | 0.3901 | 0.8823 | 0.8513 | 1.2123 | 0.7291 | 0.6977 | 3 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
kosec39/distilbert-base-uncased-finetuned-imdb
kosec39
2022-10-27T12:00:24Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-27T11:31:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Rijgersberg/whisper-small-fy-NL
Rijgersberg
2022-10-27T08:50:21Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-25T22:17:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-small-fy-NL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-fy-NL This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [CommonVoice 11 `fy-NL` (West-Frisian)](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/fy-NL/train) dataset. It achieves the following results on the evaluation set: - Loss: 0.5276 - Wer: 0.2919 The Wer before finetuning was 1.0622. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | | 0 | 0 | | 1.0622| | 0.9177 | 1.0 | 211 | 0.8145 | 0.3450 | | 0.5807 | 2.0 | 422 | 0.7113 | 0.3640 | | 0.2884 | 3.0 | 633 | 0.5276 | 0.2919 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
arshiya20/epochs-finetuned-squad
arshiya20
2022-10-27T07:44:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-10-27T05:38:23Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: epochs-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # epochs-finetuned-squad This model was trained from scratch on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7553 | 1.0 | 5533 | 1.2460 | | 0.739 | 2.0 | 11066 | 1.2609 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
teacookies/autotrain-27102022-cert-1899564594
teacookies
2022-10-27T07:34:21Z
10
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-27102022-cert", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-27T07:21:17Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-27102022-cert co2_eq_emissions: emissions: 22.03607609264655 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1899564594 - CO2 Emissions (in grams): 22.0361 ## Validation Metrics - Loss: 0.003 - Accuracy: 0.999 - Precision: 0.981 - Recall: 0.982 - F1: 0.981 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-27102022-cert-1899564594 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-27102022-cert-1899564594", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-27102022-cert-1899564594", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
shawn-nyk/wav2vec-large-xlsr-malayalam-with-lm
shawn-nyk
2022-10-27T07:27:55Z
4
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ml", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-16T09:44:27Z
--- language: ml datasets: - Indic TTS Malayalam Speech Corpus - Openslr Malayalam Speech Corpus - SMC Malayalam Speech Corpus - IIIT-H Indic Speech Databases metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Malayalam XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Test split of combined dataset using all datasets mentioned above type: custom args: ml metrics: - name: Test WER type: wer value: 28.43 --- # Wav2Vec2-Large-XLSR-53-ml Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on ml (Malayalam) using the [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The notebooks used to train model are available [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = <load-test-split-of-combined-dataset> # Details on loading this dataset in the evaluation section processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the test data of combined custom dataset. For more details on dataset preparation, check the notebooks mentioned at the end of this file. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from datasets import load_dataset, load_metric from pathlib import Path # The custom dataset needs to be created using notebook mentioned at the end of this file data_dir = Path('<path-to-custom-dataset>') dataset_folders = { 'iiit': 'iiit_mal_abi', 'openslr': 'openslr', 'indic-tts': 'indic-tts-ml', 'msc-reviewed': 'msc-reviewed-speech-v1.0+20200825', } # Set directories for datasets openslr_male_dir = data_dir / dataset_folders['openslr'] / 'male' openslr_female_dir = data_dir / dataset_folders['openslr'] / 'female' iiit_dir = data_dir / dataset_folders['iiit'] indic_tts_male_dir = data_dir / dataset_folders['indic-tts'] / 'male' indic_tts_female_dir = data_dir / dataset_folders['indic-tts'] / 'female' msc_reviewed_dir = data_dir / dataset_folders['msc-reviewed'] # Load the datasets openslr_male = load_dataset("json", data_files=[f"{str(openslr_male_dir.absolute())}/sample_{i}.json" for i in range(2023)], split="train") openslr_female = load_dataset("json", data_files=[f"{str(openslr_female_dir.absolute())}/sample_{i}.json" for i in range(2103)], split="train") iiit = load_dataset("json", data_files=[f"{str(iiit_dir.absolute())}/sample_{i}.json" for i in range(1000)], split="train") indic_tts_male = load_dataset("json", data_files=[f"{str(indic_tts_male_dir.absolute())}/sample_{i}.json" for i in range(5649)], split="train") indic_tts_female = load_dataset("json", data_files=[f"{str(indic_tts_female_dir.absolute())}/sample_{i}.json" for i in range(2950)], split="train") msc_reviewed = load_dataset("json", data_files=[f"{str(msc_reviewed_dir.absolute())}/sample_{i}.json" for i in range(1541)], split="train") # Create test split as 20%, set random seed as well. test_size = 0.2 random_seed=1 openslr_male_splits = openslr_male.train_test_split(test_size=test_size, seed=random_seed) openslr_female_splits = openslr_female.train_test_split(test_size=test_size, seed=random_seed) iiit_splits = iiit.train_test_split(test_size=test_size, seed=random_seed) indic_tts_male_splits = indic_tts_male.train_test_split(test_size=test_size, seed=random_seed) indic_tts_female_splits = indic_tts_female.train_test_split(test_size=test_size, seed=random_seed) msc_reviewed_splits = msc_reviewed.train_test_split(test_size=test_size, seed=random_seed) # Get combined test dataset split_list = [openslr_male_splits, openslr_female_splits, indic_tts_male_splits, indic_tts_female_splits, msc_reviewed_splits, iiit_splits] test_dataset = datasets.concatenate_datasets([split['test'] for split in split_list) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model = Wav2Vec2ForCTC.from_pretrained("gvs/wav2vec2-large-xlsr-malayalam") model.to("cuda") resamplers = { 48000: torchaudio.transforms.Resample(48_000, 16_000), } chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�Utrnle\\\\_]' unicode_ignore_regex = r'[\\\\u200e]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]) batch["sentence"] = re.sub(unicode_ignore_regex, '', batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) # Resample if its not in 16kHz if sampling_rate != 16000: batch["speech"] = resamplers[sampling_rate](speech_array).squeeze().numpy() else: batch["speech"] = speech_array.squeeze().numpy() # If more than one dimension is present, pick first one if batch["speech"].ndim > 1: batch["speech"] = batch["speech"][0] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (WER)**: 28.43 % ## Training A combined dataset was created using [Indic TTS Malayalam Speech Corpus (via Kaggle)](https://www.kaggle.com/kavyamanohar/indic-tts-malayalam-speech-corpus), [Openslr Malayalam Speech Corpus](http://openslr.org/63/), [SMC Malayalam Speech Corpus](https://blog.smc.org.in/malayalam-speech-corpus/) and [IIIT-H Indic Speech Databases](http://speech.iiit.ac.in/index.php/research-svl/69.html). The datasets were downloaded and was converted to HF Dataset format using [this notebook](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/make_hf_dataset.ipynb) The notebook used for training and evaluation can be found [here](https://github.com/gauthamsuresh09/wav2vec2-large-xlsr-53-malayalam/blob/main/fine-tune-xlsr-wav2vec2-on-malayalam-asr-with-transformers_v2.ipynb)
teacookies/autotrain-27102022-cert1-1899464570
teacookies
2022-10-27T06:29:42Z
13
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:teacookies/autotrain-data-27102022-cert1", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-10-27T06:19:22Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - teacookies/autotrain-data-27102022-cert1 co2_eq_emissions: emissions: 16.254745105263574 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1899464570 - CO2 Emissions (in grams): 16.2547 ## Validation Metrics - Loss: 0.004 - Accuracy: 0.999 - Precision: 0.972 - Recall: 0.979 - F1: 0.975 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/teacookies/autotrain-27102022-cert1-1899464570 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("teacookies/autotrain-27102022-cert1-1899464570", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autotrain-27102022-cert1-1899464570", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/ferret_gf
huggingtweets
2022-10-27T06:27:00Z
5
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-27T06:26:17Z
--- language: en thumbnail: http://www.huggingtweets.com/ferret_gf/1666852015981/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1583569492789153799/vJ1FEmHw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">alex</div> <div style="text-align: center; font-size: 14px;">@ferret_gf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from alex. | Data | alex | | --- | --- | | Tweets downloaded | 703 | | Retweets | 163 | | Short tweets | 183 | | Tweets kept | 357 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/95pl7wzb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ferret_gf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2k6rhew5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2k6rhew5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ferret_gf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/daymoded-menthalovely-scolopendridaes
huggingtweets
2022-10-27T05:43:26Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-27T05:26:45Z
--- language: en thumbnail: http://www.huggingtweets.com/daymoded-menthalovely-scolopendridaes/1666849354903/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1541285406531956736/T36HqJWY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1576010406446907395/cXmkdxpb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1576595483157749760/GgLl95Ug_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">meri & Mentha & 𓆣</div> <div style="text-align: center; font-size: 14px;">@daymoded-menthalovely-scolopendridaes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from meri & Mentha & 𓆣. | Data | meri | Mentha | 𓆣 | | --- | --- | --- | --- | | Tweets downloaded | 3208 | 3203 | 646 | | Retweets | 595 | 1723 | 407 | | Short tweets | 560 | 449 | 131 | | Tweets kept | 2053 | 1031 | 108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ervd3sj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @daymoded-menthalovely-scolopendridaes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28d01du3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28d01du3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/daymoded-menthalovely-scolopendridaes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Negs/ddpm-butterflies-128
Negs
2022-10-27T04:07:05Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-27T02:51:00Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Negs/ddpm-butterflies-128/tensorboard?#scalars)
huggingtweets/schizo_freq
huggingtweets
2022-10-27T03:52:41Z
105
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-09T17:50:33Z
--- language: en thumbnail: http://www.huggingtweets.com/schizo_freq/1666842754202/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1582126821025382400/PZjx83du_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lukas (computer)</div> <div style="text-align: center; font-size: 14px;">@schizo_freq</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lukas (computer). | Data | Lukas (computer) | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 481 | | Short tweets | 324 | | Tweets kept | 2429 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11autkzl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @schizo_freq's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2km4y95n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2km4y95n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/schizo_freq') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Alex-VisTas/swin-tiny-patch4-window7-224-finetuned-woody_130epochs
Alex-VisTas
2022-10-27T03:11:10Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-26T14:13:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-woody_130epochs results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8921212121212121 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-woody_130epochs This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4550 - Accuracy: 0.8921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 130 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6694 | 1.0 | 58 | 0.6370 | 0.6594 | | 0.6072 | 2.0 | 116 | 0.5813 | 0.7030 | | 0.6048 | 3.0 | 174 | 0.5646 | 0.7030 | | 0.5849 | 4.0 | 232 | 0.5778 | 0.6970 | | 0.5671 | 5.0 | 290 | 0.5394 | 0.7236 | | 0.5575 | 6.0 | 348 | 0.5212 | 0.7382 | | 0.568 | 7.0 | 406 | 0.5218 | 0.7358 | | 0.5607 | 8.0 | 464 | 0.5183 | 0.7527 | | 0.5351 | 9.0 | 522 | 0.5138 | 0.7467 | | 0.5459 | 10.0 | 580 | 0.5290 | 0.7394 | | 0.5454 | 11.0 | 638 | 0.5212 | 0.7345 | | 0.5291 | 12.0 | 696 | 0.5130 | 0.7576 | | 0.5378 | 13.0 | 754 | 0.5372 | 0.7503 | | 0.5264 | 14.0 | 812 | 0.6089 | 0.6861 | | 0.4909 | 15.0 | 870 | 0.4852 | 0.7636 | | 0.5591 | 16.0 | 928 | 0.4817 | 0.76 | | 0.4966 | 17.0 | 986 | 0.5673 | 0.6933 | | 0.4988 | 18.0 | 1044 | 0.5131 | 0.7418 | | 0.5339 | 19.0 | 1102 | 0.4998 | 0.7394 | | 0.4804 | 20.0 | 1160 | 0.4655 | 0.7733 | | 0.503 | 21.0 | 1218 | 0.4554 | 0.7685 | | 0.4859 | 22.0 | 1276 | 0.4713 | 0.7770 | | 0.504 | 23.0 | 1334 | 0.4545 | 0.7721 | | 0.478 | 24.0 | 1392 | 0.4658 | 0.7830 | | 0.4759 | 25.0 | 1450 | 0.4365 | 0.8012 | | 0.4686 | 26.0 | 1508 | 0.4452 | 0.7855 | | 0.4668 | 27.0 | 1566 | 0.4427 | 0.7879 | | 0.4615 | 28.0 | 1624 | 0.4439 | 0.7685 | | 0.4588 | 29.0 | 1682 | 0.4378 | 0.7830 | | 0.4588 | 30.0 | 1740 | 0.4229 | 0.7988 | | 0.4296 | 31.0 | 1798 | 0.4188 | 0.7976 | | 0.4208 | 32.0 | 1856 | 0.4316 | 0.7891 | | 0.4481 | 33.0 | 1914 | 0.4331 | 0.7891 | | 0.4253 | 34.0 | 1972 | 0.4524 | 0.7879 | | 0.4117 | 35.0 | 2030 | 0.4570 | 0.7952 | | 0.4405 | 36.0 | 2088 | 0.4307 | 0.7927 | | 0.4154 | 37.0 | 2146 | 0.4257 | 0.8024 | | 0.3962 | 38.0 | 2204 | 0.5077 | 0.7818 | | 0.414 | 39.0 | 2262 | 0.4602 | 0.8012 | | 0.3937 | 40.0 | 2320 | 0.4741 | 0.7770 | | 0.4186 | 41.0 | 2378 | 0.4250 | 0.8 | | 0.4076 | 42.0 | 2436 | 0.4353 | 0.7988 | | 0.3777 | 43.0 | 2494 | 0.4442 | 0.7879 | | 0.3968 | 44.0 | 2552 | 0.4525 | 0.7879 | | 0.377 | 45.0 | 2610 | 0.4198 | 0.7988 | | 0.378 | 46.0 | 2668 | 0.4297 | 0.8097 | | 0.3675 | 47.0 | 2726 | 0.4435 | 0.8085 | | 0.3562 | 48.0 | 2784 | 0.4477 | 0.7952 | | 0.381 | 49.0 | 2842 | 0.4206 | 0.8255 | | 0.3603 | 50.0 | 2900 | 0.4136 | 0.8109 | | 0.3331 | 51.0 | 2958 | 0.4141 | 0.8230 | | 0.3471 | 52.0 | 3016 | 0.4253 | 0.8109 | | 0.346 | 53.0 | 3074 | 0.5203 | 0.8048 | | 0.3481 | 54.0 | 3132 | 0.4288 | 0.8242 | | 0.3411 | 55.0 | 3190 | 0.4416 | 0.8194 | | 0.3275 | 56.0 | 3248 | 0.4149 | 0.8291 | | 0.3067 | 57.0 | 3306 | 0.4623 | 0.8218 | | 0.3166 | 58.0 | 3364 | 0.4432 | 0.8255 | | 0.3294 | 59.0 | 3422 | 0.4599 | 0.8267 | | 0.3146 | 60.0 | 3480 | 0.4266 | 0.8291 | | 0.3091 | 61.0 | 3538 | 0.4318 | 0.8315 | | 0.3277 | 62.0 | 3596 | 0.4252 | 0.8242 | | 0.296 | 63.0 | 3654 | 0.4332 | 0.8436 | | 0.3241 | 64.0 | 3712 | 0.4729 | 0.8194 | | 0.3104 | 65.0 | 3770 | 0.4228 | 0.8448 | | 0.2878 | 66.0 | 3828 | 0.4173 | 0.8388 | | 0.265 | 67.0 | 3886 | 0.4210 | 0.8497 | | 0.3011 | 68.0 | 3944 | 0.4276 | 0.8436 | | 0.2861 | 69.0 | 4002 | 0.4923 | 0.8315 | | 0.2994 | 70.0 | 4060 | 0.4472 | 0.8182 | | 0.276 | 71.0 | 4118 | 0.4541 | 0.8315 | | 0.2796 | 72.0 | 4176 | 0.4218 | 0.8521 | | 0.2727 | 73.0 | 4234 | 0.4053 | 0.8448 | | 0.255 | 74.0 | 4292 | 0.4356 | 0.8376 | | 0.276 | 75.0 | 4350 | 0.4193 | 0.8436 | | 0.261 | 76.0 | 4408 | 0.4484 | 0.8533 | | 0.2416 | 77.0 | 4466 | 0.4722 | 0.8194 | | 0.2602 | 78.0 | 4524 | 0.4431 | 0.8533 | | 0.2591 | 79.0 | 4582 | 0.4269 | 0.8606 | | 0.2613 | 80.0 | 4640 | 0.4335 | 0.8485 | | 0.2555 | 81.0 | 4698 | 0.4269 | 0.8594 | | 0.2832 | 82.0 | 4756 | 0.3968 | 0.8715 | | 0.264 | 83.0 | 4814 | 0.4173 | 0.8703 | | 0.2462 | 84.0 | 4872 | 0.4150 | 0.8606 | | 0.2424 | 85.0 | 4930 | 0.4377 | 0.8630 | | 0.2574 | 86.0 | 4988 | 0.4120 | 0.8679 | | 0.2273 | 87.0 | 5046 | 0.4393 | 0.8533 | | 0.2334 | 88.0 | 5104 | 0.4366 | 0.8630 | | 0.2258 | 89.0 | 5162 | 0.4189 | 0.8630 | | 0.2153 | 90.0 | 5220 | 0.4474 | 0.8630 | | 0.2462 | 91.0 | 5278 | 0.4362 | 0.8642 | | 0.2356 | 92.0 | 5336 | 0.4454 | 0.8715 | | 0.2019 | 93.0 | 5394 | 0.4413 | 0.88 | | 0.209 | 94.0 | 5452 | 0.4410 | 0.8703 | | 0.2201 | 95.0 | 5510 | 0.4323 | 0.8691 | | 0.2245 | 96.0 | 5568 | 0.4999 | 0.8618 | | 0.2178 | 97.0 | 5626 | 0.4612 | 0.8655 | | 0.2163 | 98.0 | 5684 | 0.4340 | 0.8703 | | 0.2228 | 99.0 | 5742 | 0.4504 | 0.8788 | | 0.2151 | 100.0 | 5800 | 0.4602 | 0.8703 | | 0.1988 | 101.0 | 5858 | 0.4414 | 0.8812 | | 0.2227 | 102.0 | 5916 | 0.4392 | 0.8824 | | 0.1772 | 103.0 | 5974 | 0.5069 | 0.8630 | | 0.2199 | 104.0 | 6032 | 0.4648 | 0.8667 | | 0.1936 | 105.0 | 6090 | 0.4806 | 0.8691 | | 0.199 | 106.0 | 6148 | 0.4569 | 0.8764 | | 0.2149 | 107.0 | 6206 | 0.4445 | 0.8739 | | 0.1917 | 108.0 | 6264 | 0.4444 | 0.8727 | | 0.201 | 109.0 | 6322 | 0.4594 | 0.8727 | | 0.1938 | 110.0 | 6380 | 0.4564 | 0.8764 | | 0.1977 | 111.0 | 6438 | 0.4398 | 0.8739 | | 0.1776 | 112.0 | 6496 | 0.4356 | 0.88 | | 0.1939 | 113.0 | 6554 | 0.4412 | 0.8848 | | 0.178 | 114.0 | 6612 | 0.4373 | 0.88 | | 0.1926 | 115.0 | 6670 | 0.4508 | 0.8812 | | 0.1979 | 116.0 | 6728 | 0.4477 | 0.8848 | | 0.1958 | 117.0 | 6786 | 0.4488 | 0.8897 | | 0.189 | 118.0 | 6844 | 0.4553 | 0.8836 | | 0.1838 | 119.0 | 6902 | 0.4605 | 0.8848 | | 0.1755 | 120.0 | 6960 | 0.4463 | 0.8836 | | 0.1958 | 121.0 | 7018 | 0.4474 | 0.8861 | | 0.1857 | 122.0 | 7076 | 0.4550 | 0.8921 | | 0.1466 | 123.0 | 7134 | 0.4494 | 0.8885 | | 0.1751 | 124.0 | 7192 | 0.4560 | 0.8873 | | 0.175 | 125.0 | 7250 | 0.4383 | 0.8897 | | 0.207 | 126.0 | 7308 | 0.4601 | 0.8873 | | 0.1756 | 127.0 | 7366 | 0.4425 | 0.8897 | | 0.1695 | 128.0 | 7424 | 0.4533 | 0.8909 | | 0.1873 | 129.0 | 7482 | 0.4510 | 0.8897 | | 0.1726 | 130.0 | 7540 | 0.4463 | 0.8909 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
bishalbaaniya/opus-mt-en-ro-finetuned-en-to-ro
bishalbaaniya
2022-10-27T01:37:52Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-27T00:03:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: ro-en split: train args: ro-en metrics: - name: Bleu type: bleu value: 28.1505 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1505 - Gen Len: 34.1036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7437 | 1.0 | 38145 | 1.2886 | 28.1505 | 34.1036 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
CharlieP/t5-small-nlpfinalproject-xsum
CharlieP
2022-10-27T00:12:48Z
9
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-26T15:42:09Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: CharlieP/t5-small-nlpfinalproject-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # CharlieP/t5-small-nlpfinalproject-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.2391 - Validation Loss: 3.0511 - Train Rouge1: 21.2434 - Train Rouge2: 4.0808 - Train Rougel: 16.6836 - Train Rougelsum: 16.6460 - Train Gen Len: 18.42 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 3.8204 | 3.2757 | 18.2829 | 2.7616 | 14.7101 | 14.7047 | 18.59 | 0 | | 3.4646 | 3.1560 | 20.4371 | 3.6903 | 16.0587 | 16.0790 | 18.35 | 1 | | 3.3630 | 3.1028 | 20.7907 | 3.9282 | 15.9696 | 15.8916 | 18.42 | 2 | | 3.2904 | 3.0713 | 21.6980 | 4.3218 | 16.7261 | 16.6776 | 18.42 | 3 | | 3.2391 | 3.0511 | 21.2434 | 4.0808 | 16.6836 | 16.6460 | 18.42 | 4 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
sd-concepts-library/anime-background-style
sd-concepts-library
2022-10-26T23:48:27Z
0
7
null
[ "license:mit", "region:us" ]
null
2022-10-26T23:39:03Z
--- license: mit --- ### Anime Background Style on Stable Diffusion This is the `<anime-background-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<anime-background-style> 0](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/5.jpeg) ![<anime-background-style> 1](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/8.jpeg) ![<anime-background-style> 2](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/3.jpeg) ![<anime-background-style> 3](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/0.jpeg) ![<anime-background-style> 4](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/9.jpeg) ![<anime-background-style> 5](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/6.jpeg) ![<anime-background-style> 6](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/2.jpeg) ![<anime-background-style> 7](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/1.jpeg) ![<anime-background-style> 8](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/4.jpeg) ![<anime-background-style> 9](https://huggingface.co/sd-concepts-library/anime-background-style/resolve/main/concept_images/7.jpeg) Here are images generated with this style: ![a suburban street in the style of <anime-background-style>](https://i.imgur.com/S774UmL.png) ![a public pool in the style of <anime-background-style>](https://i.imgur.com/d1Z4V3K.png) ![a lush jungle in the style of <anime-background-style>](https://i.imgur.com/06vhfIH.png) This style does not produce good results as most of the training images were too small. I'll likely train it again with bigger ones.
huggingtweets/gretathotburg
huggingtweets
2022-10-26T23:34:18Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T16:17:41Z
--- language: en thumbnail: http://www.huggingtweets.com/gretathotburg/1666827253516/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1551255816992350210/yjE--1UN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cathy</div> <div style="text-align: center; font-size: 14px;">@gretathotburg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cathy. | Data | cathy | | --- | --- | | Tweets downloaded | 1108 | | Retweets | 257 | | Short tweets | 362 | | Tweets kept | 489 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2j0c2wea/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gretathotburg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d4e53sz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d4e53sz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gretathotburg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/unormal
huggingtweets
2022-10-26T23:12:43Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T23:12:05Z
--- language: en thumbnail: http://www.huggingtweets.com/unormal/1666825958784/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1214437142149160960/LjmOMDT3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🐔 Brian Bucklew 🐔 ₑͤ>∿<ₑͤ ∞🌮</div> <div style="text-align: center; font-size: 14px;">@unormal</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🐔 Brian Bucklew 🐔 ₑͤ>∿<ₑͤ ∞🌮. | Data | 🐔 Brian Bucklew 🐔 ₑͤ>∿<ₑͤ ∞🌮 | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 580 | | Short tweets | 870 | | Tweets kept | 1788 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lbbzcxv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @unormal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2uyfuin5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2uyfuin5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/unormal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/_a_bat
huggingtweets
2022-10-26T23:12:22Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T23:08:36Z
--- language: en thumbnail: http://www.huggingtweets.com/_a_bat/1666825888934/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2415729722/9rhiyt5scbbzagfdxrx2_400x400.gif&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Taw - version2.bat</div> <div style="text-align: center; font-size: 14px;">@_a_bat</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Taw - version2.bat. | Data | Taw - version2.bat | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 336 | | Short tweets | 258 | | Tweets kept | 2653 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fdjcy6g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_a_bat's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n2exl5h2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n2exl5h2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_a_bat') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
muzafferenes/workshop
muzafferenes
2022-10-26T22:54:26Z
0
0
null
[ "region:us" ]
null
2022-10-15T09:13:48Z
architectural section drawing 3d parametric design for elderly people living with courtyards in between two forms with small bridges
musika/musika_misc
musika
2022-10-26T22:48:07Z
0
1
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
2022-10-26T22:46:21Z
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: musika_misc ## Model provided by: marcop Pretrained musika_misc model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained musika_misc model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
musika/musika_techno
musika
2022-10-26T22:45:22Z
0
1
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
2022-10-26T22:40:50Z
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: musika_techno ## Model provided by: marcop Pretrained musika_techno model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained musika_techno model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r?usp=sharing). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
sd-concepts-library/kentaro-miura
sd-concepts-library
2022-10-26T22:24:04Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-26T22:23:57Z
--- license: mit --- ### Kentaro Miura on Stable Diffusion This is the `<kentaro-miura>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kentaro-miura> 0](https://huggingface.co/sd-concepts-library/kentaro-miura/resolve/main/concept_images/3.jpeg) ![<kentaro-miura> 1](https://huggingface.co/sd-concepts-library/kentaro-miura/resolve/main/concept_images/0.jpeg) ![<kentaro-miura> 2](https://huggingface.co/sd-concepts-library/kentaro-miura/resolve/main/concept_images/2.jpeg) ![<kentaro-miura> 3](https://huggingface.co/sd-concepts-library/kentaro-miura/resolve/main/concept_images/1.jpeg) ![<kentaro-miura> 4](https://huggingface.co/sd-concepts-library/kentaro-miura/resolve/main/concept_images/4.jpeg)
JoAmps/littledatasets
JoAmps
2022-10-26T22:20:47Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-26T22:05:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: littledatasets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # littledatasets This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 85 | 0.0053 | | No log | 2.0 | 170 | 0.0002 | | No log | 3.0 | 255 | 0.0001 | | No log | 4.0 | 340 | 0.0001 | | No log | 5.0 | 425 | 0.0001 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.12.1
huggingtweets/the_boolaidman
huggingtweets
2022-10-26T21:55:47Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T17:15:53Z
--- language: en thumbnail: http://www.huggingtweets.com/the_boolaidman/1666821342474/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1528444052034789378/E1BRWZyE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">theboghog</div> <div style="text-align: center; font-size: 14px;">@the_boolaidman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from theboghog. | Data | theboghog | | --- | --- | | Tweets downloaded | 184 | | Retweets | 44 | | Short tweets | 32 | | Tweets kept | 108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lez3uo4l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @the_boolaidman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34ufbard) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34ufbard/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/the_boolaidman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/big___oven-schizo_freq
huggingtweets
2022-10-26T21:50:36Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T17:42:08Z
--- language: en thumbnail: http://www.huggingtweets.com/big___oven-schizo_freq/1666821031327/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1571653458972794884/eaxhUsib_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1582126821025382400/PZjx83du_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">oskcar & Lukas (computer)</div> <div style="text-align: center; font-size: 14px;">@big___oven-schizo_freq</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from oskcar & Lukas (computer). | Data | oskcar | Lukas (computer) | | --- | --- | --- | | Tweets downloaded | 2642 | 3234 | | Retweets | 605 | 480 | | Short tweets | 325 | 326 | | Tweets kept | 1712 | 2428 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/t7nn481m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @big___oven-schizo_freq's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ljhfklh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ljhfklh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/big___oven-schizo_freq') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
andrewzhang505/doom_test
andrewzhang505
2022-10-26T20:56:17Z
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
reinforcement-learning
2022-10-26T20:54:41Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory --- A(n) **APPO** model trained on the **doom_deathmatch_bots** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
Kristijan/gpt2_wt103-40m_12-layer
Kristijan
2022-10-26T20:55:16Z
3
0
pytorch
[ "pytorch", "gpt2", "language-model", "transformer", "wikitext-103", "en", "arxiv:2210.13569", "model-index", "region:us" ]
null
2022-10-26T17:46:18Z
--- language: - en library_name: pytorch tags: - language-model - gpt2 - transformer - wikitext-103 model-index: - name: gpt2_wt103-40m_12-layer results: - task: type: language-modeling dataset: type: wikitext name: Wikitext-103 metrics: - type: perplexity value: 40.3 --- # Model description paper: [Characterizing Verbatim Short-Term Memory in Neural Language Models](https://arxiv.org/abs/2210.13569) This is a gpt2-small-like decoder-only transformer model trained on a 40M token subset of the [wikitext-103 dataset](https://paperswithcode.com/dataset/wikitext-103). # Usage You can download and load the model as follows: ```python from transformers import GPT2LMHeadModel model = GPT2LMHeadModel.from_pretrained("Kristijan/gpt2_wt103-40m_12-layer") ``` Alternatively, if you've downloaded the checkpoint files in this repository, you could also do: ```python from transformers import GPT2LMHeadModel model = GPT2LMHeadModel.from_pretrained(path_to_folder_with_checkpoint_files) ``` To tokenize your text for this model, you should use the [tokenizer trained on Wikitext-103](https://huggingface.co/Kristijan/wikitext-103-tokenizer) # Intended uses This checkpoint is intended for research purposes, for example those interested in studying the behavior of transformer language models trained on smaller datasets.
GhifSmile/mT5_multilingual_XLSum-finetuned-indosum
GhifSmile
2022-10-26T20:49:59Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-26T15:43:40Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5_multilingual_XLSum-finetuned-indosum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-indosum This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5512 - Rouge1: 0.3819 - Rouge2: 0.3102 - Rougel: 0.3529 - Rougelsum: 0.3687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.8183 | 1.0 | 7131 | 1.5512 | 0.3819 | 0.3102 | 0.3529 | 0.3687 | | 1.8191 | 2.0 | 14262 | 1.5512 | 0.3819 | 0.3102 | 0.3529 | 0.3687 | | 1.8197 | 3.0 | 21393 | 1.5512 | 0.3819 | 0.3102 | 0.3529 | 0.3687 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Kristijan/wikitext-103-tokenizer
Kristijan
2022-10-26T20:32:07Z
0
0
null
[ "region:us" ]
null
2022-10-26T20:16:48Z
## Model info This is a BPE tokenizer retrained from scratch on the concatenated [Wikitext-103](https://paperswithcode.com/dataset/wikitext-103) train, evaluation, and test sets. The vocabulary had 28,439 entries. This tokenizer was use to tokenize text for [the GPT-2 model trained on Wikitext-103](https://huggingface.co/Kristijan/gpt2_wt103-40m_12-layer). ## Usage You can download the tokenizer directly from hub as follows: ``` from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained("Kristijan/wikitext-103-tokenizer") ``` After cloning/downloading the files, you can load the tokenizer using the `/from_pretrained()` methods as follows: ``` from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained(path_to_folder_with_merges_and_vocab_files) ```
Karelito00/beit-base-patch16-224-pt22k-ft22k-finetuned-mnist
Karelito00
2022-10-26T19:25:37Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:mnist", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-26T15:25:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-mnist results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist config: mnist split: train args: mnist metrics: - name: Accuracy type: accuracy value: 0.9935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-mnist This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0202 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3376 | 1.0 | 937 | 0.0446 | 0.9855 | | 0.318 | 2.0 | 1874 | 0.0262 | 0.9916 | | 0.2374 | 3.0 | 2811 | 0.0202 | 0.9935 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/simerino1
huggingtweets
2022-10-26T19:03:41Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T19:02:08Z
--- language: en thumbnail: http://www.huggingtweets.com/simerino1/1666811016675/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1174133652399300608/3UF7GOrK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">computer</div> <div style="text-align: center; font-size: 14px;">@simerino1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from computer. | Data | computer | | --- | --- | | Tweets downloaded | 980 | | Retweets | 366 | | Short tweets | 96 | | Tweets kept | 518 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/356xy36h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @simerino1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1eld4xfg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1eld4xfg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/simerino1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kevinbror/whynotwork
kevinbror
2022-10-26T19:02:37Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-26T19:02:10Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: whynotwork results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whynotwork This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2892 - Train End Logits Accuracy: 0.6617 - Train Start Logits Accuracy: 0.6190 - Validation Loss: 1.0393 - Validation End Logits Accuracy: 0.7213 - Validation Start Logits Accuracy: 0.6877 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7377, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.2892 | 0.6617 | 0.6190 | 1.0393 | 0.7213 | 0.6877 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
kevinbror/yespublic
kevinbror
2022-10-26T18:51:03Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-26T12:14:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: yespublic results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # yespublic This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2892 - Train End Logits Accuracy: 0.6617 - Train Start Logits Accuracy: 0.6190 - Validation Loss: 1.0393 - Validation End Logits Accuracy: 0.7213 - Validation Start Logits Accuracy: 0.6877 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7377, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.2892 | 0.6617 | 0.6190 | 1.0393 | 0.7213 | 0.6877 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/snobrights
huggingtweets
2022-10-26T18:18:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T18:17:24Z
--- language: en thumbnail: http://www.huggingtweets.com/snobrights/1666808315124/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1562231899925397504/PZnUZWaV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">vote4ana</div> <div style="text-align: center; font-size: 14px;">@snobrights</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from vote4ana. | Data | vote4ana | | --- | --- | | Tweets downloaded | 1947 | | Retweets | 510 | | Short tweets | 353 | | Tweets kept | 1084 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/163lcflh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @snobrights's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6bnd5aob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6bnd5aob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/snobrights') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
PraveenKishore/dqn-SpaceInvadersNoFrameskip-v4
PraveenKishore
2022-10-26T18:07:45Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-26T18:07:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 626.50 +/- 127.69 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga PraveenKishore -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga PraveenKishore -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga PraveenKishore ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/gretathotburg-snobrights
huggingtweets
2022-10-26T17:59:14Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T16:41:44Z
--- language: en thumbnail: http://www.huggingtweets.com/gretathotburg-snobrights/1666807149420/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1551255816992350210/yjE--1UN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1562231899925397504/PZnUZWaV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cathy & vote4ana</div> <div style="text-align: center; font-size: 14px;">@gretathotburg-snobrights</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cathy & vote4ana. | Data | cathy | vote4ana | | --- | --- | --- | | Tweets downloaded | 1107 | 1948 | | Retweets | 254 | 511 | | Short tweets | 362 | 353 | | Tweets kept | 491 | 1084 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2129jbxh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gretathotburg-snobrights's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dq4zw12) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dq4zw12/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gretathotburg-snobrights') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mjawadazad2321/donut-base-Medical_Handwritten_Blocks_Data_Extraction
mjawadazad2321
2022-10-26T16:39:16Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-10-26T16:27:29Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-Medical_Handwritten_Blocks_Data_Extraction results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-Medical_Handwritten_Blocks_Data_Extraction This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/rtm_ALBERT_5E
pig4431
2022-10-26T15:04:14Z
5
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:rotten_tomatoes", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T15:03:22Z
--- tags: - generated_from_trainer datasets: - rotten_tomatoes model-index: - name: model_output_dir results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output_dir This model was trained from scratch on the rotten_tomatoes dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
YumaSaito/distilbert-base-uncased-finetuned-emotion
YumaSaito
2022-10-26T15:03:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T14:15:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9261092845869646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2181 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8618 | 1.0 | 250 | 0.3206 | 0.903 | 0.8990 | | 0.2549 | 2.0 | 500 | 0.2181 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
dominiks/dqn-SpaceInvadersNoFrameskip-v4
dominiks
2022-10-26T14:31:01Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-26T14:30:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 689.50 +/- 181.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dominiks -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dominiks -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dominiks ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
judaschrist/ddpm-butterflies-128
judaschrist
2022-10-26T14:30:42Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:json", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-25T15:52:48Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: json metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `json` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/judaschrist/ddpm-butterflies-128/tensorboard?#scalars)
gstqtfr/ddpm-butterflies-128
gstqtfr
2022-10-26T13:57:03Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-25T17:02:11Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/gstqtfr/ddpm-butterflies-128/tensorboard?#scalars)
mrm8488/codebert-base-finetuned-code-ner-15e
mrm8488
2022-10-26T13:42:00Z
24
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-26T11:57:15Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: codebert-base-finetuned-code-ner-15e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codebert-base-finetuned-code-ner-15e This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3831 - Precision: 0.6363 - Recall: 0.6494 - F1: 0.6428 - Accuracy: 0.9197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 191 | 0.4566 | 0.5021 | 0.4220 | 0.4585 | 0.8827 | | No log | 2.0 | 382 | 0.3756 | 0.5699 | 0.5764 | 0.5731 | 0.9043 | | 0.5133 | 3.0 | 573 | 0.3605 | 0.6001 | 0.5767 | 0.5882 | 0.9093 | | 0.5133 | 4.0 | 764 | 0.3500 | 0.6130 | 0.6130 | 0.6130 | 0.9153 | | 0.5133 | 5.0 | 955 | 0.3501 | 0.6337 | 0.6172 | 0.6254 | 0.9178 | | 0.2203 | 6.0 | 1146 | 0.3645 | 0.6250 | 0.6352 | 0.6300 | 0.9163 | | 0.2203 | 7.0 | 1337 | 0.3488 | 0.6263 | 0.6422 | 0.6341 | 0.9189 | | 0.1457 | 8.0 | 1528 | 0.3575 | 0.6372 | 0.6397 | 0.6384 | 0.9194 | | 0.1457 | 9.0 | 1719 | 0.3662 | 0.6406 | 0.6343 | 0.6375 | 0.9189 | | 0.1457 | 10.0 | 1910 | 0.3613 | 0.6374 | 0.6473 | 0.6423 | 0.9201 | | 0.107 | 11.0 | 2101 | 0.3716 | 0.6329 | 0.6544 | 0.6435 | 0.9197 | | 0.107 | 12.0 | 2292 | 0.3754 | 0.6328 | 0.6487 | 0.6406 | 0.9193 | | 0.107 | 13.0 | 2483 | 0.3826 | 0.6395 | 0.6490 | 0.6443 | 0.9204 | | 0.0863 | 14.0 | 2674 | 0.3821 | 0.6368 | 0.6535 | 0.6451 | 0.9200 | | 0.0863 | 15.0 | 2865 | 0.3831 | 0.6363 | 0.6494 | 0.6428 | 0.9197 | ### Evaluation results | | Algorithm | Application | Class | Code_Block | Data_Structure | Data_Type | Device | Error_Name | File_Name | File_Type | Function | HTML_XML_Tag | Keyboard_IP | Language | Library | Operating_System | Output_Block | User_Interface_Element | User_Name | Value | Variable | Version | Website | overall_precision | overall_recall | overall_f1 | overall_accuracy | |:----------|------------:|--------------:|------------:|-------------:|-----------------:|------------:|----------:|-------------:|------------:|------------:|-----------:|---------------:|--------------:|-----------:|-----------:|-------------------:|---------------:|-------------------------:|------------:|-----------:|-----------:|-----------:|----------:|--------------------:|-----------------:|-------------:|-------------------:| | precision | 0 | 0.619835 | 0.680851 | 0.455629 | 0.813187 | 0.592593 | 0.395062 | 0.181818 | 0.800505 | 0.775956 | 0.757664 | 0.585366 | 0.333333 | 0.689769 | 0.61807 | 0.769231 | 0.0212766 | 0.542214 | 0.4375 | 0.370236 | 0.560479 | 0.883721 | 0.382353 | 0.626308 | 0.642171 | 0.63414 | 0.918927 | | recall | 0 | 0.677711 | 0.696864 | 0.494253 | 0.840909 | 0.8 | 0.533333 | 0.333333 | 0.794486 | 0.628319 | 0.631387 | 0.470588 | 0.0169492 | 0.81323 | 0.546279 | 0.843373 | 0.04 | 0.653846 | 0.518519 | 0.52987 | 0.54482 | 0.914089 | 0.270833 | 0.626308 | 0.642171 | 0.63414 | 0.918927 | | f1 | 0 | 0.647482 | 0.688765 | 0.474156 | 0.826816 | 0.680851 | 0.453901 | 0.235294 | 0.797484 | 0.694377 | 0.688786 | 0.521739 | 0.0322581 | 0.746429 | 0.579961 | 0.804598 | 0.0277778 | 0.592821 | 0.474576 | 0.435897 | 0.552538 | 0.898649 | 0.317073 | 0.626308 | 0.642171 | 0.63414 | 0.918927 | | number | 31 | 664 | 1148 | 696 | 264 | 120 | 60 | 30 | 798 | 226 | 822 | 102 | 59 | 257 | 551 | 83 | 25 | 442 | 54 | 385 | 859 | 291 | 48 | 0.626308 | 0.642171 | 0.63414 | 0.918927 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Karelito00/swin-tiny-patch4-window7-224-finetuned-eurosat
Karelito00
2022-10-26T13:40:05Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-26T13:15:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9822222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3259 | 1.0 | 379 | 0.0760 | 0.9763 | | 0.1882 | 2.0 | 758 | 0.0694 | 0.9778 | | 0.1563 | 3.0 | 1137 | 0.0501 | 0.9822 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
lafayettecreditrepair/Credit-Repair-Services-Lafayette
lafayettecreditrepair
2022-10-26T13:08:33Z
0
0
null
[ "region:us" ]
null
2022-10-26T13:07:58Z
We are a family-owned and operated Credit Repair company, founded in 2013. Our goal is to help you achieve financial success and reach your credit goals. We’re not your average credit repair firm, we truly care, so we only charge for the items we pursue on your report. Not only does this make us one of the FASTEST credit restoration companies, but we’re also one of the most affordable. Follow this [link](https://lafayette.asapcreditrepairusa.com/)
KGsteven/distilbert-base-uncased-finetuned-cola
KGsteven
2022-10-26T12:36:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-19T11:25:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3038 - Matthews Correlation: 0.9198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 1.2169 | 1.0 | 626 | 0.6782 | 0.8605 | | 0.5513 | 2.0 | 1252 | 0.4085 | 0.8998 | | 0.343 | 3.0 | 1878 | 0.3346 | 0.9122 | | 0.1642 | 4.0 | 2504 | 0.3106 | 0.9165 | | 0.1216 | 5.0 | 3130 | 0.3038 | 0.9198 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Tokenizers 0.13.1
huggingtweets/doaenel
huggingtweets
2022-10-26T12:29:27Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-30T20:24:02Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1469646540612509701/x4eJRlkK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dantes</div> <div style="text-align: center; font-size: 14px;">@doaenel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dantes. | Data | Dantes | | --- | --- | | Tweets downloaded | 2609 | | Retweets | 29 | | Short tweets | 464 | | Tweets kept | 2116 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sbwdgoz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @doaenel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8u23yy7u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8u23yy7u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/doaenel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
studiolike/caps
studiolike
2022-10-26T12:04:28Z
13
0
tf-keras
[ "tf-keras", "ocr", "computer vision", "object detection", "image-to-text", "license:cc0-1.0", "region:us" ]
image-to-text
2022-10-22T05:21:34Z
--- tags: - ocr - computer vision - object detection - image-to-text license: - cc0-1.0 --- ## Keras Implementation of OCR model for reading captcha 🤖🦹🏻
huggingtweets/femoidfurry
huggingtweets
2022-10-26T11:56:36Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/femoidfurry/1666785376927/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569453578493763590/MerXNdrF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">shitbrain dyke upside down era</div> <div style="text-align: center; font-size: 14px;">@femoidfurry</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from shitbrain dyke upside down era. | Data | shitbrain dyke upside down era | | --- | --- | | Tweets downloaded | 3211 | | Retweets | 1977 | | Short tweets | 106 | | Tweets kept | 1128 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34ui7fp9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femoidfurry's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/177yzikv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/177yzikv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/femoidfurry') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
chintagunta85/biobert-base-cased-v1.2-bc2gm-ner
chintagunta85
2022-10-26T11:38:53Z
30
3
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:bc2gm_corpus", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-26T10:46:44Z
--- tags: - generated_from_trainer datasets: - bc2gm_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-bc2gm-ner results: - task: name: Token Classification type: token-classification dataset: name: bc2gm_corpus type: bc2gm_corpus config: bc2gm_corpus split: train args: bc2gm_corpus metrics: - name: Precision type: precision value: 0.7988356059445381 - name: Recall type: recall value: 0.8243478260869566 - name: F1 type: f1 value: 0.8113912231559292 - name: Accuracy type: accuracy value: 0.9772069842818806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2-bc2gm-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the bc2gm_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.1528 - Precision: 0.7988 - Recall: 0.8243 - F1: 0.8114 - Accuracy: 0.9772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.057 | 1.0 | 782 | 0.0670 | 0.7446 | 0.8051 | 0.7736 | 0.9738 | | 0.0586 | 2.0 | 1564 | 0.0689 | 0.7689 | 0.8106 | 0.7892 | 0.9755 | | 0.0123 | 3.0 | 2346 | 0.0715 | 0.7846 | 0.8076 | 0.7959 | 0.9750 | | 0.0002 | 4.0 | 3128 | 0.0896 | 0.7942 | 0.8199 | 0.8068 | 0.9767 | | 0.0004 | 5.0 | 3910 | 0.1119 | 0.7971 | 0.8201 | 0.8084 | 0.9765 | | 0.0004 | 6.0 | 4692 | 0.1192 | 0.7966 | 0.8337 | 0.8147 | 0.9768 | | 0.013 | 7.0 | 5474 | 0.1274 | 0.7932 | 0.8266 | 0.8095 | 0.9773 | | 0.0236 | 8.0 | 6256 | 0.1419 | 0.7976 | 0.8213 | 0.8093 | 0.9771 | | 0.0004 | 9.0 | 7038 | 0.1519 | 0.8004 | 0.8261 | 0.8130 | 0.9772 | | 0.0 | 10.0 | 7820 | 0.1528 | 0.7988 | 0.8243 | 0.8114 | 0.9772 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
mcallencreditrepair/Credit-Repair-Services-McAllen
mcallencreditrepair
2022-10-26T11:06:26Z
0
0
null
[ "region:us" ]
null
2022-10-26T11:06:02Z
Are you looking for [credit repair McAllen](https://mcallen.asapcreditrepairusa.com/)? You are at the right place. ASAP Credit Repair McAllen will help you repair your credit scores by removing derogatory items from your accounts. Call or text us today!
elpasoasapcreditrepair/Credit-Repair-in-ElPaso
elpasoasapcreditrepair
2022-10-26T10:59:25Z
0
0
null
[ "region:us" ]
null
2022-10-26T10:58:56Z
We want to get to know you, but first you should get to know us! We are a family-owned and operated Credit Repair company, founded in 2013. Our goal is to help you achieve financial success and reach your credit goals. Follow this [link](https://elpaso.asapcreditrepairusa.com/)
huggingtweets/alberteinstein-physicstoday-physicstweet
huggingtweets
2022-10-26T10:33:34Z
4
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T10:30:36Z
--- language: en thumbnail: http://www.huggingtweets.com/alberteinstein-physicstoday-physicstweet/1666780409313/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/879355674957926400/VSGZHGib_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1576931585408073728/9Y0JqcIu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2821633714/ea74608b616cb0dc06a2562c01dcbe2e_400x400.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Albert Einstein & Physics Today & Physics Tweet</div> <div style="text-align: center; font-size: 14px;">@alberteinstein-physicstoday-physicstweet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Albert Einstein & Physics Today & Physics Tweet. | Data | Albert Einstein | Physics Today | Physics Tweet | | --- | --- | --- | --- | | Tweets downloaded | 3251 | 3249 | 3250 | | Retweets | 126 | 754 | 0 | | Short tweets | 101 | 14 | 0 | | Tweets kept | 3024 | 2481 | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/uingbn5k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alberteinstein-physicstoday-physicstweet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vwa3h6sy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vwa3h6sy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alberteinstein-physicstoday-physicstweet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
israel/byt5_en_am
israel
2022-10-26T10:10:40Z
14
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "am", "dataset:sample", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-25T09:31:06Z
--- language: - am datasets: - sample license: cc-by-4.0 ---
NchuNLP/Legal-Document-Question-Answering
NchuNLP
2022-10-26T09:45:48Z
178
5
transformers
[ "transformers", "pytorch", "bert", "question-answering", "zh", "dataset:LegalDocumentDataset", "endpoints_compatible", "region:us" ]
question-answering
2022-10-17T08:21:34Z
--- language: zh datasets: - LegalDocumentDataset --- # bert-base-chinese for QA This is the [bert-base-chinese](https://huggingface.co/bert-base-chinese) model, fine-tuned using the Legal Document Dataset. It's been trained on question-answer pairs for the task of Question Answering. ## Usage ### In Transformers ```python from transformers import BertTokenizerFast, BertForQuestionAnswering, pipeline model_name = "NchuNLP/Legal-Document-Question-Answering" tokenizer = BertTokenizerFast.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) # a) Get predictions nlp = pipeline('question-answering', model=model, tokenizer=tokenizer) QA_input = { 'question': '被告人偽造了什麼文書?', 'context': '犯罪事實一、韓金虎在采豐開發有限公司(址設臺北市○○區○○路0段000巷00○0號,下稱采豐公司)擔任臨時派遣員工,詎其竟意圖為自己不法之所有,基於行使偽造私文書、詐欺取財等犯意,於民國110年9月2日下午5時20分前某時許,在不詳地點,在采豐公司所使用之空白工作確認單中主任簽名欄上偽簽謝宏奇之簽名,佯裝其有於110年9月1日到班工作,並經工地主任確認之意,提出與采豐公司主任曾子昕而行使之,曾子昕因見該份工作確認單上有謝奇宏之簽名,因陷於錯誤而信韓金虎確實有於110年9月1日到班工作,准發薪資新臺幣(下同)2,000元給韓金虎,足生損害於采豐公司。嗣曾子昕於110年9月3日上午11時20分許,發現工作確認單點交數量有異,遂報警處理,始悉上情。二、案經曾子昕訴由臺北市政府警察局萬華分局報告偵辦。' } res = nlp(QA_input) ``` ## Authors **Kei Yu Heish:** [email protected] **Yao-Chung Fan:** [email protected] ## About us [中興大學自然語言處理實驗室](https://nlpnchu.org/)研究方向圍繞於深度學習技術在文字資料探勘 (Text Mining) 與自然語言處理 (Natural Language Processing) 方面之研究,目前實驗室成員的研究主題著重於機器閱讀理解 (Machine Reading Comprehension) 以及自然語言生成 (Natural Language Generation) 兩面向。 ## More Information <p>For more info about Nchu NLP Lab, visit our <strong><a href="https://demo.nlpnchu.org/">Lab Online Demo</a></strong> repo and <strong><a href="https://github.com/NCHU-NLP-Lab">GitHub</a></strong>.
biu-nlp/lingmess-coref
biu-nlp
2022-10-26T08:55:32Z
3,558
10
transformers
[ "transformers", "pytorch", "longformer", "coreference-resolution", "en", "dataset:ontonotes", "arxiv:2205.12644", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2022-06-09T19:05:32Z
--- language: - en tags: - coreference-resolution license: mit datasets: - ontonotes metrics: - CoNLL task_categories: - coreference-resolution model-index: - name: biu-nlp/lingmess-coref results: - task: type: coreference-resolution name: coreference-resolution dataset: name: ontonotes type: coreference metrics: - name: Avg. F1 type: CoNLL value: 81.4 --- ## LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution [LingMess](https://arxiv.org/abs/2205.12644) is a linguistically motivated categorization of mention-pairs into 6 types of coreference decisions and learn a dedicated trainable scoring function for each category. This significantly improves the accuracy of the pairwise scorer as well as of the overall coreference performance on the English Ontonotes coreference corpus. Please check the [official repository](https://github.com/shon-otmazgin/lingmess-coref) for more details and updates. #### Training on OntoNotes We present the test results on OntoNotes 5.0 dataset. | Model | Avg. F1 | |---------------------------------|---------| | SpanBERT-large + e2e | 79.6 | | Longformer-large + s2e | 80.3 | | **Longformer-large + LingMess** | 81.4 | ### Citation If you find LingMess useful for your work, please cite the following paper: ``` latex @misc{https://doi.org/10.48550/arxiv.2205.12644, doi = {10.48550/ARXIV.2205.12644}, url = {https://arxiv.org/abs/2205.12644}, author = {Otmazgin, Shon and Cattan, Arie and Goldberg, Yoav}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
philadelphiacredit/Credit-Repair-Philadelphia
philadelphiacredit
2022-10-26T08:34:03Z
0
0
null
[ "region:us" ]
null
2022-10-26T08:32:38Z
We’re not your average credit repair firm, we truly care, so we only charge for the items we pursue on your report. Not only does this make us one of the FASTEST credit restoration companies, but we’re also one of the most affordable. We offer FREE consultations, evaluations, and credit education. Our process only takes 30-60 days and we offer a 100% MONEY-BACK GUARANTEE on almost all our services. Follow this [link](https://philadelphia.asapcreditrepairusa.com/)
GV05/distilbert-base-uncased-finetuned-emotion
GV05
2022-10-26T07:56:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T07:18:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9244695413548749 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2144 - Accuracy: 0.9245 - F1: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8227 | 1.0 | 250 | 0.3150 | 0.902 | 0.8992 | | 0.246 | 2.0 | 500 | 0.2144 | 0.9245 | 0.9245 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
sania-nawaz/finetuning-sentiment-model-3000-samples
sania-nawaz
2022-10-26T06:15:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T06:04:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3286 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
debbiesoon/bart_large_summarise_v2
debbiesoon
2022-10-26T05:22:32Z
8
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "dataset:multi_news", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-22T16:30:50Z
--- license: mit tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: bart_large_summarise_v2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 39.305 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_large_summarise_v2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 4.2988 - Rouge1: 39.305 - Rouge2: 13.4171 - Rougel: 20.4214 - Rougelsum: 34.971 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.2.dev0 - Tokenizers 0.13.1
huggingtweets/kubiekit
huggingtweets
2022-10-26T05:03:03Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-26T04:57:38Z
--- language: en thumbnail: http://www.huggingtweets.com/kubiekit/1666760547210/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1581568862616662016/XxeL1VBT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">kubie</div> <div style="text-align: center; font-size: 14px;">@kubiekit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from kubie. | Data | kubie | | --- | --- | | Tweets downloaded | 3136 | | Retweets | 180 | | Short tweets | 611 | | Tweets kept | 2345 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mv38hcu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kubiekit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uk7te5z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uk7te5z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kubiekit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ArafatBHossain/bert-distilled-multi_teacher_avg_logit_twitter_sentiment_07_alpha0.8
ArafatBHossain
2022-10-26T04:50:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T04:22:55Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-distilled-multi_teacher_avg_logit_twitter_sentiment_07_alpha0.8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-distilled-multi_teacher_avg_logit_twitter_sentiment_07_alpha0.8 This model is a fine-tuned version of [ArafatBHossain/distilbert-base-uncased-twitter_eval_sentiment_data](https://huggingface.co/ArafatBHossain/distilbert-base-uncased-twitter_eval_sentiment_data) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3250 - Accuracy: 0.671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4044 | 1.0 | 1875 | 0.3820 | 0.6655 | | 0.2636 | 2.0 | 3750 | 0.3914 | 0.668 | | 0.206 | 3.0 | 5625 | 0.3595 | 0.6655 | | 0.1694 | 4.0 | 7500 | 0.3548 | 0.6725 | | 0.1437 | 5.0 | 9375 | 0.3360 | 0.6725 | | 0.1272 | 6.0 | 11250 | 0.3259 | 0.6755 | | 0.1167 | 7.0 | 13125 | 0.3250 | 0.671 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
TaoH/dj
TaoH
2022-10-26T03:43:46Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "semantic-search", "chinese", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-26T03:43:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-general-v2 此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在百万级语义相似数据集 [SimCLUE](https://github.com/CLUEbenchmark/SimCLUE) 上进行训练,适用于**通用语义匹配**场景,从效果来看该模型在各种任务上**泛化能力更好**。 注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-general-v2-distill),也已经开源啦! # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | | ---------------------------- | ------------ | ------------- | ---------- | ---------- | ------------ | ---------- | ---------- | | **sbert-chinese-general-v1** | **84.54%** | **82.17%** | 23.80% | 65.94% | 45.52% | 11.52% | 48.51% | | **sbert-chinese-general-v2** | 77.20% | 72.60% | **36.80%** | **76.92%** | **49.63%** | **16.24%** | **63.16%** | 这里对比了本模型跟之前我们发布 [sbert-chinese-general-v1](https://huggingface.co/DMetaSoul/sbert-chinese-general-v1) 之间的差异,可以看到本模型在多个任务上的泛化能力更好。 ## Citing & Authors E-mail: [email protected]
studiolike/cap_01
studiolike
2022-10-26T02:48:54Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-10-24T02:48:57Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 |
JamesH/Movie_review_sentiment_analysis_model
JamesH
2022-10-26T01:02:13Z
9
1
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:JamesH/autotrain-data-third-project", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T00:58:53Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - JamesH/autotrain-data-third-project co2_eq_emissions: emissions: 6.9919208994196795 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1883864250 - CO2 Emissions (in grams): 6.9919 ## Validation Metrics - Loss: 0.175 - Accuracy: 0.950 - Precision: 0.950 - Recall: 0.950 - AUC: 0.986 - F1: 0.950 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/JamesH/autotrain-third-project-1883864250 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("JamesH/autotrain-third-project-1883864250", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("JamesH/autotrain-third-project-1883864250", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
agiron123/hello_hugging_face
agiron123
2022-10-25T23:28:12Z
0
0
null
[ "region:us" ]
null
2022-10-25T23:27:43Z
Creating a simple hugging face model.
francos/distilbert-base-uncased-finetuned-clinc
francos
2022-10-25T23:21:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-25T22:47:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7720 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2891 | 0.7429 | | 3.7868 | 2.0 | 636 | 1.8755 | 0.8374 | | 3.7868 | 3.0 | 954 | 1.1570 | 0.8961 | | 1.6928 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.9056 | 5.0 | 1590 | 0.7720 | 0.9184 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
redevaaa/test4
redevaaa
2022-10-25T23:20:58Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:ner", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-25T22:53:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ner metrics: - precision - recall - f1 - accuracy model-index: - name: test4 results: - task: name: Token Classification type: token-classification dataset: name: ner type: ner config: default split: train args: default metrics: - name: Precision type: precision value: 0.594855305466238 - name: Recall type: recall value: 0.6423611111111112 - name: F1 type: f1 value: 0.6176961602671119 - name: Accuracy type: accuracy value: 0.9579571605593911 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test4 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ner dataset. It achieves the following results on the evaluation set: - Loss: 0.3100 - Precision: 0.5949 - Recall: 0.6424 - F1: 0.6177 - Accuracy: 0.9580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 418 | 0.2052 | 0.2415 | 0.2465 | 0.2440 | 0.9423 | | 0.3341 | 2.0 | 836 | 0.1816 | 0.4286 | 0.4792 | 0.4525 | 0.9513 | | 0.1296 | 3.0 | 1254 | 0.2039 | 0.4589 | 0.5035 | 0.4801 | 0.9526 | | 0.0727 | 4.0 | 1672 | 0.2130 | 0.5237 | 0.5764 | 0.5488 | 0.9566 | | 0.0553 | 5.0 | 2090 | 0.2290 | 0.5171 | 0.5764 | 0.5452 | 0.9551 | | 0.0412 | 6.0 | 2508 | 0.2351 | 0.5390 | 0.5521 | 0.5455 | 0.9555 | | 0.0412 | 7.0 | 2926 | 0.2431 | 0.5280 | 0.5903 | 0.5574 | 0.9542 | | 0.0321 | 8.0 | 3344 | 0.2490 | 0.5825 | 0.625 | 0.6030 | 0.9570 | | 0.0249 | 9.0 | 3762 | 0.2679 | 0.5764 | 0.5764 | 0.5764 | 0.9573 | | 0.0192 | 10.0 | 4180 | 0.2574 | 0.5506 | 0.6042 | 0.5762 | 0.9558 | | 0.0206 | 11.0 | 4598 | 0.2857 | 0.5498 | 0.5938 | 0.5710 | 0.9559 | | 0.0147 | 12.0 | 5016 | 0.2638 | 0.5548 | 0.5972 | 0.5753 | 0.9550 | | 0.0147 | 13.0 | 5434 | 0.2771 | 0.5677 | 0.5972 | 0.5821 | 0.9577 | | 0.0129 | 14.0 | 5852 | 0.3016 | 0.5761 | 0.6181 | 0.5963 | 0.9549 | | 0.0118 | 15.0 | 6270 | 0.3055 | 0.5587 | 0.6111 | 0.5837 | 0.9570 | | 0.0099 | 16.0 | 6688 | 0.2937 | 0.5682 | 0.6076 | 0.5872 | 0.9564 | | 0.0099 | 17.0 | 7106 | 0.3075 | 0.5313 | 0.6181 | 0.5714 | 0.9531 | | 0.0085 | 18.0 | 7524 | 0.3079 | 0.6026 | 0.6424 | 0.6218 | 0.9580 | | 0.0085 | 19.0 | 7942 | 0.3082 | 0.5833 | 0.6319 | 0.6067 | 0.9572 | | 0.0074 | 20.0 | 8360 | 0.3100 | 0.5949 | 0.6424 | 0.6177 | 0.9580 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
dominiks/q-Taxi-v3
dominiks
2022-10-25T21:32:21Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-25T21:32:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dominiks/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/ok_0s
huggingtweets
2022-10-25T20:20:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-25T20:18:48Z
--- language: en thumbnail: http://www.huggingtweets.com/ok_0s/1666729242111/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1575869051850612737/Hz2LIceC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">⓪𝕊 is minting Youts</div> <div style="text-align: center; font-size: 14px;">@ok_0s</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ⓪𝕊 is minting Youts. | Data | ⓪𝕊 is minting Youts | | --- | --- | | Tweets downloaded | 1390 | | Retweets | 132 | | Short tweets | 287 | | Tweets kept | 971 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11ejsejg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ok_0s's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1z3prl6a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1z3prl6a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ok_0s') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
yucao16/ddpm-butterflies-128
yucao16
2022-10-25T20:10:43Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-25T18:55:09Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/yucao16/ddpm-butterflies-128/tensorboard?#scalars)
pig4431/rtm_ELECTRA_5E
pig4431
2022-10-25T19:44:23Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "dataset:rotten_tomatoes", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-25T19:36:47Z
--- tags: - generated_from_trainer datasets: - rotten_tomatoes model-index: - name: rtm-electra-511E results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rtm-electra-511E This model was trained from scratch on the rotten_tomatoes dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/prathgodbole
huggingtweets
2022-10-25T18:52:19Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-25T18:47:21Z
--- language: en thumbnail: http://www.huggingtweets.com/prathgodbole/1666723893377/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1041700878858674178/q1uKuS6o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Prathamesh Godbole</div> <div style="text-align: center; font-size: 14px;">@prathgodbole</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Prathamesh Godbole. | Data | Prathamesh Godbole | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 52 | | Short tweets | 241 | | Tweets kept | 2952 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yqz5qdl4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prathgodbole's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mum0rf3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mum0rf3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prathgodbole') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hyesunyun/edit5
hyesunyun
2022-10-25T18:34:47Z
7
1
transformers
[ "transformers", "jax", "t5", "t5x", "edit", "en", "dataset:fruit-wiki", "arxiv:2112.08634", "license:unknown", "endpoints_compatible", "region:us" ]
null
2022-10-19T18:51:01Z
--- language: - en tags: - t5 - t5x - edit license: unknown datasets: - fruit-wiki metrics: - rouge --- # EdiT5 Reproduction of the model in [FRUIT: Faithfully Reflecting Updated Information in Text](https://arxiv.org/abs/2112.08634). ## Training data The model was trained on the [FRUIT Wikipeda dataset](https://github.com/google-research/language/tree/master/language/fruit) for updates.