modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-23 18:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
573 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-23 18:28:01
card
stringlengths
11
1.01M
elisno/is_core_web_trf
elisno
2021-09-08T21:19:54Z
4
0
spacy
[ "spacy", "token-classification", "is", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - is model-index: - name: is_core_web_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9193318395 - name: NER Recall type: recall value: 0.9217728758 - name: NER F Score type: f_score value: 0.9205507394 --- | Feature | Description | | --- | --- | | **Name** | `is_core_web_trf` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.1,<3.2.0` | | **Default Pipeline** | `transformer`, `ner`, `tagger`, `parser` | | **Components** | `transformer`, `ner`, `tagger`, `parser` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (591 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `Date`, `Location`, `Miscellaneous`, `Money`, `Organization`, `Percent`, `Person`, `Time` | | **`tagger`** | `aa`, `aae`, `aam`, `af`, `afe`, `afm`, `au`, `c`, `cn`, `ct`, `e`, `fahee`, `fahen`, `faheo`, `faheþ`, `fahfe`, `fahfn`, `fahfo`, `fahfþ`, `fakee`, `faken`, `fakeo`, `fakeþ`, `fakfe`, `fakfn`, `fakfo`, `fakfþ`, `favee`, `faven`, `faveo`, `faveþ`, `favfe`, `favfn`, `favfo`, `favfþ`, `fbhee`, `fbhen`, `fbheo`, `fbheþ`, `fbhfe`, `fbhfn`, `fbhfo`, `fbhfþ`, `fbkee`, `fbken`, `fbkeo`, `fbkeþ`, `fbkfe`, `fbkfn`, `fbkfo`, `fbkfþ`, `fbvee`, `fbven`, `fbveo`, `fbveþ`, `fbvfe`, `fbvfn`, `fbvfo`, `fbvfþ`, `fehee`, `fehen`, `feheo`, `feheþ`, `fehfe`, `fehfn`, `fehfo`, `fehfþ`, `fekee`, `feken`, `fekeo`, `fekeþ`, `fekfe`, `fekfn`, `fekfo`, `fekfþ`, `fevee`, `feven`, `feveo`, `feveþ`, `fevfe`, `fevfn`, `fevfo`, `fevfþ`, `fohee`, `fohen`, `foheo`, `foheþ`, `fohfe`, `fohfn`, `fohfo`, `fohfþ`, `fokee`, `foken`, `fokeo`, `fokeþ`, `fokfe`, `fokfn`, `fokfo`, `fokfþ`, `fovee`, `foven`, `foveo`, `foveþ`, `fovfe`, `fovfn`, `fovfo`, `fovfþ`, `fp1ee`, `fp1en`, `fp1eo`, `fp1eþ`, `fp1fe`, `fp1fn`, `fp1fo`, `fp1fþ`, `fp2ee`, `fp2en`, `fp2eo`, `fp2eþ`, `fp2fe`, `fp2fn`, `fp2fo`, `fp2fþ`, `fphee`, `fphen`, `fpheo`, `fpheþ`, `fphfe`, `fphfn`, `fphfo`, `fphfþ`, `fpkee`, `fpken`, `fpkeo`, `fpkeþ`, `fpkfe`, `fpkfn`, `fpkfo`, `fpkfþ`, `fpvee`, `fpven`, `fpveo`, `fpveþ`, `fpvfe`, `fpvfn`, `fpvfo`, `fpvfþ`, `fshee`, `fshen`, `fsheo`, `fsheþ`, `fshfe`, `fshfn`, `fshfo`, `fshfþ`, `fskee`, `fsken`, `fskeo`, `fskeþ`, `fskfe`, `fskfn`, `fskfo`, `fskfþ`, `fsvee`, `fsven`, `fsveo`, `fsveþ`, `fsvfe`, `fsvfn`, `fsvfo`, `fsvfþ`, `ghee`, `ghen`, `gheo`, `gheþ`, `ghfe`, `ghfn`, `ghfo`, `ghfþ`, `gkee`, `gken`, `gkeo`, `gkeþ`, `gkfe`, `gkfn`, `gkfo`, `gkfþ`, `gvee`, `gven`, `gveo`, `gveþ`, `gvfe`, `gvfn`, `gvfo`, `gvfþ`, `ks`, `kt`, `lheeof`, `lheesf`, `lheeve`, `lheevf`, `lheevm`, `lhenof`, `lhense`, `lhensf`, `lhenve`, `lhenvf`, `lhenvm`, `lheoof`, `lheose`, `lheosf`, `lheosm`, `lheove`, `lheovf`, `lheovm`, `lheþof`, `lheþse`, `lheþsf`, `lheþve`, `lheþvf`, `lheþvm`, `lhfeof`, `lhfese`, `lhfesf`, `lhfeve`, `lhfevf`, `lhfevm`, `lhfnof`, `lhfnse`, `lhfnsf`, `lhfnve`, `lhfnvf`, `lhfnvm`, `lhfoof`, `lhfose`, `lhfosf`, `lhfove`, `lhfovf`, `lhfovm`, `lhfþof`, `lhfþse`, `lhfþsf`, `lhfþve`, `lhfþvf`, `lhfþvm`, `lkeeof`, `lkeesf`, `lkeeve`, `lkeevf`, `lkeevm`, `lkenof`, `lkense`, `lkensf`, `lkenve`, `lkenvf`, `lkenvm`, `lkeoof`, `lkeose`, `lkeosf`, `lkeove`, `lkeovf`, `lkeovm`, `lkeþof`, `lkeþse`, `lkeþsf`, `lkeþve`, `lkeþvf`, `lkeþvm`, `lkfeof`, `lkfese`, `lkfesf`, `lkfeve`, `lkfevf`, `lkfevm`, `lkfnof`, `lkfnse`, `lkfnsf`, `lkfnve`, `lkfnvf`, `lkfnvm`, `lkfoof`, `lkfose`, `lkfosf`, `lkfove`, `lkfovf`, `lkfovm`, `lkfþof`, `lkfþse`, `lkfþsf`, `lkfþsm`, `lkfþve`, `lkfþvf`, `lkfþvm`, `lveeof`, `lveese`, `lveesf`, `lveeve`, `lveevf`, `lveevm`, `lvenof`, `lvense`, `lvensf`, `lvenve`, `lvenvf`, `lvenvm`, `lveoof`, `lveose`, `lveosf`, `lveove`, `lveovf`, `lveovm`, `lveþof`, `lveþse`, `lveþsf`, `lveþve`, `lveþvf`, `lveþvm`, `lvfeof`, `lvfese`, `lvfesf`, `lvfeve`, `lvfevf`, `lvfevm`, `lvfnof`, `lvfnse`, `lvfnsf`, `lvfnve`, `lvfnvf`, `lvfnvm`, `lvfoof`, `lvfose`, `lvfosf`, `lvfove`, `lvfovf`, `lvfovm`, `lvfþof`, `lvfþse`, `lvfþsf`, `lvfþsm`, `lvfþve`, `lvfþvf`, `lvfþvm`, `m`, `n----s`, `n-ee`, `n-ee-s`, `n-en`, `n-en-s`, `n-eng`, `n-eo`, `n-eo-s`, `n-eþ`, `n-eþ-s`, `n-fn`, `nhee`, `nhee-s`, `nheeg`, `nheegs`, `nhen`, `nhen-s`, `nheng`, `nhengs`, `nheo`, `nheo-s`, `nheog`, `nheogs`, `nheþ`, `nheþ-s`, `nheþg`, `nheþgs`, `nhfe`, `nhfe-s`, `nhfeg`, `nhfegs`, `nhfn`, `nhfn-s`, `nhfng`, `nhfngs`, `nhfo`, `nhfo-s`, `nhfog`, `nhfogs`, `nhfþ`, `nhfþ-s`, `nhfþg`, `nhfþgs`, `nkee`, `nkee-s`, `nkeeg`, `nkeegs`, `nken`, `nken-s`, `nkeng`, `nkengs`, `nkeo`, `nkeo-s`, `nkeog`, `nkeogs`, `nkeþ`, `nkeþ-s`, `nkeþg`, `nkeþgs`, `nkfe`, `nkfe-s`, `nkfeg`, `nkfegs`, `nkfn`, `nkfn-s`, `nkfng`, `nkfngs`, `nkfo`, `nkfo-s`, `nkfog`, `nkfogs`, `nkfþ`, `nkfþ-s`, `nkfþg`, `nkfþgs`, `nvee`, `nvee-s`, `nveeg`, `nveegs`, `nven`, `nven-s`, `nveng`, `nvengs`, `nveo`, `nveo-s`, `nveog`, `nveogs`, `nveþ`, `nveþ-s`, `nveþg`, `nveþgs`, `nvfe`, `nvfe-s`, `nvfeg`, `nvfegs`, `nvfn`, `nvfn-s`, `nvfng`, `nvfngs`, `nvfo`, `nvfo-s`, `nvfog`, `nvfogs`, `nvfþ`, `nvfþ-s`, `nvfþg`, `nvfþgs`, `pa`, `pg`, `pk`, `pl`, `sbg2en`, `sbg2fn`, `sbm2en`, `sbm2fn`, `sfg1en`, `sfg1eþ`, `sfg1fn`, `sfg1fþ`, `sfg2en`, `sfg2eþ`, `sfg2fn`, `sfg2fþ`, `sfg3en`, `sfg3eþ`, `sfg3fn`, `sfg3fþ`, `sfm1en`, `sfm1eþ`, `sfm1fn`, `sfm1fþ`, `sfm2en`, `sfm2eþ`, `sfm2fn`, `sfm2fþ`, `sfm3en`, `sfm3eþ`, `sfm3fn`, `sfm3fþ`, `slg`, `sng`, `snm`, `svg1en`, `svg1eþ`, `svg1fn`, `svg1fþ`, `svg2en`, `svg2eþ`, `svg2fn`, `svg2fþ`, `svg3en`, `svg3eþ`, `svg3fn`, `svg3fþ`, `svm1en`, `svm1eþ`, `svm1fn`, `svm1fþ`, `svm2en`, `svm2eþ`, `svm2fn`, `svm3en`, `svm3eþ`, `svm3fn`, `svm3fþ`, `sþghen`, `sþgheo`, `sþghfn`, `sþghfo`, `sþgken`, `sþgkeo`, `sþgkfn`, `sþgkfo`, `sþgven`, `sþgveo`, `sþgvfn`, `sþgvfo`, `sþgvfþ`, `sþmhen`, `sþmheo`, `sþmken`, `sþmven`, `ta`, `tfhee`, `tfhen`, `tfheo`, `tfheþ`, `tfhfe`, `tfhfn`, `tfhfo`, `tfhfþ`, `tfkee`, `tfken`, `tfkeo`, `tfkeþ`, `tfkfe`, `tfkfn`, `tfkfo`, `tfkfþ`, `tfvee`, `tfven`, `tfveo`, `tfveþ`, `tfvfe`, `tfvfn`, `tfvfo`, `tfvfþ`, `to`, `tp`, `v`, `x` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `fixed`, `flat:name`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:arg`, `parataxis`, `punct`, `xcomp` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 92.06 | | `ENTS_P` | 91.93 | | `ENTS_R` | 92.18 | | `TRANSFORMER_LOSS` | 248325.98 | | `NER_LOSS` | 120059.07 |
LeoCordoba/beto2beto
LeoCordoba
2021-09-08T16:31:21Z
23
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "text-generation", "spanish", "beto", "es", "dataset:LeoCordoba/CC-NEWS-ES", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: es tags: - text-generation - spanish - encoder-decoder - beto license: apache-2.0 datasets: - LeoCordoba/CC-NEWS-ES model-index: - name: beto2beto --- ## beto2beto Usage example here: https://colab.research.google.com/drive/18a2ZfF1e_Kyyydlv8INQIkJbv294xcAm?usp=sharing Entrenado por 3 epochs sobre CC-NEWS-ES (2019), aproximadamente 68.000 steps. Encoder max length: 40•Decoder max length: 128 ## Hyperparameters ## Usage ## Results | key | value | | --- | ----- | | test_loss | 2.65148806571960452 |
Jeffrey/DialoGPT-small-Jeffrey
Jeffrey
2021-09-08T15:53:25Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational ---
charlecheng/distilbert-base-uncased-finetuned-ner
charlecheng
2021-09-08T03:51:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9276454293628809 - name: Recall type: recall value: 0.9365700861393892 - name: F1 type: f1 value: 0.9320863950122468 - name: Accuracy type: accuracy value: 0.9840500738716699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9276 - Recall: 0.9366 - F1: 0.9321 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.246 | 1.0 | 878 | 0.0696 | 0.9152 | 0.9215 | 0.9183 | 0.9812 | | 0.0518 | 2.0 | 1756 | 0.0606 | 0.9196 | 0.9342 | 0.9269 | 0.9831 | | 0.0309 | 3.0 | 2634 | 0.0607 | 0.9276 | 0.9366 | 0.9321 | 0.9841 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/piss_river_fc
huggingtweets
2021-09-08T03:17:11Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/piss_river_fc/1631071027317/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/746637823059451904/7lgyEh8a_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">zjark</div> <div style="text-align: center; font-size: 14px;">@piss_river_fc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from zjark. | Data | zjark | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 152 | | Short tweets | 803 | | Tweets kept | 2279 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fzygzm69/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @piss_river_fc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mzm4xva) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mzm4xva/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/piss_river_fc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fihtrotuld/123
fihtrotuld
2021-09-08T01:35:59Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
import requests API_URL = "https://api-inference.huggingface.co/models/huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad" headers = {"Authorization": "Bearer api_UXqrzQBiZKXaWxstVwEKcYvHQpGSGiQGbr"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": { "question": "What's my name?", "context": "My name is Clara and I live in Berkeley.", }, })
bigscience/tr1-13B-tensorboard
bigscience
2021-09-07T21:39:49Z
0
8
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05Z
These are tensorboard logs for https://github.com/bigscience-workshop/bigscience/tree/master/train/tr1-13B-base
nateraw/timm-adv_inception_v3
nateraw
2021-09-07T19:26:53Z
0
0
timm
[ "timm", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - timm library_tag: timm --- # Model card for `timm-resnet50-beans` **TODO** **For now, try dragging and dropping this image into the inference widget. It should classify as angular_leaf_spot.** ![leaf_example](angular_leaf_spot_train.304.jpg)
mlkorra/OGBV-gender-bert-hi-en
mlkorra
2021-09-07T15:13:25Z
11
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## BERT Model for OGBV gendered text classification ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("mlkorra/OGBV-gender-bert-hi-en") model = AutoModelForSequenceClassification.from_pretrained("mlkorra/OGBV-gender-bert-hi-en") ``` ## Model Performance |Metric|dev|test| |---|--|--| |Accuracy|0.88|0.81| |F1(weighted)|0.86|0.80|
RJ3vans/CLNspanTagger
RJ3vans
2021-09-07T13:24:46Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
This model identifies compound nouns in input sentences. Try the test sentence: I love apples [and] potatoes. Accuracy is best when you place square brackets around the coordinating conjunction. The model was derived using code adapted from an original program written by Dr. Le An Ha at the University of Wolverhampton.
M47Labs/spanish_news_classification_headlines
M47Labs
2021-09-07T11:56:58Z
106
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- widget: - text: "El dólar se dispara tras la reunión de la Fed" --- # Spanish News Classification Headlines SNCH: this model was develop by [M47Labs](https://www.m47labs.com/es/) the goal is text classification, the base model use was [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased), it was fine-tuned on 1000 example dataset. ## Dataset Sample Dataset size : 1000 Columns: idTask,task content 1,idTag,tag. |idTask|task content 1|idTag|tag| |------|------|------|------| |3637d9ac-119c-4a8f-899c-339cf5b42ae0|Alcalá de Guadaíra celebra la IV Semana de la Diversidad Sexual con acciones de sensibilización|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |d56bab52-0029-45dd-ad90-5c17d4ed4c88|El Archipiélago Chinijo Graciplus se impone en el Trofeo Centro Comercial Rubicón|ed198b6d-a5b9-4557-91ff-c0be51707dec|deportes| |dec70bc5-4932-4fa2-aeac-31a52377be02|Un total de 39 personas padecen ELA actualmente en la provincia|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |fb396ba9-fbf1-4495-84d9-5314eb731405|Eurocopa 2021 : Italia vence a Gales y pasa a octavos con su candidatura reforzada|ed198b6d-a5b9-4557-91ff-c0be51707dec|deportes| |bc5a36ca-4e0a-422e-9167-766b41008c01|Resolución de 10 de junio de 2021, del Ayuntamiento de Tarazona de La Mancha (Albacete), referente a la convocatoria para proveer una plaza.|81b36360-6cbf-4ffa-b558-9ef95c136714|sociedad| |a87f8703-ce34-47a5-9c1b-e992c7fe60f6|El primer ministro sueco pierde una moción de censura|209ae89e-55b4-41fd-aac0-5400feab479e|politica| |d80bdaad-0ad5-43a0-850e-c473fd612526|El dólar se dispara tras la reunión de la Fed|11925830-148e-4890-a2bc-da9dc059dc17|economia| ## Labels: * ciencia_tecnologia * clickbait * cultura * deportes * economia * educacion * medio_ambiente * opinion * politica * sociedad ## Example of Use ### Pipeline ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline review_text = 'los vehiculos que esten esperando pasajaeros deberan estar apagados para reducir emisiones' path = "M47Labs/spanish_news_classification_headlines" tokenizer = AutoTokenizer.from_pretrained(path) model = BertForSequenceClassification.from_pretrained(path) nlp = TextClassificationPipeline(task = "text-classification", model = model, tokenizer = tokenizer) print(nlp(review_text)) ``` ```[{'label': 'medio_ambiente', 'score': 0.5648820996284485}]``` ### Pytorch ```{python} import torch from transformers import AutoTokenizer, BertForSequenceClassification,TextClassificationPipeline from numpy import np model_name = 'M47Labs/spanish_news_classification_headlines' MAX_LEN = 32 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) texto = "las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno" encoded_review = tokenizer.encode_plus( texto, max_length=MAX_LEN, add_special_tokens=True, #return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoded_review['input_ids'] attention_mask = encoded_review['attention_mask'] output = model(input_ids, attention_mask) _, prediction = torch.max(output['logits'], dim=1) print(f'Review text: {texto}') print(f'Sentiment : {model.config.id2label[prediction.detach().cpu().numpy()[0]]}') ``` ```Review text: las emisiones estan bajando, debido a las medidas ambientales tomadas por el gobierno``` ```Sentiment : medio_ambiente``` A more in depth example on how to use the model can be found in this colab notebook: https://colab.research.google.com/drive/1XsKea6oMyEckye2FePW_XN7Rf8v41Cw_?usp=sharing ## Finetune Hyperparameters * MAX_LEN = 32 * TRAIN_BATCH_SIZE = 8 * VALID_BATCH_SIZE = 4 * EPOCHS = 5 * LEARNING_RATE = 1e-05 ## Train Results |n_example|epoch|loss|acc| |------|------|------|------| |100|0|2.286327266693115|12.5| |100|1|2.018876111507416|40.0| |100|2|1.8016730904579163|43.75| |100|3|1.6121837735176086|46.25| |100|4|1.41565443277359|68.75| |n_example|epoch|loss|acc| |------|------|------|------| |500|0|2.0770938420295715|24.5| |500|1|1.6953029704093934|50.25| |500|2|1.258900796175003|64.25| |500|3|0.8342628020048142|78.25| |500|4|0.5135736921429634|90.25| |n_example|epoch|loss|acc| |------|------|------|------| |1000|0|1.916002897115854|36.1997226074896| |1000|1|1.2941598492664295|62.2746185852982| |1000|2|0.8201534710415117|76.97642163661581| |1000|3|0.524806430051615|86.9625520110957| |1000|4|0.30662027455784463|92.64909847434119| ## Validation Results |n_examples|100| |------|------| |Accuracy Score|0.35| |Precision (Macro)|0.35| |Recall (Macro)|0.16| |n_examples|500| |------|------| |Accuracy Score|0.62| |Precision (Macro)|0.60| |Recall (Macro)|0.47| |n_examples|1000| |------|------| |Accuracy Score|0.68| |Precision(Macro)|0.68| |Recall (Macro)|0.64| ![alt text](https://media-exp1.licdn.com/dms/image/C4D0BAQHpfgjEyhtE1g/company-logo_200_200/0/1625210573748?e=1638403200&v=beta&t=toQNpiOlyim5Ja4f7Ejv8yKoCWifMsLWjkC7XnyXICI "Logo M47")
lincoln/mbart-mlsum-automatic-summarization
lincoln
2021-09-07T08:21:55Z
85
7
transformers
[ "transformers", "pytorch", "tf", "mbart", "text2text-generation", "summarization", "bart", "fr", "dataset:MLSUM", "arxiv:2004.14900", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - fr license: mit datasets: - MLSUM pipeline_tag: "summarization" widget: - text: « La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail. Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple. Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet, dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet, donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement. Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé. Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020, quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs, ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures. D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été. tags: - summarization - mbart - bart --- # Résumé automatique d'article de presses Ce modèles est basé sur le modèle [`facebook/mbart-large-50`](https://huggingface.co/facebook/mbart-large-50) et été fine-tuné en utilisant des articles de presse issus de la base de données MLSUM. L'hypothèse à été faite que les chapeaux des articles faisaient de bon résumés de référence. ## Entrainement Nous avons testé deux architecture de modèles (T5 et BART) avec des textes en entrée de 512 ou 1024 tokens. Finallement c'est le modèle BART avec 512 tokens qui à été retenu. Il a été entrainé sur 2 epochs (~700K articles) sur une Tesla V100 (32 heures d'entrainement). ## Résultats ![Score de novelty](assets/novelty.png) Nous avons comparé notre modèle (`mbart-large-512-full` sur le graphique) à deux références: * MBERT qui correspond aux performances du modèle entrainé par l'équipe à l'origine de la base d'articles MLSUM * Barthez qui est un autre modèle basé sur des articles de presses issus de la base de données OrangeSum On voit que le score de novelty (cf papier MLSUM) de notre modèle n'est pas encore comparable à ces deux références et encore moins à une production humaine néanmoins les résumés générés sont dans l'ensemble de bonne qualité. ## Utilisation ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import SummarizationPipeline model_name = 'lincoln/mbart-mlsum-automatic-summarization' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) nlp = SummarizationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp(""" « La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail. Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple. Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet, dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet, donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement. Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé. Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020, quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs, ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures. D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été. """) ``` ## Citation ```bibtex @article{scialom2020mlsum, title={MLSUM: The Multilingual Summarization Corpus}, author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano}, year={2020}, eprint={2004.14900}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sabhi/t5-base-qa-qg
sabhi
2021-09-07T07:24:12Z
7
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-generation", "dataset:squadv1", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squadv1 tags: - question-generation --- ## T5 for multi-task QA and QG This is multi-task [t5-base](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks. For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>` You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/sabhi27/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/sabhi27/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sabhi27/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("multitask-qa-qg", model="sabhi/t5-base-qa-qg") # to generate questions simply pass the text nlp("42 is the answer to life, the universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] # for qa pass a dict with "question" and "context" nlp({ "question": "What is 42 ?", "context": "42 is the answer to life, the universe and everything." }) => 'the answer to life, the universe and everything' ```
espnet/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch
espnet
2021-09-07T03:05:41Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 inference: false --- # ESPnet2 ASR pretrained model ## `Xuankai Chang/xuankai_chang_librispeech_asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp_26epoch, fs=16k, lang=en` This model was trained by Takashi Maekaku using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Python API ```text See https://github.com/espnet/espnet_model_zoo ``` ### Evaluate in the recipe ```python # coming soon ``` ### Results ```bash # RESULTS ## Environments - date: `Fri Aug 6 11:44:39 JST 2021` - python version: `3.7.9 (default, Apr 23 2021, 13:48:31) [GCC 5.5.0 20171010]` - espnet version: `espnet 0.9.9` - pytorch version: `pytorch 1.7.0` - Git hash: `0f7558a716ab830d0c29da8785840124f358d47b` - Commit date: `Tue Jun 8 15:33:49 2021 -0400` ## asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|54402|98.5|1.3|0.2|0.2|1.7|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|50948|96.8|2.8|0.4|0.3|3.4|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|52576|98.4|1.4|0.2|0.2|1.8|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|52343|96.8|2.8|0.4|0.4|3.6|36.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|288456|99.6|0.2|0.2|0.2|0.6|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|265951|98.8|0.6|0.6|0.3|1.5|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|281530|99.6|0.2|0.2|0.2|0.6|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|272758|98.9|0.5|0.5|0.4|1.4|36.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_clean|2703|68010|98.2|1.3|0.5|0.4|2.2|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/dev_other|2864|63110|96.0|2.8|1.2|0.6|4.6|33.7| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_clean|2620|65818|98.1|1.3|0.6|0.4|2.3|22.1| |decode_asr_lm_lm_train_lm_transformer2_en_bpe5000_17epoch_asr_model_valid.acc.best/test_other|2939|65101|96.0|2.7|1.3|0.6|4.6|36.0| ``` ### Training config See full config in [`config.yaml`](./exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp/config.yaml) ```yaml config: conf/tuning/train_asr_conformer7_hubert_960hr_large.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_conformer7_hubert_960hr_large_raw_en_bpe5000_sp ngpu: 3 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 3 local_rank: 3 dist_master_addr: localhost dist_master_port: 33643 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
huggingtweets/prageru
huggingtweets
2021-09-07T00:19:57Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/prageru/1630973993106/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412803355164872704/XvTlBoPh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PragerU</div> <div style="text-align: center; font-size: 14px;">@prageru</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PragerU. | Data | PragerU | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 336 | | Short tweets | 492 | | Tweets kept | 2420 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3er68epp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prageru's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lv63sll) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lv63sll/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prageru') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/discountpicasso-dril-liam_100000
huggingtweets
2021-09-07T00:14:05Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/discountpicasso-dril-liam_100000/1630973640579/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426930394297819137/-zzMnfJo_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/980964012170121217/U6FjPH4H_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LIAM & wint & Picasso</div> <div style="text-align: center; font-size: 14px;">@discountpicasso-dril-liam_100000</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LIAM & wint & Picasso. | Data | LIAM | wint | Picasso | | --- | --- | --- | --- | | Tweets downloaded | 1962 | 3226 | 3216 | | Retweets | 135 | 472 | 427 | | Short tweets | 435 | 313 | 421 | | Tweets kept | 1392 | 2441 | 2368 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w4ekve8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @discountpicasso-dril-liam_100000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/discountpicasso-dril-liam_100000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/liam_100000
huggingtweets
2021-09-06T23:32:16Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/liam_100000/1630971132171/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1426930394297819137/-zzMnfJo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">LIAM</div> <div style="text-align: center; font-size: 14px;">@liam_100000</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from LIAM. | Data | LIAM | | --- | --- | | Tweets downloaded | 1960 | | Retweets | 135 | | Short tweets | 434 | | Tweets kept | 1391 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sila7bw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @liam_100000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bu2qvu3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bu2qvu3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/liam_100000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
julien-c/dummy-for-flat
julien-c
2021-09-06T21:02:55Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
in the editor i only change this line Example of a hf.co repo containing signed commits. hello tabs
yseop/FNP_T5_D2T_simple
yseop
2021-09-06T20:54:48Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# T5-base data to text model specialized for Finance NLG __simple version__ This model was trained on a limited number of indicators, values and dates ---- ## Usage (HuggingFace Transformers) #### Call the model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yseop/FNP_T5_D2T_simple") model = AutoModelForSeq2SeqLM.from_pretrained("yseop/FNP_T5_D2T_simple") text = ["Group profit | valIs | $ 10 && € $10 | dTime | in 2019"] ``` #### Choose a generation method ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") p=0.72 k=40 outputs = model.generate(input_ids, do_sample=True, top_p=p, top_k=k, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") outputs = model.generate(input_ids, max_length=200, num_beams=2, repetition_penalty=2.5, top_k=50, top_p=0.98, length_penalty=1.0, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` **Created by:** [Yseop](https://www.yseop.com/) | Pioneer in Natural Language Generation (NLG) technology. Scaling human expertise through Natural Language Generation.
yseop/FNP_T5_D2T_complete
yseop
2021-09-06T20:54:21Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# T5-base data to text model specialized for Finance NLG __complete version__ ---- ## Usage (HuggingFace Transformers) #### Call the model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yseop/FNP_T5_D2T_complete") model = AutoModelForSeq2SeqLM.from_pretrained("yseop/FNP_T5_D2T_complete") text = ["Group profit | valIs | € 115.7 million && € 115.7 million | dTime | in 2019"] ``` #### Choose a generation method ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") p = 0.82 k = 90 outputs = model.generate(input_ids, do_sample=True, top_p=p, top_k=k, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") outputs = model.generate(input_ids, max_length=200, num_beams=2, repetition_penalty=2.5, top_k=50, top_p=0.98, length_penalty=1.0, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` **Created by:** [Yseop](https://www.yseop.com/) | Pioneer in Natural Language Generation (NLG) technology. Scaling human expertise through Natural Language Generation.
sv/gpt2-finetuned-nft-shakes
sv
2021-09-06T16:59:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - null model-index: - name: gpt2-finetuned-nft-shakes results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-nft-shakes This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 306 | 3.9679 | | 4.2957 | 2.0 | 612 | 3.7979 | | 4.2957 | 3.0 | 918 | 3.7566 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/cafe_orbitinnit
huggingtweets
2021-09-06T15:52:25Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cafe_orbitinnit/1630943541910/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429115399975497731/JZdA725e_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨たち Tommy’s an Orbit 🌙 たち✨</div> <div style="text-align: center; font-size: 14px;">@cafe_orbitinnit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨たち Tommy’s an Orbit 🌙 たち✨. | Data | ✨たち Tommy’s an Orbit 🌙 たち✨ | | --- | --- | | Tweets downloaded | 2242 | | Retweets | 1336 | | Short tweets | 323 | | Tweets kept | 583 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qhrvba17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cafe_orbitinnit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qnyhuxd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qnyhuxd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cafe_orbitinnit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/beesforbo-cafe_orbitinnit-weebbutt
huggingtweets
2021-09-06T15:26:27Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/beesforbo-cafe_orbitinnit-weebbutt/1630941920455/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429115399975497731/JZdA725e_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434240567001636864/BkVzkg7C_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434228331315187712/IrO7AP6L_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨たち Tommy’s an Orbit 🌙 たち✨ & Goose & c!tubbo + glatt</div> <div style="text-align: center; font-size: 14px;">@beesforbo-cafe_orbitinnit-weebbutt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨たち Tommy’s an Orbit 🌙 たち✨ & Goose & c!tubbo + glatt. | Data | ✨たち Tommy’s an Orbit 🌙 たち✨ | Goose | c!tubbo + glatt | | --- | --- | --- | --- | | Tweets downloaded | 2241 | 3243 | 3242 | | Retweets | 1335 | 511 | 108 | | Short tweets | 323 | 512 | 1198 | | Tweets kept | 583 | 2220 | 1936 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p0uk28zi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beesforbo-cafe_orbitinnit-weebbutt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/310986pt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/310986pt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beesforbo-cafe_orbitinnit-weebbutt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/matsu_bouzu
huggingtweets
2021-09-06T13:27:36Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/matsu_bouzu/1630934852210/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398242436082638855/mvzIZACg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">松本人志</div> <div style="text-align: center; font-size: 14px;">@matsu_bouzu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 松本人志. | Data | 松本人志 | | --- | --- | | Tweets downloaded | 808 | | Retweets | 30 | | Short tweets | 504 | | Tweets kept | 274 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fwqkxzg7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matsu_bouzu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1af81o1n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1af81o1n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/matsu_bouzu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
superb/hubert-base-superb-ic
superb
2021-09-06T12:11:28Z
367
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "speech", "en", "dataset:superb", "arxiv:2105.01051", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- language: en datasets: - superb tags: - speech - audio-classification - hubert license: apache-2.0 --- # Hubert-Base for Intent Classification ## Model description This is a ported version of [S3PRL's Hubert for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands). The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/) dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands). ## Usage examples You can use the model directly like so: ```python import torch import librosa from datasets import load_dataset from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ic", split="test") dataset = dataset.map(map_to_array) model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ic") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ic") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits action_ids = torch.argmax(logits[:, :6], dim=-1).tolist() action_labels = [model.config.id2label[_id] for _id in action_ids] object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist() object_labels = [model.config.id2label[_id + 6] for _id in object_ids] location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist() location_labels = [model.config.id2label[_id + 20] for _id in location_ids] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9834` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
lewtun/metnet-test-5
lewtun
2021-09-06T11:01:50Z
2
0
transformers
[ "transformers", "pytorch", "satflow", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - satflow --- # MetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
lewtun/metnet-test-4
lewtun
2021-09-06T11:00:39Z
1
0
transformers
[ "transformers", "pytorch", "satflow", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: mit tags: - satflow --- # Model Card for MetNet ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
megagonlabs/t5-base-japanese-web
megagonlabs
2021-09-06T10:32:21Z
254
18
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "seq2seq", "ja", "dataset:mc4", "dataset:wiki40b", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: ja tags: - t5 - text2text-generation - seq2seq license: apache-2.0 datasets: - mc4 - wiki40b --- # t5-base-japanese-web (with Byte-fallback, 32K) ## Description [megagonlabs/t5-base-japanese-web](https://huggingface.co/megagonlabs/t5-base-japanese-web) is a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. Training codes are [available on GitHub](https://github.com/megagonlabs/t5-japanese). The vocabulary size of this model is 32K. [8K version is also available](https://huggingface.co/megagonlabs/t5-base-japanese-web-8k). ### Corpora We used following corpora for pre-training. - Japanese in [mC4/3.0.1](https://huggingface.co/datasets/mc4) (We used [Tensorflow native format](https://github.com/allenai/allennlp/discussions/5056)) - 87,425,304 pages - 782 GB in TFRecord format - [Japanese](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bja) in [wiki40b/1.3.0](https://www.tensorflow.org/datasets/catalog/wiki40b) - 828,236 articles (2,073,584 examples) - 2 GB in TFRecord format ### Tokenizer We used Japanese Wikipedia to train [SentencePiece](https://github.com/google/sentencepiece). - Vocabulary size: 32,000 - [Byte-fallback](https://github.com/google/sentencepiece/releases/tag/v0.1.9): Enabled ### Parameters - T5 model: [models/t5.1.1.base.gin](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/models/gin/models/t5.1.1.base.gin) - Training steps: 1,000,000 It took about 126 hours with TPU v3-8 ## Related models - [日本語T5事前学習済みモデル (sonoisa/t5-base-japanese)](https://huggingface.co/sonoisa/t5-base-japanese) - [日本語T5事前学習済みモデル (sonoisa/t5-base-japanese-mC4-Wikipedia)](https://huggingface.co/sonoisa/t5-base-japanese-mC4-Wikipedia) ## License Apache License 2.0 ## Citations - mC4 Contains information from `mC4` which is made available under the [ODC Attribution License](https://opendatacommons.org/licenses/by/1-0/). ```bibtex @article{2019t5, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {arXiv e-prints}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.10683}, } ``` - wiki40b ```bibtex @inproceedings{49029, title = {Wiki-40B: Multilingual Language Model Dataset}, author = {Mandy Guo and Zihang Dai and Denny Vrandecic and Rami Al-Rfou}, year = {2020}, booktitle = {LREC 2020} } ```
recobo/chemical-bert-uncased-simcse
recobo
2021-09-06T05:52:59Z
17
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # recobo/chemical-bert-uncased-simcse ```python from sentence_transformers import SentenceTransformer model_name = 'recobo/chemical-bert-uncased-simcse' model = SentenceTransformer(model_name) ```
bayartsogt/mlub-bert-base-uncased-tr5meaning
bayartsogt
2021-09-05T23:54:10Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
|fold|accuracy| |-|-| | fold 0 | 0.974197247706422 | | fold 1 | 0.9627293577981652 | | fold 2 | 0.9724770642201835 | | fold 3 | 0.9696100917431193 | | fold 4 | 0.9684633027522935 | | OOF Acc | 0.9694954128440367 |
mwesner/reformer-clm
mwesner
2021-09-05T13:44:41Z
5
0
transformers
[ "transformers", "pytorch", "reformer", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- model-index: - name: reformer-clm --- ## reformer-clm This casual language model was trained from scratch on CNN/Dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.8321 | 1.0 | 18412 | 3.8074 | | 3.4965 | 2.0 | 36824 | 3.4223 | | 3.1927 | 3.0 | 55236 | 3.0815 | | 3.046 | 4.0 | 73648 | 2.9270 | | 2.9781 | 5.0 | 92060 | 2.8515 | | 2.9398 | 6.0 | 110472 | 2.8082 | | 2.9293 | 7.0 | 128884 | 2.7904 | | 2.9212 | 8.0 | 147296 | 2.7817 | | 2.9169 | 9.0 | 165708 | 2.7787 | | 2.9197 | 10.0 | 184120 | 2.7783 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.9.0 - Datasets 1.2.1 - Tokenizers 0.10.3
bayartsogt/mlub-bert-large-uncased-tr5do20ep25s42
bayartsogt
2021-09-05T11:26:54Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
|fold|accuracy| |-|-| | fold 0 | 0.9753440366972477 | | fold 1 | 0.9678899082568807 | | fold 2 | 0.9747706422018348 | | fold 3 | 0.9690366972477065 | | fold 4 | 0.9759174311926605 | | OOF Acc | 0.9725917431192661 |
castorini/bpr-nq-question-encoder
castorini
2021-09-05T00:53:16Z
8
0
transformers
[ "transformers", "pytorch", "dpr", "feature-extraction", "arxiv:2106.00882", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is converted from the original BPR [repo](https://github.com/studio-ousia/bpr) and fitted into Pyserini: > Ikuya Yamada, Akari Asai, and Hannaneh Hajishirzi. 2021. Efficient passage retrieval with hashing for open-domain question answering. arXiv:2106.00882.
bshlgrs/autonlp-classification-9522090
bshlgrs
2021-09-04T20:47:49Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:bshlgrs/autonlp-data-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-classification --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9522090 ## Validation Metrics - Loss: 0.3541755676269531 - Accuracy: 0.8759671179883946 - Macro F1: 0.5330133182738012 - Micro F1: 0.8759671179883946 - Weighted F1: 0.8482773065757196 - Macro Precision: 0.537738108882869 - Micro Precision: 0.8759671179883946 - Weighted Precision: 0.8241048710814852 - Macro Recall: 0.5316621214820499 - Micro Recall: 0.8759671179883946 - Weighted Recall: 0.8759671179883946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification-9522090 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification-9522090", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
nateraw/rare-puppers-09-04-2021
nateraw
2021-09-04T20:46:06Z
66
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers-09-04-2021 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8657407164573669 --- # rare-puppers-09-04-2021 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
doyoungkim/bert-base-uncased-finetuned-sst2-sst2-membership
doyoungkim
2021-09-04T20:10:24Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: bert-base-uncased-finetuned-sst2-sst2-membership --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-sst2-sst2-membership This model is a fine-tuned version of [ikevin98/bert-base-uncased-finetuned-sst2](https://huggingface.co/ikevin98/bert-base-uncased-finetuned-sst2) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.3100 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5125 | 1.0 | 3813 | 1.3100 | 1.0 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.1
superb/wav2vec2-large-superb-ic
superb
2021-09-04T19:52:29Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "speech", "audio", "en", "dataset:superb", "arxiv:2105.01051", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:05Z
--- language: en datasets: - superb tags: - speech - audio - wav2vec2 license: apache-2.0 --- # Wav2Vec2-Large for Intent Classification ## Model description This is a ported version of [S3PRL's Wav2Vec2 for the SUPERB Intent Classification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/fluent_commands). The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051) ## Task and dataset description Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands](https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/) dataset, where each utterance is tagged with three intent labels: **action**, **object**, and **location**. For the original model's training and evaluation instructions refer to the [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ic-intent-classification---fluent-speech-commands). ## Usage examples You can use the model directly like so: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor def map_to_array(example): speech, _ = librosa.load(example["file"], sr=16000, mono=True) example["speech"] = speech return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ic", split="test") dataset = dataset.map(map_to_array) model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-large-superb-ic") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-large-superb-ic") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits action_ids = torch.argmax(logits[:, :6], dim=-1).tolist() action_labels = [model.config.id2label[_id] for _id in action_ids] object_ids = torch.argmax(logits[:, 6:20], dim=-1).tolist() object_labels = [model.config.id2label[_id + 6] for _id in object_ids] location_ids = torch.argmax(logits[:, 20:24], dim=-1).tolist() location_labels = [model.config.id2label[_id + 20] for _id in location_ids] ``` ## Eval results The evaluation metric is accuracy. | | **s3prl** | **transformers** | |--------|-----------|------------------| |**test**| `0.9528` | `N/A` | ### BibTeX entry and citation info ```bibtex @article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} } ```
xiaj/test
xiaj
2021-09-04T05:38:09Z
0
0
null
[ "translation", "ru", "en", "dataset:wmt19", "license:apache-2.0", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - ru - en tags: - translation license: apache-2.0 datasets: - wmt19 metrics: - bleu - sacrebleu ---
nateraw/timm-resnet18-beans-test-2
nateraw
2021-09-04T01:13:21Z
5
0
timm
[ "timm", "pytorch", "tensorboard", "image-classification", "generated_from_trainer", "dataset:beans", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - timm - generated_from_trainer datasets: - beans metrics: - accuracy model_index: - name: timm-resnet18-beans-test-2 results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metric: name: Accuracy type: accuracy value: 0.5789473684210527 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # timm-resnet18-beans-test-2 This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.3225 - Accuracy: 0.5789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2601 | 0.02 | 5 | 2.8349 | 0.5113 | | 1.8184 | 0.04 | 10 | 1.3225 | 0.5789 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
mrm8488/spanish-t5-small-sqac-for-qa
mrm8488
2021-09-03T10:22:10Z
132
4
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "QA", "Q&A", "es", "dataset:BSC-TeMU/SQAC", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: es tags: - QA - Q&A datasets: - BSC-TeMU/SQAC widget: - text: "question: ¿Cuál es el nombre que se le da a la unidad morfológica y funcional de los seres vivos? context: La célula (del latín cellula, diminutivo de cella, ‘celda’) es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.\u200b De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si solo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano. Las células suelen poseer un tamaño de 10 µm y una masa de 1 ng, si bien existen células mucho mayores." --- # Spanish T5 (small) fine-tuned on **SQAC** for Spanish **QA** 📖❓ [spanish-T5-small](https://huggingface.co/flax-community/spanish-t5-small) fine-tuned on [SQAC](https://huggingface.co/datasets/BSC-TeMU/SQAC) for **Q&A** downstream task. ## Details of Spanish T5 (small) T5 (small) like arch trained from scatch on [large_spanish_corpus](https://huggingface.co/datasets/large_spanish_corpus) for **HuggingFace/Flax/Jax Week**. ## Details of the dataset 📚 This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment. The sources of the contexts are: * Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode). * News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/). * Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence](https://creativecommons.org/licenses/by/4.0/legalcode). This dataset can be used to build extractive-QA. ## Results on test dataset 📝 | Metric | # Value | | ------ | --------- | | **BLEU** | **41.94** | ## Model in Action 🚀 ```python from transformers import T5ForConditionalGeneration, AutoTokenizer import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ckpt = 'mrm8488/spanish-t5-small-sqac-for-qa' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = T5ForConditionalGeneration.from_pretrained(ckpt).to(device) def get_answer(question, context): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text ], padding='max_length', truncation=True, max_length=512, return_tensors='pt') output = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device)) return tokenizer.decode(output[0], skip_special_tokens=True) context = ''' La ex codirectora del grupo de investigación de IA ética de Google, Margaret Mitchell, quien fue despedida en febrero después de una controversia sobre un artículo crítico del que fue coautora, se unirá a HuggingFace para ayudar a que los algoritmos de IA sean más justos. ''' question = '¿Qué hará Margaret Mitchell en HuggingFace?' print(get_answer(context, question)) # ayudar a que los algoritmos de ia sean más justos ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Narrativa](https://www.narrativa.com/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
amank22/hi_ud_hi_ewt
amank22
2021-09-03T09:43:35Z
4
0
spacy
[ "spacy", "token-classification", "hi", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - hi model-index: - name: hi_ud_hi_ewt results: - task: name: POS type: token-classification metrics: - name: POS Accuracy type: accuracy value: 0.9539693129 - task: name: SENTER type: token-classification metrics: - name: SENTER Precision type: precision value: 0.9902617164 - name: SENTER Recall type: recall value: 0.9807112719 - name: SENTER F Score type: f_score value: 0.9854633555 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Dependencies Accuracy type: accuracy value: 0.9198922358 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Dependencies Accuracy type: accuracy value: 0.9198922358 ---
tau/splinter-base-qass
tau
2021-09-03T08:47:00Z
2,111
1
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "SplinterModel", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: - splinter - SplinterModel license: apache-2.0 --- # Splinter base model (with pretrained QASS-layer weights) Splinter-base is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive. Note: This model **does** contain the pretrained weights for the QASS layer (see paper for details). For the model **without** those weights, see [tau/splinter-base](https://huggingface.co/tau/splinter-base). ## Model description Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions). ## Intended uses & limitations The prime use for this model is few-shot extractive QA. ## Pretraining The model was pretrained on a v3-8 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details. ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", } ```
huggingartists/dua-lipa
huggingartists
2021-09-02T19:51:50Z
5
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/dua-lipa", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/dua-lipa tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/dd37b530cf20f2ce699f91e02a476a8a.847x847x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dua Lipa</div> <a href="https://genius.com/artists/dua-lipa"> <div style="text-align: center; font-size: 14px;">@dua-lipa</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Dua Lipa. Dataset is available [here](https://huggingface.co/datasets/huggingartists/dua-lipa). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dua-lipa") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2wxz1liw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Dua Lipa's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3uj930yj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3uj930yj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/dua-lipa') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/dua-lipa") model = AutoModelWithLMHead.from_pretrained("huggingartists/dua-lipa") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
mnaylor/psychbert-cased
mnaylor
2021-09-02T13:57:46Z
14
7
transformers
[ "transformers", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# PsychBERT This domain adapted language model is pretrained from the `bert-base-cased` checkpoint on masked language modeling, using a dataset of ~40,000 PubMed papers in the domain of psychology, psychiatry, mental health, and behavioral health; as well as a dastaset of roughly 200,000 social media conversations about mental health. This work is submitted as an entry for BIBM 2021. **Note**: the token-prediction widget on this page does not work with Flax models. In order to use the model, please pull it into a Python session as follows: ``` from transformers import FlaxAutoModelForMaskedLM, AutoModelForMaskedLM # load as a flax model flax_lm = FlaxAutoModelForMaskedLM.from_pretrained('mnaylor/psychbert-cased') # load as a pytorch model # requires flax to be installed in your environment pytorch_lm = AutoModelForMaskedLM.from_pretrained('mnaylor/psychbert-cased', from_flax=True) ``` Authors: Vedant Vajre, Mitch Naylor, Uday Kamath, Amarda Shehu
flax-community/gpt2-small-indonesian
flax-community
2021-09-02T12:26:52Z
168
5
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "id", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: id widget: - text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira." --- # GPT2-small-indonesian This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian). ## How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='flax-community/gpt2-small-indonesian') >>> set_seed(42) >>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5) [{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\ “Kau tau, bagaimana dulu kita bertemu?” aku'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\ Tuhan akan memberi lebih dari apa yang kita'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian') model = GPT2Model.from_pretrained('flax-community/gpt2-small-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian') model = TFGPT2Model.from_pretrained('flax-community/gpt2-small-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Limitations and bias The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we > do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry > out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, > race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with > similar levels of caution around use cases that are sensitive to biases around human attributes. We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/flax-community/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/flax-community/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications. ### Gender bias We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online. ![gender bias - male](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_male.png) The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant). ![gender bias - female](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_female.png) ### Ethnicity bias We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme: * Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity) * Topic - we will use 5 different topics: * random act: *entered home* * said: *said* * works as: *works as* * intent: *let [person] ...* * define: *is* Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...) We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_ethnicity.png) ### Religion bias With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_religion.png) ## Training data The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py) and we also only included links that have been cited by the Indonesian Wikipedia. ## Training procedure The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `4d 14h 50m 47s`. ### Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | dataset | train loss | eval loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | ID OSCAR+mc4+wikipedia (29GB) | 3.046 | 2.926 | 18.66 | ### Tracking The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-small-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya). ## Team members - Akmal ([@Wikidepia](https://huggingface.co/Wikidepia)) - alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner)) - Cahya Wirawan ([@cahya](https://huggingface.co/cahya)) - Galuh Sahid ([@Galuh](https://huggingface.co/Galuh)) - Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia)) - Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli)) - Samsul Rahmadani ([@munggok](https://huggingface.co/munggok)) ## Future work We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains if we can get the necessary hardware resources.
flax-community/gpt2-medium-indonesian
flax-community
2021-09-02T12:22:45Z
20
6
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "id", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: id widget: - text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira." --- # GPT2-medium-indonesian This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian). ## How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='flax-community/gpt2-medium-indonesian') >>> set_seed(42) >>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5) [{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\ “Kau tau, bagaimana dulu kita bertemu?” aku'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'}, {'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\ Tuhan akan memberi lebih dari apa yang kita'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-medium-indonesian') model = GPT2Model.from_pretrained('flax-community/gpt2-medium-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-medium-indonesian') model = TFGPT2Model.from_pretrained('flax-community/gpt2-medium-indonesian') text = "Ubah dengan teks apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Limitations and bias The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we > do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry > out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, > race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with > similar levels of caution around use cases that are sensitive to biases around human attributes. We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/flax-community/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/flax-community/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications. ### Gender bias We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online. ![gender bias - male](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_male.png) The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant). ![gender bias - female](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/wordcloud_female.png) ### Ethnicity bias We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme: * Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity) * Topic - we will use 5 different topics: * random act: *entered home* * said: *said* * works as: *works as* * intent: *let [person] ...* * define: *is* Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...) We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_ethnicity.png) ### Religion bias With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline. The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline. ![bias analysis - ethnicities](https://huggingface.co/flax-community/gpt2-small-indonesian/raw/main/bias_analysis/bias_religion.png) ## Training data The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4) and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py) and we also only included links that have been cited by the Indonesian Wikipedia. ## Training procedure The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `6d 3h 7m 26s`. ### Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | dataset | train loss | eval loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | ID OSCAR+mc4+Wikipedia (29GB) | 2.79 | 2.696 | 14.826 | ### Tracking The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-medium-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya). ## Team members - Akmal ([@Wikidepia](https://huggingface.co/Wikidepia)) - alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner)) - Cahya Wirawan ([@cahya](https://huggingface.co/cahya)) - Galuh Sahid ([@Galuh](https://huggingface.co/Galuh)) - Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia)) - Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli)) - Samsul Rahmadani ([@munggok](https://huggingface.co/munggok)) ## Future work We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains if we can get the necessary hardware resources.
DataikuNLP/camembert-base
DataikuNLP
2021-09-02T08:15:08Z
110
0
transformers
[ "transformers", "pytorch", "tf", "camembert", "fill-mask", "fr", "dataset:oscar", "arxiv:1911.03894", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: fr license: mit datasets: - oscar --- # CamemBERT: a Tasty French Language Model **This model is a copy of [this model repository](https://huggingface.co/camembert-base) at the specific commit `482393b6198924f9da270b1aaf37d238aafca99b`.** ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert-base") camembert = CamembertModel.from_pretrained("camembert-base") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200}, # {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183}, # {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202}, # {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528}, # {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) # tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116], # [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766], # [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert-base", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210], # [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982], # [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
Hoang/distilbert-base-uncased-finetuned-squad
Hoang
2021-09-02T07:32:09Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: name: squad type: squad args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2176 | 1.0 | 5533 | 1.1429 | | 0.9425 | 2.0 | 11066 | 1.1196 | | 0.7586 | 3.0 | 16599 | 1.1582 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
cyclone/simcse-chinese-roberta-wwm-ext
cyclone
2021-09-02T03:04:17Z
116
32
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2104.08821", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
## Cyclone SIMCSE RoBERTa WWM Ext Chinese This model provides simplified Chinese sentence embeddings encoding based on [Simple Contrastive Learning](https://arxiv.org/abs/2104.08821). The pretrained model(Chinese RoBERTa WWM Ext) is used for token encoding. ### Usage Please use [SentenceTransformer](https://github.com/UKPLab/sentence-transformers) to load the model. from sentence_transformers import SentenceTransformer encoder = SentenceTransformer('cyclone/simcse-chinese-roberta-wwm-ext')
Malignant/Malignant
Malignant
2021-09-02T02:07:05Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Ver-Online Malignant PELICULA completa En Espanol Latino HD
xhyi/distilLED3_08_31_2021_v5
xhyi
2021-09-02T01:44:58Z
5
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
\nTraining Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure 2.880900 2.715085 0.121400 0.142300 0.117100 +200 steps total = 440 steps tokenization: max article: 8192 max abstract: 512
gagan3012/bert-tiny-finetuned-ner
gagan3012
2021-09-01T23:50:44Z
64
4
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-tiny-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.8083060109289617 - name: Recall type: recall value: 0.8273856136033113 - name: F1 type: f1 value: 0.8177345348001547 - name: Accuracy type: accuracy value: 0.9597597979252387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-ner This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Precision: 0.8083 - Recall: 0.8274 - F1: 0.8177 - Accuracy: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0355 | 1.0 | 878 | 0.1692 | 0.8072 | 0.8248 | 0.8159 | 0.9594 | | 0.0411 | 2.0 | 1756 | 0.1678 | 0.8101 | 0.8277 | 0.8188 | 0.9600 | | 0.0386 | 3.0 | 2634 | 0.1697 | 0.8103 | 0.8269 | 0.8186 | 0.9599 | | 0.0373 | 4.0 | 3512 | 0.1694 | 0.8106 | 0.8263 | 0.8183 | 0.9600 | | 0.0383 | 5.0 | 4390 | 0.1689 | 0.8083 | 0.8274 | 0.8177 | 0.9598 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
espnet/byan_librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_ac-truncated-68a97b
espnet
2021-09-01T15:54:31Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `byan/librispeech_asr_train_asr_conformer_raw_bpe_batch_bins30000000_accum_grad3_optim_conflr0.001_sp` ♻️ Imported from https://huggingface.co/ This model was trained by byan using librispeech/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/su_openslr36
espnet
2021-09-01T15:51:23Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "su", "dataset:su_openslr36", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: su datasets: - su_openslr36 license: cc-by-4.0 --- ## ESPnet2 ASR pretrained model ### `su_openslr36` ♻️ Imported from https://zenodo.org/record/5090135/ This model was trained by su_openslr36 using su_openslr36/asr1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
reshinthadith/BashGPTNeo
reshinthadith
2021-09-01T15:22:29Z
14
2
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "code-representation-learning", "program-synthesis", "dataset:nlc2cmd", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - English - Bash thumbnail: "Neural Program Synthesis for Bash" tags: - code-representation-learning - program-synthesis datasets: - nlc2cmd metrics: - metric1 - metric2 --- # BashGPT-Neo ## What is it ? BashGPT-Neo is a [Neural Program Synthesis](https://www.microsoft.com/en-us/research/project/neural-program-synthesis/) Model for Bash Commands and Shell Scripts. Trained on the data provided by [NLC2CMD](https://nlc2cmd.us-east.mybluemix.net/). It is fine-tuned version of GPTNeo-125M by EleutherAI. ## Usage ```py from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("reshinthadith/BashGPTNeo") model = AutoModelForCausalLM.from_pretrained("reshinthadith/BashGPTNeo") ``` ## Core Contributors 👥 - [Reshinth Adithyan](https://github.com/reshinthadithyan) - [Aditya Thuruvas](https://github.com/dhuruvasaditya)
eugenesiow/awsrn-bam
eugenesiow
2021-09-01T08:02:58Z
1,599
1
transformers
[ "transformers", "AWSRN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:1904.02358", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Lightweight Image Super-Resolution with Adaptive Weighted Learning Network (AWSRN) AWSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Lightweight Image Super-Resolution with Adaptive Weighted Learning Network](https://arxiv.org/abs/1904.02358) by Wang et al. (2019) and first released in [this repository](https://github.com/ChaofWang/AWSRN). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling and model upscaling. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/awsrn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description Deep learning has been successfully applied to the single-image super-resolution (SISR) task with great performance in recent years. However, most convolutional neural network based SR models require heavy computation, which limit their real-world applications. In this work, a lightweight SR network, named Adaptive Weighted Super-Resolution Network (AWSRN), is proposed for SISR to address this issue. A novel local fusion block (LFB) is designed in AWSRN for efficient residual learning, which consists of stacked adaptive weighted residual units (AWRU) and a local residual fusion unit (LRFU). Moreover, an adaptive weighted multi-scale (AWMS) module is proposed to make full use of features in reconstruction layer. AWMS consists of several different scale convolutions, and the redundancy scale branch can be removed according to the contribution of adaptive weights in AWMS for lightweight network. The experimental results on the commonly used datasets show that the proposed lightweight AWSRN achieves superior performance on ×2, ×3, ×4, and ×8 scale factors to state-of-the-art methods with similar parameters and computational overhead. This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results. ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import AwsrnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = AwsrnModel.from_pretrained('eugenesiow/awsrn-bam', scale=2) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png` ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, AwsrnModel, AwsrnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = AwsrnConfig( scale=4, # train a model to upscale 4x bam=True, # apply balanced attention to the network ) model = AwsrnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |awsrn-bam | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**37.99/0.9606** | |Set5 |3x |30.39/0.8678 |**35.05/0.9403** | |Set5 |4x |28.42/0.8101 |**32.13/0.8947** | |Set14 |2x |30.22/0.8683 |**33.66/0.918** | |Set14 |3x |27.53/0.7737 |**31.01/0.8581** | |Set14 |4x |25.99/0.7023 |**28.75/0.7851** | |BSD100 |2x |29.55/0.8425 |**33.76/0.9253** | |BSD100 |3x |27.20/0.7382 |**29.63/0.8188** | |BSD100 |4x |25.96/0.6672 |**28.51/0.7647** | |Urban100 |2x |26.66/0.8408 |**31.95/0.9265** | |Urban100 |3x | |**29.14/0.871** | |Urban100 |4x |23.14/0.6573 |**26.03/0.7838** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/awsrn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @misc{wang2021bam, title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution}, author={Fanyi Wang and Haotian Hu and Cheng Shen}, year={2021}, eprint={2104.07566}, archivePrefix={arXiv}, primaryClass={eess.IV} } ``` ```bibtex @article{wang2019lightweight, title={Lightweight Image Super-Resolution with Adaptive Weighted Learning Network}, author={Wang, Chaofeng and Li, Zhen and Shi, Jun}, journal={arXiv preprint arXiv:1904.02358}, year={2019 } ```
bayartsogt/mlub-bert-large-uncased-tr5do30ep25
bayartsogt
2021-08-31T23:55:23Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
|fold|accuracy| |-|-| | fold 0 | 0.974197247706422 | | fold 1 | 0.9678899082568807 | | fold 2 | 0.9724770642201835 | | fold 3 | 0.9701834862385321 | | fold 4 | 0.9736238532110092 | | OOF Acc | 0.9716743119266055 | ``` synset_word ав 1.000000 ам 0.931507 баг 0.980000 байр 0.943548 бараа 0.964789 гар 0.950210 гол 0.938731 гүн 0.912088 зах 0.946667 зуу 0.995798 зүрх 0.918367 мөнгө 0.973333 нуруу 0.968750 нүд 1.000000 нүүр 0.987805 салбар 0.963636 сар 0.996627 сум 0.816667 тэрэг 0.822581 түүх 0.980237 төр 0.998428 хий 0.993077 хураа 0.858268 хэлбэр 0.727273 хөндий 1.000000 шат 1.000000 эм 1.000000 эрүүл 1.000000 dtype: float64 ```
elisno/is_ud_is_pud
elisno
2021-08-31T21:56:16Z
4
0
spacy
[ "spacy", "token-classification", "is", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - is model-index: - name: is_ud_is_pud results: - task: name: POS type: token-classification metrics: - name: POS Accuracy type: accuracy value: 0.7356746765 - task: name: SENTER type: token-classification metrics: - name: SENTER Precision type: precision value: 0.8611111111 - name: SENTER Recall type: recall value: 0.93 - name: SENTER F Score type: f_score value: 0.8942307692 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Dependencies Accuracy type: accuracy value: 0.7336065574 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Dependencies Accuracy type: accuracy value: 0.7336065574 ---
nateraw/vit-base-cats-vs-dogs
nateraw
2021-08-31T20:02:08Z
92
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:cats_vs_dogs", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - image-classification - pytorch datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: vit-base-cats-vs-dogs results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs args: default metrics: - name: Accuracy type: accuracy value: 0.9934510250569476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-cats-vs-dogs This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0202 - Accuracy: 0.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.064 | 1.0 | 311 | 0.0483 | 0.9849 | | 0.0622 | 2.0 | 622 | 0.0275 | 0.9903 | | 0.0366 | 3.0 | 933 | 0.0262 | 0.9917 | | 0.0294 | 4.0 | 1244 | 0.0219 | 0.9932 | | 0.0161 | 5.0 | 1555 | 0.0202 | 0.9935 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
SongRb/distilbert-base-uncased-finetuned-cola
SongRb
2021-08-31T10:19:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5332198659134496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8549 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5213 | 1.0 | 535 | 0.5163 | 0.4183 | | 0.3479 | 2.0 | 1070 | 0.5351 | 0.5182 | | 0.231 | 3.0 | 1605 | 0.6271 | 0.5291 | | 0.166 | 4.0 | 2140 | 0.7531 | 0.5279 | | 0.1313 | 5.0 | 2675 | 0.8549 | 0.5332 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
lumalik/vent-roberta-emotion
lumalik
2021-08-31T10:16:58Z
8
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:1901.04856", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Vent-roBERTa-emotion This is a roBERTa pretrained on twitter and then trained for self-labeled emotion classification on the Vent dataset (see https://arxiv.org/abs/1901.04856). The Vent dataset contains 33 million posts annotated with one emotion by the user themselves. <br/> The model was trained to recognize 5 emotions ("Affection", "Anger", "Fear", "Happiness", "Sadness") on 7 million posts from the dataset. <br/> Example of how to use the classifier on single texts. <br/> ```` from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import torch tokenizer = AutoTokenizer.from_pretrained("lumalik/vent-roberta-emotion") model = AutoModelForSequenceClassification.from_pretrained("lumalik/vent-roberta-emotion") model.eval() texts = ["You wont believe what happened to me today", "You wont believe what happened to me today!", "You wont believe what happened to me today...", "You wont believe what happened to me today <3", "You wont believe what happened to me today :)", "You wont believe what happened to me today :("] for text in texts: encoded_text = tokenizer(text, return_tensors="pt") output = model(**encoded_text) output = softmax(output[0].detach().numpy(), axis=1) print("======================") print(text) print("Affection: {}".format(output[0][0])) print("Anger: {}".format(output[0][1])) print("Fear: {}".format(output[0][2])) print("Happiness: {}".format(output[0][3])) print("Sadness: {}".format(output[0][4])) ````
redorangeyellowy/tts_korean_tacotron
redorangeyellowy
2021-08-31T03:22:31Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This is Korean-TTS model. (based on Tacotron) Dataset is from Sogang University.
huggingtweets/_pranavnt
huggingtweets
2021-08-30T21:04:43Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/_pranavnt/1630357478814/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414887427706023940/TxmPt4j1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pranav ⠕</div> <div style="text-align: center; font-size: 14px;">@_pranavnt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pranav ⠕. | Data | Pranav ⠕ | | --- | --- | | Tweets downloaded | 406 | | Retweets | 86 | | Short tweets | 86 | | Tweets kept | 234 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1si2997p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_pranavnt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b5uv7sf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b5uv7sf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_pranavnt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
trig/multiverse-second
trig
2021-08-30T20:15:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # multiverse but with swapped characters and more learning
nreimers/MiniLM-L6-H384-uncased
nreimers
2021-08-30T20:05:29Z
1,993
34
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- license: mit --- ## MiniLM: 6 Layer Version This is a 6 layer version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/) by keeping only every second layer.
nreimers/MiniLM-L3-H384-uncased
nreimers
2021-08-30T20:05:09Z
86
3
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "license:mit", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- license: mit --- ## MiniLM: 3 Layer Version This is a 3 layer version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased/) by keeping only the layer [3, 7, 11].
jinmang2/dall-e-tokenizer
jinmang2
2021-08-30T18:20:38Z
4
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# DALL-E-Tokenizer Huggingface package for the discrete VAE usded for [DALL-E](https://github.com/openai/DALL-E). # How to use ```python # from dall_e_tok import DallEEncoder from dall_e_tok import DALLETokenizer tokenizer = DALLETokenizer.from_pretrained("jinmang2/dall-e-tokenizer") ```
huggingtweets/hideo_kojima_en-rxmaybike
huggingtweets
2021-08-30T17:40:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/hideo_kojima_en-rxmaybike/1630345229826/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/914211724412166144/Bf2Yij9b_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HIDEO_KOJIMA & jamar "mad dog of ny" majima 🇵🇸</div> <div style="text-align: center; font-size: 14px;">@hideo_kojima_en-rxmaybike</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HIDEO_KOJIMA & jamar "mad dog of ny" majima 🇵🇸. | Data | HIDEO_KOJIMA | jamar "mad dog of ny" majima 🇵🇸 | | --- | --- | --- | | Tweets downloaded | 3228 | 3166 | | Retweets | 2656 | 1404 | | Short tweets | 29 | 432 | | Tweets kept | 543 | 1330 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nd0jitx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hideo_kojima_en-rxmaybike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3digtvss) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3digtvss/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hideo_kojima_en-rxmaybike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
redorangeyellowy/tts_korean_temp
redorangeyellowy
2021-08-30T10:08:00Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This is espnet-based korean TTS model. You should recognize that this is not fisished one. Dataset is from our university, which is NOT available yet.
vasudevgupta/gsoc-wav2vec2-xlsr-53
vasudevgupta
2021-08-30T07:38:48Z
4
0
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TensorFlow equivalent of [`facebook/wav2vec2-large-xlsr-53`](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
vasudevgupta/gsoc-wav2vec2-robust
vasudevgupta
2021-08-30T07:34:01Z
5
1
transformers
[ "transformers", "tf", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
TensorFlow equivalent of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust)
huggingtweets/sarthaktexas
huggingtweets
2021-08-30T07:16:29Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sarthaktexas/1630307785663/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425242303925563394/YrMTa0kl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sarthak Mohanty</div> <div style="text-align: center; font-size: 14px;">@sarthaktexas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sarthak Mohanty. | Data | Sarthak Mohanty | | --- | --- | | Tweets downloaded | 2431 | | Retweets | 1529 | | Short tweets | 209 | | Tweets kept | 693 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25qevo9e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sarthaktexas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zm9579aw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zm9579aw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sarthaktexas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/pradyuprasad
huggingtweets
2021-08-30T07:13:39Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/pradyuprasad/1630307615715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421042819653726214/rYpLOFCG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pradyumna (27/100 blog posts)</div> <div style="text-align: center; font-size: 14px;">@pradyuprasad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pradyumna (27/100 blog posts). | Data | Pradyumna (27/100 blog posts) | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 293 | | Short tweets | 449 | | Tweets kept | 2483 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1qrkwd1v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pradyuprasad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nprezkxg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nprezkxg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pradyuprasad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
riyadhctg/distilbert-base-uncased-finetuned-cola
riyadhctg
2021-08-30T07:04:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5526838482765232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7691 - Matthews Correlation: 0.5527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5247 | 1.0 | 535 | 0.5390 | 0.4315 | | 0.353 | 2.0 | 1070 | 0.5273 | 0.4994 | | 0.2386 | 3.0 | 1605 | 0.6391 | 0.5089 | | 0.17 | 4.0 | 2140 | 0.7691 | 0.5527 | | 0.1348 | 5.0 | 2675 | 0.8483 | 0.5472 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/conspiracyb0t-occultb0t
huggingtweets
2021-08-29T17:31:38Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412951058121330691/TPaX9p2y_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381333613585727489/KjV-Te29_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">occultbot & conspiracybot</div> <div style="text-align: center; font-size: 14px;">@conspiracyb0t-occultb0t</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from occultbot & conspiracybot. | Data | occultbot | conspiracybot | | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | | Retweets | 0 | 0 | | Short tweets | 1659 | 1651 | | Tweets kept | 1591 | 1599 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fou3nfp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conspiracyb0t-occultb0t's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3kx38spd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3kx38spd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conspiracyb0t-occultb0t') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aloka/mbart50-ft-si-en
Aloka
2021-08-29T13:11:14Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model_index: - name: mbart50-ft-si-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart50-ft-si-en This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 5.0476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.98 | 30 | 5.6367 | | No log | 1.98 | 60 | 4.1221 | | No log | 2.98 | 90 | 3.1880 | | No log | 3.98 | 120 | 3.1175 | | No log | 4.98 | 150 | 3.3575 | | No log | 5.98 | 180 | 3.7855 | | No log | 6.98 | 210 | 4.3530 | | No log | 7.98 | 240 | 4.7216 | | No log | 8.98 | 270 | 4.9202 | | No log | 9.98 | 300 | 5.0476 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.6.0 - Datasets 1.11.0 - Tokenizers 0.10.3
j-hartmann/emotion-english-roberta-large
j-hartmann
2021-08-29T11:48:09Z
1,644
14
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "sentiment", "emotion", "twitter", "reddit", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" tags: - roberta - sentiment - emotion - twitter - reddit widget: - text: "Oh wow. I didn't know that." - text: "This movie always makes me cry.." - text: "Oh Happy Day" --- ## Description ℹ With this model, you can classify emotions in English text data. The model was trained on 6 diverse datasets and predicts Ekman's 6 basic emotions, plus a neutral class: 1) anger 🤬 2) disgust 🤢 3) fear 😨 4) joy 😀 5) neutral 😐 6) sadness 😭 7) surprise 😲 The model is a fine-tuned checkpoint of [RoBERTa-large](https://huggingface.co/roberta-large). For further details on this emotion model, please refer to the model card of its [DistilRoBERTa](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base) version.
huggingtweets/ciggietoad
huggingtweets
2021-08-29T10:30:12Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ciggietoad/1630233008215/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296993530364047360/FjmaIiEb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ciggie Toad</div> <div style="text-align: center; font-size: 14px;">@ciggietoad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ciggie Toad. | Data | Ciggie Toad | | --- | --- | | Tweets downloaded | 146 | | Retweets | 5 | | Short tweets | 24 | | Tweets kept | 117 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ncp22w8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ciggietoad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hne016u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hne016u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ciggietoad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jean-paul/kinyaRoberta-large
jean-paul
2021-08-29T10:25:44Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# Model description A Pretrained model on the Kinyarwanda language dataset using a masked language modeling (MLM) objective. RoBerta model was first introduced in [this paper](https://arxiv.org/abs/1907.11692). This KinyaRoBERTa model was pretrained with uncased tokens which means that no difference between for example ikinyarwanda and Ikinyarwanda. # Training parameters #### Dataset The data set used has both sources from the new articles in Rwanda extracted from different new web pages, dumped Wikipedia files, and the books in Kinyarwanda. The sizes of the sources of data are 72 thousand new articles, three thousand dumped Wikipedia articles, and six books with more than a thousand pages. #### Hyperparameters The model was trained with the default configuration of RoBerta and Trainer from the Huggingface. However, due to some resource computation issues, we kept the number of transformer layers to 12. # How to use: 1) The model can be used directly with the pipeline for masked language modeling as follows: ``` from transformers import pipeline the_mask_pipe = pipeline( "fill-mask", model='jean-paul/kinyaRoberta-large', tokenizer='jean-paul/kinyaRoberta-large', ) the_mask_pipe("Ejo ndikwiga nagize <mask> baje kunsura.") [{'sequence': 'Ejo ndikwiga nagize amahirwe baje kunsura.', 'score': 0.5675836205482483, 'token': 1711, 'token_str': ' amahirwe'}, {'sequence': 'Ejo ndikwiga nagize benshi baje kunsura.', 'score': 0.03573048859834671, 'token': 769, 'token_str': ' benshi'}, {'sequence': 'Ejo ndikwiga nagize ubwoba baje kunsura.', 'score': 0.03272199630737305, 'token': 2594, 'token_str': ' ubwoba'}, {'sequence': 'Ejo ndikwiga nagize ngo baje kunsura.', 'score': 0.013406379148364067, 'token': 396, 'token_str': ' ngo'}, {'sequence': 'Ejo ndikwiga nagize abantu baje kunsura.', 'score': 0.012342716567218304, 'token': 500, 'token_str': ' abantu'}] ``` 2) Direct use from the transformer library to get features using AutoModel ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("jean-paul/kinyaRoberta-large") model = AutoModelForMaskedLM.from_pretrained("jean-paul/kinyaRoberta-large") input_text = "Ejo ndikwiga nagize abashyitsi baje kunsura." encoded_input = tokenizer(input_text, return_tensors='pt') output = model(**encoded_input) ``` __Note__: We used the huggingface implementations for pretraining RoBerta from scratch, both the RoBerta model and the classes needed to do it.
Harshal6927/Tony_Stark_GPT
Harshal6927
2021-08-29T07:39:33Z
7
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # Tony Stark GPT My first AI model still learning, used small dataset so don't expect much
lowlevelware/512x512_diffusion_unconditional_ImageNet
lowlevelware
2021-08-29T05:20:21Z
0
14
null
[ "arxiv:2105.05233", "region:us" ]
null
2022-03-02T23:29:05Z
# 512x512 diffusion (unconditional ImageNet) Modality: Images Intended Use: Generation of images with or without classifier guidance ## Detailed description A 512x512 unconditional ImageNet diffusion model, fine-tuned for 8100 steps from the OpenAI trained 512x512 class-conditional ImageNet diffusion model. It was fine-tuned into an unconditional model in order to enable better guidance by CLIP (or any other non-ImageNet classifier). ### Short description A 512x512 unconditional ImageNet diffusion model, fine-tuned from the OpenAI trained 512x512 class-conditional ImageNet diffusion model. ## License MIT Training Data: ImageNet (ILSVRC 2012 subset) Metrics / Evaluations: None Limitations and Biases: - These models sometimes produce highly unrealistic outputs, particularly when generating images containing human faces. This may stem from ImageNet's emphasis on non-human objects. While classifier guidance can improve sample quality, it reduces diversity, resulting in some modes of the data distribution being underrepresented. This can potentially amplify existing biases in the training dataset such as gender and racial biases. Because ImageNet and LSUN contain images from the internet, they include photos of real people, and the model may have memorized some of the information contained in these photos. However, these images are already publicly available, and existing generative models trained on ImageNet have not demonstrated significant leakage of this information. Links: https://arxiv.org/abs/2105.05233 (Diffusion Models Beat GANs on Image Synthesis), https://github.com/openai/guided-diffusion
Tejasvb/DialoGPT-small-rick
Tejasvb
2021-08-29T05:05:19Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational ---
Tejasvb/DialogGPT-small-rick
Tejasvb
2021-08-29T05:02:30Z
0
0
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - conversational ---
huggingtweets/nature
huggingtweets
2021-08-29T00:12:13Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nature/1630195894517/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393206230152327170/QnzohDIu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nature</div> <div style="text-align: center; font-size: 14px;">@nature</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nature. | Data | nature | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 25 | | Short tweets | 6 | | Tweets kept | 3219 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/v0tz81f8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nature's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/222eizc2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/222eizc2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nature') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
filco306/gpt2-bible-paraphraser
filco306
2021-08-28T23:35:01Z
106
1
transformers
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT2 Bible style transfer paraphraser This is the trained Bible model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
filco306/gpt2-switchboard-paraphraser
filco306
2021-08-28T23:33:47Z
6
0
transformers
[ "transformers", "pytorch", "text-generation", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT2 Switchboard style transfer paraphraser This is the trained Switchboard-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author. ## Citation If you found this model useful, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
huggingtweets/sematarygravemn
huggingtweets
2021-08-28T17:19:42Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sematarygravemn/1630171139756/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417713235168415752/j1Qd3_F9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SEMATARY GRAVE MAN ✟ ✟ ✟</div> <div style="text-align: center; font-size: 14px;">@sematarygravemn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SEMATARY GRAVE MAN ✟ ✟ ✟. | Data | SEMATARY GRAVE MAN ✟ ✟ ✟ | | --- | --- | | Tweets downloaded | 585 | | Retweets | 75 | | Short tweets | 116 | | Tweets kept | 394 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jy7xpe9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sematarygravemn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2svkr1dq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2svkr1dq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sematarygravemn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/jackposobiec
huggingtweets
2021-08-28T16:45:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jackposobiec/1630169093455/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418813091140227072/iXDCqBz0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jack Posobiec 🇺🇸</div> <div style="text-align: center; font-size: 14px;">@jackposobiec</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jack Posobiec 🇺🇸. | Data | Jack Posobiec 🇺🇸 | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 818 | | Short tweets | 511 | | Tweets kept | 1917 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s4mnium/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jackposobiec's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vllrmfa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vllrmfa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jackposobiec') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/wokal_distance
huggingtweets
2021-08-28T16:30:35Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334420408490057729/BoIR414f_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Wokal Distance</div> <div style="text-align: center; font-size: 14px;">@wokal_distance</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Wokal Distance. | Data | Wokal Distance | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 1382 | | Short tweets | 145 | | Tweets kept | 1715 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1udsr72i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wokal_distance's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pi9x5ai) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pi9x5ai/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wokal_distance') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/notmikeharlow
huggingtweets
2021-08-28T16:24:19Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/notmikeharlow/1630167789938/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425404754344267778/QtQaXGRF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mike Harlow</div> <div style="text-align: center; font-size: 14px;">@notmikeharlow</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mike Harlow. | Data | Mike Harlow | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 300 | | Short tweets | 371 | | Tweets kept | 2561 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xakho7a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @notmikeharlow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15adesnt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15adesnt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/notmikeharlow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
a1fadog13/DialoGPT-small-joshua
a1fadog13
2021-08-28T08:51:27Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
cosmoquester/bart-ko-small
cosmoquester
2021-08-28T05:09:54Z
48
0
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: ko --- # Pretrained BART in Korean This is pretrained BART model with multiple Korean Datasets. I used multiple datasets for generalizing the model for both colloquial and written texts. The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program. The script which is used to pre-train model is [here](https://github.com/cosmoquester/transformers-bart-pretrain). When you use the reference API, you must wrap the sentence with `[BOS]` and `[EOS]` like below example. ``` [BOS] 안녕하세요? 반가워요~~ [EOS] ``` You can also test mask filling performance using `[MASK]` token like this. ``` [BOS] [MASK] 먹었어? [EOS] ``` ## Benchmark <style> table { border-collapse: collapse; border-style: hidden; width: 100%; } td, th { border: 1px solid #4d5562; padding: 8px; } </style> <table> <tr> <th>Dataset</th> <td>KLUE NLI dev</th> <td>NSMC test</td> <td>QuestionPair test</td> <td colspan="2">KLUE TC dev</td> <td colspan="3">KLUE STS dev</td> <td colspan="3">KorSTS dev</td> <td colspan="2">HateSpeech dev</td> </tr> <tr> <th>Metric</th> <!-- KLUE NLI --> <td>Acc</th> <!-- NSMC --> <td>Acc</td> <!-- QuestionPair --> <td>Acc</td> <!-- KLUE TC --> <td>Acc</td> <td>F1</td> <!-- KLUE STS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- KorSTS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- HateSpeech --> <td>Bias Acc</td> <td>Hate Acc</td> </tr> <tr> <th>Score</th> <!-- KLUE NLI --> <td>0.639</th> <!-- NSMC --> <td>0.8721</td> <!-- QuestionPair --> <td>0.905</td> <!-- KLUE TC --> <td>0.8551</td> <td>0.8515</td> <!-- KLUE STS --> <td>0.7406</td> <td>0.7593</td> <td>0.7551</td> <!-- KorSTS --> <td>0.7897</td> <td>0.7269</td> <td>0.7037</td> <!-- HateSpeech --> <td>0.8068</td> <td>0.5966</td> </tr> </table> - The performance was measured using [the notebooks here](https://github.com/cosmoquester/transformers-bart-finetune) with colab. ## Used Datasets ### [모두의 말뭉치](https://corpus.korean.go.kr/) - 일상 대화 말뭉치 2020 - 구어 말뭉치 - 문어 말뭉치 - 신문 말뭉치 ### AIhub - [개방데이터 전문분야말뭉치](https://aihub.or.kr/aidata/30717) - [개방데이터 한국어대화요약](https://aihub.or.kr/aidata/30714) - [개방데이터 감성 대화 말뭉치](https://aihub.or.kr/aidata/7978) - [개방데이터 한국어 음성](https://aihub.or.kr/aidata/105) - [개방데이터 한국어 SNS](https://aihub.or.kr/aidata/30718) ### [세종 말뭉치](https://ithub.korean.go.kr/)
cosmoquester/bart-ko-mini
cosmoquester
2021-08-28T04:59:29Z
12
0
transformers
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: ko --- # Pretrained BART in Korean This is pretrained BART model with multiple Korean Datasets. I used multiple datasets for generalizing the model for both colloquial and written texts. The training is supported by [TPU Research Cloud](https://sites.research.google/trc/) program. The script which is used to pre-train model is [here](https://github.com/cosmoquester/transformers-bart-pretrain). When you use the reference API, you must wrap the sentence with `[BOS]` and `[EOS]` like below example. ``` [BOS] 안녕하세요? 반가워요~~ [EOS] ``` You can also test mask filling performance using `[MASK]` token like this. ``` [BOS] [MASK] 먹었어? [EOS] ``` ## Benchmark <style> table { border-collapse: collapse; border-style: hidden; width: 100%; } td, th { border: 1px solid #4d5562; padding: 8px; } </style> <table> <tr> <th>Dataset</th> <td>KLUE NLI dev</th> <td>NSMC test</td> <td>QuestionPair test</td> <td colspan="2">KLUE TC dev</td> <td colspan="3">KLUE STS dev</td> <td colspan="3">KorSTS dev</td> <td colspan="2">HateSpeech dev</td> </tr> <tr> <th>Metric</th> <!-- KLUE NLI --> <td>Acc</th> <!-- NSMC --> <td>Acc</td> <!-- QuestionPair --> <td>Acc</td> <!-- KLUE TC --> <td>Acc</td> <td>F1</td> <!-- KLUE STS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- KorSTS --> <td>F1</td> <td>Pearson</td> <td>Spearman</td> <!-- HateSpeech --> <td>Bias Acc</td> <td>Hate Acc</td> </tr> <tr> <th>Score</th> <!-- KLUE NLI --> <td>0.5253</th> <!-- NSMC --> <td>0.8425</td> <!-- QuestionPair --> <td>0.8945</td> <!-- KLUE TC --> <td>0.8047</td> <td>0.7988</td> <!-- KLUE STS --> <td>0.7411</td> <td>0.7471</td> <td>0.7399</td> <!-- KorSTS --> <td>0.7725</td> <td>0.6503</td> <td>0.6191</td> <!-- HateSpeech --> <td>0.7537</td> <td>0.5605</td> </tr> </table> - The performance was measured using [the notebooks here](https://github.com/cosmoquester/transformers-bart-finetune) with colab. ## Used Datasets ### [모두의 말뭉치](https://corpus.korean.go.kr/) - 일상 대화 말뭉치 2020 - 구어 말뭉치 - 문어 말뭉치 - 신문 말뭉치 ### AIhub - [개방데이터 전문분야말뭉치](https://aihub.or.kr/aidata/30717) - [개방데이터 한국어대화요약](https://aihub.or.kr/aidata/30714) - [개방데이터 감성 대화 말뭉치](https://aihub.or.kr/aidata/7978) - [개방데이터 한국어 음성](https://aihub.or.kr/aidata/105) - [개방데이터 한국어 SNS](https://aihub.or.kr/aidata/30718) ### [세종 말뭉치](https://ithub.korean.go.kr/)
SilentMyuth/sarcastic-model
SilentMyuth
2021-08-27T21:10:27Z
7
1
transformers
[ "transformers", "conversational", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- pipeline_tag: conversational --- This model is a fine-tuned version of Microsoft/DialoGPT-medium trained to created sarcastic responses from the dataset "Sarcasm on Reddit" located [here](https://www.kaggle.com/danofer/sarcasm).
nateraw/vit-base-beans-demo
nateraw
2021-08-27T17:06:03Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "other-image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - other-image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans-demo results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans-demo This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0853 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0545 | 1.54 | 100 | 0.1436 | 0.9624 | | 0.006 | 3.08 | 200 | 0.1058 | 0.9699 | | 0.0038 | 4.62 | 300 | 0.0853 | 0.9774 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
KP2500/KPBot
KP2500
2021-08-27T06:53:22Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- # RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
Proggleb/roberta-base-bne-finetuned-amazon_reviews_multi
Proggleb
2021-08-26T20:21:41Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3011 - Accuracy: 0.9185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2427 | 1.0 | 125 | 0.2109 | 0.919 | | 0.0986 | 2.0 | 250 | 0.3011 | 0.9185 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
hackertec/roberta-base-bne-finetuned-amazon_reviews_multi-taller
hackertec
2021-08-26T18:26:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi-taller results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.91125 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-taller This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2463 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2474 | 1.0 | 125 | 0.2463 | 0.9113 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/habiba_shoukry-yourfavhwhw
huggingtweets
2021-08-26T14:27:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/habiba_shoukry-yourfavhwhw/1629988046175/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423284698046865415/vfSSZ3t9_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419852056282681354/8GlUQCan_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🥴 & Habiba.</div> <div style="text-align: center; font-size: 14px;">@habiba_shoukry-yourfavhwhw</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🥴 & Habiba.. | Data | 🥴 | Habiba. | | --- | --- | --- | | Tweets downloaded | 3246 | 3239 | | Retweets | 57 | 188 | | Short tweets | 524 | 842 | | Tweets kept | 2665 | 2209 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9yp9ftet/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @habiba_shoukry-yourfavhwhw's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30vbu11w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/habiba_shoukry-yourfavhwhw') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/yourfavhwhw
huggingtweets
2021-08-26T13:26:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/yourfavhwhw/1629984367533/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423284698046865415/vfSSZ3t9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🥴</div> <div style="text-align: center; font-size: 14px;">@yourfavhwhw</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🥴. | Data | 🥴 | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 57 | | Short tweets | 525 | | Tweets kept | 2664 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18wxe7tu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yourfavhwhw's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/imwcf0iy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/imwcf0iy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yourfavhwhw') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)