modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-21 06:31:18
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
567 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-21 06:30:37
card
stringlengths
11
1.01M
koloni/blockassist-bc-deadly_graceful_stingray_1755963131
koloni
2025-08-23T15:59:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:59:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TamWaiban/gemma-3-270m-autoquant
TamWaiban
2025-08-23T15:59:19Z
0
0
transformers
[ "transformers", "pytorch", "gemma3_text", "feature-extraction", "torchao-my-repo", "gemma3", "gemma", "google", "text-generation", "arxiv:2503.19786", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:2311.07911", "arxiv:2311.12022", "arxiv:2411.04368", "arxiv:1904.09728", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2403.07974", "arxiv:2305.03111", "arxiv:2405.04520", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2310.02255", "arxiv:2312.11805", "base_model:google/gemma-3-270m", "base_model:quantized:google/gemma-3-270m", "license:gemma", "text-generation-inference", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-08-23T15:59:10Z
--- base_model: - google/gemma-3-270m license: gemma tags: - torchao-my-repo - gemma3 - gemma - google pipeline_tag: text-generation library_name: transformers extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # google/gemma-3-270m (Quantized) ## Description This model is a quantized version of the original model [`google/gemma-3-270m`](https://huggingface.co/google/gemma-3-270m). It's quantized using the TorchAO library using the [torchao-my-repo](https://huggingface.co/spaces/pytorch/torchao-my-repo) space. ## Quantization Details - **Quantization Type**: autoquant - **Group Size**: 128 # 📄 Original Model Information # Gemma 3 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core) **Resources and Technical Documentation**: * [Gemma 3 Technical Report][g3-tech-report] * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma3] **Terms of Use**: [Terms][terms] **Authors**: Google DeepMind ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Inputs and outputs - **Input:** - Text string, such as a question, a prompt, or a document to be summarized - Images, normalized to 896 x 896 resolution and encoded to 256 tokens each, for the 4B, 12B, and 27B sizes. - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B and 270M sizes. - **Output:** - Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document - Total output context up to 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B and 270M sizes per request, subtracting the request input tokens ### Citation ```none @article{gemma_2025, title={Gemma 3}, url={https://arxiv.org/abs/2503.19786}, publisher={Google DeepMind}, author={Gemma Team}, year={2025} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 14 trillion tokens, the 12B model was trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens, the 1B with 2 trillion tokens, and the 270M with 6 trillion tokens. The knowledge cutoff date for the training data was August 2024. Here are the key components: - Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. The training dataset includes content in over 140 languages. - Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code and understand code-related questions. - Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. - Images: A wide range of images enables the model to perform image analysis and visual data extraction tasks. The combination of these diverse data sources is crucial for training a powerful multimodal model that can handle a wide variety of different tasks and data formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. - Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. - Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p, TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: - Performance: TPUs are specifically designed to handle the massive computations involved in training VLMs. They can speed up training considerably compared to CPUs. - Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. - Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. - Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. - These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for foundation models, including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; *"the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow."* ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation. Evaluation results marked with **IT** are for instruction-tuned models. Evaluation results marked with **PT** are for pre-trained models. #### Gemma 3 270M | **Benchmark** | **n-shot** | **Gemma 3 PT 270M** | | :------------------------ | :-----------: | ------------------: | | [HellaSwag][hellaswag] | 10-shot | 40.9 | | [BoolQ][boolq] | 0-shot | 61.4 | | [PIQA][piqa] | 0-shot | 67.7 | | [TriviaQA][triviaqa] | 5-shot | 15.4 | | [ARC-c][arc] | 25-shot | 29.0 | | [ARC-e][arc] | 0-shot | 57.7 | | [WinoGrande][winogrande] | 5-shot | 52.0 | [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [triviaqa]: https://arxiv.org/abs/1705.03551 [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 | **Benchmark** | **n-shot** | **Gemma 3 IT 270m** | | :------------------------ | :-----------: | ------------------: | | [HellaSwag][hellaswag] | 0-shot | 37.7 | | [PIQA][piqa] | 0-shot | 66.2 | | [ARC-c][arc] | 0-shot | 28.2 | | [WinoGrande][winogrande] | 0-shot | 52.3 | | [BIG-Bench Hard][bbh] | few-shot | 26.7 | | [IF Eval][ifeval] | 0-shot | 51.2 | [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [bbh]: https://paperswithcode.com/dataset/bbh [ifeval]: https://arxiv.org/abs/2311.07911 #### Gemma 3 1B, 4B, 12B & 27B ##### Reasoning and factuality | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |--------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [GPQA][gpqa] Diamond | 0-shot | 19.2 | 30.8 | 40.9 | 42.4 | | [SimpleQA][simpleqa] | 0-shot | 2.2 | 4.0 | 6.3 | 10.0 | | [FACTS Grounding][facts-grdg] | - | 36.4 | 70.1 | 75.8 | 74.9 | | [BIG-Bench Hard][bbh] | 0-shot | 39.1 | 72.2 | 85.7 | 87.6 | | [BIG-Bench Extra Hard][bbeh] | 0-shot | 7.2 | 11.0 | 16.3 | 19.3 | | [IFEval][ifeval] | 0-shot | 80.2 | 90.2 | 88.9 | 90.4 | | Benchmark | n-shot | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------|:--------------:|:-------------:|:--------------:|:--------------:| | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 | | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 | | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 | | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 | | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 | | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 | | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 | | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 | | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 | | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 | | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 | [gpqa]: https://arxiv.org/abs/2311.12022 [simpleqa]: https://arxiv.org/abs/2411.04368 [facts-grdg]: https://goo.gle/FACTS_paper [bbeh]: https://github.com/google-deepmind/bbeh [ifeval]: https://arxiv.org/abs/2311.07911 [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [drop]: https://arxiv.org/abs/1903.00161 ##### STEM and code | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |----------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] (Pro) | 0-shot | 14.7 | 43.6 | 60.6 | 67.5 | | [LiveCodeBench][lcb] | 0-shot | 1.9 | 12.6 | 24.6 | 29.7 | | [Bird-SQL][bird-sql] (dev) | - | 6.4 | 36.3 | 47.9 | 54.4 | | [Math][math] | 0-shot | 48.0 | 75.6 | 83.8 | 89.0 | | HiddenMath | 0-shot | 15.8 | 43.0 | 54.5 | 60.3 | | [MBPP][mbpp] | 3-shot | 35.2 | 63.2 | 73.0 | 74.4 | | [HumanEval][humaneval] | 0-shot | 41.5 | 71.3 | 85.4 | 87.8 | | [Natural2Code][nat2code] | 0-shot | 56.0 | 70.3 | 80.7 | 84.5 | | [GSM8K][gsm8k] | 0-shot | 62.8 | 89.2 | 94.4 | 95.9 | | Benchmark | n-shot | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 | | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 | | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 | | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 | | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 | | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 | | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 | | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 | [mmlu]: https://arxiv.org/abs/2009.03300 [agieval]: https://arxiv.org/abs/2304.06364 [math]: https://arxiv.org/abs/2103.03874 [gsm8k]: https://arxiv.org/abs/2110.14168 [gpqa]: https://arxiv.org/abs/2311.12022 [mbpp]: https://arxiv.org/abs/2108.07732 [humaneval]: https://arxiv.org/abs/2107.03374 [lcb]: https://arxiv.org/abs/2403.07974 [bird-sql]: https://arxiv.org/abs/2305.03111 [nat2code]: https://arxiv.org/abs/2405.04520 #### Multilingual | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |--------------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [Global-MMLU-Lite][global-mmlu-lite] | 0-shot | 34.2 | 54.5 | 69.5 | 75.1 | | [ECLeKTic][eclektic] | 0-shot | 1.4 | 4.6 | 10.3 | 16.7 | | [WMT24++][wmt24pp] | 0-shot | 35.9 | 46.8 | 51.6 | 53.4 | | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:| | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 | | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 | | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 | | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 | | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 | | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 | | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 | [mgsm]: https://arxiv.org/abs/2210.03057 [flores]: https://arxiv.org/abs/2106.03193 [xquad]: https://arxiv.org/abs/1910.11856v3 [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite [wmt24pp]: https://arxiv.org/abs/2502.12404v1 [eclektic]: https://arxiv.org/abs/2502.21228 [indicgenbench]: https://arxiv.org/abs/2404.16816 ##### Multimodal | Benchmark | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |-----------------------------------|:-------------:|:--------------:|:--------------:| | [MMMU][mmmu] (val) | 48.8 | 59.6 | 64.9 | | [DocVQA][docvqa] | 75.8 | 87.1 | 86.6 | | [InfoVQA][info-vqa] | 50.0 | 64.9 | 70.6 | | [TextVQA][textvqa] | 57.8 | 67.7 | 65.1 | | [AI2D][ai2d] | 74.8 | 84.2 | 84.5 | | [ChartQA][chartqa] | 68.8 | 75.7 | 78.0 | | [VQAv2][vqav2] (val) | 62.4 | 71.6 | 71.0 | | [MathVista][mathvista] (testmini) | 50.0 | 62.9 | 67.6 | | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |:-------------:|:--------------:|:--------------:| | [COCOcap][coco-cap] | 102 | 111 | 116 | | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 | | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 | | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 | | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 | | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 | | [ReMI][remi] | 27.3 | 38.5 | 44.8 | | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 | | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 | | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 | | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 | | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 | | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 | | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 | | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 | [coco-cap]: https://cocodataset.org/#home [docvqa]: https://www.docvqa.org/ [info-vqa]: https://arxiv.org/abs/2104.12756 [mmmu]: https://arxiv.org/abs/2311.16502 [textvqa]: https://textvqa.org/ [realworldqa]: https://paperswithcode.com/dataset/realworldqa [remi]: https://arxiv.org/html/2406.09175v1 [ai2d]: https://allenai.org/data/diagrams [chartqa]: https://arxiv.org/abs/2203.10244 [vqav2]: https://visualqa.org/index.html [blinkvqa]: https://arxiv.org/abs/2404.12390 [okvqa]: https://okvqa.allenai.org/ [tallyqa]: https://arxiv.org/abs/1810.12440 [ss-vqa]: https://arxiv.org/abs/1908.02660 [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/ [mathvista]: https://arxiv.org/abs/2310.02255 ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: - **Child Safety**: Evaluation of text-to-text and image to text prompts covering child safety policies, including child sexual abuse and exploitation. - **Content Safety:** Evaluation of text-to-text and image to text prompts covering safety policies including, harassment, violence and gore, and hate speech. - **Representational Harms**: Evaluation of text-to-text and image to text prompts covering safety policies including bias, stereotyping, and harmful associations or inaccuracies. In addition to development level evaluations, we conduct "assurance evaluations" which are our 'arms-length' internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High level findings are fed back to the model team, but prompt sets are held-out to prevent overfitting and preserve the results' ability to inform decision making. Assurance evaluation results are reported to our Responsibility & Safety Council as part of release review. ### Evaluation Results For all areas of safety testing, we saw major improvements in the categories of child safety, content safety, and representational harms relative to previous Gemma models. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For both text-to-text and image-to-text, and across all model sizes, the model produced minimal policy violations, and showed significant improvements over previous Gemma models' performance with respect to ungrounded inferences. A limitation of our evaluations was they included only English language prompts. ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open vision-language models (VLMs) models have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. - Content Creation and Communication - Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. - Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. - Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. - Image Data Extraction: These models can be used to extract, interpret, and summarize visual data for text communications. - Research and Education - Natural Language Processing (NLP) and VLM Research: These models can serve as a foundation for researchers to experiment with VLM and NLP techniques, develop algorithms, and contribute to the advancement of the field. - Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. - Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations - Training Data - The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. - The scope of the training dataset determines the subject areas the model can handle effectively. - Context and Task Complexity - Models are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. - A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). - Language Ambiguity and Nuance - Natural language is inherently complex. Models might struggle to grasp subtle nuances, sarcasm, or figurative language. - Factual Accuracy - Models generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. - Common Sense - Models rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: - Bias and Fairness - VLMs trained on large-scale, real-world text and image data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. - Misinformation and Misuse - VLMs can be misused to generate text that is false, misleading, or harmful. - Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. - Transparency and Accountability: - This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. - A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: - **Perpetuation of biases**: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. - **Generation of harmful content**: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. - **Misuse for malicious purposes**: Technical limitations and developer and end-user education can help mitigate against malicious applications of VLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. - **Privacy violations**: Models were trained on data filtered for removal of certain personal information and other sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open vision-language model implementations designed from the ground up for responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [g3-tech-report]: https://arxiv.org/abs/2503.19786 [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3 [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3 [terms]: https://ai.google.dev/gemma/terms [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/jax-ml/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
FilanXTXT/blockassist-bc-sedate_whistling_robin_1755962911
FilanXTXT
2025-08-23T15:57:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate whistling robin", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:57:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate whistling robin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yarikdevcom/Seed-OSS-36B-Instruct-GGUF
yarikdevcom
2025-08-23T15:57:03Z
1,619
9
null
[ "gguf", "text-generation", "base_model:ByteDance-Seed/Seed-OSS-36B-Instruct", "base_model:quantized:ByteDance-Seed/Seed-OSS-36B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-22T19:46:34Z
--- license: apache-2.0 base_model: - ByteDance-Seed/Seed-OSS-36B-Instruct pipeline_tag: text-generation --- ## How to build: ```sudo apt-get update sudo apt-get install pciutils build-essential cmake curl libcurl4-openssl-dev -y git clone https://github.com/ggml-org/llama.cpp cmake llama.cpp -B llama.cpp/build -DBUILD_SHARED_LIBS=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON cmake --build llama.cpp/build --config Release -j --clean-first ``` ## How to run ``` ./llama.cpp/build/bin/llama-server -hf yarikdevcom/Seed-OSS-36B-Instruct-GGUF:Q3_K_M --ctx-size 4096 --n-gpu-layers 99 --temp 1.1 --top-p 0.95 --port 8999 --host 0.0.0.0 --flash-attn --cache-type-k q8_0 --cache-type-v q8_0 ``` All credits to this PR, I just applied changes from one of the comments. Based on this PR https://github.com/ggml-org/llama.cpp/pull/15490
nema122/blockassist-bc-robust_fluffy_ram_1755964490
nema122
2025-08-23T15:56:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:56:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755964444
lqpl
2025-08-23T15:55:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:54:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thomasavare/Qwen3-14B-4-bit-non-thinking-v5
thomasavare
2025-08-23T15:53:03Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "fr", "base_model:unsloth/Qwen3-14B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-14B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-23T00:45:07Z
--- base_model: unsloth/Qwen3-14B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en - fr --- # Uploaded model - **Developed by:** thomasavare - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-14B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ``` model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_id, max_seq_length = 8192, # Context length - can be longer, but uses more memory load_in_4bit = True, # 4bit uses much less memory load_in_8bit = False, # A bit more accurate, uses 2x memory full_finetuning = False, # We have full finetuning now! # token = "hf_...", # use one if using gated models gpu_memory_utilization = 0.9 ) ``` ``` model = FastLanguageModel.get_peft_model( model, r = 32, # Choose any number > 0! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 32, # Best to choose alpha = rank or rank*2 lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state = 42, use_rslora = True, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) ``` ``` trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = train_ds, eval_dataset = None, # Can set up evaluation! args = SFTConfig( dataset_text_field = "conversations", per_device_train_batch_size = 2, gradient_accumulation_steps = 8, # Use GA to mimic batch size! warmup_steps = 5, num_train_epochs = 3, # Set this for 1 full training run. # max_steps = 50, learning_rate = 5e-4, # Reduce to 2e-5 for long training runs logging_steps = 5, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 42, report_to = 'none' ), ) ``` **Data used :** ground truth + artificial data + external IE (100 lines each)
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755962404
rafsya427
2025-08-23T15:48:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:48:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xgr3y/blockassist-bc-nimble_agile_baboon_1755963923
0xgr3y
2025-08-23T15:47:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nimble agile baboon", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:47:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nimble agile baboon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vikky7864/blockassist-bc-mimic_sniffing_mole_1755963982
vikky7864
2025-08-23T15:47:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic sniffing mole", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:47:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic sniffing mole --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755962194
indoempatnol
2025-08-23T15:45:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:45:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
t2ance/Qwen2.5-Coder-0.5B-Instruct
t2ance
2025-08-23T15:45:19Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "unsloth", "endpoints_compatible", "region:us" ]
null
2025-08-20T09:18:02Z
--- base_model: unsloth/qwen2.5-coder-0.5b-instruct-bnb-4bit library_name: transformers model_name: Qwen2.5-Coder-0.5B-Instruct tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for Qwen2.5-Coder-0.5B-Instruct This model is a fine-tuned version of [unsloth/qwen2.5-coder-0.5b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-coder-0.5b-instruct-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="t2ance/Qwen2.5-Coder-0.5B-Instruct", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/pqin/huggingface/runs/6t2f6sp1) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chatpig/qwen2.5-vl-7b-it-gguf
chatpig
2025-08-23T15:45:10Z
19,093
2
null
[ "gguf", "image-text-to-text", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-05T21:00:05Z
--- license: apache-2.0 base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: image-text-to-text --- ## qwen2.5-vl-7b-it-gguf - for text/image-text-to-text generation - work as text encoder - compatible with both [comfyui-gguf](https://github.com/city96/ComfyUI-GGUF) and [gguf-node](https://github.com/calcuis/gguf) - example model supported: [qwen-image](https://huggingface.co/calcuis/qwen-image-gguf)
kapalbalap/blockassist-bc-peaceful_wary_owl_1755963816
kapalbalap
2025-08-23T15:44:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:44:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800-st
RikiyaT
2025-08-23T15:44:17Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "dense", "base_model:RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800", "base_model:finetune:RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-23T15:44:10Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense base_model: RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800](https://huggingface.co/RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800](https://huggingface.co/RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800) <!-- at revision aaecac91b4aee7cb9a6ad52cef3eaa4280982bca --> - **Maximum Sequence Length:** 7999 tokens - **Output Dimensionality:** 512 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 7999, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("RikiyaT/mxbai-ettin-68m-reddit-phaseB_1800-st") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 512] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.3389, 0.1994], # [0.3389, 1.0000, 0.1365], # [0.1994, 0.1365, 1.0000]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
cn0303/ppo-LunarLander-v2
cn0303
2025-08-23T15:43:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T15:43:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.21 +/- 45.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fetlock12/blockassist-bc-unseen_hulking_cat_1755963705
fetlock12
2025-08-23T15:42:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen hulking cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:42:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen hulking cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Nooshika/distilbert-base-uncased-finetuned-imdb
Nooshika
2025-08-23T15:40:01Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-23T08:07:41Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 79 | 2.5146 | | 2.6655 | 2.0 | 158 | 2.4938 | | 2.6655 | 3.0 | 237 | 2.4649 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
roeker/blockassist-bc-quick_wiry_owl_1755963487
roeker
2025-08-23T15:38:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:38:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
patientxtr/wan22ti2v5bturbofp8e5m2
patientxtr
2025-08-23T15:38:37Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-23T15:08:05Z
--- license: apache-2.0 ---
GAUSS0817/SmolLM2-135M-Instruct-Gensyn-Swarm-gentle_lumbering_antelope
GAUSS0817
2025-08-23T15:38:22Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am gentle_lumbering_antelope", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T15:38:16Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am gentle_lumbering_antelope --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ver-full-videos-Abigail-Landrum-Clip/Ver.Viral.video.Abigail-Landrum.polemica.viral.en.twitter.y.telegram
Ver-full-videos-Abigail-Landrum-Clip
2025-08-23T15:35:09Z
0
0
null
[ "region:us" ]
null
2025-08-23T15:34:54Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
roeker/blockassist-bc-quick_wiry_owl_1755963243
roeker
2025-08-23T15:34:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:34:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755961627
quantumxnode
2025-08-23T15:32:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:32:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755961353
coelacanthxyz
2025-08-23T15:32:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:32:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
janhq/Jan-v1-4B
janhq
2025-08-23T15:31:00Z
8,533
310
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "en", "base_model:Qwen/Qwen3-4B-Thinking-2507", "base_model:finetune:Qwen/Qwen3-4B-Thinking-2507", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-08T05:07:41Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-4B-Thinking-2507 pipeline_tag: text-generation library_name: transformers --- # Jan-v1: Advanced Agentic Language Model [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://opensource.org/licenses/Apache-2.0) [![Jan App](https://img.shields.io/badge/Powered%20by-Jan%20App-purple?style=flat&logo=android)](https://jan.ai/) <!-- Optional: If you have a GIF for Jan-v1, include it here like Lucy's. --> <!-- ![image/gif](jan_v1_demo.gif) --> ## Overview **Jan-v1** is the first release in the **Jan Family**, designed for agentic reasoning and problem-solving within the [Jan App](https://jan.ai/). Based on our [**Lucy**](https://huggingface.co/Menlo/Lucy) model, Jan-v1 achieves improved performance through model scaling. Jan-v1 uses the [Qwen3-4B-thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) model to provide enhanced reasoning capabilities and tool utilization. This architecture delivers better performance on complex agentic tasks. ## Performance ### Question Answering (SimpleQA) For question-answering, Jan-v1 shows a significant performance gain from model scaling, achieving 91.1% accuracy. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/6CaETynCW18MXgDrbp_N9.png) *The 91.1% SimpleQA accuracy represents a significant milestone in factual question answering for models of this scale, demonstrating the effectiveness of our scaling and fine-tuning approach.* ### Chat Benchmarks These benchmarks evaluate the model's conversational and instructional capabilities. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/f3bzNYRuA_iTFQIcvu6Rr.png) ## Quick Start ### Integration with Jan App Jan-v1 is optimized for direct integration with the [Jan App](https://jan.ai/). Simply select the model from the Jan App interface for immediate access to its full capabilities. ![image/gif](demo.gif) ### Local Deployment **Using vLLM:** ```bash vllm serve janhq/Jan-v1-4B \ --host 0.0.0.0 \ --port 1234 \ --enable-auto-tool-choice \ --tool-call-parser hermes ``` **Using llama.cpp:** ```bash llama-server --model Jan-v1-4B-Q4_K_M.gguf \ --host 0.0.0.0 \ --port 1234 \ --jinja \ --no-context-shift ``` ### Recommended Parameters ```yaml temperature: 0.6 top_p: 0.95 top_k: 20 min_p: 0.0 max_tokens: 2048 ``` ## 🤝 Community & Support - **Discussions**: [HuggingFace Community](https://huggingface.co/janhq/Jan-v1-4B/discussions) - **Jan App**: Learn more about the Jan App at [jan.ai](https://jan.ai/) ## (*) Note By default we have system prompt in chat template, this is to make sure the model having the same performance with the benchmark result. You can also use the vanilla chat template without system prompt in the file [chat_template_raw.jinja](https://huggingface.co/janhq/Jan-v1-4B/blob/main/chat_template_raw.jinja). ## 📄 Citation ```bibtex Updated Soon ``` ---
Tamaokame/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-soaring_roaring_butterfly
Tamaokame
2025-08-23T15:30:34Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am soaring_roaring_butterfly", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T07:46:24Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am soaring_roaring_butterfly --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mostefa-Terbeche/diabetic-retinopathy-paraguay-efficientnet_b3-advanced-20250723-151512
Mostefa-Terbeche
2025-08-23T15:29:56Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:paraguay", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-23T15:06:44Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - paraguay metrics: - accuracy - quadratic-kappa - auc model-index: - name: paraguay_efficientnet_b3_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: paraguay name: PARAGUAY metrics: - type: accuracy value: 0.02631578947368421 - type: quadratic-kappa value: 0.12963314959133243 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the paraguay dataset with advanced preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: paraguay - **Preprocessing**: advanced - **Training Date**: 20250723-151512 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: paraguay_efficientnet_b3_20250723-151512_new ## Performance - **Test Accuracy**: 0.02631578947368421 - **Test Quadratic Kappa**: 0.12963314959133243 - **Validation Kappa**: 0.12963314959133243 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-paraguay-efficientnet_b3-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
nema122/blockassist-bc-robust_fluffy_ram_1755962808
nema122
2025-08-23T15:28:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:28:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755961346
pempekmangedd
2025-08-23T15:27:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:27:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/GUI-Owl-32B-i1-GGUF
mradermacher
2025-08-23T15:27:38Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:mPLUG/GUI-Owl-32B", "base_model:quantized:mPLUG/GUI-Owl-32B", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-23T13:22:55Z
--- base_model: mPLUG/GUI-Owl-32B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/mPLUG/GUI-Owl-32B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GUI-Owl-32B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/GUI-Owl-32B-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/GUI-Owl-32B-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/GUI-Owl-32B-i1-GGUF/resolve/main/GUI-Owl-32B.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kapalbalap/blockassist-bc-peaceful_wary_owl_1755962701
kapalbalap
2025-08-23T15:25:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:25:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vladim1212/blockassist-bc-whistling_soft_crane_1755962688
Vladim1212
2025-08-23T15:25:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling soft crane", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:25:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling soft crane --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CharsiMunda99/EmmaMackey2
CharsiMunda99
2025-08-23T15:24:42Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-23T15:22:20Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: Emma Mackey license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Emma Mackey A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `Emma Mackey` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755961034
ihsanridzi
2025-08-23T15:24:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:24:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755962505
lqpl
2025-08-23T15:24:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:22:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Narunat/Reinforce-CartPole
Narunat
2025-08-23T15:24:01Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T15:23:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
thanobidex/blockassist-bc-colorful_shiny_hare_1755961011
thanobidex
2025-08-23T15:23:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:23:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kayacrypto/blockassist-bc-thriving_barky_wolf_1755962470
kayacrypto
2025-08-23T15:23:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:22:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
SvalTek/Llama3-12B-UltraMix-test0
SvalTek
2025-08-23T15:22:03Z
0
0
null
[ "safetensors", "llama", "merge", "lazymergekit", "region:us" ]
null
2025-08-23T15:19:45Z
--- tags: - merge - lazymergekit --- # Llama3-12B-UltraMix-test0 ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "SvalTek/Llama3-12B-UltraMix-test0" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
EmilRyd/gpt-oss-20b-aquarat-ground-truth-on-policy-1e5-2
EmilRyd
2025-08-23T15:21:37Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T15:16:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roeker/blockassist-bc-quick_wiry_owl_1755962269
roeker
2025-08-23T15:19:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:18:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
moscowx21/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-giant_pale_ferret
moscowx21
2025-08-23T15:17:24Z
34
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am giant pale ferret", "unsloth", "trl", "genrl-swarm", "I am giant_pale_ferret", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-01T14:01:16Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-giant_pale_ferret tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am giant pale ferret - unsloth - trl - genrl-swarm - I am giant_pale_ferret licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-giant_pale_ferret This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aaaaaswwe/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-giant_pale_ferret", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
GoldenBee007/blockassist-bc-camouflaged_prowling_chicken_1755962131
GoldenBee007
2025-08-23T15:16:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged prowling chicken", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:15:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged prowling chicken --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-noisy_elusive_grouse_1755962159
AnerYubo
2025-08-23T15:16:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "noisy elusive grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:15:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - noisy elusive grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fetlock12/blockassist-bc-unseen_hulking_cat_1755962101
fetlock12
2025-08-23T15:15:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen hulking cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:15:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen hulking cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755960426
chainway9
2025-08-23T15:15:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:15:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ibrainf/first_tts_try
ibrainf
2025-08-23T15:10:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T15:09:42Z
--- base_model: unsloth/llama-outetts-1.0-1b tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** ibrainf - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-outetts-1.0-1b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755961526
lqpl
2025-08-23T15:08:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:06:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1755961641
kapalbalap
2025-08-23T15:07:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:07:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fetlock12/blockassist-bc-unseen_hulking_cat_1755961409
fetlock12
2025-08-23T15:04:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen hulking cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:03:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen hulking cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yadav908ankit/blockassist-bc-deft_wily_armadillo_1755961304
yadav908ankit
2025-08-23T15:03:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft wily armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:02:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft wily armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755961302
roeker
2025-08-23T15:03:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:02:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kayacrypto/blockassist-bc-thriving_barky_wolf_1755961247
kayacrypto
2025-08-23T15:02:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:02:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755959661
quantumxnode
2025-08-23T15:00:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T15:00:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
memo0668/ss
memo0668
2025-08-23T14:59:13Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-08-23T14:59:13Z
--- license: cc-by-nc-sa-4.0 ---
kapalbalap/blockassist-bc-peaceful_wary_owl_1755961094
kapalbalap
2025-08-23T14:59:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:59:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ericjedha/resnet50
ericjedha
2025-08-23T14:56:39Z
0
0
keras
[ "keras", "license:apache-2.0", "region:us" ]
null
2025-08-23T14:56:10Z
--- license: apache-2.0 ---
unitova/blockassist-bc-zealous_sneaky_raven_1755959279
unitova
2025-08-23T14:55:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:55:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755959081
koloni
2025-08-23T14:51:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:51:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tranvatu1984/blockassist-bc-armored_sharp_bison_1755959600
tranvatu1984
2025-08-23T14:48:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored sharp bison", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:48:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored sharp bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755958916
ihsanridzi
2025-08-23T14:48:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:48:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tranvthao1984/blockassist-bc-monstrous_sniffing_cougar_1755959598
tranvthao1984
2025-08-23T14:48:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous sniffing cougar", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:48:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous sniffing cougar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oguzm/instamodel1
oguzm
2025-08-23T14:47:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-23T14:45:39Z
--- license: apache-2.0 ---
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755958707
calegpedia
2025-08-23T14:46:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:46:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-v2_6955
luckeciano
2025-08-23T14:44:07Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T10:41:27Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-v2_6955 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-v2_6955 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1-v2_6955", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/6izhym8v) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kapalbalap/blockassist-bc-peaceful_wary_owl_1755960146
kapalbalap
2025-08-23T14:43:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:43:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sivakrishna123/lora_model
sivakrishna123
2025-08-23T14:43:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-23T14:42:53Z
--- base_model: unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sivakrishna123 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rishabhsetiya/FineTunedBITS
rishabhsetiya
2025-08-23T14:41:54Z
0
0
peft
[ "peft", "safetensors", "llama", "text-generation", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "lora", "transformers", "conversational", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T05:01:39Z
--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0 - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
Narunat/SpaceInvader
Narunat
2025-08-23T14:41:13Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T14:40:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 631.50 +/- 180.43 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Narunat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Narunat -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Narunat ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Sahilmajhua/Qwen3-0.6B-Gensyn-Swarm-lithe_dense_albatross
Sahilmajhua
2025-08-23T14:38:30Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am lithe_dense_albatross", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T14:38:14Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am lithe_dense_albatross --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VIDEOS-18-hawk-tuah-girl-Viral-Video-Clip/New.full.videos.hawk.tuah.girl.Viral.Video.Official.Tutorial
VIDEOS-18-hawk-tuah-girl-Viral-Video-Clip
2025-08-23T14:38:26Z
0
0
null
[ "region:us" ]
null
2025-08-23T14:38:05Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
kapalbalap/blockassist-bc-peaceful_wary_owl_1755959815
kapalbalap
2025-08-23T14:37:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:37:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fetlock12/blockassist-bc-unseen_hulking_cat_1755959754
fetlock12
2025-08-23T14:36:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen hulking cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:36:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen hulking cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nguyenhungtuan1087/blockassist-bc-winged_bold_butterfly_1755958857
nguyenhungtuan1087
2025-08-23T14:36:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "winged bold butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:36:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - winged bold butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ale902/a2c-PandaReachDense-v3
Ale902
2025-08-23T14:34:39Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T14:29:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.16 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ggmancer/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-silent_dormant_peacock
ggmancer
2025-08-23T14:34:23Z
12
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am silent_dormant_peacock", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-02T18:44:07Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am silent_dormant_peacock --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gunahkarcasper/Qwen3-0.6B-Gensyn-Swarm-tricky_powerful_bobcat
gunahkarcasper
2025-08-23T14:33:40Z
15
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tricky_powerful_bobcat", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-16T10:24:23Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tricky_powerful_bobcat --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1755959197
eshanroy5678
2025-08-23T14:33:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:30:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
igzi/q-Taxi-v3
igzi
2025-08-23T14:33:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-23T14:33:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="igzi/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Nkaiyyy/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-diving_sniffing_woodpecker
Nkaiyyy
2025-08-23T14:32:59Z
3
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am diving_sniffing_woodpecker", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T03:17:58Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am diving_sniffing_woodpecker --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kapalbalap/blockassist-bc-peaceful_wary_owl_1755959389
kapalbalap
2025-08-23T14:30:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:30:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755957814
mang3dd
2025-08-23T14:30:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:30:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755957682
rvipitkirubbe
2025-08-23T14:28:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:28:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Abhiram1009/Qwen3-14B-ft-4bit
Abhiram1009
2025-08-23T14:28:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-22T09:11:24Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
A21Cmam/blockassist-bc-bellowing_fishy_grasshopper_1755957417
A21Cmam
2025-08-23T14:27:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing fishy grasshopper", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:27:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing fishy grasshopper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nhatle308/blockassist-bc-lively_snorting_bee_1755957809
nhatle308
2025-08-23T14:24:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lively snorting bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:24:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lively snorting bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eshanroy5678/blockassist-bc-untamed_dextrous_dingo_1755958546
eshanroy5678
2025-08-23T14:23:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed dextrous dingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:20:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed dextrous dingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pavan01729/art-web-agent-qwen-v1
pavan01729
2025-08-23T14:23:53Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-23T14:23:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AXERA-TECH/Qwen2.5-VL-7B-Instruct
AXERA-TECH
2025-08-23T14:23:31Z
11
0
transformers
[ "transformers", "safetensors", "Qwen2.5-VL", "Qwen2.5-VL-7B-Instruct", "Int8", "VLM", "image-text-to-text", "en", "zh", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-07-31T11:46:02Z
--- license: mit language: - en - zh base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: image-text-to-text library_name: transformers tags: - Qwen2.5-VL - Qwen2.5-VL-7B-Instruct - Int8 - VLM --- # Qwen2.5-VL-7B-Instruct This version of Qwen2.5-VL-7B-Instruct has been converted to run on the Axera NPU using **w8a16** quantization. This model has been optimized with the following LoRA: Compatible with Pulsar2 version: 3.4 ## Convert tools links: For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct [Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html) [AXera NPU HOST LLM Runtime](https://github.com/AXERA-TECH/Qwen2.5-VL-3B-Instruct.axera/tree/main) [AXera NPU AXCL LLM Runtime](https://github.com/AXERA-TECH/Qwen2.5-VL-3B-Instruct.axera/tree/axcl) ## Support Platform - AX650 - AX650N DEMO Board - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) **Image Process** |Chips| input size | image num | image encoder | ttft(320 tokens) | w8a16 | DDR | Flash | |--|--|--|--|--|--|--|--| |AX650| 448*448 | 1 | 760 ms | 3500 ms | 2.0 tokens/sec| 10.0 GiB | 9.8 GiB | **Video Process** |Chips| input size | image num | image encoder |ttft(512 tokens) | w8a16 | DDR | Flash | |--|--|--|--|--|--|--|--| |AX650| 308*308 | 8 | 1500 ms | 5080 ms | 2.0 tokens/sec| 10.0 GiB | 9.8 GiB | The DDR capacity refers to the CMM memory that needs to be consumed. Ensure that the CMM memory allocation on the development board is greater than this value. ## How to use Download all files from this repository to the device **If you using AX650 Board** ``` (base) axera@dell:~/lhj/Qwen2.5-VL-7B-Instruct$ tree -L 2 . ├── images ├── main_axcl_x86 ├── post_config.json ├── Qwen2.5-VL-7B-Instruct-AX650-chunk_prefill_1280 │ ├── model.embed_tokens.weight.bfloat16.bin │ ├── Qwen2.5-VL-7B-Instruct_vision.axmodel │ ├── qwen2_5_vl_p128_l0_together.axmodel ...... │ └── qwen2_5_vl_post.axmodel ├── qwen2_5_vl_7b_tokenizer ├── qwen2_tokenizer_images.py ├── qwen2_tokenizer_video_308.py ├── README.md ├── run_qwen2_5vl_image.sh ├── run_qwen2_5vl_video.sh └── video ``` ### Prepare tokenizer server #### Install transformer ``` pip install transformers==4.55.2 jinja2 ``` ### Demo Run #### Image understand demo ##### start tokenizer server for image understand demo ``` python3 qwen2_tokenizer_images.py --port 12345 ``` ##### run image understand demo - input text ``` What are these attractions? Please give their names in Chinese and English ``` - input image ![](./images/attractions) ``` (base) axera@dell:~/lhj/Qwen2.5-VL-7B-Instruct$ bash run_qwen2_5vl_image.sh [I][ Init][ 162]: LLM init start [I][ Init][ 267]: IMAGE_CONTEXT_TOKEN: 151655, IMAGE_START_TOKEN: 151652 [I][ Init][ 328]: image encoder output float32 [I][ Init][ 456]: LLM init ok Type "q" to exit, Ctrl+c to stop current running prompt >> What are these attractions? Please give their names in Chinese and English image >> images/attractions images/attractions/recoAll_attractions_1.jpg images/attractions/recoAll_attractions_2.jpg images/attractions/recoAll_attractions_3.jpg images/attractions/recoAll_attractions_4.jpg [I][ Encode][ 552]: image encode time : 3014.224121 ms, size : 4 [I][ Encode][ 594]: input_ids size:1064 [I][ Encode][ 602]: offset 15 [I][ Encode][ 602]: offset 273 [I][ Encode][ 602]: offset 531 [I][ Encode][ 602]: offset 789 [I][ Encode][ 624]: out_embed size:3813376 [I][ Encode][ 626]: position_ids size:7982 [I][ Run][ 645]: input token num : 1064, prefill_split_num : 9 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:128 [I][ Run][ 679]: input_num_token:40 [I][ Run][ 816]: ttft: 15817.47 ms 1. **金字塔 (Pyramids)** - **英文**: Pyramids - **位置**: ��及 (Egypt) 2. **长城 (Great Wall of China)** - **英文**: Great Wall of China - **位置**: 中国 (China) 3. **自由女神像 (Statute of Liberty)** - **英文**: Statue of Liberty - **位置**: 美国 (United States) 4. **兵马俑 (Terracotta Army)** - **英文**: Terracotta Army - **位置**: 中国 (China) [N][ Run][ 969]: hit eos,avg 2.05 token/s ``` #### Video understand demo Please pre-process the image of the video file into a 308x308 size picture ##### start tokenizer server for image understand demo ``` python qwen2_tokenizer_video_308.py --port 12345 ``` ##### run video understand demo ``` (base) axera@dell:~/lhj/Qwen2.5-VL-7B-Instruct$ bash run_qwen2_5vl_video.sh [I][ Init][ 162]: LLM init start [I][ Init][ 267]: IMAGE_CONTEXT_TOKEN: 151656, IMAGE_START_TOKEN: 151652 [I][ Init][ 328]: image encoder output float32 [I][ Init][ 340]: max_token_len : 2047 [I][ Init][ 343]: kv_cache_size : 512, kv_cache_num: 2047 [I][ Init][ 351]: prefill_token_num : 128 [I][ Init][ 355]: grp: 1, prefill_max_token_num : 1 [I][ Init][ 355]: grp: 2, prefill_max_token_num : 128 [I][ Init][ 355]: grp: 3, prefill_max_token_num : 256 [I][ Init][ 355]: grp: 4, prefill_max_token_num : 384 [I][ Init][ 355]: grp: 5, prefill_max_token_num : 512 [I][ Init][ 355]: grp: 6, prefill_max_token_num : 640 [I][ Init][ 355]: grp: 7, prefill_max_token_num : 768 [I][ Init][ 355]: grp: 8, prefill_max_token_num : 896 [I][ Init][ 355]: grp: 9, prefill_max_token_num : 1024 [I][ Init][ 355]: grp: 10, prefill_max_token_num : 1152 [I][ Init][ 355]: grp: 11, prefill_max_token_num : 1280 [I][ Init][ 359]: prefill_max_token_num : 1280 [I][ load_config][ 282]: load config: { "enable_repetition_penalty": false, "enable_temperature": true, "enable_top_k_sampling": true, "enable_top_p_sampling": false, "penalty_window": 30, "repetition_penalty": 2, "temperature": 0.1, "top_k": 10, "top_p": 0.8 } [I][ Init][ 456]: LLM init ok Type "q" to exit, Ctrl+c to stop current running prompt >> 描述这个视频的内容 image >> video video/frame_0000.jpg video/frame_0008.jpg video/frame_0016.jpg video/frame_0024.jpg video/frame_0032.jpg video/frame_0040.jpg video/frame_0048.jpg video/frame_0056.jpg [I][ Encode][ 528]: pixel_values,size:4 [I][ Encode][ 554]: image encode time : 1546.058960 ms, size : 4 [I][ Encode][ 596]: input_ids size:509 [I][ Encode][ 604]: offset 15 [I][ Encode][ 620]: img_embed.size:4, 433664 [I][ Encode][ 625]: offset:136 [I][ Encode][ 625]: offset:257 [I][ Encode][ 625]: offset:378 [I][ Encode][ 634]: out_embed size:1824256 [I][ Encode][ 636]: position_ids size:509 [I][ Run][ 655]: input token num : 509, prefill_split_num : 4 [I][ Run][ 689]: input_num_token:128 [I][ Run][ 689]: input_num_token:128 [I][ Run][ 689]: input_num_token:128 [I][ Run][ 689]: input_num_token:125 [I][ Run][ 826]: ttft: 5081.97 ms 这张图片展示了两只土拨鼠在户外的山地环境中进行互动。它们似乎在进行一种类似打斗的行为,可能是在争夺领地或展示攻击性。背景是蓝天和山脉,环境看起来非常自然和开阔。土拨鼠的毛色主要是棕色和灰色,带有白色的斑纹。它们的姿势和动作显示出它们正在积极地互动。 [N][ Run][ 979]: hit eos,avg 2.08 token/s ```
VIDEOS-18-Zeenat-Viral-Video-Clip-XX/New.full.videos.zeenat.Viral.Video.Official.Tutorial
VIDEOS-18-Zeenat-Viral-Video-Clip-XX
2025-08-23T14:21:58Z
0
0
null
[ "region:us" ]
null
2025-08-23T14:21:46Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?Viral-Video-Original-Link" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
brknnode1/blockassist-bc-lethal_feathered_worm_1755958774
brknnode1
2025-08-23T14:21:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lethal feathered worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:20:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lethal feathered worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Bolton12/blockassist-bc-rangy_yawning_impala_1755956965
Bolton12
2025-08-23T14:21:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rangy yawning impala", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:21:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rangy yawning impala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
je-suis-tm/marisa_abela_lora_flux_nf4
je-suis-tm
2025-08-23T14:19:02Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "qlora", "flux", "nf4", "template:diffusion-lora", "dataset:je-suis-tm/marisa_abela_lora_flux_nf4", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:mit", "region:us" ]
text-to-image
2025-08-23T14:00:34Z
--- tags: - text-to-image - lora - qlora - flux - nf4 - diffusers - template:diffusion-lora widget: - output: url: images/c1000.png text: >- Training With QLoRA: Marisa Abela with dark hair pulled back in a low ponytail meets the viewer's gaze directly. She exudes a sophisticated edge in a black leather jacket detailed with gold stitching. The image employs a minimalist aesthetic, placing the focus entirely on the subject. A clean, white background provides a neutral canvas, eliminating distractions. Soft, even lighting creates a calm and serene atmosphere. The overall style is elegant and understated, highlighting the woman's features and the jacket's details with a simple, yet impactful presentation. The composition prioritizes clarity and a sense of quiet confidence. - output: url: images/2025-08-17_22-14-15.png text: >- Training Without QLoRA: Marisa Abela with dark hair pulled back in a low ponytail meets the viewer's gaze directly. She exudes a sophisticated edge in a black leather jacket detailed with gold stitching. The image employs a minimalist aesthetic, placing the focus entirely on the subject. A clean, white background provides a neutral canvas, eliminating distractions. Soft, even lighting creates a calm and serene atmosphere. The overall style is elegant and understated, highlighting the woman's features and the jacket's details with a simple, yet impactful presentation. The composition prioritizes clarity and a sense of quiet confidence. - output: url: images/2025-08-23_23-19-36.png text: >- Testing With QLoRA: Marisa Abela wears low cut spaghetti strap summer dress and smiles at camera - output: url: images/2025-08-23_23-24-28.png text: >- Testing Without QLoRA: Marisa Abela wears low cut spaghetti strap summer dress and smiles at camera - output: url: images/2025-08-23_23-46-24.png text: >- Testing With QLoRA: Marisa Abela, cyberpunk, night city, black hole, singularity, apocalypse, nihilism, cthuru, Krysten Ritter goth black bangs dark makeup, soft lights, depth of field, full length shot, photorealistic, cinematic, octane render, unreal engine, hyper detailed, volumetric lighting, hdr - output: url: images/2025-08-23_23-48-17.png text: >- Testing Without QLoRA: Marisa Abela, cyberpunk, night city, black hole, singularity, apocalypse, nihilism, cthuru, Krysten Ritter goth black bangs dark makeup, soft lights, depth of field, full length shot, photorealistic, cinematic, octane render, unreal engine, hyper detailed, volumetric lighting, hdr base_model: black-forest-labs/FLUX.1-dev instance_prompt: marisa abela, lora, qlora, flux, nf4 license: mit datasets: - je-suis-tm/marisa_abela_lora_flux_nf4 --- # Marisa Abela Lora Flux NF4 <Gallery /> The QLoRA fine-tuning process of `marisa_abela_lora_flux_nf4` takes inspiration from [this post (https://huggingface.co/blog/diffusers-quantization)](https://huggingface.co/blog/diffusers-quantization). The training was executed on a local computer with 1000 steps and the same parameters as the link mentioned above, which took around 6 hours on 8GB VRAM 4060. The peak VRAM usage was around 7.7GB. To avoid running low on VRAM, **both transformers and text_encoder were quantized.** All the images generated here are using the below parameters * Height: 512 * Width: 512 * Guidance scale: 5 * Num inference steps: 20 * Max sequence length: 512 * Seed: 0 ## Usage ```python import torch from diffusers import FluxPipeline, FluxTransformer2DModel from transformers import T5EncoderModel text_encoder_4bit = T5EncoderModel.from_pretrained( "hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="text_encoder_2",torch_dtype=torch.float16,) transformer_4bit = FluxTransformer2DModel.from_pretrained( "hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer",torch_dtype=torch.float16,) pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, transformer=transformer_4bit,text_encoder_2=text_encoder_4bit) pipe.load_lora_weights("je-suis-tm/marisa_abela_lora_flux_nf4", weight_name='pytorch_lora_weights.safetensors') prompt="Marisa Abela wears low cut spaghetti strap summer dress and smiles at camera" image = pipe( prompt, height=512, width=512, guidance_scale=5, num_inference_steps=20, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(0), ).images[0] image.save("marisa_abela_lora_flux_nf4.png") ``` ## Trigger words You should use `Marisa Abela` to trigger the image generation. ## Download model [Download](/je-suis-tm/marisa_abela_lora_flux_nf4/tree/main) them in the Files & versions tab.
thanobidex/blockassist-bc-colorful_shiny_hare_1755957203
thanobidex
2025-08-23T14:18:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:18:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
whoishmk/texttoimage
whoishmk
2025-08-23T14:09:03Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-20T04:20:50Z
# 🎨 Text-to-Image Generation with LoRA Fine-tuning A production-ready project for generating high-quality images from text descriptions using Stable Diffusion XL with LoRA fine-tuning capabilities. ![Python](https://img.shields.io/badge/Python-3.8+-blue.svg) ![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-red.svg) ![License](https://img.shields.io/badge/License-MIT-green.svg) ## ✨ Key Features - **🚀 Stable Diffusion XL**: State-of-the-art image generation - **🎯 LoRA Fine-tuning**: Efficient parameter adaptation - **📊 Large Dataset Support**: Handles 40,000+ image-caption pairs - **☁️ Cloud Ready**: Deploy on AWS, GCP, Azure, or Hugging Face - **🌐 Multiple Interfaces**: Web UI, REST API, and Gradio app ## 🏗️ Project Structure ``` text-to-image-generation/ ├── 📁 models/ # Fine-tuned models ├── 📁 data/ # Training datasets ├── 📁 training/ # Fine-tuning scripts │ ├── train_lora_cpu.py # CPU training setup │ └── train_lora_full.py # Full GPU training ├── 📁 inference/ # Model serving │ └── inference_lora.py # LoRA inference ├── 📁 web_app/ # Streamlit interface ├── convert_dataset.py # Dataset conversion └── organize_data.py # Data organization ``` ## 🛠️ Technology Stack - **AI Models**: Stable Diffusion XL, PEFT - **Framework**: PyTorch, Diffusers, Transformers - **Web**: FastAPI, Streamlit, Gradio - **Cloud**: Docker, Kubernetes, Hugging Face Spaces ## 📋 Prerequisites - **Python**: 3.8+ - **Memory**: 16GB RAM minimum - **GPU**: CUDA-compatible GPU with 8GB+ VRAM (for training) ## 🚀 Quick Start ### 1. Setup ```bash git clone https://github.com/whoishmk/text-to-image-generation.git cd text-to-image-generation pip install -r requirements.txt ``` ### 2. Prepare Dataset ```bash # Convert CSV captions to JSONL python convert_dataset.py # Organize train/validation splits python organize_data.py ``` **Dataset Format**: CSV with `image,caption` columns: ```csv image1.jpg,a beautiful landscape with mountains and lake image2.png,a portrait of a woman with long hair ``` ### 3. Test Training (CPU) ```bash python training/train_lora_cpu.py --config configs/training_config.yaml ``` ### 4. Full Training (GPU) ```bash python training/train_lora_full.py --config configs/training_config.yaml ``` ### 5. Generate Images ```bash python inference/inference_lora.py \ --lora_path outputs/lora_weights_cpu \ --prompt "a beautiful landscape" \ --output_path generated_image.jpg ``` ### 6. Web Interface ```bash # Streamlit app streamlit run web_app/app.py # FastAPI server python inference/model_server.py ``` ## ⚙️ Configuration ```yaml # configs/training_config.yaml model: base_model: "stabilityai/stable-diffusion-xl-base-1.0" lora_rank: 16 lora_alpha: 32 target_modules: ["to_q", "to_k", "to_v", "to_out.0"] training: learning_rate: 1e-4 batch_size: 4 num_epochs: 100 data: resolution: 1024 max_length: 77 ``` ## 🎯 Current Status ✅ **LoRA Model**: 2.59 billion trainable parameters ✅ **Dataset**: 40,455 image-caption pairs ready ✅ **Training**: CPU and GPU pipelines working ✅ **Inference**: Image generation functional ✅ **Repository**: Complete with CI/CD ## ☁️ Deployment ### Hugging Face Spaces (Recommended) ```bash # Push to GitHub - automatic deployment git push origin main ``` ### AWS/GCP/Azure ```bash # Deploy with Docker docker build -t text-to-image . docker run -p 8000:8000 text-to-image ``` ## 📊 Dataset Requirements - **Size**: 100+ image-text pairs (you have 40,455 - excellent!) - **Resolution**: 512x512 minimum, 1024x1024 preferred - **Format**: JPG, PNG, WebP - **Quality**: Detailed, descriptive captions ## 🤝 Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Submit a pull request ## 📄 License MIT License - see [LICENSE](LICENSE) file. ## 📞 Support - **Issues**: [GitHub Issues](https://github.com/whoishmk/text-to-image-generation/issues) - **Discussions**: [GitHub Discussions](https://github.com/whoishmk/text-to-image-generation/discussions) --- ## 🎉 Ready to Start? Your project is production-ready with: - ✅ 40,455 image-caption pairs - ✅ 2.59B trainable parameters - ✅ Complete training pipeline - ✅ Cloud deployment ready **Next Steps:** 1. Test: `python training/train_lora_cpu.py` 2. Train: `python training/train_lora_full.py` 3. Generate: `python inference/inference_lora.py` 4. Deploy: Push to Hugging Face Spaces
RikiyaT/mxbai-ettin-32m-reddit-phaseB_788-st
RikiyaT
2025-08-23T14:08:16Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "dense", "base_model:RikiyaT/mxbai-ettin-32m-reddit-phaseB_788", "base_model:finetune:RikiyaT/mxbai-ettin-32m-reddit-phaseB_788", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-23T14:08:10Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense base_model: RikiyaT/mxbai-ettin-32m-reddit-phaseB_788 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on RikiyaT/mxbai-ettin-32m-reddit-phaseB_788 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RikiyaT/mxbai-ettin-32m-reddit-phaseB_788](https://huggingface.co/RikiyaT/mxbai-ettin-32m-reddit-phaseB_788). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [RikiyaT/mxbai-ettin-32m-reddit-phaseB_788](https://huggingface.co/RikiyaT/mxbai-ettin-32m-reddit-phaseB_788) <!-- at revision 5466f34bfe82ffaed598975429635f4e93f73a59 --> - **Maximum Sequence Length:** 7999 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 7999, 'do_lower_case': False, 'architecture': 'ModernBertModel'}) (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("RikiyaT/mxbai-ettin-32m-reddit-phaseB_788-st") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.4138, 0.1750], # [0.4138, 1.0000, 0.1266], # [0.1750, 0.1266, 1.0000]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.18 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
RikiyaT/mxbai-ettin-32m-reddit-phaseB_788
RikiyaT
2025-08-23T14:08:02Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-23T14:07:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LocaleNLP/eng_wolof
LocaleNLP
2025-08-23T14:05:25Z
45
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "machine-translation", "low-resource", "english", "wolof", "en", "wo", "dataset:custom", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
translation
2025-08-12T11:18:05Z
--- language: - en - wo license: mit tags: - translation - machine-translation - low-resource - english - wolof datasets: - custom metrics: - bleu library_name: transformers pipeline_tag: translation model-index: - name: localenlp-en-wol results: - task: name: Translation type: translation dataset: name: English-Wolof Custom Dataset type: custom size: 84k metrics: - name: BLEU type: bleu value: 76.12 --- # localenlp-en-wol Fine-tuned MarianMT model for English-to-Wolof translation. # Model Card for `LOCALENLP/english-wolof` This is a machine translation model for **English → Wolof**, developed by the **LOCALENLP** organization. It is based on the pretrained `Helsinki-NLP/opus-mt-en-mul` MarianMT model and fine-tuned on a custom parallel corpus of ~84k sentence pairs. --- ## Model Details ### Model Description - **Developed by:** LOCALENLP - **Funded by [optional]:** N/A - **Shared by:** LOCALENLP - **Model type:** Seq2Seq Transformer (MarianMT) - **Languages:** English → Wolof - **License:** MIT - **Finetuned from model:** [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) ### Model Sources - **Repository:** https://huggingface.co/LOCALENLP/english-wolof - **Demo [optional]:** [To be integrated in Gradio / Web app](https://huggingface.co/spaces/LocaleNLP/eng_wol) --- ## Uses ### Direct Use - Translate English text into Wolof for research, education, and communication. - Useful for low-resource NLP tasks, digital content creation, and cultural preservation. ### Downstream Use - Can be integrated into translation apps, chatbots, and education platforms. - Serves as a base for further fine-tuning on domain-specific Wolof corpora. ### Out-of-Scope Use - Suitable for legal and medical translations (e.g., contracts, prescriptions, medical records). - Mistranslations may occur, like any automated system. - Review recommended as the model can sometimes mistranslate. --- ## Bias, Risks, and Limitations - Training data is from a custom collection of parallel sentences (~84k pairs). - Some informal or culturally nuanced expressions may not be accurately translated. - Wolof spelling and grammar variation (Latin script) may lead to inconsistencies. - Model may underperform on domain-specific or long, complex texts. ### Recommendations - Use human post-editing for high-stakes use cases. - Evaluate performance on your target domain before deployment. --- ## How to Get Started with the Model ```python from transformers import MarianTokenizer, AutoModelForSeq2SeqLM model_name = "LOCALENLP/english-wolof" tokenizer = MarianTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Good evening, how was your day?" inputs = tokenizer(">>wol<< " + text, return_tensors="pt", padding=True, truncation=True) outputs = model.generate(**inputs, max_length=512, num_beams=4) translation = tokenizer.decode(outputs[0], skip_special_tokens=True) print("English:", text) print("Wolof:", translation)
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755955837
milliarderdol
2025-08-23T14:04:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-23T14:03:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).