modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-23 00:40:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
570 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-23 00:38:24
card
stringlengths
11
1.01M
squeezebert/squeezebert-mnli
squeezebert
2020-12-11T22:02:13Z
1,816
1
transformers
[ "transformers", "pytorch", "squeezebert", "arxiv:2006.11316", "arxiv:1904.00962", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-mnli`, has been pretrained for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective and finetuned on the [Multi-Genre Natural Language Inference (MNLI)](https://cims.nyu.edu/~sbowman/multinli/) dataset. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper presents 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-mnli`, is the "trained with bells and whistles" MNLI-finetuned SqueezeBERT model. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
squeezebert/squeezebert-mnli-headless
squeezebert
2020-12-11T22:02:10Z
80
0
transformers
[ "transformers", "pytorch", "squeezebert", "arxiv:2006.11316", "arxiv:1904.00962", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-mnli-headless`, has been pretrained for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective and finetuned on the [Multi-Genre Natural Language Inference (MNLI)](https://cims.nyu.edu/~sbowman/multinli/) dataset. This is a "headless" model with the final classification layer removed, and this will allow Transformers to automatically reinitialize the final classification layer before you begin finetuning on your data. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper presents 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-mnli-headless`, is the "finetuned with bells and whistles" MNLI-finetuned SqueezeBERT model. In this particular model, we have removed the final classification layer -- in other words, it is "headless." We recommend using this model if you intend to finetune the model on your own data. Using this model means that your final layer will automatically be reinitialized when you start finetuning on your data. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
shoarora/alectra-small-owt
shoarora
2020-12-11T22:01:54Z
4
0
transformers
[ "transformers", "pytorch", "albert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# ALECTRA-small-OWT This is an extension of [ELECTRA](https://openreview.net/forum?id=r1xMH1BtvB) small model, trained on the [OpenWebText corpus](https://skylion007.github.io/OpenWebTextCorpus/). The training task (discriminative LM / replaced-token-detection) can be generalized to any transformer type. Here, we train an ALBERT model under the same scheme. ## Pretraining task ![electra task diagram](https://github.com/shoarora/lmtuners/raw/master/assets/electra.png) (figure from [Clark et al. 2020](https://openreview.net/pdf?id=r1xMH1BtvB)) ELECTRA uses discriminative LM / replaced-token-detection for pretraining. This involves a generator (a Masked LM model) creating examples for a discriminator to classify as original or replaced for each token. The generator generalizes to any `*ForMaskedLM` model and the discriminator could be any `*ForTokenClassification` model. Therefore, we can extend the task to ALBERT models, not just BERT as in the original paper. ## Usage ```python from transformers import AlbertForSequenceClassification, BertTokenizer # Both models use the bert-base-uncased tokenizer and vocab. tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') alectra = AlbertForSequenceClassification.from_pretrained('shoarora/alectra-small-owt') ``` NOTE: this ALBERT model uses a BERT WordPiece tokenizer. ## Code The pytorch module that implements this task is available [here](https://github.com/shoarora/lmtuners/blob/master/lmtuners/lightning_modules/discriminative_lm.py). Further implementation information [here](https://github.com/shoarora/lmtuners/tree/master/experiments/disc_lm_small), and [here](https://github.com/shoarora/lmtuners/blob/master/experiments/disc_lm_small/train_alectra_small.py) is the script that created this model. This specific model was trained with the following params: - `batch_size: 512` - `training_steps: 5e5` - `warmup_steps: 4e4` - `learning_rate: 2e-3` ## Downstream tasks #### GLUE Dev results | Model | # Params | CoLA | SST | MRPC | STS | QQP | MNLI | QNLI | RTE | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | ELECTRA-Small++ | 14M | 57.0 | 91. | 88.0 | 87.5 | 89.0 | 81.3 | 88.4 | 66.7| | ELECTRA-Small-OWT | 14M | 56.8 | 88.3| 87.4 | 86.8 | 88.3 | 78.9 | 87.9 | 68.5| | ELECTRA-Small-OWT (ours) | 17M | 56.3 | 88.4| 75.0 | 86.1 | 89.1 | 77.9 | 83.0 | 67.1| | ALECTRA-Small-OWT (ours) | 4M | 50.6 | 89.1| 86.3 | 87.2 | 89.1 | 78.2 | 85.9 | 69.6| #### GLUE Test results | Model | # Params | CoLA | SST | MRPC | STS | QQP | MNLI | QNLI | RTE | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | BERT-Base | 110M | 52.1 | 93.5| 84.8 | 85.9 | 89.2 | 84.6 | 90.5 | 66.4| | GPT | 117M | 45.4 | 91.3| 75.7 | 80.0 | 88.5 | 82.1 | 88.1 | 56.0| | ELECTRA-Small++ | 14M | 57.0 | 91.2| 88.0 | 87.5 | 89.0 | 81.3 | 88.4 | 66.7| | ELECTRA-Small-OWT (ours) | 17M | 57.4 | 89.3| 76.2 | 81.9 | 87.5 | 78.1 | 82.4 | 68.1| | ALECTRA-Small-OWT (ours) | 4M | 43.9 | 87.9| 82.1 | 82.0 | 87.6 | 77.9 | 85.8 | 67.5|
ramsrigouthamg/t5_paraphraser
ramsrigouthamg
2020-12-11T22:00:04Z
24,441
13
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## Model in Action 🚀 ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) set_seed(42) model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser') tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_paraphraser') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print ("device ",device) model = model.to(device) sentence = "Which course should I take to get started in data science?" # sentence = "What are the ingredients required to bake a perfect cake?" # sentence = "What is the best possible approach to learn aeronautical engineering?" # sentence = "Do apples taste better than oranges in general?" text = "paraphrase: " + sentence + " </s>" max_len = 256 encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) # set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3 beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=256, top_k=120, top_p=0.98, early_stopping=True, num_return_sequences=10 ) print ("\nOriginal Question ::") print (sentence) print ("\n") print ("Paraphrased Questions :: ") final_outputs =[] for beam_output in beam_outputs: sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) if sent.lower() != sentence.lower() and sent not in final_outputs: final_outputs.append(sent) for i, final_output in enumerate(final_outputs): print("{}: {}".format(i, final_output)) ``` ## Output ``` Original Question :: Which course should I take to get started in data science? Paraphrased Questions :: 0: What should I learn to become a data scientist? 1: How do I get started with data science? 2: How would you start a data science career? 3: How can I start learning data science? 4: How do you get started in data science? 5: What's the best course for data science? 6: Which course should I start with for data science? 7: What courses should I follow to get started in data science? 8: What degree should be taken by a data scientist? 9: Which course should I follow to become a Data Scientist? ``` ## Detailed blog post available here : https://towardsdatascience.com/paraphrase-any-question-with-t5-text-to-text-transfer-transformer-pretrained-model-and-cbb9e35f1555
patrickvonplaten/roberta2roberta-cnn_dailymail-fp16
patrickvonplaten
2020-12-11T21:59:23Z
18
0
transformers
[ "transformers", "pytorch", "encoder_decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Roberta2Roberta Summarization with 🤗 EncoderDecoder Framework This model is a Roberta2Roberta model fine-tuned on summarization. Roberta2Roberta is a `EncoderDecoderModel`, meaning that both the encoder and the decoder are `roberta-base` RoBERTa models. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python roberta2roberta = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``roberta2roberta`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `roberta2roberta-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import BertTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16") tokenizer = RobertaTokenizer.from_pretrained("roberta-base") article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David B oren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 185 6, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confede rate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking fu ll membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on t he fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more invol ved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members al legedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a frat ernity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity, ' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloy d's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing in cidents.""" input_ids = tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing racist chants. The fraternity's national chapter has had to close 12 in 18 months over hazing. # Sigma has had more than 130 chapters in 18 states. University of Oklahoma president says fraternity has been "deteriorated". ``` ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `roberta2roberta-cnn_dailymail-fp16 ` for reproducability. The training last ~9h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import RobertaTokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base") tokenizer = RobertaTokenizer.from_pretrained("roberta-base") # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=0) # set decoding params model.config.decoder_start_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 encoder_length = 512 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at Longformer at 2048 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 256 outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() # mask loss for padding batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = tokenizer.eos_token_id label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_attention_mask", "decoder_input_ids", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "decoder_attention_mask", "attention_mask", "decoder_input_ids", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=3, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp from transformers import RobertaTokenizer, EncoderDecoderModel tokenizer = RobertaTokenizer.from_pretrained("roberta-base") model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16") model.to("cuda") test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 128 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = model.generate(input_ids, attention_mask=attention_mask) # all special tokens including will be removed output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 15.79 | 19.05 | **16.79** |
patrickvonplaten/longformer2roberta-cnn_dailymail-fp16
patrickvonplaten
2020-12-11T21:59:19Z
102
6
transformers
[ "transformers", "pytorch", "encoder_decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Longformer2Roberta Summarization with 🤗 EncoderDecoder Framework This model is a Longformer2Roberta model fine-tuned on summarization. Longformer2Roberta is a `EncoderDecoderModel`, meaning that both the encoder is a `allenai/longformer-base-4096` model and the decoder is a `roberta-base` model. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python roberta2roberta = EncoderDecoderModel.from_encoder_decoder_pretrained("allenai/longformer-base-4096", "roberta-base") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``longformer2roberta`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `longformer2roberta-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import LongformerTokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/longformer2roberta-cnn_dailymail-fp16") tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") article = """(CNN)James Holmes made his introduction to the world in a Colorado cinema filled with spectators watching a midnight showing of the new Batman movie, "The Dark Knight Rises," in June 2012. The moment became one of the deadliest shootings in U.S. history. Holmes is accused of opening fire on the crowd, killing 12 people and injuring or maiming 70 others in Aurora, a suburb of Denver. Holmes appeared like a comic book character: He resembled the Joker, with red-orange hair, similar to the late actor Heath Ledger\'s portrayal of the villain in an earlier Batman movie, authorities said. But Holmes was hardly a cartoon. Authorities said he wore body armor and carried several guns, including an AR-15 rifle, with lots of ammo. He also wore a gas mask. Holmes says he was insane at the time of the shootings, and that is his legal defense and court plea: not guilty by reason of insanity. Prosecutors aren\'t swayed and will seek the death penalty. Opening statements in his trial are scheduled to begin Monday. Holmes admits to the shootings but says he was suffering "a psychotic episode" at the time, according to court papers filed in July 2013 by the state public defenders, Daniel King and Tamara A. Brady. Evidence "revealed thus far in the case supports the defense\'s position that Mr. Holmes suffers from a severe mental illness and was in the throes of a psychotic episode when he committed the acts that resulted in the tragic loss of life and injuries sustained by moviegoers on July 20, 2012," the public defenders wrote. Holmes no longer looks like a dazed Joker, as he did in his first appearance before a judge in 2012. He appeared dramatically different in January when jury selection began for his trial: 9,000 potential jurors were summoned for duty, described as one of the nation\'s largest jury calls. Holmes now has a cleaner look, with a mustache, button-down shirt and khaki pants. In January, he had a beard and eyeglasses. If this new image sounds like one of an academician, it may be because Holmes, now 27, once was one. Just before the shooting, Holmes was a doctoral student in neuroscience, and he was studying how the brain works, with his schooling funded by a U.S. government grant. Yet for all his learning, Holmes apparently lacked the capacity to command his own mind, according to the case against him. A jury will ultimately decide Holmes\' fate. That panel is made up of 12 jurors and 12 alternates. They are 19 women and five men, and almost all are white and middle-aged. The trial could last until autumn. When jury summonses were issued in January, each potential juror stood a 0.2% chance of being selected, District Attorney George Brauchler told the final jury this month. He described the approaching trial as "four to five months of a horrible roller coaster through the worst haunted house you can imagine." The jury will have to render verdicts on each of the 165 counts against Holmes, including murder and attempted murder charges. Meanwhile, victims and their relatives are challenging all media outlets "to stop the gratuitous use of the name and likeness of mass killers, thereby depriving violent individuals the media celebrity and media spotlight they so crave," the No Notoriety group says. They are joined by victims from eight other mass shootings in recent U.S. history. Raised in central coastal California and in San Diego, James Eagan Holmes is the son of a mathematician father noted for his work at the FICO firm that provides credit scores and a registered nurse mother, according to the U-T San Diego newspaper. Holmes also has a sister, Chris, a musician, who\'s five years younger, the newspaper said. His childhood classmates remember him as a clean-cut, bespectacled boy with an "exemplary" character who "never gave any trouble, and never got in trouble himself," The Salinas Californian reported. His family then moved down the California coast, where Holmes grew up in the San Diego-area neighborhood of Rancho Peñasquitos, which a neighbor described as "kind of like Mayberry," the San Diego newspaper said. Holmes attended Westview High School, which says its school district sits in "a primarily middle- to upper-middle-income residential community." There, Holmes ran cross-country, played soccer and later worked at a biotechnology internship at the Salk Institute and Miramar College, which attracts academically talented students. By then, his peers described him as standoffish and a bit of a wiseacre, the San Diego newspaper said. Holmes attended college fairly close to home, in a neighboring area known as Southern California\'s "inland empire" because it\'s more than an hour\'s drive from the coast, in a warm, low-desert climate. He entered the University of California, Riverside, in 2006 as a scholarship student. In 2008 he was a summer camp counselor for disadvantaged children, age 7 to 14, at Camp Max Straus, run by Jewish Big Brothers Big Sisters of Los Angeles. He graduated from UC Riverside in 2010 with the highest honors and a bachelor\'s degree in neuroscience. "Academically, he was at the top of the top," Chancellor Timothy P. White said. He seemed destined for even higher achievement. By 2011, he had enrolled as a doctoral student in the neuroscience program at the University of Colorado Anschutz Medical Campus in Aurora, the largest academic health center in the Rocky Mountain region. The doctoral in neuroscience program attended by Holmes focuses on how the brain works, with an emphasis on processing of information, behavior, learning and memory. Holmes was one of six pre-thesis Ph.D. students in the program who were awarded a neuroscience training grant from the National Institutes of Health. The grant rewards outstanding neuroscientists who will make major contributions to neurobiology. A syllabus that listed Holmes as a student at the medical school shows he was to have delivered a presentation about microRNA biomarkers. But Holmes struggled, and his own mental health took an ominous turn. In March 2012, he told a classmate he wanted to kill people, and that he would do so "when his life was over," court documents said. Holmes was "denied access to the school after June 12, 2012, after he made threats to a professor," according to court documents. About that time, Holmes was a patient of University of Colorado psychiatrist Lynne Fenton. Fenton was so concerned about Holmes\' behavior that she mentioned it to her colleagues, saying he could be a danger to others, CNN affiliate KMGH-TV reported, citing sources with knowledge of the investigation. Fenton\'s concerns surfaced in early June, sources told the Denver station. Holmes began to fantasize about killing "a lot of people" in early June, nearly six weeks before the shootings, the station reported, citing unidentified sources familiar with the investigation. Holmes\' psychiatrist contacted several members of a "behavioral evaluation and threat assessment" team to say Holmes could be a danger to others, the station reported. At issue was whether to order Holmes held for 72 hours to be evaluated by mental health professionals, the station reported. "Fenton made initial phone calls about engaging the BETA team" in "the first 10 days" of June, but it "never came together" because in the period Fenton was having conversations with team members, Holmes began the process of dropping out of school, a source told KMGH. Defense attorneys have rejected the prosecution\'s assertions that Holmes was barred from campus. Citing statements from the university, Holmes\' attorneys have argued that his access was revoked because that\'s normal procedure when a student drops enrollment. What caused this turn for the worse for Holmes has yet to be clearly detailed. In the months before the shooting, he bought four weapons and more than 6,000 rounds of ammunition, authorities said. Police said he also booby-trapped his third-floor apartment with explosives, but police weren\'t fooled. After Holmes was caught in the cinema parking lot immediately after the shooting, bomb technicians went to the apartment and neutralized the explosives. No one was injured at the apartment building. Nine minutes before Holmes went into the movie theater, he called a University of Colorado switchboard, public defender Brady has said in court. The number he called can be used to get in contact with faculty members during off hours, Brady said. Court documents have also revealed that investigators have obtained text messages that Holmes exchanged with someone before the shooting. That person was not named, and the content of the texts has not been made public. According to The New York Times, Holmes sent a text message to a fellow graduate student, a woman, about two weeks before the shooting. She asked if he had left Aurora yet, reported the newspaper, which didn\'t identify her. No, he had two months left on his lease, Holmes wrote back, according to the Times. He asked if she had heard of "dysphoric mania," a form of bipolar disorder marked by the highs of mania and the dark and sometimes paranoid delusions of major depression. The woman asked if the disorder could be managed with treatment. "It was," Holmes wrote her, according to the Times. But he warned she should stay away from him "because I am bad news," the newspaper reported. It was her last contact with Holmes. After the shooting, Holmes\' family issued a brief statement: "Our hearts go out to those who were involved in this tragedy and to the families and friends of those involved," they said, without giving any information about their son. Since then, prosecutors have refused to offer a plea deal to Holmes. For Holmes, "justice is death," said Brauchler, the district attorney. In December, Holmes\' parents, who will be attending the trial, issued another statement: They asked that their son\'s life be spared and that he be sent to an institution for mentally ill people for the rest of his life, if he\'s found not guilty by reason of insanity. "He is not a monster," Robert and Arlene Holmes wrote, saying the death penalty is "morally wrong, especially when the condemned is mentally ill." "He is a human being gripped by a severe mental illness," the parents said. The matter will be settled by the jury. CNN\'s Ana Cabrera and Sara Weisfeldt contributed to this report from Denver.""" input_ids = tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # James Holmes, 27, is accused of opening fire on a Colorado theater. # He was a doctoral student at University of Colorado. # Holmes says he was suffering "a psychotic episode" at the time of the shooting. # Prosecutors won't say whether Holmes was barred from campus. ``` Such an article has a length of > 2000 tokens, which means that it cannot be handled correctly by Bert or Roberta encoders. ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `longformer2roberta-cnn_dailymail-fp16 ` for reproducability. The training last ~90h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import LongformerTokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("allenai/longformer-base-4096", "roberta-base") tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=0) # enable gradient checkpointing for longformer encoder model.encoder.config.gradient_checkpointing = True # set decoding params model.config.decoder_start_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 encoder_length = 2048 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at Longformer at 2048 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 128 outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask # set 128 tokens to global attention batch["global_attention_mask"] = [[1 if i < 128 else 0 for i in range(sequence_length)] for sequence_length in len(inputs.input_ids) * [encoder_length]] batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() # mask loss for padding batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = tokenizer.eos_token_id label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "global_attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "global_attention_mask", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=3, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp import torch from transformers import LongformerTokenizer, EncoderDecoderModel tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") model = EncoderDecoderModel.from_pretrained("patrickvonplaten/longformer2roberta-cnn_dailymail-fp16") model.to("cuda") test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 32 encoder_length = 2048 decoder_length = 128 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") global_attention_mask = torch.zeros_like(attention_mask) global_attention_mask[:, :decoder_length] = 1 outputs = model.generate(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) # all special tokens including will be removed output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 12.39 | 15.05 | **13.21** | **Note** This model was trained to show how Longformer can be used as an Encoder model in a EncoderDecoder setup. Better results are obtained for datasets of much longer inputs.
mys/electra-base-turkish-cased-ner
mys
2020-12-11T21:56:51Z
280
2
transformers
[ "transformers", "pytorch", "tf", "electra", "token-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: tr --- ## What is this A NER model for Turkish with 48 categories trained on the dataset [Shrinked TWNERTC Turkish NER Data](https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar) by Behçet Şentürk, which is itself a filtered and cleaned version of the following automatically labeled dataset: > Sahin, H. Bahadir; Eren, Mustafa Tolga; Tirkaz, Caglar; Sonmez, Ozan; Yildiz, Eray (2017), “English/Turkish Wikipedia Named-Entity Recognition and Text Categorization Dataset”, Mendeley Data, v1 http://dx.doi.org/10.17632/cdcztymf4k.1 ## Backbone model The backbone model is [electra-base-turkish-cased-discriminator](https://huggingface.co/dbmdz/electra-base-turkish-cased-discriminator), and I finetuned it for token classification. I'm continuing to figure out if it is possible to improve accuracy with this dataset, but it is already usable for non-critic applications. You can reach out to me on [Twitter](https://twitter.com/myusufsarigoz) for discussions and issues. I will also release a notebook to finetune NER models with Shrinked TWNERTC as well as sample inference code to demonstrate what's possible with this model.
mrm8488/t5-base-finetuned-qasc
mrm8488
2020-12-11T21:55:50Z
30
5
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:qasc", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - qasc --- # T5-base fine-tuned on QASC [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [QASC](https://allenai.org/data/qasc) for **QA** (via *sentence composition*) downstream task. ## Details of T5 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the dataset 📚 **Question Answering via Sentence Composition** (QASC) is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences. ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28). The **context** passed to the *encoder* is the combination of the 2 *facts* (`fact1` and `fact2`). The **question** is just the `formatted_question` field. The **answer** passed to the *decoder* is the`text` right answer instead of the `label` (A, B, C... See `choices` field). More details about the dataset format/fields [here](https://huggingface.co/nlp/viewer/?dataset=qasc) ## Metrics on validation set 📋 | Metric | Score | |--------|-------| |Accuracy (EM) | **97.73**| ## Model in Action 🚀 ```python from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-qasc") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-qasc") def get_response(question, context, max_length=64): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.decode(output[0]) fact_1 = 'a watch is used for measuring time' fact_2 = 'Times are measured in seconds.' context = fact_1 + ' ' + fact_2 question = 'What can be used to measure seconds? (A) Watch (B) seconds (C) fluid (D) Ruler (E) goggles (F) glasses (G) Drill (H) Scale' get_response(question, context) # output: 'Watch' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/electricidad-base-generator
mrm8488
2020-12-11T21:54:10Z
7
3
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "es", "arxiv:1406.2661", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: es thumbnail: https://i.imgur.com/uxAvBfh.png widget: - text: "Madrid es una ciudad muy [MASK] en España." --- ## ELECTRICIDAD: The Spanish Electra [Imgur](https://imgur.com/uxAvBfh) **Electricidad-base-generator** (uncased) is a ```base``` Electra like model (generator in this case) trained on a + 20 GB of the [OSCAR](https://oscar-corpus.com/) Spanish corpus. As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Fast example of usage 🚀 ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="mrm8488/electricidad-base-generator", tokenizer="mrm8488/electricidad-base-generator" ) print( fill_mask(f"HuggingFace está creando {fill_mask.tokenizer.mask_token} que la comunidad usa para resolver tareas de NLP.") ) # Output: [{'sequence': '[CLS] huggingface esta creando herramientas que la comunidad usa para resolver tareas de nlp. [SEP]', 'score': 0.0896105170249939, 'token': 8760, 'token_str': 'herramientas'}, ...] ``` ## Acknowledgments I thank [🤗/transformers team](https://github.com/huggingface/transformers) for allowing me to train the model (specially to [Julien Chaumond](https://twitter.com/julien_c)). > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/electra-small-finetuned-squadv1
mrm8488
2020-12-11T21:53:59Z
7
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "en", "arxiv:1406.2661", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en --- # Electra small ⚡ + SQuAD v1 ❓ [Electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) fine-tuned on [SQUAD v1.1 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type electra \ --model_name_or_path 'google/electra-small-discriminator' \ --do_eval \ --do_train \ --do_lower_case \ --train_file '/content/dataset/train-v1.1.json' \ --predict_file '/content/dataset/dev-v1.1.json' \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir '/content/output' \ --overwrite_output_dir \ --save_steps 1000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **77.70** | | **F1** | **85.74** | | **Size**| **50 MB** | Very good metrics for such a "small" model! ```json { 'exact': 77.70104068117313, 'f1': 85.73991234187997, 'total': 10570, 'HasAns_exact': 77.70104068117313, 'HasAns_f1': 85.73991234187997, 'HasAns_total': 10570, 'best_exact': 77.70104068117313, 'best_exact_thresh': 0.0, 'best_f1': 85.73991234187997, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/electra-small-finetuned-squadv1') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.7950334108113424, 'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/electra-base-finetuned-squadv1
mrm8488
2020-12-11T21:53:55Z
4
0
transformers
[ "transformers", "pytorch", "electra", "question-answering", "en", "arxiv:1406.2661", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en --- # Electra base ⚡ + SQuAD v1 ❓ [Electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) fine-tuned on [SQUAD v1.1 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type electra \ --model_name_or_path 'google/electra-base-discriminator' \ --do_eval \ --do_train \ --do_lower_case \ --train_file '/content/dataset/train-v1.1.json' \ --predict_file '/content/dataset/dev-v1.1.json' \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir '/content/output' \ --overwrite_output_dir \ --save_steps 1000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **83.03** | | **F1** | **90.77** | | **Size**| **+ 400 MB** | Very good metrics for such a "small" model! ```json { 'exact': 83.03689687795648, 'f1': 90.77486052446231, 'total': 10570, 'HasAns_exact': 83.03689687795648, 'HasAns_f1': 90.77486052446231, 'HasAns_total': 10570, 'best_exact': 83.03689687795648, 'best_exact_thresh': 0.0, 'best_f1': 90.77486052446231, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/electra-base-finetuned-squadv1') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.9995211430099182, 'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization
mrm8488
2020-12-11T21:53:12Z
311
10
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "en", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - cnn_dailymail tags: - summarization --- # Bert-small2Bert-small Summarization with 🤗EncoderDecoder Framework This model is a warm-started *BERT2BERT* ([small](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8)) model fine-tuned on the *CNN/Dailymail* summarization dataset. The model achieves a **17.37** ROUGE-2 score on *CNN/Dailymail*'s test dataset. For more details on how the model was fine-tuned, please refer to [this](https://colab.research.google.com/drive/1Ekd5pUeCX7VOrMx94_czTkwNtLN32Uyu?usp=sharing) notebook. ## Results on test set 📝 | Metric | # Value | | ------ | --------- | | **ROUGE-2** | **17.37** | ## Model in Action 🚀 ```python from transformers import BertTokenizerFast, EncoderDecoderModel import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = BertTokenizerFast.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization') model = EncoderDecoderModel.from_pretrained('mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization').to(device) def generate_summary(text): # cut off at BERT max length 512 inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) text = "your text to be summarized here..." generate_summary(text) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
moumeneb1/flaubert-base-cased-ecology_crisis
moumeneb1
2020-12-11T21:51:41Z
5
0
transformers
[ "transformers", "flaubert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# Flaubert-base-cased-ecology_crisis An adapted [__Flaubert/Flaubert_base-cased model__](https://github.com/getalp/Flaubert) Trained further on a Language modeling Task of unlabeled French tweets used to create the [CrisisDataset](https://github.com/DiegoKoz/french_ecological_crisis), The intermediate task of masqued language modeling helped us improve the results on our [paper](http://www.sciencedirect.com/science/article/pii/S0306457320300650) compared to the standard flaubert-base-cased model. If you use this pretrained model on your work, please cite us as follows 🤗 ``` @article{Kozlowski-et-al2020, title = "A three-level classification of French tweets in ecological crises", journal = "Information Processing & Management", volume = "57", number = "5", pages = "102284", year = "2020", issn = "0306-4573", doi = "https://doi.org/10.1016/j.ipm.2020.102284", url = "http://www.sciencedirect.com/science/article/pii/S0306457320300650", author = "Diego Kozlowski and Elisa Lannelongue and Frédéric Saudemont and Farah Benamara and Alda Mari and Véronique Moriceau and Abdelmoumene Boumadane", keywords = "Crisis response from social media, Machine learning, Natural language processing, Transfer learning", } ```
m3hrdadfi/bert2bert-fa-wiki-summary
m3hrdadfi
2020-12-11T21:50:20Z
37
2
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: fa license: apache-2.0 tags: - summarization --- A Bert2Bert model on the Wiki Summary dataset to summarize articles. The model achieved an 8.47 ROUGE-2 score. For more detail, please follow the [Wiki Summary](https://github.com/m3hrdadfi/wiki-summary) repo. ## Eval results The following table summarizes the ROUGE scores obtained by the Bert2Bert model. | % | Precision | Recall | FMeasure | |:-------:|:---------:|:------:|:--------:| | ROUGE-1 | 28.14 | 30.86 | 27.34 | | ROUGE-2 | 07.12 | 08.47* | 07.10 | | ROUGE-L | 28.49 | 25.87 | 25.50 | ## Questions? Post a Github issue on the [Wiki Summary](https://github.com/m3hrdadfi/wiki-summary/issues) repo.
m3hrdadfi/bert2bert-fa-news-headline
m3hrdadfi
2020-12-11T21:50:16Z
43
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: fa license: apache-2.0 tags: - summarization --- A Bert2Bert model on VoA Persian Corpus (a medium-sized corpus of 7.9 million words, 2003-2008) generates headlines. The model achieved a 25.30 ROUGE-2 score. For more detail, please follow the [News Headline Generation](https://github.com/m3hrdadfi/news-headline-generation) repo. ## Eval results The following table summarizes the ROUGE scores obtained by the Bert2Bert model. | % | Precision | Recall | FMeasure | |:-------:|:---------:|:------:|:--------:| | ROUGE-1 | 43.78 | 45.52 | 43.54 | | ROUGE-2 | 24.50 | 25.30* | 24.24 | | ROUGE-L | 41.20 | 42.22 | 40.76 | ## Questions? Post a Github issue on the [News Headline Generation](https://github.com/hooshvare/news-headline-generation/issues) repo.
loodos/electra-small-turkish-uncased-discriminator
loodos
2020-12-11T21:49:36Z
4
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish ELECTRA-Small-discriminator (uncased) This is ELECTRA-Small model's discriminator which has 12 encoder layers with 256 hidden layer size trained on uncased Turkish dataset. ## Usage Using AutoModelWithLMHead and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("loodos/electra-small-turkish-uncased-discriminator", do_lower_case=False) model = AutoModelWithLMHead.from_pretrained("loodos/electra-small-turkish-uncased-discriminator") normalizer = TextNormalization() normalized_text = normalizer.normalize(text, do_lower_case=True, is_turkish=True) tokenizer.tokenize(normalized_text) ``` ### Notes on Tokenizers Currently, Huggingface's tokenizers (which were written in Python) have a bug concerning letters "ı, i, I, İ" and non-ASCII Turkish specific letters. There are two reasons. 1- Vocabulary and sentence piece model is created with NFC/NFKC normalization but tokenizer uses NFD/NFKD. NFD/NFKD normalization changes text that contains Turkish characters I-ı, İ-i, Ç-ç, Ö-ö, Ş-ş, Ğ-ğ, Ü-ü. This causes wrong tokenization, wrong training and loss of information. Some tokens are never trained.(like "şanlıurfa", "öğün", "çocuk" etc.) NFD/NFKD normalization is not proper for Turkish. 2- Python's default ```string.lower()``` and ```string.upper()``` make the conversions - "I" and "İ" to 'i' - 'i' and 'ı' to 'I' respectively. However, in Turkish, 'I' and 'İ' are two different letters. We opened an [issue](https://github.com/huggingface/transformers/issues/6680) in Huggingface's github repo about this bug. Until it is fixed, in case you want to train your model with uncased data, we provide a simple text normalization module (`TextNormalization()` in the code snippet above) in our [repo](https://github.com/Loodos/turkish-language-models). ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
loodos/electra-base-turkish-uncased-discriminator
loodos
2020-12-11T21:49:30Z
58
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish ELECTRA-Base-discriminator (uncased) This is ELECTRA-Base model's discriminator which has the same structure with BERT-Base trained on uncased Turkish dataset. ## Usage Using AutoModelWithLMHead and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("loodos/electra-base-turkish-uncased-discriminator", do_lower_case=False) model = AutoModelWithLMHead.from_pretrained("loodos/electra-base-turkish-uncased-discriminator") normalizer = TextNormalization() normalized_text = normalizer.normalize(text, do_lower_case=True, is_turkish=True) tokenizer.tokenize(normalized_text) ``` ### Notes on Tokenizers Currently, Huggingface's tokenizers (which were written in Python) have a bug concerning letters "ı, i, I, İ" and non-ASCII Turkish specific letters. There are two reasons. 1- Vocabulary and sentence piece model is created with NFC/NFKC normalization but tokenizer uses NFD/NFKD. NFD/NFKD normalization changes text that contains Turkish characters I-ı, İ-i, Ç-ç, Ö-ö, Ş-ş, Ğ-ğ, Ü-ü. This causes wrong tokenization, wrong training and loss of information. Some tokens are never trained.(like "şanlıurfa", "öğün", "çocuk" etc.) NFD/NFKD normalization is not proper for Turkish. 2- Python's default ```string.lower()``` and ```string.upper()``` make the conversions - "I" and "İ" to 'i' - 'i' and 'ı' to 'I' respectively. However, in Turkish, 'I' and 'İ' are two different letters. We opened an [issue](https://github.com/huggingface/transformers/issues/6680) in Huggingface's github repo about this bug. Until it is fixed, in case you want to train your model with uncased data, we provide a simple text normalization module (`TextNormalization()` in the code snippet above) in our [repo](https://github.com/Loodos/turkish-language-models). ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
loodos/albert-base-turkish-uncased
loodos
2020-12-11T21:49:21Z
50
1
transformers
[ "transformers", "pytorch", "tf", "albert", "tr", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: tr --- # Turkish Language Models with Huggingface's Transformers As R&D Team at Loodos, we release cased and uncased versions of most recent language models for Turkish. More details about pretrained models and evaluations on downstream tasks can be found [here (our repo)](https://github.com/Loodos/turkish-language-models). # Turkish ALBERT-Base (uncased) This is ALBERT-Base model which has 12 repeated encoder layers with 768 hidden layer size trained on uncased Turkish dataset. ## Usage Using AutoModel and AutoTokenizer from Transformers, you can import the model as described below. ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("loodos/albert-base-turkish-uncased", do_lower_case=False, keep_accents=True) model = AutoModel.from_pretrained("loodos/albert-base-turkish-uncased") normalizer = TextNormalization() normalized_text = normalizer.normalize(text, do_lower_case=True, is_turkish=True) tokenizer.tokenize(normalized_text) ``` ### Notes on Tokenizers Currently, Huggingface's tokenizers (which were written in Python) have a bug concerning letters "ı, i, I, İ" and non-ASCII Turkish specific letters. There are two reasons. 1- Vocabulary and sentence piece model is created with NFC/NFKC normalization but tokenizer uses NFD/NFKD. NFD/NFKD normalization changes text that contains Turkish characters I-ı, İ-i, Ç-ç, Ö-ö, Ş-ş, Ğ-ğ, Ü-ü. This causes wrong tokenization, wrong training and loss of information. Some tokens are never trained.(like "şanlıurfa", "öğün", "çocuk" etc.) NFD/NFKD normalization is not proper for Turkish. 2- Python's default ```string.lower()``` and ```string.upper()``` make the conversions - "I" and "İ" to 'i' - 'i' and 'ı' to 'I' respectively. However, in Turkish, 'I' and 'İ' are two different letters. We opened an [issue](https://github.com/huggingface/transformers/issues/6680) in Huggingface's github repo about this bug. Until it is fixed, in case you want to train your model with uncased data, we provide a simple text normalization module (`TextNormalization()` in the code snippet above) in our [repo](https://github.com/Loodos/turkish-language-models). ## Details and Contact You contact us to ask a question, open an issue or give feedback via our github [repo](https://github.com/Loodos/turkish-language-models). ## Acknowledgments Many thanks to TFRC Team for providing us cloud TPUs on Tensorflow Research Cloud to train our models.
kiri-ai/distiluse-base-multilingual-cased-et
kiri-ai
2020-12-11T21:48:24Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "feature-extraction", "et", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: et --- ## Model Description This model is based off **Sentence-Transformer's** `distiluse-base-multilingual-cased` multilingual model that has been extended to understand sentence embeddings in Estonian. ## Sentence-Transformers This model can be imported directly via the SentenceTransformers package as shown below: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('kiri-ai/distiluse-base-multilingual-cased-et') sentences = ['Here is a sample sentence','Another sample sentence'] embeddings = model.encode(sentences) print("Sentence embeddings:") print(embeddings) ``` ## Fine-tuning The fine-tuning and training processes were inspired by [sbert's](https://www.sbert.net/) multilingual training techniques which are available [here](https://www.sbert.net/examples/training/multilingual/README.html). The documentation shows and explains the step-by-step process of using parallel sentences to train models in a different language. ### Resources The model was fine-tuned on English-Estonian parallel sentences taken from [OPUS](http://opus.nlpl.eu/) and [ParaCrawl](https://paracrawl.eu/).
jplu/tf-xlm-roberta-base
jplu
2020-12-11T21:48:00Z
4,839
1
transformers
[ "transformers", "tf", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# Tensorflow XLM-RoBERTa In this repository you will find different versions of the XLM-RoBERTa model for Tensorflow. ## XLM-RoBERTa [XLM-RoBERTa](https://ai.facebook.com/blog/-xlm-r-state-of-the-art-cross-lingual-understanding-through-self-supervision/) is a scaled cross lingual sentence encoder. It is trained on 2.5T of data across 100 languages data filtered from Common Crawl. XLM-R achieves state-of-the-arts results on multiple cross lingual benchmarks. ## Model Weights | Model | Downloads | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | `jplu/tf-xlm-roberta-base` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-base/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-base/tf_model.h5) | `jplu/tf-xlm-roberta-large` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-large/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-xlm-roberta-large/tf_model.h5) ## Usage With Transformers >= 2.4 the Tensorflow models of XLM-RoBERTa can be loaded like: ```python from transformers import TFXLMRobertaModel model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base") ``` Or ``` model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-large") ``` ## Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/jplu). ## Acknowledgments Thanks to all the Huggingface team for the support and their amazing library!
jplu/tf-camembert-base
jplu
2020-12-11T21:47:52Z
1,589
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# Tensorflow CamemBERT In this repository you will find different versions of the CamemBERT model for Tensorflow. ## CamemBERT [CamemBERT](https://camembert-model.fr/) is a state-of-the-art language model for French based on the RoBERTa architecture pretrained on the French subcorpus of the newly available multilingual corpus OSCAR. ## Model Weights | Model | Downloads | -------------------------------- | --------------------------------------------------------------------------------------------------------------- | `jplu/tf-camembert-base` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-camembert-base/config.json) • [`tf_model.h5`](https://s3.amazonaws.com/models.huggingface.co/bert/jplu/tf-camembert-base/tf_model.h5) ## Usage With Transformers >= 2.4 the Tensorflow models of CamemBERT can be loaded like: ```python from transformers import TFCamembertModel model = TFCamembertModel.from_pretrained("jplu/tf-camembert-base") ``` ## Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/jplu). ## Acknowledgments Thanks to all the Huggingface team for the support and their amazing library!
indobenchmark/indobert-lite-large-p2
indobenchmark
2020-12-11T21:45:59Z
186
1
transformers
[ "transformers", "pytorch", "tf", "albert", "feature-extraction", "indobert", "indobenchmark", "indonlu", "id", "dataset:Indo4B", "arxiv:2009.05387", "license:mit", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase2 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-large-p2") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-large-p2") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
indobenchmark/indobert-lite-large-p1
indobenchmark
2020-12-11T21:45:56Z
40
0
transformers
[ "transformers", "pytorch", "tf", "albert", "feature-extraction", "indobert", "indobenchmark", "indonlu", "id", "dataset:Indo4B", "arxiv:2009.05387", "license:mit", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase1 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-large-p1") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-large-p1") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
indobenchmark/indobert-lite-base-p1
indobenchmark
2020-12-11T21:45:50Z
261
0
transformers
[ "transformers", "pytorch", "tf", "albert", "feature-extraction", "indobert", "indobenchmark", "indonlu", "id", "dataset:Indo4B", "arxiv:2009.05387", "license:mit", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Base Model (phase1 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-base-p1") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-base-p1") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
illuin/camembert-base-fquad
illuin
2020-12-11T21:45:27Z
506
7
transformers
[ "transformers", "pytorch", "camembert", "question-answering", "fr", "dataset:fquad", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: fr tags: - question-answering - camembert license: gpl-3.0 datasets: - fquad --- # camembert-base-fquad ## Description A native French Question Answering model [CamemBERT-base](https://camembert-model.fr/) fine-tuned on [FQuAD](https://fquad.illuin.tech/). ## Evaluation results On the development set. ```shell {"f1": 88.1, "exact_match": 78.1} ``` On the test set. ```shell {"f1": 88.3, "exact_match": 78.0} ``` ## Usage ```python from transformers import pipeline nlp = pipeline('question-answering', model='illuin/camembert-base-fquad', tokenizer='illuin/camembert-base-fquad') nlp({ 'question': "Qui est Claude Monet?", 'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme." }) ``` ## Citation If you use our work, please cite: ```bibtex @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ```
healx/gpt-2-pubmed-medium
healx
2020-12-11T21:43:41Z
3,105
2
transformers
[ "transformers", "pytorch", "arxiv:2004.13845", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
GPT-2 (355M model) finetuned on 0.5m PubMed abstracts. Used in the [writemeanabstract.com](writemeanabstract.com) and the following preprint: [Papanikolaou, Yannis, and Andrea Pierleoni. "DARE: Data Augmented Relation Extraction with GPT-2." arXiv preprint arXiv:2004.13845 (2020).](https://arxiv.org/abs/2004.13845)
healx/gpt-2-pubmed-large
healx
2020-12-11T21:43:38Z
3
0
transformers
[ "transformers", "pytorch", "arxiv:2004.13845", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
GPT-2 (774M model) finetuned on 0.5m PubMed abstracts. Used in the [writemeanabstract.com](writemeanabstract.com) and the following preprint: [Papanikolaou, Yannis, and Andrea Pierleoni. "DARE: Data Augmented Relation Extraction with GPT-2." arXiv preprint arXiv:2004.13845 (2020).](https://arxiv.org/abs/2004.13845)
facebook/rag-token-base
facebook
2020-12-11T21:39:44Z
7,396
17
transformers
[ "transformers", "pytorch", "rag", "en", "dataset:wiki_dpr", "arxiv:2005.11401", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - wiki_dpr thumbnail: https://huggingface.co/front/thumbnails/facebook.png --- ## RAG This is a non-finetuned version of the RAG-Token model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al. Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`. This model is a non-finetuned RAG-Token model and was created as follows: ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration, AutoTokenizer model = RagTokenForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large") question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer) model.config.use_dummy_dataset = True model.config.index_name = "exact" retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer) model.save_pretrained("./") tokenizer.save_pretrained("./") retriever.save_pretrained("./") ``` Note that the model is *uncased* so that all capital input letters are converted to lower-case. ## Usage: *Note*: the model uses the *dummy* retriever as a default. Better results are obtained by using the full retriever, by setting `config.index_name="legacy"` and `config.use_dummy_dataset=False`. The model can be fine-tuned as follows: ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base") retriever = RagRetriever.from_pretrained("facebook/rag-token-base") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt") outputs = model(input_dict["input_ids"], labels=input_dict["labels"]) loss = outputs.loss # train on loss ```
facebook/rag-sequence-base
facebook
2020-12-11T21:39:37Z
3,522
9
transformers
[ "transformers", "pytorch", "rag", "arxiv:2005.11401", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 thumbnail: https://huggingface.co/front/thumbnails/facebook.png --- ## RAG This is a non-finetuned version of the RAG-Sequence model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf) by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al. Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`. This model is a non-finetuned RAG-Sequence model and was created as follows: ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration, AutoTokenizer model = RagSequenceForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large") question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer) model.config.use_dummy_dataset = True model.config.index_name = "exact" retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer) model.save_pretrained("./") tokenizer.save_pretrained("./") retriever.save_pretrained("./") ``` Note that the model is *uncased* so that all capital input letters are converted to lower-case. ## Usage: *Note*: the model uses the *dummy* retriever as a default. Better results are obtained by using the full retriever, by setting `config.index_name="legacy"` and `config.use_dummy_dataset=False`. The model can be fine-tuned as follows: ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base") retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base") model = RagTokenForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt") outputs = model(input_dict["input_ids"], labels=input_dict["labels"]) loss = outputs.loss # train on loss ```
elgeish/cs224n-squad2.0-distilbert-base-uncased
elgeish
2020-12-11T21:39:04Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. ## Results ```json { "exact": 65.16946363935504, "f1": 67.87348075352251, "total": 6078, "HasAns_exact": 69.51890034364261, "HasAns_f1": 75.16667217179045, "HasAns_total": 2910, "NoAns_exact": 61.17424242424242, "NoAns_f1": 61.17424242424242, "NoAns_total": 3168, "best_exact": 65.16946363935504, "best_exact_thresh": 0.0, "best_f1": 67.87348075352243, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "distilbert-base-uncased-distilled-squad", "model_type": "distilbert", "num_train_epochs": 4, "per_gpu_train_batch_size": 32, "save_steps": 5000, "seed": 42, "train_batch_size": 32, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
elgeish/cs224n-squad2.0-albert-xxlarge-v1
elgeish
2020-12-11T21:39:01Z
7
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "exbert", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-xxlarge-v1"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 85.93287265547877, "f1": 88.91258331187983, "total": 6078, "HasAns_exact": 84.36426116838489, "HasAns_f1": 90.58786301361013, "HasAns_total": 2910, "NoAns_exact": 87.37373737373737, "NoAns_f1": 87.37373737373737, "NoAns_total": 3168, "best_exact": 85.93287265547877, "best_exact_thresh": 0.0, "best_f1": 88.91258331187993, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 512, "model_name_or_path": "albert-xxlarge-v1", "model_type": "albert", "num_train_epochs": 4, "per_gpu_train_batch_size": 1, "save_steps": 1000, "seed": 42, "train_batch_size": 1, "version_2_with_negative": true, "warmup_steps": 814, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
elgeish/cs224n-squad2.0-albert-large-v2
elgeish
2020-12-11T21:38:57Z
7
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "exbert", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-large-v2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 79.2694965449161, "f1": 82.50844352970152, "total": 6078, "HasAns_exact": 74.87972508591065, "HasAns_f1": 81.64478342732858, "HasAns_total": 2910, "NoAns_exact": 83.30176767676768, "NoAns_f1": 83.30176767676768, "NoAns_total": 3168, "best_exact": 79.2694965449161, "best_exact_thresh": 0.0, "best_f1": 82.50844352970155, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 1, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "albert-large-v2", "model_type": "albert", "num_train_epochs": 5, "per_gpu_train_batch_size": 8, "save_steps": 5000, "seed": 42, "train_batch_size": 8, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
elgeish/cs224n-squad2.0-albert-base-v2
elgeish
2020-12-11T21:38:54Z
1,062
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "exbert", "arxiv:2004.07067", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - exbert --- ## CS224n SQuAD2.0 Project Dataset The goal of this model is to save CS224n students GPU time when establishing baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). The training set used to fine-tune this model is the same as the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, evaluation and model selection were performed using roughly half of the official dev set, 6078 examples, picked at random. The data files can be found at <https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 version. Given that the official SQuAD2.0 dev set contains the project's test set, students must make sure not to use the official SQuAD2.0 dev set in any way — including the use of models fine-tuned on the official SQuAD2.0, since they used the official SQuAD2.0 dev set for model selection. <a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-base-v2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a> ## Results ```json { "exact": 78.94044093451794, "f1": 81.7724930324639, "total": 6078, "HasAns_exact": 76.28865979381443, "HasAns_f1": 82.20385314478195, "HasAns_total": 2910, "NoAns_exact": 81.37626262626263, "NoAns_f1": 81.37626262626263, "NoAns_total": 3168, "best_exact": 78.95689371503784, "best_exact_thresh": 0.0, "best_f1": 81.78894581298378, "best_f1_thresh": 0.0 } ``` ## Notable Arguments ```json { "do_lower_case": true, "doc_stride": 128, "fp16": false, "fp16_opt_level": "O1", "gradient_accumulation_steps": 24, "learning_rate": 3e-05, "max_answer_length": 30, "max_grad_norm": 1, "max_query_length": 64, "max_seq_length": 384, "model_name_or_path": "albert-base-v2", "model_type": "albert", "num_train_epochs": 3, "per_gpu_train_batch_size": 8, "save_steps": 5000, "seed": 42, "train_batch_size": 8, "version_2_with_negative": true, "warmup_steps": 0, "weight_decay": 0 } ``` ## Environment Setup ```json { "transformers": "2.5.1", "pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", "python": "3.6.5=hc3d631a_2", "os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", "gpu": "Tesla V100-SXM2-16GB" } ``` ## How to Cite ```BibTeX @misc{elgeish2020gestalt, title={Gestalt: a Stacking Ensemble for SQuAD2.0}, author={Mohamed El-Geish}, journal={arXiv e-prints}, archivePrefix={arXiv}, eprint={2004.07067}, year={2020}, } ``` ## Related Models * [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) * [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) * [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased) * [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
txus/calbert-base-uncased
txus
2020-12-11T21:36:11Z
11
1
transformers
[ "transformers", "pytorch", "albert", "masked-lm", "catalan", "exbert", "ca", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "ca" tags: - masked-lm - catalan - exbert license: mit --- # Calbert: a Catalan Language Model ## Introduction CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture. It is now available on Hugging Face in its `tiny-uncased` version and `base-uncased` (the one you're looking at) as well, and was pretrained on the [OSCAR dataset](https://traces1.inria.fr/oscar/). For further information or requests, please go to the [GitHub repository](https://github.com/codegram/calbert) ## Pre-trained models | Model | Arch. | Training data | | ----------------------------------- | -------------- | ---------------------- | | `codegram` / `calbert-tiny-uncased` | Tiny (uncased) | OSCAR (4.3 GB of text) | | `codegram` / `calbert-base-uncased` | Base (uncased) | OSCAR (4.3 GB of text) | ## How to use Calbert with HuggingFace #### Load Calbert and its tokenizer: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-base-uncased") model = AutoModel.from_pretrained("codegram/calbert-base-uncased") model.eval() # disable dropout (or leave in train mode to finetune ``` #### Filling masks using pipeline ```python from transformers import pipeline calbert_fill_mask = pipeline("fill-mask", model="codegram/calbert-base-uncased", tokenizer="codegram/calbert-base-uncased") results = calbert_fill_mask("M'agrada [MASK] això") # results # [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.614592969417572, 'token': 61}, # {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.06058056280016899, 'token': 4867}, # {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.017195818945765495, 'token': 43}, # {'sequence': "[CLS] m'agrada llegir aixo[SEP]", 'score': 0.016321714967489243, 'token': 684}, # {'sequence': "[CLS] m'agrada escriure aixo[SEP]", 'score': 0.012185849249362946, 'token': 1306}] ``` #### Extract contextual embedding features from Calbert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("M'és una mica igual") # ['▁m', "'", 'es', '▁una', '▁mica', '▁igual'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [2, 109, 7, 71, 36, 371, 1103, 3] # NB: Can be done in one step : tokenize.encode("M'és una mica igual") # Feed tokens to Calbert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = model(encoded_sentence) embeddings.size() # torch.Size([1, 8, 768]) embeddings.detach() # tensor([[[-0.0261, 0.1166, -0.1075, ..., -0.0368, 0.0193, 0.0017], # [ 0.1289, -0.2252, 0.9881, ..., -0.1353, 0.3534, 0.0734], # [-0.0328, -1.2364, 0.9466, ..., 0.3455, 0.7010, -0.2085], # ..., # [ 0.0397, -1.0228, -0.2239, ..., 0.2932, 0.1248, 0.0813], # [-0.0261, 0.1165, -0.1074, ..., -0.0368, 0.0193, 0.0017], # [-0.1934, -0.2357, -0.2554, ..., 0.1831, 0.6085, 0.1421]]]) ``` ## Authors CALBERT was trained and evaluated by [Txus Bach](https://twitter.com/txustice), as part of [Codegram](https://www.codegram.com)'s applied research. <a href="https://huggingface.co/exbert/?model=codegram/calbert-base-uncased&modelKind=bidirectional&sentence=M%27agradaria%20força%20saber-ne%20més"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
clue/xlnet_chinese_large
clue
2020-12-11T21:36:08Z
4
2
transformers
[ "transformers", "pytorch", "xlnet", "zh", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh --- ## xlnet_chinese_large ### Overview **Language model:** xlnet-large **Model size:** 1.3G **Language:** Chinese **Training data:** [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020) **Eval data:** [CLUE dataset](https://github.com/CLUEbenchmark/CLUE) ### Results For results on downstream tasks like text classification, please refer to [this repository](https://github.com/CLUEbenchmark/CLUE). ### Usage ``` import torch from transformers import XLNetTokenizer,XLNetModel tokenizer = XLNetTokenizer.from_pretrained("clue/xlnet_chinese_large") xlnet = XLNetModel.from_pretrained("clue/xlnet_chinese_large") ``` ### About CLUE benchmark Organization of Language Understanding Evaluation benchmark for Chinese: tasks & datasets, baselines, pre-trained Chinese models, corpus and leaderboard. Github: https://github.com/CLUEbenchmark Website: https://www.cluebenchmarks.com/
clue/albert_chinese_small
clue
2020-12-11T21:35:52Z
69
4
transformers
[ "transformers", "pytorch", "albert", "zh", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh --- ## albert_chinese_small ### Overview **Language model:** albert-small **Model size:** 18.5M **Language:** Chinese **Training data:** [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020) **Eval data:** [CLUE dataset](https://github.com/CLUEbenchmark/CLUE) ### Results For results on downstream tasks like text classification, please refer to [this repository](https://github.com/CLUEbenchmark/CLUE). ### Usage **NOTE:**Since sentencepiece is not used in `albert_chinese_small` model, you have to call **BertTokenizer** instead of AlbertTokenizer !!! ``` import torch from transformers import BertTokenizer, AlbertModel tokenizer = BertTokenizer.from_pretrained("clue/albert_chinese_small") albert = AlbertModel.from_pretrained("clue/albert_chinese_small") ``` ### About CLUE benchmark Organization of Language Understanding Evaluation benchmark for Chinese: tasks & datasets, baselines, pre-trained Chinese models, corpus and leaderboard. Github: https://github.com/CLUEbenchmark Website: https://www.cluebenchmarks.com/
almanach/camembert-base-oscar-4gb
almanach
2020-12-11T21:35:18Z
33
1
transformers
[ "transformers", "pytorch", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base-oscar-4gb") camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-base-oscar-4gb", tokenizer="camembert/camembert-base-oscar-4gb") >>> results = camembert_fill_mask("Le camembert est <mask> !") # results #[{'sequence': '<s> Le camembert est parfait!</s>', 'score': 0.04089554399251938, 'token': 1654}, #{'sequence': '<s> Le camembert est délicieux!</s>', 'score': 0.037193264812231064, 'token': 7200}, #{'sequence': '<s> Le camembert est prêt!</s>', 'score': 0.025467922911047935, 'token': 1415}, #{'sequence': '<s> Le camembert est meilleur!</s>', 'score': 0.022812040522694588, 'token': 528}, #{'sequence': '<s> Le camembert est différent!</s>', 'score': 0.017135459929704666, 'token': 2935}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) #tensor([[[-0.1120, -0.1464, 0.0181, ..., -0.1723, -0.0278, 0.1606], # [ 0.1234, 0.1202, -0.0773, ..., -0.0405, -0.0668, -0.0788], # [-0.0440, 0.0480, -0.1926, ..., 0.1066, -0.0961, 0.0637], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-base-oscar-4gb", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-base-oscar-4gb", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.1584, -0.1207, -0.0179, ..., 0.5457, 0.1491, -0.1191], # [-0.1122, 0.3634, 0.0676, ..., 0.4395, -0.0470, -0.3781], # [-0.2232, 0.0019, 0.0140, ..., 0.4461, -0.0233, 0.0735], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
aliosm/ai-soco-cpp-roberta-tiny-96
aliosm
2020-12-11T21:32:42Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco license: "mit" datasets: - ai-soco metrics: - perplexity --- # ai-soco-c++-roberta-tiny-96 ## Model description From scratch pre-trained RoBERTa model with 1 layers and 96 attention heads using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset which consists of C++ codes crawled from CodeForces website. ## Intended uses & limitations The model can be used to do code classification, authorship identification and other downstream tasks on C++ programming language. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized randomly and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset which contains 100K C++ source codes. ## Training procedure The model trained on Google Colab platform with 8 TPU cores for 200 epochs, 16\*8 batch size, 512 max sequence length and MLM objective. Other parameters were defaulted to the values mentioned in [`run_language_modelling.py`](https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_language_modeling.py) script. Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-tiny-96"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ai-soco-cpp-roberta-tiny-96-clas
aliosm
2020-12-11T21:32:40Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "classification", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco - classification license: "mit" datasets: - ai-soco metrics: - accuracy --- # ai-soco-c++-roberta-tiny-96-clas ## Model description `ai-soco-c++-roberta-tiny-96` model fine-tuned on [AI-SOCO](https://sites.google.com/view/ai-soco-2020) task. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized from [`ai-soco-c++-roberta-tiny-96`](https://github.com/huggingface/transformers/blob/master/model_cards/aliosm/ai-soco-c++-roberta-tiny-96) model and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset to do text classification. ## Training procedure The model trained on Google Colab platform using V100 GPU for 10 epochs, 16 batch size, 512 max sequence length (sequences larger than 512 were truncated). Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ## Eval results The model achieved 91.12%/91.02% accuracy on AI-SOCO task and ranked in the 7th place. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-tiny-96-clas"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ai-soco-cpp-roberta-small-clas
aliosm
2020-12-11T21:32:36Z
0
0
null
[ "exbert", "authorship-identification", "fire2020", "pan2020", "ai-soco", "classification", "dataset:ai-soco", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: "c++" tags: - exbert - authorship-identification - fire2020 - pan2020 - ai-soco - classification license: "mit" datasets: - ai-soco metrics: - accuracy --- # ai-soco-c++-roberta-small-clas ## Model description `ai-soco-c++-roberta-small` model fine-tuned on [AI-SOCO](https://sites.google.com/view/ai-soco-2020) task. #### How to use You can use the model directly after tokenizing the text using the provided tokenizer with the model files. #### Limitations and bias The model is limited to C++ programming language only. ## Training data The model initialized from [`ai-soco-c++-roberta-small`](https://github.com/huggingface/transformers/blob/master/model_cards/aliosm/ai-soco-c++-roberta-small) model and trained using [AI-SOCO](https://sites.google.com/view/ai-soco-2020) dataset to do text classification. ## Training procedure The model trained on Google Colab platform using V100 GPU for 10 epochs, 32 batch size, 512 max sequence length (sequences larger than 512 were truncated). Each continues 4 spaces were converted to a single tab character (`\t`) before tokenization. ## Eval results The model achieved 93.19%/92.88% accuracy on AI-SOCO task and ranked in the 4th place. ### BibTeX entry and citation info ```bibtex @inproceedings{ai-soco-2020-fire, title = "Overview of the {PAN@FIRE} 2020 Task on {Authorship Identification of SOurce COde (AI-SOCO)}", author = "Fadel, Ali and Musleh, Husam and Tuffaha, Ibraheem and Al-Ayyoub, Mahmoud and Jararweh, Yaser and Benkhelifa, Elhadj and Rosso, Paolo", booktitle = "Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020)", year = "2020" } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ai-soco-c++-roberta-small-clas"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
akhooli/mbart-large-cc25-en-ar
akhooli
2020-12-11T21:32:08Z
32
3
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "en", "ar", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- tags: - translation language: - en - ar license: mit --- ### mbart-large-en-ar This is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production).
akhooli/mbart-large-cc25-ar-en
akhooli
2020-12-11T21:32:04Z
17
4
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "ar", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- tags: - translation language: - ar - en license: mit --- ### mbart-large-ar-en This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production). Other models by me: [Abed Khooli](https://huggingface.co/akhooli)
primer-ai/bart-squad2
primer-ai
2020-12-11T21:30:04Z
43
2
transformers
[ "transformers", "pytorch", "bart", "question-answering", "en", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- language: "en" --- # BART-Squad2 ## Model description BART for extractive (span-based) question answering, trained on Squad 2.0. F1 score of 87.4. ## Intended uses & limitations Unfortunately, the Huggingface auto-inference API won't run this model, so if you're attempting to try it through the input box above and it complains, don't be discouraged! #### How to use Here's a quick way to get question answering running locally: ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Primer/bart-squad2") model = AutoModelForQuestionAnswering.from_pretrained("Primer/bart-squad2") model.to('cuda'); model.eval() def answer(question, text): seq = '<s>' + question + ' </s> </s> ' + text + ' </s>' tokens = tokenizer.encode_plus(seq, return_tensors='pt', padding='max_length', max_length=1024) input_ids = tokens['input_ids'].to('cuda') attention_mask = tokens['attention_mask'].to('cuda') start, end, _ = model(input_ids, attention_mask=attention_mask) start_idx = int(start.argmax().int()) end_idx = int(end.argmax().int()) print(tokenizer.decode(input_ids[0, start_idx:end_idx]).strip()) # ^^ it will be an empty string if the model decided "unanswerable" >>> question = "Where does Tom live?" >>> context = "Tom is an engineer in San Francisco." >>> answer(question, context) San Francisco ``` (Just drop the `.to('cuda')` stuff if running on CPU). #### Limitations and bias Unknown, no further evaluation has been performed. In a technical sense one big limitation is that it's 1.6G 😬 ## Training procedure `run_squad.py` with: |param|value| |---|---| |batch size|8| |max_seq_length|1024| |learning rate|1e-5| |epochs|2| Modified to freeze shared parameters and encoder embeddings.
cinmodel/electra-small-japanese-generator
cinmodel
2020-12-11T21:26:17Z
6
2
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "ja", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ja --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ``` # ELECTRA-small generator usage from transformers import BertJapaneseTokenizer, ElectraForMaskedLM tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator') ```
cinmodel/electra-small-japanese-discriminator
cinmodel
2020-12-11T21:26:13Z
18
1
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ja", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: ja license: apache-2.0 --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ## How to use the discriminator in `transformers` ``` from transformers import BertJapaneseTokenizer, ElectraForPreTraining tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator') ```
dbmdz/flair-historic-ner-lft
dbmdz
2020-12-11T10:41:44Z
17
1
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "license:mit", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: de inference: false license: mit --- # Towards Robust Named Entity Recognition for Historic German Based on [our paper](https://www.aclweb.org/anthology/W19-4312/) we release a new model trained on the LFT dataset. **Note:** We use BPEmbeddings instead of the combination of Wikipedia, Common Crawl and character embeddings (as used in the paper), so save space and training/inferencing time. # Results | Dataset \ Run | Run 1 | Run 2 | Run 3† | Avg. | ------------- | ----- | ----- | --------- | ------------ | Development | 76.32 | 76.13 | **76.36** | 76.27 | Test | 77.07 | 77.35 | 77.20 | 77.21 Paper reported an averaged F1-score of 77.51. † denotes that this model is selected for upload.
stefan-it/flair-ner-conll03
stefan-it
2020-12-11T10:07:20Z
7
0
flair
[ "flair", "pytorch", "sequence-tagger-model", "en", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - flair - sequence-tagger-model license: mit --- # CoNLL-2003 NER Model Imported sequence tagger model for Flair, that was trained on English CoNLL-2003 corpus for NER.
bewgle/bart-large-mnli-bewgle
bewgle
2020-12-09T18:30:05Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- widget : - text: "I like you. </s></s> I love you." --- ## bart-large-mnli Trained by Facebook, [original source](https://github.com/pytorch/fairseq/tree/master/examples/bart)
Parth/mT5-question-generator
Parth
2020-12-01T03:38:27Z
6
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
from transformers import MT5ForConditionalGeneration, AutoTokenizer model = MT5ForConditionalGeneration.from_pretrained("Parth/mT5-question-generator") tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
joelniklaus/distilbert-based-german-cased-ler
joelniklaus
2020-11-30T12:52:05Z
5
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# distilbert-base-german-cased-ler Task: ler Base Model: distilbert-base-german-cased Trained for 3 epochs Batch-size: 12 Seed: 42 Test F1-Score: 0.936
phiyodr/bart-large-finetuned-squad2
phiyodr
2020-10-08T06:12:19Z
141
3
transformers
[ "transformers", "pytorch", "bart", "question-answering", "en", "dataset:squad2", "arxiv:1910.13461", "arxiv:1806.03822", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: - pytorch - question-answering datasets: - squad2 metrics: - exact - f1 widget: - text: "What discipline did Winkelmann create?" context: "Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. The prophet and founding hero of modern archaeology, Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art." --- # roberta-large-finetuned-squad2 ## Model description This model is based on [facebook/bart-large](https://huggingface.co/facebook/bart-large) and was finetuned on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/). The corresponding papers you can found [here (model)](https://arxiv.org/pdf/1910.13461.pdf) and [here (data)](https://arxiv.org/abs/1806.03822). ## How to use ```python from transformers.pipelines import pipeline model_name = "phiyodr/bart-large-finetuned-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'What discipline did Winkelmann create?', 'context': 'Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. "The prophet and founding hero of modern archaeology", Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art. ' } nlp(inputs) ``` ## Training procedure ``` { "base_model": "facebook/bart-large", "do_lower_case": True, "learning_rate": 3e-5, "num_train_epochs": 4, "max_seq_length": 384, "doc_stride": 128, "max_query_length": 64, "batch_size": 96 } ``` ## Eval results - Data: [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json) - Script: [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) (original script from [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/README.md)) ``` { "exact": 81.96748926134929, "f1": 85.93825235371045, "total": 11873, "HasAns_exact": 78.71120107962213, "HasAns_f1": 86.6641144054667, "HasAns_total": 5928, "NoAns_exact": 85.21446593776282, "NoAns_f1": 85.21446593776282, "NoAns_total": 5945 } ```
deep-learning-analytics/wikihow-t5-small
deep-learning-analytics
2020-09-09T18:19:54Z
53
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "wikihow", "t5-small", "lm-head", "seq2seq", "pipeline:summarization", "summarization", "eng", "dataset:Wikihow", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: "eng" tags: - wikihow - t5-small - pytorch - lm-head - seq2seq - t5 - pipeline:summarization - summarization datasets: - Wikihow widget: - text: "Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In particular, look for yogurt containing the active bacteria Streptococcus thermophilus or Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A, which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets., They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves." - text: " Bring 1/2 cup water to the boil.Add the fresh or dried rosemary to the water.Remove from the heat. Set aside for 1/2 an hour to infuse. Added flavour can be released by pressing down on the rosemary leaves with a spoon. Add the pieces to the blender or food processor with the elderflower cordial. Blend or process to a purée.,, Add the lemon or lime juice and stir to combine., Add a cover and place in the freezer.After 2 hours, remove from the freezer and break up with a fork. This helps the ice crystals to form properly.Continue doing this every hour until the granita freezes properly. Scoop the granita into dessert bowls and serve. Garnish with a cucumber curl or a small sprig of rosemary." metrics: - Rouge1: 31.2 - RougeL: 24.5 --- # Model name Wikihow T5-small ## Model description This is a T5-small model trained on Wikihow All data set. The model was trained for 3 epochs using a batch size of 16 and learning rate of 3e-4. Max_input_lngth is set as 512 and max_output_length is 150. Model attained a Rouge1 score of 31.2 and RougeL score of 24.5. We have written a blog post that covers the training procedure. Please find it [here](https://medium.com/@priya.dwivedi/fine-tuning-a-t5-transformer-for-any-summarization-task-82334c64c81). ## Usage ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small") model = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) text = """" Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In particular, look for yogurt containing the active bacteria Streptococcus thermophilus or Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A, which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets., They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves. """ preprocess_text = text.strip().replace("\n","") tokenized_text = tokenizer.encode(preprocess_text, return_tensors="pt").to(device) summary_ids = model.generate( tokenized_text, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print ("\n\nSummarized text: \n",output) ```
Capreolus/electra-base-msmarco
Capreolus
2020-09-08T14:53:10Z
9
1
transformers
[ "transformers", "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
# capreolus/electra-base-msmarco ## Model description ELECTRA-Base model (`google/electra-base-discriminator`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model, but requires some modification since it contains a BERT classification head rather than the standard ELECTRA classification head. See the [TFElectraRelevanceHead](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) in the Capreolus BERT-MaxP implementation for a usage example. This corresponds to the ELECTRA-Base model used to initialize PARADE (ELECTRA) in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_electra_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
textattack/facebook-bart-base-RTE
textattack
2020-08-20T15:50:48Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## TextAttack Model CardSince this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/facebook-bart-base-glue-RTE
textattack
2020-08-20T15:49:05Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## TextAttack Model Cardrate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-ag-news
textattack
2020-07-07T21:59:15Z
53
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model CardThis `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9471052631578948, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-rotten-tomatoes
textattack
2020-07-06T16:36:38Z
10
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9071294559099438, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-imdb
textattack
2020-07-06T16:35:25Z
9
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the imdb dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 512. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.95352, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-STS-B
textattack
2020-07-06T16:33:08Z
10
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.8892630070017784, as measured by the eval set pearson correlation, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-STS-B
textattack
2020-07-06T16:32:24Z
5
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.9064220351504577, as measured by the eval set pearson correlation, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-SST-2
textattack
2020-07-06T16:32:15Z
178
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 64. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9254587155963303, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-RTE
textattack
2020-07-06T16:32:05Z
5
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7111913357400722, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-RTE
textattack
2020-07-06T16:31:28Z
17
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.6570397111913358, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-MRPC
textattack
2020-07-06T16:30:46Z
14
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8897058823529411, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-MRPC
textattack
2020-07-06T16:30:12Z
31
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8578431372549019, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-MRPC
textattack
2020-07-06T16:29:43Z
10
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8970588235294118, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-CoLA
textattack
2020-07-06T16:29:03Z
3,039
3
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Cardand the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8235858101629914, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
maurinventersfxi/blockassist
maurinventersfxi
2025-09-22T23:29:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile knobby cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-19T08:06:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile knobby cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
winnieyangwannan/evwc2_Qwen2.5-VL-7B-Instruct_mlp-down_pnas_layer_20_8_all_37_0.001_12800_5
winnieyangwannan
2025-09-23T00:40:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-09-23T00:38:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Razgony/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_polished_dinosaur
Razgony
2025-09-23T00:39:57Z
183
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am shiny_polished_dinosaur", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T06:37:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am shiny_polished_dinosaur --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hflj05200/blockassist
hflj05200
2025-09-23T00:39:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grassy amphibious ladybug", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T11:54:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grassy amphibious ladybug --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Guri0/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-marine_shrewd_hare
Guri0
2025-09-23T00:39:48Z
109
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am marine_shrewd_hare", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-20T15:04:32Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am marine_shrewd_hare --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
p2g7gensyn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam
p2g7gensyn
2025-09-23T00:39:41Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am rabid slow clam", "trl", "genrl-swarm", "I am rabid_slow_clam", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T16:40:26Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am rabid slow clam - trl - genrl-swarm - I am rabid_slow_clam licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="p2g7gensyn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca
p2g3ads4
2025-09-23T00:39:37Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am camouflaged tame alpaca", "trl", "genrl-swarm", "I am camouflaged_tame_alpaca", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T20:19:45Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am camouflaged tame alpaca - trl - genrl-swarm - I am camouflaged_tame_alpaca licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Sven092/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_deft_dog
Sven092
2025-09-23T00:39:34Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am nocturnal_deft_dog", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:52:19Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am nocturnal_deft_dog --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eventhub/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hunting_reptilian_armadillo
eventhub
2025-09-23T00:39:33Z
170
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am hunting_reptilian_armadillo", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T15:25:36Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am hunting_reptilian_armadillo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aqsima441/blockassist
aqsima441
2025-09-23T00:39:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "humming unseen cow", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T12:10:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - humming unseen cow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pearsallyhai/blockassist
pearsallyhai
2025-09-23T00:39:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "solitary untamed butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T04:15:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - solitary untamed butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alsandeer33/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo
alsandeer33
2025-09-23T00:39:20Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am flightless arctic kangaroo", "trl", "genrl-swarm", "I am flightless_arctic_kangaroo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-04T13:54:45Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am flightless arctic kangaroo - trl - genrl-swarm - I am flightless_arctic_kangaroo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="alsandeer33/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flightless_arctic_kangaroo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
p2g5dolph3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino
p2g5dolph3
2025-09-23T00:39:19Z
10
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am peckish ferocious rhino", "trl", "genrl-swarm", "I am peckish_ferocious_rhino", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-17T21:31:35Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am peckish ferocious rhino - trl - genrl-swarm - I am peckish_ferocious_rhino licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="p2g5dolph3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
DogecoinVR/blockassist
DogecoinVR
2025-09-23T00:39:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "poisonous dormant pheasant", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T16:07:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - poisonous dormant pheasant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gdc253495/blockassist
gdc253495
2025-09-23T00:39:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feline humming cow", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T12:00:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feline humming cow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Longyka/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bipedal_long_wallaby
Longyka
2025-09-23T00:39:02Z
114
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am bipedal_long_wallaby", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T17:23:31Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am bipedal_long_wallaby --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aiivanoff1982/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk
aiivanoff1982
2025-09-23T00:38:45Z
29
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am long sharp skunk", "trl", "genrl-swarm", "I am long_sharp_skunk", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-06T08:40:02Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am long sharp skunk - trl - genrl-swarm - I am long_sharp_skunk licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aiivanoff1982/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
doddycz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-muscular_slow_pheasant
doddycz
2025-09-23T00:38:44Z
157
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am muscular_slow_pheasant", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-17T14:37:11Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am muscular_slow_pheasant --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Higgywith/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-whiskered_finicky_nightingale
Higgywith
2025-09-23T00:38:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am whiskered_finicky_nightingale", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:06:26Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am whiskered_finicky_nightingale --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jfdv71116/blockassist
jfdv71116
2025-09-23T00:38:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "purring beaked alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T11:49:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - purring beaked alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Oleksandrio/Qwen3-0.6B-Gensyn-Swarm-reclusive_nasty_butterfly
Oleksandrio
2025-09-23T00:38:37Z
85
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am reclusive_nasty_butterfly", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-20T12:44:19Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am reclusive_nasty_butterfly --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dilip025/llama-2-7b
dilip025
2025-09-23T00:38:17Z
2,214
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "facebook", "meta", "llama-2", "en", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T17:03:29Z
--- language: - en license: llama2 tags: - facebook - meta - pytorch - llama - llama-2 model_name: Llama 2 7B Chat arxiv: 2307.09288 base_model: meta-llama/Llama-2-7b-chat-hf inference: false model_creator: Meta Llama 2 model_type: llama pipeline_tag: text-generation prompt_template: '[INST] <<SYS>> You are NutriLife chatbot, you are going to get questions related to food, nutrition, health, and diet by the users from Nepal. Answer them very shortly and accurately if the message is only about food, nutrition, and diet. Otherwise, ignore. <</SYS>> {prompt}[/INST] ' quantized_by: Dilip Pokhrel --- <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama 2 7B Chat -- Food and Nutrition <br> - Model creator: [Meta Llama 2] <br> - Original model: [Llama 2 7B Chat] <a href="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf">Original Model</a> <br> - Fine Tuned by: [Dilip Pokhrel] <a href="https://dilippokhrel.com.np">Profile</a> #### Simple example code to load one of these GGUF models ```python # Load model directly or use qunatization technique if you have low gpu ram from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("dilip025/llama-2-7b") model = AutoModelForCausalLM.from_pretrained("dilip025/llama-2-7b") system_message = 'You are NutriLife chatbot, you are going to get questions related to food, nutrition, health, and diet by the users from Nepal. Answer them very shortly and accurately if the message is only about food, nutrition, and diet. Otherwise, ignore.' prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n Tell me some of the famous Nepali food recipes [/INST]" num_new_tokens = 200 # Change to the number of new tokens you want to generate # Count the number of tokens in the prompt num_prompt_tokens = len(tokenizer(prompt)['input_ids']) # Calculate the maximum length for the generation max_length = num_prompt_tokens + num_new_tokens gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_length) result = gen(prompt) print(result[0]['generated_text'].replace(prompt, '')) ``` ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
6gsd568/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion
6gsd568
2025-09-23T00:38:16Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am pouncing nimble lion", "unsloth", "trl", "genrl-swarm", "I am pouncing_nimble_lion", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-20T16:59:33Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am pouncing nimble lion - unsloth - trl - genrl-swarm - I am pouncing_nimble_lion licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="6gsd568/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
aedupuga/fiction_predictor_nn
aedupuga
2025-09-23T00:38:11Z
0
0
null
[ "region:us" ]
null
2025-09-23T00:08:12Z
# Model Card for aedupuga/fiction_predictor_nn ### Model Description This is an AutoGluon Image AutoML NN implementation on a image dataset containing cover images of books. The model predicts whether the book is "fiction" or "non-fiction". - **Model developed by:** Anuhya Edupuganti - **Model type:** AutoGluon TabularPredictor ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Dataset:** jennifee/HW1-images-dataset ### Direct Use - This model was intended to practice automl implementation on an image dataset ## Bias, Risks, and Limitations - Small data size. cannot to generallised to all existing books on the market. - ## Training Data: The model was trained on the augmented split of the "jennifee/HW1-images-dataset". ## Evaluation Data: The model achieved an accuracy of 1.- and a weighted F1 score of 1.0 on the original dataset. ## Model Card Contact Anuhya Edupuganti (Carnegie Mellon Univerity)- [email protected]
karlsonc750/blockassist
karlsonc750
2025-09-23T00:38:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping scented toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T04:14:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping scented toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Votroi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lethal_omnivorous_caterpillar
Votroi
2025-09-23T00:37:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am lethal_omnivorous_caterpillar", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:19:38Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am lethal_omnivorous_caterpillar --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Stodva/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-silent_pawing_manatee
Stodva
2025-09-23T00:37:47Z
156
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am silent_pawing_manatee", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-23T17:54:39Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am silent_pawing_manatee --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xyy121214/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-arctic_hibernating_porpoise
xyy121214
2025-09-23T00:37:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am arctic_hibernating_porpoise", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T13:19:49Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am arctic_hibernating_porpoise --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DevQuasar/deepseek-ai.DeepSeek-V3.1-Terminus-GGUF
DevQuasar
2025-09-23T00:37:22Z
0
0
null
[ "gguf", "text-generation", "base_model:deepseek-ai/DeepSeek-V3.1-Terminus", "base_model:quantized:deepseek-ai/DeepSeek-V3.1-Terminus", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-22T16:22:04Z
--- base_model: - deepseek-ai/DeepSeek-V3.1-Terminus pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) 'Make knowledge free for everyone' Quantized version of: [deepseek-ai/DeepSeek-V3.1-Terminus](https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus) <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
stynimshon/blockassist
stynimshon
2025-09-23T00:37:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile territorial elephant", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T04:14:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile territorial elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kimweb3/Qwen3-0.6B-Gensyn-Swarm-raging_skilled_mongoose
kimweb3
2025-09-23T00:37:14Z
77
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am raging_skilled_mongoose", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-13T07:52:43Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am raging_skilled_mongoose --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Skryaga/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gilded_endangered_bat
Skryaga
2025-09-23T00:37:11Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am gilded_endangered_bat", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:43:34Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am gilded_endangered_bat --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
samiaakter786789/blockassist
samiaakter786789
2025-09-23T00:37:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished padded gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T11:59:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished padded gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).