modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
alireza7/ARMAN-MSR-persian-base-parsinlu-textual-entailment
alireza7
2021-09-29T19:16:04Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-sentiment-movie
alireza7
2021-09-29T19:15:47Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-qqp
alireza7
2021-09-29T19:15:19Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-multiple-choice
alireza7
2021-09-29T19:15:05Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-PN-summary
alireza7
2021-09-29T19:14:47Z
61
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
huggingartists/kishlak
huggingartists
2021-09-29T17:46:52Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kishlak", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/kishlak tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c0c7e74ec794ad44eb0957d6afdd383d.815x815x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кишлак (Kishlak)</div> <a href="https://genius.com/artists/kishlak"> <div style="text-align: center; font-size: 14px;">@kishlak</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Кишлак (Kishlak). Dataset is available [here](https://huggingface.co/datasets/huggingartists/kishlak). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kishlak") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2654f8ic/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Кишлак (Kishlak)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/12gu37uv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/12gu37uv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kishlak') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kishlak") model = AutoModelWithLMHead.from_pretrained("huggingartists/kishlak") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/flower_dommy
huggingtweets
2021-09-29T17:45:38Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/flower_dommy/1632937534684/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1414421050415329283/SnA_5soV_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">stable lacker</div> <div style="text-align: center; font-size: 14px;">@flower_dommy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from stable lacker. | Data | stable lacker | | --- | --- | | Tweets downloaded | 1549 | | Retweets | 270 | | Short tweets | 210 | | Tweets kept | 1069 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/301dw1ni/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flower_dommy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kf0leede) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kf0leede/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/flower_dommy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/mayot
huggingartists
2021-09-29T17:40:26Z
3
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/mayot", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/mayot tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1d4b4adcdf1f58e1899ee5557375ef7c.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MAYOT</div> <a href="https://genius.com/artists/mayot"> <div style="text-align: center; font-size: 14px;">@mayot</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from MAYOT. Dataset is available [here](https://huggingface.co/datasets/huggingartists/mayot). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/mayot") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/lf4wcx85/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MAYOT's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1uulibm2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1uulibm2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/mayot') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/mayot") model = AutoModelWithLMHead.from_pretrained("huggingartists/mayot") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
dweb/deberta-base-CoLA
dweb
2021-09-29T17:37:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-base-CoLA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-CoLA This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1655 - Accuracy: 0.8482 - F1: 0.8961 - Roc Auc: 0.8987 - Mcc: 0.6288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Roc Auc | Mcc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:|:------:| | 0.5266 | 1.0 | 535 | 0.4138 | 0.8159 | 0.8698 | 0.8627 | 0.5576 | | 0.3523 | 2.0 | 1070 | 0.3852 | 0.8387 | 0.8880 | 0.9041 | 0.6070 | | 0.2479 | 3.0 | 1605 | 0.3981 | 0.8482 | 0.8901 | 0.9120 | 0.6447 | | 0.1712 | 4.0 | 2140 | 0.4732 | 0.8558 | 0.9008 | 0.9160 | 0.6486 | | 0.1354 | 5.0 | 2675 | 0.7181 | 0.8463 | 0.8938 | 0.9024 | 0.6250 | | 0.0876 | 6.0 | 3210 | 0.8453 | 0.8520 | 0.8992 | 0.9123 | 0.6385 | | 0.0682 | 7.0 | 3745 | 1.0282 | 0.8444 | 0.8938 | 0.9061 | 0.6189 | | 0.0431 | 8.0 | 4280 | 1.1114 | 0.8463 | 0.8960 | 0.9010 | 0.6239 | | 0.0323 | 9.0 | 4815 | 1.1663 | 0.8501 | 0.8970 | 0.8967 | 0.6340 | | 0.0163 | 10.0 | 5350 | 1.1655 | 0.8482 | 0.8961 | 0.8987 | 0.6288 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingartists/platina
huggingartists
2021-09-29T17:06:31Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/platina", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/platina tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b12dc90e6f405684ef6b74c9de92fdcd.853x853x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Платина (Platina)</div> <a href="https://genius.com/artists/platina"> <div style="text-align: center; font-size: 14px;">@platina</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Платина (Platina). Dataset is available [here](https://huggingface.co/datasets/huggingartists/platina). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/platina") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ih365j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Платина (Platina)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1quasiz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1quasiz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/platina') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/platina") model = AutoModelWithLMHead.from_pretrained("huggingartists/platina") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
gokulkarthik/distilbert-base-uncased-finetuned-squad
gokulkarthik
2021-09-29T15:13:52Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Yanzhu/bertweetfr_ner
Yanzhu
2021-09-29T14:46:25Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
French NER model for tweets. Fine-tuned on the CAP2017 dataset. label_list = ['O', 'B-person', 'I-person', 'B-musicartist', 'I-musicartist', 'B-org', 'I-org', 'B-geoloc', 'I-geoloc', 'B-product', 'I-product', 'B-transportLine', 'I-transportLine', 'B-media', 'I-media', 'B-sportsteam', 'I-sportsteam', 'B-event', 'I-event', 'B-tvshow', 'I-tvshow', 'B-movie', 'I-movie', 'B-facility', 'I-facility', 'B-other', 'I-other']
suwani/distilbert-base-uncased-finetuned-ner
suwani
2021-09-29T08:22:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2787 - Precision: 0.6403 - Recall: 0.6929 - F1: 0.6655 - Accuracy: 0.9100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 288 | 0.3360 | 0.5596 | 0.5992 | 0.5788 | 0.8956 | | 0.4686 | 2.0 | 576 | 0.2901 | 0.6061 | 0.7231 | 0.6594 | 0.9063 | | 0.4686 | 3.0 | 864 | 0.2787 | 0.6403 | 0.6929 | 0.6655 | 0.9100 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/cyrusshepard-fastfwdco-lilyraynyc
huggingtweets
2021-09-29T08:19:04Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cyrusshepard-fastfwdco-lilyraynyc/1632903540115/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/713653445262237696/mdyVSGoj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241620963768201216/sG68m_iE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308419103510626304/gUgr1gMo_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">fastfwd & Cyrus & Lily Ray 😏</div> <div style="text-align: center; font-size: 14px;">@cyrusshepard-fastfwdco-lilyraynyc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from fastfwd & Cyrus & Lily Ray 😏. | Data | fastfwd | Cyrus | Lily Ray 😏 | | --- | --- | --- | --- | | Tweets downloaded | 945 | 3248 | 3250 | | Retweets | 60 | 343 | 89 | | Short tweets | 5 | 729 | 310 | | Tweets kept | 880 | 2176 | 2851 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k89f9gx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyrusshepard-fastfwdco-lilyraynyc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cyrusshepard-fastfwdco-lilyraynyc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/imjackrudd
huggingtweets
2021-09-28T23:31:37Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/imjackrudd/1632871893609/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1289653820071522304/cdikNvkG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jack Rudd 🇹🇹 🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@imjackrudd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jack Rudd 🇹🇹 🏳️‍⚧️. | Data | Jack Rudd 🇹🇹 🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 55 | | Short tweets | 327 | | Tweets kept | 2864 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g5589wt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imjackrudd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/eyywpszu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/eyywpszu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imjackrudd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/dndomme
huggingtweets
2021-09-28T23:14:56Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dndomme/1632870893354/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428106877926260736/xiq2bdMI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pirate Queen Grey</div> <div style="text-align: center; font-size: 14px;">@dndomme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pirate Queen Grey. | Data | Pirate Queen Grey | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 1329 | | Short tweets | 288 | | Tweets kept | 1601 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ucgtv6r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dndomme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sej7nbm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sej7nbm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dndomme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/laura_the_loser
huggingtweets
2021-09-28T22:31:52Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/laura_the_loser/1632868308444/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405044989013364744/OowZLyUZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Laura UwU</div> <div style="text-align: center; font-size: 14px;">@laura_the_loser</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Laura UwU. | Data | Laura UwU | | --- | --- | | Tweets downloaded | 126 | | Retweets | 22 | | Short tweets | 34 | | Tweets kept | 70 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kpebddab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laura_the_loser's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jsq6074) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jsq6074/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laura_the_loser') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rhtnr/ssgtrh
rhtnr
2021-09-28T21:16:58Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
https://escape-net.eu/groups/film-complet-venom-let-there-be-carnage-streaming-vf-gratuit-en-francais/ https://escape-net.eu/groups/venom-let-there-be-carnage-2021-streaming-vf-film-complet-en-francais/ https://escape-net.eu/groups/venom-let-there-be-carnage-streaming-vf-en-hd-fr/ https://escape-net.eu/groups/venom-let-there-be-carnage-streaming-vf-film-complet-2021-en-francais-hd/ https://escape-net.eu/groups/streaming-hd-venom-let-there-be-carnage-2021-en-streaming-vf-complet-gratuit-francais/ https://escape-net.eu/groups/vostfr-venom-let-there-be-carnage-2021-film-complet-streaming-vf-en-francais-09-27-2021/ https://escape-net.eu/groups/regarder-venom-let-there-be-carnage-streaming-vf-gratuit-en-francais-27-septembre-2021/ https://escape-net.eu/groups/regarder-venom-let-there-be-carnage-streaming-vf-2021-en-francais/ https://escape-net.eu/groups/venom-let-there-be-carnage-2021-film-complet-streaming-vf/ https://escape-net.eu/groups/venom-let-there-be-carnage-streaming-vf-2021-film-complet-415303912/ https://parentsolo31.com/advert/film-complet-mourir-peut-attendre-streaming-vf-gratuit-en-francais/ https://parentsolo31.com/advert/mourir-peut-attendre-2021-streaming-vf-film-complet-en-francais/ https://parentsolo31.com/advert/mourir-peut-attendre-streaming-vf-en-hd-fr/ https://parentsolo31.com/advert/mourir-peut-attendre-streaming-vf-film-complet-2021-en-francais-hd/ https://parentsolo31.com/advert/streaming-hd-mourir-peut-attendre-2021-en-streaming-vf-complet-gratuit-francais/ https://parentsolo31.com/advert/vostfr-mourir-peut-attendre-2021-film-complet-streaming-vf-en-francais-09-27-2021/ https://parentsolo31.com/advert/regarder-mourir-peut-attendre-streaming-vf-gratuit-en-francais-27-septembre-2021/ https://parentsolo31.com/advert/regarder-mourir-peut-attendre-streaming-vf-2021-en-francais/ https://parentsolo31.com/advert/mourir-peut-attendre-2021-film-complet-streaming-vf/ https://parentsolo31.com/advert/mourir-peut-attendre-streaming-vf-2021-film-complet/ https://clubdeportivocdl.com/advert/voir-dune-streaming-vf-2021-complet/ https://clubdeportivocdl.com/advert/film-complet-dune-streaming-vf-gratuit-en-francais/ https://clubdeportivocdl.com/advert/dune-streaming-vf-film-complet-2021-en-francais-hd/ https://clubdeportivocdl.com/advert/dune-2021-hd-film-complet-vf-francais/ https://clubdeportivocdl.com/advert/dune-streaming-vf-2021-film-complet/ https://clubdeportivocdl.com/advert/dune-2021-film-streaming-vf-streaming-vostfr/ https://clubdeportivocdl.com/advert/dune-2021-film-complet-streaming-vf/ https://clubdeportivocdl.com/advert/regarder-dune-2021-film-streaming-vf-francais/ https://clubdeportivocdl.com/advert/regarder-dune-2021-streaming-vf-en-francais/ https://clubdeportivocdl.com/advert/regarder-dune-2021-film-complet-streaming-vf/ https://clubdeportivocdl.com/advert/dune-film-complet-en-streaming-vf/ https://clubdeportivocdl.com/advert/film-complet-dune-2021-vf-streaming-francais/ https://clubdeportivocdl.com/advert/regarder-dune-vostfr-en-streaming-vf-gratuit-complet-hd-en-francais/ https://clubdeportivocdl.com/advert/filmcomplet-dune-2021-streaming-vf-en-complet-gratuit/ https://clubdeportivocdl.com/advert/regarder-dune-2021-film-complet-en-vf-hd-streaming/ https://clubdeportivocdl.com/advert/regarder-complet-dune-streaming-vf-film-gratuit/ https://clubdeportivocdl.com/advert/film-complet-dune-streaming-vf-complet-2021-francais-hd/ https://clubdeportivocdl.com/advert/vf-dune-streaming-vf-gratuit-en-francais-2021/ https://clubdeportivocdl.com/advert/film-hd-dune-2021-streaming-vf-gratuit-complet/ https://clubdeportivocdl.com/advert/film-complet-dune-2021-streaming-vf-en-fr/ https://clubdeportivocdl.com/advert/regarder-dune-2021-film-complet-streaming-vf-2/ https://clubdeportivocdl.com/advert/voir-dune-2021-streaming-vf-complet-en-gratuit/ https://clubdeportivocdl.com/advert/mourir-peut-attendre-streaming-vf-film-complet-2021-en-francais-hd/ https://clubdeportivocdl.com/advert/mourir-peut-attendre-streaming-vf-2021-film-complet/ https://www.onfeetnation.com/profiles/blogs/linkfilm-streaming-vf-complet-en-francais?xg_source=activity http://snomoto.com/forums/timbersled/linkfilm-streaming-vf-complet-en-francais/ https://sites.google.com/view/dnjyrjmt/halaman-muka https://escape-net.eu/groups/linkfilm-complet-vf/
lewtun/bert-base-uncased-finetuned-imdb
lewtun
2021-09-28T20:45:38Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: bert-base-uncased-finetuned-imdb results: - task: name: Masked Language Modeling type: fill-mask dataset: name: imdb type: imdb args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-imdb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.0284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2244 | 1.0 | 958 | 2.0726 | | 2.1537 | 2.0 | 1916 | 2.0381 | | 2.1183 | 3.0 | 2874 | 2.0284 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingartists/dzhizus
huggingartists
2021-09-28T19:43:19Z
7
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/dzhizus", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/dzhizus tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a96a6042b4c0a4c0bdae647768c5e42b.668x668x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Джизус (Dzhizus)</div> <a href="https://genius.com/artists/dzhizus"> <div style="text-align: center; font-size: 14px;">@dzhizus</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Джизус (Dzhizus). Dataset is available [here](https://huggingface.co/datasets/huggingartists/dzhizus). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dzhizus") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/35paacn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Джизус (Dzhizus)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1ug3yebo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1ug3yebo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/dzhizus') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/dzhizus") model = AutoModelWithLMHead.from_pretrained("huggingartists/dzhizus") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
lewtun/MiniLM-L12-H384-uncased-finetuned-imdb
lewtun
2021-09-28T18:59:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: MiniLM-L12-H384-uncased-finetuned-imdb results: - task: name: Masked Language Modeling type: fill-mask dataset: name: imdb type: imdb args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-finetuned-imdb This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 3.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.2464 | 1.0 | 391 | 4.2951 | | 4.2302 | 2.0 | 782 | 4.0023 | | 4.0726 | 3.0 | 1173 | 3.9328 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/plinz
huggingtweets
2021-09-28T12:42:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/plinz/1632832956311/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/936396593762357248/f66CtXot_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joscha Bach</div> <div style="text-align: center; font-size: 14px;">@plinz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joscha Bach. | Data | Joscha Bach | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 298 | | Short tweets | 131 | | Tweets kept | 2819 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zr1xovwx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @plinz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bpt8w0c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bpt8w0c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/plinz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Kceilord/autonlp-tc-13522454
Kceilord
2021-09-28T10:46:23Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:Kceilord/autonlp-data-tc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Kceilord/autonlp-data-tc --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 13522454 ## Validation Metrics - Loss: 0.31450966000556946 - Accuracy: 0.8461538461538461 - Precision: 0.8181818181818182 - Recall: 0.782608695652174 - AUC: 0.9369259032455604 - F1: 0.8 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Kceilord/autonlp-tc-13522454 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Kceilord/autonlp-tc-13522454", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Kceilord/autonlp-tc-13522454", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
tunib/electra-ko-en-base
tunib
2021-09-28T07:50:21Z
4,099
10
transformers
[ "transformers", "pytorch", "electra", "pretraining", "arxiv:2003.10555", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# TUNiB-Electra We release several new versions of the [ELECTRA](https://arxiv.org/abs/2003.10555) model, which we name TUNiB-Electra. There are two motivations. First, all the existing pre-trained Korean encoder models are monolingual, that is, they have knowledge about Korean only. Our bilingual models are based on the balanced corpora of Korean and English. Second, we want new off-the-shelf models trained on much more texts. To this end, we collected a large amount of Korean text from various sources such as blog posts, comments, news, web novels, etc., which sum up to 100 GB in total. ## How to use You can use this model directly with [transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoModel, AutoTokenizer # Base Model (Korean-English bilingual model) tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-base') model = AutoModel.from_pretrained('tunib/electra-ko-en-base') ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-base') >>> tokenizer.tokenize("tunib is a natural language processing tech startup.") ['tun', '##ib', 'is', 'a', 'natural', 'language', 'processing', 'tech', 'startup', '.'] >>> tokenizer.tokenize("튜닙은 자연어처리 테크 스타트업입니다.") ['튜', '##닙', '##은', '자연', '##어', '##처리', '테크', '스타트업', '##입니다', '.'] ``` ## Results on Korean downstream tasks | |**# Params** |**Avg.**| **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) |**Korean-Hate-Speech (Dev)**<br/>(F1)| | :----------------:| :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | :----------------: | |***TUNiB-Electra-ko-base*** | 110M | **85.99** | 90.95 | 87.63 | 84.65 | **82.27** | 85.00 | 95.77 | 64.01 / 90.32 |71.40 | |***TUNiB-Electra-ko-en-base*** | 133M |85.34 |90.59 | 87.25 | **84.90** | 80.43 | 83.81 | 94.85 | 83.09 / 92.06 |68.83 | | [KoELECTRA-base-v3](https://github.com/monologg/KoELECTRA) | 110M | 85.92 |90.63 | **88.11** | 84.45 | 82.24 | **85.53** | 95.25 | **84.83 / 93.45** | 67.61 | | [KcELECTRA-base](https://github.com/Beomi/KcELECTRA) | 124M| 84.75 |**91.71** | 86.90 | 74.80 | 81.65 | 82.65 | **95.78** | 70.60 / 90.11 | **74.49** | | [KoBERT-base](https://github.com/SKTBrain/KoBERT) | 90M | 84.17 | 89.63 | 86.11 | 80.65 | 79.00 | 79.64 | 93.93 | 52.81 / 80.27 | 66.21 | | [KcBERT-base](https://github.com/Beomi/KcBERT) | 110M | 81.37 | 89.62 | 84.34 | 66.95 | 74.85 | 75.57 | 93.93 | 60.25 / 84.39 | 68.77 | | [XLM-Roberta-base](https://github.com/pytorch/fairseq/tree/master/examples/xlmr) | 280M | 85.74 |89.49 | 86.26 | 82.95 | 79.92 | 79.09 | 93.53 | 64.70 / 88.94 | 64.06 | ## Results on English downstream tasks | |**# Params** | **Avg.** |**CoLA**<br/>(MCC) | **SST**<br/>(Acc) |MRPC<br/>(Acc)| **STS**<br/>(Spearman) | **QQP**<br/>(Acc) | **MNLI**<br/>(Acc) | **QNLI**<br/>(Acc) | **RTE**<br/>(Acc) | | :----------------:| :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | |***TUNiB-Electra-ko-en-base*** | 133M | 85.2| **65.36** | 92.09 | **88.97** | **90.61** | **90.91** | 85.32 | 91.51 |**76.53**| |[ELECTRA-base](https://github.com/google-research/electra) | 110M | **85.7** | 64.6 | **96.0** | 88.1| 90.2 | 89.5 | **88.5** | **93.1** | 75.2 | |[BERT-base](https://github.com/google-research/bert) | 110M | 80.8| 52.1 | 93.5 | 84.8| 85.8 | 89.2 | 84.6 | 90.5 | 66.4 |
tunib/electra-ko-base
tunib
2021-09-28T07:48:06Z
2
6
transformers
[ "transformers", "pytorch", "electra", "pretraining", "arxiv:2003.10555", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# TUNiB-Electra We release several new versions of the [ELECTRA](https://arxiv.org/abs/2003.10555) model, which we name TUNiB-Electra. There are two motivations. First, all the existing pre-trained Korean encoder models are monolingual, that is, they have knowledge about Korean only. Our bilingual models are based on the balanced corpora of Korean and English. Second, we want new off-the-shelf models trained on much more texts. To this end, we collected a large amount of Korean text from various sources such as blog posts, comments, news, web novels, etc., which sum up to 100 GB in total. ## How to use You can use this model directly with [transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoModel, AutoTokenizer # Base Model (Korean-only model) tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-base') model = AutoModel.from_pretrained('tunib/electra-ko-base') ``` ### Tokenizer example ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-base') >>> tokenizer.tokenize("tunib is a natural language processing tech startup.") ['tun', '##ib', 'is', 'a', 'natural', 'language', 'processing', 'tech', 'startup', '.'] >>> tokenizer.tokenize("튜닙은 자연어처리 테크 스타트업입니다.") ['튜', '##닙', '##은', '자연', '##어', '##처리', '테크', '스타트업', '##입니다', '.'] ``` ## Results on Korean downstream tasks | |**# Params** |**Avg.**| **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) |**Korean-Hate-Speech (Dev)**<br/>(F1)| | :----------------:| :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :---------------------------: | :---------------------------: | :----------------: | |***TUNiB-Electra-ko-base*** | 110M | **85.99** | 90.95 | 87.63 | 84.65 | **82.27** | 85.00 | 95.77 | 64.01 / 90.32 |71.40 | |***TUNiB-Electra-ko-en-base*** | 133M |85.34 |90.59 | 87.25 | **84.90** | 80.43 | 83.81 | 94.85 | 83.09 / 92.06 |68.83 | | [KoELECTRA-base-v3](https://github.com/monologg/KoELECTRA) | 110M | 85.92 |90.63 | **88.11** | 84.45 | 82.24 | **85.53** | 95.25 | **84.83 / 93.45** | 67.61 | | [KcELECTRA-base](https://github.com/Beomi/KcELECTRA) | 124M| 84.75 |**91.71** | 86.90 | 74.80 | 81.65 | 82.65 | **95.78** | 70.60 / 90.11 | **74.49** | | [KoBERT-base](https://github.com/SKTBrain/KoBERT) | 90M | 84.17 | 89.63 | 86.11 | 80.65 | 79.00 | 79.64 | 93.93 | 52.81 / 80.27 | 66.21 | | [KcBERT-base](https://github.com/Beomi/KcBERT) | 110M | 81.37 | 89.62 | 84.34 | 66.95 | 74.85 | 75.57 | 93.93 | 60.25 / 84.39 | 68.77 | | [XLM-Roberta-base](https://github.com/pytorch/fairseq/tree/master/examples/xlmr) | 280M | 85.74 |89.49 | 86.26 | 82.95 | 79.92 | 79.09 | 93.53 | 64.70 / 88.94 | 64.06 |
huggingtweets/fredricksonra
huggingtweets
2021-09-28T02:27:24Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/fredricksonra/1632796041349/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421105879408066565/hBHx-Rvl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rica af, she/her 🗽🏳️‍🌈</div> <div style="text-align: center; font-size: 14px;">@fredricksonra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rica af, she/her 🗽🏳️‍🌈. | Data | Rica af, she/her 🗽🏳️‍🌈 | | --- | --- | | Tweets downloaded | 3208 | | Retweets | 2893 | | Short tweets | 47 | | Tweets kept | 268 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k0pcnmp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fredricksonra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/123sil9f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/123sil9f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fredricksonra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/elizgerber-galaxykate-ianhorswill
huggingtweets
2021-09-27T22:54:21Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/elizgerber-galaxykate-ianhorswill/1632783257334/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1371914197555105794/OKpRjt66_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1790733507/me-cc_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2828021100/bfce2ad653f8d49d2ebf984b620df18b_400x400.jpeg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dr Kate Compton, Code Wizard & Ian Horswill & Liz Gerber</div> <div style="text-align: center; font-size: 14px;">@elizgerber-galaxykate-ianhorswill</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dr Kate Compton, Code Wizard & Ian Horswill & Liz Gerber. | Data | Dr Kate Compton, Code Wizard | Ian Horswill | Liz Gerber | | --- | --- | --- | --- | | Tweets downloaded | 3242 | 179 | 1622 | | Retweets | 607 | 35 | 545 | | Short tweets | 214 | 6 | 34 | | Tweets kept | 2421 | 138 | 1043 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dyol8xs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elizgerber-galaxykate-ianhorswill's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37pdtbyk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37pdtbyk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elizgerber-galaxykate-ianhorswill') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vesteinn/fasttext_is_rmh
vesteinn
2021-09-27T22:09:07Z
0
0
null
[ "is", "license:agpl-3.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: agpl-3.0 language: - is --- # FastText model trained on Icelandic This model is trained on the lemmas of the Icelandic Gigaword Corpus version 20.05. It is trained using the gensim package, version 4.1.0. and parameters were set to default (100 dimensions, windows size 5) This model can not be loaded directly since it uses gensim, clone the repository and run the following to use it. ```python import gensim model = gensim.models.FastText.load("./rmh.w2v.model") ``` ## Example output ```bash In [1]: model.wv.most_similar("england") Out[1]: [('englands', 0.8778558969497681), ('southland', 0.8573296070098877), ('skotland', 0.846065878868103), ('englaland', 0.8320872187614441), ('hoogland', 0.8299505114555359), ('hoagland', 0.8277317881584167), ('totland', 0.8265103697776794), ('lackland', 0.8234561681747437), ('skarpengland', 0.8227219581604004), ('langland', 0.8222305774688721)] In [2]: model.wv.most_similar("kanína") Out[2]: [('loðkanína', 0.9271067976951599), ('dvergkanína', 0.9106121063232422), ('angórakanína', 0.895512044429779), ('angórukanína', 0.8741581439971924), ('feldkanína', 0.8696010708808899), ('kanínubangsi', 0.8562541604042053), ('holdakanína', 0.8543838858604431), ('villikanína', 0.8525990843772888), ('silkikanína', 0.8515204191207886), ('kaníni', 0.8445548415184021)] ```
patrickvonplaten/debug_repo
patrickvonplaten
2021-09-27T15:58:49Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This repository is used to debug models, functionalities in transformers, etc... # 1. Generation ... # 2. Flax Wav2Vec2 Pretraining Go into the `flax_wav2vec2` folder. 1. **Check PT loss works correctly** `./run_pt_fsq_comp.sh` shows that HF PyTorch and Fairseq PT yield equivalent loss. Make sure to use the correct library versions as defined `branches_to_use.txt`. 2. **Check Flax loss works correctly** `./run_flax_fsq_comp.sh` shows that HF PyTorch and HF Flax yield equivalent loss. Make sure to use the correct library versions as defined `branches_to_use.txt`.
colorfulscoop/gpt2-small-ja
colorfulscoop
2021-09-27T11:50:17Z
89
4
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "ja", "dataset:wikipedia", "license:cc", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ja datasets: wikipedia widget: - text: 統計的機械学習でのニューラルネットワーク license: cc --- # GPT-2 small Japanese model This repository contains a GPT2-small model trained on Japanese Wikipedia dataset. ## Training data [Japanese Wikipedia](https://ja.wikipedia.org/wiki/Wikipedia:データベースダウンロード) dataset as of Aug20, 2021 released under [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/) is used for both tokenizer and GPT-2 model. We splitted the dataset into three subsets - train, valid and test sets. Both tokenizer and model were trained on the train set. Train set contains around 540M tokens. ## Model description The model architecture is the same as GPT-2 small model (n_ctx: 1024, n_embd 768, n_head: 12, n_layer: 12) except for a vocabulary size. The vocabulary size is set to 32,000 instead of an original size of 50,257. `transformers.GPT2LMHeadModel` is used for training. ## Tokenizer description [SentencePiece](https://github.com/google/sentencepiece) is used as a tokenizer for this model. We utilized 1,000,000 sentences from train set. The vocabulary size was 32,000. A `add_dummy_prefix` option was set to `True` because Japanese words are not separated by whitespaces. After training, the tokenizer model was imported as `transformers.BERTGenerationTokenizer` because it supports SentencePiece models and it does not add any special tokens as default, which is useful expecially for a text generation task. ## Training The model was trained on the train set for 30 epochs with batch size 32. Each sample contained 1024 tokens. We utilized Adam optimizer. Learning rate was linearly increased from `0` to `1e-4` during the first 10,000 steps. A clip norm was set to `1.0`. Test set perplexity of the trained model was 29.13. Please refer to [GitHub](https://github.com/colorfulscoop/gpt-ja) for more training details. ## Usage First, install dependecies. ```sh $ pip install transformers==4.10.0 torch==1.8.1 sentencepiece==0.1.96 ``` Then use pipeline to generate sentences. ```sh >>> import transformers >>> pipeline = transformers.pipeline("text-generation", "colorfulscoop/gpt2-small-ja") >>> pipeline("統計的機械学習でのニューラルネットワーク", do_sample=True, top_p=0.95, top_k=50, num_return_sequences=3) ``` **Note:** The default model configuration `config.json` sets parameters for text generation with `do_sample=True`, `top_k=50`, `top_p=0.95`. Please set these parameters when you need to use different parameters. ## Versions We recommend to specify `revision` to load the model for reproducibility. | Revision | Date of Wikipedia dump | | --- | --- | | 20210820.1.0 | Aug 20, 2021 | | 20210301.1.0 | March 1, 2021 | You can specify `revision` as follows. ```py # Example of pipeline >>> transformers.pipeline("text-generation", "colorfulscoop/gpt2-small-ja", revision="20210820.1.0") # Example of AutoModel >>> transformers.AutoModel.from_pretrained("colorfulscoop/gpt2-small-ja", revision="20210820.1.0") ``` ## License All the models included in this repository are licensed under [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). **Disclaimer:** The model potentially has possibility that it generates similar texts in the training data, texts not to be true, or biased texts. Use of the model is at your sole risk. Colorful Scoop makes no warranty or guarantee of any outputs from the model. Colorful Scoop is not liable for any trouble, loss, or damage arising from the model output. **Author:** Colorful Scoop
vppvgit/BiblItBERT-1
vppvgit
2021-09-27T09:40:47Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - null model-index: - name: BiblItBERT-1 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiblItBERT-1 This model is a fine-tuned version of [vppvgit/BiblItBERT](https://huggingface.co/vppvgit/BiblItBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.5764 | 1.0 | 16528 | 1.5214 | | 1.4572 | 2.0 | 33056 | 1.4201 | | 1.3787 | 3.0 | 49584 | 1.3728 | | 1.3451 | 4.0 | 66112 | 1.3245 | | 1.3066 | 5.0 | 82640 | 1.2614 | | 1.2447 | 6.0 | 99168 | 1.2333 | | 1.2172 | 7.0 | 115696 | 1.2149 | | 1.2079 | 8.0 | 132224 | 1.1853 | | 1.2167 | 9.0 | 148752 | 1.1586 | | 1.2056 | 10.0 | 165280 | 1.1503 | | 1.1307 | 11.0 | 181808 | 1.1224 | | 1.1689 | 12.0 | 198336 | 1.1074 | | 1.1007 | 13.0 | 214864 | 1.0924 | | 1.0901 | 14.0 | 231392 | 1.0659 | | 1.0667 | 15.0 | 247920 | 1.0650 | | 1.0434 | 16.0 | 264448 | 1.0362 | | 1.0333 | 17.0 | 280976 | 1.0250 | | 1.0342 | 18.0 | 297504 | 1.0198 | | 1.0059 | 19.0 | 314032 | 0.9950 | | 0.9719 | 20.0 | 330560 | 0.9836 | | 0.9863 | 21.0 | 347088 | 0.9873 | | 0.9781 | 22.0 | 363616 | 0.9724 | | 0.9369 | 23.0 | 380144 | 0.9599 | | 0.9578 | 24.0 | 396672 | 0.9557 | | 0.9253 | 25.0 | 413200 | 0.9400 | | 0.9441 | 26.0 | 429728 | 0.9222 | | 0.9138 | 27.0 | 446256 | 0.9140 | | 0.882 | 28.0 | 462784 | 0.9045 | | 0.864 | 29.0 | 479312 | 0.8880 | | 0.8632 | 30.0 | 495840 | 0.9023 | | 0.8342 | 32.0 | 528896 | 0.8740 | | 0.8037 | 34.0 | 561952 | 0.8647 | | 0.8119 | 37.0 | 611536 | 0.8358 | | 0.8011 | 38.0 | 628064 | 0.8252 | | 0.786 | 39.0 | 644592 | 0.8228 | | 0.7697 | 41.0 | 677648 | 0.8138 | | 0.7485 | 42.0 | 694176 | 0.8104 | | 0.7689 | 43.0 | 710704 | 0.8018 | | 0.7401 | 45.0 | 743760 | 0.7957 | | 0.7031 | 47.0 | 776816 | 0.7726 | | 0.7578 | 48.0 | 793344 | 0.7864 | | 0.7298 | 49.0 | 809872 | 0.7775 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
nateraw/audio-test
nateraw
2021-09-27T03:45:48Z
0
0
generic
[ "generic", "audio-to-audio", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - audio-to-audio library_name: generic ---
malaysia-ai/xlnet-large-bahasa-cased
malaysia-ai
2021-09-26T12:57:26Z
4
0
transformers
[ "transformers", "pytorch", "xlnet", "feature-extraction", "ms", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: ms --- # xlnet-large-bahasa-cased Pretrained XLNET large language model for Malay. ## Pretraining Corpus `xlnet-large-bahasa-cased` model was pretrained on ~1.4 Billion words. Below is list of data we trained on, 1. [cleaned local texts](https://github.com/huseinzol05/malay-dataset/tree/master/dumping/clean). 2. [translated The Pile](https://github.com/huseinzol05/malay-dataset/tree/master/corpus/pile). ## Pretraining details - All steps can reproduce from here, [Malaya/pretrained-model/xlnet](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/xlnet). ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import XLNetModel, XLNetTokenizer model = XLNetModel.from_pretrained('malay-huggingface/xlnet-large-bahasa-cased') tokenizer = XLNetTokenizer.from_pretrained( 'malay-huggingface/xlnet-large-bahasa-cased', do_lower_case = False, ) ```
huggingtweets/aly__dixon-haleyosomething-svpino
huggingtweets
2021-09-26T12:49:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aly__dixon-haleyosomething-svpino/1632660543535/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416541994952937474/yi5cJxnq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368667185879584770/pKNxJut-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393327649318076417/cQWDVv-q_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & Santiago & Aly Dixon</div> <div style="text-align: center; font-size: 14px;">@aly__dixon-haleyosomething-svpino</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from haley o'shaughnessy & Santiago & Aly Dixon. | Data | haley o'shaughnessy | Santiago | Aly Dixon | | --- | --- | --- | --- | | Tweets downloaded | 3241 | 3250 | 3003 | | Retweets | 430 | 7 | 426 | | Short tweets | 460 | 316 | 195 | | Tweets kept | 2351 | 2927 | 2382 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mt8xsda/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aly__dixon-haleyosomething-svpino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31g4nsgq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31g4nsgq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aly__dixon-haleyosomething-svpino') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/mbart50-large-yor-eng-mt
Davlan
2021-09-26T12:40:29Z
4
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mbart50-large-yor-eng-mt ## Model description **mbart50-large-yor-eng-mt** is a **machine translation** model from Yorùbá language to English language based on a fine-tuned facebook/mbart-large-50 model. It establishes a **strong baseline** for automatically translating texts from Yorùbá to English. Specifically, this model is a *mbart-large-50* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). The model was trained using Swahili(sw_KE) as the language since the pre-trained model does not initially support Yorùbá. Thus, you need to use the sw_KE for language code when evaluating the model. #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning mbart50-large achieves **15.88 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 15.57 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/mbart50-large-eng-yor-mt
Davlan
2021-09-26T11:57:50Z
7
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mbart50-large-eng-yor-mt ## Model description **mbart50-large-eng-yor-mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned facebook/mbart-large-50 model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *mbart-large-50* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). The model was trained using Swahili(sw_KE) as the language since the pre-trained model does not initially support Yorùbá. Thus, you need to use the sw_KE for language code when evaluating the model. #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning mbarr50-large achieves **13.39 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
huggingtweets/caucasianjames-haleyosomething-officialkat
huggingtweets
2021-09-26T02:14:24Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/caucasianjames-haleyosomething-officialkat/1632622460306/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416541994952937474/yi5cJxnq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/933947605104685056/mumGVsyS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420078509230223363/u7XR7esE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & James & Kat Dennings</div> <div style="text-align: center; font-size: 14px;">@caucasianjames-haleyosomething-officialkat</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from haley o'shaughnessy & James & Kat Dennings. | Data | haley o'shaughnessy | James | Kat Dennings | | --- | --- | --- | --- | | Tweets downloaded | 3242 | 3242 | 3228 | | Retweets | 431 | 89 | 689 | | Short tweets | 460 | 602 | 424 | | Tweets kept | 2351 | 2551 | 2115 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ctao3i2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caucasianjames-haleyosomething-officialkat's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vge9p265) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vge9p265/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caucasianjames-haleyosomething-officialkat') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/veganseltzer
huggingtweets
2021-09-25T22:38:44Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/veganseltzer/1632609483096/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1315429459663745024/S9mAz-Cs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Senior beer disposal agent</div> <div style="text-align: center; font-size: 14px;">@veganseltzer</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Senior beer disposal agent. | Data | Senior beer disposal agent | | --- | --- | | Tweets downloaded | 1248 | | Retweets | 477 | | Short tweets | 108 | | Tweets kept | 663 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18bbz1me/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @veganseltzer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/32xde3yh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/32xde3yh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/veganseltzer') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emil2000/dialogpt-for-french-language
emil2000
2021-09-25T21:50:35Z
62
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "fr", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - fr tags: - {fr} - {gpt2} --- This model aims at being a french conversational agent. This consists of a fine-tuning of Dialo-GPT for french language. The dataset used gathers 36k conversations extracted from books, movies, interviews and dialogues for learning french. More details about the model can be found [there](https://github.com/emil2000dza/DialoGPT-fine-tuned-for-french-language)
pere/norwegian-gptneo-blue
pere
2021-09-25T18:42:49Z
35
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# Norwegian GTPNeo Blue. The first Norwegian GPTNeo model. This one is trained only on a administrative corpus.
Hate-speech-CNERG/deoffxlmr-mono-malyalam
Hate-speech-CNERG
2021-09-25T14:01:42Z
13
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "ml", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: ml license: apache-2.0 --- This model is used to detect **Offensive Content** in **Malayalam Code-Mixed language**. The mono in the name refers to the monolingual setting, where the model is trained using only Malayalam(pure and code-mixed) data. The weights are initialized from pretrained XLM-Roberta-Base and pretrained using Masked Language Modelling on the target dataset before fine-tuning using Cross-Entropy Loss. This model is the best of multiple trained for **EACL 2021 Shared Task on Offensive Language Identification in Dravidian Languages**. Genetic-Algorithm based ensembled test predictions got the highest weighted F1 score at the leaderboard (Weighted F1 score on hold out test set: This model - 0.97, Ensemble - 0.97) ### For more details about our paper Debjoy Saha, Naman Paharia, Debajit Chakraborty, Punyajoy Saha, Animesh Mukherjee. "[Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection](https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/)". ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @inproceedings{saha-etal-2021-hate, title = "Hate-Alert@{D}ravidian{L}ang{T}ech-{EACL}2021: Ensembling strategies for Transformer-based Offensive language Detection", author = "Saha, Debjoy and Paharia, Naman and Chakraborty, Debajit and Saha, Punyajoy and Mukherjee, Animesh", booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", month = apr, year = "2021", address = "Kyiv", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38", pages = "270--276", abstract = "Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task {``}Offensive Language Identification in Dravidian Languages{''} at EACL 2021; we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.", } ~~~
Hate-speech-CNERG/deoffxlmr-mono-kannada
Hate-speech-CNERG
2021-09-25T14:01:14Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "kn", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: kn license: apache-2.0 --- This model is used to detect **Offensive Content** in **Kannada Code-Mixed language**. The mono in the name refers to the monolingual setting, where the model is trained using only Kannada(pure and code-mixed) data. The weights are initialized from pretrained XLM-Roberta-Base and pretrained using Masked Language Modelling on the target dataset before fine-tuning using Cross-Entropy Loss. This model is the best of multiple trained for **EACL 2021 Shared Task on Offensive Language Identification in Dravidian Languages**. Genetic-Algorithm based ensembled test predictions got the second-highest weighted F1 score at the leaderboard (Weighted F1 score on hold out test set: This model - 0.73, Ensemble - 0.74) ### For more details about our paper Debjoy Saha, Naman Paharia, Debajit Chakraborty, Punyajoy Saha, Animesh Mukherjee. "[Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection](https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/)". ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @inproceedings{saha-etal-2021-hate, title = "Hate-Alert@{D}ravidian{L}ang{T}ech-{EACL}2021: Ensembling strategies for Transformer-based Offensive language Detection", author = "Saha, Debjoy and Paharia, Naman and Chakraborty, Debajit and Saha, Punyajoy and Mukherjee, Animesh", booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", month = apr, year = "2021", address = "Kyiv", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38", pages = "270--276", abstract = "Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task {``}Offensive Language Identification in Dravidian Languages{''} at EACL 2021; we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.", } ~~~
Hate-speech-CNERG/dehatebert-mono-spanish
Hate-speech-CNERG
2021-09-25T14:00:12Z
136
8
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "es", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: es license: apache-2.0 --- This model is used detecting **hatespeech** in **Spanish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.740287 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-polish
Hate-speech-CNERG
2021-09-25T13:58:40Z
110
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "pl", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: pl license: apache-2.0 --- This model is used detecting **hatespeech** in **Polish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.723254 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-italian
Hate-speech-CNERG
2021-09-25T13:56:50Z
35
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "it", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: it license: apache-2.0 --- This model is used detecting **hatespeech** in **Italian language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.837288 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-german
Hate-speech-CNERG
2021-09-25T13:55:44Z
164
3
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "de", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: de license: apache-2.0 --- This model is used detecting **hatespeech** in **German language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.649794 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-arabic
Hate-speech-CNERG
2021-09-25T13:54:53Z
2,563
2
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "ar", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: ar license: apache-2.0 --- This model is used detecting **hatespeech** in **Arabic language**. The mono in the name refers to the monolingual setting, where the model is trained using only Arabic language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.877609 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
huggingtweets/sixjay__
huggingtweets
2021-09-25T11:43:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sixjay__/1632570148333/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434204311505055754/Ozub-Lmd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">joj</div> <div style="text-align: center; font-size: 14px;">@sixjay__</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from joj. | Data | joj | | --- | --- | | Tweets downloaded | 2494 | | Retweets | 508 | | Short tweets | 429 | | Tweets kept | 1557 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wcyvex9s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sixjay__'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6yf1o7q5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6yf1o7q5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sixjay__') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
pritoms/distilgpt2-finetuned-irll2
pritoms
2021-09-25T11:34:01Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: distilgpt2-finetuned-irll2 results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-irll2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 12 | 4.2919 | | No log | 2.0 | 24 | 4.2158 | | No log | 3.0 | 36 | 4.1925 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
lewtun/mt5-small-finetuned-mlsum
lewtun
2021-09-25T09:43:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:mlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mlsum metrics: - rouge model-index: - name: mt5-small-finetuned-mlsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mlsum type: mlsum args: es metrics: - name: Rouge1 type: rouge value: 1.1475 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-mlsum This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 1.1475 - Rouge2: 0.1284 - Rougel: 1.0634 - Rougelsum: 1.0778 - Gen Len: 3.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | nan | 1.0 | 808 | nan | 1.1475 | 0.1284 | 1.0634 | 1.0778 | 3.7939 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
superb/superb-test-org__test-submission-with-example-expert__d609b3c32044e50e3d5e9067bd97af1b42f04b0e
superb
2021-09-24T19:49:31Z
0
0
null
[ "tensorboard", "library:s3prl", "benchmark:superb", "type:model", "dataset:superb", "region:us" ]
null
2022-03-02T23:29:05Z
--- datasets: - superb tags: - library:s3prl - benchmark:superb - type:model --- # Fine-tuned s3prl model Upstream Model: superb-test-org/test-submission-with-example-expert ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
SaulLu/cotet5_small_fix
SaulLu
2021-09-24T17:56:36Z
4
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "codet5", "dataset:code_search_net", "arxiv:2109.00859", "arxiv:1909.09436", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - codet5 datasets: - code_search_net inference: false --- # CodeT5 (small-sized model) Pre-trained CodeT5 model. It was introduced in the paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation](https://arxiv.org/abs/2109.00859) by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi and first released in [this repository](https://github.com/salesforce/CodeT5). Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has been written by the Hugging Face team (more specifically, [nielsr](https://huggingface.co/nielsr)). ## Model description From the abstract: "We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code." ## Intended uses & limitations This repository contains the pre-trained model only, so you can use this model for masked span prediction, as shown in the code example below. However, the main use of this model is to fine-tune it for a downstream task of interest, such as: * code summarization * code generation * code translation * code refinement * code defect detection * code clone detection. See the [model hub](https://huggingface.co/models?search=salesforce/codet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import RobertaTokenizer, T5ForConditionalGeneration tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small') model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small') text = "def greet(user): print(f'hello <extra_id_0>!')" input_ids = tokenizer(text, return_tensors="pt").input_ids # simply generate a single sequence generated_ids = model.generate(input_ids, max_length=10) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) # this prints "user: {user.name}" ``` ## Training data The CodeT5 model was pretrained on CodeSearchNet [Husain et al., 2019](https://arxiv.org/abs/1909.09436). Additionally, the authors collected two datasets of C/CSharp from [BigQuery1](https://console.cloud.google.com/marketplace/details/github/github-repos) to ensure that all downstream tasks have overlapped programming languages with the pre-training data. In total, around 8.35 million instances are used for pretraining. ## Training procedure ### Preprocessing This model uses a code-specific BPE (Byte-Pair Encoding) tokenizer. One can prepare text (or code) for the model using RobertaTokenizer, with the files from this repository. ## Evaluation results For evaluation results on several downstream benchmarks, we refer to the paper. ### BibTeX entry and citation info ```bibtex @misc{wang2021codet5, title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, author={Yue Wang and Weishi Wang and Shafiq Joty and Steven C. H. Hoi}, year={2021}, eprint={2109.00859}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
abdouaziiz/soraberta
abdouaziiz
2021-09-24T11:31:32Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "language-model", "wo", "wolof", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: wo tags: - roberta - language-model - wo - wolof --- # Soraberta: Unsupervised Language Model Pre-training for Wolof **Soraberta** is pretrained roberta-base model on wolof language . Roberta was introduced in [this paper](https://arxiv.org/abs/1907.11692) ## Soraberta models | Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters | | :------: | :---: | :---: | :---: | :---: | | `soraberta-base` | 6 | 12 | 514 | 83 M | ## Using Soraberta with Hugging Face's Transformers ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='abdouaziiz/soraberta') >>> unmasker("juroom naari jullit man nanoo boole jend aw nag walla <mask>.") [{'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla gileem.', 'score': 0.9783930778503418, 'token': 4621, 'token_str': ' gileem'}, {'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla jend.', 'score': 0.009271537885069847, 'token': 2155, 'token_str': ' jend'}, {'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla aw.', 'score': 0.0027585660573095083, 'token': 704, 'token_str': ' aw'}, {'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla pel.', 'score': 0.001120452769100666, 'token': 1171, 'token_str': ' pel'}, {'sequence': 'juroom naari jullit man nanoo boole jend aw nag walla juum.', 'score': 0.0005133090307936072, 'token': 5820, 'token_str': ' juum'}] ``` ## Training data The data sources are [Bible OT](http://biblewolof.com/) , [WOLOF-ONLINE](http://www.wolof-online.com/) ## Contact Please contact [email protected] for any question, feedback or request.
hakurei/gpt-j-random-tinier
hakurei
2021-09-24T06:21:52Z
16
2
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
This model has been initialized with random values. It is supposed to be used for the purpose of debugging.
zgotter/bert-base-finetuned-ynat
zgotter
2021-09-24T02:00:26Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metrics: - name: F1 type: f1 value: 0.8669116640755216 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3710 - F1: 0.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4223 | 0.8549 | | No log | 2.0 | 358 | 0.3710 | 0.8669 | | 0.2576 | 3.0 | 537 | 0.3891 | 0.8631 | | 0.2576 | 4.0 | 716 | 0.3968 | 0.8612 | | 0.2576 | 5.0 | 895 | 0.4044 | 0.8617 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/60secondrevit
huggingtweets
2021-09-23T22:17:30Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/60secondrevit/1632435423713/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1439946759585812483/S_SxM-Cu_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ʲᵒʰⁿ ᵖⁱᵉʳˢᵒⁿ 🤡🎈</div> <div style="text-align: center; font-size: 14px;">@60secondrevit</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ʲᵒʰⁿ ᵖⁱᵉʳˢᵒⁿ 🤡🎈. | Data | ʲᵒʰⁿ ᵖⁱᵉʳˢᵒⁿ 🤡🎈 | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 1050 | | Short tweets | 676 | | Tweets kept | 1521 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jlkb3t2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @60secondrevit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d6rqhltg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d6rqhltg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/60secondrevit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
piotr-rybak/poleval2021-task4-herbert-large-encoder
piotr-rybak
2021-09-23T17:34:47Z
103
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6098 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3049, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 1024, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
valhalla/distilt5-qg-hl-12-6
valhalla
2021-09-23T16:42:49Z
5
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-generation", "distilt5", "distilt5-qg", "dataset:squad", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: <hl> 42 <hl> is the answer to life, the universe and everything. </s> - text: Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s> - text: Although <hl> practicality <hl> beats purity </s> license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-base-qg-hl](https://huggingface.co/valhalla/t5-base-qg-hl) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-base-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens. For example `<hl> 42 <hl> is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("question-generation", model="valhalla/distilt5-qg-hl-12-6") nlp("42 is the answer to life, universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] ```
valhalla/distilt5-qa-qg-hl-6-4
valhalla
2021-09-23T16:42:47Z
5
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "question-generation", "distilt5", "distilt5-qg", "dataset:squad", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: 'generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>' - text: 'question: What is 42 context: 42 is the answer to life, the universe and everything. </s>' license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-small-qa-qg-hl](https://huggingface.co/valhalla/t5-small-qa-qg-hl) model trained for question answering and answer aware question generation tasks. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-small-qa-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything.` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("multitask-qa-qg", model="valhalla/distilt5-qa-qg-hl-6-4") # to generate questions simply pass the text nlp("42 is the answer to life, the universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life?'}] # for qa pass a dict with "question" and "context" nlp({ "question": "What is 42 ?", "context": "42 is the answer to life, the universe and everything." }) => 'the answer to life, the universe and everything' ```
valhalla/distilt5-qa-qg-hl-12-6
valhalla
2021-09-23T16:42:44Z
8
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-generation", "distilt5", "distilt5-qg", "dataset:squad", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: 'generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>' - text: 'question: What is 42 context: 42 is the answer to life, the universe and everything. </s>' license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-base-qa-qg-hl](https://huggingface.co/valhalla/t5-base-qa-qg-hl) model trained for question answering and answer aware question generation tasks. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-base-qa-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything.` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("multitask-qa-qg", model="valhalla/distilt5-qa-qg-hl-12-6") # to generate questions simply pass the text nlp("42 is the answer to life, the universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] # for qa pass a dict with "question" and "context" nlp({ "question": "What is 42 ?", "context": "42 is the answer to life, the universe and everything." }) => 'the answer to life, the universe and everything' ```
gbarone77/polibert_sa
gbarone77
2021-09-23T16:42:31Z
14
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "sentiment", "Italian", "it", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: it tags: - sentiment - Italian license: mit widget: - text: Giuseppe Rossi è un ottimo politico --- # 🤗 + polibert_SA - POLItic BERT based Sentiment Analysis ## Model description This model performs sentiment analysis on Italian political twitter sentences. It was trained starting from an instance of "bert-base-italian-uncased-xxl" and fine-tuned on an Italian dataset of tweets. You can try it out at https://www.unideeplearning.com/twitter_sa/ (in italian!) #### Hands-on ```python import torch from torch import nn from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("unideeplearning/polibert_sa") model = AutoModelForSequenceClassification.from_pretrained("unideeplearning/polibert_sa") text = "Giuseppe Rossi è un pessimo politico" input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors= 'pt') logits, = model(input_ids) logits = logits.squeeze(0) prob = nn.functional.softmax(logits, dim=0) # 0 Negative, 1 Neutral, 2 Positive print(prob.argmax().tolist()) ``` #### Hyperparameters - Optimizer: **AdamW** with learning rate of **2e-5**, epsilon of **1e-8** - Max epochs: **2** - Batch size: **16** ## Acknowledgments Thanks to the support from: the [Hugging Face](https://huggingface.co/), https://www.unioneprofessionisti.com https://www.unideeplearning.com/
toloka/t5-large-for-text-aggregation
toloka
2021-09-23T16:40:58Z
16
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text aggregation", "summarization", "en", "dataset:toloka/CrowdSpeech", "arxiv:1910.10683", "arxiv:2107.01091", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - text aggregation - summarization license: apache-2.0 datasets: - toloka/CrowdSpeech metrics: - wer --- # T5 Large for Text Aggregation ## Model description This is a T5 Large fine-tuned for crowdsourced text aggregation tasks. The model takes multiple performers' responses and yields a single aggregated response. This approach was introduced for the first time during [VLDB 2021 Crowd Science Challenge](https://crowdscience.ai/challenges/vldb21) and originally implemented at the second-place competitor's [GitHub](https://github.com/A1exRey/VLDB2021_workshop_t5). The [paper](http://ceur-ws.org/Vol-2932/short2.pdf) describing this model was presented at the [2nd Crowd Science Workshop](https://crowdscience.ai/conference_events/vldb21). ## How to use ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig mname = "toloka/t5-large-for-text-aggregation" tokenizer = AutoTokenizer.from_pretrained(mname) model = AutoModelForSeq2SeqLM.from_pretrained(mname) input = "samplee text | sampl text | sample textt" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # sample text ``` ## Training data Pretrained weights were taken from the [original](https://huggingface.co/t5-large) T5 Large model by Google. For more details on the T5 architecture and training procedure see https://arxiv.org/abs/1910.10683 Model was fine-tuned on `train-clean`, `dev-clean` and `dev-other` parts of the [CrowdSpeech](https://huggingface.co/datasets/toloka/CrowdSpeech) dataset that was introduced in [our paper](https://openreview.net/forum?id=3_hgF1NAXU7&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2021%2FTrack%2FDatasets_and_Benchmarks%2FRound1%2FAuthors%23your-submissions). ## Training procedure The model was fine-tuned for eight epochs directly following the HuggingFace summarization training [example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization). ## Eval results Dataset | Split | WER -----------|------------|---------- CrowdSpeech| test-clean | 4.99 CrowdSpeech| test-other | 10.61 ### BibTeX entry and citation info ```bibtex @inproceedings{Pletenev:21, author = {Pletenev, Sergey}, title = {{Noisy Text Sequences Aggregation as a Summarization Subtask}}, year = {2021}, booktitle = {Proceedings of the 2nd Crowd Science Workshop: Trust, Ethics, and Excellence in Crowdsourced Data Management at Scale}, pages = {15--20}, address = {Copenhagen, Denmark}, issn = {1613-0073}, url = {http://ceur-ws.org/Vol-2932/short2.pdf}, language = {english}, } ``` ```bibtex @misc{pavlichenko2021vox, title={Vox Populi, Vox DIY: Benchmark Dataset for Crowdsourced Audio Transcription}, author={Nikita Pavlichenko and Ivan Stelmakh and Dmitry Ustalov}, year={2021}, eprint={2107.01091}, archivePrefix={arXiv}, primaryClass={cs.SD} } ```
tanmoyio/wav2vec2-large-xlsr-bengali
tanmoyio
2021-09-23T16:39:27Z
1,078
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: Bengali datasets: - OpenSLR metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: cc-by-sa-4.0 model-index: - name: XLSR Wav2Vec2 Bengali by Tanmoy Sarkar results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR type: OpenSLR args: ben metrics: - name: Test WER type: wer value: 88.58 --- # Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using the [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage Dataset must be downloaded from [this website](https://www.openslr.org/53/) and preprocessed accordingly. For example 1250 test samples has been chosen. ```python import pandas as pd test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\\t', header=None)[60000:61250] test_dataset.columns = ["audio_path", "__", "label"] test_dataset = test_data.drop("__", axis=1) def add_file_path(text): path = "data/" + text[:2] + "/" + text + '.flac' return path test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x)) ``` The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["label"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Bengali test data of OpenSLR. ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 88.58 % ## Training The script used for training can be found [Bengali ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1Bkc5C_cJV9BeS0FD0MuHyayl8hqcbdRZ?usp=sharing)
skt/kogpt2-base-v2
skt
2021-09-23T16:29:28Z
23,482
45
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ko tags: - gpt2 license: cc-by-nc-sa-4.0 --- For more details: https://github.com/SKT-AI/KoGPT2
popcornell/FasNetTAC-paper
popcornell
2021-09-23T16:21:33Z
13
3
asteroid
[ "asteroid", "pytorch", "audio", "FasNet-TAC", "audio-to-audio", "multichannel", "beamforming", "dataset:TACDataset", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - FasNet-TAC - audio-to-audio - multichannel - beamforming datasets: - TACDataset - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model `Samuele Cornell/FasNetTAC_TACDataset_separatenoisy` Imported from [Zenodo](https://zenodo.org/record/4557489) ### Description: This model was trained by popcornell using the TAC/TAC recipe in Asteroid. It was trained on the separate_noisy task of the TACDataset dataset. ### Training config: ```yaml data: dev_json: ./data/validation.json sample_rate: 16000 segment: None test_json: ./data/test.json train_json: ./data/train.json net: chunk_size: 50 context_ms: 16 enc_dim: 64 feature_dim: 64 hidden_dim: 128 hop_size: 25 n_layers: 4 n_src: 2 window_ms: 4 optim: lr: 0.001 weight_decay: 1e-06 training: accumulate_batches: 1 batch_size: 8 early_stop: True epochs: 200 gradient_clipping: 5 half_lr: True num_workers: 8 patience: 30 save_top_k: 10 ``` ### Results: ```yaml si_sdr: 10.871864315894744 si_sdr_imp: 11.322284052560262 ``` ### License notice: This work "FasNetTAC_TACDataset_separatenoisy" is a derivative of LibriSpeech ASR corpus by Vassil Panayotov, used under CC BY 4.0; of End-to-end Microphone Permutation and Number Invariant Multi-channel Speech Separation by Yi Luo, Zhuo Chen, Nima Mesgarani, Takuya Yoshioka, used under CC BY 4.0. "FasNetTAC_TACDataset_separatenoisy" is licensed under Attribution-ShareAlike 3.0 Unported by popcornell.
persiannlp/parsbert-base-parsinlu-multiple-choice
persiannlp
2021-09-23T16:20:53Z
66
0
transformers
[ "transformers", "pytorch", "jax", "bert", "multiple-choice", "parsbert", "persian", "farsi", "text-classification", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - parsbert - persian - farsi pipeline_tag: text-classification license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a parsbert-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from typing import List import torch from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer model_name = "persiannlp/parsbert-base-parsinlu-multiple-choice" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) def run_model(question: str, candicates: List[str]): assert len(candicates) == 4, "you need four candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = question + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) print(output) return output run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) run_model( question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"]) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/parsbert-base-parsinlu-entailment
persiannlp
2021-09-23T16:20:50Z
20
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "entailment", "parsbert", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - entailment - parsbert - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Textual Entailment (مدل برای پاسخ به استلزام منطقی) This is a model for textual entailment problems. Here is an example of how you can run this model: ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer import numpy as np labels = ["entails", "contradicts", "neutral"] model_name_or_path = "persiannlp/parsbert-base-parsinlu-entailment" model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) model_predict( "این مسابقات بین آوریل و دسامبر در هیپودروم ولیفندی در نزدیکی باکرکی ، ۱۵ کیلومتری (۹ مایل) غرب استانبول برگزار می شود.", "در ولیفندی هیپودروم، مسابقاتی از آوریل تا دسامبر وجود دارد." ) model_predict( "آیا کودکانی وجود دارند که نیاز به سرگرمی دارند؟", "هیچ کودکی هرگز نمی خواهد سرگرم شود.", ) model_predict( "ما به سفرهایی رفته ایم که در نهرهایی شنا کرده ایم", "علاوه بر استحمام در نهرها ، ما به اسپا ها و سونا ها نیز رفته ایم." ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-translation_en_fa
persiannlp
2021-09-23T16:20:48Z
705
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (English -> Persian). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-translation_en_fa" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("Praise be to Allah, the Cherisher and Sustainer of the worlds;") run_model("shrouds herself in white and walks penitentially disguised as brotherly love through factories and parliaments; offers help, but desires power;") run_model("He thanked all fellow bloggers and organizations that showed support.") run_model("Races are held between April and December at the Veliefendi Hippodrome near Bakerky, 15 km (9 miles) west of Istanbul.") run_model("I want to pursue PhD in Computer Science about social network,what is the open problem in social networks?") ``` which should output: ``` ['برای الله، یعنی چرنده و سوزان دنیا، تحسین کنید'] ['خودش را در سفید پوسته می کند و به صورت عشق برادرانه'] ['او از تمام بلاگرها و سازمان هایی که حمایتشان را نشان می داد'] ['در طول ماه آوریل و دسامبر در والی فیودورونا نزدیک بیکر'] ['من می خواهم در مورد شبکه اجتماعی تحقیقات علوم کامپیوتری را دن'] ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-squad-reading-comprehension
persiannlp
2021-09-23T16:20:45Z
81
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "reading-comprehension", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:squad", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - reading-comprehension - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - squad metrics: - f1 --- # Reading Comprehension (مدل برای پاسخ به درک مطلب) This is a mT5-based model for reading comprehension. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-squad-reading-comprehension" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(paragraph, question, **generator_args): input_ids = tokenizer.encode(question + "\n" + paragraph, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک شی را دارای تقارن می‌نامیم زمانی که ان شی را بتوان به دو یا چند قسمت تقسیم کرد که آن‌ها قسمتی از یک طرح سازمان یافته باشند یعنی بر روی شکل تنها جابجایی و چرخش و بازتاب و تجانس انجام شود و در اصل شکل تغییری به وجود نیایید آنگاه ان را تقارن می‌نامیم مرکز تقارن:اگر در یک شکل نقطه‌ای مانندA وجود داشته باشد که هر نقطهٔ روی شکل (محیط) نسبت به نقطه یAمتقارن یک نقطهٔ دیگر شکل (محیط) باشد، نقطهٔ Aمرکز تقارن است. یعنی هر نقطه روی شکل باید متقارنی داشته باشد شکل‌های که منتظم هستند و زوج ضلع دارند دارای مرکز تقارند ولی شکل‌های فرد ضلعی منتظم مرکز تقارن ندارند. متوازی‌الأضلاع و دایره یک مرکز تقارن دارند ممکن است یک شکل خط تقارن نداشته باشد ولی مرکز تقارن داشته باشد. (منبع:س. گ)", "اشکالی که یک مرکز تقارن دارند" ) run_model( "شُتُر یا اُشتر را که در زبان پهلوی (ushtar)[نیازمند منبع] می‌گفتند حیوانی است نیرومند و تنومند با توش و توان بالا از خانواده شتران؛ شبه نشخوارکننده و با دست و گردنی دراز. بر پشت خود یک یا دو کوهان دارد که ساختارش از پیه و چربی است. در دین اسلام گوشت او حلال است. اما ذبح آن با دیگر جانوران حلال گوشت متفاوت است و آن را نحر (بریدن گلو) می‌کنند و اگر سر آن را مانند گوسفند پیش از نحر ببرند گوشت آن حلال نیست. شیرش نیز نوشیده می‌شود ولی بیشتر کاربرد بارکشی دارد. پشم و پوستش نیز برای ریسندگی و پارچه‌بافی و کفش‌دوزی کاربرد دارد. گونه‌های دیگری از شتران نیز در آمریکای جنوبی زندگی می‌کنند، به نام‌های لاما، آلپاکا، گواناکو که دارای کوهان نیستند. شتر ویژگی‌های خاصّی دارد که مهم‌ترین آن‌ها تحمّل شرایط سخت صحرا و دماهای گوناگون و به‌ویژه گرمای شدید تابستان و کمبود آب و علوفه است. ترکیب جسمانی شتر با دیگر جانوران اختلاف زیادی دارد، و این اختلاف انگیزه شده که شتر در درازا روزهای سال در بیابان زندگی کند و از بوته‌ها و درختچه‌های گوناگون صحرایی و کویری و حتی از بوته‌های شور و خاردار تغذیه کند. عرب‌ها از زمان‌های بسیار دور از شتر استفاده کرده و می‌کنند. آن‌ها به این حیوان اهلی لقب کشتی صحرا (به عربی: سفینةالصحراء) داده‌اند.", "غذای شترچیست؟" ) run_model( """حسین میرزایی می‌گوید مرحله اول پرداخت وام حمایتی کرونا به همگی خانوارهای یارانه‌بگیر متقاضی تکمیل شده است و حال چهار میلیون خانوار که به عنوان "اقشار خاص" و "آسیب‌پذیر" شناسایی شدند، می‌توانند برای یک میلیون تومان وام دیگر درخواست بدهند. آقای میرزایی گفته خانوارهای "آسیب‌پذیر" که شرایط گرفتن وام یک میلیونی اضافی را دارند با پیامک از این امکان مطلع شده‌اند. بنا به گزارش‌های رسمی با شیوع کرونا در ایران یک میلیون نفر بیکار شده‌اند و درآمد کارکنان مشاغل غیررسمی نیز ضربه قابل توجهی خورده است. ارزش ریال هم در هفته‌های اخیر در برابر ارزهای خارجی سقوط کرده است. اقتصاد ایران پیش از شیوع کرونا نیز با مشکلات مزمن رکود، تورم، تحریم و فساد روبرو بود.""", "وام یارانه به چه کسانی میدهند؟" ) run_model( "در ۲۲ ژوئن ۱۹۴۱ نیروهای محور در عملیات بارباروسا حمله سنگینی به اتحاد شوروی کرده و یکی از بزرگترین نبردهای زمینی تاریخ بشر را رقم زدند. همچنین جبهه شرقی باعث به دام افتادن نیروهای محور شد و بیش از همه ارتش آلمان نازی را درگیر جنگ فرسایشی کرد. در دسامبر ۱۹۴۱ ژاپن یک در عملیاتی ناگهانی با نام نبرد پرل هاربر به پایگاه دریایی ایالات متحده آمریکا حمله کرد. به دنبال این اتفاق آمریکا نیز بلافاصله علیه ژاپن اعلان جنگ کرد که با حمایت بریتانیا همراه شد. پس از آن متحدین (نیروهای محور در اروپا) نیز با اتحاد ژاپن علیه آمریکا اعلام جنگ کردند. دست‌آوردهای ژاپن در یورش به آمریکا باعث ایجاد این احساس در آسیا شد که آسیا از تسلط غرب خارج شده‌است از این رو بسیاری از ارتش‌های شکست خورده با آنها همراهی کردند.", "چرا امریکا وارد جنگ جهانی دوم شد؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-sentiment-analysis
persiannlp
2021-09-23T16:20:41Z
54
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "sentiment", "sentiment-analysis", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-small-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-arc-comqa-obqa-multiple-choice
persiannlp
2021-09-23T16:20:31Z
7
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-snli-entailment
persiannlp
2021-09-23T16:20:24Z
6
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "entailment", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:snli", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - entailment - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - snli metrics: - accuracy --- # Textual Entailment (مدل برای پاسخ به استلزام منطقی) This is a model for textual entailment problems. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size="large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-snli-entailment" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(premise, hypothesis, **generator_args): input_ids = tokenizer.encode(f"{premise}<sep>{hypothesis}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "این مسابقات بین آوریل و دسامبر در هیپودروم ولیفندی در نزدیکی باکرکی ، ۱۵ کیلومتری (۹ مایل) غرب استانبول برگزار می شود.", "در ولیفندی هیپودروم، مسابقاتی از آوریل تا دسامبر وجود دارد." ) run_model( "آیا کودکانی وجود دارند که نیاز به سرگرمی دارند؟", "هیچ کودکی هرگز نمی خواهد سرگرم شود.", ) run_model( "ما به سفرهایی رفته ایم که در نهرهایی شنا کرده ایم", "علاوه بر استحمام در نهرها ، ما به اسپا ها و سونا ها نیز رفته ایم." ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-sentiment-analysis
persiannlp
2021-09-23T16:20:21Z
25
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "sentiment", "sentiment-analysis", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-large-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-qqp-query-paraphrasing
persiannlp
2021-09-23T16:20:19Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "query-paraphrasing", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:qqp", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - query-paraphrasing - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - qqp metrics: - accuracy --- # Detection of Paraphrased Queries (تشخصیص سوالات هم‌معنی) This is a model for detection of paraphrased queries. Here is an example of how you can run this model: ```python from transformers import MT5Config, MT5ForConditionalGeneration, MT5Tokenizer model_name = "persiannlp/mt5-large-parsinlu-qqp-query-paraphrasing" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(q1, q2, **generator_args): input_ids = tokenizer.encode(f"{q1}<sep>{q2}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("چه چیزی باعث پوکی استخوان می شود؟", "چه چیزی باعث مقاومت استخوان در برابر ضربه می شود؟") run_model("من دارم به این فکر میکنم چرا ساعت هفت نمیشه؟", "چرا من ساده فکر میکردم به عشقت پابندی؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("شناسنامه در چه سالی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") run_model("سیب زمینی چه زمانی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-multiple-choice
persiannlp
2021-09-23T16:20:14Z
63
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-arc-comqa-obqa-multiple-choice
persiannlp
2021-09-23T16:20:12Z
1
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-translation_en_fa
persiannlp
2021-09-23T16:20:09Z
111
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (English -> Persian). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-translation_en_fa" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("Praise be to Allah, the Cherisher and Sustainer of the worlds;") run_model("shrouds herself in white and walks penitentially disguised as brotherly love through factories and parliaments; offers help, but desires power;") run_model("He thanked all fellow bloggers and organizations that showed support.") run_model("Races are held between April and December at the Veliefendi Hippodrome near Bakerky, 15 km (9 miles) west of Istanbul.") run_model("I want to pursue PhD in Computer Science about social network,what is the open problem in social networks?") ``` which should output: ``` ['خدا را شکر که عامل خطرناک و محافظ دنیاست.'] ['خود را سفید می کند و به شکل برادرانه ای در کارخانه ها و'] ['او از تمامی همکاران و سازمان هایی که از او حمایت می کردند تشکر'] ['برگزاری مسابقات بین آوریل تا دسامبر در هیپوگریم والی'] ['من می خواهم تحصیل دکترای علوم کامپیوتری را در مورد شب'] ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-snli-entailment
persiannlp
2021-09-23T16:20:04Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "entailment", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:snli", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - entailment - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - snli metrics: - accuracy --- # Textual Entailment (مدل برای پاسخ به استلزام منطقی) This is a model for textual entailment problems. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size="base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-snli-entailment" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(premise, hypothesis, **generator_args): input_ids = tokenizer.encode(f"{premise}<sep>{hypothesis}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "این مسابقات بین آوریل و دسامبر در هیپودروم ولیفندی در نزدیکی باکرکی ، ۱۵ کیلومتری (۹ مایل) غرب استانبول برگزار می شود.", "در ولیفندی هیپودروم، مسابقاتی از آوریل تا دسامبر وجود دارد." ) run_model( "آیا کودکانی وجود دارند که نیاز به سرگرمی دارند؟", "هیچ کودکی هرگز نمی خواهد سرگرم شود.", ) run_model( "ما به سفرهایی رفته ایم که در نهرهایی شنا کرده ایم", "علاوه بر استحمام در نهرها ، ما به اسپا ها و سونا ها نیز رفته ایم." ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-sentiment-analysis
persiannlp
2021-09-23T16:20:02Z
94
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "sentiment", "sentiment-analysis", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-base-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-multiple-choice
persiannlp
2021-09-23T16:19:55Z
12
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-arc-comqa-obqa-multiple-choice
persiannlp
2021-09-23T16:19:52Z
11
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
pere/norwegian-t5-base
pere
2021-09-23T16:19:40Z
10
0
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model 🇳🇴 This T5-base model is trained from scratch on a 19GB Balanced Bokmål-Nynorsk Corpus. Update: Due to disk space errors, the model had to be restarted July 20. It is currently still running. Parameters used in training: ```bash python3 ./run_t5_mlm_flax_streaming.py --model_name_or_path="./norwegian-t5-base" --output_dir="./norwegian-t5-base" --config_name="./norwegian-t5-base" --tokenizer_name="./norwegian-t5-base" --dataset_name="pere/nb_nn_balanced_shuffled" --max_seq_length="512" --per_device_train_batch_size="32" --per_device_eval_batch_size="32" --learning_rate="0.005" --weight_decay="0.001" --warmup_steps="2000" --overwrite_output_dir --logging_steps="100" --save_steps="500" --eval_steps="500" --push_to_hub --preprocessing_num_workers 96 --adafactor ```
pere/norwegian-t5-base-NCC
pere
2021-09-23T16:19:38Z
4
0
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴 This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. It needs to be finetuned on a specific task before being used for anything. Currently the model is training. It is expected that it should be finished by the end of August 2021. The following setting were used in training: ```bash ./run_t5_mlm_flax.py \ --output_dir="./" \ --model_type="t5" \ --config_name="./" \ --tokenizer_name="./" \ --train_file /mnt/disks/flaxdisk/corpus/norwegian_colossal_corpus_train.json \ --validation_file /mnt/disks/flaxdisk/corpus/norwegian_colossal_corpus_validation.json \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="8e-3" \ --warmup_steps="2000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_epochs="3" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="100" \ --save_steps="2500" \ --eval_steps="2500" \ --preprocessing_num_workers 96 \ --adafactor \ --push_to_hub ```
pere/norwegian-t5-base-NCC-nb-nn
pere
2021-09-23T16:19:35Z
60
0
transformers
[ "transformers", "jax", "tensorboard", "seq2seq", "no", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴 This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. It needs to be finetuned on a specific task before being used for anything. The following setting were used in training: ```bash ./run_t5_mlm_flax_streaming.py \ --output_dir="./" \ --model_type="t5" \ --config_name="./" \ --tokenizer_name="./" \ --dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --learning_rate="8e-3" \ --warmup_steps="0" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_epochs="5" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="500" \ --num_train_steps="1000000" \ --num_eval_samples="5000" \ --save_steps="5000" \ --eval_steps="5000" \ --preprocessing_num_workers 96 \ --adafactor \ --push_to_hub ```
pere/norwegian-t5-base-NCC-fast
pere
2021-09-23T16:19:32Z
21
4
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴 This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. It needs to be finetuned on a specific task before being used for anything. The following setting were used in training: ```bash ./run_t5_mlm_flax_streaming.py \ --output_dir="./" \ --model_type="t5" \ --config_name="./" \ --tokenizer_name="./" \ --dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --learning_rate="8e-3" \ --warmup_steps="0" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_epochs="5" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="500" \ --num_train_steps="1000000" \ --num_eval_samples="5000" \ --save_steps="5000" \ --eval_steps="5000" \ --preprocessing_num_workers 96 \ --adafactor \ --push_to_hub ```
pere/norwegian-mt5
pere
2021-09-23T16:19:28Z
5
0
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/BokmÃ¥l --- # 🇳🇴 Norwegian mT5 Base model 🇳🇴 This mT5-base model is trained from the mT5 checkpoint on a 19GB Balanced Bokmål-Nynorsk Corpus. Parameters used in training: ```bash python3 ./run_t5_mlm_flax_streaming.py --model_name_or_path="./norwegian-t5-base" --output_dir="./norwegian-t5-base" --config_name="./norwegian-t5-base" --tokenizer_name="./norwegian-t5-base" --dataset_name="pere/nb_nn_balanced_shuffled" --max_seq_length="512" --per_device_train_batch_size="32" --per_device_eval_batch_size="32" --learning_rate="0.005" --weight_decay="0.001" --warmup_steps="2000" --overwrite_output_dir --logging_steps="100" --save_steps="500" --eval_steps="500" --push_to_hub --preprocessing_num_workers 96 --adafactor ```
pere/norwegian-gpt2
pere
2021-09-23T16:19:24Z
196
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "norwegian", "GPT2", "casual language modeling", "no", "dataset:oscar", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - norwegian - GPT2 - casual language modeling datasets: - oscar --- # Norwegian GPT-2 - Oscar ## Description This is a sample reference model trained only on the Oscar Corpus for a day on a TPU v3-8. Pretrained model on Norwegian language using a causal language modeling (CLM) objective.
osanseviero/corenlp_spanish
osanseviero
2021-09-23T16:16:53Z
0
0
null
[ "corenlp", "sp", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - sp license: gpl --- # Core NLP model for sp CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_german
osanseviero
2021-09-23T16:16:51Z
0
0
null
[ "corenlp", "ge", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - ge license: gpl --- # Core NLP model for ge CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_english-kbp
osanseviero
2021-09-23T16:16:46Z
0
0
null
[ "corenlp", "en", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - en license: gpl --- # Core NLP model for en CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_english-default
osanseviero
2021-09-23T16:16:41Z
0
0
null
[ "corenlp", "en", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - en license: gpl --- # Core NLP model for en CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_arabic
osanseviero
2021-09-23T16:16:37Z
0
0
null
[ "corenlp", "ar", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - ar license: gpl --- # Core NLP model for ar CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/ConvTasNet_Libri1Mix_enhsingle_16k
osanseviero
2021-09-23T16:16:32Z
0
0
null
[ "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - audio - ConvTasNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 library_tag: generic --- ## Clone from Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.743051006476085 si_sdr_imp: 11.293269700616385 sdr: 15.300522933671061 sdr_imp: 11.797860134458015 sir: Infinity sir_imp: NaN sar: 15.300522933671061 sar_imp: 11.797860134458015 stoi: 0.9310514162434267 stoi_imp: 0.13513159270288563 ``` License notice: This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
mpariente/DPRNNTasNet-ks2_WHAM_sepclean
mpariente
2021-09-23T16:12:22Z
252
9
asteroid
[ "asteroid", "pytorch", "audio", "DPRNNTasNet", "audio-to-audio", "dataset:wham", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - DPRNNTasNet - audio-to-audio datasets: - wham - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `mpariente/DPRNNTasNet-ks2_WHAM_sepclean` Imported from [Zenodo](https://zenodo.org/record/3862942) ### Description: This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the WHAM! dataset. ### Training config: ```yaml data: mode: min nondefault_nsrc: None sample_rate: 8000 segment: 2.0 task: sep_clean train_dir: data/wav8k/min/tr valid_dir: data/wav8k/min/cv filterbank: kernel_size: 2 n_filters: 64 stride: 1 main_args: exp_dir: exp/train_dprnn_new/ gpus: -1 help: None masknet: bidirectional: True bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 2 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1e-05 positional arguments: training: batch_size: 3 early_stop: True epochs: 200 gradient_clipping: 5 half_lr: True num_workers: 8 ``` ### Results: ```yaml si_sdr: 19.316743490695334 si_sdr_imp: 19.317895273889842 sdr: 19.68085347190952 sdr_imp: 19.5298092932871 sir: 30.362213998701232 sir_imp: 30.21116982007881 sar: 20.15553251343315 sar_imp: -129.02091762351188 stoi: 0.97772664309074 stoi_imp: 0.23968091518217424 ``` ### License notice: This work "DPRNNTasNet-ks2_WHAM_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "DPRNNTasNet-ks2_WHAM_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
mpariente/ConvTasNet_Libri3Mix_sepnoisy
mpariente
2021-09-23T16:12:18Z
17
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:LibriMix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - LibriMix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model Imported from this Zenodo [model page](https://zenodo.org/record/4020529). ## Description: This model was trained by Takhir Mirzaev using the Librimix/ConvTasNet recipe in Asteroid. It was trained on the `sep_noisy` task of the Libri3Mix dataset. ## Training config: ```yaml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 4 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ## Results: ```yaml si_sdr: 6.824750632456865 si_sdr_imp: 11.234803761803752 sdr: 7.715799858488098 sdr_imp: 11.778681386239114 sir: 16.442141130818637 sir_imp: 19.527535070051055 sar: 8.757864265661263 sar_imp: -0.15657258049670303 stoi: 0.7854554136619554 stoi_imp: 0.22267957718163015 ``` ## License notice: This work "ConvTasNet_Libri3Mix_sepnoisy" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by [Vassil Panayotov](https://github.com/vdp), used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepnoisy" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
mpariente/ConvTasNet_Libri1Mix_enhsingle_8k
mpariente
2021-09-23T16:12:15Z
19
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "dataset:LibriMix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - ConvTasNet datasets: - LibriMix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model Imported from this Zenodo [model page](https://zenodo.org/record/3970768). ## Description: This model was trained by Brij Mohan using the Librimix/ConvTasNet recipe in Asteroid. It was trained on the `enh_single` task of the Libri3Mix dataset. ## Training config: ```yaml data: n_src: 1 sample_rate: 8000 segment: 3 task: enh_single train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True ``` ## Results: ```yaml si_sdr: 14.783675142685572 si_sdr_imp: 11.464625198953202 sdr: 15.497505907983102 sdr_imp: 12.07230150154914 sar: 15.497505907983102 sar_imp: 12.07230150154914 stoi: 0.9270030254700518 stoi_imp: 0.1320547197597893 ``` ## License notice: This work "ConvTasNet_Libri1Mix_enhsingle_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by [Vassil Panayotov](https://github.com/vdp), used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri1Mix_enhsingle_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:18Z
28
1
asteroid
[ "asteroid", "pytorch", "audio", "DPRNNTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DPRNNTasNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 1 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 2 n_filters: 64 stride: 1 masknet: bidirectional: true bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 1 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.7228101708889 si_sdr_imp: 11.2730288650292 sdr: 15.35661405197161 sdr_imp: 11.853951252758595 sir: Infinity sir_imp: NaN sar: 15.35661405197161 sar_imp: 11.853951252758595 stoi: 0.9300461826351578 stoi_imp: 0.13412635909461715 ``` License notice: This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/DCCRNet_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:13Z
1,316
16
asteroid
[ "asteroid", "pytorch", "audio", "DCCRNet", "audio-to-audio", "speech-enhancement", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DCCRNet - audio-to-audio - speech-enhancement datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DCCRNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_kernel_size: 400 stft_n_filters: 512 stft_stride: 100 masknet: architecture: DCCRN-CL n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 12 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.329767398333798 si_sdr_imp: 9.879986092474098 sdr: 13.87279932997016 sdr_imp: 10.370136530757103 sir: Infinity sir_imp: NaN sar: 13.87279932997016 sar_imp: 10.370136530757103 stoi: 0.9140907015623948 stoi_imp: 0.11817087802185405 ``` License notice: This work "DCCRNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCCRNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k
JorisCos
2021-09-23T15:49:08Z
43
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepclean_16k
JorisCos
2021-09-23T15:49:03Z
54
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yaml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.932601610824145 si_sdr_imp: 12.299341066588594 sdr: 9.557260814240447 sdr_imp: 12.76957128385349 sir: 17.387646884037455 sir_imp: 20.599955591768484 sar: 10.686885056960504 sar_imp: -55.8894643263213 stoi: 0.8481258332025354 stoi_imp: 0.25528367853750356 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.