modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-23 18:28:48
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 573
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-23 18:28:01
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
ViktorAlm/electra-base-norwegian-uncased-discriminator
|
ViktorAlm
| 2020-12-11T21:30:55Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"electra",
"pretraining",
"no",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: no
thumbnail: https://i.imgur.com/QqSEC5I.png
---
# Norwegian Electra

Trained on Oscar + wikipedia + opensubtitles + some other data I had with the awesome power of TPUs(V3-8)
Use with caution. I have no downstream tasks in Norwegian to test on so I have no idea of its performance yet.
# Model
## Electra: Pre-training Text Encoders as Discriminators Rather Than Generators
Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning
- https://openreview.net/pdf?id=r1xMH1BtvB
- https://github.com/google-research/electra
# Acknowledgments
### TensorFlow Research Cloud
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️
- https://www.tensorflow.org/tfrc
#### OSCAR corpus
- https://oscar-corpus.com/
#### OPUS
- http://opus.nlpl.eu/
- http://www.opensubtitles.org/
|
Rostlab/prot_t5_xl_bfd
|
Rostlab
| 2020-12-11T21:30:13Z | 2,933 | 10 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"t5",
"text2text-generation",
"protein language model",
"dataset:BFD",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
language: protein
tags:
- protein language model
datasets:
- BFD
---
# ProtT5-XL-BFD model
Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in
[this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids.
## Model description
ProtT5-XL-BFD is based on the `t5-3b` model and was pretrained on a large corpus of protein sequences in a self-supervised fashion.
This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those protein sequences.
One important difference between this T5 model and the original T5 version is the denosing objective.
The original T5-3B model was pretrained using a span denosing objective, while this model was pre-trained with a Bart-like MLM denosing objective.
The masking probability is consistent with the original T5 training by randomly masking 15% of the amino acids in the input.
It has been shown that the features extracted from this self-supervised model (LM-embeddings) captured important biophysical properties governing protein shape.
shape.
This implied learning some of the grammar of the language of life realized in protein sequences.
## Intended uses & limitations
The model could be used for protein feature extraction or to be fine-tuned on downstream tasks.
We have noticed in some tasks on can gain more accuracy by fine-tuning the model rather than using it as a feature extractor.
We have also noticed that for feature extraction, its better to use the feature extracted from the encoder not from the decoder.
### How to use
Here is how to use this model to extract the features of a given protein sequence in PyTorch:
```python
from transformers import T5Tokenizer, T5Model
import re
import torch
tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_bfd', do_lower_case=False)
model = T5Model.from_pretrained("Rostlab/prot_t5_xl_bfd")
sequences_Example = ["A E T C Z A O","S K T Z P"]
sequences_Example = [re.sub(r"[UZOB]", "X", sequence) for sequence in sequences_Example]
ids = tokenizer.batch_encode_plus(sequences_Example, add_special_tokens=True, padding=True)
input_ids = torch.tensor(ids['input_ids'])
attention_mask = torch.tensor(ids['attention_mask'])
with torch.no_grad():
embedding = model(input_ids=input_ids,attention_mask=attention_mask,decoder_input_ids=None)
# For feature extraction we recommend to use the encoder embedding
encoder_embedding = embedding[2].cpu().numpy()
decoder_embedding = embedding[0].cpu().numpy()
```
## Training data
The ProtT5-XL-BFD model was pretrained on [BFD](https://bfd.mmseqs.com/), a dataset consisting of 2.1 billion protein sequences.
## Training procedure
### Preprocessing
The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The rare amino acids "U,Z,O,B" were mapped to "X".
The inputs of the model are then of the form:
```
Protein Sequence [EOS]
```
The preprocessing step was performed on the fly, by cutting and padding the protein sequences up to 512 tokens.
The details of the masking procedure for each sequence are as follows:
- 15% of the amino acids are masked.
- In 90% of the cases, the masked amino acids are replaced by `[MASK]` token.
- In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace.
### Pretraining
The model was trained on a single TPU Pod V3-1024 for 1.2 million steps in total, using sequence length 512 (batch size 4k).
It has a total of approximately 3B parameters and was trained using the encoder-decoder architecture.
The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
## Evaluation results
When the model is used for feature etraction, this model achieves the following results:
Test results :
| Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane |
|:-----:|:-----:|:-----:|:-----:|:-----:|
| CASP12 | 77 | 66 | | |
| TS115 | 85 | 74 | | |
| CB513 | 84 | 71 | | |
| DeepLoc | | | 77 | 91 |
### BibTeX entry and citation info
```bibtex
@article {Elnaggar2020.07.12.199554,
author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard},
title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing},
elocation-id = {2020.07.12.199554},
year = {2020},
doi = {10.1101/2020.07.12.199554},
publisher = {Cold Spring Harbor Laboratory},
abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \<a href="https://github.com/agemagician/ProtTrans"\>https://github.com/agemagician/ProtTrans\</a\>Competing Interest StatementThe authors have declared no competing interest.},
URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554},
eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf},
journal = {bioRxiv}
}
```
> Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
|
Ogayo/Hel-ach-en
|
Ogayo
| 2020-12-11T21:30:01Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"ach",
"en",
"dataset:JW300",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:04Z |
---
language:
- ach
- en
tags:
- translation
license: cc-by-4.0
datasets:
- JW300
metrics:
- bleu
---
# HEL-ACH-EN
## Model description
MT model translating Acholi to English initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en) on HuggingFace.
## Intended uses & limitations
Machine Translation experiments. Do not use for sensitive tasks.
#### How to use
```python
# You can include sample code which will be formatted
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Ogayo/Hel-ach-en")
model = AutoModelForSeq2SeqLM.from_pretrained("Ogayo/Hel-ach-en")
```
#### Limitations and bias
Trained on Jehovah Witnesses data so contains theirs and Christian views.
## Training data
Trained on OPUS JW300 data.
Initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en?text=Bed+gi+nyasi+mar+chieng%27+nyuol+mopong%27+gi+mor%21#model_card)
## Training procedure
Remove duplicates and rows with no alphabetic characters. Used GPU
## Eval results
testset | BLEU
--- | ---
JW300.luo.en| 46.1
|
cinmodel/electra-small-japanese-generator
|
cinmodel
| 2020-12-11T21:26:17Z | 6 | 2 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"fill-mask",
"ja",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
language: ja
---
## Japanese ELECTRA-small
We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately.
```
# ELECTRA-small generator usage
from transformers import BertJapaneseTokenizer, ElectraForMaskedLM
tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"})
model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator')
```
|
cinmodel/electra-small-japanese-discriminator
|
cinmodel
| 2020-12-11T21:26:13Z | 18 | 1 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"ja",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04Z |
---
language: ja
license: apache-2.0
---
## Japanese ELECTRA-small
We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB).
Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately.
## How to use the discriminator in `transformers`
```
from transformers import BertJapaneseTokenizer, ElectraForPreTraining
tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"})
model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator')
```
|
nielsr/tapas-base
|
nielsr
| 2020-12-11T11:12:17Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tapas",
"feature-extraction",
"sequence-classification",
"en",
"arxiv:2004.02349",
"arxiv:2010.00571",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- tapas
- sequence-classification
license: apache-2.0
---
# TAPAS base model
This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_inter_masklm_base_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas).
This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training. It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table).
The other (non-default) version which can be used is the one with absolute position embeddings:
- `revision="v1"`, which corresponds to `tapas_inter_masklm_base`
Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by
the Hugging Face team and contributors.
## Model description
TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion.
This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it
can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in
the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words.
This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other,
or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional
representation of a table and associated text.
- Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating
a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence
is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements.
This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used
to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed
or refuted by the contents of a table. Fine-tuning is done by adding one or more classification heads on top of the pre-trained model, and then
jointly train these randomly initialized classification heads with the base model on a downstream task.
## Intended uses & limitations
You can use the raw model for getting hidden representatons about table-question pairs, but it's mostly intended to be fine-tuned on a downstream task such as question answering or sequence classification. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you.
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence [SEP] Flattened table [SEP]
```
### Pre-training
The model was pre-trained on 32 Cloud TPU v3 cores for 1,000,000 steps with maximum sequence length 512 and batch size of 512.
In this setup, pre-training on MLM only takes around 3 days. Aditionally, the model has been further pre-trained on a second task (table entailment). See the original TAPAS [paper](https://www.aclweb.org/anthology/2020.acl-main.398/) and the [follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27/) for more details.
The optimizer used is Adam with a learning rate of 5e-5, and a warmup
ratio of 0.01.
### BibTeX entry and citation info
```bibtex
@misc{herzig2020tapas,
title={TAPAS: Weakly Supervised Table Parsing via Pre-training},
author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos},
year={2020},
eprint={2004.02349},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
```bibtex
@misc{eisenschlos2020understanding,
title={Understanding tables with intermediate pre-training},
author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller},
year={2020},
eprint={2010.00571},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
dbmdz/flair-historic-ner-lft
|
dbmdz
| 2020-12-11T10:41:44Z | 17 | 1 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"de",
"license:mit",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: de
inference: false
license: mit
---
# Towards Robust Named Entity Recognition for Historic German
Based on [our paper](https://www.aclweb.org/anthology/W19-4312/)
we release a new model trained on the LFT dataset.
**Note:** We use BPEmbeddings instead of the combination of
Wikipedia, Common Crawl and character embeddings (as used in the paper),
so save space and training/inferencing time.
# Results
| Dataset \ Run | Run 1 | Run 2 | Run 3† | Avg.
| ------------- | ----- | ----- | --------- | ------------
| Development | 76.32 | 76.13 | **76.36** | 76.27
| Test | 77.07 | 77.35 | 77.20 | 77.21
Paper reported an averaged F1-score of 77.51.
† denotes that this model is selected for upload.
|
stefan-it/flair-ner-conll03
|
stefan-it
| 2020-12-11T10:07:20Z | 7 | 0 |
flair
|
[
"flair",
"pytorch",
"sequence-tagger-model",
"en",
"license:mit",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: en
tags:
- flair
- sequence-tagger-model
license: mit
---
# CoNLL-2003 NER Model
Imported sequence tagger model for Flair, that was trained on English CoNLL-2003 corpus for NER.
|
bewgle/bart-large-mnli-bewgle
|
bewgle
| 2020-12-09T18:30:05Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
widget :
- text: "I like you. </s></s> I love you."
---
## bart-large-mnli
Trained by Facebook, [original source](https://github.com/pytorch/fairseq/tree/master/examples/bart)
|
google/t5-11b-ssm-wqo
|
google
| 2020-12-07T08:47:33Z | 0 | 1 | null |
[
"en",
"dataset:c4",
"dataset:wikipedia",
"dataset:web_questions",
"arxiv:2002.08909",
"arxiv:1910.10683",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: en
datasets:
- c4
- wikipedia
- web_questions
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**.
The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Web Questions (WQ)](https://huggingface.co/datasets/web_questions).
**Note**: The model was fine-tuned on 90% of the train splits of [Web Questions (WQ)](https://huggingface.co/datasets/web_questions) for 20k steps and validated on the held-out 10% of the train split.
Other community Checkpoints: [here](https://huggingface.co/models?search=ssm)
Paper: [How Much Knowledge Can You Pack
Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf)
Authors: *Adam Roberts, Colin Raffel, Noam Shazeer*
## Results on Web Questions - Test Set
|Id | link | Exact Match |
|---|---|---|
|**T5-11b**|**https://huggingface.co/google/t5-11b-ssm-wqo**|**40.8**|
|T5-xxl|https://huggingface.co/google/t5-xxl-ssm-wqo|42.8|
## Usage
The model can be used as follows for **closed book question answering**:
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-11b-ssm-wqo")
t5_tok = AutoTokenizer.from_pretrained("google/t5-11b-ssm-wqo")
input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids
gen_output = t5_qa_model.generate(input_ids)[0]
print(t5_tok.decode(gen_output, skip_special_tokens=True))
```
## Abstract
It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa.

|
gael1130/gael_first_model
|
gael1130
| 2020-12-05T12:54:42Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
I am adding my first README in order to test the interface. How good is it really?
|
Parth/mT5-question-generator
|
Parth
| 2020-12-01T03:38:27Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
from transformers import MT5ForConditionalGeneration, AutoTokenizer
model = MT5ForConditionalGeneration.from_pretrained("Parth/mT5-question-generator")
tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
|
joelniklaus/distilbert-based-german-cased-ler
|
joelniklaus
| 2020-11-30T12:52:05Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"distilbert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
# distilbert-base-german-cased-ler
Task: ler
Base Model: distilbert-base-german-cased
Trained for 3 epochs
Batch-size: 12
Seed: 42
Test F1-Score: 0.936
|
julien-c/flair-ner
|
julien-c
| 2020-11-26T22:01:14Z | 828 | 0 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"en",
"dataset:conll2003",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: en
datasets:
- conll2003
inference: false
---
## Flair NER model `en-ner-conll03-v0.4.pt`
Imported from https://nlp.informatik.hu-berlin.de/resources/models/ner/
### Demo: How to use in Flair
```python
from flair.data import Sentence
from flair.models import SequenceTagger
sentence = Sentence(
"My name is Julien, I currently live in Paris, I work at Hugging Face, Inc."
)
tagger = SequenceTagger.load("julien-c/flair-ner")
# predict NER tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence.to_tagged_string())
```
yields the following output:
> `My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .`
### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
|
julien-c/flair-de-ner
|
julien-c
| 2020-11-26T21:59:38Z | 12 | 0 |
flair
|
[
"flair",
"pytorch",
"token-classification",
"sequence-tagger-model",
"de",
"dataset:conll2003",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- flair
- token-classification
- sequence-tagger-model
language: de
datasets:
- conll2003
inference: false
---
## Flair NER model `de-ner-conll03-v0.4.pt`
Imported from https://nlp.informatik.hu-berlin.de/resources/models/de-ner/
### Demo: How to use in Flair
```python
from flair.data import Sentence
from flair.models import SequenceTagger
sentence = Sentence(
"Mein Name ist Julien, ich lebe zurzeit in Paris, ich arbeite bei Hugging Face, Inc."
)
tagger = SequenceTagger.load("julien-c/flair-de-ner")
# predict NER tags
tagger.predict(sentence)
# print sentence with predicted tags
print(sentence.to_tagged_string())
```
yields the following output:
> `Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .`
### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
|
sshleifer/opus-mt-en-he
|
sshleifer
| 2020-10-11T17:14:27Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"translation",
"en",
"he",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- he
tags:
- translation
license: apache-2.0
---
### en-he
* source group: English
* target group: Hebrew
* OPUS readme: [eng-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md)
* model: transformer
* source language(s): eng
* target language(s): heb
* model: transformer
* pre-processing: normalization + SentencePiece (spm32k,spm32k)
* download original weights: [opus-2020-10-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip)
* test set translations: [opus-2020-10-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt)
* test set scores: [opus-2020-10-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba-test.eng.heb | 37.9 | 0.602 |
### System Info:
- hf_name: en-he
- source_languages: eng
- target_languages: heb
- opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md
- original_repo: Tatoeba-Challenge
- tags: ['translation']
- languages: ['en', 'he']
- src_constituents: ('English', {'eng'})
- tgt_constituents: ('Hebrew', {'heb'})
- src_multilingual: False
- tgt_multilingual: False
- long_pair: eng-heb
- prepro: normalization + SentencePiece (spm32k,spm32k)
- url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip
- url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt
- src_alpha3: eng
- tgt_alpha3: heb
- chrF2_score: 0.602
- bleu: 37.9
- brevity_penalty: 1.0
- ref_len: 60359.0
- src_name: English
- tgt_name: Hebrew
- train_date: 2020-10-04 00:00:00
- src_alpha2: en
- tgt_alpha2: he
- prefer_old: False
- short_pair: en-he
- helsinki_git_sha: 7b1a514877868084fd74350d261519e092b5b2dc
- transformers_git_sha: 8e58566183ee49f9dbc4819a95a678fcfb1b7528
- port_machine: MacBook-Pro.local
- port_time: 2020-10-11-13:07
|
sshleifer/distill-pegasus-xsum-16-8
|
sshleifer
| 2020-10-08T03:05:56Z | 50 | 1 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"summarization",
"en",
"arxiv:1912.08777",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- summarization
---
### Pegasus Models
See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html)
Original TF 1 code [here](https://github.com/google-research/pegasus)
Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019
Maintained by: [@sshleifer](https://twitter.com/sam_shleifer)
Task: Summarization
The following is copied from the authors' README.
# Mixed & Stochastic Checkpoints
We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table.
| dataset | C4 | HugeNews | Mixed & Stochastic|
| ---- | ---- | ---- | ----|
| xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64|
| cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30|
| newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18|
| multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95|
| gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76|
| wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *|
| reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94|
| big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *|
| arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67|
| pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25|
| aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51|
| billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59|
The "Mixed & Stochastic" model has the following changes:
- trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
- trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
- the model uniformly sample a gap sentence ratio between 15% and 45%.
- importance sentences are sampled using a 20% uniform noise to importance scores.
- the sentencepiece tokenizer is updated to be able to encode newline character.
(*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data:
- wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information.
- we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS.
The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper):
trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
the model uniformly sample a gap sentence ratio between 15% and 45%.
importance sentences are sampled using a 20% uniform noise to importance scores.
the sentencepiece tokenizer is updated to be able to encode newline character.
Citation
```
@misc{zhang2019pegasus,
title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization},
author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu},
year={2019},
eprint={1912.08777},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
deep-learning-analytics/wikihow-t5-small
|
deep-learning-analytics
| 2020-09-09T18:19:54Z | 53 | 3 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"wikihow",
"t5-small",
"lm-head",
"seq2seq",
"pipeline:summarization",
"summarization",
"eng",
"dataset:Wikihow",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
language: "eng"
tags:
- wikihow
- t5-small
- pytorch
- lm-head
- seq2seq
- t5
- pipeline:summarization
- summarization
datasets:
- Wikihow
widget:
- text: "Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water
can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that
eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In
particular, look for yogurt containing the active bacteria Streptococcus thermophilus or
Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean
teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can
be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health
gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A,
which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to
neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that
cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and
plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that
upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets.,
They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and
toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state
in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your
waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the
problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of
water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves."
- text: " Bring 1/2 cup water to the boil.Add the fresh or dried rosemary to the water.Remove
from the heat. Set aside for 1/2 an hour to infuse. Added flavour can be released by pressing down
on the rosemary leaves with a spoon. Add the pieces to the blender or food processor with the
elderflower cordial. Blend or process to a purée.,, Add the lemon or lime juice and stir to
combine., Add a cover and place in the freezer.After 2 hours, remove from the freezer and break up
with a fork. This helps the ice crystals to form properly.Continue doing this every hour until the
granita freezes properly. Scoop the granita into dessert bowls and serve. Garnish with a cucumber
curl or a small sprig of rosemary."
metrics:
- Rouge1: 31.2
- RougeL: 24.5
---
# Model name
Wikihow T5-small
## Model description
This is a T5-small model trained on Wikihow All data set. The model was trained for 3 epochs using a batch size of 16 and learning rate of 3e-4. Max_input_lngth is set as 512 and max_output_length is 150. Model attained a Rouge1 score of 31.2 and RougeL score of 24.5.
We have written a blog post that covers the training procedure. Please find it [here](https://medium.com/@priya.dwivedi/fine-tuning-a-t5-transformer-for-any-summarization-task-82334c64c81).
## Usage
```
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
model = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
text = """"
Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water
can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that
eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In
particular, look for yogurt containing the active bacteria Streptococcus thermophilus or
Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean
teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can
be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health
gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A,
which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to
neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that
cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and
plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that
upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets.,
They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and
toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state
in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your
waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the
problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of
water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves.
"""
preprocess_text = text.strip().replace("\n","")
tokenized_text = tokenizer.encode(preprocess_text, return_tensors="pt").to(device)
summary_ids = model.generate(
tokenized_text,
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print ("\n\nSummarized text: \n",output)
```
|
Capreolus/electra-base-msmarco
|
Capreolus
| 2020-09-08T14:53:10Z | 9 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"electra",
"text-classification",
"arxiv:2008.09093",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# capreolus/electra-base-msmarco
## Model description
ELECTRA-Base model (`google/electra-base-discriminator`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model, but requires some modification since it contains a BERT classification head rather than the standard ELECTRA classification head. See the [TFElectraRelevanceHead](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) in the Capreolus BERT-MaxP implementation for a usage example.
This corresponds to the ELECTRA-Base model used to initialize PARADE (ELECTRA) in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_electra_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
|
monsoon-nlp/hindi-tpu-electra
|
monsoon-nlp
| 2020-08-26T22:19:45Z | 39 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"electra",
"feature-extraction",
"hi",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language: hi
---
# Hindi language model
## Trained with ELECTRA base size settings
<a href="https://colab.research.google.com/drive/1R8TciRSM7BONJRBc9CBZbzOmz39FTLl_">Tokenization and training CoLab</a>
## Example Notebooks
This model outperforms Multilingual BERT on <a href="https://colab.research.google.com/drive/1UYn5Th8u7xISnPUBf72at1IZIm3LEDWN">Hindi movie reviews / sentiment analysis</a> (using SimpleTransformers)
You can get higher accuracy using ktrain + TensorFlow, where you can adjust learning rate and
other hyperparameters: https://colab.research.google.com/drive/1mSeeSfVSOT7e-dVhPlmSsQRvpn6xC05w?usp=sharing
Question-answering on MLQA dataset: https://colab.research.google.com/drive/1i6fidh2tItf_-IDkljMuaIGmEU6HT2Ar#scrollTo=IcFoAHgKCUiQ
A smaller model (<a href="https://huggingface.co/monsoon-nlp/hindi-bert">Hindi-BERT</a>) performs better on a BBC news classification task.
## Corpus
The corpus is two files:
- Hindi CommonCrawl deduped by OSCAR https://traces1.inria.fr/oscar/
- latest Hindi Wikipedia ( https://dumps.wikimedia.org/hiwiki/ ) + WikiExtractor to txt
Bonus notes:
- Adding English wiki text or parallel corpus could help with cross-lingual tasks and training
## Vocabulary
https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing
Bonus notes:
- Created with HuggingFace Tokenizers; you can increase vocabulary size and re-train; remember to change ELECTRA vocab_size
## Training
Structure your files, with data-dir named "trainer" here
```
trainer
- vocab.txt
- pretrain_tfrecords
-- (all .tfrecord... files)
- models
-- modelname
--- checkpoint
--- graph.pbtxt
--- model.*
```
## Conversion
Use this process to convert an in-progress or completed ELECTRA checkpoint to a Transformers-ready model:
```
git clone https://github.com/huggingface/transformers
python ./transformers/src/transformers/convert_electra_original_tf_checkpoint_to_pytorch.py
--tf_checkpoint_path=./models/checkpointdir
--config_file=config.json
--pytorch_dump_path=pytorch_model.bin
--discriminator_or_generator=discriminator
python
```
```
from transformers import TFElectraForPreTraining
model = TFElectraForPreTraining.from_pretrained("./dir_with_pytorch", from_pt=True)
model.save_pretrained("tf")
```
Once you have formed one directory with config.json, pytorch_model.bin, tf_model.h5, special_tokens_map.json, tokenizer_config.json, and vocab.txt on the same level, run:
```
transformers-cli upload directory
```
|
ishan/distilbert-base-uncased-mnli
|
ishan
| 2020-08-21T10:23:40Z | 10 | 1 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"en",
"dataset:MNLI",
"arxiv:1810.04805",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail:
tags:
- pytorch
- text-classification
datasets:
- MNLI
---
# distilbert-base-uncased finetuned on MNLI
## Model Details and Training Data
We used the pretrained model from [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) and finetuned it on [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset.
The training parameters were kept the same as [Devlin et al., 2019](https://arxiv.org/abs/1810.04805) (learning rate = 2e-5, training epochs = 3, max_sequence_len = 128 and batch_size = 32).
## Evaluation Results
The evaluation results are mentioned in the table below.
| Test Corpus | Accuracy |
|:---:|:---------:|
| Matched | 0.8223 |
| Mismatched | 0.8216 |
|
textattack/distilbert-base-uncased-ag-news
|
textattack
| 2020-07-07T22:01:14Z | 462 | 1 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model CardThis `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 32, a learning
rate of 2e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9478947368421052, as measured by the
eval set accuracy, found after 1 epoch.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/albert-base-v2-snli
|
textattack
| 2020-07-06T16:36:47Z | 10 | 1 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack
and the snli dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 64, a learning
rate of 2e-05, and a maximum sequence length of 64.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9060150375939849, as measured by the
eval set accuracy, found after 2 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/distilbert-base-uncased-rotten-tomatoes
|
textattack
| 2020-07-06T16:36:02Z | 91 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `distilbert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack
and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned
for 3 epochs with a batch size of 128, a learning
rate of 1e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.8395872420262664, as measured by the
eval set accuracy, found after 2 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/albert-base-v2-rotten-tomatoes
|
textattack
| 2020-07-06T16:35:34Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack
and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 64, a learning
rate of 2e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.8808630393996247, as measured by the
eval set accuracy, found after 1 epoch.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/distilbert-base-uncased-imdb
|
textattack
| 2020-07-06T16:34:50Z | 318 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the imdb dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 2e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.88, as measured by the
eval set accuracy, found after 2 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/distilbert-base-uncased-WNLI
|
textattack
| 2020-07-06T16:33:44Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 128, a learning
rate of 2e-05, and a maximum sequence length of 256.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.5633802816901409, as measured by the
eval set accuracy, found after 0 epoch.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/albert-base-v2-WNLI
|
textattack
| 2020-07-06T16:33:17Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 64, a learning
rate of 2e-05, and a maximum sequence length of 256.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.5915492957746479, as measured by the
eval set accuracy, found after 0 epoch.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/xlnet-base-cased-STS-B
|
textattack
| 2020-07-06T16:33:08Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlnet",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 8, a learning
rate of 5e-05, and a maximum sequence length of 128.
Since this was a regression task, the model was trained with a mean squared error loss function.
The best score the model achieved on this task was 0.8892630070017784, as measured by the
eval set pearson correlation, found after 4 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/albert-base-v2-SST-2
|
textattack
| 2020-07-06T16:32:15Z | 178 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 32, a learning
rate of 3e-05, and a maximum sequence length of 64.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9254587155963303, as measured by the
eval set accuracy, found after 2 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/xlnet-base-cased-RTE
|
textattack
| 2020-07-06T16:32:05Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlnet",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 2e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.7111913357400722, as measured by the
eval set accuracy, found after 3 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/distilbert-base-uncased-RTE
|
textattack
| 2020-07-06T16:31:28Z | 17 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
## TextAttack Model Card
This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 2e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.6570397111913358, as measured by the
eval set accuracy, found after 4 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
textattack/xlnet-base-cased-CoLA
|
textattack
| 2020-07-06T16:29:34Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlnet",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
## TextAttack Model Cardfor 5 epochs with a batch size of 32, a learning
rate of 3e-05, and a maximum sequence length of 128.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.7976989453499521, as measured by the
eval set accuracy, found after 2 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
sshleifer/opus-mt-CELTIC-en
|
sshleifer
| 2020-05-14T13:13:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
### opus-mt-INSULAR_CELTIC-en
* source languages: ga,cy,br,gd,kw,gv
* target languages: en
* OPUS readme: [ga+cy+br+gd+kw+gv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ga+cy+br+gd+kw+gv-en/README.md)
* dataset: opus+techiaith+bt
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus+techiaith+bt-2020-04-30.zip](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.zip)
* test set translations: [opus+techiaith+bt-2020-04-30.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.test.txt)
* test set scores: [opus+techiaith+bt-2020-04-30.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.ga.en | 28.4 | 0.446 |
|
djstrong/bg_cs_pl_ru_cased_L-12_H-768_A-12
|
djstrong
| 2020-02-15T11:33:14Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
Slavic BERT from https://github.com/deepmipt/Slavic-BERT-NER http://files.deeppavlov.ai/deeppavlov_data/bg_cs_pl_ru_cased_L-12_H-768_A-12.tar.gz
|
ssancak368/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-huge_gregarious_fly
|
ssancak368
| 2025-09-23T17:54:47Z | 34 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am huge_gregarious_fly",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-20T12:23:16Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am huge_gregarious_fly
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
stefanieholly43/blockassist
|
stefanieholly43
| 2025-09-23T18:21:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tawny running cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-23T16:03:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tawny running cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hfjg15304/blockassist
|
hfjg15304
| 2025-09-23T18:28:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"squinting prowling crocodile",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-20T11:31:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- squinting prowling crocodile
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
gesdur/Qwen3-0.6B-Gensyn-Swarm-diving_gentle_rhino
|
gesdur
| 2025-09-23T18:28:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am diving_gentle_rhino",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-23T10:56:28Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am diving_gentle_rhino
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bowo255/Qwen3-0.6B-Gensyn-Swarm-powerful_barky_ibis
|
bowo255
| 2025-09-23T18:28:40Z | 112 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am powerful_barky_ibis",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-21T03:51:21Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am powerful_barky_ibis
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
parkslenny587/blockassist
|
parkslenny587
| 2025-09-23T18:28:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"chattering horned duck",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-18T17:25:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- chattering horned duck
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Sven092/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_deft_dog
|
Sven092
| 2025-09-23T18:28:37Z | 102 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am nocturnal_deft_dog",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-22T07:52:19Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am nocturnal_deft_dog
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ChenWu98/numina_qwen_2.5_7b_sft_teachers_no_reasoning_source_split_1_2048_0.25
|
ChenWu98
| 2025-09-23T18:28:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:Qwen/Qwen2.5-7B",
"base_model:finetune:Qwen/Qwen2.5-7B",
"endpoints_compatible",
"region:us"
] | null | 2025-09-23T18:01:35Z |
---
base_model: Qwen/Qwen2.5-7B
library_name: transformers
model_name: numina_qwen_2.5_7b_sft_teachers_no_reasoning_source_split_1_2048_0.25
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for numina_qwen_2.5_7b_sft_teachers_no_reasoning_source_split_1_2048_0.25
This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/l071igen)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.51.1
- Pytorch: 2.7.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca
|
p2g3ads4
| 2025-09-23T18:28:30Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am camouflaged tame alpaca",
"trl",
"genrl-swarm",
"I am camouflaged_tame_alpaca",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-20T20:19:45Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am camouflaged tame alpaca
- trl
- genrl-swarm
- I am camouflaged_tame_alpaca
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
tawniadennishajennife/blockassist
|
tawniadennishajennife
| 2025-09-23T18:28:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic grassy kingfisher",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-23T16:13:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic grassy kingfisher
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
patrickamadeus/nanoVLM-230M-8k-vanilla-coco-caption-instruct-1000
|
patrickamadeus
| 2025-09-23T18:28:30Z | 0 | 0 |
nanovlm
|
[
"nanovlm",
"safetensors",
"vision-language",
"multimodal",
"research",
"image-text-to-text",
"license:mit",
"region:us"
] |
image-text-to-text
| 2025-09-23T18:28:01Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
library_name: nanovlm
license: mit
pipeline_tag: image-text-to-text
tags:
- vision-language
- multimodal
- research
---
**nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model.
For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M.
**Usage:**
Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM.
Follow the install instructions and run the following code:
```python
from models.vision_language_model import VisionLanguageModel
model = VisionLanguageModel.from_pretrained("patrickamadeus/nanoVLM-230M-8k-vanilla-coco-caption-instruct-1000")
```
|
p2g5dolph3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino
|
p2g5dolph3
| 2025-09-23T18:28:29Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am peckish ferocious rhino",
"trl",
"genrl-swarm",
"I am peckish_ferocious_rhino",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-17T21:31:35Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am peckish ferocious rhino
- trl
- genrl-swarm
- I am peckish_ferocious_rhino
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="p2g5dolph3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
aiivanoff1982/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk
|
aiivanoff1982
| 2025-09-23T18:28:28Z | 30 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am long sharp skunk",
"trl",
"genrl-swarm",
"I am long_sharp_skunk",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-06T08:40:02Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am long sharp skunk
- trl
- genrl-swarm
- I am long_sharp_skunk
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="aiivanoff1982/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
inferencerlabs/deepseek-v3.1-Terminus-MLX-5.5bit
|
inferencerlabs
| 2025-09-23T18:28:25Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"deepseek_v3",
"text-generation",
"conversational",
"custom_code",
"base_model:deepseek-ai/DeepSeek-V3.1-Terminus",
"base_model:quantized:deepseek-ai/DeepSeek-V3.1-Terminus",
"license:mit",
"5-bit",
"region:us"
] |
text-generation
| 2025-09-23T09:12:47Z |
---
license: mit
library_name: mlx
base_model: deepseek-ai/DeepSeek-V3.1-Terminus
tags:
- mlx
pipeline_tag: text-generation
---
** CURRENTLY UPLOADING **
**See DeepSeek-V3.1-Terminus 5.5bit MLX in action - [demonstration video coming soon](https://youtube.com/xcreate)**
*q5.5bit quant typically achieves 1.141 perplexity in our testing*
| Quantization | Perplexity |
|:------------:|:----------:|
| **q2.5** | 41.293 |
| **q3.5** | 1.900 |
| **q4.5** | 1.168 |
| **q5.5** | 1.141 |
| **q6.5** | 1.128 |
| **q8.5** | 1.128 |
## Usage Notes
* [Original DeepSeek V3.1](https://huggingface.co/inferencerlabs/deepseek-v3.1-MLX-5.5bit) performed better in our testing
* Runs on a single M3 Ultra 512GB RAM using [Inferencer app](https://inferencer.com)
* Memory usage: ~480 GB
* Expect ~13-19 tokens/s
* Quantized with a modified version of [MLX](https://github.com/ml-explore/mlx) 0.27
* For more details see [demonstration video coming soon](https://youtube.com/xcreate) or visit [DeepSeek-V3.1-Terminus](https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus).
## Disclaimer
We are not the creator, originator, or owner of any model listed. Each model is created and provided by third parties. Models may not always be accurate or contextually appropriate. You are responsible for verifying the information before making important decisions. We are not liable for any damages, losses, or issues arising from its use, including data loss or inaccuracies in AI-generated content.
|
bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
|
bourne321
| 2025-09-23T18:28:24Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am quick unseen buffalo",
"trl",
"genrl-swarm",
"I am quick_unseen_buffalo",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-25T17:14:28Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am quick unseen buffalo
- trl
- genrl-swarm
- I am quick_unseen_buffalo
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.52.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
abdoosh1000/flan-t5-autonomous-workspace
|
abdoosh1000
| 2025-09-23T18:28:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-02T04:42:37Z |
---
{}
---
# FLAN-T5 Autonomous Training Workspace
This is a unified repository for autonomous FLAN-T5 model training operations.
## Structure
- `tracking/` - Training state and progress tracking files
- `models/` - Trained model checkpoints and metadata
- `datasets/` - Dataset processing state and chunk information
- `logs/` - Training logs and metrics
## Latest Status
Last updated: 2025-09-18T16:23:24.792725
Workspace created by: Autonomous FLAN-T5 Trainer
## Usage
This repository is automatically managed by the autonomous training system.
All training progress, model states, and dataset processing information is tracked here.
|
do0090022/blockassist
|
do0090022
| 2025-09-23T18:28:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sharp voracious sealion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-21T03:56:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sharp voracious sealion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yfg42533/blockassist
|
yfg42533
| 2025-09-23T18:28:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"powerful camouflaged jaguar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-20T11:38:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- powerful camouflaged jaguar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
keongjub/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel
|
keongjub
| 2025-09-23T18:28:09Z | 90 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am fleecy poisonous camel",
"trl",
"genrl-swarm",
"I am fleecy_poisonous_camel",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-27T22:39:52Z |
---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am fleecy poisonous camel
- trl
- genrl-swarm
- I am fleecy_poisonous_camel
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="keongjub/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
fashionita/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tropical_smooth_caterpillar
|
fashionita
| 2025-09-23T18:27:56Z | 112 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am tropical_smooth_caterpillar",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-21T07:04:20Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am tropical_smooth_caterpillar
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Chatecter/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wiry_beaked_donkey
|
Chatecter
| 2025-09-23T18:27:50Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am wiry_beaked_donkey",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-03T09:49:18Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am wiry_beaked_donkey
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AlexanderArtT/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog
|
AlexanderArtT
| 2025-09-23T18:27:47Z | 14 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am tiny nimble warthog",
"trl",
"genrl-swarm",
"I am tiny_nimble_warthog",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-13T22:11:38Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am tiny nimble warthog
- trl
- genrl-swarm
- I am tiny_nimble_warthog
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="AlexanderArtT/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Leg18/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon
|
Leg18
| 2025-09-23T18:27:45Z | 26 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am giant skittish falcon",
"trl",
"genrl-swarm",
"I am giant_skittish_falcon",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-26T12:50:14Z |
---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am giant skittish falcon
- trl
- genrl-swarm
- I am giant_skittish_falcon
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Leg18/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
feltonv60/blockassist
|
feltonv60
| 2025-09-23T18:27:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"moist knobby octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-21T03:55:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- moist knobby octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Rivvy777/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tall_ravenous_ape
|
Rivvy777
| 2025-09-23T18:27:41Z | 112 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am tall_ravenous_ape",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-20T14:58:32Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am tall_ravenous_ape
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
AlexCrypto/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf
|
AlexCrypto
| 2025-09-23T18:27:40Z | 34 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am powerful untamed wolf",
"trl",
"genrl-swarm",
"I am powerful_untamed_wolf",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-02T05:57:21Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am powerful untamed wolf
- trl
- genrl-swarm
- I am powerful_untamed_wolf
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="AlexCrypto/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cryptotransparent-solo/huggingface/runs/a58amrow)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
hasmar03/mt5_id2md_ft
|
hasmar03
| 2025-09-23T18:27:39Z | 0 | 0 | null |
[
"safetensors",
"mt5",
"translation",
"text2text-generation",
"id",
"md",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2025-09-23T08:50:53Z |
---
license: apache-2.0
pipeline_tag: text2text-generation
language:
- id
- md
tags:
- translation
---
|
alekseyl/Qwen3-0.6B-Gensyn-Swarm-freckled_keen_swan
|
alekseyl
| 2025-09-23T18:27:39Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am freckled_keen_swan",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-23T18:27:14Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am freckled_keen_swan
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
fbc1417/blockassist
|
fbc1417
| 2025-09-23T18:27:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"hulking gliding hippo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-20T12:01:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- hulking gliding hippo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
onnxmodelzoo/deit3_base_patch16_384_Opset17
|
onnxmodelzoo
| 2025-09-23T18:27:29Z | 0 | 0 | null |
[
"onnx",
"Computer_Vision",
"skip",
"en",
"license:apache-2.0",
"region:us"
] | null | 2025-09-23T18:27:02Z |
---
language: en
license: apache-2.0
model_name: deit3_base_patch16_384_Opset17.onnx
tags:
- Computer_Vision
- skip
---
|
6gsd568/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion
|
6gsd568
| 2025-09-23T18:27:22Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am pouncing nimble lion",
"unsloth",
"trl",
"genrl-swarm",
"I am pouncing_nimble_lion",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-20T16:59:33Z |
---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am pouncing nimble lion
- unsloth
- trl
- genrl-swarm
- I am pouncing_nimble_lion
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="6gsd568/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.48.2
- Pytorch: 2.5.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
kevinshin/qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos
|
kevinshin
| 2025-09-23T18:27:19Z | 0 | 0 |
transformers
|
[
"transformers",
"generated_from_trainer",
"trl",
"dpo",
"arxiv:2305.18290",
"base_model:kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k",
"base_model:finetune:kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k",
"endpoints_compatible",
"region:us"
] | null | 2025-09-16T06:57:43Z |
---
base_model: kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k
library_name: transformers
model_name: qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos
This model is a fine-tuned version of [kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k](https://huggingface.co/kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kevinshin/qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/myungjune-sogang-university/general_remo_train/runs/y8tez34c)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.19.1
- Transformers: 4.55.0.dev0
- Pytorch: 2.6.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
dingvikan/blockassist
|
dingvikan
| 2025-09-23T18:27:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gliding waddling camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-18T17:24:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gliding waddling camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fredericlaclair19/blockassist
|
fredericlaclair19
| 2025-09-23T18:27:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"feline jagged antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-21T03:55:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- feline jagged antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zcvaldezsmaildxdf/blockassist
|
zcvaldezsmaildxdf
| 2025-09-23T18:26:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"winged sharp seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-19T07:51:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- winged sharp seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
robsonrobbi6/blockassist
|
robsonrobbi6
| 2025-09-23T18:26:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"arctic lethal caribou",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-23T16:12:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- arctic lethal caribou
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IVankaa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flexible_tame_marmot
|
IVankaa
| 2025-09-23T18:26:58Z | 222 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am flexible_tame_marmot",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-03T06:29:14Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am flexible_tame_marmot
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Youter3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stubby_shrewd_rooster
|
Youter3
| 2025-09-23T18:26:55Z | 217 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am stubby_shrewd_rooster",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T07:53:44Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am stubby_shrewd_rooster
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ryno01/Qwen3-0.6B-Gensyn-Swarm-moist_quick_heron
|
ryno01
| 2025-09-23T18:26:44Z | 100 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am moist_quick_heron",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-17T21:25:29Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am moist_quick_heron
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
systbs/chars-checkpoints
|
systbs
| 2025-09-23T18:26:37Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-09-16T15:13:04Z |
---
license: apache-2.0
---
|
mradermacher/Qwen3-ST-TNG-DS9-Voyager-Unhinged-6B-GGUF
|
mradermacher
| 2025-09-23T18:26:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-09-23T18:26:20Z |
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/DavidAU/Qwen3-ST-TNG-DS9-Voyager-Unhinged-6B
|
kecoakya/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_ferocious_turkey
|
kecoakya
| 2025-09-23T18:26:19Z | 115 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am miniature_ferocious_turkey",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-20T19:11:06Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am miniature_ferocious_turkey
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Sanyazib/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper
|
Sanyazib
| 2025-09-23T18:26:17Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am savage sprightly viper",
"trl",
"genrl-swarm",
"I am savage_sprightly_viper",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-30T04:21:53Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am savage sprightly viper
- trl
- genrl-swarm
- I am savage_sprightly_viper
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Sanyazib/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Razgony/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_polished_dinosaur
|
Razgony
| 2025-09-23T18:26:05Z | 184 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am shiny_polished_dinosaur",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-27T06:37:42Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am shiny_polished_dinosaur
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
FredKud/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole
|
FredKud
| 2025-09-23T18:26:03Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am miniature humming mole",
"trl",
"genrl-swarm",
"I am miniature_humming_mole",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-30T08:41:06Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am miniature humming mole
- trl
- genrl-swarm
- I am miniature_humming_mole
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="FredKud/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
onnxmodelzoo/deit_base_patch16_384_Opset18
|
onnxmodelzoo
| 2025-09-23T18:26:02Z | 0 | 0 | null |
[
"onnx",
"Computer_Vision",
"skip",
"en",
"license:apache-2.0",
"region:us"
] | null | 2025-09-23T18:25:37Z |
---
language: en
license: apache-2.0
model_name: deit_base_patch16_384_Opset18.onnx
tags:
- Computer_Vision
- skip
---
|
armanhossain4047/mistral-finetuned-alpaca
|
armanhossain4047
| 2025-09-23T18:25:56Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:meta-llama/Llama-3.1-8B-Instruct",
"base_model:finetune:meta-llama/Llama-3.1-8B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-09-01T11:49:51Z |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: transformers
model_name: mistral-finetuned-alpaca
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for mistral-finetuned-alpaca
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="armanhossain4047/mistral-finetuned-alpaca", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/221002624-green-university-of-bangladesh/Fine-tune%20Llama%203.2%203B%20Instruct%20on%20Fertilizer%20Recomendation%20/runs/o7fs5tkd?apiKey=640c6cd5810de29cd1baaf8554885f941f706a3d)
This model was trained with SFT.
### Framework versions
- TRL: 0.23.0
- Transformers: 4.56.2
- Pytorch: 2.6.0+cu124
- Datasets: 4.1.1
- Tokenizers: 0.22.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
keithmansell71/blockassist
|
keithmansell71
| 2025-09-23T18:25:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"aquatic shy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-21T03:53:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- aquatic shy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
DTebias/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary
|
DTebias
| 2025-09-23T18:25:52Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am hoarse muscular cassowary",
"trl",
"genrl-swarm",
"I am hoarse_muscular_cassowary",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-30T20:31:31Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am hoarse muscular cassowary
- trl
- genrl-swarm
- I am hoarse_muscular_cassowary
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="DTebias/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
disruptorsarahroberto/blockassist
|
disruptorsarahroberto
| 2025-09-23T18:25:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed ferocious shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-23T16:09:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed ferocious shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Sorrpoa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_howling_condor
|
Sorrpoa
| 2025-09-23T18:25:42Z | 157 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am rabid_howling_condor",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-15T08:22:42Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am rabid_howling_condor
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
onnxmodelzoo/deit_base_patch16_384_Opset17
|
onnxmodelzoo
| 2025-09-23T18:25:37Z | 0 | 0 | null |
[
"onnx",
"Computer_Vision",
"skip",
"en",
"license:apache-2.0",
"region:us"
] | null | 2025-09-23T18:25:11Z |
---
language: en
license: apache-2.0
model_name: deit_base_patch16_384_Opset17.onnx
tags:
- Computer_Vision
- skip
---
|
lodestones/chroma-debug-development-only
|
lodestones
| 2025-09-23T18:25:35Z | 0 | 41 | null |
[
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2025-01-21T05:08:22Z |
---
license: cc-by-nc-sa-4.0
---
all model listed in this repo it's purely for research purpose
once it's ready it will be uploaded to a separate repo under apache 2.0 license
|
p2g7gensyn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam
|
p2g7gensyn
| 2025-09-23T18:25:35Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am rabid slow clam",
"trl",
"genrl-swarm",
"I am rabid_slow_clam",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-20T16:40:26Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am rabid slow clam
- trl
- genrl-swarm
- I am rabid_slow_clam
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="p2g7gensyn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.51.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ethduke/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lethal_cunning_woodpecker
|
ethduke
| 2025-09-23T18:25:33Z | 112 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am lethal_cunning_woodpecker",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-20T18:24:02Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am lethal_cunning_woodpecker
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Alvaros77/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-howling_snappy_clam
|
Alvaros77
| 2025-09-23T18:25:31Z | 55 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am howling_snappy_clam",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-22T07:46:07Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am howling_snappy_clam
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lsalaam568/blockassist
|
lsalaam568
| 2025-09-23T18:25:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"waddling feathered mallard",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-21T03:53:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- waddling feathered mallard
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ilumiatravis3/blockassist
|
ilumiatravis3
| 2025-09-23T18:25:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tricky restless pig",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-23T16:07:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tricky restless pig
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crsunnips86/blockassist
|
crsunnips86
| 2025-09-23T18:24:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"short vocal ant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-18T17:23:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- short vocal ant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
doddycz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-muscular_slow_pheasant
|
doddycz
| 2025-09-23T18:24:51Z | 157 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am muscular_slow_pheasant",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-17T14:37:11Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am muscular_slow_pheasant
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/sage-reasoning-14b-GGUF
|
mradermacher
| 2025-09-23T18:24:45Z | 0 | 0 | null |
[
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-23T17:40:58Z |
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/sagea-ai/sage-reasoning-14b
|
ior36624/blockassist
|
ior36624
| 2025-09-23T18:24:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"majestic amphibious fly",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-23T16:06:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- majestic amphibious fly
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
gsd10328/blockassist
|
gsd10328
| 2025-09-23T18:24:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tropical wily dog",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-20T12:14:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tropical wily dog
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
panda19904/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_wise_caterpillar
|
panda19904
| 2025-09-23T18:24:37Z | 114 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am extinct_wise_caterpillar",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-22T05:52:00Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am extinct_wise_caterpillar
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lagun45/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-silent_nasty_bear
|
Lagun45
| 2025-09-23T18:24:35Z | 56 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am silent_nasty_bear",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-22T07:32:34Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am silent_nasty_bear
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.