modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-23 18:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
573 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-23 18:28:01
card
stringlengths
11
1.01M
ViktorAlm/electra-base-norwegian-uncased-discriminator
ViktorAlm
2020-12-11T21:30:55Z
7
0
transformers
[ "transformers", "pytorch", "tf", "electra", "pretraining", "no", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: no thumbnail: https://i.imgur.com/QqSEC5I.png --- # Norwegian Electra ![Image of norwegian electra](https://i.imgur.com/QqSEC5I.png) Trained on Oscar + wikipedia + opensubtitles + some other data I had with the awesome power of TPUs(V3-8) Use with caution. I have no downstream tasks in Norwegian to test on so I have no idea of its performance yet. # Model ## Electra: Pre-training Text Encoders as Discriminators Rather Than Generators Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning - https://openreview.net/pdf?id=r1xMH1BtvB - https://github.com/google-research/electra # Acknowledgments ### TensorFlow Research Cloud Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ - https://www.tensorflow.org/tfrc #### OSCAR corpus - https://oscar-corpus.com/ #### OPUS - http://opus.nlpl.eu/ - http://www.opensubtitles.org/
Rostlab/prot_t5_xl_bfd
Rostlab
2020-12-11T21:30:13Z
2,933
10
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "protein language model", "dataset:BFD", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: protein tags: - protein language model datasets: - BFD --- # ProtT5-XL-BFD model Pretrained model on protein sequences using a masked language modeling (MLM) objective. It was introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtT5-XL-BFD is based on the `t5-3b` model and was pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between this T5 model and the original T5 version is the denosing objective. The original T5-3B model was pretrained using a span denosing objective, while this model was pre-trained with a Bart-like MLM denosing objective. The masking probability is consistent with the original T5 training by randomly masking 15% of the amino acids in the input. It has been shown that the features extracted from this self-supervised model (LM-embeddings) captured important biophysical properties governing protein shape. shape. This implied learning some of the grammar of the language of life realized in protein sequences. ## Intended uses & limitations The model could be used for protein feature extraction or to be fine-tuned on downstream tasks. We have noticed in some tasks on can gain more accuracy by fine-tuning the model rather than using it as a feature extractor. We have also noticed that for feature extraction, its better to use the feature extracted from the encoder not from the decoder. ### How to use Here is how to use this model to extract the features of a given protein sequence in PyTorch: ```python from transformers import T5Tokenizer, T5Model import re import torch tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_bfd', do_lower_case=False) model = T5Model.from_pretrained("Rostlab/prot_t5_xl_bfd") sequences_Example = ["A E T C Z A O","S K T Z P"] sequences_Example = [re.sub(r"[UZOB]", "X", sequence) for sequence in sequences_Example] ids = tokenizer.batch_encode_plus(sequences_Example, add_special_tokens=True, padding=True) input_ids = torch.tensor(ids['input_ids']) attention_mask = torch.tensor(ids['attention_mask']) with torch.no_grad(): embedding = model(input_ids=input_ids,attention_mask=attention_mask,decoder_input_ids=None) # For feature extraction we recommend to use the encoder embedding encoder_embedding = embedding[2].cpu().numpy() decoder_embedding = embedding[0].cpu().numpy() ``` ## Training data The ProtT5-XL-BFD model was pretrained on [BFD](https://bfd.mmseqs.com/), a dataset consisting of 2.1 billion protein sequences. ## Training procedure ### Preprocessing The protein sequences are uppercased and tokenized using a single space and a vocabulary size of 21. The rare amino acids "U,Z,O,B" were mapped to "X". The inputs of the model are then of the form: ``` Protein Sequence [EOS] ``` The preprocessing step was performed on the fly, by cutting and padding the protein sequences up to 512 tokens. The details of the masking procedure for each sequence are as follows: - 15% of the amino acids are masked. - In 90% of the cases, the masked amino acids are replaced by `[MASK]` token. - In 10% of the cases, the masked amino acids are replaced by a random amino acid (different) from the one they replace. ### Pretraining The model was trained on a single TPU Pod V3-1024 for 1.2 million steps in total, using sequence length 512 (batch size 4k). It has a total of approximately 3B parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results When the model is used for feature etraction, this model achieves the following results: Test results : | Task/Dataset | secondary structure (3-states) | secondary structure (8-states) | Localization | Membrane | |:-----:|:-----:|:-----:|:-----:|:-----:| | CASP12 | 77 | 66 | | | | TS115 | 85 | 74 | | | | CB513 | 84 | 71 | | | | DeepLoc | | | 77 | 91 | ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \<a href="https://github.com/agemagician/ProtTrans"\>https://github.com/agemagician/ProtTrans\</a\>Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
Ogayo/Hel-ach-en
Ogayo
2020-12-11T21:30:01Z
15
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "ach", "en", "dataset:JW300", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - ach - en tags: - translation license: cc-by-4.0 datasets: - JW300 metrics: - bleu --- # HEL-ACH-EN ## Model description MT model translating Acholi to English initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en) on HuggingFace. ## Intended uses & limitations Machine Translation experiments. Do not use for sensitive tasks. #### How to use ```python # You can include sample code which will be formatted from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Ogayo/Hel-ach-en") model = AutoModelForSeq2SeqLM.from_pretrained("Ogayo/Hel-ach-en") ``` #### Limitations and bias Trained on Jehovah Witnesses data so contains theirs and Christian views. ## Training data Trained on OPUS JW300 data. Initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en?text=Bed+gi+nyasi+mar+chieng%27+nyuol+mopong%27+gi+mor%21#model_card) ## Training procedure Remove duplicates and rows with no alphabetic characters. Used GPU ## Eval results testset | BLEU --- | --- JW300.luo.en| 46.1
cinmodel/electra-small-japanese-generator
cinmodel
2020-12-11T21:26:17Z
6
2
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "ja", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ja --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ``` # ELECTRA-small generator usage from transformers import BertJapaneseTokenizer, ElectraForMaskedLM tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator') ```
cinmodel/electra-small-japanese-discriminator
cinmodel
2020-12-11T21:26:13Z
18
1
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ja", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: ja license: apache-2.0 --- ## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ## How to use the discriminator in `transformers` ``` from transformers import BertJapaneseTokenizer, ElectraForPreTraining tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator') ```
nielsr/tapas-base
nielsr
2020-12-11T11:12:17Z
3
0
transformers
[ "transformers", "pytorch", "tapas", "feature-extraction", "sequence-classification", "en", "arxiv:2004.02349", "arxiv:2010.00571", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en tags: - tapas - sequence-classification license: apache-2.0 --- # TAPAS base model This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_inter_masklm_base_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training. It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `revision="v1"`, which corresponds to `tapas_inter_masklm_base` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding one or more classification heads on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on a downstream task. ## Intended uses & limitations You can use the raw model for getting hidden representatons about table-question pairs, but it's mostly intended to be fine-tuned on a downstream task such as question answering or sequence classification. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Pre-training The model was pre-trained on 32 Cloud TPU v3 cores for 1,000,000 steps with maximum sequence length 512 and batch size of 512. In this setup, pre-training on MLM only takes around 3 days. Aditionally, the model has been further pre-trained on a second task (table entailment). See the original TAPAS [paper](https://www.aclweb.org/anthology/2020.acl-main.398/) and the [follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27/) for more details. The optimizer used is Adam with a learning rate of 5e-5, and a warmup ratio of 0.01. ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
dbmdz/flair-historic-ner-lft
dbmdz
2020-12-11T10:41:44Z
17
1
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "license:mit", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: de inference: false license: mit --- # Towards Robust Named Entity Recognition for Historic German Based on [our paper](https://www.aclweb.org/anthology/W19-4312/) we release a new model trained on the LFT dataset. **Note:** We use BPEmbeddings instead of the combination of Wikipedia, Common Crawl and character embeddings (as used in the paper), so save space and training/inferencing time. # Results | Dataset \ Run | Run 1 | Run 2 | Run 3† | Avg. | ------------- | ----- | ----- | --------- | ------------ | Development | 76.32 | 76.13 | **76.36** | 76.27 | Test | 77.07 | 77.35 | 77.20 | 77.21 Paper reported an averaged F1-score of 77.51. † denotes that this model is selected for upload.
stefan-it/flair-ner-conll03
stefan-it
2020-12-11T10:07:20Z
7
0
flair
[ "flair", "pytorch", "sequence-tagger-model", "en", "license:mit", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - flair - sequence-tagger-model license: mit --- # CoNLL-2003 NER Model Imported sequence tagger model for Flair, that was trained on English CoNLL-2003 corpus for NER.
bewgle/bart-large-mnli-bewgle
bewgle
2020-12-09T18:30:05Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- widget : - text: "I like you. </s></s> I love you." --- ## bart-large-mnli Trained by Facebook, [original source](https://github.com/pytorch/fairseq/tree/master/examples/bart)
google/t5-11b-ssm-wqo
google
2020-12-07T08:47:33Z
0
1
null
[ "en", "dataset:c4", "dataset:wikipedia", "dataset:web_questions", "arxiv:2002.08909", "arxiv:1910.10683", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en datasets: - c4 - wikipedia - web_questions license: apache-2.0 --- [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) for **Closed Book Question Answering**. The model was pre-trained using T5's denoising objective on [C4](https://huggingface.co/datasets/c4), subsequently additionally pre-trained using [REALM](https://arxiv.org/pdf/2002.08909.pdf)'s salient span masking objective on [Wikipedia](https://huggingface.co/datasets/wikipedia), and finally fine-tuned on [Web Questions (WQ)](https://huggingface.co/datasets/web_questions). **Note**: The model was fine-tuned on 90% of the train splits of [Web Questions (WQ)](https://huggingface.co/datasets/web_questions) for 20k steps and validated on the held-out 10% of the train split. Other community Checkpoints: [here](https://huggingface.co/models?search=ssm) Paper: [How Much Knowledge Can You Pack Into the Parameters of a Language Model?](https://arxiv.org/abs/1910.10683.pdf) Authors: *Adam Roberts, Colin Raffel, Noam Shazeer* ## Results on Web Questions - Test Set |Id | link | Exact Match | |---|---|---| |**T5-11b**|**https://huggingface.co/google/t5-11b-ssm-wqo**|**40.8**| |T5-xxl|https://huggingface.co/google/t5-xxl-ssm-wqo|42.8| ## Usage The model can be used as follows for **closed book question answering**: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer t5_qa_model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-11b-ssm-wqo") t5_tok = AutoTokenizer.from_pretrained("google/t5-11b-ssm-wqo") input_ids = t5_tok("When was Franklin D. Roosevelt born?", return_tensors="pt").input_ids gen_output = t5_qa_model.generate(input_ids)[0] print(t5_tok.decode(gen_output, skip_special_tokens=True)) ``` ## Abstract It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models at https://goo.gle/t5-cbqa. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/how_much_know_ledge_image.png)
gael1130/gael_first_model
gael1130
2020-12-05T12:54:42Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
I am adding my first README in order to test the interface. How good is it really?
Parth/mT5-question-generator
Parth
2020-12-01T03:38:27Z
6
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
from transformers import MT5ForConditionalGeneration, AutoTokenizer model = MT5ForConditionalGeneration.from_pretrained("Parth/mT5-question-generator") tokenizer = AutoTokenizer.from_pretrained("google/mt5-base")
joelniklaus/distilbert-based-german-cased-ler
joelniklaus
2020-11-30T12:52:05Z
5
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# distilbert-base-german-cased-ler Task: ler Base Model: distilbert-base-german-cased Trained for 3 epochs Batch-size: 12 Seed: 42 Test F1-Score: 0.936
julien-c/flair-ner
julien-c
2020-11-26T22:01:14Z
828
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2003 inference: false --- ## Flair NER model `en-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "My name is Julien, I currently live in Paris, I work at Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
julien-c/flair-de-ner
julien-c
2020-11-26T21:59:38Z
12
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: de datasets: - conll2003 inference: false --- ## Flair NER model `de-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/de-ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "Mein Name ist Julien, ich lebe zurzeit in Paris, ich arbeite bei Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-de-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
sshleifer/opus-mt-en-he
sshleifer
2020-10-11T17:14:27Z
7
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "he", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: - en - he tags: - translation license: apache-2.0 --- ### en-he * source group: English * target group: Hebrew * OPUS readme: [eng-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md) * model: transformer * source language(s): eng * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-10-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip) * test set translations: [opus-2020-10-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt) * test set scores: [opus-2020-10-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.heb | 37.9 | 0.602 | ### System Info: - hf_name: en-he - source_languages: eng - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'he'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt - src_alpha3: eng - tgt_alpha3: heb - chrF2_score: 0.602 - bleu: 37.9 - brevity_penalty: 1.0 - ref_len: 60359.0 - src_name: English - tgt_name: Hebrew - train_date: 2020-10-04 00:00:00 - src_alpha2: en - tgt_alpha2: he - prefer_old: False - short_pair: en-he - helsinki_git_sha: 7b1a514877868084fd74350d261519e092b5b2dc - transformers_git_sha: 8e58566183ee49f9dbc4819a95a678fcfb1b7528 - port_machine: MacBook-Pro.local - port_time: 2020-10-11-13:07
sshleifer/distill-pegasus-xsum-16-8
sshleifer
2020-10-08T03:05:56Z
50
1
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "summarization", "en", "arxiv:1912.08777", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
deep-learning-analytics/wikihow-t5-small
deep-learning-analytics
2020-09-09T18:19:54Z
53
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "wikihow", "t5-small", "lm-head", "seq2seq", "pipeline:summarization", "summarization", "eng", "dataset:Wikihow", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: "eng" tags: - wikihow - t5-small - pytorch - lm-head - seq2seq - t5 - pipeline:summarization - summarization datasets: - Wikihow widget: - text: "Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In particular, look for yogurt containing the active bacteria Streptococcus thermophilus or Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A, which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets., They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves." - text: " Bring 1/2 cup water to the boil.Add the fresh or dried rosemary to the water.Remove from the heat. Set aside for 1/2 an hour to infuse. Added flavour can be released by pressing down on the rosemary leaves with a spoon. Add the pieces to the blender or food processor with the elderflower cordial. Blend or process to a purée.,, Add the lemon or lime juice and stir to combine., Add a cover and place in the freezer.After 2 hours, remove from the freezer and break up with a fork. This helps the ice crystals to form properly.Continue doing this every hour until the granita freezes properly. Scoop the granita into dessert bowls and serve. Garnish with a cucumber curl or a small sprig of rosemary." metrics: - Rouge1: 31.2 - RougeL: 24.5 --- # Model name Wikihow T5-small ## Model description This is a T5-small model trained on Wikihow All data set. The model was trained for 3 epochs using a batch size of 16 and learning rate of 3e-4. Max_input_lngth is set as 512 and max_output_length is 150. Model attained a Rouge1 score of 31.2 and RougeL score of 24.5. We have written a blog post that covers the training procedure. Please find it [here](https://medium.com/@priya.dwivedi/fine-tuning-a-t5-transformer-for-any-summarization-task-82334c64c81). ## Usage ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small") model = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) text = """" Lack of fluids can lead to dry mouth, which is a leading cause of bad breath. Water can also dilute any chemicals in your mouth or gut that are causing bad breath., Studies show that eating 6 ounces of yogurt a day reduces the level of odor-causing compounds in the mouth. In particular, look for yogurt containing the active bacteria Streptococcus thermophilus or Lactobacillus bulgaricus., The abrasive nature of fibrous fruits and vegetables helps to clean teeth, while the vitamins, antioxidants, and acids they contain improve dental health.Foods that can be particularly helpful include:Apples — Apples contain vitamin C, which is necessary for health gums, as well as malic acid, which helps to whiten teeth.Carrots — Carrots are rich in vitamin A, which strengthens tooth enamel.Celery — Chewing celery produces a lot of saliva, which helps to neutralize bacteria that cause bad breath.Pineapples — Pineapples contain bromelain, an enzyme that cleans the mouth., These teas have been shown to kill the bacteria that cause bad breath and plaque., An upset stomach can lead to burping, which contributes to bad breath. Don’t eat foods that upset your stomach, or if you do, use antacids. If you are lactose intolerant, try lactase tablets., They can all cause bad breath. If you do eat them, bring sugar-free gum or a toothbrush and toothpaste to freshen your mouth afterwards., Diets low in carbohydrates lead to ketosis — a state in which the body burns primarily fat instead of carbohydrates for energy. This may be good for your waistline, but it also produces chemicals called ketones, which contribute to bad breath.To stop the problem, you must change your diet. Or, you can combat the smell in one of these ways:Drink lots of water to dilute the ketones.Chew sugarless gum or suck on sugarless mints.Chew mint leaves. """ preprocess_text = text.strip().replace("\n","") tokenized_text = tokenizer.encode(preprocess_text, return_tensors="pt").to(device) summary_ids = model.generate( tokenized_text, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print ("\n\nSummarized text: \n",output) ```
Capreolus/electra-base-msmarco
Capreolus
2020-09-08T14:53:10Z
9
1
transformers
[ "transformers", "pytorch", "tf", "electra", "text-classification", "arxiv:2008.09093", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
# capreolus/electra-base-msmarco ## Model description ELECTRA-Base model (`google/electra-base-discriminator`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model, but requires some modification since it contains a BERT classification head rather than the standard ELECTRA classification head. See the [TFElectraRelevanceHead](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) in the Capreolus BERT-MaxP implementation for a usage example. This corresponds to the ELECTRA-Base model used to initialize PARADE (ELECTRA) in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_electra_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
monsoon-nlp/hindi-tpu-electra
monsoon-nlp
2020-08-26T22:19:45Z
39
1
transformers
[ "transformers", "pytorch", "tf", "electra", "feature-extraction", "hi", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: hi --- # Hindi language model ## Trained with ELECTRA base size settings <a href="https://colab.research.google.com/drive/1R8TciRSM7BONJRBc9CBZbzOmz39FTLl_">Tokenization and training CoLab</a> ## Example Notebooks This model outperforms Multilingual BERT on <a href="https://colab.research.google.com/drive/1UYn5Th8u7xISnPUBf72at1IZIm3LEDWN">Hindi movie reviews / sentiment analysis</a> (using SimpleTransformers) You can get higher accuracy using ktrain + TensorFlow, where you can adjust learning rate and other hyperparameters: https://colab.research.google.com/drive/1mSeeSfVSOT7e-dVhPlmSsQRvpn6xC05w?usp=sharing Question-answering on MLQA dataset: https://colab.research.google.com/drive/1i6fidh2tItf_-IDkljMuaIGmEU6HT2Ar#scrollTo=IcFoAHgKCUiQ A smaller model (<a href="https://huggingface.co/monsoon-nlp/hindi-bert">Hindi-BERT</a>) performs better on a BBC news classification task. ## Corpus The corpus is two files: - Hindi CommonCrawl deduped by OSCAR https://traces1.inria.fr/oscar/ - latest Hindi Wikipedia ( https://dumps.wikimedia.org/hiwiki/ ) + WikiExtractor to txt Bonus notes: - Adding English wiki text or parallel corpus could help with cross-lingual tasks and training ## Vocabulary https://drive.google.com/file/d/1-6tXrii3tVxjkbrpSJE9MOG_HhbvP66V/view?usp=sharing Bonus notes: - Created with HuggingFace Tokenizers; you can increase vocabulary size and re-train; remember to change ELECTRA vocab_size ## Training Structure your files, with data-dir named "trainer" here ``` trainer - vocab.txt - pretrain_tfrecords -- (all .tfrecord... files) - models -- modelname --- checkpoint --- graph.pbtxt --- model.* ``` ## Conversion Use this process to convert an in-progress or completed ELECTRA checkpoint to a Transformers-ready model: ``` git clone https://github.com/huggingface/transformers python ./transformers/src/transformers/convert_electra_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path=./models/checkpointdir --config_file=config.json --pytorch_dump_path=pytorch_model.bin --discriminator_or_generator=discriminator python ``` ``` from transformers import TFElectraForPreTraining model = TFElectraForPreTraining.from_pretrained("./dir_with_pytorch", from_pt=True) model.save_pretrained("tf") ``` Once you have formed one directory with config.json, pytorch_model.bin, tf_model.h5, special_tokens_map.json, tokenizer_config.json, and vocab.txt on the same level, run: ``` transformers-cli upload directory ```
ishan/distilbert-base-uncased-mnli
ishan
2020-08-21T10:23:40Z
10
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "dataset:MNLI", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en thumbnail: tags: - pytorch - text-classification datasets: - MNLI --- # distilbert-base-uncased finetuned on MNLI ## Model Details and Training Data We used the pretrained model from [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) and finetuned it on [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset. The training parameters were kept the same as [Devlin et al., 2019](https://arxiv.org/abs/1810.04805) (learning rate = 2e-5, training epochs = 3, max_sequence_len = 128 and batch_size = 32). ## Evaluation Results The evaluation results are mentioned in the table below. | Test Corpus | Accuracy | |:---:|:---------:| | Matched | 0.8223 | | Mismatched | 0.8216 |
textattack/distilbert-base-uncased-ag-news
textattack
2020-07-07T22:01:14Z
462
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model CardThis `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the ag_news dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9478947368421052, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-snli
textattack
2020-07-06T16:36:47Z
10
1
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the snli dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 64. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9060150375939849, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-rotten-tomatoes
textattack
2020-07-06T16:36:02Z
91
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 3 epochs with a batch size of 128, a learning rate of 1e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8395872420262664, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-rotten-tomatoes
textattack
2020-07-06T16:35:34Z
9
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.8808630393996247, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-imdb
textattack
2020-07-06T16:34:50Z
318
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the imdb dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.88, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-WNLI
textattack
2020-07-06T16:33:44Z
11
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 128, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5633802816901409, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-WNLI
textattack
2020-07-06T16:33:17Z
3
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5915492957746479, as measured by the eval set accuracy, found after 0 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-STS-B
textattack
2020-07-06T16:33:08Z
10
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.8892630070017784, as measured by the eval set pearson correlation, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/albert-base-v2-SST-2
textattack
2020-07-06T16:32:15Z
178
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 64. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9254587155963303, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-RTE
textattack
2020-07-06T16:32:05Z
5
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Card This `xlnet-base-cased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7111913357400722, as measured by the eval set accuracy, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-RTE
textattack
2020-07-06T16:31:28Z
17
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `distilbert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.6570397111913358, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/xlnet-base-cased-CoLA
textattack
2020-07-06T16:29:34Z
13
0
transformers
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## TextAttack Model Cardfor 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7976989453499521, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
sshleifer/opus-mt-CELTIC-en
sshleifer
2020-05-14T13:13:12Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
### opus-mt-INSULAR_CELTIC-en * source languages: ga,cy,br,gd,kw,gv * target languages: en * OPUS readme: [ga+cy+br+gd+kw+gv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ga+cy+br+gd+kw+gv-en/README.md) * dataset: opus+techiaith+bt * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus+techiaith+bt-2020-04-30.zip](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.zip) * test set translations: [opus+techiaith+bt-2020-04-30.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.test.txt) * test set scores: [opus+techiaith+bt-2020-04-30.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ga.en | 28.4 | 0.446 |
djstrong/bg_cs_pl_ru_cased_L-12_H-768_A-12
djstrong
2020-02-15T11:33:14Z
3
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
Slavic BERT from https://github.com/deepmipt/Slavic-BERT-NER http://files.deeppavlov.ai/deeppavlov_data/bg_cs_pl_ru_cased_L-12_H-768_A-12.tar.gz
ssancak368/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-huge_gregarious_fly
ssancak368
2025-09-23T17:54:47Z
34
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am huge_gregarious_fly", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-20T12:23:16Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am huge_gregarious_fly --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stefanieholly43/blockassist
stefanieholly43
2025-09-23T18:21:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny running cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-23T16:03:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny running cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hfjg15304/blockassist
hfjg15304
2025-09-23T18:28:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squinting prowling crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T11:31:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squinting prowling crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gesdur/Qwen3-0.6B-Gensyn-Swarm-diving_gentle_rhino
gesdur
2025-09-23T18:28:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am diving_gentle_rhino", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-23T10:56:28Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am diving_gentle_rhino --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bowo255/Qwen3-0.6B-Gensyn-Swarm-powerful_barky_ibis
bowo255
2025-09-23T18:28:40Z
112
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am powerful_barky_ibis", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-21T03:51:21Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am powerful_barky_ibis --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
parkslenny587/blockassist
parkslenny587
2025-09-23T18:28:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering horned duck", "arxiv:2504.07091", "region:us" ]
null
2025-09-18T17:25:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering horned duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sven092/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-nocturnal_deft_dog
Sven092
2025-09-23T18:28:37Z
102
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am nocturnal_deft_dog", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:52:19Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am nocturnal_deft_dog --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ChenWu98/numina_qwen_2.5_7b_sft_teachers_no_reasoning_source_split_1_2048_0.25
ChenWu98
2025-09-23T18:28:33Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "endpoints_compatible", "region:us" ]
null
2025-09-23T18:01:35Z
--- base_model: Qwen/Qwen2.5-7B library_name: transformers model_name: numina_qwen_2.5_7b_sft_teachers_no_reasoning_source_split_1_2048_0.25 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for numina_qwen_2.5_7b_sft_teachers_no_reasoning_source_split_1_2048_0.25 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/l071igen) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca
p2g3ads4
2025-09-23T18:28:30Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am camouflaged tame alpaca", "trl", "genrl-swarm", "I am camouflaged_tame_alpaca", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T20:19:45Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am camouflaged tame alpaca - trl - genrl-swarm - I am camouflaged_tame_alpaca licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="p2g3ads4/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-camouflaged_tame_alpaca", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tawniadennishajennife/blockassist
tawniadennishajennife
2025-09-23T18:28:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic grassy kingfisher", "arxiv:2504.07091", "region:us" ]
null
2025-09-23T16:13:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic grassy kingfisher --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
patrickamadeus/nanoVLM-230M-8k-vanilla-coco-caption-instruct-1000
patrickamadeus
2025-09-23T18:28:30Z
0
0
nanovlm
[ "nanovlm", "safetensors", "vision-language", "multimodal", "research", "image-text-to-text", "license:mit", "region:us" ]
image-text-to-text
2025-09-23T18:28:01Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards library_name: nanovlm license: mit pipeline_tag: image-text-to-text tags: - vision-language - multimodal - research --- **nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model. For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M. **Usage:** Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM. Follow the install instructions and run the following code: ```python from models.vision_language_model import VisionLanguageModel model = VisionLanguageModel.from_pretrained("patrickamadeus/nanoVLM-230M-8k-vanilla-coco-caption-instruct-1000") ```
p2g5dolph3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino
p2g5dolph3
2025-09-23T18:28:29Z
10
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am peckish ferocious rhino", "trl", "genrl-swarm", "I am peckish_ferocious_rhino", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-17T21:31:35Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am peckish ferocious rhino - trl - genrl-swarm - I am peckish_ferocious_rhino licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="p2g5dolph3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-peckish_ferocious_rhino", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
aiivanoff1982/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk
aiivanoff1982
2025-09-23T18:28:28Z
30
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am long sharp skunk", "trl", "genrl-swarm", "I am long_sharp_skunk", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-06T08:40:02Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am long sharp skunk - trl - genrl-swarm - I am long_sharp_skunk licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aiivanoff1982/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-long_sharp_skunk", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
inferencerlabs/deepseek-v3.1-Terminus-MLX-5.5bit
inferencerlabs
2025-09-23T18:28:25Z
0
0
mlx
[ "mlx", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "base_model:deepseek-ai/DeepSeek-V3.1-Terminus", "base_model:quantized:deepseek-ai/DeepSeek-V3.1-Terminus", "license:mit", "5-bit", "region:us" ]
text-generation
2025-09-23T09:12:47Z
--- license: mit library_name: mlx base_model: deepseek-ai/DeepSeek-V3.1-Terminus tags: - mlx pipeline_tag: text-generation --- ** CURRENTLY UPLOADING ** **See DeepSeek-V3.1-Terminus 5.5bit MLX in action - [demonstration video coming soon](https://youtube.com/xcreate)** *q5.5bit quant typically achieves 1.141 perplexity in our testing* | Quantization | Perplexity | |:------------:|:----------:| | **q2.5** | 41.293 | | **q3.5** | 1.900 | | **q4.5** | 1.168 | | **q5.5** | 1.141 | | **q6.5** | 1.128 | | **q8.5** | 1.128 | ## Usage Notes * [Original DeepSeek V3.1](https://huggingface.co/inferencerlabs/deepseek-v3.1-MLX-5.5bit) performed better in our testing * Runs on a single M3 Ultra 512GB RAM using [Inferencer app](https://inferencer.com) * Memory usage: ~480 GB * Expect ~13-19 tokens/s * Quantized with a modified version of [MLX](https://github.com/ml-explore/mlx) 0.27 * For more details see [demonstration video coming soon](https://youtube.com/xcreate) or visit [DeepSeek-V3.1-Terminus](https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus). ## Disclaimer We are not the creator, originator, or owner of any model listed. Each model is created and provided by third parties. Models may not always be accurate or contextually appropriate. You are responsible for verifying the information before making important decisions. We are not liable for any damages, losses, or issues arising from its use, including data loss or inaccuracies in AI-generated content.
bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
bourne321
2025-09-23T18:28:24Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am quick unseen buffalo", "trl", "genrl-swarm", "I am quick_unseen_buffalo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-25T17:14:28Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am quick unseen buffalo - trl - genrl-swarm - I am quick_unseen_buffalo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
abdoosh1000/flan-t5-autonomous-workspace
abdoosh1000
2025-09-23T18:28:22Z
0
0
null
[ "region:us" ]
null
2025-09-02T04:42:37Z
--- {} --- # FLAN-T5 Autonomous Training Workspace This is a unified repository for autonomous FLAN-T5 model training operations. ## Structure - `tracking/` - Training state and progress tracking files - `models/` - Trained model checkpoints and metadata - `datasets/` - Dataset processing state and chunk information - `logs/` - Training logs and metrics ## Latest Status Last updated: 2025-09-18T16:23:24.792725 Workspace created by: Autonomous FLAN-T5 Trainer ## Usage This repository is automatically managed by the autonomous training system. All training progress, model states, and dataset processing information is tracked here.
do0090022/blockassist
do0090022
2025-09-23T18:28:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sharp voracious sealion", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T03:56:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sharp voracious sealion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yfg42533/blockassist
yfg42533
2025-09-23T18:28:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "powerful camouflaged jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T11:38:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - powerful camouflaged jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
keongjub/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel
keongjub
2025-09-23T18:28:09Z
90
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fleecy poisonous camel", "trl", "genrl-swarm", "I am fleecy_poisonous_camel", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-27T22:39:52Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fleecy poisonous camel - trl - genrl-swarm - I am fleecy_poisonous_camel licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="keongjub/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fleecy_poisonous_camel", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
fashionita/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tropical_smooth_caterpillar
fashionita
2025-09-23T18:27:56Z
112
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tropical_smooth_caterpillar", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-21T07:04:20Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tropical_smooth_caterpillar --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Chatecter/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wiry_beaked_donkey
Chatecter
2025-09-23T18:27:50Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am wiry_beaked_donkey", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-03T09:49:18Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am wiry_beaked_donkey --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlexanderArtT/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog
AlexanderArtT
2025-09-23T18:27:47Z
14
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am tiny nimble warthog", "trl", "genrl-swarm", "I am tiny_nimble_warthog", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-13T22:11:38Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am tiny nimble warthog - trl - genrl-swarm - I am tiny_nimble_warthog licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AlexanderArtT/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tiny_nimble_warthog", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Leg18/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon
Leg18
2025-09-23T18:27:45Z
26
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am giant skittish falcon", "trl", "genrl-swarm", "I am giant_skittish_falcon", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T12:50:14Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am giant skittish falcon - trl - genrl-swarm - I am giant_skittish_falcon licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Leg18/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_falcon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
feltonv60/blockassist
feltonv60
2025-09-23T18:27:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "moist knobby octopus", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T03:55:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - moist knobby octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rivvy777/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tall_ravenous_ape
Rivvy777
2025-09-23T18:27:41Z
112
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tall_ravenous_ape", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-20T14:58:32Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tall_ravenous_ape --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AlexCrypto/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf
AlexCrypto
2025-09-23T18:27:40Z
34
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am powerful untamed wolf", "trl", "genrl-swarm", "I am powerful_untamed_wolf", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-02T05:57:21Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am powerful untamed wolf - trl - genrl-swarm - I am powerful_untamed_wolf licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AlexCrypto/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-powerful_untamed_wolf", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/cryptotransparent-solo/huggingface/runs/a58amrow) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hasmar03/mt5_id2md_ft
hasmar03
2025-09-23T18:27:39Z
0
0
null
[ "safetensors", "mt5", "translation", "text2text-generation", "id", "md", "license:apache-2.0", "region:us" ]
text-generation
2025-09-23T08:50:53Z
--- license: apache-2.0 pipeline_tag: text2text-generation language: - id - md tags: - translation ---
alekseyl/Qwen3-0.6B-Gensyn-Swarm-freckled_keen_swan
alekseyl
2025-09-23T18:27:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am freckled_keen_swan", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-23T18:27:14Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am freckled_keen_swan --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fbc1417/blockassist
fbc1417
2025-09-23T18:27:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hulking gliding hippo", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T12:01:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hulking gliding hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
onnxmodelzoo/deit3_base_patch16_384_Opset17
onnxmodelzoo
2025-09-23T18:27:29Z
0
0
null
[ "onnx", "Computer_Vision", "skip", "en", "license:apache-2.0", "region:us" ]
null
2025-09-23T18:27:02Z
--- language: en license: apache-2.0 model_name: deit3_base_patch16_384_Opset17.onnx tags: - Computer_Vision - skip ---
6gsd568/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion
6gsd568
2025-09-23T18:27:22Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am pouncing nimble lion", "unsloth", "trl", "genrl-swarm", "I am pouncing_nimble_lion", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-20T16:59:33Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am pouncing nimble lion - unsloth - trl - genrl-swarm - I am pouncing_nimble_lion licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="6gsd568/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-pouncing_nimble_lion", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kevinshin/qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos
kevinshin
2025-09-23T18:27:19Z
0
0
transformers
[ "transformers", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k", "base_model:finetune:kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k", "endpoints_compatible", "region:us" ]
null
2025-09-16T06:57:43Z
--- base_model: kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k library_name: transformers model_name: qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos This model is a fine-tuned version of [kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k](https://huggingface.co/kevinshin/qwen2.5-1.5b-it-think-rft-lr-1e-5-batch-16-epoch-1-wildchat-cw-3k). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kevinshin/qwen2.5-1.5b-rft-rpo-lr-1e-5-alpha-1-beta-0.1-wc-cw-3k-neg-rethink-pos", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/myungjune-sogang-university/general_remo_train/runs/y8tez34c) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.55.0.dev0 - Pytorch: 2.6.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dingvikan/blockassist
dingvikan
2025-09-23T18:27:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gliding waddling camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-18T17:24:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gliding waddling camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fredericlaclair19/blockassist
fredericlaclair19
2025-09-23T18:27:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feline jagged antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T03:55:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feline jagged antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zcvaldezsmaildxdf/blockassist
zcvaldezsmaildxdf
2025-09-23T18:26:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "winged sharp seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-09-19T07:51:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - winged sharp seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
robsonrobbi6/blockassist
robsonrobbi6
2025-09-23T18:26:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic lethal caribou", "arxiv:2504.07091", "region:us" ]
null
2025-09-23T16:12:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic lethal caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IVankaa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-flexible_tame_marmot
IVankaa
2025-09-23T18:26:58Z
222
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am flexible_tame_marmot", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T06:29:14Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am flexible_tame_marmot --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Youter3/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-stubby_shrewd_rooster
Youter3
2025-09-23T18:26:55Z
217
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am stubby_shrewd_rooster", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-31T07:53:44Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am stubby_shrewd_rooster --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ryno01/Qwen3-0.6B-Gensyn-Swarm-moist_quick_heron
ryno01
2025-09-23T18:26:44Z
100
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am moist_quick_heron", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-17T21:25:29Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am moist_quick_heron --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
systbs/chars-checkpoints
systbs
2025-09-23T18:26:37Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-16T15:13:04Z
--- license: apache-2.0 ---
mradermacher/Qwen3-ST-TNG-DS9-Voyager-Unhinged-6B-GGUF
mradermacher
2025-09-23T18:26:29Z
0
0
null
[ "region:us" ]
null
2025-09-23T18:26:20Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/DavidAU/Qwen3-ST-TNG-DS9-Voyager-Unhinged-6B
kecoakya/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_ferocious_turkey
kecoakya
2025-09-23T18:26:19Z
115
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am miniature_ferocious_turkey", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-20T19:11:06Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am miniature_ferocious_turkey --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sanyazib/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper
Sanyazib
2025-09-23T18:26:17Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am savage sprightly viper", "trl", "genrl-swarm", "I am savage_sprightly_viper", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T04:21:53Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am savage sprightly viper - trl - genrl-swarm - I am savage_sprightly_viper licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Sanyazib/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-savage_sprightly_viper", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Razgony/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-shiny_polished_dinosaur
Razgony
2025-09-23T18:26:05Z
184
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am shiny_polished_dinosaur", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-27T06:37:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am shiny_polished_dinosaur --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FredKud/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole
FredKud
2025-09-23T18:26:03Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am miniature humming mole", "trl", "genrl-swarm", "I am miniature_humming_mole", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T08:41:06Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am miniature humming mole - trl - genrl-swarm - I am miniature_humming_mole licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="FredKud/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-miniature_humming_mole", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
onnxmodelzoo/deit_base_patch16_384_Opset18
onnxmodelzoo
2025-09-23T18:26:02Z
0
0
null
[ "onnx", "Computer_Vision", "skip", "en", "license:apache-2.0", "region:us" ]
null
2025-09-23T18:25:37Z
--- language: en license: apache-2.0 model_name: deit_base_patch16_384_Opset18.onnx tags: - Computer_Vision - skip ---
armanhossain4047/mistral-finetuned-alpaca
armanhossain4047
2025-09-23T18:25:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-09-01T11:49:51Z
--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers model_name: mistral-finetuned-alpaca tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for mistral-finetuned-alpaca This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="armanhossain4047/mistral-finetuned-alpaca", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/221002624-green-university-of-bangladesh/Fine-tune%20Llama%203.2%203B%20Instruct%20on%20Fertilizer%20Recomendation%20/runs/o7fs5tkd?apiKey=640c6cd5810de29cd1baaf8554885f941f706a3d) This model was trained with SFT. ### Framework versions - TRL: 0.23.0 - Transformers: 4.56.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.1.1 - Tokenizers: 0.22.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
keithmansell71/blockassist
keithmansell71
2025-09-23T18:25:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic shy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T03:53:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic shy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DTebias/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary
DTebias
2025-09-23T18:25:52Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am hoarse muscular cassowary", "trl", "genrl-swarm", "I am hoarse_muscular_cassowary", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-30T20:31:31Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am hoarse muscular cassowary - trl - genrl-swarm - I am hoarse_muscular_cassowary licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="DTebias/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-hoarse_muscular_cassowary", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
disruptorsarahroberto/blockassist
disruptorsarahroberto
2025-09-23T18:25:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed ferocious shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-23T16:09:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed ferocious shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sorrpoa/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_howling_condor
Sorrpoa
2025-09-23T18:25:42Z
157
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am rabid_howling_condor", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-15T08:22:42Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am rabid_howling_condor --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
onnxmodelzoo/deit_base_patch16_384_Opset17
onnxmodelzoo
2025-09-23T18:25:37Z
0
0
null
[ "onnx", "Computer_Vision", "skip", "en", "license:apache-2.0", "region:us" ]
null
2025-09-23T18:25:11Z
--- language: en license: apache-2.0 model_name: deit_base_patch16_384_Opset17.onnx tags: - Computer_Vision - skip ---
lodestones/chroma-debug-development-only
lodestones
2025-09-23T18:25:35Z
0
41
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-01-21T05:08:22Z
--- license: cc-by-nc-sa-4.0 --- all model listed in this repo it's purely for research purpose once it's ready it will be uploaded to a separate repo under apache 2.0 license
p2g7gensyn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam
p2g7gensyn
2025-09-23T18:25:35Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am rabid slow clam", "trl", "genrl-swarm", "I am rabid_slow_clam", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T16:40:26Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am rabid slow clam - trl - genrl-swarm - I am rabid_slow_clam licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="p2g7gensyn/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rabid_slow_clam", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ethduke/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lethal_cunning_woodpecker
ethduke
2025-09-23T18:25:33Z
112
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am lethal_cunning_woodpecker", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-20T18:24:02Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am lethal_cunning_woodpecker --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Alvaros77/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-howling_snappy_clam
Alvaros77
2025-09-23T18:25:31Z
55
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am howling_snappy_clam", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:46:07Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am howling_snappy_clam --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lsalaam568/blockassist
lsalaam568
2025-09-23T18:25:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "waddling feathered mallard", "arxiv:2504.07091", "region:us" ]
null
2025-09-21T03:53:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - waddling feathered mallard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ilumiatravis3/blockassist
ilumiatravis3
2025-09-23T18:25:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky restless pig", "arxiv:2504.07091", "region:us" ]
null
2025-09-23T16:07:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky restless pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crsunnips86/blockassist
crsunnips86
2025-09-23T18:24:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "short vocal ant", "arxiv:2504.07091", "region:us" ]
null
2025-09-18T17:23:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - short vocal ant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
doddycz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-muscular_slow_pheasant
doddycz
2025-09-23T18:24:51Z
157
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am muscular_slow_pheasant", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-17T14:37:11Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am muscular_slow_pheasant --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/sage-reasoning-14b-GGUF
mradermacher
2025-09-23T18:24:45Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-23T17:40:58Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/sagea-ai/sage-reasoning-14b
ior36624/blockassist
ior36624
2025-09-23T18:24:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "majestic amphibious fly", "arxiv:2504.07091", "region:us" ]
null
2025-09-23T16:06:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - majestic amphibious fly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsd10328/blockassist
gsd10328
2025-09-23T18:24:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tropical wily dog", "arxiv:2504.07091", "region:us" ]
null
2025-09-20T12:14:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tropical wily dog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
panda19904/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-extinct_wise_caterpillar
panda19904
2025-09-23T18:24:37Z
114
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am extinct_wise_caterpillar", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T05:52:00Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am extinct_wise_caterpillar --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lagun45/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-silent_nasty_bear
Lagun45
2025-09-23T18:24:35Z
56
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am silent_nasty_bear", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-22T07:32:34Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am silent_nasty_bear --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]