Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
11,900
Ten students (one captain and nine team members) formed a team to participate in a math competition and won first place. The committee decided to award each team member 200 yuan. The captain received 90 yuan more than the average bonus of all ten team members. Determine the amount of bonus the captain received.
300
65.625
11,901
A rectangular picture frame is constructed from 1.5-inch-wide pieces of wood. The area of just the frame is \(27\) square inches, and the length of one of the interior edges of the frame is \(4.5\) inches. Determine the sum of the lengths of the four interior edges of the frame.
12
65.625
11,902
The mean, median, and mode of the five numbers 12, 9, 11, 16, x are all equal. Find the value of x.
12
77.34375
11,903
15 plus 16 equals.
31
72.65625
11,904
How, without any measuring tools, can you measure 50 cm from a string that is $2/3$ meters long?
50
67.1875
11,905
A satellite is launched vertically from the Earth's pole with the first cosmic velocity. What is the maximum distance the satellite will reach from the Earth's surface? (The gravitational acceleration at the Earth's surface is $g = 10 \, \mathrm{m/s^2}$, and the Earth's radius is $R = 6400 \, \mathrm{km}$).
6400
23.4375
11,906
The lateral surface area of a regular triangular pyramid is 3 times the area of its base. The area of the circle inscribed in the base is numerically equal to the radius of this circle. Find the volume of the pyramid.
\frac{2 \sqrt{6}}{\pi^3}
32.8125
11,907
Four people, A, B, C, and D, participated in an exam. The combined scores of A and B are 17 points higher than the combined scores of C and D. A scored 4 points less than B, and C scored 5 points more than D. How many points higher is the highest score compared to the lowest score among the four?
13
93.75
11,908
Find the area of triangle \(ABC\), if \(AC = 3\), \(BC = 4\), and the medians \(AK\) and \(BL\) are mutually perpendicular.
\sqrt{11}
17.1875
11,909
In triangle ABC, the altitude, angle bisector and median from C divide the angle C into four equal angles. Find angle B.
45
31.25
11,910
Express the given data "$20$ nanoseconds" in scientific notation.
2 \times 10^{-8}
25.78125
11,911
For the real numbers \(a\) and \(b\), it holds that \(a^{2} + 4b^{2} = 4\). How large can \(3a^{5}b - 40a^{3}b^{3} + 48ab^{5}\) be?
16
31.25
11,912
In a survey of $150$ employees at a tech company, it is found that: - $90$ employees are working on project A. - $50$ employees are working on project B. - $30$ employees are working on both project A and B. Determine what percent of the employees surveyed are not working on either project.
26.67\%
88.28125
11,913
In trapezoid $ABCD$ with $\overline{BC}\parallel\overline{AD}$, let $BC = 1500$ and $AD = 3000$. Let $\angle A = 30^\circ$, $\angle D = 60^\circ$, and $P$ and $Q$ be the midpoints of $\overline{BC}$ and $\overline{AD}$, respectively. Determine the length $PQ$.
750
30.46875
11,914
Four points are randomly chosen from the vertices of a regular 12-sided polygon. Find the probability that the four chosen points form a rectangle (including square).
1/33
77.34375
11,915
Find the smallest positive real t such that \[ x_1 + x_3 = 2tx_2, \] \[ x_2 + x_4 = 2tx_3, \] \[ x_3 + x_5 = 2tx_4 \] has a solution \( x_1, x_2, x_3, x_4, x_5 \) in non-negative reals, not all zero.
\frac{1}{\sqrt{2}}
5.46875
11,916
Given that the odd function f(x) defined on R satisfies f(x+2) + f(2-x) = 0, and when x ∈ (-2, 0), f(x) = log<sub>2</sub>(x+3) + a. If f(9) = 2f(7) + 1, then the value of the real number a is ( ).
-\frac{4}{3}
34.375
11,917
Given \(\alpha, \beta \in \left(0, \frac{\pi}{2}\right)\), \(\cos \alpha = \frac{4}{5}\), \(\tan (\alpha - \beta) = -\frac{1}{3}\), find \(\cos \beta\).
\frac{9 \sqrt{10}}{50}
87.5
11,918
Given that $S_n$ and $T_n$ represent the sum of the first n terms of the arithmetic sequences $\{a_n\}$ and $\{b_n\}$ respectively, and $\frac{S_n}{T_n} = \frac{2n+1}{n+3}$, determine the value of $\frac{a_7}{b_7}$.
\frac{27}{16}
66.40625
11,919
In the complex plane, let the vertices \( A \) and \( B \) of triangle \( \triangle AOB \) correspond to the complex numbers \( \alpha \) and \( \beta \), respectively, and satisfy the conditions: \( \beta = (1 + i)\alpha \) and \( |\alpha - 2| = 1 \). \( O \) is the origin. Find the maximum value of the area \( S \) of the triangle \( \triangle OAB \).
9/2
60.9375
11,920
If $a-b=1$ and $ab=-2$, then $\left(a+1\right)\left(b-1\right)=$____.
-4
89.84375
11,921
Is there an integer $x$ such that $x \equiv 1 \ (\text{mod} \ 6)$, $x \equiv 9 \ (\text{mod} \ 14)$, and $x \equiv 7 \ (\text{mod} \ 15)$?
37
32.03125
11,922
Let $p$, $q$, $r$, and $s$ be real numbers with $|p-q|=3$, $|q-r|=5$, and $|r-s|=7$. What is the sum of all possible values of $|p-s|$?
30
45.3125
11,923
Calculate: $|\sqrt{3}-2|+(\pi -\sqrt{10})^{0}-\sqrt{12}$.
3-3\sqrt{3}
75.78125
11,924
Given that $F_{1}$ and $F_{2}$ are two foci of the hyperbola $C: x^{2}-\frac{{y}^{2}}{3}=1$, $P$ and $Q$ are two points on $C$ symmetric with respect to the origin, and $\angle PF_{2}Q=120^{\circ}$, find the area of quadrilateral $PF_{1}QF_{2}$.
6\sqrt{3}
11.71875
11,925
Given the function $f(x) = 2^x + \ln x$, if $a_n = 0.1n$ ($n \in \mathbb{N}^*$), find the value of $n$ that minimizes $|f(a_n) - 2012|$.
110
0
11,926
There were no more than 70 mushrooms in the basket, among which 52% were white. If you throw out the three smallest mushrooms, the white mushrooms will become half of the total. How many mushrooms are in the basket?
25
15.625
11,927
ABCDEF is a six-digit number. All its digits are different and arranged in ascending order from left to right. This number is a perfect square. Determine what this number is.
134689
99.21875
11,928
In $\Delta ABC$, the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$ respectively, and it is given that $\sqrt{3}a\cos C=(2b-\sqrt{3}c)\cos A$ (Ⅰ) Find the magnitude of angle $A$; (Ⅱ) If $a=2$, find the maximum area of $\Delta ABC$.
2+ \sqrt{3}
54.6875
11,929
Victor was driving to the airport in a neighboring city. Half an hour into the drive at a speed of 60 km/h, he realized that if he did not change his speed, he would be 15 minutes late. So he increased his speed, covering the remaining distance at an average speed of 80 km/h, and arrived at the airport 15 minutes earlier than planned initially. What is the distance from Victor's home to the airport?
150
50
11,930
The base of an inclined parallelepiped is a rhombus with a side length of 60. A diagonal section plane passing through the longer diagonal of the base is perpendicular to the base's plane. The area of this section is 7200. Find the shorter diagonal of the base if the lateral edge is 80 and forms an angle of $60^\circ$ with the base plane.
60
83.59375
11,931
It is known that 9 cups of tea cost less than 10 rubles, and 10 cups of tea cost more than 11 rubles. How much does one cup of tea cost?
111
0
11,932
Consider a sequence of real numbers \(\{a_n\}\) defined by \(a_1 = 1\) and \(a_{n+1} = \frac{a_n}{1 + n a_n}\) for \(n \geq 1\). Find the value of \(\frac{1}{a_{2005}} - 2000000\).
9011
65.625
11,933
Ilya takes a triplet of numbers and transforms it following the rule: at each step, each number is replaced by the sum of the other two. What is the difference between the largest and the smallest numbers in the triplet after the 1989th application of this rule, if the initial triplet of numbers was \(\{70, 61, 20\}\)? If the question allows for multiple solutions, list them all as a set.
50
28.125
11,934
If the integer $a$ makes the inequality system about $x$ $\left\{\begin{array}{l}{\frac{x+1}{3}≤\frac{2x+5}{9}}\\{\frac{x-a}{2}>\frac{x-a+1}{3}}\end{array}\right.$ have at least one integer solution, and makes the solution of the system of equations about $x$ and $y$ $\left\{\begin{array}{l}ax+2y=-4\\ x+y=4\end{array}\right.$ positive integers, find the sum of all values of $a$ that satisfy the conditions.
-16
28.90625
11,935
On each side of an equilateral triangle, a point is taken. The sides of the triangle with vertices at these points are perpendicular to the sides of the original triangle. In what ratio does each of these points divide the side of the original triangle?
1:2
32.03125
11,936
In a convex quadrilateral \(ABCD\), the midpoint of side \(AD\) is marked as point \(M\). Segments \(BM\) and \(AC\) intersect at point \(O\). It is known that \(\angle ABM = 55^\circ\), \(\angle AMB = 70^\circ\), \(\angle BOC = 80^\circ\), and \(\angle ADC = 60^\circ\). How many degrees is \(\angle BCA\)?
35
35.15625
11,937
In triangle \( \triangle ABC \), \( AB = \sqrt{2} \), \( AC = \sqrt{3} \), and \( \angle BAC = 30^\circ \). Let \( P \) be an arbitrary point in the plane containing \( \triangle ABC \). Find the minimum value of \( \mu = \overrightarrow{PA} \cdot \overrightarrow{PB} + \overrightarrow{PB} \cdot \overrightarrow{PC} + \overrightarrow{PC} \cdot \overrightarrow{PA} \).
\frac{\sqrt{2}}{2} - \frac{5}{3}
0
11,938
Find the sum of $521_8$ and $146_8$ in base $8$.
667_8
85.9375
11,939
In a new game, Jane and her brother each spin a spinner once. The spinner has six congruent sectors labeled from 1 to 6. If the non-negative difference of their numbers is less than 4, Jane wins. Otherwise, her brother wins. What is the probability that Jane wins? Express your answer as a common fraction.
\frac{5}{6}
44.53125
11,940
Samantha has 10 different colored marbles in her bag. In how many ways can she choose five different marbles such that at least one of them is red?
126
88.28125
11,941
The decimal number $13^{101}$ is given. It is instead written as a ternary number. What are the two last digits of this ternary number?
21
92.1875
11,942
What is the smallest eight-digit positive integer that has exactly four digits which are 4?
10004444
69.53125
11,943
Camp Koeller offers exactly three water activities: canoeing, swimming, and fishing. None of the campers is able to do all three of the activities. In total, 15 of the campers go canoeing, 22 go swimming, 12 go fishing, and 9 do not take part in any of these activities. Determine the smallest possible number of campers at Camp Koeller.
34
3.90625
11,944
The cafe "Burattino" operates 6 days a week with a day off on Mondays. Kolya made two statements: "from April 1 to April 20, the cafe worked 18 days" and "from April 10 to April 30, the cafe also worked 18 days." It is known that he made a mistake once. How many days did the cafe work from April 1 to April 27?
23
32.8125
11,945
In the convex quadrilateral \(ABCD\), \[ \angle BAD = \angle BCD = 120^\circ, \quad BC = CD = 10. \] Find \(AC.\)
10
17.96875
11,946
The number of positive integer pairs $(a,b)$ that have $a$ dividing $b$ and $b$ dividing $2013^{2014}$ can be written as $2013n+k$ , where $n$ and $k$ are integers and $0\leq k<2013$ . What is $k$ ? Recall $2013=3\cdot 11\cdot 61$ .
27
42.96875
11,947
Let \( \triangle ABC \) be an acute triangle, with \( M \) being the midpoint of \( \overline{BC} \), such that \( AM = BC \). Let \( D \) and \( E \) be the intersection of the internal angle bisectors of \( \angle AMB \) and \( \angle AMC \) with \( AB \) and \( AC \), respectively. Find the ratio of the area of \( \triangle DME \) to the area of \( \triangle ABC \).
\frac{2}{9}
10.9375
11,948
An ancient Greek was born on January 7, 40 B.C., and died on January 7, 40 A.D. How many years did he live?
79
49.21875
11,949
Let the operation $\#$ be defined as $\#(a, b, c) = b^2 - 4ac$, for all real numbers $a, b$, and $c$. Define a new operation $\oplus$ by $\oplus(a, b, c, d) = \#(a, b + d, c) - \#(a, b, c)$. What is the value of $\oplus(2, 4, 1, 3)$?
33
36.71875
11,950
Given a geometric sequence $\{a_n\}$ with the first term $\frac{3}{2}$ and common ratio $- \frac{1}{2}$, calculate the maximum value of the sum of the first $n$ terms, $S_n$.
\frac{3}{2}
79.6875
11,951
Quadrilateral $PQRS$ is a square. A circle with center $S$ has arc $PXC$. A circle with center $R$ has arc $PYC$. If $PQ = 3$ cm, what is the total number of square centimeters in the football-shaped area of regions II and III combined? Express your answer as a decimal to the nearest tenth.
5.1
24.21875
11,952
If for any real number \( x \), the function \[ f(x)=x^{2}-2x-|x-1-a|-|x-2|+4 \] always yields a non-negative real number, then the minimum value of the real number \( a \) is .
-2
46.09375
11,953
If $x+y=8$ and $xy=12$, what is the value of $x^3+y^3$ and $x^2 + y^2$?
40
10.15625
11,954
Given that \( a, b, c \) are positive integers, and the parabola \( y = ax^2 + bx + c \) intersects the x-axis at two distinct points \( A \) and \( B \). If the distances from \( A \) and \( B \) to the origin are both less than 1, find the minimum value of \( a + b + c \).
11
15.625
11,955
Let \( ABCD \) be a square with side length \( 5 \), and \( E \) be a point on \( BC \) such that \( BE = 3 \) and \( EC = 2 \). Let \( P \) be a variable point on the diagonal \( BD \). Determine the length of \( PB \) if \( PE + PC \) is minimized.
\frac{15 \sqrt{2}}{8}
7.8125
11,956
Each day, John ate 30% of the chocolates that were in his box at the beginning of that day. At the end of the third day, 28 chocolates remained. How many chocolates were in the box originally?
82
46.09375
11,957
The diagram shows the ellipse whose equation is \(x^{2}+y^{2}-xy+x-4y=12\). The curve cuts the \(y\)-axis at points \(A\) and \(C\) and cuts the \(x\)-axis at points \(B\) and \(D\). What is the area of the inscribed quadrilateral \(ABCD\)?
28
35.9375
11,958
From the 4040 integers ranging from -2020 to 2019, three numbers are randomly chosen and multiplied together. Let the smallest possible product be $m$ and the largest possible product be $n$. What is the value of $\frac{m}{n}$? Provide the answer in simplest fraction form.
-\frac{2020}{2017}
44.53125
11,959
On the banks of an island, which has the shape of a circle (viewed from above), there are the cities $A, B, C,$ and $D$. A straight asphalt road $AC$ divides the island into two equal halves. A straight asphalt road $BD$ is shorter than road $AC$ and intersects it. The speed of a cyclist on any asphalt road is 15 km/h. The island also has straight dirt roads $AB, BC, CD,$ and $AD$, on which the cyclist's speed is the same. The cyclist travels from point $B$ to each of points $A, C,$ and $D$ along a straight road in 2 hours. Find the area enclosed by the quadrilateral $ABCD$.
450
10.9375
11,960
The secret object is a rectangle measuring $200 \times 300$ meters. Outside the object, there is one guard stationed at each of its four corners. An intruder approached the perimeter of the secret object from the outside, and all the guards ran towards the intruder using the shortest paths along the outer perimeter (the intruder remained stationary). Three guards collectively ran a total of 850 meters to reach the intruder. How many meters did the fourth guard run to reach the intruder?
150
81.25
11,961
A metallic weight has a mass of 25 kg and is an alloy of four metals. The first metal in this alloy is one and a half times more than the second; the mass of the second metal is related to the mass of the third as \(3: 4\), and the mass of the third metal to the mass of the fourth as \(5: 6\). Determine the mass of the fourth metal. Give the answer in kilograms, rounding to the nearest hundredth if necessary.
7.36
72.65625
11,962
Triangle \(ABC\) has \(\angle A = 90^\circ\), side \(BC = 25\), \(AB > AC\), and area 150. Circle \(\omega\) is inscribed in \(ABC\), with \(M\) as its point of tangency on \(AC\). Line \(BM\) meets \(\omega\) a second time at point \(L\). Find the length of segment \(BL\).
\frac{45\sqrt{17}}{17}
5.46875
11,963
In \(\triangle ABC\), \(a, b, c\) are the sides opposite angles \(A, B, C\) respectively. Given \(a+c=2b\) and \(A-C=\frac{\pi}{3}\), find the value of \(\sin B\).
\frac{\sqrt{39}}{8}
72.65625
11,964
Given a parabola $C: y^2 = 3x$ with focus $F$, find the length of segment $AB$ where the line passing through $F$ at a $30^\circ$ angle intersects the parabola at points $A$ and $B$.
12
49.21875
11,965
The function \( f(x) = \frac{x^{2}}{8} + x \cos x + \cos (2x) \) (for \( x \in \mathbf{R} \)) has a minimum value of ___
-1
60.9375
11,966
A deck of fifty-two cards consists of four $1$'s, four $2$'s, ..., four $13$'s. Two matching pairs (two sets of two cards with the same number) are removed from the deck. After removing these cards, find the probability, represented as a fraction $m/n$ in simplest form, where $m$ and $n$ are relatively prime, that two randomly selected cards from the remaining cards also form a pair. Find $m + n$.
299
49.21875
11,967
When $x^{2}$ was added to the quadratic polynomial $f(x)$, its minimum value increased by 1. When $x^{2}$ was subtracted from it, its minimum value decreased by 3. How will the minimum value of $f(x)$ change if $2x^{2}$ is added to it?
\frac{3}{2}
62.5
11,968
The length of one side of the square \(ABCD\) is 4 units. A circle is drawn tangent to \(\overline{BC}\) and passing through the vertices \(A\) and \(D\). Find the area of the circle.
\frac{25 \pi}{4}
30.46875
11,969
A crew of workers was tasked with pouring ice rinks on a large and a small field, where the area of the large field is twice the area of the small field. The part of the crew working on the large field had 4 more workers than the part of the crew working on the small field. When the pouring on the large rink was completed, the group working on the small field was still working. What is the maximum number of workers that could have been in the crew?
10
39.84375
11,970
Given point $P(2,-1)$, (1) Find the general equation of the line that passes through point $P$ and has a distance of 2 units from the origin. (2) Find the general equation of the line that passes through point $P$ and has the maximum distance from the origin. Calculate the maximum distance.
\sqrt{5}
68.75
11,971
Twenty people, including \( A, B, \) and \( C \), sit randomly at a round table. What is the probability that at least two of \( A, B, \) and \( C \) sit next to each other?
17/57
6.25
11,972
Let \( A \) be the set of any 20 points on the circumference of a circle. Joining any two points in \( A \) produces one chord of this circle. Suppose every three such chords are not concurrent. Find the number of regions within the circle which are divided by all these chords.
5036
87.5
11,973
Let \( x = \sqrt{1 + \frac{1}{1^{2}} + \frac{1}{2^{2}}} + \sqrt{1 + \frac{1}{2^{2}} + \frac{1}{3^{2}}} + \cdots + \sqrt{1 + \frac{1}{2012^{2}} + \frac{1}{2013^{2}}} \). Find the value of \( x - [x] \), where \( [x] \) denotes the greatest integer not exceeding \( x \).
\frac{2012}{2013}
84.375
11,974
If $x \sim N(4, 1)$ and $f(x < 3) = 0.0187$, then $f(x < 5) = \_\_\_\_\_\_$.
0.9813
2.34375
11,975
Given the ages of Daisy's four cousins are distinct single-digit positive integers, and the product of two of the ages is $24$ while the product of the other two ages is $35$, find the sum of the ages of Daisy's four cousins.
23
74.21875
11,976
Elective 4-4: Coordinate System and Parametric Equations In the Cartesian coordinate system $xOy$, the parametric equation of line $l_1$ is $\begin{cases}x=2+t \\ y=kt\end{cases}$ (where $t$ is the parameter), and the parametric equation of line $l_2$ is $\begin{cases}x=-2+m \\ y= \frac{m}{k}\end{cases}$ (where $m$ is the parameter). Let the intersection point of $l_1$ and $l_2$ be $P$. When $k$ changes, the trajectory of $P$ is curve $C$. (1) Write the general equation of $C$; (2) Establish a polar coordinate system with the origin as the pole and the positive half-axis of $x$ as the polar axis. Let line $l_3: \rho(\cos \theta +\sin \theta)− \sqrt{2} =0$, and $M$ be the intersection point of $l_3$ and $C$. Find the polar radius of $M$.
\sqrt{5}
42.96875
11,977
The letters L, K, R, F, O and the digits 1, 7, 8, 9 are "cycled" separately and put together in a numbered list. Determine the line number on which LKRFO 1789 will appear for the first time.
20
36.71875
11,978
Given that \(\alpha, \beta, \gamma\) satisfy \(0<\alpha<\beta<\gamma<2 \pi\), and for any \(x \in \mathbf{R}\), \(\cos (x+\alpha) + \cos (x+\beta) + \cos (x+\gamma) = 0\), determine the value of \(\gamma - \alpha\).
\frac{4\pi}{3}
71.09375
11,979
In the spring round of the 2000 Cities Tournament, high school students in country $N$ were presented with six problems. Each problem was solved by exactly 1000 students, but no two students together solved all six problems. What is the minimum possible number of high school students in country $N$ who participated in the spring round?
2000
17.96875
11,980
From the 4 digits 0, 1, 2, 3, select 3 digits to form a three-digit number without repetition. How many of these three-digit numbers are divisible by 3?
10
28.90625
11,981
A semicircle and a circle each have a radius of 5 units. A square is inscribed in each. Calculate the ratio of the perimeter of the square inscribed in the semicircle to the perimeter of the square inscribed in the circle.
\frac{\sqrt{10}}{5}
57.03125
11,982
In the right triangle \(ABC\) with \(\angle B = 90^\circ\), \(P\) is a point on the angle bisector of \(\angle A\) inside \(\triangle ABC\). Point \(M\) (distinct from \(A\) and \(B\)) lies on the side \(AB\). The lines \(AP\), \(CP\), and \(MP\) intersect sides \(BC\), \(AB\), and \(AC\) at points \(D\), \(E\), and \(N\) respectively. Given that \(\angle MPB = \angle PCN\) and \(\angle NPC = \angle MBP\), find \(\frac{S_{\triangle APC}}{S_{ACDE}}\).
1/2
64.84375
11,983
The positive integers are grouped as follows: \( A_1 = \{1\}, A_2 = \{2, 3, 4\}, A_3 = \{5, 6, 7, 8, 9\} \), and so on. In which group does 2009 belong?
45
89.84375
11,984
There are 150 different cards on the table with the numbers $2, 4, 6, \ldots, 298, 300$ (each card has exactly one number, and each number appears exactly once). In how many ways can you choose 2 cards so that the sum of the numbers on the chosen cards is divisible by $5$?
2235
77.34375
11,985
One student has 6 mathematics books, and another has 8. In how many ways can they exchange three books?
1120
85.15625
11,986
Let $[ x ]$ denote the greatest integer less than or equal to $x$. For example, $[10.2] = 10$. Calculate the value of $\left[\frac{2017 \times 3}{11}\right] + \left[\frac{2017 \times 4}{11}\right] + \left[\frac{2017 \times 5}{11}\right] + \left[\frac{2017 \times 6}{11}\right] + \left[\frac{2017 \times 7}{11}\right] + \left[\frac{2017 \times 8}{11}\right]$.
6048
97.65625
11,987
Calculate the definite integral: $$ \int_{0}^{\pi} 2^{4} \sin ^{4}\left(\frac{x}{2}\right) \cos ^{4}\left(\frac{x}{2}\right) d x $$
\frac{3\pi}{8}
93.75
11,988
In the set \(\{1, 2, 3, \cdots, 99, 100\}\), how many numbers \(n\) satisfy the condition that the tens digit of \(n^2\) is odd? (45th American High School Mathematics Examination, 1994)
20
100
11,989
Given $f(x) = e^{-x}$, calculate the limit $$\lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1 - 2\Delta x)}{\Delta x}$$.
-\frac{3}{e}
85.9375
11,990
Given $f\left(x\right)=\left(1+2x\right)^{n}$, where the sum of the binomial coefficients in the expansion is $64$, and ${\left(1+2x\right)^n}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_n}{x^n}$. $(1)$ Find the value of $a_{2}$; $(2)$ Find the term with the largest binomial coefficient in the expansion of $\left(1+2x\right)^{n}$; $(3)$ Find the value of $a_{1}+2a_{2}+3a_{3}+\ldots +na_{n}$.
2916
85.9375
11,991
In an election, there are two candidates, A and B, who each have 5 supporters. Each supporter, independent of other supporters, has a \(\frac{1}{2}\) probability of voting for his or her candidate and a \(\frac{1}{2}\) probability of being lazy and not voting. What is the probability of a tie (which includes the case in which no one votes)?
63/256
35.9375
11,992
If \( A \) is a positive integer such that \( \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \cdots + \frac{1}{(A+1)(A+3)} = \frac{12}{25} \), find the value of \( A \).
22
58.59375
11,993
If two people, A and B, work together on a project, they can complete it in a certain number of days. If person A works alone to complete half of the project, it takes them 10 days less than it would take both A and B working together to complete the entire project. If person B works alone to complete half of the project, it takes them 15 days more than it would take both A and B working together to complete the entire project. How many days would it take for A and B to complete the entire project working together?
60
62.5
11,994
A building has three different staircases, all starting at the base of the building and ending at the top. One staircase has 104 steps, another has 117 steps, and the other has 156 steps. Whenever the steps of the three staircases are at the same height, there is a floor. How many floors does the building have?
13
82.03125
11,995
What is the maximum value of \( N \) such that \( N! \) has exactly 2013 trailing zeros?
8069
18.75
11,996
Find the integer \(n\), such that \(-180 < n < 180\), for which \(\tan n^\circ = \tan 276^\circ.\)
96
46.09375
11,997
Solve for \(x\): \[\frac{x-60}{3} = \frac{5-3x}{4}.\]
\frac{255}{13}
93.75
11,998
Given the sequence $\{a_{n}\}$ where ${a}_{1}=\frac{1}{2}$, ${a}_{4}=\frac{1}{8}$, and $a_{n+1}a_{n}+a_{n-1}a_{n}=2a_{n+1}a_{n-1}$ for $n\geqslant 2$, find the value of $T_{2024}$, where $T_{n}$ is the sum of the first $n$ terms of the sequence $\{b_{n}\}$ and $b_{n}=a_{n}a_{n+1}$.
\frac{506}{2025}
35.15625
11,999
When two distinct digits are randomly chosen in $N=123456789$ and their places are swapped, one gets a new number $N'$ (for example, if 2 and 4 are swapped, then $N'=143256789$ ). The expected value of $N'$ is equal to $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Compute the remainder when $m+n$ is divided by $10^6$ . *Proposed by Yannick Yao*
555556
9.375