prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd import numpy as np import os from datetime import datetime def read_netflix_data(): # set directory path DIR_ = './data/netflix/training_set/' files = list(map(lambda x: DIR_+x, os.listdir(DIR_))) frame = [] for file in files: #file = files[0] movie_id = int(file.replace(DIR_, '').split('_')[1].replace('.txt', '')) data = pd.read_csv(file, names=['UserID', 'Rating', 'Timestamp'], skiprows=1) data['MovieID'] = movie_id frame.append(data) rating = pd.concat(frame, axis=0) rating['Timestamp'] = pd.to_datetime(rating['Timestamp'], format='%Y-%m-%d') base_dt = datetime(1900,1,1) rating['Timestamp'] = (rating['Timestamp'] - base_dt).dt.total_seconds() user = pd.DataFrame() movie = pd.DataFrame() return rating, user, movie def read_mllatest_data(): # set file path PATH_rating = './data/ml-latest/ratings.csv' PATH_movie = './data/ml-latest/movies.csv' # set columns COLS_rating = ['UserID', 'MovieID', 'Rating', 'Timestamp'] COLS_movie = ['MovieID', 'Title', 'Genres'] # read DataSet rating = pd.read_csv(PATH_rating, sep=',', names=COLS_rating, skiprows=1) user = pd.DataFrame() movie = pd.read_csv(PATH_movie, sep=',', names=COLS_movie, skiprows=1) return rating, user, movie def read_ml20m_data(): # set file path PATH_rating = './data/ml-20m/ratings.csv' PATH_movie = './data/ml-20m/movies.csv' # set columns COLS_rating = ['UserID', 'MovieID', 'Rating', 'Timestamp'] COLS_movie = ['MovieID', 'Title', 'Genres'] # read DataSet rating = pd.read_csv(PATH_rating, sep=',', names=COLS_rating, skiprows=1) user = pd.DataFrame() movie = pd.read_csv(PATH_movie, sep=',', names=COLS_movie, skiprows=1) return rating, user, movie def read_ml100k_data(): # set file path PATH_rating = './data/ml-100k/u.data' PATH_user = './data/ml-100k/u.user' PATH_movie = './data/ml-100k/u.item' # set columns COLS_rating = ['UserID', 'MovieID', 'Rating', 'Timestamp'] COLS_user = ['UserID', 'Age', 'Gender', 'Occupation', 'Zip-code'] GenreCOLS = ['Genre%02d'%d for d in range(19)] COLS_movie = ['MovieID', 'Title', 'release-date', 'unknown0', 'unknown1'] + GenreCOLS # read DataSet rating = pd.read_csv(PATH_rating, sep='\t', names=COLS_rating) user =
pd.read_csv(PATH_user, sep='|', names=COLS_user)
pandas.read_csv
import numpy as np import pandas def normalize_features(array): """ Normalize the features in our data set. """ array_normalized = (array-array.mean())/array.std() mu = array.mean() sigma = array.std() return array_normalized, mu, sigma def compute_cost(features, values, theta): """ Compute the cost function given a set of features / values, and the values for our thetas. """ m = len(values) sum_of_square_errors = np.square(np.dot(features, theta) - values).sum() cost = sum_of_square_errors / (2*m) return cost def gradient_descent(features, values, theta, alpha, num_iterations): """ Perform gradient descent given a data set with an arbitrary number of features. """ m = len(values) cost_history = [] for i in range(num_iterations): predicted_values = np.dot(features, theta) theta = theta - alpha / m * np.dot((predicted_values - values), features) cost = compute_cost(features, values, theta) cost_history.append(cost) return theta, pandas.Series(cost_history) def predictions(dataframe): dummy_units =
pandas.get_dummies(dataframe['UNIT'], prefix='unit')
pandas.get_dummies
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'),
pd.Timestamp('2015-04-01')
pandas.Timestamp
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in
range(3)
pandas.compat.range
"""Tests for functions in preprocess.py.""" import puget.preprocess as pp import puget import os import os.path as op import pandas as pd import pandas.util.testing as pdt import numpy as np import tempfile import json from numpy.testing import assert_equal import pytest def test_std_path_setup(): filename = 'test' data_dir = 'data' # test with one year paths = ['test_2012'] file_spec = pp.std_path_setup(filename, data_dir, paths) test_dict = {'test_2012': op.join(data_dir, 'test_2012', filename)} assert_equal(file_spec, test_dict) # test with limited years paths = ['test_2012', 'test_2013'] file_spec = pp.std_path_setup(filename, data_dir, paths) test_dict = {'test_2012': op.join(data_dir, 'test_2012', filename), 'test_2013': op.join(data_dir, 'test_2013', filename)} assert_equal(file_spec, test_dict) # test with all years paths = ['test_2011', 'test_2012', 'test_2013', 'test_2014'] file_spec = pp.std_path_setup(filename, data_dir, paths) test_dict = {'test_2011': op.join(data_dir, 'test_2011', filename), 'test_2012': op.join(data_dir, 'test_2012', filename), 'test_2013': op.join(data_dir, 'test_2013', filename), 'test_2014': op.join(data_dir, 'test_2014', filename)} assert_equal(file_spec, test_dict) def test_read_table(): """Test read_table function.""" # create temporary csv file temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df = pd.DataFrame({'id': [1, 1, 2, 2], 'time1': ['2001-01-13', '2004-05-21', '2003-06-10', '2003-06-10'], 'drop1': [2, 3, 4, 5], 'ig_dedup1': [5, 6, 7, 8], 'categ1': [0, 8, 0, 0]}) df.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) file_spec = {'2011': temp_csv_file.name} df = pp.read_table(file_spec, data_dir=None, paths=None, columns_to_drop=['drop1'], categorical_var=['categ1'], time_var=['time1'], duplicate_check_columns=['id', 'time1', 'categ1']) df_test = pd.DataFrame({'id': [1, 1, 2], 'time1': pd.to_datetime(['2001-01-13', '2004-05-21', '2003-06-10'], errors='coerce'), 'ig_dedup1': [5, 6, 8], 'categ1': [0, np.nan, 0]}) # Have to change the index to match the one we de-duplicated df_test.index = pd.Int64Index([0, 1, 3]) pdt.assert_frame_equal(df, df_test) # test passing a string filename with data_dir and path path, fname = op.split(temp_csv_file.name) path0, path1 = op.split(path) df = pp.read_table(fname, data_dir=path0, paths=[path1], columns_to_drop=['drop1'], categorical_var=['categ1'], time_var=['time1'], duplicate_check_columns=['id', 'time1', 'categ1']) temp_csv_file.close() # test error checking with pytest.raises(ValueError): pp.read_table(file_spec, data_dir=op.join(pp.DATA_PATH, 'king')) # test error checking with pytest.raises(ValueError): pp.read_table('test', data_dir=None, paths=None) def test_read_entry_exit(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 11, 12], 'stage': [0, 1, 0], 'value': [0, 1, 0]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'categorical_var': ['value'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'id'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.read_entry_exit_table(file_spec=file_spec, data_dir=None, paths=None, metadata=temp_meta_file.name) # make sure values are floats df_test = pd.DataFrame({'id': [11, 12], 'value_entry': [0, 0], 'value_exit': [1, np.NaN]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'categorical_var': ['value']} metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.read_entry_exit_table(file_spec=file_spec, metadata=temp_meta_file2.name) temp_csv_file.close() temp_meta_file.close() temp_meta_file2.close() def test_get_enrollment(): """Test get_enrollment function.""" # create temporary csv file & metadata file to read in temp_csv_file = tempfile.NamedTemporaryFile(mode='w') temp_meta_file = tempfile.NamedTemporaryFile(mode='w') df = pd.DataFrame({'id': [1, 1, 2, 2], 'time1': ['2001-01-13', '2004-05-21', '2003-06-10', '2003-06-10'], 'drop1': [2, 3, 4, 5], 'ig_dedup1': [5, 6, 7, 8], 'categ1': [0, 8, 0, 0]}) df.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) metadata = ({'name': 'test', 'person_enrollment_ID': 'id', 'person_ID': 'id', 'program_ID': 'id', 'duplicate_check_columns': ['id', 'time1', 'categ1'], 'columns_to_drop': ['drop1'], 'categorical_var': ['categ1'], 'time_var': ['time1'], 'groupID_column': 'id', 'entry_date': 'time1' }) metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} # first try with groups=True (default) df = pp.get_enrollment(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'id': [1, 1], 'time1': pd.to_datetime(['2001-01-13', '2004-05-21'], errors='coerce'), 'ig_dedup1': [5, 6], 'categ1': [0, np.nan]}) pdt.assert_frame_equal(df, df_test) # try again with groups=False df = pp.get_enrollment(groups=False, file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'id': [1, 1, 2], 'time1': pd.to_datetime(['2001-01-13', '2004-05-21', '2003-06-10'], errors='coerce'), 'ig_dedup1': [5, 6, 8], 'categ1': [0, np.nan, 0]}) # Have to change the index to match the one we de-duplicated df_test.index = pd.Int64Index([0, 1, 3]) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_exit(): """test get_exit function.""" # create temporary csv file & metadata file to read in temp_csv_file = tempfile.NamedTemporaryFile(mode='w') temp_meta_file = tempfile.NamedTemporaryFile(mode='w') dest_rand_ints = np.random.random_integers(1, 30, 3) df_init = pd.DataFrame({'id': [11, 12, 13], 'dest': dest_rand_ints}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) metadata = ({'name': 'test', 'duplicate_check_columns': ['id'], "destination_column": 'dest', 'person_enrollment_ID': ['id']}) metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_exit(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) mapping_table = pd.read_csv(op.join(puget.data.DATA_PATH, 'metadata', 'destination_mappings.csv')) map_table_test_ints = [2, 25, 26] map_table_test = pd.DataFrame({'Standard': np.array(['New Standards']*3), 'DestinationNumeric': np.array( map_table_test_ints).astype(float), 'DestinationDescription': ['Transitional housing for homeless persons (including homeless youth)', 'Long-term care facility or nursing home', 'Moved from one HOPWA funded project to HOPWA PH'], 'DestinationGroup': ['Temporary', 'Permanent', 'Permanent'], 'DestinationSuccess': ['Other Exit', 'Successful Exit', 'Successful Exit'], 'Subsidy': ['No', 'No', 'Yes']}) map_table_subset = mapping_table[mapping_table['DestinationNumeric'] == map_table_test_ints[0]] map_table_subset = map_table_subset.append(mapping_table[ mapping_table['DestinationNumeric'] == map_table_test_ints[1]]) map_table_subset = map_table_subset.append(mapping_table[ mapping_table['DestinationNumeric'] == map_table_test_ints[2]]) # Have to change the index to match the one we made up map_table_subset.index = pd.Int64Index([0, 1, 2]) # sort because column order is not assured because started with dicts map_table_test = map_table_test.sort_index(axis=1) map_table_subset = map_table_subset.sort_index(axis=1) pdt.assert_frame_equal(map_table_subset, map_table_test) mapping_table = mapping_table[mapping_table.Standard == 'New Standards'] mapping_table['Subsidy'] = mapping_table['Subsidy'].map({'Yes': True, 'No': False}) mapping_table = mapping_table.drop(['Standard'], axis=1) df_test = pd.DataFrame({'id': [11, 12, 13], 'dest': dest_rand_ints}) df_test = pd.merge(left=df_test, right=mapping_table, how='left', left_on='dest', right_on='DestinationNumeric') df_test = df_test.drop('dest', axis=1) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_client(): # create temporary csv files & metadata file to read in temp_csv_file1 = tempfile.NamedTemporaryFile(mode='w') temp_csv_file2 = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 12, 13, 15, 16, 17], 'first_name':['AAA', 'BBB', 'CCC', 'EEE', 'FFF', 'noname'], 'dob_col': ['1990-01-13', '2012-05-21', '1850-06-14', '1965-11-22', '1948-09-03', '2012-03-18'], 'time_col': ['1996-01-13', '2014-05-21', '1950-06-14', '1985-11-22', '1978-09-03', '2014-03-18'], 'bool_col': [1, 99, 1, 8, 0, 1], 'numeric': [99, 3, 6, 0, 8, np.NaN]}) df2_init = pd.DataFrame({'id': [11, 12, 13, 14, 15, 16, 17, 18], 'first_name':['AAA', 'BBB', 'CCC', 'DDD', 'EEE', 'FFF', 'noname', 'HHH'], 'dob_col': ['1990-01-15', '2012-05-21', '1850-06-14', '1975-12-08', '1967-11-22', pd.NaT, '2010-03-18', '2014-04-30'], 'time_col': ['1996-01-15', '2014-05-21', '1950-06-14', '1995-12-08', '1987-11-22', pd.NaT, '2012-03-18', '2015-04-30'], 'bool_col': [0, 0, 1, 0, 8, 0, np.NaN, 1], 'numeric': [5, 3, 7, 1, 0, 8, 6, 0]}) df_init.to_csv(temp_csv_file1, index=False) temp_csv_file1.seek(0) df2_init.to_csv(temp_csv_file2, index=False) temp_csv_file2.seek(0) file_spec = {'2011': temp_csv_file1.name, '2012': temp_csv_file2.name} temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = ({'name': 'test', 'person_ID': 'id', 'duplicate_check_columns': ['id', 'dob_col', 'first_name'], 'columns_to_drop': [], 'categorical_var': ['bool_col', 'numeric'], 'time_var': ['dob_col', 'time_col'], 'boolean': ['bool_col'], 'numeric_code': ['numeric'], 'dob_column': 'dob_col', 'name_columns': ["first_name"]}) metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) for name_exclusion in [False, True]: # get path & filenames df = pp.get_client(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name, name_exclusion=name_exclusion) df_test = pd.DataFrame({'id': [11, 11, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18], 'first_name':['AAA', 'AAA', 'BBB', 'CCC', 'DDD', 'EEE', 'EEE', 'FFF', 'FFF', 'noname', 'noname', 'HHH'], 'dob_col': pd.to_datetime(['1990-01-13', '1990-01-15', '2012-05-21', '1850-06-14', '1975-12-08', '1965-11-22', '1967-11-22', '1948-09-03', pd.NaT, '2012-03-18', '2010-03-18', '2014-04-30']), 'time_col': pd.to_datetime(['1996-01-14', '1996-01-14', '2014-05-21', '1950-06-14', '1995-12-08', pd.NaT, pd.NaT, '1978-09-03', '1978-09-03', pd.NaT, pd.NaT, '2015-04-30']), 'bool_col': [1, 1, 0, 1, 0, np.NaN, np.NaN, 0, 0, 1, 1, 1], 'numeric': [5, 5, 3, np.NaN, 1, 0, 0, np.NaN, np.NaN, 6, 6, 0]}) if name_exclusion: df_test = df_test[~(df_test['first_name'] == 'noname')] # Have to sort & change the indexes to match df = df.sort_values(by=['id', 'dob_col']) df = df.reset_index(drop=True) df_test = df_test.sort_values(by=['id', 'dob_col']) df_test = df_test.reset_index(drop=True) print(df.dtypes) print(df_test.dtypes) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = ({'name': 'test', 'duplicate_check_columns': ['id', 'dob_col'], 'categorical_var': ['bool_col', 'numeric'], 'time_var': ['time_col'], 'boolean': ['bool_col'], 'numeric_code': ['numeric'], 'dob_column': 'dob_col'}) metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.get_client(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file2.name) temp_csv_file1.close() temp_csv_file2.close() temp_meta_file.close() def test_get_disabilities(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'pid': [11, 11, 11, 11, 12, 12, 12, 12], 'stage': [10, 10, 20, 20, 10, 10, 20, 20], 'type': [5, 6, 5, 6, 5, 6, 5, 6], 'response': [0, 1, 0, 1, 99, 0, 0, 1]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'type'], 'columns_to_drop': [], 'categorical_var': ['response'], 'collection_stage_column': 'stage', 'entry_stage_val': 10, 'exit_stage_val': 20, 'update_stage_val': 30, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'type_column': 'type', 'response_column': 'response', 'person_enrollment_ID': 'pid'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_disabilities(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) type_dict = {5: 'Physical', 6: 'Developmental', 7: 'ChronicHealth', 8: 'HIVAIDS', 9: 'MentalHealth', 10: 'SubstanceAbuse'} # make sure values are floats df_test = pd.DataFrame({'pid': [11, 12], 'Physical_entry': [0, np.NaN], 'Physical_exit': [0.0, 0.0], 'Developmental_entry': [1.0, 0.0], 'Developmental_exit': [1.0, 1.0]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'type'], 'categorical_var': ['response']} metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.get_disabilities(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file2.name) temp_csv_file.close() temp_meta_file.close() temp_meta_file2.close() def test_get_employment_education(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 11, 12], 'stage': [0, 1, 0], 'value': [0, 1, 0]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'columns_to_drop': [], 'categorical_var': ['value'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'id'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_employment_education(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) # make sure values are floats df_test = pd.DataFrame({'id': [11, 12], 'value_entry': [0, 0], 'value_exit': [1, np.NaN]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_health_dv(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 11, 12], 'stage': [0, 1, 0], 'value': [0, 1, 0]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'columns_to_drop': [], 'categorical_var': ['value'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'id'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_health_dv(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) # make sure values are floats df_test = pd.DataFrame({'id': [11, 12], 'value_entry': [0, 0], 'value_exit': [1, np.NaN]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_income(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'pid': [11, 11, 11, 12, 12, 12, 12], 'stage': [0, 0, 1, 0, 0, 1, 1], 'income': [1, 1, 1, 0, 1, np.NaN, 1], 'incomeAmount': [5, 8, 12, 0, 6, 0, 3]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'income', 'incomeAmount'], 'columns_to_drop': [], 'categorical_var': ['income'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'pid', 'columns_to_take_max': ['income', 'incomeAmount']} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_income(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'pid': [11, 12], 'income_entry': [1.0, 1.0], 'income_exit': [1.0, 1.0], 'incomeAmount_entry': [8, 6], 'incomeAmount_exit': [12, 3]}) # Have to change the index to match the one we de-duplicated df_test.index = pd.Int64Index([0, 2]) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'type'], 'categorical_var': ['response']} metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.get_income(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file2.name) temp_csv_file.close() temp_meta_file.close() temp_meta_file2.close() def test_get_project(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'pid': [3, 4], 'name': ['shelter1', 'rrh2'], 'ProjectType': [1, 13]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'program_ID': 'pid', 'duplicate_check_columns': ['pid', 'name', 'ProjectType'], 'columns_to_drop': [], 'project_type_column': 'ProjectType'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_project(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'pid': [3, 4], 'name': ['shelter1', 'rrh2'], 'ProjectNumeric': [1, 13], 'ProjectType': ['Emergency Shelter', 'PH - Rapid Re-Housing']}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) def test_merge(): with tempfile.TemporaryDirectory() as temp_dir: year_str = '2011' paths = [year_str] dir_year = op.join(temp_dir, year_str) os.makedirs(dir_year, exist_ok=True) # make up all the csv files and metadata files enrollment_df = pd.DataFrame({'personID': [1, 2, 3, 4], 'person_enrollID': [10, 20, 30, 40], 'programID': [100, 200, 200, 100], 'groupID': [1000, 2000, 3000, 4000], 'entrydate': ['2011-01-13', '2011-06-10', '2011-12-05', '2011-09-10']}) # print(enrollment_df) enrollment_metadata = {'name': 'enrollment', 'person_enrollment_ID': 'person_enrollID', 'person_ID': 'personID', 'program_ID': 'programID', 'groupID_column': 'groupID', 'duplicate_check_columns': ['personID', 'person_enrollID', 'programID', 'groupID'], 'columns_to_drop': [], 'time_var': ['entrydate'], 'entry_date': 'entrydate'} enrollment_csv_file = op.join(dir_year, 'Enrollment.csv') enrollment_df.to_csv(enrollment_csv_file, index=False) enrollment_meta_file = op.join(dir_year, 'Enrollment.json') with open(enrollment_meta_file, 'w') as outfile: json.dump(enrollment_metadata, outfile) exit_df = pd.DataFrame({'ppid': [10, 20, 30, 40], 'dest_num': [12, 27, 20, 10], 'exitdate': ['2011-08-01', '2011-12-21', '2011-12-27', '2011-11-30']}) exit_metadata = {'name': 'exit', 'person_enrollment_ID': 'ppid', 'destination_column': 'dest_num', 'duplicate_check_columns': ['ppid'], 'columns_to_drop': [], 'time_var': ['exitdate']} exit_csv_file = op.join(dir_year, 'Exit.csv') exit_df.to_csv(exit_csv_file, index=False) exit_meta_file = op.join(dir_year, 'Exit.json') with open(exit_meta_file, 'w') as outfile: json.dump(exit_metadata, outfile) # need to test removal of bad dobs & combining of client records here client_df = pd.DataFrame({'pid': [1, 1, 2, 2, 3, 3, 4, 4], 'dob': ['1990-03-13', '2012-04-16', '1955-08-21', '1855-08-21', '2001-02-16', '2003-02-16', '1983-04-04', '1983-04-06'], 'gender': [0, 0, 1, 1, 1, 1, 0, 0], 'veteran': [0, 0, 1, 1, 0, 0, 0, 0], 'first_name':["AAA", "AAA", "noname", "noname", "CCC", "CCC", "DDD", "DDD"]}) client_metadata = {'name': 'client', 'person_ID': 'pid', 'dob_column': 'dob', 'time_var': ['dob'], 'categorical_var': ['gender', 'veteran'], 'boolean': ['veteran'], 'numeric_code': ['gender'], 'duplicate_check_columns': ['pid', 'dob'], 'name_columns' :["first_name"]} client_csv_file = op.join(dir_year, 'Client.csv') client_df.to_csv(client_csv_file, index=False) client_meta_file = op.join(dir_year, 'Client.json') with open(client_meta_file, 'w') as outfile: json.dump(client_metadata, outfile) disabilities_df = pd.DataFrame({'person_enrollID': [10, 10, 20, 20, 30, 30, 40, 40], 'stage': [0, 1, 0, 1, 0, 1, 0, 1], 'type': [5, 5, 5, 5, 5, 5, 5, 5], 'response': [0, 0, 1, 1, 0, 0, 0, 1]}) disabilities_metadata = {'name': 'disabilities', 'person_enrollment_ID': 'person_enrollID', 'categorical_var': ['response'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, "exit_stage_val": 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'type_column': 'type', 'response_column': 'response', 'duplicate_check_columns': ['person_enrollID', 'stage', 'type'], 'columns_to_drop': []} disabilities_csv_file = op.join(dir_year, 'Disabilities.csv') disabilities_df.to_csv(disabilities_csv_file, index=False) disabilities_meta_file = op.join(dir_year, 'Disabilities.json') with open(disabilities_meta_file, 'w') as outfile: json.dump(disabilities_metadata, outfile) emp_edu_df = pd.DataFrame({'ppid': [10, 10, 20, 20, 30, 30, 40, 40], 'stage': [0, 1, 0, 1, 0, 1, 0, 1], 'employed': [0, 0, 0, 1, 1, 1, 0, 1]}) emp_edu_metadata = {'name': 'employment_education', 'person_enrollment_ID': 'ppid', 'categorical_var': ['employed'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, "exit_stage_val": 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'duplicate_check_columns': ['ppid', 'stage'], 'columns_to_drop': []} emp_edu_csv_file = op.join(dir_year, 'EmploymentEducation.csv') emp_edu_df.to_csv(emp_edu_csv_file, index=False) emp_edu_meta_file = op.join(dir_year, 'EmploymentEducation.json') with open(emp_edu_meta_file, 'w') as outfile: json.dump(emp_edu_metadata, outfile) health_dv_df = pd.DataFrame({'ppid': [10, 10, 20, 20, 30, 30, 40, 40], 'stage': [0, 1, 0, 1, 0, 1, 0, 1], 'health_status': [0, 0, 0, 1, 1, 1, 0, 1]}) health_dv_metadata = {'name': 'health_dv', 'person_enrollment_ID': 'ppid', 'categorical_var': ['health_status'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'duplicate_check_columns': ['ppid', 'stage'], 'columns_to_drop': []} health_dv_csv_file = op.join(dir_year, 'HealthAndDV.csv') health_dv_df.to_csv(health_dv_csv_file, index=False) health_dv_meta_file = op.join(dir_year, 'HealthAndDV.json') with open(health_dv_meta_file, 'w') as outfile: json.dump(health_dv_metadata, outfile) income_df = pd.DataFrame({'ppid': [10, 10, 20, 20, 30, 30, 40, 40], 'stage': [0, 1, 0, 1, 0, 1, 0, 1], 'income': [0, 0, 0, 1000, 500, 400, 0, 300]}) income_metadata = {'name': 'income', 'person_enrollment_ID': 'ppid', 'categorical_var': ['income'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'columns_to_take_max': ['income'], 'duplicate_check_columns': ['ppid', 'stage'], 'columns_to_drop': []} income_csv_file = op.join(dir_year, 'IncomeBenefits.csv') income_df.to_csv(income_csv_file, index=False) income_meta_file = op.join(dir_year, 'IncomeBenefits.json') with open(income_meta_file, 'w') as outfile: json.dump(income_metadata, outfile) project_df = pd.DataFrame({'pr_id': [100, 200], 'type': [1, 2]}) project_metadata = {'name': 'project', 'program_ID': 'pr_id', 'project_type_column': 'type', 'duplicate_check_columns': ['pr_id'], 'columns_to_drop': []} project_csv_file = op.join(dir_year, 'Project.csv') project_df.to_csv(project_csv_file, index=False) project_meta_file = op.join(dir_year, 'Project.json') with open(project_meta_file, 'w') as outfile: json.dump(project_metadata, outfile) metadata_files = {'enrollment': enrollment_meta_file, 'exit': exit_meta_file, 'client': client_meta_file, 'disabilities': disabilities_meta_file, 'employment_education': emp_edu_meta_file, 'health_dv': health_dv_meta_file, 'income': income_meta_file, 'project': project_meta_file} for name_exclusion in [False, True]: df = pp.merge_tables(meta_files=metadata_files, data_dir=temp_dir, paths=paths, groups=False, name_exclusion=name_exclusion) df_test = pd.DataFrame({'personID': [1, 2, 3, 4], 'first_name':["AAA", "noname", "CCC", "DDD"], 'person_enrollID': [10, 20, 30, 40], 'programID': [100, 200, 200, 100], 'groupID': [1000, 2000, 3000, 4000], 'entrydate': pd.to_datetime(['2011-01-13', '2011-06-10', '2011-12-05', '2011-09-10']), 'DestinationNumeric': [12., 27., 20, 10], 'DestinationDescription': [ 'Staying or living with family, temporary tenure (e.g., room, apartment or house)', 'Moved from one HOPWA funded project to HOPWA TH', 'Rental by client, with other ongoing housing subsidy', 'Rental by client, no ongoing housing subsidy'], 'DestinationGroup': ['Temporary', 'Temporary', 'Permanent', 'Permanent'], 'DestinationSuccess': ['Other Exit', 'Other Exit', 'Successful Exit', 'Successful Exit'], 'exitdate': pd.to_datetime(['2011-08-01', '2011-12-21', '2011-12-27', '2011-11-30']), 'Subsidy': [False, False, True, False], 'dob': pd.to_datetime(['1990-03-13', '1955-08-21', pd.NaT, '1983-04-05']), 'gender': [0, 1, 1, 0], 'veteran': [0, 1, 0, 0], 'Physical_entry': [0, 1, 0, 0], 'Physical_exit': [0, 1, 0, 1], 'employed_entry': [0, 0, 1, 0], 'employed_exit': [0, 1, 1, 1], 'health_status_entry': [0, 0, 1, 0], 'health_status_exit': [0, 1, 1, 1], 'income_entry': [0, 0, 500, 0], 'income_exit': [0, 1000, 400, 300], 'ProjectNumeric': [1, 2, 2, 1], 'ProjectType': ['Emergency Shelter', 'Transitional Housing', 'Transitional Housing', 'Emergency Shelter']}) if name_exclusion: select = df_test['first_name'] == "noname" df_test = df_test[~select] df_test = df_test.reset_index(drop=True) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1)
pdt.assert_frame_equal(df, df_test)
pandas.util.testing.assert_frame_equal
import pickle from glob import glob import numpy as np import pandas as pd import tensorflow as tf from bert_score import BERTScorer from tqdm import tqdm from transformers import logging from clfs import BERTClassifier from data import TaskLoader from scoring import meteor_score logging.set_verbosity_error() tf.compat.v1.logging.set_verbosity(0) class Scorer(object): def __init__(self): self.bert_score = BERTScorer(lang="en", rescale_with_baseline=True) self.base_model = pickle.load(open('../logs/model-bully-0-plain-' + 'vanilla-no-aug/svm.pickle', 'rb')) self.bert_model = BERTClassifier(augmenter='skip', task="augment-train").load() def fp_rate(self, ref, gen): ref_acc = sum(ref) / len(ref) gen_acc = sum(gen) / len(gen) return ref_acc, ref_acc - gen_acc def clfscore(self, R_data, G_data): rp = self.base_model.predict(R_data) gp = self.base_model.predict(G_data) return self.fp_rate(rp, gp) def tfscore(self, R_data, G_data, bert=None): if not bert: bert = self.bert_model rp = bert.model_predict(R_data, batch_size=50) gp = bert.model_predict(G_data, batch_size=50) return self.fp_rate(rp, gp) def reference_score(self, R_data, bert): ŷ_pln = self.bert_model.model_predict(R_data, batch_size=45) ŷ_aug = bert.model_predict(R_data, batch_size=45) return self.fp_rate(ŷ_pln, ŷ_aug) def bertscore(self, R_data, G_data, avg=True): """Measure BERTScore.""" score = self.bert_score.score(R_data, G_data)[2] if avg: return round(score.mean().item(), 3) else: return score def bleurtscore(self, R_data, G_data, avg=True): """Measure BLEURT.""" batch, scores = [], [] for i, (a_doc, x_doc) in tqdm(enumerate(zip(R_data, G_data), start=1)): batch.append((a_doc, x_doc)) if not i % 64: R_data, G_data = list(zip(*batch)) batch_score = self.bleurt.score( references=R_data, candidates=G_data, batch_size=64) scores.extend(batch_score) batch = [] if avg: return round(np.mean(scores), 3) else: return scores def meteorscore(self, R_data, G_data, avg=True): """Measure METEOR.""" scores = [] for a_doc, x_doc in zip(R_data, G_data): scores.append(meteor_score([a_doc], x_doc)) if avg: return round(np.mean(scores), 3) else: return scores def score_data(): sc = Scorer() df_ref = pd.read_csv('../data/positive_set.csv', index_col=0) df_sco =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib as mpl import numpy as np from sklearn import metrics import itertools import warnings from dateutil.relativedelta import relativedelta from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import matplotlib.pyplot as plt import seaborn as sns from matplotlib import ticker import matplotlib.dates as mdates from matplotlib.dates import DateFormatter # plt.style.use('ggplot') sns.set_theme(style="darkgrid") font = {'size' : 12} mpl.rc('font', **font) mpl.rc('figure', max_open_warning = 0) pd.set_option('display.max_columns',None)
pd.set_option('display.max_rows',25)
pandas.set_option
# -*- coding: utf-8 -*- """ cdeweb.api.representations ~~~~~~~~~~~~~~~~~~~~~~~~~~ API response formats. :copyright: Copyright 2016 by <NAME>. :license: MIT, see LICENSE file for more details. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy from io import BytesIO import logging import dicttoxml import pandas as pd from flask import make_response, abort, Response from rdkit import Chem from rdkit.Chem import AllChem from . import api log = logging.getLogger(__name__) @api.representation('application/xml') def output_xml(data, code, headers): resp = make_response(dicttoxml.dicttoxml(data, attr_type=False, custom_root='job'), code) resp.headers.extend(headers) return resp @api.representation('application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') def output_xlsx(data, code, headers): if 'result' not in data: abort(400, 'Result not ready') bio = BytesIO() writer =
pd.ExcelWriter(bio, engine='xlsxwriter')
pandas.ExcelWriter
#!/bin/python # -*- coding: utf-8 -*- import warnings import os import time import tqdm import numpy as np import pandas as pd import scipy.stats as ss import scipy.optimize as so from scipy.special import gammaln from grgrlib.core import timeprint from grgrlib.stats import mode def mc_error(x): means = np.mean(x, 0) return np.std(means) / np.sqrt(x.shape[0]) def calc_min_interval(x, alpha): """Internal method to determine the minimum interval of a given width Assumes that x is sorted numpy array. """ n = len(x) cred_mass = 1.0 - alpha interval_idx_inc = int(np.floor(cred_mass * n)) n_intervals = n - interval_idx_inc interval_width = x[interval_idx_inc:] - x[:n_intervals] if len(interval_width) == 0: # raise ValueError('Too few elements for interval calculation') warnings.warn('Too few elements for interval calculation.') return None, None else: min_idx = np.argmin(interval_width) hdi_min = x[min_idx] hdi_max = x[min_idx + interval_idx_inc] return hdi_min, hdi_max def _hpd_df(x, alpha): cnames = ['hpd_{0:g}'.format(100 * alpha / 2), 'hpd_{0:g}'.format(100 * (1 - alpha / 2))] sx = np.sort(x.flatten()) hpd_vals = np.array(calc_min_interval(sx, alpha)).reshape(1, -1) return pd.DataFrame(hpd_vals, columns=cnames) def summary(self, store, pmode=None, bounds=None, alpha=0.1, top=None, show_prior=True): # inspired by pymc3 because it looks really nice priors = self['__data__']['estimation']['prior'] if bounds is not None or isinstance(store, tuple): xs, fs, ns = store ns = ns.squeeze() fas = (-fs[:, 0]).argsort() xs = xs[fas] fs = fs.squeeze()[fas] f_prs = [lambda x:
pd.Series(x, name='distribution')
pandas.Series
''' This script takes the mol2 files and converts to a smiles representation. by <NAME> (01/16/17) # rdkit does not support reading mol2 files with more than one molecule, using this code as a reference on how to handle this: https://www.mail-archive.com/<EMAIL>/msg01510.html ''' import os import argparse import pandas as pd from tqdm import tqdm from rdkit import Chem import sys import rdkit.Chem.Descriptors as descr parser = argparse.ArgumentParser() parser.add_argument('-i', type=str, help="path to directory containing mol2 files") parser.add_argument('-o', type=str, help="path to directory to output smiles files") args = parser.parse_args() # TODO: need to extract the name of the molecule and then pair this with the smiles representation...then store in a dataframe...then output to .csv def retrieve_mol2block(fileLikeObject, delimiter="@<TRIPOS>MOLECULE"): """generator which retrieves one mol2 block at a time """ # directly after the line @<TRIPOS>MOLECULE contains the name of the molecule molname = None prevline = "" mol2 = [] for line in fileLikeObject: # line will contain the molecule name followed by a newline character if line.startswith(delimiter) and mol2: yield (molname.strip("/n").replace('-','_'), "".join(mol2)) molname = "" mol2 = [] elif prevline.startswith(delimiter): molname = line mol2.append(line) prevline = line if mol2: yield (molname, "".join(mol2)) molname = "" if __name__ == "__main__": output_df =
pd.DataFrame()
pandas.DataFrame
''' Script to extract which people passed/failed/had an error in any of the 5 sessions with the conversational agent. Also extracts the planning/reflection answers for all people who passed the attention checks in a session. This is so that we can check for non-sensical answers and reject and no further invite such people. ''' import Utils as util import pandas as pd database_path = "W:/staff-umbrella/perfectfit/Exp0/2021_06_28_0814_Final_chatbot.db" # For sessions 1 through 5 with the conversational agent for session_num in range(1, 6): # get IDs of people who passed/failed/had an error w.r.t. attention checks in this session user_ids_passed, user_ids_failed, user_ids_error = util.check_attention_checks_session(database_path, session_num = session_num) df_user_ids_passed = pd.DataFrame(user_ids_passed, columns = ['PROLIFIC_PID']) df_user_ids_failed = pd.DataFrame(user_ids_failed, columns = ['PROLIFIC_PID']) # something went wrong in a session, i.e. some but not all attention check data was saved. df_user_ids_error = pd.DataFrame(user_ids_error, columns = ['PROLIFIC_PID']) # Save dataframes to .csv-files df_user_ids_passed.to_csv("W:/staff-umbrella/perfectfit/Exp0/session" + str(session_num) + "_passed_p_ids.csv", index = False) df_user_ids_failed.to_csv("W:/staff-umbrella/perfectfit/Exp0/session" + str(session_num) + "_failed_p_ids.csv", index = False) df_user_ids_error.to_csv("W:/staff-umbrella/perfectfit/Exp0/session" + str(session_num) + "_error_p_ids.csv", index = False) # Get planning/reflection answers for this session user_ids_answers, answers, activities, action_types = util.get_planning_reflection_answers(database_path, session_num = session_num) # Only need to look at the answers of people who passed the attention checks and had no error indices = [i for i in range(len(user_ids_answers)) if user_ids_answers[i] in user_ids_passed] user_ids_answers = list(map(user_ids_answers.__getitem__, indices)) answers = list(map(answers.__getitem__, indices)) activities = list(map(activities.__getitem__, indices)) action_types = list(map(action_types.__getitem__, indices)) df_answers =
pd.DataFrame([user_ids_answers, answers, activities, action_types])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Test data """ # Imports import pandas as pd from edbo.feature_utils import build_experiment_index # Build data sets from indices def aryl_amination(aryl_halide='ohe', additive='ohe', base='ohe', ligand='ohe', subset=1): """ Load aryl amination data with different features. """ # SMILES index index = pd.read_csv('data/aryl_amination/experiment_index.csv') # Choose supset: ar123 = ['FC(F)(F)c1ccc(Cl)cc1','FC(F)(F)c1ccc(Br)cc1','FC(F)(F)c1ccc(I)cc1'] ar456 = ['COc1ccc(Cl)cc1','COc1ccc(Br)cc1','COc1ccc(I)cc1'] ar789 = ['CCc1ccc(Cl)cc1','CCc1ccc(Br)cc1','CCc1ccc(I)cc1'] ar101112 = ['Clc1ccccn1','Brc1ccccn1','Ic1ccccn1'] ar131415 = ['Clc1cccnc1','Brc1cccnc1','Ic1cccnc1'] def get_subset(ar): a = index[index['Aryl_halide_SMILES'] == ar[0]] b = index[index['Aryl_halide_SMILES'] == ar[1]] c = index[index['Aryl_halide_SMILES'] == ar[2]] return pd.concat([a,b,c]) if subset == 1: index = get_subset(ar123) elif subset == 2: index = get_subset(ar456) elif subset == 3: index = get_subset(ar789) elif subset == 4: index = get_subset(ar101112) elif subset == 5: index = get_subset(ar131415) # Aryl halide features if aryl_halide == 'dft': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_dft.csv') elif aryl_halide == 'mordred': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_mordred.csv') elif aryl_halide == 'ohe': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_ohe.csv') # Additive features if additive == 'dft': add_features = pd.read_csv('data/aryl_amination/additive_dft.csv') elif additive == 'mordred': add_features = pd.read_csv('data/aryl_amination/additive_mordred.csv') elif additive == 'ohe': add_features = pd.read_csv('data/aryl_amination/additive_ohe.csv') # Base features if base == 'dft': base_features = pd.read_csv('data/aryl_amination/base_dft.csv') elif base == 'mordred': base_features = pd.read_csv('data/aryl_amination/base_mordred.csv') elif base == 'ohe': base_features = pd.read_csv('data/aryl_amination/base_ohe.csv') # Ligand features if ligand == 'Pd(0)-dft': ligand_features = pd.read_csv('data/aryl_amination/ligand-Pd(0)_dft.csv') elif ligand == 'mordred': ligand_features = pd.read_csv('data/aryl_amination/ligand_mordred.csv') elif ligand == 'ohe': ligand_features = pd.read_csv('data/aryl_amination/ligand_ohe.csv') # Build the descriptor set index_list = [index['Aryl_halide_SMILES'], index['Additive_SMILES'], index['Base_SMILES'], index['Ligand_SMILES']] lookup_table_list = [aryl_features, add_features, base_features, ligand_features] lookup_list = ['aryl_halide_SMILES', 'additive_SMILES', 'base_SMILES', 'ligand_SMILES'] experiment_index = build_experiment_index(index['entry'], index_list, lookup_table_list, lookup_list) experiment_index['yield'] = index['yield'].values return experiment_index def suzuki(electrophile='ohe', nucleophile='ohe', base='ohe', ligand='ohe', solvent='ohe'): """ Load Suzuki data with different features. """ # SMILES index index = pd.read_csv('data/suzuki/experiment_index.csv') # Electrophile features if electrophile == 'dft': elec_features = pd.read_csv('data/suzuki/electrophile_dft.csv') elif electrophile == 'mordred': elec_features = pd.read_csv('data/suzuki/electrophile_mordred.csv') elif electrophile == 'ohe': elec_features = pd.read_csv('data/suzuki/electrophile_ohe.csv') # Nucleophile features if nucleophile == 'dft': nuc_features = pd.read_csv('data/suzuki/nucleophile_dft.csv') elif nucleophile == 'mordred': nuc_features = pd.read_csv('data/suzuki/nucleophile_mordred.csv') elif nucleophile == 'ohe': nuc_features = pd.read_csv('data/suzuki/nucleophile_ohe.csv') # Base features if base == 'dft': base_features =
pd.read_csv('data/suzuki/base_dft.csv')
pandas.read_csv
import requests import pandas as pd import json class AssemblyDataReader: def __init__(self, key): self.api_key = key self.__api_ids = { '국회의원 발의법률안':'nzmimeepazxkubdpn', '본회의 처리안건_법률안':'nwbpacrgavhjryiph', '본회의 처리안건_예산안':'nzgjnvnraowulzqwl', '본회의 처리안건_결산':'nkalemivaqmoibxro', '본회의 처리안건_기타':'nbslryaradshbpbpm', '역대 국회의원 현황':'nprlapfmaufmqytet', '역대 국회의원 인적사항':'npffdutiapkzbfyvr', '역대 국회의원 위원회 경력':'nqbeopthavwwfbekw', '의안별 표결현황':'ncocpgfiaoituanbr', '국회의원 본회의 표결정보':'nojepdqqaweusdfbi', '국회사무처 업무추진비 집행현황':'nalacaiwauxiynsxt', '국회도서관 업무추진비 집행현황':'ngqoyjbkaxutcpmot', '국회입법조사처 업무추진비 집행현황':'nlmqzojlayoicbxhw', '국회예산정책처 업무추진비 집행현황':'nknmvzexapgiarqcd', '국회의원 세미나 일정':'nfcoioopazrwmjrgs', '국회의원 소규모 연구용역 결과보고서':'nfvmtaqoaldzhobsw', '날짜별 의정활동':'nqfvrbsdafrmuzixe', '본회의 일정':'nekcaiymatialqlxr' } self.en2kor = {'MEETINGSESSION': '회기', 'CHA': '차수', 'TITLE': '제목', 'MEETTING_DATE': '일자', 'MEETTING_TIME': '일시', 'UNIT_CD': '대별코드', 'UNIT_NM': '대', 'SEQ': '순번', 'DT': '일자', 'BILL_KIND': '의안활동구분', 'AGE': '대수', 'BILL_NO': '의안번호', 'BILL_NM': '의안명', 'STAGE': '단계', 'DTL_STAGE': '세부단계', 'COMMITTEE': '소관위원회', 'ACT_STATUS': '활동상태', 'BILL_ID': '의안ID', 'LINK_URL': '링크URL', 'COMMITTEE_ID': '소관위원회ID', 'RPT_NO': '다운로드', 'YEAR': '년도', 'FILE_ID': '파일ID', 'RPT_TITLE': '보고서제목', 'RG_DE': '등록일', 'ASBLM_NM': '의원명', 'QUARTER': '분기', 'DIV_NM': '구분명', 'LINK': '의원실링크', 'DESCRIPTION': '설명', 'SDATE': '개최일', 'STIME': '개최시간', 'NAME': '이름', 'LOCATION': '개최장소', 'PRDC_YM_NM': '생산년월', 'OPB_FL_NM': '공개파일명', 'INST_CD': '기관코드', 'INST_NM': '기관명', 'OPB_FL_PH': '공개파일경로', 'HG_NM': '이름', 'HJ_NM': '한자명', 'POLY_NM': '정당명', 'MEMBER_NO': '의원번호', 'POLY_CD': '소속정당코드', 'ORIG_CD': '선거구코드', 'VOTE_DATE': '의결일자', 'BILL_NAME': '의안명', 'LAW_TITLE': '법률명', 'CURR_COMMITTEE': '소관위', 'RESULT_VOTE_MOD': '표결결과', 'DEPT_CD': '부서코드(사용안함)', 'CURR_COMMITTEE_ID': '소관위원회ID', 'DISP_ORDER': '표시정렬순서', 'BILL_URL': '의안URL', 'BILL_NAME_URL': '의안링크', 'SESSION_CD': '회기', 'CURRENTS_CD': '차수', 'MONA_CD': '국회의원코드', 'PROC_DT': '처리일', 'PROC_RESULT_CD': '의결결과', 'BILL_KIND_CD': '의안종류', 'MEMBER_TCNT': '재적의원', 'VOTE_TCNT': '총투표수', 'YES_TCNT': '찬성', 'NO_TCNT': '반대', 'BLANK_TCNT': '기권', 'PROFILE_CD': '구분코드', 'PROFILE_NM': '구분', 'FRTO_DATE': '활동기간', 'PROFILE_SJ': '위원회 경력', 'PROFILE_UNIT_CD': '경력대수코드', 'PROFILE_UNIT_NM': '경력대수', 'ENG_NM': '영문명칭', 'BTH_GBN_NM': '음/양력', 'BTH_DATE': '생년월일', 'SEX_GBN_NM': '성별', 'REELE_GBN_NM': '재선', 'UNITS': '당선', 'ORIG_NM': '선거구', 'ELECT_GBN_NM': '선거구구분', 'PROPOSE_DT': '제안일', 'PROC_RESULT': '처리상태', 'DETAIL_LINK': '상세페이지', 'PROPOSER': '제안자', 'MEMBER_LIST': '제안자목록링크', 'RST_PROPOSER': '대표발의자', 'PUBL_PROPOSER': '공동발의자', 'COMMITTEE_NM': '소관위원회', 'COMMITTEE_SUBMIT_DT': '위원회심사_회부일', 'COMMITTEE_PRESENT_DT': '위원회심사_상정일', 'COMMITTEE_PROC_DT': '위원회심사_의결일', 'LAW_SUBMIT_DT': '법사위체계자구심사_회부일', 'LAW_PRESENT_DT': '법사위체계자구심사_상정일', 'LAW_PROC_DT': '법사위체계자구심사_의결일', 'RGS_PRESENT_DT': '본회의심의_상정일', 'RGS_PROC_DT': '본회의심의_의결일', 'CURR_TRANS_DT': '정부이송일', 'ANNOUNCE_DT': '공포일', 'BDG_SUBMIT_DT': '예결위심사_회부일', 'BDG_PRESENT_DT': '예결위심사_상정일', 'BDG_PROC_DT': '예결위심사_의결일', 'PROPOSER_KIND_CD': '제안자구분', 'DAESU': '대수', 'DAE': '대별 및 소속정당(단체)', 'DAE_NM': '대별', 'NAME_HAN': '이름(한자)', 'JA': '자', 'HO': '호', 'BIRTH': '생년월일', 'BON': '본관', 'POSI': '출생지', 'HAK': '학력 및 경력', 'HOBBY': '종교 및 취미', 'BOOK': '저서', 'SANG': '상훈', 'DEAD': '기타정보(사망일)', 'URL': '회원정보 확인 헌정회 홈페이지 URL'} def __read(self, api_id, **kargs): url = 'https://open.assembly.go.kr/portal/openapi/' + api_id params = { 'KEY':self.api_key, 'pIndex':1, 'Type':'json', 'pSize':1000, } params.update(kargs) df = pd.DataFrame() total_count = float('inf') while len(df) < total_count: j = requests.get(url, params=params).json() assert 'RESULT' not in j, j['RESULT']['MESSAGE'] total_count = j[api_id][0]['head'][0]['list_total_count'] df = df.append(pd.DataFrame(j[api_id][1]['row'])) params['pIndex'] += 1 return df.reset_index(drop=True) def __get_params(self, key, daesu=None, **kargs): params = {} if key in {'국회의원 발의법률안', '본회의 처리안건_법률안', '본회의 처리안건_예산안', '본회의 처리안건_결산', '본회의 처리안건_기타', '국회의원 본회의 표결정보', '의안별 표결현황', '날짜별 의정활동'}: assert not daesu is None, 'daesu 인자가 필요합니다.' params.update({'AGE':daesu}) elif key in {'역대 국회의원 현황'}: assert not daesu is None, 'daesu 인자가 필요합니다.' params.update({'DAESU':daesu}) elif key in {'역대 국회의원 인적사항', '국회의원 소규모 연구용역 결과보고서', '본회의 일정'}: assert not daesu is None, 'daesu 인자가 필요합니다.' UNIT_CD = '1'+str(daesu).zfill(5) params.update({'UNIT_CD':UNIT_CD}) elif key in {'역대 국회의원 위원회 경력'}: assert daesu is not None, 'daesu 인자가 필요합니다.' PROFILE_UNIT_CD = '1'+str(daesu).zfill(5) params.update({'PROFILE_UNIT_CD':PROFILE_UNIT_CD}) args = {k.lower() for k in kargs.keys()} if key in {'날짜별 의정활동'}: assert 'dt' in args, 'DT 인자가 필요합니다.' elif key in {'국회의원 본회의 표결정보'}: assert 'bill_id' in args, 'BILL_ID 인자가 필요합니다.' params.update(**kargs) return params def read(self, key, daesu=None, **kargs): ''' 가져오고 싶은 데이터 이름을 key에 적어주세요. 데이터에 따라 추가적인 인자가 필요할 수도 있습니다. 21대 국회의원 발의법률안 가져오기 >>> adr.read('국회의원 발의법률안', daesu=21) 21대 2020년 8월 18일 의정활동 가져오기 >>> adr.read('날짜별 의정활동', daesu=21, dt='2020-08-18') NABO 경제재정수첩 가져오기 >>> adr.read('ncnpwqimabagvdmky') 다음 링크에서 전체 예시를 볼 수 있습니다. https://github.com/hohyun321/AssemblyDataReader * key (str): 다음 중에서 선택. 또는 요청 주소 뒷자리 입력. '국회사무처 업무추진비 집행현황' '국회도서관 업무추진비 집행현황' '국회입법조사처 업무추진비 집행현황' '국회예산정책처 업무추진비 집행현황' '국회의원 세미나 일정' '국회의원 발의법률안' '본회의 처리안건_법률안' '본회의 처리안건_예산안' '본회의 처리안건_결산' '본회의 처리안건_기타' '역대 국회의원 현황' '역대 국회의원 인적사항' '역대 국회의원 위원회 경력' '의안별 표결현황' '국회의원 소규모 연구용역 결과보고서' '본회의 일정' '국회의원 본회의 표결정보' '날짜별 의정활동' * daesu (int): 대수 선택적으로 추가 인자를 줄 수 있습니다. API 제공 사이트를 참조하세요. https://open.assembly.go.kr/portal/openapi/openApiNaListPage.do ''' if key in self.__api_ids: api_id = self.__api_ids[key] else: api_id = key params = self.__get_params(key, daesu=daesu, **kargs) return self.__read(api_id, **params) def listing(self): ''' API 전체 목록을 가져옵니다. https://open.assembly.go.kr/portal/openapi/openApiNaListPage.do ''' url = 'https://open.assembly.go.kr/portal/openapi/selectInfsOpenApiListPaging.do' headers = {'User-Agent': 'Mozilla/5.0'} form_data = {'rows': 500, 'page':1} r = requests.post(url, data=form_data, headers=headers) data = r.json()['data'] df =
pd.DataFrame(data)
pandas.DataFrame
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays import SparseArray @pytest.mark.parametrize("fill_value", [0, np.nan]) @pytest.mark.parametrize("op", [operator.pos, operator.neg]) def test_unary_op(op, fill_value): arr = np.array([0, 1, np.nan, 2]) sparray = SparseArray(arr, fill_value=fill_value) result = op(sparray) expected = SparseArray(op(arr), fill_value=op(fill_value)) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize("fill_value", [True, False]) def test_invert(fill_value): arr = np.array([True, False, False, True]) sparray = SparseArray(arr, fill_value=fill_value) result = ~sparray expected = SparseArray(~arr, fill_value=not fill_value) tm.assert_sp_array_equal(result, expected) result = ~pd.Series(sparray) expected = pd.Series(expected) tm.assert_series_equal(result, expected) result = ~pd.DataFrame({"A": sparray}) expected =
pd.DataFrame({"A": expected})
pandas.DataFrame
import keras import numpy as np from numpy import save, load from numpy import concatenate from pandas import DataFrame from pandas import read_csv from pandas import concat from A_Parameters import * from B_SourceData import * from C_StructureData import * from D_ModelTrain import * from E_PredicAll import * from F_BackTesting import * # Run mode define RunSourceData = 1 RunStructureData = 1 RunModelTrain = 1 RunPredicNew = 1 RunBackTesting = 1 # Import parameters for Grid search P = Parameters() Cum_number = 0 Cum_portofolio = 0 for i in range(len(P)): change = P[i][0] epoch = P[i][1] batch = P[i][2] drop = P[i][3] SourceStart = P[i][4] TestFrom = P[i][5] TestTo = P[i][6] # Run all process # 1) Import source data print ("\n\n=======>>=======>>=======>>=======>>=======>>=======>>=======>>>>>>>") if RunSourceData == 1:# and Cum_number == 0: print ("\n******************** 1) Import source data ********************") SourceEnd = TestTo data_cont, data_name = SourceData(SourceStart, SourceEnd) save("Par-DataSource.npy", [data_cont, data_name]) # 2) Structuring data if RunStructureData == 1:# and Cum_number == 0: print ("\n******************** 2) Structuring data ********************") perc_train = 90 n_steps = 20 # Load parameters param = load("Par-DataSource.npy") data_cont, data_name = param[0], param[1] # Structuring data train_X, train_y, val_X, val_y, test_X, test_y, dummy_y, test_dt, dateindex = StructureData(perc_train, n_steps, data_cont, data_name, change, TestFrom, TestTo) save("Par-DataStructure.npy", [train_X, train_y, val_X, val_y, test_X, test_y, dummy_y, test_dt, dateindex]) # 3) LSTM train and validation if RunModelTrain == 1: print ("\n******************** 3) Training process ********************") # Parameter definite ep = epoch bs = batch dr = drop # Load parameters param = load("Par-DataStructure.npy") train_X, train_y = param[0], param[1] val_X, val_y = param[2], param[3] test_X, test_y = param[4], param[5] # Train process ModelTrain(train_X, train_y, val_X, val_y, test_X, test_y, ep, bs, dr) # 4) Predict all data if RunPredicNew == 1: print ("\n******************** 4) Prediction process ********************") # Load parameters param = load("Par-DataStructure.npy") train_X, train_y = param[0], param[1] val_X, val_y = param[2], param[3] test_X, test_y = param[4], param[5] dummy_y, dateindex = param[6], param[8] # Prediction model = keras.models.load_model("model.h5") data_X = concatenate((train_X, val_X, test_X), axis = 0) dummy_yhat = model.predict(data_X) # Use data to NoTestTo NoTestTo = list(dateindex.strftime('%Y-%m-%d')).index(TestTo)+1 dummy_yhat = dummy_yhat[:NoTestTo, :] # All_y dataframe all_y = np.zeros(len(dateindex)) all_y[dummy_y[:,0]==1] = 1 all_y[dummy_y[:,1]==1] = 0 all_y[dummy_y[:,2]==1] = -1 df_all_y =
DataFrame(all_y, index=dateindex, columns=["y"])
pandas.DataFrame
import os import pytest import pandas as pd import numpy as np from feat import feat, column_names from sklearn.datasets import load_breast_cancer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import KBinsDiscretizer from sklearn.preprocessing import FunctionTransformer from sklearn.decomposition import PCA from sklearn.feature_selection import VarianceThreshold from sklearn.feature_selection import SelectKBest from sklearn.compose import make_column_transformer from sklearn.compose import make_column_selector from sklearn.pipeline import make_pipeline dir = os.path.dirname(os.path.abspath(__file__)) hotels = pd.read_csv(os.path.join(dir, "hotels.csv")) y = hotels["children"] X = hotels.drop("children", axis=1) nominal = ["hotel", "meal"] numeric = ["lead_time", "average_daily_rate"] def test_default(): assert feat(None, nominal).equals(
pd.DataFrame({"name": nominal, "feature": nominal})
pandas.DataFrame
import pandas as pd data =
pd.Series([0, 1, 1, 1, 1, 0, 1, 2, 1, 2])
pandas.Series
# ---------------------------------------------------------------------------- # Copyright (c) 2017-2019, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import gzip import os import pathlib import shutil import tempfile import unittest import pandas as pd from q2_cutadapt._demux import (_build_demux_command, _rename_files, _write_barcode_fasta, _write_empty_fastq_to_mux_barcode_in_seq_fmt) from q2_types.multiplexed_sequences import ( MultiplexedSingleEndBarcodeInSequenceDirFmt, MultiplexedPairedEndBarcodeInSequenceDirFmt) from q2_types.per_sample_sequences import ( SingleLanePerSampleSingleEndFastqDirFmt, SingleLanePerSamplePairedEndFastqDirFmt, FastqGzFormat) from qiime2 import Artifact, CategoricalMetadataColumn from qiime2.util import redirected_stdio from qiime2.plugin.testing import TestPluginBase class TestDemuxSingle(TestPluginBase): package = 'q2_cutadapt.tests' def assert_demux_results(self, exp_samples_and_barcodes, obs_demuxed_art): obs_demuxed = obs_demuxed_art.view( SingleLanePerSampleSingleEndFastqDirFmt) obs_demuxed_seqs = obs_demuxed.sequences.iter_views(FastqGzFormat) zipped = zip(exp_samples_and_barcodes.iteritems(), obs_demuxed_seqs) for (sample_id, barcode), (filename, _) in zipped: filename = str(filename) self.assertTrue(sample_id in filename) self.assertTrue(barcode in filename) def assert_untrimmed_results(self, exp, obs_untrimmed_art): obs_untrimmed = obs_untrimmed_art.view( MultiplexedSingleEndBarcodeInSequenceDirFmt) obs_untrimmed = obs_untrimmed.file.view(FastqGzFormat) obs_untrimmed = gzip.decompress(obs_untrimmed.path.read_bytes()) self.assertEqual(exp, obs_untrimmed) def setUp(self): super().setUp() self.demux_single_fn = self.plugin.methods['demux_single'] muxed_sequences_fp = self.get_data_path('forward.fastq.gz') self.muxed_sequences = Artifact.import_data( 'MultiplexedSingleEndBarcodeInSequence', muxed_sequences_fp) def test_typical(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAA', 'CCCC'], name='Barcode', index=pd.Index(['sample_a', 'sample_b'], name='id'))) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(self.muxed_sequences, metadata) self.assert_demux_results(metadata.to_series(), obs_demuxed_art) self.assert_untrimmed_results(b'@id6\nGGGGACGTACGT\n+\nzzzzzzzzzzzz\n', obs_untrimmed_art) def test_all_matched(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAA', 'CCCC', 'GGGG'], name='Barcode', index=pd.Index(['sample_a', 'sample_b', 'sample_c'], name='id'))) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(self.muxed_sequences, metadata) self.assert_demux_results(metadata.to_series(), obs_demuxed_art) # obs_untrimmed should be empty, since everything matched self.assert_untrimmed_results(b'', obs_untrimmed_art) def test_none_matched(self): metadata = CategoricalMetadataColumn( pd.Series(['TTTT'], name='Barcode', index=pd.Index(['sample_d'], name='id'))) with redirected_stdio(stderr=os.devnull): with self.assertRaisesRegex(ValueError, 'demultiplexed'): self.demux_single_fn(self.muxed_sequences, metadata) def test_error_tolerance_filtering(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAG', 'CCCC'], name='Barcode', index=pd.Index(['sample_a', 'sample_b'], name='id'))) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(self.muxed_sequences, metadata) # sample_a is dropped because of a substitution error (AAAA vs AAAG) exp_samples_and_barcodes = pd.Series(['CCCC'], index=['sample_b']) self.assert_demux_results(exp_samples_and_barcodes, obs_demuxed_art) self.assert_untrimmed_results(b'@id1\nAAAAACGTACGT\n+\nzzzzzzzzzzzz\n' b'@id3\nAAAAACGTACGT\n+\nzzzzzzzzzzzz\n' b'@id6\nGGGGACGTACGT\n+\nzzzzzzzzzzzz\n', obs_untrimmed_art) def test_error_tolerance_high_enough_to_prevent_filtering(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAG', 'CCCC'], name='Barcode', index=pd.Index(['sample_a', 'sample_b'], name='id'))) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(self.muxed_sequences, metadata, error_rate=0.25) # This test should yield the same results as test_typical, above self.assert_demux_results(metadata.to_series(), obs_demuxed_art) self.assert_untrimmed_results(b'@id6\nGGGGACGTACGT\n+\nzzzzzzzzzzzz\n', obs_untrimmed_art) def test_extra_barcode_in_metadata(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAA', 'CCCC', 'GGGG', 'TTTT'], name='Barcode', index=pd.Index(['sample_a', 'sample_b', 'sample_c', 'sample_d'], name='id'))) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(self.muxed_sequences, metadata) # TTTT/sample_d shouldn't be in the demuxed results, because there # were no reads with that barcode present exp_samples_and_barcodes = pd.Series(['AAAA', 'CCCC', 'GGGG'], index=['sample_a', 'sample_b', 'sample_c']) self.assert_demux_results(exp_samples_and_barcodes, obs_demuxed_art) # obs_untrimmed should be empty, since everything matched self.assert_untrimmed_results(b'', obs_untrimmed_art) def test_variable_length_barcodes(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAAA', 'CCCCCC', 'GGGG'], name='Barcode', index=pd.Index(['sample_a', 'sample_b', 'sample_c'], name='id'))) muxed_sequences_fp = self.get_data_path('variable_length.fastq.gz') muxed_sequences = Artifact.import_data( 'MultiplexedSingleEndBarcodeInSequence', muxed_sequences_fp) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(muxed_sequences, metadata) # This test should yield the same results as test_typical, above, just # with variable length barcodes self.assert_demux_results(metadata.to_series(), obs_demuxed_art) self.assert_untrimmed_results(b'', obs_untrimmed_art) def test_batch_size(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAA', 'CCCC'], name='Barcode', index=pd.Index(['sample_a', 'sample_b'], name='id'))) with redirected_stdio(stderr=os.devnull): obs_demuxed_art, obs_untrimmed_art = \ self.demux_single_fn(self.muxed_sequences, metadata, batch_size=1) self.assert_demux_results(metadata.to_series(), obs_demuxed_art) self.assert_untrimmed_results(b'@id6\nGGGGACGTACGT\n+\nzzzzzzzzzzzz\n', obs_untrimmed_art) def test_invalid_batch_size(self): metadata = CategoricalMetadataColumn( pd.Series(['AAAA', 'CCCC'], name='Barcode', index=
pd.Index(['sample_a', 'sample_b'], name='id')
pandas.Index
import os import shutil #import re import sys import platform import subprocess import numpy as np import json import pickle import pandas as pd from pandas import Series import xml.etree.ElementTree as ET import glob import argparse try: import lvdb except: import pdb as lvdb print('using pdb instead of lvdb') pass def ensure_dir_exists (datadir): if not os.path.exists(datadir): os.makedirs(datadir) if not os.path.exists(datadir): themessage = 'Directory {} could not be created.'.format(datadir) if (int(platform.python_version()[0]) > 2): raise NotADirectoryError(themessage) else: # python 2 doesn't have the impressive exception vocabulary 3 does # so just raising a generic exception with a useful description raise BaseException(themessage) def rsync_the_file (from_location, to_location): # Assuming that the responses for how platform.system() responds to # different OSes given here are correct (though not assuming case): # https://stackoverflow.com/questions/1854/python-what-os-am-i-running-on if platform.system().lower() is 'windows': print('Windows detected. The rsync command that is about to be', \ 'executed assumes a Linux or Mac OS; no guarantee that it', \ 'will work with Windows. Please be ready to transfer files', \ 'via alternate means if necessary.') subprocess.call(['rsync', '-vaPhz', from_location, to_location]) def df_to_pickle(thedf, thefilename): thedf.to_pickle(thefilename); def df_to_csv(thedf, thefilename): thedf.to_csv(thefilename, index_label='index'); def df_to_json(thedf, thefilename): thedf.to_json(thefilename, orient='records', double_precision = 10, force_ascii = True); def glob2df(datadir, linecount, jobnum_list): print(datadir) thepaths = glob.iglob(datadir + '/*/') results_dirs_used = [] df_list = [] progress_counter = 1000; counter = 0; for dirname in sorted(thepaths): dirstructure = dirname.split('/') lastdir = dirstructure[-1] if '_job_' not in lastdir: # handle trailing slash if present lastdir = dirstructure[-2]; if '_job_' not in lastdir: # something's wrong; skip this case continue; if '_task_' not in lastdir: # something's wrong; skip this case continue; if 'latest' in lastdir: continue; filename = dirname + 'summary.csv' if not os.path.isfile(filename): print('No summary file at ', filename); # no summary file means no results, unless results saved using a # different mechanism, which is out of scope of this script continue; missionname = dirname + 'mission.xml' if not os.path.isfile(missionname): print('No mission file at ', missionname); continue; split_on_task = lastdir.split('_task_') tasknum = int(split_on_task[-1]) jobnum = int(split_on_task[0].split('_job_',1)[1]) if jobnum_list and jobnum not in jobnum_list: # lvdb.set_trace() # print('Job {} not in list of jobs; skipping'.format(jobnum)) continue; counter += 1; if counter > progress_counter: print('j ', jobnum, ', t ', tasknum) counter = 0; # thisjob_df = pd.DataFrame(index=range(1)) thisjob_df = pd.read_csv(filename) if thisjob_df.empty: # no actual content in df; maybe only header rows continue; # Add column to df for job number thisjob_df['job_num']=jobnum # and task number thisjob_df['task_num']=tasknum # and results directory thisjob_df['results_dir']=lastdir # add how many rows there are in the df so plot scripts know what to # expect thisjob_df['num_rows']=len(thisjob_df.index) df_to_append = pd.DataFrame() thisjob_params_df = xml_param_df_cols(missionname); num_lines = len(thisjob_df.index) if linecount > 0: if num_lines < linecount: continue; df_to_append =
pd.concat([thisjob_params_df]*num_lines, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas.compat import range import pandas as pd import pandas.util.testing as tm # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons(object): def test_df_boolean_comparison_error(self): # GH#4576 # boolean comparisons with a tuple/list give unexpected results df = pd.DataFrame(np.arange(6).reshape((3, 2))) # not shape compatible with pytest.raises(ValueError): df == (2, 2) with pytest.raises(ValueError): df == [2, 2] def test_df_float_none_comparison(self): df = pd.DataFrame(np.random.randn(8, 3), index=range(8), columns=['A', 'B', 'C']) with pytest.raises(TypeError): df.__eq__(None) def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types(self, opname): # GH#15077, non-empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 result = getattr(df, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH#15077 empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('timestamps', [ [pd.Timestamp('2012-01-01 13:00:00+00:00')] * 2, [pd.Timestamp('2012-01-01 13:00:00')] * 2]) def test_tz_aware_scalar_comparison(self, timestamps): # Test for issue #15966 df = pd.DataFrame({'test': timestamps}) expected = pd.DataFrame({'test': [False, False]}) tm.assert_frame_equal(df == -1, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic(object): def test_df_add_flex_filled_mixed_dtypes(self): # GH#19611 dti = pd.date_range('2016-01-01', periods=3) ser = pd.Series(['1 Day', 'NaT', '2 Days'], dtype='timedelta64[ns]') df = pd.DataFrame({'A': dti, 'B': ser}) other = pd.DataFrame({'A': ser, 'B': ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( {'A': pd.Series(['2016-01-02', '2016-01-03', '2016-01-05'], dtype='datetime64[ns]'), 'B': ser * 2}) tm.assert_frame_equal(result, expected) class TestFrameMulDiv(object): """Tests for DataFrame multiplication and division""" # ------------------------------------------------------------------ # Mod By Zero def test_df_mod_zero_df(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) result = df % df tm.assert_frame_equal(result, expected) def test_df_mod_zero_array(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values % df.values result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype='float64') result2.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result2, expected) def test_df_mod_zero_int(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df % 0 expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') % 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_mod_zero_series_does_not_commute(self): # GH#3590, modulo as ints # not commutative with series df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser % df res2 = df % ser assert not res.fillna(0).equals(res2.fillna(0)) # ------------------------------------------------------------------ # Division By Zero def test_df_div_zero_df(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / df first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) tm.assert_frame_equal(result, expected) def test_df_div_zero_array(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) first = pd.Series([1.0, 1.0, 1.0, 1.0]) second = pd.Series([np.nan, np.nan, np.nan, 1]) expected = pd.DataFrame({'first': first, 'second': second}) with np.errstate(all='ignore'): arr = df.values.astype('float') / df.values result = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_df_div_zero_int(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df / 0 expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns) expected.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result, expected) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values.astype('float64') / 0 result2 = pd.DataFrame(arr, index=df.index, columns=df.columns) tm.assert_frame_equal(result2, expected) def test_df_div_zero_series_does_not_commute(self): # integer div, but deal with the 0's (GH#9144) df = pd.DataFrame(np.random.randn(10, 5)) ser = df[0] res = ser / df res2 = df / ser assert not res.fillna(0).equals(res2.fillna(0)) class TestFrameArithmetic(object): @pytest.mark.xfail(reason='GH#7996 datetime64 units not converted to nano', strict=True) def test_df_sub_datetime64_not_ns(self): df = pd.DataFrame(pd.date_range('20130101', periods=3)) dt64 = np.datetime64('2013-01-01') assert dt64.dtype == 'datetime64[D]' res = df - dt64 expected = pd.DataFrame([pd.Timedelta(days=0), pd.Timedelta(days=1), pd.Timedelta(days=2)]) tm.assert_frame_equal(res, expected) @pytest.mark.parametrize('data', [ [1, 2, 3], [1.1, 2.2, 3.3], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.NaT], ['x', 'y', 1]]) @pytest.mark.parametrize('dtype', [None, object]) def test_df_radd_str_invalid(self, dtype, data): df = pd.DataFrame(data, dtype=dtype) with pytest.raises(TypeError): 'foo_' + df @pytest.mark.parametrize('dtype', [None, object]) def test_df_with_dtype_radd_int(self, dtype): df = pd.DataFrame([1, 2, 3], dtype=dtype) expected = pd.DataFrame([2, 3, 4], dtype=dtype) result = 1 + df tm.assert_frame_equal(result, expected) result = df + 1 tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_df_with_dtype_radd_nan(self, dtype): df = pd.DataFrame([1, 2, 3], dtype=dtype) expected = pd.DataFrame([np.nan, np.nan, np.nan], dtype=dtype) result = np.nan + df tm.assert_frame_equal(result, expected) result = df + np.nan tm.assert_frame_equal(result, expected) def test_df_radd_str(self): df = pd.DataFrame(['x', np.nan, 'x']) tm.assert_frame_equal('a' + df, pd.DataFrame(['ax', np.nan, 'ax'])) tm.assert_frame_equal(df + 'a',
pd.DataFrame(['xa', np.nan, 'xa'])
pandas.DataFrame
import pytest from nerblackbox.modules.datasets.formatter.base_formatter import SENTENCES_ROWS from nerblackbox.modules.datasets.formatter.sucx_formatter import SUCXFormatter from pkg_resources import resource_filename import pandas as pd import os from os.path import abspath, dirname, join BASE_DIR = abspath(dirname(dirname(dirname(__file__)))) DATA_DIR = join(BASE_DIR, "data") os.environ["DATA_DIR"] = DATA_DIR class TestSucxFormatter: formatter = SUCXFormatter("original_cased") @pytest.mark.parametrize( "sentences_rows", [ ( [ [ ["I", "O"], ["850-modellen", "O"], ["har", "O"], ["man", "O"], ["valt", "O"], ["en", "O"], ["tredje", "O"], ["variant", "O"], [",", "O"], ["Delta-link", "B-product"], [".", "O"], ], [ ["Audi", "B-product"], ["Coupé", "I-product"], ["Quattro", "I-product"], ["20V", "B-product"], ], ] ), ], ) def test_format_data(self, sentences_rows: SENTENCES_ROWS): self.formatter.dataset_path = resource_filename( "nerblackbox", f"tests/test_data/original_data" ) test_sentences_rows = self.formatter.format_data(shuffle=True, write_csv=False) assert ( test_sentences_rows == sentences_rows ), f"ERROR! test_sentences_rows = {test_sentences_rows} != {sentences_rows}" @pytest.mark.parametrize( "df_train, df_val, df_test", [ ( [ pd.DataFrame( data=[ ["O O", "Mening 1"], ["PER O", "Mening 2"], ["O PER", "Mening 3"], ["O PER", "Mening 4"], ] ),
pd.DataFrame(data=[["O O", "Mening 5"], ["PER O", "Mening 6"]])
pandas.DataFrame
# -*- coding: utf-8 -*- """ This module contains the ReadSets class that is in charge of reading the sets files, reshaping them to be used in the build class, creating and reading the parameter files and checking the errors in the definition of the sets and parameters """ import itertools as it from openpyxl import load_workbook import pandas as pd from hypatia.error_log.Checks import ( check_nan, check_index, check_index_data, check_table_name, check_mapping_values, check_mapping_ctgry, check_sheet_name, check_tech_category, check_carrier_type, check_years_mode_consistency, ) from hypatia.error_log.Exceptions import WrongInputMode import numpy as np from hypatia.utility.constants import ( global_set_ids, regional_set_ids, technology_categories, carrier_types, ) from hypatia.utility.constants import take_trade_ids, take_ids, take_global_ids MODES = ["Planning", "Operation"] class ReadSets: """ Class that reads the sets of the model, creates the parameter files with default values and reads the filled parameter files Attributes ------------ mode: The mode of optimization including the operation and planning mode path: The path of the set files given by the user glob_mapping : dict A dictionary of the global set tables given by the user in the global.xlsx file mapping : dict A dictionary of the regional set tables given by the user in the regional set files connection_sheet_ids: dict A nested dictionary that defines the sheet names of the parameter file of the inter-regional links with their default values, indices and columns global_sheet_ids : dict A nested dictionary that defines the sheet names of the global parameter file with their default values, indices and columns regional_sheets_ids : dict A nested dictionary that defines the sheet names of the regional parameter files with their default values, indices and columns trade_data : dict A nested dictionary for storing the inter-regional link data global_data : dict A nested dictionary for storing the global data data : dict A nested dictionary for storing the regional data """ def __init__(self, path, mode="Planning"): self.mode = mode self.path = path self._init_by_xlsx() def _init_by_xlsx(self,): """ Reads and organizes the global and regional sets """ glob_mapping = {} wb_glob = load_workbook(r"{}/global.xlsx".format(self.path)) sets_glob = wb_glob["Sets"] set_glob_category = {key: value for key, value in sets_glob.tables.items()} for entry, data_boundary in sets_glob.tables.items(): data_glob = sets_glob[data_boundary] content = [[cell.value for cell in ent] for ent in data_glob] header = content[0] rest = content[1:] df = pd.DataFrame(rest, columns=header) glob_mapping[entry] = df self.glob_mapping = glob_mapping check_years_mode_consistency( mode=self.mode, main_years=list(self.glob_mapping["Years"]["Year"]) ) for key, value in self.glob_mapping.items(): check_table_name( file_name="global", allowed_names=list(global_set_ids.keys()), table_name=key, ) check_index(value.columns, key, "global", pd.Index(global_set_ids[key])) check_nan(key, value, "global") if key == "Technologies": check_tech_category(value, technology_categories, "global") if key == "Carriers": check_carrier_type(value, carrier_types, "global") self.regions = list(self.glob_mapping["Regions"]["Region"]) self.main_years = list(self.glob_mapping["Years"]["Year"]) if "Timesteps" in self.glob_mapping.keys(): self.time_steps = list(self.glob_mapping["Timesteps"]["Timeslice"]) self.timeslice_fraction = self.glob_mapping["Timesteps"][ "Timeslice_fraction" ].values else: self.time_steps = ["Annual"] self.timeslice_fraction = np.ones((1, 1)) # possible connections among the regions if len(self.regions) > 1: lines_obj = it.permutations(self.regions, r=2) self.lines_list = [] for item in lines_obj: if item[0] < item[1]: self.lines_list.append("{}-{}".format(item[0], item[1])) mapping = {} for reg in self.regions: wb = load_workbook(r"{}/{}.xlsx".format(self.path, reg)) sets = wb["Sets"] self._setbase_reg = [ "Technologies", "Carriers", "Carrier_input", "Carrier_output", ] set_category = {key: value for key, value in sets.tables.items()} reg_mapping = {} for entry, data_boundary in sets.tables.items(): data = sets[data_boundary] content = [[cell.value for cell in ent] for ent in data] header = content[0] rest = content[1:] df = pd.DataFrame(rest, columns=header) reg_mapping[entry] = df mapping[reg] = reg_mapping for key, value in mapping[reg].items(): check_table_name( file_name=reg, allowed_names=list(regional_set_ids.keys()), table_name=key, ) check_index(value.columns, key, reg, pd.Index(regional_set_ids[key])) check_nan(key, value, reg) if key == "Technologies": check_tech_category(value, technology_categories, reg) if key == "Carriers": check_carrier_type(value, carrier_types, reg) if key == "Carrier_input" or key == "Carrier_output": check_mapping_values( value, key, mapping[reg]["Technologies"], "Technologies", "Technology", "Technology", reg, ) check_mapping_values( mapping[reg]["Carrier_input"], "Carrier_input", mapping[reg]["Carriers"], "Carriers", "Carrier_in", "Carrier", reg, ) check_mapping_values( mapping[reg]["Carrier_output"], "Carrier_output", mapping[reg]["Carriers"], "Carriers", "Carrier_out", "Carrier", reg, ) check_mapping_ctgry( mapping[reg]["Carrier_input"], "Carrier_input", mapping[reg]["Technologies"], "Supply", reg, ) check_mapping_ctgry( mapping[reg]["Carrier_output"], "Carrier_output", mapping[reg]["Technologies"], "Demand", reg, ) self.mapping = mapping Technologies = {} for reg in self.regions: regional_tech = {} for key in list(self.mapping[reg]["Technologies"]["Tech_category"]): regional_tech[key] = list( self.mapping[reg]["Technologies"].loc[ self.mapping[reg]["Technologies"]["Tech_category"] == key ]["Technology"] ) Technologies[reg] = regional_tech self.Technologies = Technologies self._create_input_data() def _create_input_data(self): """ Defines the sheets, indices and columns of the parameter files """ if len(self.regions) > 1: # Create the columns of inter-regional links as a multi-index of the # pairs of regions and the transmitted carriers indexer = pd.MultiIndex.from_product( [self.lines_list, self.glob_mapping["Carriers_glob"]["Carrier"]], names=["Line", "Transmitted Carrier"], ) self.connection_sheet_ids = { "F_OM": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "V_OM": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Residual_capacity": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Capacity_factor_line": { "value": 1, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Line_efficiency": { "value": 1, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "AnnualProd_perunit_capacity": { "value": 1, "index": pd.Index( ["AnnualProd_Per_UnitCapacity"], name="Performance Parameter" ), "columns": indexer, }, } self.global_sheet_ids = { "Max_production_global": { "value": 1e30, "index": pd.Index(self.main_years, name="Years"), "columns": self.glob_mapping["Technologies_glob"].loc[ ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Demand" ) & ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Storage" ) ]["Technology"], }, "Min_production_global": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": self.glob_mapping["Technologies_glob"].loc[ ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Demand" ) & ( self.glob_mapping["Technologies_glob"]["Tech_category"] != "Storage" ) ]["Technology"], }, "Glob_emission_cap_annual": { "value": 1e30, "index": pd.Index(self.main_years, name="Years"), "columns": ["Global Emission Cap"], }, } if self.mode == "Planning": self.connection_sheet_ids.update( { "INV": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Decom_cost": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Min_totalcap": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Max_totalcap": { "value": 1e10, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Min_newcap": { "value": 0, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Max_newcap": { "value": 1e10, "index": pd.Index(self.main_years, name="Years"), "columns": indexer, }, "Line_lifetime": { "value": 1, "index": pd.Index( ["Technical Life Time"], name="Performance Parameter" ), "columns": indexer, }, "Line_Economic_life": { "value": 1, "index": pd.Index( ["Economic Life time"], name="Performance Parameter" ), "columns": indexer, }, "Interest_rate": { "value": 0.05, "index": pd.Index( ["Interest Rate"], name="Performance Parameter" ), "columns": indexer, }, } ) self.global_sheet_ids.update( { "Min_totalcap_global": { "value": 0, "index":
pd.Index(self.main_years, name="Years")
pandas.Index
import pandas as pd name_dict = { 'Name': ['a','b','c','d'], 'Score': [90,80,95,20] } df = pd.DataFrame(name_dict) dfT = df.T dfT.to_csv('file_name.csv', index=False) print (df) print (dfT) summary_df =
pd.read_csv('summary.csv')
pandas.read_csv
from itertools import product import numpy as np import pytest from pandas.core.dtypes.common import is_interval_dtype import pandas as pd import pandas._testing as tm class TestSeriesConvertDtypes: # The answerdict has keys that have 4 tuples, corresponding to the arguments # infer_objects, convert_string, convert_integer, convert_boolean # This allows all 16 possible combinations to be tested. Since common # combinations expect the same answer, this provides an easy way to list # all the possibilities @pytest.mark.parametrize( "data, maindtype, answerdict", [ ( [1, 2, 3], np.dtype("int32"), { ((True, False), (True, False), (True,), (True, False)): "Int32", ((True, False), (True, False), (False,), (True, False)): np.dtype( "int32" ), }, ), ( [1, 2, 3], np.dtype("int64"), { ((True, False), (True, False), (True,), (True, False)): "Int64", ((True, False), (True, False), (False,), (True, False)): np.dtype( "int64" ), }, ), ( ["x", "y", "z"], np.dtype("O"), { ( (True, False), (True,), (True, False), (True, False), ):
pd.StringDtype()
pandas.StringDtype
import numpy as np import pandas as pd from aif360.datasets import BinaryLabelDataset from aif360.datasets.multiclass_label_dataset import MulticlassLabelDataset from aif360.metrics import ClassificationMetric def test_generalized_entropy_index(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [2, 1], [2, 0], [2, 1], [2, 1]]) pred = data.copy() pred[[3, 9], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) assert cm.generalized_entropy_index() == 0.2 pred = data.copy() pred[:, -1] = np.array([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) assert cm.generalized_entropy_index() == 0.3 def test_theil_index(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [2, 1], [2, 0], [2, 1], [2, 1]]) pred = data.copy() pred[[3, 9], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) assert cm.theil_index() == 4*np.log(2)/10 def test_between_all_groups(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [2, 1], [2, 0], [2, 1], [2, 1]]) pred = data.copy() pred[[3, 9], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(bld, bld2) b = np.array([1, 1, 1.25, 1.25, 1.25, 1.25, 0.75, 0.75, 0.75, 0.75]) assert cm.between_all_groups_generalized_entropy_index() == 1/20*np.sum(b**2 - 1) def test_between_group(): data = np.array([[0, 0, 1], [0, 1, 0], [1, 1, 0], [1, 1, 1], [1, 0, 0], [1, 0, 0]]) pred = data.copy() pred[[0, 3], -1] = 0 pred[[4, 5], -1] = 1 df = pd.DataFrame(data, columns=['feat', 'feat2', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'feat2', 'label']) bld = BinaryLabelDataset(df=df, label_names=['label'], protected_attribute_names=['feat', 'feat2']) bld2 = BinaryLabelDataset(df=df2, label_names=['label'], protected_attribute_names=['feat', 'feat2']) cm = ClassificationMetric(bld, bld2, unprivileged_groups=[{'feat': 0}], privileged_groups=[{'feat': 1}]) b = np.array([0.5, 0.5, 1.25, 1.25, 1.25, 1.25]) assert cm.between_group_generalized_entropy_index() == 1/12*np.sum(b**2 - 1) def test_multiclass_confusion_matrix(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 2], [2, 1], [2, 0], [2, 2], [2, 1]]) pred = data.copy() pred[3,1] = 0 pred[4,1] = 2 df = pd.DataFrame(data, columns=['feat', 'label']) df2 = pd.DataFrame(pred, columns=['feat', 'label']) favorable_values = [0,1] unfavorable_values = [2] mcld = MulticlassLabelDataset(favorable_label = favorable_values, unfavorable_label = unfavorable_values , df = df , label_names=['label'], protected_attribute_names=['feat']) mcld2 = MulticlassLabelDataset(favorable_label = favorable_values, unfavorable_label = unfavorable_values , df=df2, label_names=['label'], protected_attribute_names=['feat']) cm = ClassificationMetric(mcld, mcld2, unprivileged_groups=[{'feat': 2}], privileged_groups=[{'feat': 0},{'feat': 1}]) confusion_matrix = cm.binary_confusion_matrix() actual_labels_df = df[['label']].values actual_labels_df2 = df2[['label']].values assert np.all(actual_labels_df == mcld.labels) assert np.all(actual_labels_df2 == mcld2.labels) assert confusion_matrix == {'TP': 7.0, 'FN': 1.0, 'TN': 2.0, 'FP': 0.0} fnr = cm.false_negative_rate_difference() assert fnr == -0.2 def test_generalized_binary_confusion_matrix(): data = np.array([[0, 1], [0, 0], [1, 0], [1, 1], [1, 0], [1, 0], [1, 2], [0, 0], [0, 0], [1, 2]]) pred = np.array([[0, 1, 0.8], [0, 0, 0.6], [1, 0, 0.7], [1, 1, 0.8], [1, 2, 0.36], [1, 0, 0.82], [1, 1, 0.79], [0, 2, 0.42], [0, 1, 0.81], [1, 2, 0.3]]) df = pd.DataFrame(data, columns=['feat', 'label']) df2 =
pd.DataFrame(pred, columns=['feat', 'label', 'score'])
pandas.DataFrame
import tkinter from tkinter import * from tkinter import Tk from tkinter import ttk from tkinter import Label from tkinter import StringVar from tkinter import filedialog from tkinter import messagebox from matplotlib import pyplot as plt import numpy as np import statistics as st import gpxpy import pandas as pd import math from datetime import datetime import os import matplotlib matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure # map functionality import gpxpy import mplleaflet import matplotlib.pyplot as plt import subprocess # Creating the class of the application class Application(Tk): # Defining the __init__ function def __init__(self): super().__init__() self.geometry('750x2520') self.grid() self.distancesR1 = [] self.datesR1 = [] self.timesR1 = [] self.numR1 = 0 self.speedR1 = [] self.distancesR2 = [] self.datesR2 = [] self.timesR2 = [] self.numR2 = 0 self.speedR2 = [] self.rider1 = [] self.rider2 = [] self.map_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd def unfold(df,s): df=df[s].values lst=[] for i in df: dic={} for j in range(len(i)): dic[j]=i[j] lst.append(dic) return
pd.DataFrame(lst)
pandas.DataFrame
# Copyright 2019 <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """metnet_seg_experiment_evaluator.py Experiment evaluator for the metNet segmentation experiments. """ from src.utils.general_utils import read_hdf5, read_hdf5_multientry, write_hdf5 import argparse import os import numpy as np from glob import glob from medpy import metric as mpm from sklearn import metrics as skm import pandas as pd from math import sqrt import keras.backend.tensorflow_backend as K from src.utils.data_generators import FCN2DDatasetGenerator import time import datetime from keras.models import load_model def relative_volume_difference(A, B): '''Compute relative volume difference between two segmentation masks. The voxel size gets canceled out in the division and is therefore not a required input. :param A: (binary numpy array) reference segmentaton mask :param B: (binary numpy array) predicted segmentaton mask :return: relative volume difference ''' volume_A = int(np.sum(A)) volume_B = int(np.sum(B)) rvd = (volume_A - volume_B) / volume_A return rvd def jaccard_index(A, B): '''Compute Jaccard index (IoU) between two segmentation masks. :param A: (numpy array) reference segmentaton mask :param B: (numpy array) predicted segmentaton mask :return: Jaccard index ''' both = np.logical_and(A, B) either = np.logical_or(A, B) ji = int(np.sum(both)) / int(np.sum(either)) return ji def dice_similarity_coefficient(A, B): '''Compute Dice similarity coefficient between two segmentation masks. :param A: (numpy array) reference segmentaton mask :param B: (numpy array) predicted segmentaton mask :return: Dice similarity coefficient ''' both = np.logical_and(A, B) dsc = 2 * int(np.sum(both)) / (int(np.sum(A)) + int(np.sum(B))) return dsc def precision(A, B): '''Compute precision between two segmentation masks. :param A: (numpy array) reference segmentaton mask :param B: (numpy array) predicted segmentaton mask :return: precision ''' tp = int(np.sum(np.logical_and(A, B))) fp = int(np.sum(np.logical_and(B, np.logical_not(A)))) p = tp / (tp + fp) return p def recall(A, B): '''Compute recall between two segmentation masks. :param A: (numpy array) reference segmentaton mask :param B: (numpy array) predicted segmentaton mask :return: recall ''' tp = int(np.sum(np.logical_and(A, B))) fn = int(np.sum(np.logical_and(A, np.logical_not(B)))) r = tp / (tp + fn) return r def matthews_correlation_coefficient(A, B): '''Compute Matthews correlation coefficient between two segmentation masks. :param A: (numpy array) reference segmentaton mask :param B: (numpy array) predicted segmentaton mask :return: Matthews correlation coefficient ''' tp = int(np.sum(np.logical_and(A, B))) fp = int(np.sum(np.logical_and(B, np.logical_not(A)))) tn = int(np.sum(np.logical_and(np.logical_not(A), np.logical_not(B)))) fn = int(np.sum(np.logical_and(A, np.logical_not(B)))) mcc = (tp * tn - fp * fn) / (sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))) return mcc def main(FLAGS): # set GPU device to use os.environ['CUDA_VISIBLE_DEVICES'] = '3' # get the models to evaluate ckpts = glob(os.path.join(FLAGS.ckpt_dir, '*.h5')) # get data files and sort them image_files = os.listdir(FLAGS.test_X_dir) anno_files = os.listdir(FLAGS.test_y_dir) image_files.sort() anno_files.sort() for ckpt in ckpts: K.clear_session() # set model to load ckpt_name = os.path.basename(ckpt) # create a location to store evaluation metrics metrics = np.zeros((len(image_files), FLAGS.classes, 8)) overall_accuracy = np.zeros((len(image_files),)) # create a file writer to store the metrics excel_name = os.path.splitext(os.path.basename(ckpt))[0] + '.xlsx' writer = pd.ExcelWriter(excel_name) model = load_model(ckpt) for i in range(len(image_files)): # define path to the test data test_path = os.path.join(FLAGS.test_X_dir, image_files[i]) generator = FCN2DDatasetGenerator(test_path, batch_size=FLAGS.batch_size, subset='test', normalization=FLAGS.normalization, categorical_labels=True, num_classes=FLAGS.classes) # check if the images and annotations are the correct files print(image_files[i], anno_files[i]) preds = model.predict_generator(generator.generate(), steps=len(generator)) stamp = datetime.datetime.fromtimestamp(time.time()).strftime('date_%Y_%m_%d_time_%H_%M_%S') write_hdf5('fcn_predictions_' + stamp + '.h5', preds) pred_file = glob(os.path.join(FLAGS.predictions_temp_dir, '*.h5'))[0] pt_name = image_files[i].split('.')[0] new_name_raw = pt_name + ckpt_name new_file_raw = os.path.join(FLAGS.predictions_final_dir, new_name_raw) os.rename(pred_file, new_file_raw) ref = read_hdf5_multientry(os.path.join(FLAGS.test_y_dir, anno_files[i])) ref = np.squeeze(np.asarray(ref)) preds = read_hdf5(new_file_raw) preds = np.argmax(preds, axis=-1) overall_accuracy[i] = skm.accuracy_score(ref.flatten(), preds.flatten()) for j in range(FLAGS.classes): organ_pred = (preds == j).astype(np.int64) organ_ref = (ref == j).astype(np.int64) if np.sum(organ_pred) == 0 or np.sum(organ_ref) == 0: metrics[i, j, 0] = 0. metrics[i, j, 1] = 0. metrics[i, j, 2] = 1. metrics[i, j, 3] = 0. metrics[i, j, 4] = 0. metrics[i, j, 5] = 0. metrics[i, j, 6] = np.inf metrics[i, j, 7] = np.inf else: metrics[i, j, 0] = jaccard_index(organ_ref, organ_pred) metrics[i, j, 1] = dice_similarity_coefficient(organ_ref, organ_pred) metrics[i, j, 2] = relative_volume_difference(organ_ref, organ_pred) metrics[i, j, 3] = precision(organ_ref, organ_pred) metrics[i, j, 4] = recall(organ_ref, organ_pred) metrics[i, j, 5] = matthews_correlation_coefficient(organ_ref, organ_pred) metrics[i, j, 6] = mpm.hd95(organ_pred, organ_ref) metrics[i, j, 7] = mpm.assd(organ_pred, organ_ref) print(overall_accuracy[i]) print(metrics[i]) for k in range(metrics.shape[-1]): data =
pd.DataFrame(metrics[:, :, k], columns=['bg', 'met'])
pandas.DataFrame
# link: https://github.com/liyaguang/DCRNN import numpy as np import pandas as pd import json import util outputdir = 'output/PEMS_BAY' util.ensure_dir(outputdir) dataurl = 'input/PEMS-BAY/' dataname = outputdir+'/PEMS_BAY' dataset =
pd.read_csv(dataurl+'sensor_graph/graph_sensor_locations_bay.csv', header=None)
pandas.read_csv
""" Module: LMR_psms.py Purpose: Module containing methods for various Proxy System Models (PSMs) Adapted from LMR_proxy and LMR_calibrate using OOP by <NAME> Originator: <NAME>, U. of Washington Revisions: - Use of new more efficient "get_distance" function to calculate the distance between proxy sites and analysis grid points. [R. Tardif, U. of Washington, February 2016] - Added the "LinearPSM_TorP" class, allowing the use of temperature-calibrated *OR* precipitation-calibrated linear PSMs. For each proxy record to be assimilated, the selection of the PSM (i.e. T vs P) is perfomed on the basis of the smallest MSE of regression residuals. [<NAME>, U. of Washington, April 2016] - Added the "h_interpPSM" psm class for use of isotope-enabled GCM data as prior: Ye values are taken as the prior isotope field either at the nearest grid pt. or as the weighted-average of values at grid points surrounding the assimilated isotope proxy site. [ <NAME>, U. of Washington, June 2016 ] - Added the "BilinearPSM" class for PSMs based on bivariate linear regressions w/ temperature AND precipitation/PSDI as independent variables. [ R. Tardif, Univ. of Washington, June 2016 ] - Added the capability of calibrating/using PSMs calibrated on the basis of a proxy record seasonality metadata. [ R. Tardif, Univ. of Washington, July 2016 ] - Added the capability of objectively calibrating/using PSMs calibrated on the basis objectively-derived seasonality. [ <NAME>, Univ. of Washington, December 2016 ] - Added the "BayesRegUK37PSM" class, the forward model used in the assimilation of alkenone uk37 proxy data. Code based on spline coefficients provided by <NAME> (U of Arizona). [ <NAME>, Univ. of Washington, January 2017 ] - Calibration of statistical PSMs now all referenced to anomalies w.r.t. 20th century. [ <NAME>, Univ. of Washington, August 2017 ] """ import numpy as np import logging import os.path import LMR_calibrate from LMR_utils import (haversine, get_distance, smooth2D, get_data_closest_gridpt, class_docs_fixer) import pandas as pd from scipy.stats import linregress import statsmodels.formula.api as sm from abc import ABCMeta, abstractmethod from load_data import load_cpickle import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Needed in BayesRegUK37PSM class #import matlab.engine # for old matlab implementation from scipy.io import loadmat import scipy.interpolate as interpolate # Logging output utility, configuration controlled by driver logger = logging.getLogger(__name__) class BasePSM(metaclass=ABCMeta): """ Proxy system model. Parameters ---------- config: LMR_config Configuration module used for current LMR run. proxy_obj: BaseProxyObject like Proxy object that this PSM is being attached to psm_kwargs: dict (unpacked) Specfic arguments for the target PSM """ def __init__(self, config, proxy_obj, **psm_kwargs): pass @abstractmethod def psm(self, prior_obj): """ Maps a given state to observations for the given proxy Parameters ---------- prior_obj BasePriorObject Prior to be mapped to observation space (Ye). Returns ------- Ye: Equivalent observation from prior """ pass @abstractmethod def error(self): """ Error model for given PSM. """ pass @staticmethod @abstractmethod def get_kwargs(config): """ Returns keyword arguments required for instantiation of given PSM. Parameters ---------- config: LMR_config Configuration module used for current LMR run. Returns ------- kwargs: dict Keyword arguments for given PSM """ pass @class_docs_fixer class LinearPSM(BasePSM): """ PSM based on linear regression. Attributes ---------- lat: float Latitude of associated proxy site lon: float Longitude of associated proxy site elev: float Elevation/depth of proxy sitex corr: float Correlation of proxy record against calibration data slope: float Linear regression slope of proxy/calibration fit intercept: float Linear regression y-intercept of proxy/calibration fit R: float Mean-squared error of proxy/calibration fit Parameters ---------- config: LMR_config Configuration module used for current LMR run. proxy_obj: BaseProxyObject like Proxy object that this PSM is being attached to psm_data: dict Pre-calibrated PSM dictionary containing current associated proxy site's calibration information Raises ------ ValueError If PSM is below critical correlation threshold. """ def __init__(self, config, proxy_obj, psm_data=None, calib_obj=None): self.psm_key = 'linear' proxy = proxy_obj.type site = proxy_obj.id r_crit = config.psm.linear.psm_r_crit self.lat = proxy_obj.lat self.lon = proxy_obj.lon self.elev = proxy_obj.elev self.datatag_calib = config.psm.linear.datatag_calib self.avgPeriod = config.psm.linear.avgPeriod # Very crude assignment of sensitivity # TODO: more inclusive & flexible way of doing this if self.datatag_calib in ['GPCC', 'DaiPDSI']: self.sensitivity = 'moisture' else: self.sensitivity = 'temperature' try: # Try using pre-calibrated psm_data if psm_data is None: psm_data = self._load_psm_data(config) psm_site_data = psm_data[(proxy, site)] self.corr = psm_site_data['PSMcorrel'] self.slope = psm_site_data['PSMslope'] self.intercept = psm_site_data['PSMintercept'] self.R = psm_site_data['PSMmse'] # check if seasonality defined in the psm data # if it is, return as an attribute if 'Seasonality' in list(psm_site_data.keys()): self.seasonality = psm_site_data['Seasonality'] except KeyError as e: raise ValueError('Proxy in database but not found in pre-calibration file... ' 'Skipping: {}'.format(proxy_obj.id)) except IOError as e: # No precalibration found, have to do it for this proxy print('No pre-calibration file found for' ' {} ({}) ... calibrating ...'.format(proxy_obj.id, proxy_obj.type)) # check if calibration object already exists if calib_obj is None: #print 'calibration object does not exist ...creating it...' # TODO: Fix call and Calib Module datag_calib = config.psm.linear.datatag_calib calib_obj= LMR_calibrate.calibration_assignment(datag_calib) calib_obj.datadir_calib = config.psm.linear.datadir_calib calib_obj.read_calibration() self.calibrate(calib_obj, proxy_obj) # Raise exception if critical correlation value not met if abs(self.corr) < r_crit: raise ValueError(('Proxy model correlation ({:.2f}) does not meet ' 'critical threshold ({:.2f}).' ).format(self.corr, r_crit)) # TODO: Ideally prior state info and coordinates should all be in single obj def psm(self, Xb, X_state_info, X_coords): """ Maps a given state to observations for the given proxy Parameters ---------- Xb: ndarray State vector to be mapped into observation space (stateDim x ensDim) X_state_info: dict Information pertaining to variables in the state vector X_coords: ndarray Coordinates for the state vector (stateDim x 2) Returns ------- Ye: Equivalent observation from prior """ # ---------------------- # Calculate the Ye's ... # ---------------------- # Associate state variable with PSM calibration dataset # TODO: possible calibration sources hard coded for now... should define associations at config level if self.datatag_calib in ['GISTEMP', 'MLOST', 'NOAAGlobalTemp', 'HadCRUT', 'BerkeleyEarth']: # temperature state_var = 'tas_sfc_Amon' elif self.datatag_calib in ['GPCC','DaiPDSI']: # moisture if self.datatag_calib == 'GPCC': state_var = 'pr_sfc_Amon' elif self.datatag_calib == 'DaiPDSI': state_var = 'scpdsi_sfc_Amon' else: raise KeyError('Unrecognized moisture calibration source.' ' State variable not identified for Ye calculation.') else: raise KeyError('Unrecognized calibration-state variable association.' ' State variable not identified for Ye calculation.') if state_var not in X_state_info.keys(): raise KeyError('Needed variable not in state vector for Ye' ' calculation.') # TODO: end index should already be +1, more pythonic tas_startidx, tas_endidx = X_state_info[state_var]['pos'] ind_lon = X_state_info[state_var]['spacecoords'].index('lon') ind_lat = X_state_info[state_var]['spacecoords'].index('lat') X_lons = X_coords[tas_startidx:(tas_endidx+1), ind_lon] X_lats = X_coords[tas_startidx:(tas_endidx+1), ind_lat] tas_data = Xb[tas_startidx:(tas_endidx+1), :] gridpoint_data = self.get_close_grid_point_data(tas_data.T, X_lons, X_lats) Ye = self.basic_psm(gridpoint_data) return Ye def basic_psm(self, data): """ A PSM that doesn't need to do the state unpacking steps... Parameters ---------- data: ndarray Data to be used in the psm calculation of estimated observations (Ye) Returns ------- Ye: ndarray Estimated observations from the proxy system model """ return self.slope * data + self.intercept def get_close_grid_point_data(self, data, lon, lat): """ Extracts data along the sampling dimension that is closest to the grid point (lat/lon) of the current PSM object. Parameters ---------- data: ndarray Gridded data matching dimensions of (sample, lat, lon) or (sample, lat*lon). lon: ndarray Longitudes pertaining to the input data. Can have shape as a single vector (lat), a grid (lat, lon), or a flattened grid (lat*lon). lat: ndarray Latitudes pertaining to the input data. Can have shape as a single vector (lon), a grid (lat, lon), or a flattened grid (lat*lon). Returns ------- tmp_dat: ndarray Grid point data closes to the lat/lon of the current PSM object """ lonshp = lon.shape latshp = lat.shape # If not equal we got a single vector? if lonshp != latshp: lon, lat = np.meshgrid(lon, lat) if len(lon.shape) > 1: lon = lon.ravel() lat = lat.ravel() # Calculate distance dist = haversine(self.lon, self.lat, lon, lat) if len(dist) in data.shape: loc_idx = dist.argmin() tmp_dat = data[..., loc_idx] else: # TODO: This is not general lat/lon being swapped, OK for now... min_dist_lat_idx, \ min_dist_lon_idx = np.unravel_index(dist.argmin(), data.shape[-2:]) tmp_dat = data[..., min_dist_lat_idx, min_dist_lon_idx] return tmp_dat # Define the error model for this proxy @staticmethod def error(): return 0.1 # TODO: Simplify a lot of the actions in the calibration def calibrate(self, C, proxy, diag_output=False, diag_output_figs=False): """ Calibrate given proxy record against observation data and set relevant PSM attributes. Parameters ---------- C: calibration_master like Calibration object containing data, time, lat, lon info proxy: BaseProxyObject like Proxy object to fit to the calibration data diag_output, diag_output_figs: bool, optional Diagnostic output flags for calibration method """ calib_spatial_avg = False Npts = 9 # nb of neighboring pts used in smoothing #print 'Calibrating: ', '{:25}'.format(proxy.id), '{:35}'.format(proxy.type) # -------------------------------------------- # Use linear model (regression) as default PSM # -------------------------------------------- nbmaxnan = 0 # Look for indices of calibration grid point closest in space (in 2D) # to proxy site dist = get_distance(proxy.lon, proxy.lat, C.lon, C.lat) # indices of nearest grid pt. jind, kind = np.unravel_index(dist.argmin(), dist.shape) if calib_spatial_avg: C2Dsmooth = np.zeros( [C.time.shape[0], C.lat.shape[0], C.lon.shape[0]]) for m in range(C.time.shape[0]): C2Dsmooth[m, :, :] = smooth2D(C.temp_anomaly[m, :, :], n=Npts) calvals = C2Dsmooth[:, jind, kind] else: calvals = C.temp_anomaly[:, jind, kind] # ------------------------------------------------------- # Calculate averages of calibration data over appropriate # intervals (annual or according to proxy seasonality) # ------------------------------------------------------- if self.avgPeriod == 'annual': # Simply use annual averages avgMonths = [1,2,3,4,5,6,7,8,9,10,11,12] elif 'season' in self.avgPeriod: # Consider the seasonality of the proxy record avgMonths = proxy.seasonality else: print('ERROR: Unrecognized value for avgPeriod! Exiting!') exit(1) nbmonths = len(avgMonths) cyears = np.asarray(list(set([C.time[k].year for k in range(len(C.time))]))) # 'set' is used to get unique values nbcyears = len(cyears) reg_x = np.zeros(shape=[nbcyears]) reg_x[:] = np.nan # initialize with nan's for i in range(nbcyears): # monthly data from current year indsyr = [j for j,v in enumerate(C.time) if v.year == cyears[i] and v.month in avgMonths] # check if data from previous year is to be included indsyrm1 = [] if any(m < 0 for m in avgMonths): year_before = [abs(m) for m in avgMonths if m < 0] indsyrm1 = [j for j,v in enumerate(C.time) if v.year == cyears[i]-1. and v.month in year_before] # check if data from following year is to be included indsyrp1 = [] if any(m > 12 for m in avgMonths): year_follow = [m-12 for m in avgMonths if m > 12] indsyrp1 = [j for j,v in enumerate(C.time) if v.year == cyears[i]+1. and v.month in year_follow] inds = indsyrm1 + indsyr + indsyrp1 if len(inds) == nbmonths: # all months are in the data tmp = np.nanmean(calvals[inds],axis=0) nancount = np.isnan(calvals[inds]).sum(axis=0) if nancount > nbmaxnan: tmp = np.nan else: tmp = np.nan reg_x[i] = tmp # ------------------------ # Set-up linear regression # ------------------------ # Use pandas DataFrame to store proxy & calibration data side-by-side header = ['variable', 'y'] # Fill-in proxy data df =
pd.DataFrame({'time':proxy.time, 'y': proxy.values})
pandas.DataFrame
""" In this file, we implement the functionality that anonymizes the trace variant based on the DAFSA automata and using differential privacy """ import pandas as pd import numpy as np import random as r import time import math from scipy.stats import laplace #import swifter def build_DAFSA_bit_vector(data): #calculate the bit vector dataframe from the trace and state anotated event log #getting unique dafsa edges and trace variant # data=data.groupby(['prev_state', 'concept:name','state','trace_variant']).size().reset_index().rename(columns={0: 'count'}) # data.drop('count',axis=1, inplace=True) bit_vector_df=data.groupby(['prev_state', 'concept:name','state','trace_variant'])['case:concept:name'].count().unstack().reset_index() # bit_vector_noise = data.groupby(['prev_state', 'concept:name', 'state'])[ # 'case:concept:name'].count() # .unstack().reset_index() #indexed by transition # bit_vector_df=data.groupby(['prev_state', 'concept:name','state'])['trace_variant'].unique().apply(list) #indexed by trace_variant # bit_vector_trace_variant = data.groupby(['trace_variant'])[['prev_state', 'concept:name', 'state']].apply(list) # del(data) # bit_vector_df[:]=True # bit_vector_df=bit_vector_df.reset_index() # bit_vector_df = bit_vector_df.to_frame() # fix memory error # bit_vector_df=bit_vector_df.unstack() # print('1') # bit_vector_df=bit_vector_df.reset_index() # print('2') # bit_vector_df.fillna(False,inplace=True) # print('3') # res=data.groupby(['prev_state', 'concept:name','state','trace_variant'])['case:concept:name'].transform('any')#.unstack().reset_index() # bit_vector_df= pd.pivot_table(data=data, values= 'case:concept:name', index=['prev_state', 'concept:name','state'],columns=['trace_variant'], aggfunc='count', fill_value=0).reset_index() bit_vector_df['added_noise']= [0]* bit_vector_df.shape[0] # bit_vector_df.drop('case:concept:name', axis=1, inplace=True) return bit_vector_df def build_DAFSA_bit_vector_compacted(data,eps): #calculate the bit vector dataframe from the trace and state anotated event log #indexed by transition #not unique as we perform weighted sampling bit_vector_df=data.groupby(['prev_state', 'concept:name','state'])['trace_variant'].apply(list) #indexed by trace_variant bit_vector_trace_variant = data.groupby(['trace_variant'])[['prev_state', 'concept:name', 'state']].apply(lambda x: x.values.tolist()) # del(data) # bit_vector_df[:]=True # bit_vector_df=bit_vector_df.reset_index() bit_vector_df = bit_vector_df.to_frame() # fix memory error bit_vector_df['added_noise']= [0]* bit_vector_df.shape[0] noise=[get_noise(eps) for x in range(0,bit_vector_df.shape[0])] bit_vector_df['noise']=noise # bit_vector_df.drop('case:concept:name', axis=1, inplace=True) # print("*********** yay ***************&&") return bit_vector_df ,bit_vector_trace_variant def get_noise(eps): sens=1 noise = laplace.rvs(loc=0, scale=sens / eps, size=1)[0] noise = int(math.ceil(abs(noise))) return noise def reversed_normalization(a): # where 0 has the largest weight. m = max(a) a = a a = m - a #if all edges need the same noise # if need_noise.added_noise.max()==need_noise.added_noise.min(): # #make the weight for the one that is common between most traces # s=need_noise.iloc[:,3:-1].sum(axis=1) # a=s/s.sum() if sum(a)==0: #if all the items are zeros a=(a+1)/a.shape[0] else: a=a/sum(a) return a def pick_random_edge_trace(bit_vector_df,noise): #picks a random edge, then picks a random trace variant of that edge. It adds the noise #to the column added noise # need_noise = bit_vector_df.loc[bit_vector_df.added_noise < noise, :].dropna() added_noise=bit_vector_df.added_noise need_noise=added_noise[added_noise<noise] #performing weighted random sampling # perform reverse weight # make the weight of the edge that is part of a lot of trace variants to be larger edge_sampling_weights=reversed_normalization(need_noise) picked_edge_index =need_noise.sample(weights=edge_sampling_weights).index[0] # pick random trace variant # traces=picked_edge.drop(['prev_state','concept:name','state','added_noise'],axis=1) traces=bit_vector_df.iloc[picked_edge_index,3:-1] traces=traces.T.reset_index() #transpose the traces traces.columns=['trace_variant','trace_count'] # traces.trace_count=traces.trace_count.astype(int) """*** Compare here""" trace_sampling_weights=traces.trace_count/traces.trace_count.sum() #picking traces as the noise size # picked_trace= traces.sample(n=noise, weights=trace_sampling_weights, replace=True) picked_trace = traces.sample(n=noise, weights=trace_sampling_weights, replace=True) # picked_trace=picked_trace.trace_variant.iloc[0] # picked_trace = picked_trace.trace_variant # update the noise of all edges of that trace # bit_vector_df.added_noise[bit_vector_df[picked_trace]>0]=bit_vector_df.added_noise[bit_vector_df[picked_trace]>0]+1 for trace_index in range(0,noise): trace= picked_trace.trace_variant.iloc[trace_index] bit_vector_df.added_noise[bit_vector_df[trace] > 0] = bit_vector_df.added_noise[ bit_vector_df[trace] > 0] + 1 return bit_vector_df, picked_trace def pick_random_edge_trace_compacted(bit_vector_df, bit_vector_trace_variant): #picks a random edge, then picks a random trace variant of that edge. It adds the noise #to the column added noise func_start=time.time() # need_noise = bit_vector_df.loc[bit_vector_df.added_noise < noise, :].dropna() added_noise=bit_vector_df.added_noise need_noise=added_noise[added_noise<bit_vector_df.noise] #performing weighted random sampling # perform reverse weight # make the weight of the edge that is part of a lot of trace variants to be larger start=time.time() edge_sampling_weights=reversed_normalization(need_noise) end=time.time() # print("reversed_normalization : %s" %(end-start)) picked_edge_index =need_noise.sample(weights=edge_sampling_weights).index[0] # picked_edge_index = need_noise.sample().index[0] # pick random trace variant # traces=picked_edge.drop(['prev_state','concept:name','state','added_noise'],axis=1) start=time.time() traces=pd.Series(bit_vector_df.loc[picked_edge_index,'trace_variant']) traces=traces.value_counts().to_frame().reset_index() traces.columns=['trace_variant','trace_count'] end = time.time() # print("counting : %s" % (end - start)) # traces.trace_count=traces.trace_count.astype(int) """*** Compare here""" trace_sampling_weights=traces.trace_count/traces.trace_count.sum() # trace_sampling_weights = traces/ traces.sum() #picking traces as the noise size # picked_trace= traces.sample(n=noise, weights=trace_sampling_weights, replace=True) temp=bit_vector_df.loc[picked_edge_index,'noise'] picked_trace = traces.sample(n=bit_vector_df.loc[picked_edge_index,'noise'], weights=trace_sampling_weights, replace=True) # picked_trace = traces.sample(n=noise, weights=trace_sampling_weights, replace=True) # picked_trace=picked_trace.trace_variant.iloc[0] # picked_trace = picked_trace.trace_variant # update the noise of all edges of that trace # bit_vector_df.added_noise[bit_vector_df[picked_trace]>0]=bit_vector_df.added_noise[bit_vector_df[picked_trace]>0]+1 # for trace_index in range(0,noise): # trace= picked_trace.trace_variant.iloc[trace_index] # bit_vector_df.added_noise[bit_vector_df[trace] > 0] = bit_vector_df.added_noise[ # bit_vector_df[trace] > 0] + 1 start=time.time() for trace_index in picked_trace.trace_variant: trace_edges= bit_vector_trace_variant.loc[trace_index] bit_vector_df.added_noise.loc[trace_edges] = bit_vector_df.added_noise.loc[trace_edges] + 1 end = time.time() # print("trace index loop : %s" % (end - start)) func_end=time.time() # print("pick_random_edge_trace_compacted time : %s"%(func_end-func_start)) return bit_vector_df, picked_trace def sampling(row,duplicated_traces): trace_variant= row.trace_variant.iloc[0] sample_size=duplicated_traces[trace_variant] row=row.sample(n=sample_size, replace=True) return row def execute_oversampling(data,duplicated_traces): #duplicating the original case id to know which case is original and which is a copy. # that is needed to estimate to scale the epsilon of the duplicated cases. data['original_case:concept:name']=data['case:concept:name'] #count per trace variant duplicated_traces=pd.Series(duplicated_traces).value_counts() all_traces=pd.Series(data.trace_variant.unique()) non_duplicated=(set(list(data.trace_variant.unique())) - set(list(duplicated_traces.index))) # non_duplicated=all_traces[~all_traces.isin(list(duplicated_traces.index))] # non_duplicated[:]=0 non_duplicated= pd.Series([0]*len(non_duplicated),index=non_duplicated) duplicated_traces=duplicated_traces.append(non_duplicated) #all the sampling ratios should exist # duplicated traces #sampling from event log based on the count of each trace variant duplicated_cases=data[['trace_variant','case:concept:name']].reset_index(drop=True) duplicated_cases=duplicated_cases.groupby(['case:concept:name','trace_variant']).size().reset_index() start=time.time() # duplicated_cases=duplicated_cases.apply(lambda x:x.sample(n=duplicated_traces[x.trace_variant]), axis=1)#.reset_index(drop=True) # duplicated_cases = duplicated_cases.swifter.apply(sampling,duplicated_traces=duplicated_traces, axis=1) # .reset_index(drop=True) duplicated_cases = duplicated_cases.groupby(['trace_variant']).apply(sampling, duplicated_traces=duplicated_traces) # .reset_index(drop=True) duplicated_cases=duplicated_cases.drop(['trace_variant'],axis=1) # fix the problem when same case duplicated # take out the duplicated case id cases_more_than_once = duplicated_cases.groupby(['case:concept:name'])['case:concept:name'].count() end=time.time() print("sampling time: %s" %(end-start)) # all the cases only once duplicated_cases=duplicated_cases['case:concept:name'].unique() duplicated_cases=pd.DataFrame(duplicated_cases,columns=['case:concept:name']) data = duplicate_cases(data, duplicated_cases) cases_more_than_once = cases_more_than_once-1 # already duplicated once cases_more_than_once=cases_more_than_once[cases_more_than_once>0] # loop for the duplicated case ids and every time add only one duplication start=time.time() while len(cases_more_than_once>0): duplicated_cases=cases_more_than_once.to_frame() duplicated_cases.columns = ['cnt'] duplicated_cases=duplicated_cases.reset_index() duplicated_cases.drop(['cnt'],axis=1, inplace=True) data = duplicate_cases(data, duplicated_cases) cases_more_than_once = cases_more_than_once-1 # duplicated once cases_more_than_once = cases_more_than_once[cases_more_than_once > 0] end = time.time() print("loop of duplication: %s" % (end - start)) return data def duplicate_cases(data, duplicated_cases): #this function duplicate the cases only once and append them to the event log duplicated_cases = duplicated_cases.rename(columns={'case:concept:name': 'duplicated_case_ids'}) duplicated_cases = duplicated_cases.merge(data, how='left', left_on='duplicated_case_ids', right_on='case:concept:name').drop('duplicated_case_ids', axis=1) # replace the case id in the sample case_ids = duplicated_cases['case:concept:name'].unique() randomlist = r.sample(range(data.shape[0]+1, data.shape[0]+1+len(case_ids) * 2), len(case_ids)) mapping =
pd.Series(randomlist, index=case_ids)
pandas.Series
from beer.ingest.current_csv_inventory import CurrentCSVInventory import io import pandas as pd header = '"name","size","category","quantity","retail","case_retail","case_pack","timestamp"' bells = '"BELLS BEST BROWN","6/12 OZ BTL","CRAFT","4.00","11.8500","40.9900","4","2018-11-21 17:20:25.438956"' bells_dup = '"BELLS BEST BROWN","6/12 OZ BTL","CRAFT","32.00","11.8500","40.9900","4","2018-11-21 17:20:25.438956"' bud = '"BUDWEISER","12/12 OZ BTL","DOMESTIC","32.00","11.4900","21.4900","2","2018-11-21 17:20:25.438956"' bells2 = '"BELLS BEST BROWN","6/12 OZ BTL","CRAFT","4.00","11.8500","40.9900","4","2018-11-21 17:40:25.438956"' bud2 = '"BUDWEISER","12/12 OZ BTL","DOMESTIC","32.00","11.4900","21.4900","2","2018-11-21 17:40:25.438956"' def test_first_call_returns_parameter(): columns = ['name', 'size', 'category', 'quantity', 'retail', 'case_retail', 'case_pack', 'timestamp'] empty_df =
pd.DataFrame(columns=columns)
pandas.DataFrame
from __future__ import annotations from typing import Sequence from functools import partial import pytest import platform from anndata import AnnData import scanpy as sc import numpy as np import pandas as pd import matplotlib.pyplot as plt from squidpy import pl from squidpy.gr import spatial_neighbors from tests.conftest import PlotTester, PlotTesterMeta from squidpy.pl._spatial_utils import _get_library_id from squidpy._constants._pkg_constants import Key sc.set_figure_params(dpi=40, color_map="viridis") # WARNING: # 1. all classes must both subclass PlotTester and use metaclass=PlotTesterMeta # 2. tests which produce a plot must be prefixed with `test_plot_` # 3. if the tolerance needs to be change, don't prefix the function with `test_plot_`, but with something else # the comp. function can be accessed as `self.compare(<your_filename>, tolerance=<your_tolerance>)` # ".png" is appended to <your_filename>, no need to set it class TestSpatialStatic(PlotTester, metaclass=PlotTesterMeta): def test_tol_plot_spatial_scatter_image(self, adata_hne: AnnData): pl.spatial_scatter(adata_hne, na_color="lightgrey") self.compare("SpatialStatic_spatial_scatter_image", tolerance=60) def test_plot_spatial_scatter_noimage(self, adata_hne: AnnData): pl.spatial_scatter(adata_hne, shape=None, na_color="lightgrey") def test_plot_spatial_scatter_group_outline(self, adata_hne: AnnData): pl.spatial_scatter(adata_hne, shape="circle", color="cluster", groups="Cortex_1", outline=True) def test_plot_spatial_scatter_title_single(self, adata_hne_concat: AnnData): pl.spatial_scatter( adata_hne_concat, shape="hex", library_key="library_id", library_id=["V2_Adult_Mouse_Brain"], color=["Sox17", "cluster"], title="Visium test", ) def test_plot_spatial_scatter_crop_graph(self, adata_hne_concat: AnnData): pl.spatial_scatter( adata_hne_concat, shape="square", library_key="library_id", size=[0.3, 0.3], color=["Sox17", "cluster"], connectivity_key="spatial_connectivities", edges_width=5, title=None, outline=True, library_first=False, outline_width=(0.05, 0.05), crop_coord=[(0, 0, 300, 300), (0, 0, 300, 300)], scalebar_dx=2.0, scalebar_kwargs={"scale_loc": "bottom", "location": "lower right"}, ) def test_plot_spatial_scatter_crop_noorigin(self, adata_hne_concat: AnnData): pl.spatial_scatter( adata_hne_concat, shape="circle", library_key="library_id", color=["Sox17", "cluster"], outline_width=(0.05, 0.05), crop_coord=[(300, 300, 5000, 5000), (3000, 3000, 5000, 5000)], scalebar_dx=2.0, scalebar_kwargs={"scale_loc": "bottom", "location": "lower right"}, ) def test_plot_spatial_scatter_group_multi(self, adata_hne: AnnData): spatial_neighbors(adata_hne) pl.spatial_scatter( adata_hne, shape="circle", color=["Sox9", "cluster", "leiden"], groups=["Cortex_1", "Cortex_3", "3"], crop_coord=[(0, 0, 500, 500)], connectivity_key="spatial_connectivities", ) def test_plot_spatial_scatter_group(self, adata_hne_concat: AnnData): pl.spatial_scatter( adata_hne_concat, cmap="inferno", shape="hex", library_key="library_id", library_id=["V1_Adult_Mouse_Brain", "V2_Adult_Mouse_Brain"], size=[1, 1.25], color=["Sox17", "cluster"], edges_width=5, title=None, outline=True, outline_width=(0.05, 0.05), scalebar_dx=2.0, scalebar_kwargs={"scale_loc": "bottom", "location": "lower right"}, ) def test_plot_spatial_scatter_nospatial(self, adata_hne_concat: AnnData): adata = adata_hne_concat.copy() spatial_neighbors(adata) adata.uns.pop("spatial") pl.spatial_scatter( adata_hne_concat, shape=None, library_key="library_id", library_id=["V1_Adult_Mouse_Brain", "V2_Adult_Mouse_Brain"], connectivity_key="spatial_connectivities", edges_width=3, size=[1.0, 50], color="cluster", ) def test_plot_spatial_scatter_axfig(self, adata_hne: AnnData): fig, ax = plt.subplots(1, 2, figsize=(3, 3), dpi=40) pl.spatial_scatter( adata_hne, shape="square", color=["Sox17", "cluster"], fig=fig, ax=ax, ) @pytest.mark.skipif(platform.system() == "Darwin", reason="Fails on macOS 3.8 CI") def test_plot_spatial_scatter_novisium(self, adata_mibitof: AnnData): spatial_neighbors(adata_mibitof, coord_type="generic", radius=50) pl.spatial_scatter( adata_mibitof, library_key="library_id", library_id=["point8"], na_color="lightgrey", connectivity_key="spatial_connectivities", edges_width=0.5, ) def test_plot_spatial_segment(self, adata_mibitof: AnnData): pl.spatial_segment( adata_mibitof, seg_cell_id="cell_id", library_key="library_id", na_color="lightgrey", ) def test_plot_spatial_segment_group(self, adata_mibitof: AnnData): pl.spatial_segment( adata_mibitof, color=["Cluster"], groups=["Fibroblast", "Endothelial"], library_key="library_id", seg_cell_id="cell_id", img=False, seg=True, figsize=(5, 5), legend_na=False, scalebar_dx=2.0, scalebar_kwargs={"scale_loc": "bottom", "location": "lower right"}, ) def test_plot_spatial_segment_crop(self, adata_mibitof: AnnData): pl.spatial_segment( adata_mibitof, color=["Cluster", "cell_size"], groups=["Fibroblast", "Endothelial"], library_key="library_id", seg_cell_id="cell_id", img=True, seg=True, seg_outline=True, seg_contourpx=15, figsize=(5, 5), cmap="magma", vmin=500, crop_coord=[(100, 100, 500, 500), (100, 100, 500, 500), (100, 100, 500, 500)], img_alpha=0.5, ) def test_plot_spatial_scatter_categorical_alpha(self, adata_hne: AnnData): pl.spatial_scatter(adata_hne, shape="circle", color="cluster", alpha=0) class TestSpatialStaticUtils: @staticmethod def _create_anndata(shape: str | None, library_id: str | Sequence[str] | None, library_key: str | None): n_obs = len(library_id) * 2 if isinstance(library_id, list) else 2 X = np.empty((n_obs, 3)) if not isinstance(library_id, list) and library_id is not None: library_id = [library_id] if library_id is not None: obs =
pd.DataFrame(library_id * 2, columns=[library_key])
pandas.DataFrame
from io import StringIO from copy import deepcopy import numpy as np import pandas as pd import re from glypnirO_GUI.get_uniprot import UniprotParser from sequal.sequence import Sequence from sequal.resources import glycan_block_dict sequence_column_name = "Peptide\n< ProteinMetrics Confidential >" glycans_column_name = "Glycans\nNHFAGNa" starting_position_column_name = "Starting\nposition" modifications_column_name = "Modification Type(s)" observed_mz = "Calc.\nmass (M+H)" protein_column_name = "Protein Name" rt = "Scan Time" selected_aa = {"N", "S", "T"} regex_glycan_number_pattern = "\d+" glycan_number_regex = re.compile(regex_glycan_number_pattern) regex_pattern = "\.[\[\]\w\.\+\-]*\." sequence_regex = re.compile(regex_pattern) uniprot_regex = re.compile("(?P<accession>[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2})(?P<isoform>-\d)?") glycan_regex = re.compile("(\w+)\((\d+)\)") def filter_U_only(df): unique_glycan = df["Glycans"].unique() if len(unique_glycan) > 1 or True not in np.isin(unique_glycan, "U"): # print(unique_glycan) return True return False def filter_with_U(df): unique_glycan = df["Glycans"].unique() if len(unique_glycan) > 1 \ and \ True in np.isin(unique_glycan, "U"): return True return False def get_mod_value(amino_acid): if amino_acid.mods: if amino_acid.mods[0].value.startswith("+"): return float(amino_acid.mods[0].value[1:]) else: return -float(amino_acid.mods[0].value[1:]) else: return 0 def load_fasta(fasta_file_path, selected=None, selected_prefix=""): with open(fasta_file_path, "rt") as fasta_file: result = {} current_seq = "" for line in fasta_file: line = line.strip() if line.startswith(">"): if selected: if selected_prefix + line[1:] in selected: result[line[1:]] = "" current_seq = line[1:] else: result[line[1:]] = "" current_seq = line[1:] else: result[current_seq] += line return result class Result: def __init__(self, df): self.df = df self.empty = df.empty def calculate_proportion(self, occupancy=True): df = self.df.copy() #print(df) if not occupancy: df = df[df["Glycans"] != "U"] if "Peptides" in df.columns: gr = [# "Isoform", "Peptides", "Position"] else: gr = [# "Isoform", "Position"] for _, g in df.groupby(gr): total = g["Value"].sum() for i, r in g.iterrows(): df.at[i, "Value"] = r["Value"] / total return df def to_summary(self, df=None, name="", trust_byonic=False, occupancy=True): if df is None: df = self.df if not occupancy: df = df[df["Glycans"] != "U"] if trust_byonic: temp = df.set_index([# "Isoform", "Position", "Glycans"]) else: temp = df.set_index([# "Isoform", "Peptides", "Glycans", "Position"]) temp.rename(columns={"Value": name}, inplace=True) return temp class GlypnirOComponent: def __init__(self, filename, area_filename, replicate_id, condition_id, protein_name, minimum_score=0, trust_byonic=False, legacy=False): if type(filename) == pd.DataFrame: data = filename.copy() else: data = pd.read_excel(filename, sheet_name="Spectra") if type(area_filename) == pd.DataFrame: file_with_area = area_filename else: if area_filename.endswith("xlsx"): file_with_area = pd.read_excel(area_filename) else: file_with_area = pd.read_csv(area_filename, sep="\t") data["Scan number"] = pd.to_numeric(data["Scan #"].str.extract("scan=(\d+)", expand=False)) data = pd.merge(data, file_with_area, left_on="Scan number", right_on="First Scan") self.protein_name = protein_name self.data = data.sort_values(by=['Area'], ascending=False) self.replicate_id = replicate_id self.condition_id = condition_id self.data = data[data["Area"].notnull()] self.data = self.data[(self.data["Score"] >= minimum_score) & (self.data[protein_column_name].str.contains(protein_name)) # (data["Protein Name"] == ">"+protein_name) & ] self.data = self.data[~self.data[protein_column_name].str.contains(">Reverse")] if len(self.data.index) > 0: self.empty = False else: self.empty = True self.row_to_glycans = {} self.glycan_to_row = {} self.trust_byonic = trust_byonic self.legacy = legacy self.sequon_glycosites = set() self.glycosylated_seq = set() def calculate_glycan(self, glycan): current_mass = 0 current_string = "" for i in glycan: current_string += i if i == ")": s = glycan_regex.search(current_string) if s: name = s.group(1) amount = s.group(2) current_mass += glycan_block_dict[name]*int(amount) current_string = "" return current_mass def process(self): # entries_number = len(self.data.index) # if analysis == "N-glycan": # expand_window = 2 # self.data["total_number_of_asn"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_n-linked_sequon"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_hexnac"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_deamidation"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_modded_asn"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_unmodded_asn"] = pd.Series([0] * entries_number, index=self.data.index, dtype=int) # elif analysis == "O-glycan": # self.data["total_number_of_hex"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_modded_ser_thr"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["total_number_of_unmodded_ser_or_thr"] = pd.Series([0]*entries_number, index=self.data.index, dtype=int) # self.data["o_glycosylation_status"] = pd.Series([False]*entries_number, index=self.data.index, dtype=bool) for i, r in self.data.iterrows(): glycan_dict = {} search = sequence_regex.search(r[sequence_column_name]) seq = Sequence(search.group(0)) stripped_seq = seq.to_stripped_string() # modifications = {} # if pd.notnull(r[modifications_column_name]): # # for mod in r[modifications_column_name].split(","): # number = 1 # if "*" in mod: # m = mod.split("*") # minimod = Sequence(m[0].strip()) # number = int(m[1].strip()) # # else: # minimod = Sequence(mod.strip()) # for mo in minimod[0].mods: # if mo.value not in modifications: # modifications[mo.value] = {} # modifications[mo.value][minimod[0].value] = {"mod": deepcopy(mo), # "number": number} # #if minimod[0].mods[0].value not in modifications: # # modifications[minimod[0].mods[0].value] = {} # #modifications[minimod[0].mods[0].value][minimod[0].value] = {"mod": deepcopy(minimod[0].mods[0]), # # "number": number} # # if minimod[0].value == "N": # if analysis == "N-glycan": # for mo in minimod[0].mods: # if mo.value == 1: # #if minimod[0].mods[0].value == 1: # self.data.at[i, "total_number_of_deamidation"] += number # self.data.at[i, "total_number_of_modded_asn"] += number # elif minimod[0].value in "ST": # if analysis == "O-glycan": # for mo in minimod[0].mods: # self.data.at[i, "total_number_of_modded_ser_thr"] += number glycans = [] if pd.notnull(r[glycans_column_name]): glycans = r[glycans_column_name].split(",") if search: self.data.at[i, "stripped_seq"] = stripped_seq.rstrip(".").lstrip(".") origin_seq = r[starting_position_column_name] - 1 glycan_reordered = [] self.data.at[i, "origin_start"] = origin_seq self.data.at[i, "Ending Position"] = r[starting_position_column_name] + len(self.data.at[i, "stripped_seq"]) self.data.at[i, "position_to_glycan"] = "" if self.trust_byonic: n_site_status = {} p_n = r[protein_column_name].lstrip(">") # print(self.protein_name, p_n) # motifs = [match for match in seq.find_with_regex(motif, ignore=seq.gaps())] # if self.analysis == "N-glycan": # if len(fasta_library[p_n]) >= origin_seq + expand_window: # if expand_window: # expanded_window = Sequence(fasta_library[p_n][origin_seq: origin_seq + len(self.data.at[i, "stripped_seq"]) + expand_window]) # expanded_window_motifs = [match for match in expanded_window.find_with_regex(motif, ignore=expanded_window.gaps())] # origin_map = [i.start + origin_seq for i in expanded_window_motifs] # if len(expanded_window_motifs) > len(motifs): # self.data.at[i, "expanded_motif"] = str(expanded_window[expanded_window_motifs[-1]]) # self.data.at[i, "expanded_aa"] = str(expanded_window[-expand_window:]) # # else: # origin_map = [i.start + origin_seq for i in motifs] # else: # origin_map = [i.start + origin_seq for i in motifs] # # if analysis == "N-glycan": # self.data.at[i, "total_number_of_asn"] = seq.count("N", 0, len(seq)) # if expand_window: # self.data.at[i, "total_number_of_n-linked_sequon"] = len(expanded_window_motifs) # else: # self.data.at[i, "total_number_of_n-linked_sequon"] = len(motifs) # self.data.at[i, "total_number_of_unmodded_asn"] = self.data.at[i, "total_number_of_asn"] - self.data.at[i, "total_number_of_modded_asn"] # elif analysis == "O-glycan": # self.data.at[i, "total_number_of_ser_thr"] = seq.count("S", 0, len(seq)) + seq.count("T", 0, len(seq)) # self.data.at[i, "total_number_of_unmodded_ser_or_thr"] = self.data.at[i, "total_number_of_modded_ser_thr"] - self.data.at[i, "total_number_of_modded_ser_thr"] # current_glycan = 0 max_glycans = len(glycans) glycosylation_count = 1 if max_glycans: self.row_to_glycans[i] = np.sort(glycans) for g in glycans: data_gly = self.calculate_glycan(g) glycan_dict[str(round(data_gly, 3))] = g self.glycan_to_row[g] = i glycosylated_site = [] for aa in range(1, len(seq) - 1): if seq[aa].mods: mod_value = float(seq[aa].mods[0].value) round_mod_value = round(mod_value) # str_mod_value = seq[aa].mods[0].value[0] + str(round_mod_value) #if str_mod_value in modifications: # if seq[aa].value in "ST" and analysis == "O-glycan": # if round_mod_value == 80: # continue # if seq[aa].value in modifications[str_mod_value]: # if seq[aa].value == "N" and round_mod_value == 1: # seq[aa].extra = "Deamidated" # continue # if modifications[str_mod_value][seq[aa].value]['number'] > 0: # modifications[str_mod_value][seq[aa].value]['number'] -= 1 # seq[aa].mods[0].mass = mod_value round_3 = round(mod_value, 3) if str(round_3) in glycan_dict: seq[aa].extra = "Glycosylated" pos = int(r[starting_position_column_name]) + aa - 2 self.sequon_glycosites.add(pos + 1) position = "{}_position".format(str(glycosylation_count)) self.data.at[i, position] = seq[aa].value + str(pos + 1) glycosylated_site.append(self.data.at[i, position] + "_" + str(round_mod_value)) glycosylation_count += 1 glycan_reordered.append(glycan_dict[str(round_3)]) if glycan_reordered: self.data.at[i, "position_to_glycan"] = ",".join(glycan_reordered) self.data.at[i, "glycoprofile"] = ";".join(glycosylated_site) # if seq[aa].value == "N": # if analysis == "N-glycan": # if self.trust_byonic: # if not in origin_map: # # # position = "{}_position".format(str(glycosylation_count)) # # self.data.at[i, position] = seq[aa].value + str( # # r[starting_position_column_name]+aa) # # self.data.at[i, position + "_match"] = "H" # # glycosylation_count += 1 # self.data.at[i, "total_number_of_hexnac"] += 1 # elif seq[aa].value in "ST": # if analysis == "O-glycan": # self.data.at[i, "total_number_of_hex"] += 1 # if mod_value in modifications: # if seq[aa].value in "ST" and analysis == "O-glycan": # if round_mod_value == 80: # continue # # if seq[aa].value in modifications[mod_value]: # if seq[aa].value == "N" and round_mod_value == 1: # seq[aa].extra = "Deamidated" # continue # if modifications[mod_value][seq[aa].value]['number'] > 0: # modifications[mod_value][seq[aa].value]['number'] -= 1 # seq[aa].mods[0].mass = float(seq[aa].mods[0].value) # # if max_glycans and current_glycan != max_glycans: # # seq[aa].mods[0].value = glycans[current_glycan] # seq[aa].extra = "Glycosylated" # # if seq[aa].value == "N": # if analysis == "N-glycan": # if "hexnac" in glycans[current_glycan].lower(): # self.data.at[i, "total_number_of_hexnac"] += 1 # # elif seq[aa].value in "ST": # if analysis == "O-glycan": # self.data.at[i, "total_number_of_hex"] += 1 # # current_glycan += 1 #if current_glycan == max_glycans: #break # for n in origin_map: # position = "{}_position".format(str(glycosylation_count)) # self.data.at[i, position] = seq[n-origin_seq+1].value + str( # n + 1) # # if seq[n-origin_seq+1].extra == "Glycosylated": # self.data.at[i, position + "_match"] = "H" # elif seq[n-origin_seq+1].extra == "Deamidated": # self.data.at[i, position + "_match"] = "D" # else: # self.data.at[i, position + "_match"] = "U" # # if analysis == "N-glycan": # if self.legacy: # if self.data.at[i, "total_number_of_n-linked_sequon"] != self.data.at[i, "total_number_of_hexnac"]: # if seq[n-origin_seq+1].extra == "Deamidated": # if self.data.at[i, "total_number_of_hexnac"] > 0: # self.data.at[i, position + "_match"] = "D/H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # else: # self.data.at[i, position + "_match"] = "D" # else: # if self.data.at[i, "total_number_of_hexnac"] > 0: # if self.data.at[i, "total_number_of_deamidation"] == 0: # self.data.at[i, position + "_match"] = "H" # else: # self.data.at[i, position + "_match"] ="D/H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # if not seq[n-origin_seq+1].extra: # if self.data.at[i, "total_number_of_hexnac"] > 0 and self.data.at[i, "total_number_of_deamidation"]> 0: # self.data.at[i, position + "_match"] = "D/H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # elif self.data.at[i, "total_number_of_hexnac"] > 0: # self.data.at[i, position + "_match"] = "H" # if self.data.at[i, "total_number_of_unmodded_asn"] > 0: # self.data.at[i, position + "_match"] = "D/H/U" # else: # self.data.at[i, position + "_match"] = "U" # glycosylation_count += 1 else: if pd.notnull(r[glycans_column_name]): glycans = r[glycans_column_name].split(",") glycans.sort() self.data.at[i, glycans_column_name] = ",".join(glycans) self.data.at[i, "glycosylation_status"] = True self.glycosylated_seq.add(self.data.at[i, "stripped_seq"]) def analyze(self, max_sites=0, combine_d_u=True, splitting_sites=False): result = [] temp = self.data.sort_values(["Area", "Score"], ascending=False) temp[glycans_column_name] = temp[glycans_column_name].fillna("None") out = [] if self.trust_byonic: seq_glycosites = list(self.sequon_glycosites) seq_glycosites.sort() # print(seq_glycosites) # if self.analysis == "N-glycan": # if max_sites == 0: # temp = temp[(0 < temp["total_number_of_n-linked_sequon"])] # else: # temp = temp[(0 < temp["total_number_of_n-linked_sequon"]) & (temp["total_number_of_n-linked_sequon"]<= max_sites) ] for i, g in temp.groupby(["stripped_seq", "z", "glycoprofile", observed_mz]): seq_within = [] unique_row = g.loc[g["Area"].idxmax()] # # glycan = 0 # first_site = "" if seq_glycosites: for n in seq_glycosites: if unique_row[starting_position_column_name] <= n < unique_row["Ending Position"]: # print(unique_row["stripped_seq"], n, unique_row[starting_position_column_name]) seq_within.append( unique_row["stripped_seq"][n-unique_row[starting_position_column_name]]+str(n)) # print(unique_row) # if self.legacy: # for c in range(len(unique_row.index)): # if unique_row.index[c].endswith("_position"): # # if pd.notnull(unique_row[unique_row.index[c]]): # if not first_site: # first_site = unique_row[unique_row.index[c]] # if unique_row[unique_row.index[c]] not in result: # result[unique_row[unique_row.index[c]]] = {} # # if "U" in unique_row[unique_row.index[c+1]]: # if "U" not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]]["U"] = 0 # result[unique_row[unique_row.index[c]]]["U"] += unique_row["Area"] # elif "D" in unique_row[unique_row.index[c+1]]: # if combine_d_u: # if "U" not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]]["U"] = 0 # result[unique_row[unique_row.index[c]]]["U"] += unique_row["Area"] # else: # if "D" not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]]["D"] = 0 # result[unique_row[unique_row.index[c]]]["D"] += unique_row["Area"] # else: # if splitting_sites or unique_row["total_number_of_hexnac"] == 1: # # if self.row_to_glycans[unique_row.name][glycan] not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]][self.row_to_glycans[unique_row.name][glycan]] = 0 # result[unique_row[unique_row.index[c]]][ # self.row_to_glycans[unique_row.name][glycan]] += unique_row["Area"] # glycan += 1 # # else: # if unique_row["total_number_of_hexnac"] > 1 and not splitting_sites: # temporary_glycan = ";".join(self.row_to_glycans[unique_row.name][glycan]) # # if temporary_glycan not in result[unique_row[unique_row.index[c]]]: # result[unique_row[unique_row.index[c]]][temporary_glycan] = unique_row["Area"] # break # else: glycosylation_count = 0 glycans = unique_row["position_to_glycan"].split(",") for c in range(len(unique_row.index)): if unique_row.index[c].endswith("_position"): if pd.notnull(unique_row[unique_row.index[c]]): pos = unique_row[unique_row.index[c]] result.append({"Position": pos, "Glycans": glycans[glycosylation_count], "Value": unique_row["Area"]}) ind = seq_within.index(pos) seq_within.pop(ind) glycosylation_count += 1 if seq_within: for s in seq_within: result.append({"Position": s, "Glycans": "U", "Value": unique_row["Area"]}) # if N_combo: # # N_combo.sort() # sequons = ";".join(N_combo) # # # working_isoform = unique_row["isoform"] # # if working_isoform not in result: # # # if working_isoform != 1.0 and 1.0 in result: # # # if sequons in result[working_isoform][1.0]: # # # if unique_row[glycans_column_name] in result[working_isoform][1.0][sequons] or "U" in result[working_isoform][1.0][sequons]: # # # working_isoform = 1.0 # # # else: # # result[working_isoform] = {} # if sequons not in result[working_isoform]: # result[working_isoform][sequons] = {} # #if pd.notnull(unique_row[glycans_column_name]): # if unique_row[glycans_column_name] != "None": # if unique_row[glycans_column_name] not in result[working_isoform][sequons]: # result[working_isoform][sequons][unique_row[glycans_column_name]] = 0 # result[working_isoform][sequons][unique_row[glycans_column_name]] += unique_row["Area"] # else: # if "U" not in result[working_isoform][sequons]: # result[working_isoform][sequons]["U"] = 0 # result[working_isoform][sequons]["U"] += unique_row["Area"] # #print(result) if result: result = pd.DataFrame(result) group = result.groupby(["Position", "Glycans"]) out = group.agg(np.sum).reset_index() else: out = pd.DataFrame([], columns=["Position", "Glycans", "Values"]) # for k in result: # for k2 in result[k]: # for k3 in result[k][k2]: # out.append({"Isoform": k, "Position": k2, "Glycans": k3, "Value": result[k][k2][k3]}) else: # result_total = {} # if max_sites != 0: # temp = temp[temp['total_number_of_hex'] <= max_sites] for i, g in temp.groupby(["stripped_seq", "z", glycans_column_name, starting_position_column_name, observed_mz]): unique_row = g.loc[g["Area"].idxmax()] if unique_row[glycans_column_name] != "None": result.append({"Peptides": i[0], "Glycans": i[2], "Value": unique_row["Area"], "Position": i[3]}) else: result.append({"Peptides": i[0], "Glycans": "U", "Value": unique_row["Area"], "Position": i[3]}) result = pd.DataFrame(result) group = result.groupby(["Peptides", "Position", "Glycans"]) out = group.agg(np.sum).reset_index() # working_isoform = unique_row["isoform"] # if working_isoform not in result: # # if working_isoform != 1.0 and 1.0 in result: # # if unique_row["stripped_seq"] in result[working_isoform][1.0]: # # #if i[3] in result[working_isoform][1.0][unique_row["stripped_seq"]]: # # # if unique_row[glycans_column_name] in result[working_isoform][1.0][unique_row["stripped_seq"]][i[3]] or "U" in \ # # # result[working_isoform][1.0][unique_row["stripped_seq"]][i[3]]: # # working_isoform = 1.0 # # else: # result[working_isoform] = {} # # if unique_row["stripped_seq"] not in result[working_isoform]: # result[working_isoform][unique_row["stripped_seq"]] = {} # # result_total[unique_row["isoform"]][unique_row["stripped_seq"]] = 0 # if i[3] not in result[working_isoform][unique_row["stripped_seq"]]: # result[working_isoform][unique_row["stripped_seq"]][i[3]] = {} # if i[2] == "None": # if "U" not in result[working_isoform][unique_row["stripped_seq"]][i[3]]: # result[working_isoform][unique_row["stripped_seq"]][i[3]]["U"] = 0 # result[working_isoform][unique_row["stripped_seq"]][i[3]]["U"] += unique_row["Area"] # # else: # # if splitting_sites: # # for gly in self.row_to_glycans[unique_row.name]: # # if gly not in result[working_isoform][unique_row["stripped_seq"]][i[3]]: # # result[working_isoform][unique_row["stripped_seq"]][i[3]][gly] = 0 # # result[working_isoform][unique_row["stripped_seq"]][i[3]][gly] += unique_row["Area"] # # else: # if unique_row[glycans_column_name] not in result[working_isoform][unique_row["stripped_seq"]][i[3]]: # result[working_isoform][unique_row["stripped_seq"]][i[3]][unique_row[glycans_column_name]] = 0 # result[working_isoform][unique_row["stripped_seq"]][i[3]][unique_row[glycans_column_name]] += unique_row["Area"] # # for k in result: # for k2 in result[k]: # for k3 in result[k][k2]: # for k4 in result[k][k2][k3]: # out.append({"Isoform": k, "Peptides": k2, "Glycans": k4, "Value": result[k][k2][k3][k4], "Position": k3}) return Result(out) class GlypnirO: def __init__(self, trust_byonic=False, get_uniprot=False): self.trust_byonic = trust_byonic self.components = None self.uniprot_parsed_data = pd.DataFrame([]) self.get_uniprot = get_uniprot def add_component(self, filename, area_filename, replicate_id, sample_id): component = GlypnirOComponent(filename, area_filename, replicate_id, sample_id) def add_batch_component(self, component_list, minimum_score, protein=None, combine_uniprot_isoform=True, legacy=False): self.load_dataframe(component_list) protein_list = [] if protein is not None: self.components["Protein"] = pd.Series([protein]*len(self.components.index), index=self.components.index) for i, r in self.components.iterrows(): comp = GlypnirOComponent(r["filename"], r["area_filename"], r["replicate_id"], condition_id=r["condition_id"], protein_name=protein, minimum_score=minimum_score, trust_byonic=self.trust_byonic, legacy=legacy) self.components.at[i, "component"] = comp print("{} - {}, {} peptides has been successfully loaded".format(r["condition_id"], r["replicate_id"], str(len(comp.data.index)))) else: components = [] for i, r in self.components.iterrows(): data = pd.read_excel(r["filename"], sheet_name="Spectra") protein_id_column = protein_column_name if combine_uniprot_isoform: protein_id_column = "master_id" for i2, r2 in data.iterrows(): search = uniprot_regex.search(r2[protein_column_name]) if not r2[protein_column_name].startswith(">Reverse") and not r2[protein_column_name].endswith("(Common contaminant protein)"): if search: data.at[i2, "master_id"] = search.groupdict(default="")["accession"] if not self.get_uniprot: protein_list.append([search.groupdict(default="")["accession"], r2[protein_column_name]]) if search.groupdict(default="")["isoform"] != "": data.at[i2, "isoform"] = int(search.groupdict(default="")["isoform"][1:]) else: data.at[i2, "isoform"] = 1 else: data.at[i2, "master_id"] = r2[protein_column_name] data.at[i2, "isoform"] = 1 else: data.at[i2, "master_id"] = r2[protein_column_name] data.at[i2, "isoform"] = 1 if r["area_filename"].endswith("xlsx"): file_with_area = pd.read_excel(r["area_filename"]) else: file_with_area = pd.read_csv(r["area_filename"], sep="\t") for index, g in data.groupby([protein_id_column]): u = index if not u.startswith(">Reverse") and not u.endswith("(Common contaminant protein)"): comp = GlypnirOComponent(g, file_with_area, r["replicate_id"], condition_id=r["condition_id"], protein_name=u, minimum_score=minimum_score, trust_byonic=self.trust_byonic, legacy=legacy) if not comp.empty: components.append({"filename": r["filename"], "area_filename": r["area_filename"], "condition_id": r["condition_id"], "replicate_id": r["replicate_id"], "Protein": u, "component": comp}) yield i, r print( "{} - {} peptides has been successfully loaded".format(r["condition_id"], r["replicate_id"])) self.components = pd.DataFrame(components, columns=list(self.components.columns) + ["component", "Protein"]) if not self.get_uniprot: protein_df =
pd.DataFrame(protein_list, columns=["Entry", "Protein names"])
pandas.DataFrame
""" Tests dtype specification during parsing for all of the parsers defined in parsers.py """ from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserWarning from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timestamp, concat import pandas._testing as tm @pytest.mark.parametrize("dtype", [str, object]) @pytest.mark.parametrize("check_orig", [True, False]) def test_dtype_all_columns(all_parsers, dtype, check_orig): # see gh-3795, gh-6607 parser = all_parsers df = DataFrame( np.random.rand(5, 2).round(4), columns=list("AB"), index=["1A", "1B", "1C", "1D", "1E"], ) with tm.ensure_clean("__passing_str_as_dtype__.csv") as path: df.to_csv(path) result = parser.read_csv(path, dtype=dtype, index_col=0) if check_orig: expected = df.copy() result = result.astype(float) else: expected = df.astype(str) tm.assert_frame_equal(result, expected) def test_dtype_all_columns_empty(all_parsers): # see gh-12048 parser = all_parsers result = parser.read_csv(StringIO("A,B"), dtype=str) expected = DataFrame({"A": [], "B": []}, index=[], dtype=str) tm.assert_frame_equal(result, expected) def test_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" expected = DataFrame( [[1, "2.5"], [2, "3.5"], [3, "4.5"], [4, "5.5"]], columns=["one", "two"] ) expected["one"] = expected["one"].astype(np.float64) expected["two"] = expected["two"].astype(object) result = parser.read_csv(StringIO(data), dtype={"one": np.float64, 1: str}) tm.assert_frame_equal(result, expected) def test_invalid_dtype_per_column(all_parsers): parser = all_parsers data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" with pytest.raises(TypeError, match="data type [\"']foo[\"'] not understood"): parser.read_csv(StringIO(data), dtype={"one": "foo", 1: "int"}) @pytest.mark.parametrize( "dtype", [ "category", CategoricalDtype(), {"a": "category", "b": "category", "c": CategoricalDtype()}, ], ) def test_categorical_dtype(all_parsers, dtype): # see gh-10153 parser = all_parsers data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["a", "a", "b"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize("dtype", [{"b": "category"}, {1: "category"}]) def test_categorical_dtype_single(all_parsers, dtype): # see gh-10153 parser = all_parsers data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = DataFrame( {"a": [1, 1, 2], "b": Categorical(["a", "a", "b"]), "c": [3.4, 3.4, 4.5]} ) actual = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_unsorted(all_parsers): # see gh-10153 parser = all_parsers data = """a,b,c 1,b,3.4 1,b,3.4 2,a,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["b", "b", "a"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype="category") tm.assert_frame_equal(actual, expected) def test_categorical_dtype_missing(all_parsers): # see gh-10153 parser = all_parsers data = """a,b,c 1,b,3.4 1,nan,3.4 2,a,4.5""" expected = DataFrame( { "a": Categorical(["1", "1", "2"]), "b": Categorical(["b", np.nan, "a"]), "c": Categorical(["3.4", "3.4", "4.5"]), } ) actual = parser.read_csv(StringIO(data), dtype="category") tm.assert_frame_equal(actual, expected) @pytest.mark.slow def test_categorical_dtype_high_cardinality_numeric(all_parsers): # see gh-18186 parser = all_parsers data = np.sort([str(i) for i in range(524289)]) expected = DataFrame({"a": Categorical(data, ordered=True)}) actual = parser.read_csv(StringIO("a\n" + "\n".join(data)), dtype="category") actual["a"] = actual["a"].cat.reorder_categories( np.sort(actual.a.cat.categories), ordered=True ) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_latin1(all_parsers, csv_dir_path): # see gh-10153 pth = os.path.join(csv_dir_path, "unicode_series.csv") parser = all_parsers encoding = "latin-1" expected = parser.read_csv(pth, header=None, encoding=encoding) expected[1] = Categorical(expected[1]) actual = parser.read_csv(pth, header=None, encoding=encoding, dtype={1: "category"}) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_utf16(all_parsers, csv_dir_path): # see gh-10153 pth = os.path.join(csv_dir_path, "utf16_ex.txt") parser = all_parsers encoding = "utf-16" sep = "\t" expected = parser.read_csv(pth, sep=sep, encoding=encoding) expected = expected.apply(Categorical) actual = parser.read_csv(pth, sep=sep, encoding=encoding, dtype="category") tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize_infer_categories(all_parsers): # see gh-10153 parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" expecteds = [ DataFrame({"a": [1, 1], "b": Categorical(["a", "b"])}), DataFrame({"a": [1, 2], "b": Categorical(["b", "c"])}, index=[2, 3]), ] actuals = parser.read_csv(StringIO(data), dtype={"b": "category"}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize_explicit_categories(all_parsers): # see gh-10153 parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" cats = ["a", "b", "c"] expecteds = [ DataFrame({"a": [1, 1], "b": Categorical(["a", "b"], categories=cats)}), DataFrame( {"a": [1, 2], "b": Categorical(["b", "c"], categories=cats)}, index=[2, 3] ), ] dtype = CategoricalDtype(cats) actuals = parser.read_csv(StringIO(data), dtype={"b": dtype}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize("ordered", [False, True]) @pytest.mark.parametrize( "categories", [["a", "b", "c"], ["a", "c", "b"], ["a", "b", "c", "d"], ["c", "b", "a"]], ) def test_categorical_category_dtype(all_parsers, categories, ordered): parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" expected = DataFrame( { "a": [1, 1, 1, 2], "b": Categorical( ["a", "b", "b", "c"], categories=categories, ordered=ordered ), } ) dtype = {"b": CategoricalDtype(categories=categories, ordered=ordered)} result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_category_dtype_unsorted(all_parsers): parser = all_parsers data = """a,b 1,a 1,b 1,b 2,c""" dtype = CategoricalDtype(["c", "b", "a"]) expected = DataFrame( { "a": [1, 1, 1, 2], "b": Categorical(["a", "b", "b", "c"], categories=["c", "b", "a"]), } ) result = parser.read_csv(StringIO(data), dtype={"b": dtype}) tm.assert_frame_equal(result, expected) def test_categorical_coerces_numeric(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype([1, 2, 3])} data = "b\n1\n1\n2\n3" expected = DataFrame({"b": Categorical([1, 1, 2, 3])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_datetime(all_parsers): parser = all_parsers dti = pd.DatetimeIndex(["2017-01-01", "2018-01-01", "2019-01-01"], freq=None) dtype = {"b": CategoricalDtype(dti)} data = "b\n2017-01-01\n2018-01-01\n2019-01-01" expected = DataFrame({"b": Categorical(dtype["b"].categories)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_timestamp(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype([Timestamp("2014")])} data = "b\n2014-01-01\n2014-01-01T00:00:00" expected = DataFrame({"b": Categorical([Timestamp("2014")] * 2)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_coerces_timedelta(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype(pd.to_timedelta(["1H", "2H", "3H"]))} data = "b\n1H\n2H\n3H" expected = DataFrame({"b": Categorical(dtype["b"].categories)}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data", [ "b\nTrue\nFalse\nNA\nFalse", "b\ntrue\nfalse\nNA\nfalse", "b\nTRUE\nFALSE\nNA\nFALSE", "b\nTrue\nFalse\nNA\nFALSE", ], ) def test_categorical_dtype_coerces_boolean(all_parsers, data): # see gh-20498 parser = all_parsers dtype = {"b": CategoricalDtype([False, True])} expected = DataFrame({"b": Categorical([True, False, None, False])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_unexpected_categories(all_parsers): parser = all_parsers dtype = {"b": CategoricalDtype(["a", "b", "d", "e"])} data = "b\nd\na\nc\nd" # Unexpected c expected = DataFrame({"b": Categorical(list("dacd"), dtype=dtype["b"])}) result = parser.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_empty_pass_dtype(all_parsers): parser = all_parsers data = "one,two" result = parser.read_csv(StringIO(data), dtype={"one": "u1"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "two": np.empty(0, dtype=object)}, index=Index([], dtype=object), ) tm.assert_frame_equal(result, expected) def test_empty_with_index_pass_dtype(all_parsers): parser = all_parsers data = "one,two" result = parser.read_csv( StringIO(data), index_col=["one"], dtype={"one": "u1", 1: "f"} ) expected = DataFrame( {"two": np.empty(0, dtype="f")}, index=Index([], dtype="u1", name="one") ) tm.assert_frame_equal(result, expected) def test_empty_with_multi_index_pass_dtype(all_parsers): parser = all_parsers data = "one,two,three" result = parser.read_csv( StringIO(data), index_col=["one", "two"], dtype={"one": "u1", 1: "f8"} ) exp_idx = MultiIndex.from_arrays( [np.empty(0, dtype="u1"), np.empty(0, dtype=np.float64)], names=["one", "two"] ) expected = DataFrame({"three": np.empty(0, dtype=object)}, index=exp_idx) tm.assert_frame_equal(result, expected) def test_empty_with_mangled_column_pass_dtype_by_names(all_parsers): parser = all_parsers data = "one,one" result = parser.read_csv(StringIO(data), dtype={"one": "u1", "one.1": "f"}) expected = DataFrame( {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, index=Index([], dtype=object), )
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
from __future__ import absolute_import from __future__ import print_function import os import pandas as pd import numpy as np import sys import shutil from sklearn.preprocessing import MinMaxScaler def dataframe_from_csv(path, header=0, index_col=False): return pd.read_csv(path, header=header, index_col=index_col) var_to_consider = [ "glucose", "Invasive BP Diastolic", "Invasive BP Systolic", "O2 Saturation", "Respiratory Rate", "Motor", "Eyes", "MAP (mmHg)", "Heart Rate", "GCS Total", "Verbal", "pH", "FiO2", "Temperature (C)", ] # Filter on useful column for this benchmark def filter_patients_on_columns_model(patients): columns = [ "patientunitstayid", "gender", "age", "ethnicity", "apacheadmissiondx", "admissionheight", "hospitaladmitoffset", "admissionweight", "hospitaldischargestatus", "unitdischargeoffset", "unitdischargestatus", ] return patients[columns] # Select unique patient id def cohort_stay_id(patients): cohort = patients.patientunitstayid.unique() return cohort # Convert gender from F/M to numbers g_map = {"Female": 1, "Male": 2, "": 0, "NaN": 0, "Unknown": 0, "Other": 0} def transform_gender(gender_series): global g_map return { "gender": gender_series.fillna("").apply( lambda s: g_map[s] if s in g_map else g_map[""] ) } # Convert ethnicity to numbers e_map = { "Asian": 1, "African American": 2, "Caucasian": 3, "Hispanic": 4, "Native American": 5, "NaN": 0, "": 0, } def transform_ethnicity(ethnicity_series): global e_map return { "ethnicity": ethnicity_series.fillna("").apply( lambda s: e_map[s] if s in e_map else e_map[""] ) } # Convert hospital/unit discharge status into numbers h_s_map = {"Expired": 1, "Alive": 0, "": 2, "NaN": 2} def transform_hospital_discharge_status(status_series): global h_s_map return { "hospitaldischargestatus": status_series.fillna("").apply( lambda s: h_s_map[s] if s in h_s_map else h_s_map[""] ) } def transform_unit_discharge_status(status_series): global h_s_map return { "unitdischargestatus": status_series.fillna("").apply( lambda s: h_s_map[s] if s in h_s_map else h_s_map[""] ) } # Convert diagnosis into numbers def transform_dx_into_id(df): df.apacheadmissiondx.fillna("nodx", inplace=True) dx_type = df.apacheadmissiondx.unique() dict_dx_key = pd.factorize(dx_type)[1] dict_dx_val = pd.factorize(dx_type)[0] dictionary = dict(zip(dict_dx_key, dict_dx_val)) df["apacheadmissiondx"] = df["apacheadmissiondx"].map(dictionary) return df ## Extract the root data # Extract data from patient table def read_patients_table(eicu_path, output_path): pats = dataframe_from_csv(os.path.join(eicu_path, "patient.csv"), index_col=False) pats = filter_patients_on_age(pats, min_age=18, max_age=89) pats = filter_one_unit_stay(pats) pats = filter_patients_on_columns(pats) pats.update(transform_gender(pats.gender)) pats.update(transform_ethnicity(pats.ethnicity)) pats.update(transform_hospital_discharge_status(pats.hospitaldischargestatus)) pats.update(transform_unit_discharge_status(pats.unitdischargestatus)) pats = transform_dx_into_id(pats) pats.to_csv(os.path.join(output_path, "all_stays.csv"), index=False) pats = filter_patients_on_columns_model(pats) return pats # filter on adult patients def filter_patients_on_age(patient, min_age=18, max_age=89): patient.ix[patient["age"] == "> 89", "age"] = 90 patient[["age"]] = patient[["age"]].fillna(-1) patient[["age"]] = patient[["age"]].astype(int) patient = patient.ix[(patient.age >= min_age) & (patient.age <= max_age)] return patient # filter those having just one stay in unit def filter_one_unit_stay(patients): cohort_count = patients.groupby(by="uniquepid").count() index_cohort = cohort_count[cohort_count["patientunitstayid"] == 1].index patients = patients[patients["uniquepid"].isin(index_cohort)] return patients # Filter on useful columns from patient table def filter_patients_on_columns(patients): columns = [ "patientunitstayid", "gender", "age", "ethnicity", "apacheadmissiondx", "hospitaladmityear", "hospitaldischargeyear", "hospitaldischargeoffset", "admissionheight", "hospitaladmitoffset", "admissionweight", "hospitaldischargestatus", "unitdischargeoffset", "unitdischargestatus", ] return patients[columns] # Write the selected cohort data from patient table into pat.csv for each patient def break_up_stays_by_unit_stay(pats, output_path, stayid=None, verbose=1): unit_stays = pats.patientunitstayid.unique() if stayid is None else stayid nb_unit_stays = unit_stays.shape[0] for i, stay_id in enumerate(unit_stays): if verbose: sys.stdout.write("\rStayID {0} of {1}...".format(i + 1, nb_unit_stays)) dn = os.path.join(output_path, str(stay_id)) try: os.makedirs(dn) except: pass pats.ix[pats.patientunitstayid == stay_id].sort_values( by="hospitaladmitoffset" ).to_csv(os.path.join(dn, "pats.csv"), index=False) if verbose: sys.stdout.write("DONE!\n") ## Here we deal with lab table # Select the useful columns from lab table def filter_lab_on_columns(lab): columns = ["patientunitstayid", "labresultoffset", "labname", "labresult"] return lab[columns] # Rename the columns in order to have a unified name def rename_lab_columns(lab): lab.rename( index=str, columns={ "labresultoffset": "itemoffset", "labname": "itemname", "labresult": "itemvalue", }, inplace=True, ) return lab # Select the lab measurement from lab table def item_name_selected_from_lab(lab, items): lab = lab[lab["itemname"].isin(items)] return lab # Check if the lab measurement is valid def check(x): try: x = float(str(x).strip()) except: x = np.nan return x def check_itemvalue(df): df["itemvalue"] = df["itemvalue"].apply(lambda x: check(x)) df["itemvalue"] = df["itemvalue"].astype(float) return df # extract the lab items for each patient def read_lab_table(eicu_path): lab = dataframe_from_csv(os.path.join(eicu_path, "lab.csv"), index_col=False) items = ["bedside glucose", "glucose", "pH", "FiO2"] lab = filter_lab_on_columns(lab) lab = rename_lab_columns(lab) lab = item_name_selected_from_lab(lab, items) lab.loc[ lab["itemname"] == "bedside glucose", "itemname" ] = "glucose" # unify bedside glucose and glucose lab = check_itemvalue(lab) return lab # Write the available lab items of a patient into lab.csv def break_up_lab_by_unit_stay(lab, output_path, stayid=None, verbose=1): unit_stays = lab.patientunitstayid.unique() if stayid is None else stayid nb_unit_stays = unit_stays.shape[0] for i, stay_id in enumerate(unit_stays): if verbose: sys.stdout.write("\rStayID {0} of {1}...".format(i + 1, nb_unit_stays)) dn = os.path.join(output_path, str(stay_id)) try: os.makedirs(dn) except: pass lab.ix[lab.patientunitstayid == stay_id].sort_values(by="itemoffset").to_csv( os.path.join(dn, "lab.csv"), index=False ) if verbose: sys.stdout.write("DONE!\n") # Filter the useful columns from nc table def filter_nc_on_columns(nc): columns = [ "patientunitstayid", "nursingchartoffset", "nursingchartcelltypevallabel", "nursingchartcelltypevalname", "nursingchartvalue", ] return nc[columns] # Unify the column names in order to be used later def rename_nc_columns(nc): nc.rename( index=str, columns={ "nursingchartoffset": "itemoffset", "nursingchartcelltypevalname": "itemname", "nursingchartcelltypevallabel": "itemlabel", "nursingchartvalue": "itemvalue", }, inplace=True, ) return nc # Select the items using name and label def item_name_selected_from_nc(nc, label, name): nc = nc[(nc.itemname.isin(name)) | (nc.itemlabel.isin(label))] return nc # Convert fahrenheit to celsius def conv_far_cel(nc): nc["itemvalue"] = nc["itemvalue"].astype(float) nc.loc[nc["itemname"] == "Temperature (F)", "itemvalue"] = ( nc["itemvalue"] - 32 ) * (5 / 9) return nc # Unify the different names into one for each measurement def replace_itemname_value(nc): nc.loc[nc["itemname"] == "Value", "itemname"] = nc.itemlabel nc.loc[ nc["itemname"] == "Non-Invasive BP Systolic", "itemname" ] = "Invasive BP Systolic" nc.loc[ nc["itemname"] == "Non-Invasive BP Diastolic", "itemname" ] = "Invasive BP Diastolic" nc.loc[nc["itemname"] == "Temperature (F)", "itemname"] = "Temperature (C)" nc.loc[nc["itemlabel"] == "Arterial Line MAP (mmHg)", "itemname"] = "MAP (mmHg)" return nc # Select the nurseCharting items and save it into nc def read_nc_table(eicu_path): # import pdb;pdb.set_trace() nc = dataframe_from_csv( os.path.join(eicu_path, "nurseCharting.csv"), index_col=False ) nc = filter_nc_on_columns(nc) nc = rename_nc_columns(nc) typevallabel = [ "Glasgow coma score", "Heart Rate", "O2 Saturation", "Respiratory Rate", "MAP (mmHg)", "Arterial Line MAP (mmHg)", ] typevalname = [ "Non-Invasive BP Systolic", "Invasive BP Systolic", "Non-Invasive BP Diastolic", "Invasive BP Diastolic", "Temperature (C)", "Temperature (F)", ] nc = item_name_selected_from_nc(nc, typevallabel, typevalname) nc = check_itemvalue(nc) nc = conv_far_cel(nc) replace_itemname_value(nc) del nc["itemlabel"] return nc # Write the nc values of each patient into a nc.csv file def break_up_stays_by_unit_stay_nc(nursecharting, output_path, stayid=None, verbose=1): unit_stays = nursecharting.patientunitstayid.unique() if stayid is None else stayid nb_unit_stays = unit_stays.shape[0] for i, stay_id in enumerate(unit_stays): if verbose: sys.stdout.write("\rStayID {0} of {1}...".format(i + 1, nb_unit_stays)) dn = os.path.join(output_path, str(stay_id)) try: os.makedirs(dn) except: pass nursecharting.ix[nursecharting.patientunitstayid == stay_id].sort_values( by="itemoffset" ).to_csv(os.path.join(dn, "nc.csv"), index=False) if verbose: sys.stdout.write("DONE!\n") # Write the time-series data into one csv for each patient def extract_time_series_from_subject(t_path): print("Convert to time series ...") print( "This will take some hours, as the imputation and binning and converting time series are done here ..." ) filter_15_200 = 0 for i, stay_dir in enumerate(os.listdir(t_path)): # import pdb;pdb.set_trace() dn = os.path.join(t_path, stay_dir) try: stay_id = int(stay_dir) if not os.path.isdir(dn): raise Exception except: continue try: pat = dataframe_from_csv(os.path.join(t_path, stay_dir, "pats.csv")) lab = dataframe_from_csv(os.path.join(t_path, stay_dir, "lab.csv")) nc = dataframe_from_csv(os.path.join(t_path, stay_dir, "nc.csv")) nclab = pd.concat([nc, lab]).sort_values(by=["itemoffset"]) timeepisode = convert_events_to_timeseries(nclab, variables=var_to_consider) nclabpat =
pd.merge(timeepisode, pat, on="patientunitstayid")
pandas.merge
"""Main module.""" from avroconvert import logger import csv from fastavro import reader from io import BytesIO from itertools import chain from json import dump from os.path import join, exists, dirname from pandas import DataFrame from pathlib import Path from pyarrow import Table from pyarrow.parquet import write_table class AvroConvert: ''' A class used to read avro files and convert them to csv, parquet and json format :param outfolder: output folder to write the output files to :type outfolder: str :param header: Extracts header from the file if it is set to True :type header: bool :param dst_format: Specifies the format to convert the avro data to :type dst_format: str ''' def __init__(self, outfolder: str, dst_format: str = 'parquet', header: bool = True): """ :param header: Extracts header from the file if it is set to True :type header: bool :param dst_format: Specifies the format to convert the avro data to :type dst_format: str :param data: Contains raw data in the form of bytes as read from filesystem, google cloud storage or S3. Multiple files are read sequentially and their respective data is appended to this list which is passed as the variable `data` :type data: list """ self.header = header self.dst_format = dst_format.lower() # self.data = data self.outfolder = outfolder self._check_output_folder(outfolder) def convert_avro(self, filename: str, data: bytes) -> str: ''' Reads byte data, converts it to avro format and writes the data to the local filesystem to the output format specified. :param filename: Name of the input file (with it's source path). The output file will be saved by the same name, within the same folder hierarchy as it was in the source file system. The extension will be changed as per the given output format :type filename: str :param data: Contains raw data in the form of bytes as read from filesystem, google cloud storage or S3. Multiple files are read sequentially and their respective data is appended to this list which is passed as the variable `data` :type data: bytes :returns: File name with path of the output file :rtype: str ''' if not bool(data): return None try: logger.info('Converting bytes to avro') logger.info(f'File {filename} in progress') outfile = join(self.outfolder, self._change_file_extn(filename)) avrodata = [r for r in reader(BytesIO(data))] logger.info( f'Total {len(avrodata)} records found in file is {filename}') writer_function = getattr(self, f'_to_{self.dst_format}') writer_function(data=avrodata, outfile=outfile) logger.info(f'[COMPLETED] File {outfile} complete') return f'File {outfile} complete' except Exception as e: logger.exception(f'[FAILED] File {outfile} failed') raise e def _to_csv(self, data, outfile: str) -> str: ''' Write the avro data to a csv file :param data: Avro formatted data :type data: avro data :param outfile: Output filepath. The avro data which is converted to csv, will be stored at this location. If a non-existent folder name is given, the folder will be created and the csv file will be written there. Example: ./data/1970-01-01/FILE.csv :type outfile: str :returns: path of the output csv file :rtype: str ''' count = 0 logger.info(f'Output folder check {outfile}') self._check_output_folder(outfile) f = csv.writer(open(outfile, "w+")) for row in data: if self.header == True: header = row.keys() f.writerow(header) self.header = False count += 1 f.writerow(row.values()) return outfile def _to_parquet(self, data, outfile: str) -> str: ''' Write the avro data to a parquet file :param data: Avro formatted data :type data: avro data :param outfile: Output filepath. The avro data which is converted to parquet, will be stored at this location. If a non-existent folder name is given, the folder will be created and the parquet file will be written there. Example: ./data/1970-01-01/FILE.parquet :type outfile: str :returns: path of the output parquet file :rtype: str ''' self._check_output_folder(outfile) # TODO: support for partitioned storage # table = Table.from_pandas( # DataFrame(list(chain.from_iterable(self.data)))) logger.info(f'Writing {outfile} to parquet format') try: table = Table.from_pandas( DataFrame(data)) write_table(table, outfile, flavor='spark') return outfile except Exception as e: raise e def _to_json(self, data, outfile: str) -> str: ''' Write the avro data to a json file :param data: Avro formatted data :type data: avro data :param outfile: Output filepath. The avro data which is converted to json, will be stored at this location. If a non-existent folder name is given, the folder will be created and the json file will be written there. Example: ./data/1970-01-01/FILE.json :type outfile: str :returns: path of the output json file :rtype: str ''' self._check_output_folder(outfile) df =
DataFrame(data)
pandas.DataFrame
from __future__ import division from builtins import str from builtins import range from builtins import object __copyright__ = "Copyright 2015-2016 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import os import sys import numpy as np import pandas as pd from .Error import NotImplementedError, UnexpectedError from .Logger import FastTripsLogger from .Passenger import Passenger from .Route import Route from .TAZ import TAZ from .Trip import Trip from .Util import Util #: Default user class: just one class called "all" def generic_user_class(row_series): return "all" class PathSet(object): """ Represents a path set for a passenger from an origin :py:class:`TAZ` to a destination :py:class:`TAZ` through a set of stops. """ #: Paths output file PATHS_OUTPUT_FILE = 'ft_output_passengerPaths.txt' #: Path times output file PATH_TIMES_OUTPUT_FILE = 'ft_output_passengerTimes.txt' #: Configured functions, indexed by name CONFIGURED_FUNCTIONS = { 'generic_user_class':generic_user_class } #: Path configuration: Name of the function that defines user class USER_CLASS_FUNCTION = None #: File with weights file. Space delimited table. WEIGHTS_FILE = 'pathweight_ft.txt' #: Path weights WEIGHTS_DF = None #: Read weights file as fixed-width format. If false, standard CSV format is read. WEIGHTS_FIXED_WIDTH = False #: Configuration: Minimum transfer penalty. Safeguard against having no transfer penalty #: which can result in terrible paths with excessive transfers. MIN_TRANSFER_PENALTY = None #: Configuration: Overlap scale parameter. OVERLAP_SCALE_PARAMETER = None #: Configuration: Overlap variable. Can be "None", "count", "distance", "time". OVERLAP_VARIABLE = None #: Overlap variable option: None. Don't use overlap pathsize correction. OVERLAP_NONE = "None" #: Overlap variable option: count. Use leg count overlap pathsize correction. OVERLAP_COUNT = "count" #: Overlap variable option: distance. Use leg distance overlap pathsize correction. OVERLAP_DISTANCE = "distance" #: Overlap variable option: time. Use leg time overlap pathsize correction. OVERLAP_TIME = "time" #: Valid values for OVERLAP_VARAIBLE OVERLAP_VARIABLE_OPTIONS = [OVERLAP_NONE, OVERLAP_COUNT, OVERLAP_DISTANCE, OVERLAP_TIME] #: Overlap chunk size. How many person's trips to process at a time in overlap calculations #: in python simulation OVERLAP_CHUNK_SIZE = None #: Overlap option: Split transit leg into component parts? e.g. split A-E #: into A-B-C-D-E for overlap calculations? OVERLAP_SPLIT_TRANSIT = None LEARN_ROUTES = False LEARN_ROUTES_RATE = 0.05 SUCCESS_FLAG_COLUMN = 'success_flag' BUMP_FLAG_COLUMN = 'bump_flag' #: Allow departures and arrivals before / after preferred time ARRIVE_LATE_ALLOWED_MIN = datetime.timedelta(minutes = 0) DEPART_EARLY_ALLOWED_MIN = datetime.timedelta(minutes = 0) CONSTANT_GROWTH_MODEL = 'constant' EXP_GROWTH_MODEL = 'exponential' LOGARITHMIC_GROWTH_MODEL = 'logarithmic' LOGISTIC_GROWTH_MODEL = 'logistic' PENALTY_GROWTH_MODELS = [ CONSTANT_GROWTH_MODEL, EXP_GROWTH_MODEL, LOGARITHMIC_GROWTH_MODEL, LOGISTIC_GROWTH_MODEL, ] #: Weights column: User Class WEIGHTS_COLUMN_USER_CLASS = "user_class" #: Weights column: Purpose WEIGHTS_COLUMN_PURPOSE = "purpose" #: Weights column: Demand Mode Type WEIGHTS_COLUMN_DEMAND_MODE_TYPE = "demand_mode_type" #: Weights column: Demand Mode Type WEIGHTS_COLUMN_DEMAND_MODE = "demand_mode" #: Weights column: Supply Mode WEIGHTS_COLUMN_SUPPLY_MODE = "supply_mode" #: Weights column: Weight Name WEIGHTS_COLUMN_WEIGHT_NAME = "weight_name" #: Weights column: Weight Value WEIGHTS_COLUMN_WEIGHT_VALUE = "weight_value" #: Weights column: Growth Type WEIGHTS_GROWTH_TYPE = "growth_type" #: Weights column: Log Base for logarithmic growth function WEIGHTS_GROWTH_LOG_BASE = "log_base" #: Weights column: Max value for logistic growth function WEIGHTS_GROWTH_LOGISTIC_MAX = "logistic_max" #: Weights column: Midpoint value for logistic growth function WEIGHTS_GROWTH_LOGISTIC_MID = "logistic_mid" WEIGHT_NAME_DEPART_EARLY_MIN = "depart_early_min" WEIGHT_NAME_ARRIVE_LATE_MIN = "arrive_late_min" WEIGHT_NAME_DEPART_LATE_MIN = 'depart_late_min' WEIGHT_NAME_ARRIVE_EARLY_MIN = 'arrive_early_min' WEIGHT_NAME_VALID_NAMES = [ WEIGHT_NAME_DEPART_EARLY_MIN, WEIGHT_NAME_DEPART_LATE_MIN, WEIGHT_NAME_ARRIVE_EARLY_MIN, WEIGHT_NAME_ARRIVE_LATE_MIN, ] # ========== Added by fasttrips ======================================================= #: Weights column: Supply Mode number WEIGHTS_COLUMN_SUPPLY_MODE_NUM = "supply_mode_num" #: File with weights for c++ OUTPUT_WEIGHTS_FILE = "ft_intermediate_weights.txt" DIR_OUTBOUND = 1 #: Trips outbound from home have preferred arrival times DIR_INBOUND = 2 #: Trips inbound to home have preferred departure times PATH_KEY_COST = "pf_cost" #: path cost according to pathfinder PATH_KEY_FARE = "pf_fare" #: path fare according to pathfinder PATH_KEY_PROBABILITY = "pf_probability" #: path probability according to pathfinder PATH_KEY_INIT_COST = "pf_initcost" #: initial cost (in pathfinding, before path was finalized) PATH_KEY_INIT_FARE = "pf_initfare" #: initial fare (in pathfinding, before path was finalized) PATH_KEY_STATES = "states" STATE_IDX_LABEL = 0 #: :py:class:`datetime.timedelta` instance STATE_IDX_DEPARR = 1 #: :py:class:`datetime.datetime` instance. Departure if outbound/backwards, arrival if inbound/forwards. STATE_IDX_DEPARRMODE = 2 #: mode id STATE_IDX_TRIP = 3 #: trip id STATE_IDX_SUCCPRED = 4 #: stop identifier or TAZ identifier STATE_IDX_SEQ = 5 #: sequence (for trip) STATE_IDX_SEQ_SUCCPRED = 6 #: sequence for successor/predecessor STATE_IDX_LINKTIME = 7 #: :py:class:`datetime.timedelta` instance STATE_IDX_LINKFARE = 8 #: fare cost, float STATE_IDX_LINKCOST = 9 #: link generalized cost, float for hyperpath/stochastic, STATE_IDX_LINKDIST = 10 #: link distance, float STATE_IDX_COST = 11 #: cost float, for hyperpath/stochastic assignment STATE_IDX_ARRDEP = 12 #: :py:class:`datetime.datetime` instance. Arrival if outbound/backwards, departure if inbound/forwards. # these are also the demand_mode_type values STATE_MODE_ACCESS = "access" STATE_MODE_EGRESS = "egress" STATE_MODE_TRANSFER = "transfer" # new STATE_MODE_TRIP = "transit" # onboard BUMP_EXPERIENCED_COST = 999999 HUGE_COST = 9999 def __init__(self, trip_list_dict): """ Constructor from dictionary mapping attribute to value. """ self.__dict__.update(trip_list_dict) #: Direction is one of :py:attr:`PathSet.DIR_OUTBOUND` or :py:attr:`PathSet.DIR_INBOUND` #: Preferred time is a datetime.time object if trip_list_dict[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == "arrival": self.direction = PathSet.DIR_OUTBOUND self.pref_time = trip_list_dict[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME] self.pref_time_min = trip_list_dict[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME_MIN] elif trip_list_dict[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == "departure": self.direction = PathSet.DIR_INBOUND self.pref_time = trip_list_dict[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME] self.pref_time_min = trip_list_dict[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME_MIN] else: raise Exception("Don't understand trip_list %s: %s" % (Passenger.TRIP_LIST_COLUMN_TIME_TARGET, str(trip_list_dict))) #: Dict of path-num -> { cost:, probability:, states: [List of (stop_id, stop_state)]} self.pathdict = {} def goes_somewhere(self): """ Does this path go somewhere? Does the destination differ from the origin? """ return (self.__dict__[Passenger.TRIP_LIST_COLUMN_ORIGIN_TAZ_ID] != self.__dict__[Passenger.TRIP_LIST_COLUMN_DESTINATION_TAZ_ID]) def path_found(self): """ Was a a transit path found from the origin to the destination with the constraints? """ return len(self.pathdict) > 0 def num_paths(self): """ Number of paths in the PathSet """ return len(self.pathdict) def reset(self): """ Delete my states, something went wrong and it won't work out. """ self.pathdict = [] @staticmethod def set_user_class(trip_list_df, new_colname): """ Adds a column called user_class by applying the configured user class function. """ trip_list_df[new_colname] = trip_list_df.apply(PathSet.CONFIGURED_FUNCTIONS[PathSet.USER_CLASS_FUNCTION], axis=1) @staticmethod def verify_weight_config(modes_df, output_dir, routes, capacity_constraint, trip_list_df): """ Verify that we have complete weight configurations for the user classes and modes in the given DataFrame. Trips with invalid weight configurations will be dropped from the trip list and warned about. The parameter mode_df is a dataframe with the user_class, demand_mode_type and demand_mode combinations found in the demand file. If *capacity_constraint* is true, make sure there's an at_capacity weight on the transit supply mode links to enforce it. Returns updated trip_list_df. """ (verify, error_str) = PathSet.verify_weights(PathSet.WEIGHTS_DF) # Join - make sure that all demand combinations (user class, purpose, demand mode type and demand mode) are configured weight_check = pd.merge(left=modes_df, right=PathSet.WEIGHTS_DF, on=[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE], how='left') FastTripsLogger.debug("demand_modes x weights: \n%s" % weight_check.to_string()) FastTripsLogger.debug("trip_list_df head=\n%s" % str(trip_list_df.head())) # If something is missing, warn and remove those trips null_supply_mode_weights = weight_check.loc[pd.isnull(weight_check[PathSet.WEIGHTS_COLUMN_SUPPLY_MODE])] if len(null_supply_mode_weights) > 0: # warn FastTripsLogger.warn("The following user_class, demand_mode_type, demand_mode combinations exist in the demand file but are missing from the weight configuration:") FastTripsLogger.warn("\n%s" % null_supply_mode_weights.to_string()) # remove those trips -- need to do it one demand mode type at a time null_supply_mode_weights = null_supply_mode_weights[[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE]] null_supply_mode_weights["to_remove"] = 1 for demand_mode_type in [PathSet.STATE_MODE_ACCESS, PathSet.STATE_MODE_EGRESS, PathSet.STATE_MODE_TRIP]: remove_trips = null_supply_mode_weights.loc[null_supply_mode_weights[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE]==demand_mode_type].copy() if len(remove_trips) == 0: continue remove_trips.rename(columns={PathSet.WEIGHTS_COLUMN_DEMAND_MODE:"%s_mode" % demand_mode_type}, inplace=True) remove_trips.drop([PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE], axis=1, inplace=True) FastTripsLogger.debug("Removing for \n%s" % remove_trips) trip_list_df = pd.merge(left = trip_list_df, right = remove_trips, how = "left") FastTripsLogger.debug("Removing\n%s" % trip_list_df.loc[pd.notnull(trip_list_df["to_remove"])]) # keep only those not flagged to_remove trip_list_df = trip_list_df.loc[pd.isnull(trip_list_df["to_remove"])] trip_list_df.drop(["to_remove"], axis=1, inplace=True) # demand_mode_type and demand_modes implicit to all travel : xfer walk, xfer wait, initial wait user_classes = modes_df[[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE]].drop_duplicates().reset_index() implicit_df = pd.DataFrame({ PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE:[ 'transfer'], PathSet.WEIGHTS_COLUMN_DEMAND_MODE :[ 'transfer'], PathSet.WEIGHTS_COLUMN_SUPPLY_MODE :[ 'transfer'] }) user_classes['key'] = 1 implicit_df['key'] = 1 implicit_df = pd.merge(left=user_classes, right=implicit_df, on='key') implicit_df.drop(['index','key'], axis=1, inplace=True) # FastTripsLogger.debug("implicit_df: \n%s" % implicit_df) weight_check = pd.merge(left=implicit_df, right=PathSet.WEIGHTS_DF, on=[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE], how='left') FastTripsLogger.debug("implicit demand_modes x weights: \n%s" % weight_check.to_string()) if pd.isnull(weight_check[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME]).sum() > 0: error_str += "\nThe following user_class, purpose, demand_mode_type, demand_mode, supply_mode combinations exist in the demand file but are missing from the weight configuration:\n" error_str += weight_check.loc[pd.isnull(weight_check[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME])].to_string() error_str += "\n\n" # transfer penalty check tp_index = pd.DataFrame({ PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE:['transfer'], PathSet.WEIGHTS_COLUMN_DEMAND_MODE :['transfer'], PathSet.WEIGHTS_COLUMN_SUPPLY_MODE :['transfer'], PathSet.WEIGHTS_COLUMN_WEIGHT_NAME :['transfer_penalty']}) uc_purp_index = PathSet.WEIGHTS_DF[[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE]].drop_duplicates() FastTripsLogger.debug("uc_purp_index: \n%s" % uc_purp_index) # these are all the transfer penalties we have transfer_penaltes = pd.merge(left=tp_index, right=PathSet.WEIGHTS_DF, how='left') FastTripsLogger.debug("transfer_penaltes: \n%s" % transfer_penaltes) transfer_penalty_check = pd.merge(left=uc_purp_index, right=transfer_penaltes, how='left') FastTripsLogger.debug("transfer_penalty_check: \n%s" % transfer_penalty_check) # missing transfer penalty if pd.isnull(transfer_penalty_check[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME]).sum() > 0: error_str += "\nThe following user class x purpose are missing a transfer penalty:\n" error_str += transfer_penalty_check.loc[pd.isnull(transfer_penalty_check[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME])].to_string() error_str += "\n\n" bad_pen = transfer_penalty_check.loc[transfer_penalty_check[PathSet.WEIGHTS_COLUMN_WEIGHT_VALUE] < PathSet.MIN_TRANSFER_PENALTY] if len(bad_pen) > 0: error_str += "\nThe following user class x purpose path weights have invalid (too small) transfer penalties. MIN=(%f)\n" % PathSet.MIN_TRANSFER_PENALTY error_str += bad_pen.to_string() error_str += "\nConfigure smaller min_transfer_penalty AT YOUR OWN RISK since this will make path generation slow/unreliable.\n\n" # If *capacity_constraint* is true, make sure there's an at_capacity weight on the transit supply mode links # to enforce it. if capacity_constraint: # see if it's here already -- we don't know how to handle that... at_capacity = PathSet.WEIGHTS_DF.loc[ PathSet.WEIGHTS_DF[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "at_capacity" ] if len(at_capacity) > 0: error_str += "\nFound at_capacity path weights explicitly set when about to set these for hard capacity constraints.\n" error_str += at_capacity.to_string() error_str += "\n\n" else: # set it for all user_class x transit x demand_mode x supply_mode transit_weights_df = PathSet.WEIGHTS_DF.loc[PathSet.WEIGHTS_DF[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE] == PathSet.STATE_MODE_TRIP, [PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE]].copy() transit_weights_df.drop_duplicates(inplace=True) transit_weights_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME ] = "at_capacity" transit_weights_df[PathSet.WEIGHTS_COLUMN_WEIGHT_VALUE] = PathSet.HUGE_COST transit_weights_df[PathSet.WEIGHTS_GROWTH_TYPE] = PathSet.CONSTANT_GROWTH_MODEL FastTripsLogger.debug("Adding capacity-constraint weights:\n%s" % transit_weights_df.to_string()) PathSet.WEIGHTS_DF = pd.concat([PathSet.WEIGHTS_DF, transit_weights_df], axis=0) PathSet.WEIGHTS_DF.sort_values(by=[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE, PathSet.WEIGHTS_COLUMN_WEIGHT_NAME], inplace=True) if len(error_str) > 0: FastTripsLogger.fatal(error_str) sys.exit(2) # add mode numbers to weights DF for relevant rows PathSet.WEIGHTS_DF = routes.add_numeric_mode_id(PathSet.WEIGHTS_DF, id_colname=PathSet.WEIGHTS_COLUMN_SUPPLY_MODE, numeric_newcolname=PathSet.WEIGHTS_COLUMN_SUPPLY_MODE_NUM, warn=True) # don't fail if some supply modes are configured but not used, they may be for future runs FastTripsLogger.debug("PathSet weights: \n%s" % PathSet.WEIGHTS_DF) export_columns = [PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE_NUM, PathSet.WEIGHTS_COLUMN_WEIGHT_NAME, PathSet.WEIGHTS_COLUMN_WEIGHT_VALUE, PathSet.WEIGHTS_GROWTH_TYPE, PathSet.WEIGHTS_GROWTH_LOG_BASE, PathSet.WEIGHTS_GROWTH_LOGISTIC_MAX, PathSet.WEIGHTS_GROWTH_LOGISTIC_MID] PathSet.WEIGHTS_DF.reindex(columns=export_columns).to_csv(os.path.join(output_dir,PathSet.OUTPUT_WEIGHTS_FILE), columns=export_columns, sep=" ", index=False) # add placeholder weights (ivt weight) for fares - one for each user_class, purpose, transit demand mode # these will be updated based on the person's value of time in calculate_cost() fare_weights = PathSet.WEIGHTS_DF.loc[ (PathSet.WEIGHTS_DF[PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE]==PathSet.STATE_MODE_TRIP) & (PathSet.WEIGHTS_DF[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME ]== "in_vehicle_time_min")] fare_weights = fare_weights[[PathSet.WEIGHTS_COLUMN_USER_CLASS, PathSet.WEIGHTS_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE_NUM, PathSet.WEIGHTS_COLUMN_WEIGHT_NAME, PathSet.WEIGHTS_COLUMN_WEIGHT_VALUE]].copy().drop_duplicates() fare_weights[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME ] = "fare" # SIM_COL_PAX_FARE PathSet.WEIGHTS_DF = PathSet.WEIGHTS_DF.append(fare_weights) FastTripsLogger.debug("PathSet.WEIGHTS_DF with fare weights: \n%s" % PathSet.WEIGHTS_DF) return trip_list_df @staticmethod def verify_weights(weights): # First, verify required columns are found error_str = "" weight_cols = list(weights.columns.values) FastTripsLogger.debug("verify_weight_config:\n%s" % weights.to_string()) if (PathSet.WEIGHTS_COLUMN_USER_CLASS not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_USER_CLASS) if (PathSet.WEIGHTS_COLUMN_PURPOSE not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_PURPOSE) if (PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE) if (PathSet.WEIGHTS_COLUMN_DEMAND_MODE not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_DEMAND_MODE) if (PathSet.WEIGHTS_COLUMN_SUPPLY_MODE not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_SUPPLY_MODE) if (PathSet.WEIGHTS_COLUMN_WEIGHT_NAME not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_WEIGHT_NAME) if (PathSet.WEIGHTS_COLUMN_WEIGHT_VALUE not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_COLUMN_WEIGHT_VALUE) if (PathSet.WEIGHTS_GROWTH_TYPE not in weight_cols): error_str+='{} not in weight_cols\n'.format(PathSet.WEIGHTS_GROWTH_TYPE) constant_exp_slice = weights.loc[ weights[PathSet.WEIGHTS_GROWTH_TYPE].isin( [PathSet.CONSTANT_GROWTH_MODEL, PathSet.EXP_GROWTH_MODEL]), ] logarithmic_slice = weights.loc[ weights[PathSet.WEIGHTS_GROWTH_TYPE] == PathSet.LOGARITHMIC_GROWTH_MODEL, ] logistic_slice = weights.loc[ weights[PathSet.WEIGHTS_GROWTH_TYPE] == PathSet.LOGISTIC_GROWTH_MODEL, ] # Verify that no extraneous values are set for constant and exponential functions if not pd.isnull(constant_exp_slice.reindex([ PathSet.WEIGHTS_GROWTH_LOG_BASE, PathSet.WEIGHTS_GROWTH_LOGISTIC_MAX, PathSet.WEIGHTS_GROWTH_LOGISTIC_MID, ], axis='columns')).values.all(): error_str += 'Linear or Exponential qualifier includes unnecessary modifier(s)\n' if not pd.isnull(logarithmic_slice.reindex([ PathSet.WEIGHTS_GROWTH_LOGISTIC_MAX, PathSet.WEIGHTS_GROWTH_LOGISTIC_MID, ], axis='columns')).values.all(): error_str += 'Logarithmic qualifier includes unnecessary modifier(s)\n' if not pd.isnull(logistic_slice.reindex([ PathSet.WEIGHTS_GROWTH_LOG_BASE, ], axis='columns')).values.all(): error_str += 'Logistic qualifier includes log_base modifier\n' if not pd.notnull(logarithmic_slice.reindex([ PathSet.WEIGHTS_GROWTH_LOG_BASE, ], axis='columns')).values.all(): error_str += 'Logarithmic qualifier missing necessary log_base modifier\n' if not pd.notnull(logistic_slice.reindex([ PathSet.WEIGHTS_GROWTH_LOGISTIC_MAX, PathSet.WEIGHTS_GROWTH_LOGISTIC_MID, ], axis='columns')).values.all(): error_str += 'Logistic qualifier missing necessary modifiers\n' if error_str: error_str = '\n-------Errors: pathweight_ft.txt---------------\n' + error_str return (not error_str), error_str def __str__(self): """ Readable string version of the path. Note: If inbound trip, then the states are in reverse order (egress to access) """ ret_str = "Dict vars:\n" for k,v in self.__dict__.items(): ret_str += "%30s => %-30s %s\n" % (str(k), str(v), str(type(v))) # ret_str += PathSet.states_to_str(self.states, self.direction) return ret_str @staticmethod def write_paths(passengers_df, output_dir): """ Write the assigned paths to the given output file. :param passengers_df: Passenger paths assignment results :type passengers_df: :py:class:`pandas.DataFrame` instance :param output_dir: Output directory :type output_dir: string """ # get trip information -- board stops, board trips and alight stops passenger_trips = passengers_df.loc[passengers_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_TRIP].copy() ptrip_group = passenger_trips.groupby([Passenger.PERSONS_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]) # these are Series board_stops_str = ptrip_group.A_id.apply(lambda x:','.join(x)) board_trips_str = ptrip_group.trip_id.apply(lambda x:','.join(x)) alight_stops_str= ptrip_group.B_id.apply(lambda x:','.join(x)) board_stops_str.name = 'board_stop_str' board_trips_str.name = 'board_trip_str' alight_stops_str.name = 'alight_stop_str' # get walking times walk_links = passengers_df.loc[(passengers_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_ACCESS )| \ (passengers_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_TRANSFER)| \ (passengers_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_EGRESS )].copy() walk_links['linktime_str'] = walk_links.pf_linktime.apply(lambda x: "%.2f" % (x/np.timedelta64(1,'m'))) walklink_group = walk_links[['person_id','trip_list_id_num','linktime_str']].groupby(['person_id','trip_list_id_num']) walktimes_str = walklink_group.linktime_str.apply(lambda x:','.join(x)) # aggregate to one line per person_id, trip_list_id print_passengers_df = passengers_df[['person_id','trip_list_id_num','pathmode','A_id','B_id',Passenger.PF_COL_PAX_A_TIME]].groupby(['person_id','trip_list_id_num']).agg( {'pathmode' :'first', # path mode 'A_id' :'first', # origin 'B_id' :'last', # destination Passenger.PF_COL_PAX_A_TIME :'first' # start time }) # put them all together print_passengers_df = pd.concat([print_passengers_df, board_stops_str, board_trips_str, alight_stops_str, walktimes_str], axis=1) print_passengers_df.reset_index(inplace=True) print_passengers_df.sort_values(by=['trip_list_id_num'], inplace=True) print_passengers_df.rename(columns= {'pathmode' :'mode', 'A_id' :'originTaz', 'B_id' :'destinationTaz', Passenger.PF_COL_PAX_A_TIME :'startTime_time', 'board_stop_str' :'boardingStops', 'board_trip_str' :'boardingTrips', 'alight_stop_str' :'alightingStops', 'linktime_str' :'walkingTimes'}, inplace=True) print_passengers_df['startTime'] = print_passengers_df['startTime_time'].apply(Util.datetime64_formatter) print_passengers_df = print_passengers_df[['trip_list_id_num','person_id','mode','originTaz','destinationTaz','startTime', 'boardingStops','boardingTrips','alightingStops','walkingTimes']] print_passengers_df.to_csv(os.path.join(output_dir, PathSet.PATHS_OUTPUT_FILE), sep="\t", index=False) # passengerId mode originTaz destinationTaz startTime boardingStops boardingTrips alightingStops walkingTimes @staticmethod def write_path_times(passengers_df, output_dir): """ Write the assigned path times to the given output file. :param passengers_df: Passenger path links :type passengers_df: :py:class:`pandas.DataFrame` instance :param output_dir: Output directory :type output_dir: string """ passenger_trips = passengers_df.loc[passengers_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_TRIP].copy() ###### TODO: this is really catering to output format; an alternative might be more appropriate from .Assignment import Assignment passenger_trips.loc[:, 'board_time_str'] = passenger_trips[Assignment.SIM_COL_PAX_BOARD_TIME ].apply(Util.datetime64_formatter) passenger_trips.loc[:,'arrival_time_str'] = passenger_trips[Passenger.PF_COL_PAX_A_TIME].apply(Util.datetime64_formatter) passenger_trips.loc[:, 'alight_time_str'] = passenger_trips[Assignment.SIM_COL_PAX_ALIGHT_TIME].apply(Util.datetime64_formatter) # Aggregate (by joining) across each passenger + path ptrip_group = passenger_trips.groupby([Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]) # these are Series board_time_str = ptrip_group['board_time_str' ].apply(lambda x:','.join(x)) arrival_time_str = ptrip_group['arrival_time_str'].apply(lambda x:','.join(x)) alight_time_str = ptrip_group['alight_time_str' ].apply(lambda x:','.join(x)) # Aggregate other fields across each passenger + path pax_exp_df = passengers_df.groupby([Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]).agg( {# 'pathmode' :'first', # path mode 'A_id' :'first', # origin 'B_id' :'last', # destination Passenger.PF_COL_PAX_A_TIME :'first', # start time Passenger.PF_COL_PAX_B_TIME :'last', # end time # TODO: cost needs to be updated for updated dwell & travel time # 'cost' :'first', # total travel cost is calculated for the whole path }) # Put them together and return assert(len(pax_exp_df) == len(board_time_str)) pax_exp_df = pd.concat([pax_exp_df, board_time_str, arrival_time_str, alight_time_str], axis=1) # print pax_exp_df.to_string(formatters={'A_time':Assignment.datetime64_min_formatter, # 'B_time':Assignment.datetime64_min_formatter} # reset columns print_pax_exp_df = pax_exp_df.reset_index() print_pax_exp_df.sort_values(by=[Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID], inplace=True) print_pax_exp_df['A_time_str'] = print_pax_exp_df[Passenger.PF_COL_PAX_A_TIME].apply(Util.datetime64_formatter) print_pax_exp_df['B_time_str'] = print_pax_exp_df[Passenger.PF_COL_PAX_B_TIME].apply(Util.datetime64_formatter) # rename columns print_pax_exp_df.rename(columns= {#'pathmode' :'mode', 'A_id' :'originTaz', 'B_id' :'destinationTaz', 'A_time_str' :'startTime', 'B_time_str' :'endTime', 'arrival_time_str' :'arrivalTimes', 'board_time_str' :'boardingTimes', 'alight_time_str' :'alightingTimes', # TODO: cost needs to be updated for updated dwell & travel time # 'cost' :'travelCost', }, inplace=True) # reorder print_pax_exp_df = print_pax_exp_df[[ Passenger.TRIP_LIST_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, #'mode', 'originTaz', 'destinationTaz', 'startTime', 'endTime', 'arrivalTimes', 'boardingTimes', 'alightingTimes', # 'travelCost', ]] times_out = open(os.path.join(output_dir, PathSet.PATH_TIMES_OUTPUT_FILE), 'w') print_pax_exp_df.to_csv(times_out, sep="\t", float_format="%.2f", index=False) @staticmethod def split_transit_links(pathset_links_df, veh_trips_df, stops): """ Splits the transit links to their component links and returns. So if a transit trip goes from stop A to D but passes stop B and C in between, the row A->D will now be replaced by rows A->B, B->C, and C->D. Adds "split_first" bool - True on the first veh link only Note that this does *not* renumber the linknum field. """ from .Assignment import Assignment if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("split_transit_links: pathset_links_df (%d) trace\n%s" % (len(pathset_links_df), pathset_links_df.loc[pathset_links_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True].to_string())) FastTripsLogger.debug("split_transit_links: pathset_links_df columns\n%s" % str(pathset_links_df.dtypes)) veh_links_df = Trip.linkify_vehicle_trips(veh_trips_df, stops) veh_links_df["linkmode"] = "transit" FastTripsLogger.debug("split_transit_links: veh_links_df\n%s" % veh_links_df.head(20).to_string()) # join the pathset links with the vehicle links drop_cols = [] merge_cols = [Passenger.PF_COL_LINK_MODE, Route.ROUTES_COLUMN_MODE, Trip.TRIPS_COLUMN_ROUTE_ID, Trip.TRIPS_COLUMN_TRIP_ID] if Trip.TRIPS_COLUMN_TRIP_ID_NUM in pathset_links_df.columns.values: merge_cols.append(Trip.TRIPS_COLUMN_TRIP_ID_NUM) if Route.ROUTES_COLUMN_MODE_NUM in pathset_links_df.columns.values: merge_cols.append(Route.ROUTES_COLUMN_MODE_NUM) path2 = pd.merge(left =pathset_links_df, right =veh_links_df, on =merge_cols, how ="left", suffixes=["","_veh"]) path2["split_first"] = False # delete anything irrelevant -- so keep non-transit links, and transit links WITH valid sequences path2 = path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]!=Route.MODE_TYPE_TRANSIT) | ( (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT) & (path2["A_seq_veh"]>=path2["A_seq"]) & (path2["B_seq_veh"]<=path2["B_seq"]) ) ] # These are the new columns -- incorporate them path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT)&(path2["A_seq_veh"]==path2["A_seq"]), "split_first"] = True # A_arrival_time datetime64[ns] => A time for intermediate links path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT)&(path2["A_id"]!=path2["A_id_veh"]), Assignment.SIM_COL_PAX_A_TIME ] = path2["A_arrival_time"] # no waittime, boardtime, missed_xfer except on first link path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT)&(path2["A_id"]!=path2["A_id_veh"]), Assignment.SIM_COL_PAX_WAIT_TIME ] = None path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT)&(path2["A_id"]!=path2["A_id_veh"]), Assignment.SIM_COL_PAX_BOARD_TIME ] = None path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT)&(path2["A_id"]!=path2["A_id_veh"]), Assignment.SIM_COL_PAX_MISSED_XFER] = 0 # no alighttime except on last link path2.loc[ (path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT)&(path2["B_id"]!=path2["B_id_veh"]), Assignment.SIM_COL_PAX_ALIGHT_TIME] = None # route_id_num float64 => ignore # A_id_veh object => A_id path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "A_id" ] = path2["A_id_veh"] # A_id_num_veh float64 => A_id_num path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "A_id_num" ] = path2["A_id_num_veh"] # A_seq_veh float64 => A_seq path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "A_seq" ] = path2["A_seq_veh"] if "A_lat_veh" in path2.columns.values: # A_lat_veh float64 => A_lat path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "A_lat" ] = path2["A_lat_veh"] # A_lon_veh float64 => A_lon path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "A_lon" ] = path2["A_lon_veh"] # drop these later drop_cols.extend(["A_lat_veh","A_lon_veh"]) # B_id_veh object => B_id path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "B_id" ] = path2["B_id_veh"] # B_id_num_veh float64 => B_id_num path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "B_id_num" ] = path2["B_id_num_veh"] # B_seq_veh float64 => B_seq path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "B_seq" ] = path2["B_seq_veh"] # B_arrival_time datetime64[ns] => new_B_time path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "new_B_time" ] = path2["B_arrival_time"] # B_departure_time datetime64[ns] => ignore if "B_lat_veh" in path2.columns.values: # B_lat_veh float64 => B_lat path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "B_lat" ] = path2["B_lat_veh"] # B_lon_veh float64 => B_lon path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT, "B_lon" ] = path2["B_lon_veh"] # drop these later drop_cols.extend(["B_lat_veh","B_lon_veh"]) # update the link time path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT,Assignment.SIM_COL_PAX_LINK_TIME] = path2[Assignment.SIM_COL_PAX_B_TIME] - path2[Assignment.SIM_COL_PAX_A_TIME] # update transit distance Util.calculate_distance_miles(path2, "A_lat","A_lon","B_lat","B_lon", "transit_distance") path2.loc[path2[Passenger.PF_COL_LINK_MODE]==Route.MODE_TYPE_TRANSIT,Assignment.SIM_COL_PAX_DISTANCE ] = path2["transit_distance"] # revert these back to ints path2[["A_id_num","B_id_num","A_seq","B_seq"]] = path2[["A_id_num","B_id_num","A_seq","B_seq"]].astype(int) # we're done with the fields - drop them drop_cols.extend(["transit_distance", "route_id_num", "A_id_veh","A_id_num_veh","A_seq_veh","A_arrival_time","A_departure_time", "B_id_veh","B_id_num_veh","B_seq_veh","B_arrival_time","B_departure_time"]) path2.drop(drop_cols, axis=1, inplace=True) # renumber linknum? Let's not bother # trace if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("split_transit_links: path2 (%d) trace\n%s" % (len(path2), path2.loc[path2[Passenger.TRIP_LIST_COLUMN_TRACE]==True].to_string())) FastTripsLogger.debug("split_transit_links: path2 columns\n%s" % str(path2.dtypes)) return path2 @staticmethod def calculate_cost(STOCH_DISPERSION, pathset_paths_df, pathset_links_df, veh_trips_df, trip_list_df, routes, tazs, transfers, stops=None, reset_bump_iter=False, is_skimming=False): """ This is equivalent to the C++ Path::calculateCost() method. Would it be faster to do it in C++? It would require us to package up the networks and paths and send back and forth. :p I think if we can do it using vectorized pandas operations, it should be fast, but we can compare/test. It's also messier to have this in two places. Maybe we should delete it from the C++; the overlap calcs are only in here right now. Returns pathset_paths_df with additional columns, Assignment.SIM_COL_PAX_FARE, Assignment.SIM_COL_PAX_COST, Assignment.SIM_COL_PAX_PROBABILITY, Assignment.SIM_COL_PAX_LOGSUM And pathset_links_df with additional columns, Assignment.SIM_COL_PAX_FARE, Assignment.SIM_COL_PAX_FARE_PERIOD, Assignment.SIM_COL_PAX_COST and Assignment.SIM_COL_PAX_DISTANCE """ from .Assignment import Assignment # if these are here already, remove them since we'll recalculate them if Assignment.SIM_COL_PAX_COST in list(pathset_paths_df.columns.values): pathset_paths_df.drop([Assignment.SIM_COL_PAX_COST, Assignment.SIM_COL_PAX_LNPS, Assignment.SIM_COL_PAX_PROBABILITY, Assignment.SIM_COL_PAX_LOGSUM], axis=1, inplace=True) pathset_links_df.drop([Assignment.SIM_COL_PAX_COST, Assignment.SIM_COL_PAX_DISTANCE], axis=1, inplace=True) # leaving this in for writing to CSV for debugging but I could take it out pathset_paths_df.drop(["logsum_component"], axis=1, inplace=True) if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("calculate_cost: pathset_links_df trace\n%s" % str(pathset_links_df.loc[pathset_links_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True])) FastTripsLogger.debug("calculate_cost: trip_list_df trace\n%s" % str(trip_list_df.loc[trip_list_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True])) # Add fares -- need stop zones first if they're not there. # We only need to do this once per pathset. # todo -- could remove non-transit links for this? FastTripsLogger.debug("calculate_cost columns:\n%s" % str(list(pathset_links_df.columns.values))) if "A_zone_id" not in list(pathset_links_df.columns.values): assert(stops is not None) pathset_links_df = stops.add_stop_zone_id(pathset_links_df, "A_id", "A_zone_id") pathset_links_df = stops.add_stop_zone_id(pathset_links_df, "B_id", "B_zone_id") # This needs to be done fresh each time since simulation might change the board times and therefore the fare periods pathset_links_df = routes.add_fares(pathset_links_df, is_skimming) # base this on pathfinding distance pathset_links_df[Assignment.SIM_COL_PAX_DISTANCE] = pathset_links_df[Passenger.PF_COL_LINK_DIST] pathset_links_to_use = pathset_links_df if PathSet.OVERLAP_SPLIT_TRANSIT: pathset_links_to_use = PathSet.split_transit_links(pathset_links_df, veh_trips_df, stops) else: pathset_links_to_use["split_first"] = True # all transit links are first # First, we need user class, purpose, demand modes, and value of time pathset_links_cost_df = pd.merge(left =pathset_links_to_use, right=trip_list_df[ #Passenger.TRIP_LIST_COLUMN_PERSON_ID, #Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, Passenger.get_id_columns(is_skimming) + [ Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, Passenger.TRIP_LIST_COLUMN_VOT, Passenger.TRIP_LIST_COLUMN_ACCESS_MODE, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE, ]], how ="left", on =Passenger.get_id_columns(is_skimming)) #[Passenger.PERSONS_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]) # linkmode = demand_mode_type. Set demand_mode for the links pathset_links_cost_df[PathSet.WEIGHTS_COLUMN_DEMAND_MODE] = None pathset_links_cost_df.loc[ pathset_links_cost_df[Passenger.PF_COL_LINK_MODE]== PathSet.STATE_MODE_ACCESS , PathSet.WEIGHTS_COLUMN_DEMAND_MODE] = pathset_links_cost_df[Passenger.TRIP_LIST_COLUMN_ACCESS_MODE ] pathset_links_cost_df.loc[ pathset_links_cost_df[Passenger.PF_COL_LINK_MODE]== PathSet.STATE_MODE_EGRESS , PathSet.WEIGHTS_COLUMN_DEMAND_MODE] = pathset_links_cost_df[Passenger.TRIP_LIST_COLUMN_EGRESS_MODE ] pathset_links_cost_df.loc[ pathset_links_cost_df[Passenger.PF_COL_LINK_MODE]== PathSet.STATE_MODE_TRIP , PathSet.WEIGHTS_COLUMN_DEMAND_MODE] = pathset_links_cost_df[Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE] pathset_links_cost_df.loc[ pathset_links_cost_df[Passenger.PF_COL_LINK_MODE]== PathSet.STATE_MODE_TRANSFER, PathSet.WEIGHTS_COLUMN_DEMAND_MODE] = "transfer" # Verify that it's set for every link missing_demand_mode = pd.isnull(pathset_links_cost_df[PathSet.WEIGHTS_COLUMN_DEMAND_MODE]).sum() assert(missing_demand_mode == 0) # drop the individual mode columns, we have what we need pathset_links_cost_df.drop([Passenger.TRIP_LIST_COLUMN_ACCESS_MODE, Passenger.TRIP_LIST_COLUMN_EGRESS_MODE, Passenger.TRIP_LIST_COLUMN_TRANSIT_MODE], axis=1, inplace=True) # if bump_iter doesn't exist or if it needs to be reset if reset_bump_iter or Assignment.SIM_COL_PAX_BUMP_ITER not in pathset_links_cost_df: pathset_links_cost_df[Assignment.SIM_COL_PAX_BUMP_ITER] = -1 if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("calculate_cost: pathset_links_cost_df trace\n%s" % str(pathset_links_cost_df.loc[pathset_links_cost_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True])) # Inner join with the weights - now each weight has a row cost_df = pd.merge(left =pathset_links_cost_df, right =PathSet.WEIGHTS_DF, left_on =[Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, Passenger.PF_COL_LINK_MODE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, Passenger.TRIP_LIST_COLUMN_MODE], right_on=[Passenger.TRIP_LIST_COLUMN_USER_CLASS, Passenger.TRIP_LIST_COLUMN_PURPOSE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE_TYPE, PathSet.WEIGHTS_COLUMN_DEMAND_MODE, PathSet.WEIGHTS_COLUMN_SUPPLY_MODE], how ="inner") # update the fare weight placeholder (ivt pathweight - utils per min)) based on value of time (currency per hour) # since generalized cost is in utils, (ivt utils/min)x(60 min/1 hour)x(hour/vot currency) is the weight (utils/currency) cost_df.loc[ cost_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME]==Assignment.SIM_COL_PAX_FARE, "weight_value" ] *= (60.0/cost_df[Passenger.TRIP_LIST_COLUMN_VOT]) if (len(Assignment.TRACE_IDS) > 0) and not is_skimming: FastTripsLogger.debug("calculate_cost: cost_df\n%s" % str(cost_df.loc[cost_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True].sort_values([ Passenger.TRIP_LIST_COLUMN_TRIP_LIST_ID_NUM, Passenger.PF_COL_PATH_NUM,Passenger.PF_COL_LINK_NUM]).head(20))) # NOW we split it into 3 lists -- access/egress, transit, and transfer # This is because they will each be joined to tables specific to those kinds of mode categories, and so we don't want all the transit nulls on the other tables, etc. cost_columns = list(cost_df.columns.values) cost_df["var_value"] = np.nan # This means unset cost_accegr_df = cost_df.loc[(cost_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_ACCESS )|(cost_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_EGRESS)] cost_trip_df = cost_df.loc[(cost_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_TRIP )] cost_transfer_df = cost_df.loc[(cost_df[Passenger.PF_COL_LINK_MODE]==PathSet.STATE_MODE_TRANSFER)] del cost_df ##################### First, handle Access/Egress link costs for accegr_type in ["walk","bike","drive"]: # make copies; we don't want to mess with originals if accegr_type == "walk": link_df = tazs.walk_df.copy() mode_list = TAZ.WALK_MODE_NUMS elif accegr_type == "bike": mode_list = TAZ.BIKE_MODE_NUMS # not supported yet continue else: link_df = tazs.drive_df.copy() mode_list = TAZ.DRIVE_MODE_NUMS FastTripsLogger.debug("Access/egress link_df %s\n%s" % (accegr_type, link_df.head().to_string())) if len(link_df) == 0: continue # format these with A & B instead of TAZ and Stop link_df.reset_index(inplace=True) link_df["A_id_num"] = -1 link_df["B_id_num"] = -1 link_df.loc[link_df[TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM].isin(TAZ.ACCESS_MODE_NUMS), "A_id_num"] = link_df[TAZ.WALK_ACCESS_COLUMN_TAZ_NUM ] link_df.loc[link_df[TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM].isin(TAZ.ACCESS_MODE_NUMS), "B_id_num"] = link_df[TAZ.WALK_ACCESS_COLUMN_STOP_NUM] link_df.loc[link_df[TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM].isin(TAZ.EGRESS_MODE_NUMS), "A_id_num"] = link_df[TAZ.WALK_ACCESS_COLUMN_STOP_NUM] link_df.loc[link_df[TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM].isin(TAZ.EGRESS_MODE_NUMS), "B_id_num"] = link_df[TAZ.WALK_ACCESS_COLUMN_TAZ_NUM ] link_df.drop([TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_STOP_NUM], axis=1, inplace=True) assert(len(link_df.loc[link_df["A_id_num"] < 0]) == 0) FastTripsLogger.debug("%s link_df =\n%s" % (accegr_type, link_df.head().to_string())) # Merge access/egress with walk|bike|drive access/egress information cost_accegr_df = pd.merge(left = cost_accegr_df, right = link_df, on = ["A_id_num", PathSet.WEIGHTS_COLUMN_SUPPLY_MODE_NUM, "B_id_num"], how = "left") # rename new columns so it's clear it's for walk|bike|drive for colname in list(link_df.select_dtypes(include=['float64','int64']).columns.values): # don't worry about join columns if colname in ["A_id_num", PathSet.WEIGHTS_COLUMN_SUPPLY_MODE_NUM, "B_id_num"]: continue # rename the rest new_colname = "%s %s" % (colname, accegr_type) cost_accegr_df.rename(columns={colname:new_colname}, inplace=True) # use it, if relevant cost_accegr_df.loc[ (cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == colname)& (cost_accegr_df[PathSet.WEIGHTS_COLUMN_SUPPLY_MODE_NUM].isin(mode_list)), "var_value"] = cost_accegr_df[new_colname] # Access/egress needs passenger trip departure, arrival and time_target cost_accegr_df = pd.merge(left =cost_accegr_df, right=trip_list_df[ #[Passenger.TRIP_LIST_COLUMN_PERSON_ID, #Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID, Passenger.get_id_columns(is_skimming) + [ Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME, Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME, Passenger.TRIP_LIST_COLUMN_TIME_TARGET, ]], how ="left", on =Passenger.get_id_columns(is_skimming)) #[Passenger.PERSONS_COLUMN_PERSON_ID, Passenger.TRIP_LIST_COLUMN_PERSON_TRIP_ID]) # drop links that are irrelevant based on departure time for access links, or arrival time for egress links cost_accegr_df["check_time"] = cost_accegr_df[Assignment.SIM_COL_PAX_A_TIME] # departure time for access cost_accegr_df.loc[ cost_accegr_df[TAZ.MODE_COLUMN_MODE_NUM].isin(TAZ.EGRESS_MODE_NUMS), "check_time" ] = cost_accegr_df[Assignment.SIM_COL_PAX_B_TIME] # arrival time for egress cost_accegr_df["check_time"] = (cost_accegr_df["check_time"] - Assignment.NETWORK_BUILD_DATE_START_TIME)/np.timedelta64(1,'m') # it's only drive links we need to check cost_accegr_df["to_drop"] = False if "%s %s" % (TAZ.DRIVE_ACCESS_COLUMN_START_TIME_MIN, "drive") in cost_accegr_df.columns.values: cost_accegr_df.loc[ cost_accegr_df[TAZ.MODE_COLUMN_MODE_NUM].isin(TAZ.DRIVE_MODE_NUMS)& ((cost_accegr_df["check_time"] < cost_accegr_df["%s %s" % (TAZ.DRIVE_ACCESS_COLUMN_START_TIME_MIN, "drive")])| (cost_accegr_df["check_time"] >= cost_accegr_df["%s %s" % (TAZ.DRIVE_ACCESS_COLUMN_END_TIME_MIN, "drive")])), "to_drop"] = True # if len(Assignment.TRACE_IDS) > 0: # FastTripsLogger.debug("cost_accegr_df=\n%s\ndtypes=\n%s" % (cost_accegr_df.loc[cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True]].to_string(), str(cost_accegr_df.dtypes))) FastTripsLogger.debug("Dropping %d rows from cost_accegr_df" % cost_accegr_df["to_drop"].sum()) cost_accegr_df = cost_accegr_df.loc[ cost_accegr_df["to_drop"]==False ] cost_accegr_df.drop(["check_time","to_drop"], axis=1, inplace=True) # penalty for arriving before preferred arrival time. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_EARLY_MIN )& (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_ACCESS), "var_value"] = 0.0 cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_EARLY_MIN) & (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_EGRESS) & (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == 'departure'), "var_value"] = 0.0 cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_EARLY_MIN )& \ (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_EGRESS)& \ (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == 'arrival'), "var_value"] = (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME] - cost_accegr_df[Passenger.PF_COL_PAX_B_TIME])/np.timedelta64(1,'m') # arrive early is not negative - that would be arriving late cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_EARLY_MIN)&(cost_accegr_df["var_value"] < 0), "var_value"] = 0.0 # penalty for departing after preferred departure time. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_LATE_MIN) & (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_EGRESS), "var_value"] = 0.0 cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_LATE_MIN )& (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_ACCESS)& (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == 'arrival'), "var_value"] = 0.0 cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_LATE_MIN) & (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_ACCESS) & (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == 'departure'), "var_value"] = (cost_accegr_df[Passenger.PF_COL_PAX_A_TIME] - cost_accegr_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME])/ np.timedelta64(1, 'm') # depart late is not negative - that would be departing early cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_LATE_MIN)&(cost_accegr_df["var_value"] < 0), "var_value"] = 0.0 # constant growth = exponential growth with 0 percent growth rate # depart before preferred or arrive after preferred means the passenger just missed something important # Arrive late only impacts the egress link, so set the var_value equal to zero for the access link cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_LATE_MIN ) & \ (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_ACCESS), "var_value"] = 0.0 # Arrive late only impacts those that have a preferred arrival time. If preferred departure time, # set arrive late equal to zero. --This could have been done with previous line, but it would # look ugly mixing and matching 'and' and 'or'. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_LATE_MIN) & \ (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == Passenger.TIME_TARGET_DEPARTURE), "var_value"] = 0.0 # Calculate how late the person arrives after preferred time. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_LATE_MIN )& \ (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_EGRESS)& \ (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == Passenger.TIME_TARGET_ARRIVAL), "var_value"] = \ (cost_accegr_df[Passenger.PF_COL_PAX_B_TIME] - cost_accegr_df[Passenger.TRIP_LIST_COLUMN_ARRIVAL_TIME])/np.timedelta64(1,'m') # If arrived before preferred time, set the arrive late field to zero. You don't get a # discount for arriving early. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_ARRIVE_LATE_MIN) & \ (cost_accegr_df['var_value'] < 0), "var_value"] = 0 # preferred delay_min - departure means want to depart after that time # Depart early only impacts the access link, so set the var_value equal to zero for the egress link cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_EARLY_MIN )& \ (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_EGRESS), "var_value"] = 0.0 # Depart early only impacts those that have a preferred departure time. If preferred arrive time, # set depart early equal to zero. --This could have been done with previous line, but it would # look ugly mixing and matching 'and' and 'or'. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_EARLY_MIN) & \ (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == Passenger.TIME_TARGET_ARRIVAL), "var_value"] = 0.0 # Calculate how early the person departs before the preferred time. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_EARLY_MIN) & \ (cost_accegr_df[Passenger.PF_COL_LINK_MODE] == PathSet.STATE_MODE_ACCESS) & \ (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TIME_TARGET] == Passenger.TIME_TARGET_DEPARTURE), "var_value"] = \ (cost_accegr_df[Passenger.TRIP_LIST_COLUMN_DEPARTURE_TIME] - cost_accegr_df[Passenger.PF_COL_PAX_A_TIME])/ np.timedelta64(1, 'm') # If departing after preferred time, set the depart early field to zero. You don't get a # discount for taking your time. cost_accegr_df.loc[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == PathSet.WEIGHT_NAME_DEPART_EARLY_MIN) & \ (cost_accegr_df['var_value'] < 0), "var_value"] = 0 assert 0 == cost_accegr_df[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME].isin([PathSet.WEIGHT_NAME_DEPART_EARLY_MIN, PathSet.WEIGHT_NAME_ARRIVE_LATE_MIN])) & \ (cost_accegr_df['var_value'].isnull())].shape[0] assert 0 == cost_accegr_df[(cost_accegr_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME].isin([PathSet.WEIGHT_NAME_DEPART_EARLY_MIN, PathSet.WEIGHT_NAME_ARRIVE_LATE_MIN])) & \ (cost_accegr_df['var_value']<0)].shape[0] if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("cost_accegr_df trace\n%s\ndtypes=\n%s" % (cost_accegr_df.loc[cost_accegr_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True].to_string(), str(cost_accegr_df.dtypes))) missing_accegr_costs = cost_accegr_df.loc[ pd.isnull(cost_accegr_df["var_value"]) ] error_accegr_msg = "Missing %d out of %d access/egress var_value values" % (len(missing_accegr_costs), len(cost_accegr_df)) FastTripsLogger.debug(error_accegr_msg) if len(missing_accegr_costs) > 0: error_accegr_msg += "\n%s" % missing_accegr_costs.head(10).to_string() FastTripsLogger.fatal(error_accegr_msg) ##################### Next, handle Transit Trip link costs # set the fare var_values for split_first only cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "fare")&(cost_trip_df["split_first"]==True), "var_value"] = cost_trip_df[Assignment.SIM_COL_PAX_FARE] cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "fare")&(cost_trip_df["split_first"]==False), "var_value"] = 0 if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("cost_trip_df trace\n%s\ndtypes=\n%s" % (cost_trip_df.loc[cost_trip_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True].to_string(), str(cost_trip_df.dtypes))) # if there's a board time, in_vehicle_time = new_B_time - board_time # otherwise, in_vehicle_time = B time - A time (for when we split) cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "in_vehicle_time_min")&pd.notnull(cost_trip_df[Assignment.SIM_COL_PAX_BOARD_TIME]), "var_value"] = \ (cost_trip_df[Assignment.SIM_COL_PAX_B_TIME] - cost_trip_df[Assignment.SIM_COL_PAX_BOARD_TIME])/np.timedelta64(1,'m') cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "in_vehicle_time_min")& pd.isnull(cost_trip_df[Assignment.SIM_COL_PAX_BOARD_TIME]), "var_value"] = \ (cost_trip_df[Assignment.SIM_COL_PAX_B_TIME] - cost_trip_df[Assignment.SIM_COL_PAX_A_TIME])/np.timedelta64(1,'m') # if in vehicle time is less than 0 then off by 1 day error cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "in_vehicle_time_min")&(cost_trip_df["var_value"]<0), "var_value"] = cost_trip_df["var_value"] + (24*60) # if there's a board time, wait time = board_time - A time # otherwise, wait time = 0 (for when we split transit links) cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "wait_time_min")&pd.notnull(cost_trip_df[Assignment.SIM_COL_PAX_BOARD_TIME]), "var_value"] = \ (cost_trip_df[Assignment.SIM_COL_PAX_BOARD_TIME] - cost_trip_df[Assignment.SIM_COL_PAX_A_TIME])/np.timedelta64(1,'m') cost_trip_df.loc[(cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "wait_time_min")& pd.isnull(cost_trip_df[Assignment.SIM_COL_PAX_BOARD_TIME]), "var_value"] = 0 # which overcap column to use? overcap_col = Trip.SIM_COL_VEH_OVERCAP if Assignment.MSA_RESULTS and Trip.SIM_COL_VEH_MSA_OVERCAP in list(cost_trip_df.columns.values): overcap_col = Trip.SIM_COL_VEH_MSA_OVERCAP # at cap is a binary, 1 if overcap >= 0 and they're not one of the lucky few that boarded cost_trip_df["at_capacity"] = 0.0 if Assignment.SIM_COL_PAX_BOARD_STATE in list(cost_trip_df.columns.values): cost_trip_df.loc[ (cost_trip_df[overcap_col] >= 0)& (cost_trip_df[Assignment.SIM_COL_PAX_BOARD_STATE] != "board_easy")& (cost_trip_df[Assignment.SIM_COL_PAX_BOARD_STATE] != "boarded"), "at_capacity" ] = 1.0 else: cost_trip_df.loc[ (cost_trip_df[overcap_col] >= 0) , "at_capacity" ] = 1.0 cost_trip_df.loc[cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "at_capacity" , "var_value"] = cost_trip_df["at_capacity"] cost_trip_df.loc[cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "overcap" , "var_value"] = cost_trip_df[overcap_col] # overcap shouldn't be negative cost_trip_df.loc[ (cost_trip_df[PathSet.WEIGHTS_COLUMN_WEIGHT_NAME] == "overcap")&(cost_trip_df["var_value"]<0), "var_value"] = 0.0 if len(Assignment.TRACE_IDS) > 0: FastTripsLogger.debug("cost_trip_df trace\n%s\ndtypes=\n%s" % (cost_trip_df.loc[cost_trip_df[Passenger.TRIP_LIST_COLUMN_TRACE]==True].to_string(), str(cost_trip_df.dtypes))) missing_trip_costs = cost_trip_df.loc[
pd.isnull(cost_trip_df["var_value"])
pandas.isnull
from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from tqdm import tqdm import time import pandas as pd import camping_server2.config as config import configparser class OgcampScraping: def __init__(self): self.driver = webdriver.Chrome() self.driver.set_window_size(1200, 1200) self.driver.get("https://www.5gcamp.com/./?mod=login&iframe=Y") def get_data(self): config = configparser.ConfigParser() config.read('../keys/data.ini') ogcamp = config['API_KEYS'] usr = ogcamp['OGCAMP_ID'] pwd = ogcamp['OGCAMP_PW'] id_input = self.driver.find_element_by_name('id') pw_input = self.driver.find_element_by_name('pw') submit = self.driver.find_element_by_css_selector('#btn_login') id_input.send_keys(usr) pw_input.send_keys(pwd) submit.click() time.sleep(2) def get_url(self): url_links = [] levels = [] for i in tqdm(range(1, 19)): self.driver.get(f"https://www.5gcamp.com/?c=5g&p={i}") items = self.driver.find_elements_by_xpath('//*[@id="camplist"]/div[2]/div[2]/div/div[2]/div') level = [item.find_element_by_css_selector('li.star > p').text.strip() for item in items] links = [item.find_element_by_css_selector('a').get_attribute('href') for item in items] url_links.extend(links) levels.extend(level) self.df2 = pd.DataFrame(levels) return url_links def get_details(self): links = self.get_url() datas = [] for link in tqdm(links): time.sleep(1) self.driver.get(link) title = self.driver.find_element_by_css_selector('#campcontents > div.viewheader > h3').text addr = self.driver.find_element_by_css_selector( '#vContent > h4.chead.address.first.fblack > a.clipboardCopy').text # 위도경도 값 예외처리 try: lats = self.driver.find_element_by_css_selector('#vContent > p > em').text lat = lats.split('경도')[0].strip() lon = '경도' + lats.split('경도')[1].strip() except NoSuchElementException: lats = "정보없음" lat = "정보없음" lon = "정보없음" envs = self.driver.find_elements_by_css_selector('#vContent > div.facilities > div > div') env = [env.find_element_by_css_selector("p.f_name").text for env in envs] en = ', '.join(env) try: desc = self.driver.find_element_by_class_name('short_cont').text except NoSuchElementException: desc = "정보없음" photoes = self.driver.find_elements_by_css_selector('#vContent > div.photos > div') photos = [photos.find_element_by_css_selector('img').get_attribute('src') for photos in photoes] photo = ', '.join(photos) # 리뷰 크롤링을 위해 스크롤 조정 후 예외처리 self.driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(1) try: self.driver.find_element_by_xpath('//*[@id="moreComment"]/a').click time.sleep(1) reviewes = self.driver.find_elements_by_class_name('commentbox') reviews = [reviews.find_element_by_class_name('cont').text for reviews in reviewes] review = [review.replace("\n", ' ') for review in reviews] review = ', '.join(review) except NoSuchElementException: reviewes = self.driver.find_elements_by_class_name('commentbox') reviews = [reviews.find_element_by_class_name('cont').text for reviews in reviewes] review = [review.replace("\n", ' ') for review in reviews] review = ', '.join(review) data = { "title": title, "addr": addr, "lat": lat, "lon": lon, "environment": en, "desc": desc, "photo": photo, "review": review, } datas.append(data) self.df3 =
pd.concat([self.df, self.df2], 1)
pandas.concat
from collections import defaultdict import pandas as pd import random from anytree import Node, NodeMixin, LevelOrderIter, RenderTree #This is the maximum size of the prefix, suffix and substring that will be counted MAX_STR_SIZE = 8 #Class to denote the node for a generic summary data structure. class SummaryDSNode(NodeMixin): def __init__(self, name, parent=None, children=None): super(SummaryDSNode, self).__init__() self.name = name self.frequency = 1 self.parent = parent self.char_to_children_dict = {} self.transition_probabilities = {} #Compute transition probabilities based on Eq 5 of the paper def update_transition_probabilities(self, root_node): k = len(self.children) total_frequency = sum([child.frequency for child in self.children]) numerator, denominator = k , k+1 if self.parent == root_node: numerator = k + 1 else: self.transition_probabilities[self.parent] = 1.0 / denominator fraction = (numerator / denominator ) for child in self.children: probability = 0.0 if total_frequency > 0: probability = (child.frequency / total_frequency) * fraction self.transition_probabilities[child] = probability #This class represents the entire generic summary data structure. #Using a common for ease of coding. #It can be replaced with more performant ones such as prefix trees, suffix trees etc. class SummaryDataStructure: #string_generator_fn is a function that takes a string as input #and outputs a list of "substrings" of interest. #for e.g. all prefixes, suffixes, #max_str_size: will be the largest prefix, substring, suffix string that will be created #split_words: whether to ignore spaces in a string. #if split_words is true, then "a b" will be inserted as two words a b .. else one word with space. def __init__(self, string_generator_fn, max_str_size=MAX_STR_SIZE, split_words=True): self.string_generator_fn = string_generator_fn self.max_str_size = max_str_size self.split_words = split_words self.root_node = SummaryDSNode('') def insert_string(self, string): substrings_of_interest = self.string_generator_fn(string) for substring in substrings_of_interest: cur_node = self.root_node for index, char in enumerate(substring): if char in cur_node.char_to_children_dict: cur_node = cur_node.char_to_children_dict[char] else: new_node = SummaryDSNode(substring[:index+1], parent=cur_node) cur_node.char_to_children_dict[char] = new_node cur_node = new_node #Increment the frequency of the last node cur_node.frequency = cur_node.frequency + 1 def update_summary_ds_from_file(self, input_file_name): with open(input_file_name) as f: for line in f: strings = [line.strip()] if self.split_words: strings = line.strip().split() for string in strings: self.insert_string(string) #returns a data frame with all the strings in the summary data structure and its frequencies def get_selectivities(self): string_frequency_dict = defaultdict(int) for node in LevelOrderIter(self.root_node): if node.is_root == False: string_frequency_dict[node.name] = max(1, node.frequency - 1) df = pd.DataFrame.from_dict(string_frequency_dict, orient='index') df.index.name = "string" df.columns = ["selectivity"] return df def update_transition_probabilities(self): for node in LevelOrderIter(self.root_node): if node.is_root == False: node.update_transition_probabilities(self.root_node) #For each node, # get the transition probabilities of going to other nodes # use it to get num_triplets_per_node positive random samples using weighted sampling # get num_triplets_per_node random strings as negative samples def get_triplets(self, random_seed=1234, num_triplets_per_node=4): random.seed(random_seed) self.update_transition_probabilities() #Get all the strings - it is needed to get dissimilar strings all_strings = [node.name for node in LevelOrderIter(self.root_node) if not node.is_root] total_nodes = len(all_strings) all_triplets = [] for node in LevelOrderIter(self.root_node): #The root node is ornamental! if node.is_root: continue candidate_nodes = [] candidate_probabilities = [] #get all the neighbors of this node for other_node in node.transition_probabilities.keys(): candidate_nodes.append(other_node.name) probability = node.transition_probabilities[other_node] candidate_probabilities.append(probability) for other_node in node.transition_probabilities.keys(): for other_other_node in other_node.transition_probabilities.keys(): candidate_nodes.append(other_other_node.name) #probability of reaching other_other_node from node new_probability = probability * other_node.transition_probabilities[other_other_node] candidate_probabilities.append(new_probability) if len(candidate_nodes) == 0: negatives = random.choices(population=all_strings, k=num_triplets_per_node) anchor = node.name for index in range(num_triplets_per_node): all_triplets.append( (anchor, anchor, negatives[index]) ) continue #normalize probabilities if needed candidate_probabilities_sum = sum(candidate_probabilities) candidate_probabilities = [elem/candidate_probabilities_sum for elem in candidate_probabilities] #Do a weighted random sampling of to get #num_triplets_per_node nodes # from candidates based num_triplets_per_node candidate_probabilities = list(candidate_probabilities) positives = random.choices(population=candidate_nodes, k=num_triplets_per_node, weights=candidate_probabilities) negatives = random.choices(population=all_strings, k=num_triplets_per_node) anchor = node.name for index in range(num_triplets_per_node): all_triplets.append( (anchor, positives[index], negatives[index]) ) df = pd.DataFrame(all_triplets, columns = ["Anchor", "Positive", "Negative"]) return df def print_tree(self): for pre, fill, node in RenderTree(self.root_node): print("%s%s:%d" % (pre, node.name, node.frequency)) def get_all_prefixes(string, max_size=MAX_STR_SIZE): return [string[:j] for j in range(1, min(max_size, len(string)) + 1)] def get_all_suffixes(string, max_size=MAX_STR_SIZE): return [string[-j:] for j in range(1, min(max_size, len(string)) + 1)] def get_all_substrings(string, max_size=MAX_STR_SIZE): arr = [] n = len(string) for i in range(0,n): for j in range(i,n): if (j+1 - i) <= max_size: arr.append(string[i:(j+1)]) return arr #Naive way to compute all strings of interest that avoids the use of summary data structures def aggregate_strings_of_interest(input_file_name, string_agg_fn, max_size=MAX_STR_SIZE, split_words=True, output_file_name=None): string_frequency_dict = defaultdict(int) with open(input_file_name) as f: for line in f: words = [line.strip()] if split_words: words = line.strip().split() for word in words: strings = string_agg_fn(word, max_size) for string in strings: string_frequency_dict[string] += 1 df =
pd.DataFrame.from_dict(string_frequency_dict, orient='index')
pandas.DataFrame.from_dict
import dash import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output import plotly.express as px import os import pandas as pd from datetime import timedelta app = dash.Dash( __name__, meta_tags=[{"name": "viewport", "content": "width=device-width"}] ) server = app.server # Clean the data and generate plots def main(confirmed, deaths, recovered, population): output = {} # Get population data pop = pd.read_csv(population, skiprows=2, header=1) pop = pop[['Country Name', '2019']] pop = pop.replace('United States', 'US') pop = pop.replace('Russian Federation', 'Russia') pop.columns = ['country', 'population'] # declare columns to retain after melting the data required_columns = ['Province/State', 'Country/Region', 'Lat', 'Long'] # Clean and save the files dfc = import_data(confirmed, "confirmed", required_columns) dfd = import_data(deaths, "deaths", required_columns) dfr = import_data(recovered, "recovered", required_columns) # Change to datetime dfc["date"] = pd.to_datetime(dfc["date"]) dfd["date"] = pd.to_datetime(dfd["date"]) dfr["date"] = pd.to_datetime(dfr["date"]) #Merge everything df = pd.merge(dfc, dfd, "left") df = pd.merge(df, dfr, "left") df = df.rename(columns={"confirmed" : "Confirmed", "deaths":"Deaths", "recovered":"Recovered", "Country/Region":"country"}) # Group by to country granularity df = df.groupby(['country', 'date']).sum().reset_index() # Join population data df = df.merge(pop, 'left', left_on='country', right_on='country') # Gete list of all countries list_of_countries = df['country'] output['list_of_countries'] = list_of_countries latest_date = df["date"].max() start_date = df["date"].min() dfl = df[df.date == latest_date] # Plot latest summary df_summary = dfl.sum() df_summary = pd.DataFrame(df_summary).T.drop(["country", "Lat", "Long", "population"], axis=1).T df_summary.columns = ["total"] df_summary["total"] = df_summary["total"].astype("int64") df_summary = df_summary.reset_index().sort_values(by="total", ascending=False) fig_summary = px.pie(df_summary, names='index', values='total', color_discrete_sequence=px.colors.qualitative.Dark2) # fig_summary.update_traces(texttemplate='%{text:.2s}', textposition='outside', # marker=dict(color='#ff7f0e')) fig_summary.update_traces(textposition='inside', textinfo='label+value') fig_summary.update_layout(xaxis_showgrid=False, yaxis_showgrid=False, xaxis_visible=True, yaxis_visible=False, xaxis_title_text="", bargroupgap=0, bargap=0.1, plot_bgcolor="#1E1E1E", paper_bgcolor="#1E1E1E", font=dict(color="white"), margin= {'t': 0, 'b': 10, 'l': 10, 'r': 0}, showlegend=False, width=200, height=200) # Get last 24 hours cases reported yesterday_date = df["date"].max() - pd.DateOffset(1) dfy = df[df.date == yesterday_date] dfl_change = pd.merge(dfl, dfy, "left", on=["country", "Lat", "Long"], suffixes=('_today', '_yesterday')) dfl_change["Change in 24 hours, Confirmed"] = dfl_change["Confirmed_today"] - dfl_change["Confirmed_yesterday"] dfl_change["Change in 24 hours, Deaths"] = dfl_change["Deaths_today"] - dfl_change["Deaths_yesterday"] dfl_change["Change in 24 hours, Recovered"] = dfl_change["Recovered_today"] - dfl_change["Recovered_yesterday"] dfl_change_summary = dfl_change.groupby(["country"]).sum()[["Confirmed_today", "Confirmed_yesterday", "Deaths_today","Recovered_today", "Change in 24 hours, Confirmed", "Change in 24 hours, Deaths", "Change in 24 hours, Recovered"]] # Save results to output dictionary output['df'] = df output['dfl'] = dfl output['dfl_change_summary'] = dfl_change_summary output['fig_summary'] = fig_summary output['latest_date'] = latest_date.date() output['start_date'] = start_date.date() return output def import_data(data, val_name, required_columns): df = pd.read_csv(data) melt_columns = [col for col in df.columns if col not in required_columns] df_melted =
pd.melt(df, id_vars=required_columns, var_name="date", value_vars = melt_columns, value_name=val_name)
pandas.melt
# module model import pandas as pd from fbprophet import Prophet import matplotlib.pyplot as plt from sklearn import metrics, ensemble, model_selection from sklearn.preprocessing import MinMaxScaler from math import sqrt import numpy as np import datetime from dateutil import relativedelta import os import io import json import base64 from xgboost import XGBRegressor import tensorflow as tf from tensorflow import keras from statsmodels.tsa.ar_model import AutoReg np.random.seed(42) tf.random.set_seed(42) def buildProphet(train_data_path, test_data_path): print("\nBuilding Prophet model ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) y = df['RENEWABLES_PCT'] daily = y.resample('24H').mean() dd = pd.DataFrame(daily) dd.reset_index(inplace=True) dd.columns = ['ds','y'] mR = Prophet(daily_seasonality=False) mR.fit(dd) futureR=mR.make_future_dataframe(periods=365*5) forecastR=mR.predict(futureR) rmse = -1.0 if len(test_data_path) > 0: dft = pd.read_csv(test_data_path) dft['TIMESTAMP'] = dft['TIMESTAMP'].astype('datetime64') dft.set_index('TIMESTAMP',inplace=True) dft_start_datetime = min(dft.index) dft_end_datetime = max(dft.index) actual_mean = dft['RENEWABLES_PCT'].resample('24H').mean() predicted_mean = forecastR.loc[(forecastR['ds'] >= dft_start_datetime) & (forecastR['ds'] <= dft_end_datetime)] predicted_mean.set_index('ds', inplace=True) actual_mean = actual_mean[min(predicted_mean.index):] mse = metrics.mean_squared_error(actual_mean, predicted_mean.yhat) rmse = sqrt(mse) print(str.format("Prophet RMSE: {:.2f}", rmse)) return rmse def predictProphet(data_path,periods): print("\nTraining prophet model with full dataset ...") df = pd.read_csv(data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) y = df['RENEWABLES_PCT'] daily = y.resample('24H').mean() dd = pd.DataFrame(daily) dd.reset_index(inplace=True) dd.columns = ['ds','y'] m = Prophet(daily_seasonality=False) m.fit(dd) future=m.make_future_dataframe(periods=periods) print(str.format("\nPredicting with prophet model for {0} days ({1} years) ...",periods, int(periods/365))) plt.subplot(1,1,1) forecast=m.predict(future) fig = m.plot(forecast,ylabel='Renewable Power Production %', xlabel='Date') plt.suptitle('\nCA Predicted Renewable Power Production %') #plt.title('\nCA Predicted Renewable Power Production %') axes = plt.gca() wd = os.path.dirname(data_path) + '/../images' os.makedirs(wd, exist_ok=True) fig.savefig(wd + '/prediction-prophet.png') forecast.rename(columns={'ds':'TIMESTAMP'}, inplace=True) forecast.set_index('TIMESTAMP',inplace=True) prediction = pd.DataFrame({'RENEWABLES_PCT_MEAN':forecast['yhat'].resample('1Y').mean(),'RENEWABLES_PCT_LOWER':forecast['yhat_lower'].resample('1Y').mean(),'RENEWABLES_PCT_UPPER':forecast['yhat_upper'].resample('1Y').mean()}) return prediction def rmse_calc(actual,predict): predict = np.array(predict) actual = np.array(actual) distance = predict - actual square_distance = distance ** 2 mean_square_distance = square_distance.mean() score = np.sqrt(mean_square_distance) return score def transformDataset(df): # Add pct from one and two days ago as well as difference in yesterday-1 and yesterday-1 df['YESTERDAY'] = df['RENEWABLES_PCT'].shift() df['YESTERDAY_DIFF'] = df['YESTERDAY'].diff() df['YESTERDAY-1']=df['YESTERDAY'].shift() df['YESTERDAY-1_DIFF'] = df['YESTERDAY-1'].diff() df=df.dropna() x_train=pd.DataFrame({'YESTERDAY':df['YESTERDAY'],'YESTERDAY_DIFF':df['YESTERDAY_DIFF'],'YESTERDAY-1':df['YESTERDAY-1'],'YESTERDAY-1_DIFF':df['YESTERDAY-1_DIFF']}) y_train = df['RENEWABLES_PCT'] return x_train,y_train def buildRandomForestRegression(train_data_path,test_data_path): print("\nBuilding Random Forest Regression Model ...") print("Preparing training dataset ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) df = df.resample('1M').mean() x_train, y_train = transformDataset(df) print("Preparing testing dataset ...") dt = pd.read_csv(test_data_path) dt['TIMESTAMP'] = dt['TIMESTAMP'].astype('datetime64') dt.set_index('TIMESTAMP',inplace=True) x_test, y_test = transformDataset(dt) print("Searching for best regressor ...") model = ensemble.RandomForestRegressor() param_search = { 'n_estimators': [100], 'max_features': ['auto'], 'max_depth': [10] } tscv = model_selection.TimeSeriesSplit(n_splits=2) rmse_score = metrics.make_scorer(rmse_calc, greater_is_better = False) gsearch = model_selection.GridSearchCV(estimator=model, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch.fit(x_train, y_train) best_score = gsearch.best_score_ best_model = gsearch.best_estimator_ y_true = y_test.values print("Predicting with best regressor ...") y_pred = best_model.predict(x_test) mse = metrics.mean_squared_error(y_true, y_pred) rmse = sqrt(mse) print(str.format("Random Forest Regression RMSE: {:.2f}", rmse)) return rmse def predictRandomForestRegression(data_path,periods): print("\nTraining Random Forest Regression model with full dataset ...") df = pd.read_csv(data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) dfmean = df.resample('1M').mean() dfmin = df.resample('1M').min() dfmax = df.resample('1M').max() x_train,y_train = transformDataset(dfmean) xmin_train, ymin_train = transformDataset(dfmin) xmax_train, ymax_train = transformDataset(dfmax) model = ensemble.RandomForestRegressor() model_min = ensemble.RandomForestRegressor() model_max = ensemble.RandomForestRegressor() param_search = { 'n_estimators': [100], 'max_features': ['auto'], 'max_depth': [10] } tscv = model_selection.TimeSeriesSplit(n_splits=2) rmse_score = metrics.make_scorer(rmse_calc, greater_is_better = False) gsearch = model_selection.GridSearchCV(estimator=model, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch_min = model_selection.GridSearchCV(estimator=model_min, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch_max = model_selection.GridSearchCV(estimator=model_max, cv=tscv, param_grid=param_search, scoring=rmse_score) gsearch.fit(x_train, y_train) gsearch_min.fit(xmin_train, ymin_train) gsearch_max.fit(xmax_train, ymax_train) best_score = gsearch.best_score_ best_model = gsearch.best_estimator_ best_model_min = gsearch_min.best_estimator_ best_model_max = gsearch_max.best_estimator_ print("\nPredicting with Random Forest regressor ...") prediction = pd.DataFrame(columns=['TIMESTAMP','RENEWABLES_PCT']) l = len(x_train) x_pred = x_train.iloc[[l-1]] y_pred = best_model.predict(x_pred) xmin_pred = xmin_train.iloc[[l-1]] ymin_pred = best_model_min.predict(xmin_pred) xmax_pred = xmax_train.iloc[[l-1]] ymax_pred = best_model_max.predict(xmax_pred) prediction = prediction.append({'TIMESTAMP':x_pred.index[0],'RENEWABLES_PCT_MEAN':y_pred[0],'RENEWABLES_PCT_LOWER':ymin_pred[0],'RENEWABLES_PCT_UPPER':ymax_pred[0]}, ignore_index=True) for i in range(1,periods): ti = prediction.iloc[i-1]['TIMESTAMP'] + pd.offsets.DateOffset(months=1) xi_pred = pd.DataFrame({'YESTERDAY':y_pred,'YESTERDAY_DIFF':y_pred-x_pred['YESTERDAY'],'YESTERDAY-1':x_pred['YESTERDAY'],'YESTERDAY-1_DIFF':x_pred['YESTERDAY_DIFF']}) yi_pred = best_model.predict(xi_pred) xmini_pred = pd.DataFrame({'YESTERDAY':ymin_pred,'YESTERDAY_DIFF':ymin_pred-xmin_pred['YESTERDAY'],'YESTERDAY-1':xmin_pred['YESTERDAY'],'YESTERDAY-1_DIFF':xmin_pred['YESTERDAY_DIFF']}) ymini_pred = best_model.predict(xmini_pred) xmaxi_pred = pd.DataFrame({'YESTERDAY':ymax_pred,'YESTERDAY_DIFF':ymax_pred-xmax_pred['YESTERDAY'],'YESTERDAY-1':xmax_pred['YESTERDAY'],'YESTERDAY-1_DIFF':xmax_pred['YESTERDAY_DIFF']}) ymaxi_pred = best_model.predict(xmaxi_pred) prediction = prediction.append({'TIMESTAMP':ti,'RENEWABLES_PCT_MEAN':yi_pred[0],'RENEWABLES_PCT_LOWER':ymini_pred[0],'RENEWABLES_PCT_UPPER':ymaxi_pred[0]}, ignore_index=True) x_pred = xi_pred y_pred = yi_pred xmin_pred = xmini_pred ymin_pred = ymini_pred xmax_pred = xmaxi_pred ymax_pred = ymaxi_pred prediction.set_index('TIMESTAMP',inplace=True) prediction = prediction.resample('1Y').mean() p = prediction.plot() p.set_title('CA Predicted Renewables % by Random Forest Regression') p.set_ylabel('Renewables %') wd = os.path.dirname(data_path) + '/../images' os.makedirs(wd, exist_ok=True) plt.savefig(wd + '/prediction-randomforest.png') return prediction # transform a time series dataset into a supervised learning dataset def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols = list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) # put it all together agg = pd.concat(cols, axis=1) # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg.values # walk-forward validation for univariate data def walk_forward_validation(data, n_test): predictions = list() # split dataset train, test = train_test_split(data, n_test) # seed history with training dataset history = [x for x in train] # step over each time-step in the test set for i in range(len(test)): # split test row into input and output columns testX, testy = test[i, :-1], test[i, -1] # fit model on history and make a prediction yhat = xgboost_forecast(history, testX) # store forecast in list of predictions predictions.append(yhat) # add actual observation to history for the next loop history.append(test[i]) # summarize progress print('>expected=%.1f, predicted=%.1f' % (testy, yhat)) # estimate prediction error error = model_selection.mean_absolute_error(test[:, -1], predictions) return error, test[:, 1], predictions # split a univariate dataset into train/test sets def train_test_split(data, n_test): return data[:-n_test, :], data[-n_test:, :] # fit an xgboost model and make a one step prediction def xgboost_forecast(train, testX): # transform list into array train = np.asarray(train) # split into input and output columns trainX, trainy = train[:, :-1], train[:, -1] # fit model model = XGBRegressor(objective='reg:squarederror', n_estimators=1000) model.fit(trainX, trainy) # make a one-step prediction yhat = model.predict(np.asarray([testX])) return yhat[0] # walk-forward validation for univariate data def walk_forward_validation(data, n_test): predictions = list() # split dataset train, test = train_test_split(data, n_test) # seed history with training dataset history = [x for x in train] # step over each time-step in the test set for i in range(len(test)): # split test row into input and output columns testX, testy = test[i, :-1], test[i, -1] # fit model on history and make a prediction yhat = xgboost_forecast(history, testX) # store forecast in list of predictions predictions.append(yhat) # add actual observation to history for the next loop history.append(test[i]) # summarize progress print('>expected=%.1f, predicted=%.1f' % (testy, yhat)) # estimate prediction error error = metrics.mean_squared_error(test[:, -1], predictions) return error, test[:, -1], predictions def buildXGBoostRegression(train_data_path,test_data_path): print("\nBuilding XGBoost Regression model ...") df = pd.read_csv(train_data_path) dt = pd.read_csv(test_data_path) df = df.append(dt) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) dfmean = df.resample('1Y').mean() dmean = series_to_supervised(dfmean[['RENEWABLES_PCT']], n_in=2, n_out=1, dropnan=True) # transform list into array mse, y, yhat = walk_forward_validation(dmean, 8) rmse = sqrt(mse) print(str.format("XGBoostRegression RMSE: {:.2f}", rmse)) return rmse def buildLSTM(train_data_path,test_data_path): print("\nBuilding LSTM Model ...") time_steps = 3 print("Preparing training dataset ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP',inplace=True) df = df[['RENEWABLES_PCT']] df = df.resample('1M').mean() scaler = MinMaxScaler() df = scaler.fit_transform(df) scaling_model = scaler.fit(df) df = scaling_model.transform(df) daily_train = pd.DataFrame(df, columns=['RENEWABLES_PCT']).reset_index() x_train, y_train = create_lstm_dataset(pd.DataFrame({'ROW':range(0,len(daily_train)),'RENEWABLES_PCT':daily_train['RENEWABLES_PCT']}), daily_train['RENEWABLES_PCT'], time_steps) print("Preparing testing dataset ...") dt = pd.read_csv(test_data_path) dt['TIMESTAMP'] = dt['TIMESTAMP'].astype('datetime64') dt.set_index('TIMESTAMP',inplace=True) dt = dt[['RENEWABLES_PCT']] daily_test = dt.resample('1M').mean() daily_test = scaling_model.transform(dt) daily_test = pd.DataFrame(daily_test, columns=['RENEWABLES_PCT']).reset_index() x_test, y_test = create_lstm_dataset(pd.DataFrame({'ROW':range(0,len(daily_test)),'RENEWABLES_PCT':daily_test['RENEWABLES_PCT']}), daily_test['RENEWABLES_PCT'], time_steps) model = keras.Sequential() model.add(keras.layers.LSTM(units=128,input_shape=(x_train.shape[1], x_train.shape[2]))) model.add(keras.layers.Dense(units=1)) model.compile(loss='mean_squared_error', optimizer=keras.optimizers.Adam(0.001)) history = model.fit(x_train, y_train, epochs=50, batch_size=12, validation_split=0.1, verbose=1, shuffle=False) y_pred = model.predict(x_test) y_pred = scaling_model.inverse_transform(y_pred) mse = metrics.mean_squared_error(y_test, y_pred) rmse = sqrt(mse) print(str.format("LSTM RMSE: {:.2f}", rmse)) return rmse def create_lstm_dataset(x, y, time_steps=1): xs, ys = [], [] for i in range(len(x) - time_steps): v = x.iloc[i:(i + time_steps)].values xs.append(v) ys.append(y.iloc[i + time_steps]) return np.array(xs), np.array(ys) def buildARModel(train_data_path, test_data_path): print("\nBuilding Auto-Regression Model ...") df = pd.read_csv(train_data_path) df['TIMESTAMP'] = df['TIMESTAMP'].astype('datetime64') df.set_index('TIMESTAMP', inplace=True) df = df.resample('1M').mean() train_series = df['RENEWABLES_PCT'] dt =
pd.read_csv(test_data_path)
pandas.read_csv
""" The io module provides support for reading and writing diffusion profile data and diffusion coefficients data to csv files. """ import numpy as np import pandas as pd from scipy.interpolate import splev from pydiffusion.core import DiffProfile, DiffSystem import matplotlib.pyplot as plt import threading # To solve the problem when matplotlib figure freezes when input used # https://stackoverflow.com/questions/34938593/matplotlib-freezes-when-input-used-in-spyder prompt = False promptText = "" done = False waiting = False response = "" regular_input = input def threadfunc(): global prompt global done global waiting global response while not done: if prompt: prompt = False response = regular_input(promptText) waiting = True def ask_input(text): global waiting global prompt global promptText promptText = text prompt = True while not waiting: plt.pause(1.0) waiting = False return response def ita_start(): global done done = False thread = threading.Thread(target=threadfunc) thread.start() def ita_finish(): global done done = True def save_csv(name=None, profile=None, diffsys=None): """ Save diffusion data as csv file. Parameters ---------- name : str csv file name, default name is the profile name of diffsys name. profile : DiffProfile DiffProfile to save. diffsys : DiffSystem DiffSystem to save. diffsys can be saved by itself or with profile. Examples -------- >>> save_csv('data.csv', profile, dsys) """ if profile is None and diffsys is None: raise ValueError('No data entered') if name is not None and not name.endswith('.csv'): name += str(name)+'.csv' elif profile is None: Xr, fD = diffsys.Xr, diffsys.Dfunc X, DC = np.array([]), np.array([]) for i in range(diffsys.Np): Xnew = np.linspace(Xr[i, 0], Xr[i, 1], 30) Dnew = np.exp(splev(Xnew, fD[i])) X = np.append(X, Xnew) DC = np.append(DC, Dnew) data =
pd.DataFrame({'X': X, 'DC': DC})
pandas.DataFrame
import torch import pandas as pd from typing import Tuple from sentence_transformers import SentenceTransformer, CrossEncoder from backend.recommenders.base_recommender import BaseRecommender class YouTubeRecommender(BaseRecommender): def __init__(self, corpus: pd.DataFrame, feature_to_column_mapping: dict = dict()): if not feature_to_column_mapping: feature_to_column_mapping = { "search": "block", "explore": ["video_title", "video_description"], } super(YouTubeRecommender, self).__init__( corpus=corpus, feature_to_column_mapping=feature_to_column_mapping ) def search( self, question: str, encoder: SentenceTransformer, cross_encoder: CrossEncoder, top_k: int, ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ semantic search """ column = self.feature_to_column_mapping["search"] assert ( column in self.corpus_embeddings_dict ), f"Embeddings for [{column}] not found, please fit [{column}] first using the .fit() call" question_embedding = self._encode(question, encoder) hits = self._semamtic_search(question_embedding, column, top_k) # score all retrieved passages with the cross_encoder cross_inp = [[question, self.corpus[column][hit["corpus_id"]]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp, activation_fct=torch.sigmoid) # sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]["cross-score"] = cross_scores[idx] hits[idx]["snippet"] = self.corpus[column][hits[idx]["corpus_id"]].replace( "\n", " " ) # return hits and recommendations hits = (
pd.DataFrame(hits)
pandas.DataFrame
from urllib.parse import urlparse import pytest import pandas as pd import numpy as np from visions.core.implementations.types import * from visions.application.summaries.summary import CompleteSummary @pytest.fixture(scope="class") def summary(): return CompleteSummary() def validate_summary_output(test_series, visions_type, correct_output, summary): trial_output = summary.summarize_series(test_series, visions_type) for metric, result in correct_output.items(): assert metric in trial_output, "Metric `{metric}` is missing".format( metric=metric ) assert ( trial_output[metric] == result ), "Expected value {result} for metric `{metric}`, got {output}".format( result=result, metric=metric, output=trial_output[metric] ) def test_integer_summary(summary, visions_type=visions_integer): test_series = pd.Series([0, 1, 2, 3, 4]) correct_output = { "n_unique": 5, "mean": 2, "median": 2, "std": pytest.approx(1.58113, 0.00001), "max": 4, "min": 0, "n_records": 5, "n_zeros": 1, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_integer_missing_summary(summary, visions_type=visions_integer): test_series = pd.Series([0, 1, 2, 3, 4]) correct_output = { "n_unique": 5, "mean": 2, "median": 2, "std": pytest.approx(1.58113, 0.00001), "max": 4, "min": 0, "n_records": 5, "n_zeros": 1, "na_count": 0, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_float_missing_summary(summary, visions_type=visions_float): test_series = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0, np.nan]) correct_output = { "n_unique": 5, "median": 2, "mean": 2, "std": pytest.approx(1.58113, 0.00001), "max": 4, "min": 0, "n_records": 6, "n_zeros": 1, "na_count": 1, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_bool_missing_summary(summary, visions_type=visions_bool): test_series = pd.Series([True, False, True, True, np.nan]) correct_output = {"n_records": 5, "na_count": 1} validate_summary_output(test_series, visions_type, correct_output, summary) def test_categorical_missing_summary(summary, visions_type=visions_categorical): test_series = pd.Series( pd.Categorical( [True, False, np.nan, "test"], categories=[True, False, "test", "missing"], ordered=True, ) ) correct_output = { "n_unique": 3, "n_records": 4, "na_count": 1, "category_size": 4, "missing_categorical_values": True, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_complex_missing_summary(summary, visions_type=visions_complex): test_series =
pd.Series([0 + 0j, 0 + 1j, 1 + 0j, 1 + 1j, np.nan])
pandas.Series
#!/usr/bin/env python # coding: utf-8 import math import glob import re import os.path import numpy as np import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt import matplotlib.colors as colors from pathlib import Path from io import StringIO from pyproj import Transformer from itertools import takewhile from scipy import stats import multiprocessing as mp from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from shapely.geometry import box, Point, LineString def standardise_source(df): # Dictionary containing method values to rename remap_dict = {'emery': 'emery/levelling', 'levelling': 'emery/levelling', 'dunefill': np.NaN, 'rtk gps': 'gps', 'photogrammetry': 'aerial photogrammetry', 'stereo photogrammtery': 'aerial photogrammetry', 'ads80': 'aerial photogrammetry', 'photos': 'aerial photogrammetry', 'total station': 'total station', 'total station\t': 'total station', 'laser scanning': 'terrestrial laser scanning', 'satellite': 'satellite', 'gps rtk gps': 'gps'} # Set all values to lower case for easier conversion df['source'] = df.source.str.lower() # Replace values df['source'] = df.source.replace(remap_dict) def to_vector(df, fname='test.shp', x='x', y='y', crs='EPSG:3577', output_crs='EPSG:3577'): # Convert datetimes to strings df = df.copy() is_datetime = df.dtypes == 'datetime64[ns]' df.loc[:, is_datetime] = df.loc[:, is_datetime].astype(str) # Export to file gdf = gpd.GeoDataFrame(data=df.loc[:, df.dtypes != 'datetime64[ns]'], geometry=gpd.points_from_xy(x=df[x], y=df[y]), crs=crs).to_crs(output_crs).to_file(fname) return gdf def export_eval(df, output_name, output_crs='EPSG:3577'): from shapely.geometry import box, Point, LineString # Extract geometries val_points = gpd.points_from_xy(x=df.val_x, y=df.val_y) deacl_points = gpd.points_from_xy(x=df.deacl_x, y=df.deacl_y) df_profiles = df.groupby('id').first() profile_lines = df_profiles.apply( lambda x: LineString([(x.start_x, x.start_y), (x.end_x, x.end_y)]), axis=1) # Export validation points val_gdf = gpd.GeoDataFrame(data=df, geometry=val_points, crs=output_crs).to_crs('EPSG:4326') val_gdf.to_file(f'figures/eval/{output_name}_val.geojson', driver='GeoJSON') # Export DEACL points deacl_gdf = gpd.GeoDataFrame(data=df, geometry=deacl_points, crs=output_crs).to_crs('EPSG:4326') deacl_gdf.to_file(f'figures/eval/{output_name}_deacl.geojson', driver='GeoJSON') # Export profiles profile_gdf = gpd.GeoDataFrame(data=df_profiles, geometry=profile_lines, crs=output_crs).to_crs('EPSG:4326') profile_gdf.to_file(f'figures/eval/{output_name}_profiles.geojson', driver='GeoJSON') def deacl_val_stats(val_dist, deacl_dist, n=None, remove_bias=False): np.seterr(all='ignore') # Compute difference and bias diff_dist = val_dist - deacl_dist bias = diff_dist.mean() if remove_bias: deacl_dist += bias diff_dist = val_dist - deacl_dist # Compute stats if n is None: n = len(val_dist) else: n = sum(n) mae = mean_absolute_error(val_dist, deacl_dist) rmse = mean_squared_error(val_dist, deacl_dist)**0.5 if n > 1: corr = np.corrcoef(x=val_dist, y=deacl_dist)[0][1] stdev = diff_dist.std() else: corr = np.nan stdev = np.nan return pd.Series({ 'n': n, 'mae': f'{mae:.2f}', 'rmse': f'{rmse:.2f}', 'stdev': f'{stdev:.2f}', 'corr': f'{corr:.3f}', 'bias': f'{bias:.2f}', }).astype(float) def rse_tableformat(not_bias_corrected, bias_corrected, groupby='source'): # Fix rounding and total observations not_bias_corrected['n'] = not_bias_corrected['n'].astype(int) not_bias_corrected[['bias', 'stdev', 'mae', 'rmse']] = not_bias_corrected[['bias', 'stdev', 'mae', 'rmse']].round(1) not_bias_corrected['n'] = not_bias_corrected.groupby(groupby)['n'].sum() # Move bias corrected values into brackets not_bias_corrected['MAE (m)'] = (not_bias_corrected.mae.astype('str') + ' (' + bias_corrected.mae.round(1).astype('str') + ')') not_bias_corrected['RMSE (m)'] = (not_bias_corrected.rmse.astype('str') + ' (' + bias_corrected.rmse.round(1).astype('str') + ')') # Sort by MAE, rename columns not_bias_corrected = (not_bias_corrected.sort_values('mae') .drop(['mae', 'rmse'], axis=1) .rename({'stdev': 'SD (m)', 'corr': 'Correlation', 'bias': 'Bias (m)'}, axis=1) [['n', 'Bias (m)', 'MAE (m)', 'RMSE (m)', 'SD (m)', 'Correlation']]) return not_bias_corrected def val_slope(profiles_df, intercept_df, datum=0, buffer=25, method='distance'): # Join datum dist to full profile dataframe profiles_datum_dist = (profiles_df.set_index( ['id', 'date'])[['distance', 'z']].join(intercept_df[f'{datum}_dist'])) if method == 'distance': # Filter to measurements within distance of datum distance beach_data = profiles_datum_dist[profiles_datum_dist.distance.between( profiles_datum_dist[f'{datum}_dist'] - buffer, profiles_datum_dist[f'{datum}_dist'] + buffer)] elif method == 'height': # Filter measurements within height of datum beach_data = profiles_datum_dist.loc[ profiles_datum_dist.z.between(-buffer, buffer)] # Calculate slope beach_slope = beach_data.groupby(['id', 'date']).apply( lambda x: stats.linregress(x=x.distance, y=x.z).slope) return beach_slope.round(3) def dms2dd(s): # example: s = "0°51'56.29" degrees, minutes, seconds = re.split('[°\'"]+', s) if float(degrees) > 0: dd = float(degrees) + float(minutes) / 60 + float(seconds) / (60 * 60) else: dd = float(degrees) - float(minutes) / 60 - float(seconds) / (60 * 60); return dd def dist_angle(lon, lat, dist, angle): lon_end = lon + dist * np.sin(angle * np.pi / 180) lat_end = lat + dist * np.cos(angle * np.pi / 180) return pd.Series({'end_y': lat_end, 'end_x': lon_end}) def interp_intercept(x, y1, y2, reverse=False): """ Find the intercept of two curves, given by the same x data References: ---------- Source: https://stackoverflow.com/a/43551544/2510900 """ def intercept(point1, point2, point3, point4): """find the intersection between two lines the first line is defined by the line between point1 and point2 the first line is defined by the line between point3 and point4 each point is an (x,y) tuple. So, for example, you can find the intersection between intercept((0,0), (1,1), (0,1), (1,0)) = (0.5, 0.5) Returns: the intercept, in (x,y) format """ def line(p1, p2): A = (p1[1] - p2[1]) B = (p2[0] - p1[0]) C = (p1[0] * p2[1] - p2[0] * p1[1]) return A, B, -C def intersection(L1, L2): D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] x = Dx / D y = Dy / D return x,y L1 = line([point1[0],point1[1]], [point2[0],point2[1]]) L2 = line([point3[0],point3[1]], [point4[0],point4[1]]) R = intersection(L1, L2) return R try: if isinstance(y2, (int, float)): y2 = np.array([y2] * len(x)) if reverse: x = x[::-1] y1 = y1[::-1] y2 = y2[::-1] idx = np.argwhere(np.diff(np.sign(y1 - y2)) != 0) xc, yc = intercept((x[idx], y1[idx]),((x[idx + 1], y1[idx + 1])), ((x[idx], y2[idx])), ((x[idx + 1], y2[idx + 1]))) return xc[0][0] except: return np.nan def dist_along_transect(dist, start_x, start_y, end_x, end_y): transect_line = LineString([(start_x, start_y), (end_x, end_y)]) distance_coords = transect_line.interpolate(dist).coords.xy return [coord[0] for coord in distance_coords] def waterline_intercept(x, dist_col='distance', x_col='x', y_col='y', z_col='z', z_val=0, debug=False): # Extract distance and coordinates of where the z_val first # intersects with the profile line dist_int = interp_intercept(x[dist_col].values, x[z_col].values, z_val) x_int = interp_intercept(x[x_col].values, x[z_col].values, z_val) y_int = interp_intercept(x[y_col].values, x[z_col].values, z_val) # Identify last distance where the z_value intersects the profile rev_int = interp_intercept(x[dist_col].values, x[z_col].values, z_val, reverse=True) # If first and last intersects are the identical, return data. # If not, the comparison is invalid (i.e. NaN) if dist_int == rev_int: if debug: print('Single intersection found') return pd.Series({f'{z_val}_dist': dist_int, f'{z_val}_x': x_int, f'{z_val}_y': y_int}) else: if debug: print('Multiple intersections returned') return pd.Series({f'{z_val}_dist': np.NaN, f'{z_val}_x': np.NaN, f'{z_val}_y': np.NaN}) def reproj_crs(in_data, in_crs, x='x', y='y', out_crs='EPSG:3577'): # Reset index to allow merging new data with original data in_data = in_data.reset_index(drop=True) # Reproject coords to Albers and create geodataframe trans = Transformer.from_crs(in_crs, out_crs, always_xy=True) coords = trans.transform(in_data[x].values, in_data[y].values) in_data[['x', 'y']] = pd.DataFrame(zip(*coords)) return in_data def profiles_from_dist(profiles_df, id_col='id', dist_col='distance', x_col='x', y_col='y'): # Compute origin points for each profile min_ids = profiles_df.groupby(id_col)[dist_col].idxmin() start_xy = profiles_df.loc[min_ids, [id_col, x_col, y_col]] start_xy = start_xy.rename({x_col: f'start_{x_col}', y_col: f'start_{y_col}'}, axis=1) # Compute end points for each profile max_ids = profiles_df.groupby(id_col)[dist_col].idxmax() end_xy = profiles_df.loc[max_ids, [x_col, y_col]] # Add end coords into same dataframe start_xy = start_xy.reset_index(drop=True) end_xy = end_xy.reset_index(drop=True) start_xy[[f'end_{x_col}', f'end_{y_col}']] = end_xy return start_xy def perpendicular_line(input_line, length): # Generate parallel lines either side of input line left = input_line.parallel_offset(length / 2.0, 'left') right = input_line.parallel_offset(length / 2.0, 'right') # Create new line between centroids of parallel line. # This should be perpendicular to the original line return LineString([left.centroid, right.centroid]) def generate_transects(line_geom, length=400, interval=200, buffer=20): # Create tangent line at equal intervals along line geom interval_dists = np.arange(buffer, line_geom.length, interval) tangent_geom = [LineString([line_geom.interpolate(dist - buffer), line_geom.interpolate(dist + buffer)]) for dist in interval_dists] # Convert to geoseries and remove erroneous lines by length tangent_gs = gpd.GeoSeries(tangent_geom) tangent_gs = tangent_gs.loc[tangent_gs.length.round(1) <= buffer * 2] # Compute perpendicular lines return tangent_gs.apply(perpendicular_line, length=length) def coastal_transects(bbox, name, interval=200, transect_length=400, simplify_length=200, transect_buffer=20, output_crs='EPSG:3577', coastline='../input_data/Smartline.gdb', land_poly='/g/data/r78/rt1527/shapefiles/australia/australia/cstauscd_r.shp'): # Load smartline coastline_gdf = gpd.read_file(coastline, bbox=bbox).to_crs(output_crs) coastline_geom = coastline_gdf.geometry.unary_union.simplify(simplify_length) # Load Australian land water polygon land_gdf = gpd.read_file(land_poly, bbox=bbox).to_crs(output_crs) land_gdf = land_gdf.loc[land_gdf.FEAT_CODE.isin(["mainland", "island"])] land_geom = gpd.overlay(df1=land_gdf, df2=bbox).unary_union # Extract transects along line geoms = generate_transects(coastline_geom, length=transect_length, interval=interval, buffer=transect_buffer) # Test if end points of transects fall in water or land p1 = gpd.GeoSeries([Point(i.coords[0]) for i in geoms]) p2 = gpd.GeoSeries([Point(i.coords[1]) for i in geoms]) p1_within_land = p1.within(land_geom) p2_within_land = p2.within(land_geom) # Create geodataframe, remove invalid land-land/water-water transects transect_gdf = gpd.GeoDataFrame(data={'p1': p1_within_land, 'p2': p2_within_land}, geometry=geoms.values, crs=output_crs) transect_gdf = transect_gdf[~(transect_gdf.p1 == transect_gdf.p2)] # Reverse transects so all point away from land transect_gdf['geometry'] = transect_gdf.apply( lambda i: LineString([i.geometry.coords[1], i.geometry.coords[0]]) if i.p1 < i.p2 else i.geometry, axis=1) # Export to file transect_gdf[['geometry']].to_file(f'input_data/coastal_transects_{name}.geojson', driver='GeoJSON') def coastal_transects_parallel( regions_gdf, interval=200, transect_length=400, simplify_length=200, transect_buffer=20, overwrite=False, output_path='input_data/combined_transects_wadot.geojson'): if not os.path.exists(output_path) or overwrite: if os.path.exists(output_path): print('Removing existing file') os.remove(output_path) # Generate transects for each region print('Generating transects') with mp.Pool(mp.cpu_count()) as pool: for i, _ in regions_gdf.iterrows(): name = str(i).replace(' ', '').replace('/', '').lower() pool.apply_async(coastal_transects, [ regions_gdf.loc[[i]], name, interval, transect_length, simplify_length, transect_buffer ]) pool.close() pool.join() # Load regional transects and combine into a single file print('Combining data') transect_list = glob.glob('input_data/coastal_transects_*.geojson') gdf = pd.concat( [gpd.read_file(shp, ignore_index=True) for shp in transect_list]) gdf = gdf.reset_index(drop=True) gdf['profile'] = gdf.index.astype(str) gdf.to_file(output_path, driver='GeoJSON') # Clean files [os.remove(f) for f in transect_list] def preprocess_wadot(compartment, overwrite=True, fname='input_data/wadot/Coastline_Movements_20190819.gdb'): beach = str(compartment.index.item()) fname_out = f'output_data/wadot_{beach}.csv' print(f'Processing {beach:<80}', end='\r') # Test if file exists if not os.path.exists(fname_out) or overwrite: # Read file and filter to AHD 0 shorelines val_gdf = gpd.read_file(fname, bbox=compartment).to_crs('EPSG:3577') val_gdf = gpd.clip(gdf=val_gdf, mask=compartment, keep_geom_type=True) val_gdf = val_gdf[(val_gdf.TYPE == 'AHD 0m') | (val_gdf.TYPE == 'AHD 0m ')] # Filter to post 1987 shorelines and set index to year val_gdf = val_gdf[val_gdf.PHOTO_YEAR > 1987] val_gdf = val_gdf.set_index('PHOTO_YEAR') # If no data is returned, skip this iteration if len(val_gdf.index) == 0: print(f'Failed: {beach:<80}', end='\r') return None ###################### # Generate transects # ###################### transect_gdf = gpd.read_file('input_data/combined_transects_wadot.geojson', bbox=compartment) transect_gdf = gpd.clip(gdf=transect_gdf, mask=compartment, keep_geom_type=True) ################################ # Identify 0 MSL intersections # ################################ output_list = [] # Select one year for year in val_gdf.index.unique().sort_values(): # Extract validation contour print(f'Processing {beach} {year:<80}', end='\r') val_contour = val_gdf.loc[[year]].geometry.unary_union # Copy transect data, and find intersects # between transects and contour intersect_gdf = transect_gdf.copy() intersect_gdf['val_point'] = transect_gdf.intersection(val_contour) to_keep = gpd.GeoSeries(intersect_gdf['val_point']).geom_type == 'Point' intersect_gdf = intersect_gdf.loc[to_keep] # If no data is returned, skip this iteration if len(intersect_gdf.index) == 0: print(f'Failed: {beach} {year:<80}', end='\r') continue # Add generic metadata intersect_gdf['date'] = pd.to_datetime(str(year)) intersect_gdf['beach'] = beach intersect_gdf['section'] = 'all' intersect_gdf['source'] = 'aerial photogrammetry' intersect_gdf['name'] = 'wadot' intersect_gdf['id'] = (intersect_gdf.beach + '_' + intersect_gdf.section + '_' + intersect_gdf.profile) # Add measurement metadata intersect_gdf[['start_x', 'start_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[0]), axis=1) intersect_gdf[['end_x', 'end_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[1]), axis=1) intersect_gdf['0_dist'] = intersect_gdf.apply( lambda x: Point(x.start_x, x.start_y).distance(x['val_point']), axis=1) intersect_gdf[['0_x', '0_y']] = intersect_gdf.apply( lambda x: pd.Series(x.val_point.coords[0]), axis=1) # Add empty slope var (not possible to compute without profile data) intersect_gdf['slope'] = np.nan # Keep required columns intersect_gdf = intersect_gdf[['id', 'date', 'beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', '0_dist', '0_x', '0_y']] # Append to file output_list.append(intersect_gdf) # Combine all year data and export to file if len(output_list) > 0: shoreline_df = pd.concat(output_list) shoreline_df.to_csv(fname_out, index=False) else: print(f'Skipping {beach:<80}', end='\r') def preprocess_dasilva2021(fname='input_data/dasilva2021/dasilva_etal_2021_shorelines.shp'): beach = 'dasilva2021' print(f'Processing {beach:<80}', end='\r') # Read file and filter to AHD 0 shorelines fname='input_data/dasilva2021/dasilva_etal_2021_shorelines.shp' val_gdf = gpd.read_file(fname).to_crs('EPSG:3577') val_gdf = val_gdf.loc[val_gdf.Year_ > 1987] val_gdf['Year_'] = val_gdf.Year_.astype(str) val_gdf = val_gdf.set_index('Year_') # If no data is returned, skip this iteration if len(val_gdf.index) == 0: print(f'Failed: {beach:<80}', end='\r') return None ###################### # Generate transects # ###################### transect_gdf = gpd.read_file('input_data/dasilva2021/dasilva_etal_2021_retransects.shp').to_crs('EPSG:3577')[['TransectID', 'Direction', 'order', 'geometry']] transect_gdf.columns = ['profile', 'section', 'order', 'geometry'] transect_gdf = transect_gdf.sort_values('order').set_index('order') transect_gdf['profile'] = transect_gdf.profile.astype(str) ################################ # Identify 0 MSL intersections # ################################ output_list = [] # Select one year for year in val_gdf.index.unique().sort_values(): # Extract validation contour print(f'Processing {beach} {year:<80}', end='\r') val_contour = val_gdf.loc[[year]].geometry.unary_union # Copy transect data, and find intersects # between transects and contour intersect_gdf = transect_gdf.copy() intersect_gdf['val_point'] = transect_gdf.intersection(val_contour) to_keep = gpd.GeoSeries(intersect_gdf['val_point']).geom_type == 'Point' intersect_gdf = intersect_gdf.loc[to_keep] # If no data is returned, skip this iteration if len(intersect_gdf.index) == 0: print(f'Failed: {beach} {year:<80}', end='\r') continue # Add generic metadata intersect_gdf['date'] = pd.to_datetime(str(year)) intersect_gdf['beach'] = beach intersect_gdf['source'] = 'satellite' intersect_gdf['name'] = 'dasilva2021' intersect_gdf['id'] = (intersect_gdf.beach + '_' + intersect_gdf.section + '_' + intersect_gdf.profile) # Add measurement metadata intersect_gdf[['start_x', 'start_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[0]), axis=1) intersect_gdf[['end_x', 'end_y']] = intersect_gdf.apply( lambda x: pd.Series(x.geometry.coords[1]), axis=1) intersect_gdf['0_dist'] = intersect_gdf.apply( lambda x: Point(x.start_x, x.start_y).distance(x['val_point']), axis=1) intersect_gdf[['0_x', '0_y']] = intersect_gdf.apply( lambda x: pd.Series(x.val_point.coords[0][0:2]), axis=1) # Add empty slope var (not possible to compute without profile data) intersect_gdf['slope'] = np.nan # Keep required columns intersect_gdf = intersect_gdf[['id', 'date', 'beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', '0_dist', '0_x', '0_y']] # Append to file output_list.append(intersect_gdf) # Combine all year data and export to file if len(output_list) > 0: shoreline_df = pd.concat(output_list) shoreline_df.to_csv(f'output_data/{beach}.csv', index=False) def preprocess_stirling(fname_out, datum=0): # List containing files to import and all params to extract data survey_xl = [ {'fname': 'input_data/stirling/2015 05 28 - From Stirling - Coastal Profiles 2014-2015 April-Feb with updated reef#2.xlsm', 'skiprows': 2, 'skipcols': 5, 'nrows': 100, 'meta_skiprows': 0, 'meta_nrows': 1, 'meta_usecols': [6, 7]}, {'fname': 'input_data/stirling/Coastal Profiles 2013-2014 JUL-MAY#2.xlsx', 'skiprows': 2, 'skipcols': 5, 'nrows': 100, 'meta_skiprows': 0, 'meta_nrows': 1, 'meta_usecols': [6, 7]}, {'fname': 'input_data/stirling/COASTAL PROFILES 2013 JAN - JUNE#2.xls', 'skiprows': 3, 'skipcols': 0, 'nrows': 40, 'meta_skiprows': 1, 'meta_nrows': 2, 'meta_usecols': [1, 2]}, {'fname': 'input_data/stirling/COASTAL PROFILES 2012 JUN - DEC#2.xls', 'skiprows': 3, 'skipcols': 0, 'nrows': 40, 'meta_skiprows': 1, 'meta_nrows': 2, 'meta_usecols': [1, 2]}, {'fname': 'input_data/stirling/COASTAL PROFILES 2011-2012 NOV - MAY#2.xls', 'skiprows': 3, 'skipcols': 0, 'nrows': 40, 'meta_skiprows': 1, 'meta_nrows': 2, 'meta_usecols': [1, 2]} ] # List to contain processed profile data output = [] # For each survey excel file in the list above: for survey in survey_xl: # Load profile start metadata all_meta = pd.read_excel(survey['fname'], sheet_name=None, nrows=survey['meta_nrows'], skiprows=survey['meta_skiprows'], usecols=survey['meta_usecols'], header=None, on_demand=True) # Load data all_sheets = pd.read_excel(survey['fname'], sheet_name=None, skiprows=survey['skiprows'], nrows=survey['nrows'], parse_dates=False, usecols=lambda x: 'Unnamed' not in str(x)) # Iterate through each profile in survey data for profile_id in np.arange(1, 20).astype('str'): # Extract profile start metadata and profile data start_x, start_y = all_meta[profile_id].values[0] sheet = all_sheets[profile_id].iloc[:,survey['skipcols']:] # First set all column names to lower case strings sheet.columns = (sheet.columns.astype(str) .str.slice(0, 10) .str.lower()) # Drop note columns and distance/angle offset sheet = sheet.loc[:,~sheet.columns.str.contains('note|notes')] sheet = sheet.drop(['dist', 'angle dd'], axis=1, errors='ignore') # Expand date column values into rows for each sampling event sheet.loc[:,sheet.columns[::4]] = sheet.columns[::4] # Number date columns incrementally to match other fields start_num = 1 if survey['skipcols'] > 0 else 0 rename_dict = {name: f'date.{i + start_num}' for i, name in enumerate(sheet.columns[::4])} sheet = sheet.rename(rename_dict, axis=1).reset_index() sheet = sheet.rename({'x': 'x.0', 'y': 'y.0', 'z': 'z.0'}, axis=1) # Reshape data into long format profile_df = pd.wide_to_long(sheet, stubnames=['date', 'x', 'y', 'z'], i='index', j='dropme', sep='.').reset_index(drop=True) # Set datetimes profile_df['date'] = pd.to_datetime(profile_df.date, errors='coerce', dayfirst=True) # Add profile metadata profile_df['beach'] = 'stirling' profile_df['section'] = 'all' profile_df['profile'] = profile_id profile_df['name'] = 'stirling' profile_df['source'] = 'gps' profile_df['start_x'] = start_x profile_df['start_y'] = start_y profile_df['id'] = (profile_df.beach + '_' + profile_df.section + '_' + profile_df.profile) # Add results to list output.append(profile_df.dropna()) # Combine all survey and profile data profiles_df = pd.concat(output) # Reproject Perth Coastal Grid coordinates into Australian Albers pcg_crs = '+proj=tmerc +lat_0=0 +lon_0=115.8166666666667 ' \ '+k=0.9999990600000001 +x_0=50000 +y_0=3800000 ' \ '+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs' trans = Transformer.from_crs(pcg_crs, 'EPSG:3577', always_xy=True) profiles_df['x'], profiles_df['y'] = trans.transform( profiles_df.y.values, profiles_df.x.values) profiles_df['start_x'], profiles_df['start_y'] = trans.transform( profiles_df.start_y.values, profiles_df.start_x.values) # Calculate per-point distance from start of profile profiles_df['distance'] = profiles_df.apply( lambda x: Point(x.start_x, x.start_y).distance(Point(x.x, x.y)), axis=1) # Identify end of profiles by max distance from start, and merge back max_dist = (profiles_df.sort_values('distance', ascending=False) .groupby('id')['x', 'y'] .first() .rename({'x': 'end_x', 'y': 'end_y'}, axis=1)) profiles_df = profiles_df.merge(max_dist, on='id') # Find location and distance to water for datum height (e.g. 0 m AHD) intercept_df = profiles_df.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # Join into dataframe shoreline_dist = intercept_df.join( profiles_df.groupby(['id', 'date']).first()) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Export to file shoreline_dist.to_csv(fname_out) def preprocess_vicdeakin(fname, datum=0): # Dictionary to map correct CRSs to locations crs_dict = {'apo': 'epsg:32754', 'cow': 'epsg:32755', 'inv': 'epsg:32755', 'leo': 'epsg:32755', 'mar': 'epsg:32754', 'pfa': 'epsg:32754', 'por': 'epsg:32755', 'prd': 'epsg:32755', 'sea': 'epsg:32755', 'wbl': 'epsg:32754'} # Read data profiles_df = pd.read_csv(fname, parse_dates=['survey_date']).dropna() # Restrict to pre-2019 profiles_df = profiles_df.loc[profiles_df.survey_date.dt.year < 2020] profiles_df = profiles_df.reset_index(drop=True) # Remove invalid profiles invalid = ((profiles_df.location == 'leo') & (profiles_df.tr_id == 94)) profiles_df = profiles_df.loc[~invalid].reset_index(drop=True) # Extract coordinates coords = profiles_df.coordinates.str.findall(r'\d+\.\d+') profiles_df[['x', 'y']] = pd.DataFrame(coords.values.tolist(), dtype=np.float32) # Add CRS and convert to Albers profiles_df['crs'] = profiles_df.location.apply(lambda x: crs_dict[x]) profiles_df = profiles_df.groupby('crs', as_index=False).apply( lambda x: reproj_crs(x, in_crs=x.crs.iloc[0])).drop('crs', axis=1) profiles_df = profiles_df.reset_index(drop=True) # Convert columns to strings and add unique ID column profiles_df = profiles_df.rename({'location': 'beach', 'tr_id': 'profile', 'survey_date': 'date', 'z': 'z_dirty', 'z_clean': 'z'}, axis=1) profiles_df['profile'] = profiles_df['profile'].astype(str) profiles_df['section'] = 'all' profiles_df['source'] = 'drone photogrammetry' profiles_df['name'] = 'vicdeakin' profiles_df['id'] = (profiles_df.beach + '_' + profiles_df.section + '_' + profiles_df.profile) # Reverse profile distances by subtracting max distance from each prof_max = profiles_df.groupby('id')['distance'].transform('max') profiles_df['distance'] = (profiles_df['distance'] - prof_max).abs() # Compute origin and end points for each profile and merge into data start_end_xy = profiles_from_dist(profiles_df) profiles_df = pd.merge(left=profiles_df, right=start_end_xy) # Export each beach for beach_name, beach in profiles_df.groupby('beach'): # Create output file name fname_out = f'output_data/vicdeakin_{beach_name}.csv' print(f'Processing {fname_out:<80}', end='\r') # Find location and distance to water for datum height (0 m AHD) intercept_df = beach.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # If the output contains data if len(intercept_df.index) > 0: # Join into dataframe shoreline_dist = intercept_df.join( beach.groupby(['id', 'date']).first()) # Compute validation slope and join into dataframe slope = val_slope(beach, intercept_df, datum=datum) shoreline_dist = shoreline_dist.join(slope.rename('slope')) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Export to file shoreline_dist.to_csv(fname_out) def preprocess_nswbpd(fname, datum=0, overwrite=False): # Get output filename name = Path(fname).stem.split('_')[-1].lower().replace(' ', '') fname_out = f'output_data/nswbpd_{name}.csv' # Test if file exists if not os.path.exists(fname_out) or overwrite: # Read in data print(f'Processing {fname_out:<80}', end='\r') profiles_df = pd.read_csv(fname, skiprows=5, dtype={'Block': str, 'Profile': str}) profiles_df['Year/Date'] = pd.to_datetime(profiles_df['Year/Date'], dayfirst=True, errors='coerce') # Convert columns to strings and add unique ID column profiles_df['Beach'] = profiles_df['Beach'].str.lower().str.replace(' ', '') profiles_df['Block'] = profiles_df['Block'].str.lower() profiles_df['Profile'] = profiles_df['Profile'].astype(str).str.lower() profiles_df['id'] = (profiles_df.Beach + '_' + profiles_df.Block + '_' + profiles_df.Profile) profiles_df['name'] = 'nswbpd' # Rename columns profiles_df.columns = ['beach', 'section', 'profile', 'date', 'distance', 'z', 'x', 'y', 'source', 'id', 'name'] # Reproject coords to Albers trans = Transformer.from_crs('EPSG:32756', 'EPSG:3577', always_xy=True) profiles_df['x'], profiles_df['y'] = trans.transform( profiles_df.x.values, profiles_df.y.values) # Restrict to post 1987 profiles_df = profiles_df[profiles_df['date'] > '1987'] # Compute origin and end points for each profile and merge into data start_end_xy = profiles_from_dist(profiles_df) profiles_df = pd.merge(left=profiles_df, right=start_end_xy) # Drop profiles that have been assigned incorrect profile IDs. # To do this, we use a correlation test to determine whether x # and y coordinates within each individual profiles fall along a # straight line. If a profile has a low correlation (e.g. less # than 99.9), it is likely that multiple profile lines have been # incorrectly labelled with a single profile ID. valid_profiles = lambda x: x[['x', 'y']].corr().abs().iloc[0, 1] > 0.99 drop = (~profiles_df.groupby('id').apply(valid_profiles)).sum() profiles_df = profiles_df.groupby('id').filter(valid_profiles) if drop.sum() > 0: print(f'\nDropping invalid profiles: {drop:<80}') # If profile data remains if len(profiles_df.index) > 0: # Restrict profiles to data that falls ocean-ward of the top of # the foredune (the highest point in the profile) to remove # spurious validation points, e.g. due to a non-shoreline lagoon # at the back of the profile foredune_dist = profiles_df.groupby(['id', 'date']).apply( lambda x: x.distance.loc[x.z.idxmax()]).reset_index(name='foredune_dist') profiles_df = pd.merge(left=profiles_df, right=foredune_dist) profiles_df = profiles_df.loc[(profiles_df.distance >= profiles_df.foredune_dist)] # Find location and distance to water for datum height (e.g. 0 m AHD) intercept_df = profiles_df.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # If any datum intercepts are found if len(intercept_df.index) > 0: # Join into dataframe shoreline_dist = intercept_df.join( profiles_df.groupby(['id', 'date']).agg( lambda x: pd.Series.mode(x).iloc[0])) # Compute validation slope and join into dataframe slope = val_slope(profiles_df, intercept_df, datum=datum) shoreline_dist = shoreline_dist.join(slope.rename('slope')) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'foredune_dist', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Standardise source column standardise_source(shoreline_dist) # Export to file shoreline_dist.to_csv(fname_out) else: print(f'Skipping {fname:<80}', end='\r') def preprocess_narrabeen(fname, fname_out='output_data/wrl_narrabeen.csv', datum=0, overwrite=False): # Test if file exists if not os.path.exists(fname_out) or overwrite: ################# # Location data # ################# # Import data and parse DMS to DD print(f'Processing {fname_out:<80}', end='\r') data = "PF1 -33°42'20.65 151°18'16.30 118.42\n" \ "PF2 -33°42'33.45 151°18'10.33 113.36\n" \ "PF4 -33°43'01.55 151°17'58.84 100.26\n" \ "PF6 -33°43'29.81 151°17'58.65 83.65\n" \ "PF8 -33°43'55.94 151°18'06.47 60.48" coords = pd.read_csv(StringIO(data), sep=' ', names=['profile', 'y', 'x', 'angle']) coords['x'] = [dms2dd(i) for i in coords.x] coords['y'] = [dms2dd(i) for i in coords.y] # Extend survey lines out from start coordinates using supplied angle coords_end = coords.apply( lambda x: dist_angle(x.x, x.y, 0.002, x.angle), axis=1) coords = pd.concat([coords, coords_end], axis=1).drop('angle', axis=1) # Rename initial x and y values to indicate profile starting coords coords = coords.rename({'y': 'start_y', 'x': 'start_x'}, axis=1) # Reproject coords to Albers and create geodataframe trans = Transformer.from_crs('EPSG:4326', 'EPSG:3577', always_xy=True) coords['start_x'], coords['start_y'] = trans.transform( coords.start_x.values, coords.start_y.values) coords['end_x'], coords['end_y'] = trans.transform( coords.end_x.values, coords.end_y.values) # Add ID column coords['profile'] = coords['profile'].astype(str).str.lower() coords['beach'] = 'narrabeen' coords['section'] = 'all' coords['name'] = 'wrl' coords['id'] = (coords.beach + '_' + coords.section + '_' + coords.profile) ############### # Survey data # ############### # Import data profiles_df = pd.read_csv( fname, usecols=[1, 2, 3, 4, 5], skiprows=1, parse_dates=['date'], names=['profile', 'date', 'distance', 'z', 'source']) # Restrict to post 1987 profiles_df = profiles_df[(profiles_df.date.dt.year > 1987)] # Merge profile coordinate data into transect data profiles_df['profile'] = profiles_df['profile'].astype(str).str.lower() profiles_df = profiles_df.merge(coords, on='profile') # Add coordinates at every supplied distance along transects profiles_df[['x', 'y']] = profiles_df.apply( lambda x: pd.Series(dist_along_transect(x.distance, x.start_x, x.start_y, x.end_x, x.end_y)), axis=1) # Find location and distance to water for datum height (e.g. 0 m AHD) intercept_df = profiles_df.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # If the output contains data if len(intercept_df.index) > 0: # Join into dataframe shoreline_dist = intercept_df.join( profiles_df.groupby(['id', 'date']).agg( lambda x: pd.Series.mode(x).iloc[0])) # Compute validation slope and join into dataframe slope = val_slope(profiles_df, intercept_df, datum=datum) shoreline_dist = shoreline_dist.join(slope.rename('slope')) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Standardise source column standardise_source(shoreline_dist) # Export to file shoreline_dist.to_csv(fname_out) else: print(f'Skipping {fname:<80}', end='\r') def preprocess_cgc(site, datum=0, overwrite=True): # Standardise beach name from site name beach = site.replace('NO*TH KIRRA', 'NORTH KIRRA').lower() beach = beach.replace(' ', '').lower() fname_out = f'output_data/cgc_{beach}.csv' print(f'Processing {fname_out:<80}', end='\r') # Test if file exists if not os.path.exists(fname_out) or overwrite: # List of profile datasets to iterate through profile_list = glob.glob(f'input_data/cityofgoldcoast/{site}*.txt') # Output list to hold data site_profiles = [] # For each profile, import and standardise data then add to list for profile_i in profile_list: # Identify unique field values from file string profile_string = os.path.basename(profile_i) date = profile_string.split(' - (')[1][-14:-4] section_profile = profile_string.split(' - (')[0].split(' - ')[1] section = section_profile.split(' ')[0] profile = ''.join(section_profile.split(' ')[1:]) # Fix missing section or profile info if section and not profile: section, profile = 'na', section elif not section and not profile: section, profile = 'na', 'na' # Set location metadata and ID profile_df = pd.read_csv(profile_i, usecols=[1, 2, 3], delim_whitespace=True, names=['x', 'y', 'z']) profile_df['date'] = pd.to_datetime(date) profile_df['source'] = 'hydrographic survey' profile_df['name'] = 'cgc' profile_df['profile'] = profile.lower() profile_df['section'] = section.lower() profile_df['beach'] = beach profile_df['id'] = (profile_df.beach + '_' + profile_df.section + '_' + profile_df.profile) # Filter to drop pre-1987 and deep water samples, add to # list if profile crosses 0 profile_df = profile_df[profile_df.date > '1987'] profile_df = profile_df[profile_df.z > -3.0] if (profile_df.z.min() < datum) & (profile_df.z.max() > datum): site_profiles.append(profile_df) # If list of profiles contain valid data if len(site_profiles) > 0: # Combine individual profiles into a single dataframe profiles_df = pd.concat(site_profiles) # Reproject coords to Albers trans = Transformer.from_crs('EPSG:32756', 'EPSG:3577', always_xy=True) profiles_df['x'], profiles_df['y'] = trans.transform( profiles_df.x.values, profiles_df.y.values) # Compute origin and end points for each profile start_xy = profiles_df.groupby(['id'], as_index=False).first()[['id', 'x', 'y']] end_xy = profiles_df.groupby(['id'], as_index=False).last()[['id', 'x', 'y']] start_xy = start_xy.rename({'x': 'start_x', 'y': 'start_y'}, axis=1) end_xy = end_xy.rename({'x': 'end_x', 'y': 'end_y'}, axis=1) # Join origin and end points into dataframe profiles_df = pd.merge(left=profiles_df, right=start_xy) profiles_df = pd.merge(left=profiles_df, right=end_xy) # Compute chainage profiles_df['distance'] = profiles_df.apply( lambda x: Point(x.start_x, x.start_y).distance(Point(x.x, x.y)), axis=1) # Drop profiles that have been assigned incorrect profile IDs. # To do this, we use a correlation test to determine whether x # and y coordinates within each individual profiles fall along a # straight line. If a profile has a low correlation (e.g. less # than 99.9), it is likely that multiple profile lines have been # incorrectly labelled with a single profile ID. valid_profiles = lambda x: x[['x', 'y']].corr().abs().iloc[0, 1] > 0.99 drop = (~profiles_df.groupby('id').apply(valid_profiles)).sum() profiles_df = profiles_df.groupby('id').filter(valid_profiles) if drop.sum() > 0: print(f'\nDropping invalid profiles: {drop:<80}') # Restrict profiles to data that falls ocean-ward of the top of # the foredune (the highest point in the profile) to remove # spurious validation points, e.g. due to a non-shoreline lagoon # at the back of the profile foredune_dist = profiles_df.groupby(['id', 'date']).apply( lambda x: x.distance.loc[x.z.idxmax()]).reset_index(name='foredune_dist') profiles_df = pd.merge(left=profiles_df, right=foredune_dist) profiles_df = profiles_df.loc[(profiles_df.distance >= profiles_df.foredune_dist)] # Find location and distance to water for datum height (e.g. 0 m AHD) intercept_df = profiles_df.groupby(['id', 'date']).apply( waterline_intercept, z_val=datum).dropna() # If the output contains data if len(intercept_df.index) > 0: # Join into dataframe shoreline_dist = intercept_df.join( profiles_df.groupby(['id', 'date']).first()) # Compute validation slope and join into dataframe slope = val_slope(profiles_df, intercept_df, datum=datum) shoreline_dist = shoreline_dist.join(slope.rename('slope')) # Keep required columns shoreline_dist = shoreline_dist[['beach', 'section', 'profile', 'name', 'source', 'foredune_dist', 'slope', 'start_x', 'start_y', 'end_x', 'end_y', f'{datum}_dist', f'{datum}_x', f'{datum}_y']] # Export to file shoreline_dist.to_csv(fname_out) else: print(f'Skipping {fname_out:<80}', end='\r') def preprocess_sadew(fname, datum=0, overwrite=False): # Get output filename name = Path(fname).stem.split('_')[-1].lower().replace(' ', '') fname_out = f'output_data/sadew_{name}.csv' print(f'Processing {fname_out:<80}', end='\r') # Test if file exists if not os.path.exists(fname_out) or overwrite: # Load data and set nodata values to NaN wide_df =
pd.read_csv(fname)
pandas.read_csv
# -*- coding: utf-8 -*- import numpy as np import pandas as pd __all__ = [ "from_3d_numpy_to_2d_array", "from_3d_numpy_to_nested", "from_nested_to_2d_array", "from_2d_array_to_nested", "from_nested_to_3d_numpy", "from_nested_to_long", "from_long_to_nested", "from_multi_index_to_3d_numpy", "from_3d_numpy_to_multi_index", "from_multi_index_to_nested", "from_nested_to_multi_index", "are_columns_nested", "is_nested_dataframe", "convert_from_dictionary", ] def _cell_is_series_or_array(cell): return isinstance(cell, (pd.Series, np.ndarray)) def _nested_cell_mask(X): return X.applymap(_cell_is_series_or_array) def are_columns_nested(X): """Checks whether any cells have nested structure in each DataFrame column. Parameters ---------- X : pd.DataFrame DataFrame to check for nested data structures. Returns ------- any_nested : bool If True, at least one column is nested. If False, no nested columns. """ any_nested = _nested_cell_mask(X).any().values return any_nested def _nested_cell_timepoints(cell): if _cell_is_series_or_array(cell): n_timepoints = cell.shape[0] else: n_timepoints = 0 return n_timepoints def _check_equal_index(X): """ Check if all time-series for a given column in a nested pandas DataFrame have the same index. Parameters ---------- X : nested pd.DataFrame Input dataframe with time-series in cells. Returns ------- indexes : list of indixes List of indixes with one index for each column """ # TODO handle 1d series, not only 2d dataframes # TODO assumes columns are typed (i.e. all rows for a given column have # the same type) # TODO only handles series columns, raises error for columns with # primitives indexes = [] # Check index for each column separately. for c, col in enumerate(X.columns): # Get index from first row, can be either pd.Series or np.array. first_index = ( X.iloc[0, c].index if hasattr(X.iloc[0, c], "index") else np.arange(X.iloc[c, 0].shape[0]) ) # Series must contain at least 2 observations, otherwise should be # primitive. if len(first_index) < 2: raise ValueError( f"Time series must contain at least 2 observations, " f"but found: " f"{len(first_index)} observations in column: {col}" ) # Check index for all rows. for i in range(1, X.shape[0]): index = ( X.iloc[i, c].index if hasattr(X.iloc[i, c], "index") else np.arange(X.iloc[c, 0].shape[0]) ) if not np.array_equal(first_index, index): raise ValueError( f"Found time series with unequal index in column {col}. " f"Input time-series must have the same index." ) indexes.append(first_index) return indexes def from_3d_numpy_to_2d_array(X): """Converts 3d NumPy array (n_instances, n_columns, n_timepoints) to a 2d NumPy array with shape (n_instances, n_columns*n_timepoints) Parameters ---------- X : np.ndarray The input 3d-NumPy array with shape (n_instances, n_columns, n_timepoints) Returns ------- array_2d : np.ndarray A 2d-NumPy array with shape (n_instances, n_columns*n_timepoints) """ array_2d = X.reshape(X.shape[0], -1) return array_2d def from_nested_to_2d_array(X, return_numpy=False): """Convert nested pandas DataFrame or Series with NumPy arrays or pandas Series in cells into tabular pandas DataFrame with primitives in cells, i.e. a data frame with the same number of rows as the input data and as many columns as there are observations in the nested series. Requires series to be have the same index. Parameters ---------- X : nested pd.DataFrame or nested pd.Series return_numpy : bool, default = False - If True, returns a NumPy array of the tabular data. - If False, returns a pandas DataFrame with row and column names. Returns ------- Xt : pandas DataFrame Transformed DataFrame in tabular format """ # TODO does not handle dataframes with nested series columns *and* # standard columns containing only primitives # convert nested data into tabular data if isinstance(X, pd.Series): Xt = np.array(X.tolist()) elif isinstance(X, pd.DataFrame): try: Xt = np.hstack([X.iloc[:, i].tolist() for i in range(X.shape[1])]) # except strange key error for specific case except KeyError: if (X.shape == (1, 1)) and (X.iloc[0, 0].shape == (1,)): # in fact only breaks when an additional condition is met, # namely that the index of the time series of a single value # does not start with 0, e.g. pd.RangeIndex(9, 10) as is the # case in forecasting Xt = X.iloc[0, 0].values else: raise if Xt.ndim != 2: raise ValueError( "Tabularization failed, it's possible that not " "all series were of equal length" ) else: raise ValueError( f"Expected input is pandas Series or pandas DataFrame, " f"but found: {type(X)}" ) if return_numpy: return Xt Xt = pd.DataFrame(Xt) # create column names from time index if X.ndim == 1: time_index = ( X.iloc[0].index if hasattr(X.iloc[0], "index") else np.arange(X.iloc[0].shape[0]) ) columns = [f"{X.name}__{i}" for i in time_index] else: columns = [] for colname, col in X.items(): time_index = ( col.iloc[0].index if hasattr(col.iloc[0], "index") else np.arange(col.iloc[0].shape[0]) ) columns.extend([f"{colname}__{i}" for i in time_index]) Xt.index = X.index Xt.columns = columns return Xt def from_2d_array_to_nested( X, index=None, columns=None, time_index=None, cells_as_numpy=False ): """Convert tabular pandas DataFrame with only primitives in cells into nested pandas DataFrame with a single column. Parameters ---------- X : pd.DataFrame cells_as_numpy : bool, default = False If True, then nested cells contain NumPy array If False, then nested cells contain pandas Series index : array-like, shape=[n_samples], optional (default = None) Sample (row) index of transformed DataFrame time_index : array-like, shape=[n_obs], optional (default = None) Time series index of transformed DataFrame Returns ------- Xt : pd.DataFrame Transformed DataFrame in nested format """ if (time_index is not None) and cells_as_numpy: raise ValueError( "`Time_index` cannot be specified when `return_arrays` is True, " "time index can only be set to " "pandas Series" ) if isinstance(X, pd.DataFrame): X = X.to_numpy() container = np.array if cells_as_numpy else pd.Series # for 2d numpy array, rows represent instances, columns represent time points n_instances, n_timepoints = X.shape if time_index is None: time_index = np.arange(n_timepoints) kwargs = {"index": time_index} Xt = pd.DataFrame( pd.Series([container(X[i, :], **kwargs) for i in range(n_instances)]) ) if index is not None: Xt.index = index if columns is not None: Xt.columns = columns return Xt def convert_from_dictionary(ts_dict): """ Simple conversion from a dictionary of each series, e.g. univariate x = { "Series1": [1.0,2.0,3.0,1.0,2.0], "Series2": [3.0,2.0,1.0,3.0,2.0], } or multivariate, e.g. to sktime panda format TODO: Adapt for multivariate """ panda = pd.DataFrame(ts_dict) panda = panda.transpose() return from_2d_array_to_nested(panda) def _concat_nested_arrays(arrs, cells_as_numpy=False): """ Helper function to nest tabular arrays from nested list of arrays. Parameters ---------- arrs : list of numpy arrays Arrays must have the same number of rows, but can have varying number of columns. cells_as_numpy : bool, default = False If True, then nested cells contain NumPy array If False, then nested cells contain pandas Series Returns ------- Xt : pandas DataFrame Transformed dataframe with nested column for each input array. """ if cells_as_numpy: Xt = pd.DataFrame( np.column_stack( [pd.Series([np.array(vals) for vals in interval]) for interval in arrs] ) ) else: Xt = pd.DataFrame( np.column_stack( [pd.Series([
pd.Series(vals)
pandas.Series
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # all NaT result = Index([pd.NaT, pd.NaT], name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # all NaT with tz result = Index([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([pd.NaT, pd.NaT], tz='Asia/Tokyo', name='idx')
tm.assert_index_equal(result, exp, exact=True)
pandas.util.testing.assert_index_equal
from revoscalepy import RxSqlServerData, rx_import, rx_data_step, RxOdbcData, rx_write_object, rx_read_object, rx_get_var_names import glob, shutil import os, random, collections import operator import numpy as np, scipy.spatial.distance from pandas import DataFrame, concat from sklearn.utils import shuffle random.seed(0) def get_directories_in_directory(directory): return [s for s in os.listdir(directory) if os.path.isdir(directory + "/" + s)] def get_files_in_directory(directory, postfix = ""): if not os.path.exists(directory): return [] fileNames = [s for s in os.listdir(directory) if not os.path.isdir(directory + "/" + s)] if not postfix or postfix == "": return fileNames else: return [s for s in fileNames if s.lower().endswith(postfix)] def get_random_number(low, high): randomNumber = random.randint(low, high) return randomNumber def get_random_list_element(listND, containsHeader = False): if containsHeader: index = get_random_number(1, len(listND) - 1) else: index = get_random_number(0, len(listND) - 1) return listND[index] def compute_vector_distance(vec1, vec2, method): assert (len(vec1) == len(vec2)) # Distance computation vecDiff = vec1 - vec2 method = method.lower() if method == 'l2': dist = np.linalg.norm(vecDiff, 2) elif method == "cosine": dist = scipy.spatial.distance.cosine(vec1, vec2) else: raise Exception("Distance method unknown: " + method) assert (not np.isnan(dist)) return dist def map_images_to_predictedscores(classifierOutput): features = dict() for index, row in classifierOutput.iterrows(): key = row['image'] features[key] = row.drop(['image', 'Label', 'PredictedLabel']) return features def is_same_class(queryClass, targetClass): queryElements = queryClass.split("\\") query = queryElements[len(queryElements) - 2] targetElements = targetClass.split("\\") target = targetElements[len(targetElements) - 2] return query == target def prepare_evaluation_set(conn_str, feature_table, test_table, evaluation_table, maxQueryImgsPerCat, maxNegImgsPerQueryImg): evaluation_set = DataFrame() query = "SELECT image, Label FROM {} WHERE image IN (SELECT image FROM {})".format(feature_table, test_table) test_images = RxSqlServerData(sql_query=query, connection_string=conn_str) test_images_df = rx_import(test_images) classes = test_images_df.Label.unique() for queryCat in classes: query_images = shuffle(test_images_df.loc[test_images_df["Label"] == queryCat, "image"]) selectQueryImages = query_images.sample(n=maxQueryImgsPerCat, random_state=0, replace=True) for index, queryImage in selectQueryImages.iteritems(): refImage = get_random_list_element(list(set(query_images) - set([queryImage]))) firstitem = DataFrame({'queryCat': [queryCat], 'queryImage': [queryImage], 'refCat': [queryCat], 'refImage': [refImage]}) evaluation_set = concat([evaluation_set, firstitem]) for _ in range(maxNegImgsPerQueryImg): refCat = get_random_list_element(list(set(classes) - set([queryCat]))) refImages = test_images_df.loc[test_images_df["Label"] == refCat, "image"] refImage = shuffle(refImages).sample(n=1, random_state=0) refImage = refImage.iloc[0] secitem = DataFrame({'queryCat': [queryCat], 'queryImage': [queryImage], 'refCat': [refCat], 'refImage': [refImage]}) evaluation_set = concat([evaluation_set, secitem]) evaluation_images = RxSqlServerData(table=evaluation_table, connection_string=conn_str) rx_data_step(evaluation_set, evaluation_images, overwrite=True) def rank_candiate_images(conn_str, queryImageVector, candidateImageVector, top_k_candidates, results_table): ranking_results =
DataFrame()
pandas.DataFrame
# Torch imports import torch as torch from torch.utils import data import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # HexagDLy import import hexagdly as hg import copy import numpy as np import pandas as pd import math import pickle from matplotlib import pyplot as plt import matplotlib as mpl device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def get_log_bins(l1, nbins): bins = np.geomspace(min(l1), max(l1), nbins) return bins def get_discrete_colormap(num, colormapstr = 'viridis'): cmap = plt.get_cmap(colormapstr) colco = [cmap(i) for i in range(0, cmap.N, int(cmap.N / (num - 1)))] colco.append(cmap(cmap.N)) cmap2 = mpl.colors.LinearSegmentedColormap.from_list( 'Custom cmap', colco, num) return cmap2 def save_model(path, net, optimizer, epoch, trainloss=0.0, testloss = 0.0, additional_info=""): d1 = {'epoch': epoch, 'model_state_dict':net.state_dict(), 'optimizer_state_dict':optimizer.state_dict(), 'trainloss': trainloss, 'testloss': testloss, "additional_info":additional_info} #print("QQ1: ",d1) torch.save(d1, path) def load_model(path, base_net, base_optimizer): checkpoint = torch.load(path) base_net.load_state_dict(checkpoint['model_state_dict']) base_optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] additional_info = checkpoint['additional_info'] testloss = checkpoint['testloss'] trainloss = checkpoint['trainloss'] # base_net.eval() # - or - base_net.train() return {"net":base_net, 'optimizer':base_optimizer , 'epoch': epoch, 'trainloss': trainloss, 'testloss': testloss, "additional_info": additional_info } def get_image_from_datahandler(h, imgid): return h.get_whole_dataset()[imgid] def process_data(x): n2 = max(x.iloc[8:2086]) x.iloc[8:2086] = x.iloc[8:2086].div(n2) return x def process_data2(x): x_a = x[13:2091] x_array2 = x_a / max(x_a) x_array2 = x_array2 - 0.5 - min(x_array2) / 2 x_array2 = x_array2 * 1 / max(x_array2) x_array2 = pd.concat([x[0:9], x_array2]) return x_array2 def process_data_gauss(x, colnum, pixnum): x_a = x[colnum: colnum+2*pixnum] x_t = x[colnum + 2 * pixnum: colnum + 4 * pixnum] t_data = pd.Series([min(x_a),max(x_a)]) #x_a = np.log10(x_a+100) mean = np.mean(x_a, None) std = np.std(x_a, None) x_a -= mean x_a /= std x_tarray2 = (((x_t - 10) * 1) / (60 - 0)) #(((value - old_min) * new_range) / (old_max - old_min) - new_min) x_array2 = pd.concat([x[:colnum], x_a, x_tarray2, t_data]) return x_array2 def process_data3_tc(x): x_a = x[9:2087] x_t = x[2087:4165] t_data = pd.Series([min(x_a),max(x_a)]) #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) x_array2 = (((x_a - min(x_a)) * 2) / (max(x_a) - min(x_a))) - 1 x_t2 = (((x_t - 10) * 1) / (60 - 10)) - 0 x_array2 = pd.concat([x[0:9], x_array2]) x_array2 = pd.concat([x_array2, x_t2]) x_array2 = pd.concat([x_array2,t_data]) return x_array2 def process_data3(x, info_col_num, pixnum): x_a = x[info_col_num:info_col_num+2*pixnum] x_t = x[info_col_num + 2 * pixnum:info_col_num + 4 * pixnum] t_data = pd.Series([min(x_a),max(x_a)]) #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) x_array2 = (((x_a - min(x_a)) * 2) / (max(x_a) - min(x_a))) - 1 x_array2 = pd.concat([x[0:info_col_num], x_array2]) x_array2 = pd.concat([x_array2, x_t, t_data]) return x_array2 def process_data4(x): x_a = x[9:2087] x_t = x[info_col_num + 2 * pixnum:info_col_num + 4 * pixnum] t_data = pd.Series([min(x_a),max(x_a)]) #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) x_array2 = (((x_a - -1) * 2) / (2500 - -1)) - 1 x_tarray2 = (((x_a - -1) * 2) / (2500 - -1)) - 1 x_array2 = pd.concat([x[0:9], x_array2]) x_array2 = pd.concat([x_array2,x_tarray2,t_data]) return x_array2 def process_data3_i_image(x_a, colnum, pixnum): #x_a = x[9:2087] #xs = x_a.shape #print(x_a.shape) #x_a=x_a.view(-1,40*40) #t_data = [min(x_a),max(x_a)] #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) for i, x_loop in enumerate(x_a): x_a[i] = (((x_loop - min(x_loop)) * 1) / (max(x_loop) - min(x_loop))) #x_a=x_a.view(xs) return x_a ''' def process_data3_i(x, info_col_num, pixnum): x_a = x[info_col_num:info_col_num + 2 * pixnum] x_t = x[info_col_num + 2 * pixnum:info_col_num + 4 * pixnum] t_data = pd.Series([min(x_a),max(x_a)]) #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) x_array2 = (((x_a - min(x_a)) * 1) / (max(x_a) - min(x_a))) x_array2 = pd.concat([x[0:info_col_num], x_array2]) x_array2 = pd.concat([x_array2, x_t, t_data]) return x_array2 ''' def process_data3_i(x, colnum, pixnum): x_a = x[colnum: colnum+2*pixnum] x_t = x[colnum + 2 * pixnum: colnum + 4 * pixnum] t_data = pd.Series([min(x_a),max(x_a)]) #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) x_array2 = (((x_a - min(x_a)) * 1) / (max(x_a) - min(x_a))) x_tarray2 = (((x_t - 10) * 1) / (60 - 0)) #(((value - old_min) * new_range) / (old_max - old_min) - new_min) x_array2 = pd.concat([x[:colnum], x_array2, x_tarray2, t_data]) return x_array2 def process_data4_i(x, colnum, pixnum): x_a = x[colnum: colnum+2*pixnum] x_t = x[colnum + 2 * pixnum: colnum + 4 * pixnum] t_data = pd.Series([min(x_a),max(x_a)]) #OldRange = (max(x_a) - min(x_a)) #NewRange = 2#(1 - -1) x_array2 = (((x_a - -1) * 1) / (2500)) x_tarray2 = (((x_t - 10) * 1) / (60 - 0)) #(((value - old_min) * new_range) / (old_max - old_min) - new_min) x_array2 =
pd.concat([x[:colnum], x_array2, x_tarray2, t_data])
pandas.concat
import asyncio import json import pandas as pd import numpy as np import aiohttp from understat import Understat from config import Config class Parser(Config): def __init__(self, Config): # наследование параметров super().__init__() def json_to_series(self, i): row = [] # берем каждый столбец for j in range(len(i)): # если это словарь, размножаем на кол-во элементов if type(i[j]) == dict: # keys = i[j].keys() [row.append(i[j][k]) for k in i[j].keys()] # print(cast) else: row.append(i[j]) # print(i[j]) return row # Modules Understat # get_league_results(self, league_name, season, options=None, **kwargs) async def get_league_results(self): async with aiohttp.ClientSession() as session: understat = Understat(session) main_df = [] for league_name in self.leagues: for season in self.seasons: league_stats = await understat.get_league_results( league_name=league_name, season=season ) for r in league_stats: main_df.append( [ r['id'], r['datetime'], league_name, season, r['h']['title'], r['h']['short_title'], r['h']['id'], r['xG']['h'], r['a']['title'], r['a']['short_title'], r['a']['id'], r['xG']['a'], r['forecast']['w'], r['forecast']['d'], r['forecast']['l'], r['goals']['h'], r['goals']['a'], ] ) main_df = pd.DataFrame( main_df, columns=[ 'IdMatch', 'DateTime', 'LeagueName', 'Season', 'HomeTeam', 'HomeShortTeam', 'HomeTeamId', 'HomeTeam_xG', 'AwayTeam', 'AwayShortTeam', 'AwayTeamId', 'AwayTeam_xG', 'WinProba', 'DrawProba', 'LoseProba', 'FTHG', 'FTAG' ] ) # print(league_stats) return main_df # get_league_fixtures(self, league_name, season, options=None, **kwargs) async def fixtures(self): async with aiohttp.ClientSession() as session: understat = Understat(session) fixtures_df = [] for league_name in self.leagues: for season in self.fixtures_seasons: league_stats = await understat.get_league_fixtures( league_name=league_name, season=season ) for r in league_stats: fixtures_df.append( [ r['id'], r['datetime'], league_name, season, r['h']['title'], r['h']['short_title'], r['h']['id'], r['xG']['h'], r['a']['title'], r['a']['short_title'], r['a']['id'], r['xG']['a'], None, None, None, None, None, ] ) fixtures_df = pd.DataFrame( fixtures_df, columns=[ 'IdMatch', 'DateTime', 'LeagueName', 'Season', 'HomeTeam', 'HomeShortTeam', 'HomeTeamId', 'HomeTeam_xG', 'AwayTeam', 'AwayShortTeam', 'AwayTeamId', 'AwayTeam_xG', 'WinProba', 'DrawProba', 'LoseProba', 'FTHG', 'FTAG' ] ) return fixtures_df # ,league_stats team_stats,league_stats,all_stats # get_teams(self, league_name, season, options=None, **kwargs) async def teams(self): async with aiohttp.ClientSession() as session: understat = Understat(session) # leagues = ["epl", "la_liga", "bundesliga", "serie_a", "ligue_1", "rfpl"] # seasons = [2019] teams = [] for league_name in self.leagues: for season in self.seasons: league_stats = await understat.get_teams( league_name=league_name, season=season ) for r in league_stats: for r_history in r['history']: teams.append( [ r['id'], r['title'], league_name, season, r_history['date'], r_history['h_a'], r_history['xG'], r_history['xGA'], r_history['npxG'], r_history['npxGA'], r_history['ppda']['att'], r_history['ppda']['def'], r_history['ppda_allowed']['att'], r_history['ppda_allowed']['def'], r_history['deep'], r_history['deep_allowed'], r_history['scored'], r_history['missed'], r_history['xpts'], r_history['result'], r_history['wins'], r_history['draws'], r_history['loses'], r_history['pts'], r_history['npxGD'], ] ) teams = pd.DataFrame( teams , columns = [ 'TeamId', 'TeamName', 'LeagueName', 'Season', 'DateTime', 'h_a', 'xG', 'xGA', 'npxG', 'npxGA', 'ppda_att', 'ppda_def', 'ppda_allowed_att', 'ppda_allowed_def', 'deep', 'deep_allowed', 'scored', 'missed', 'xpts', 'result', 'wins', 'draws', 'loses', 'pts', 'npxGD', ] ) # format data values for c in ['TeamId', 'Season']: teams[c] = teams[c].astype(np.int32) for c in ['xG', 'xGA','npxG', 'npxGA', 'ppda_att', 'ppda_def', 'ppda_allowed_att', 'ppda_allowed_def', 'deep', 'deep_allowed', 'scored', 'missed', 'xpts', 'wins', 'draws', 'loses', 'pts', 'npxGD' ]: # 'result', teams[c] = teams[c].astype(np.float32) teams['DateTime'] = pd.to_datetime(teams['DateTime'])# .astype('datetime[64]') return teams # get_stats(self, options=None, **kwargs) async def stats(self): async with aiohttp.ClientSession() as session: understat = Understat(session) # leagues = ["epl", "la_liga", "bundesliga", "serie_a", "ligue_1", "rfpl"] # example # {'league_id': '6', # 'league': 'RFPL', # 'h': '1.4583', # 'a': '1.1250', # 'hxg': '1.450178946678837', # 'axg': '1.016120968464141', # 'year': '2014', # 'month': '8', # 'matches': '48'} list_data = [] get_data = await understat.get_stats() for r in get_data: list_data.append( [ r['league_id'], r['league'], r['h'], r['a'], r['hxg'], r['axg'], r['year'], r['month'], r['matches'], ] ) list_data = pd.DataFrame( list_data , columns = [ 'LeagueId', 'League', 'Home', 'Away', 'Home_xG', 'Away_xG', 'Year', 'Month', 'Matches', ] ) # format data values for c in ['LeagueId','Year','Month','Matches',]: list_data[c] = list_data[c].astype(np.int32) for c in ['Home','Away','Home_xG','Away_xG',]: list_data[c] = list_data[c].astype(np.float32) # list_data['DateTime'] = pd.to_datetime(list_data['DateTime']) return list_data # get_team_players(self, team_name, season, options=None, **kwargs) async def player_stats(self): async with aiohttp.ClientSession() as session: understat = Understat(session) # example # {'id': '594', 'player_name': '<NAME>', 'games': '37', 'time': '3271', # 'goals': '25', 'xG': '16.665452419780195', 'assists': '6', 'xA': '5.440816408023238', # 'shots': '110', 'key_passes': '47', 'yellow_cards': '3', 'red_cards': '0', 'position': 'F S', # 'team_title': 'Everton', 'npg': '24', 'npxG': '15.904283582232893', 'xGChain': '21.251998490653932', # 'xGBuildup': '3.9702013842761517'} list_data = [] for i in teams_df[['TeamName','Season']].drop_duplicates().values: get_data = await understat.get_team_players(team_name = i[0], season = i[1]) # columns keys from json keys = list(get_data[0].keys()) for r in get_data: list_data.append( [i[1]] + [ r[k] for k in keys ] ) # create dataframe list_data = pd.DataFrame( list_data , columns = ['Season'] + keys ) # format data values for c in [ 'id', 'games', 'time', 'goals', 'assists', 'shots', 'key_passes', 'yellow_cards', 'red_cards', 'npg', 'Season' ]: list_data[c] = list_data[c].astype(np.int32) for c in ['xG', 'xA', 'npxG', 'xGChain', 'xGBuildup']: list_data[c] = list_data[c].astype(np.float32) # list_data['DateTime'] = pd.to_datetime(list_data['DateTime']) print(get_data[0]) return list_data # understat.get_league_players(league_name=l, season=s) async def league_players(self): async with aiohttp.ClientSession() as session: understat = Understat(session) list_data = [] for l in self.leagues: for s in self.seasons: get_data = await understat.get_league_players(league_name=l, season=s) if len(get_data) > 0: # columns keys from json keys = list(get_data[0].keys()) for r in get_data: list_data.append( [l] + [s] + [ r[k] for k in keys ] ) # create dataframe list_data = pd.DataFrame( list_data , columns = ['League'] + ['Season'] + keys ) # format data values for c in ['id', 'games', 'time', 'goals', 'assists', 'shots', 'key_passes', 'yellow_cards', 'red_cards', 'npg']: list_data[c] = list_data[c].astype(np.int32) for c in ['xG', 'xA', 'npxG', 'xGChain', 'xGBuildup']: list_data[c] = list_data[c].astype(np.float32) return list_data # understat.get_player_matches(league_name=l, season=s) async def player_matches(self): async with aiohttp.ClientSession() as session: understat = Understat(session) list_data = [] # for l in leagues: # for s in seasons: for i in df_league_players['id'].unique(): # print(i, df_league_players[df_league_players['id']==i]['player_name'].values[0]) player_id = i player_name = df_league_players[df_league_players['id']==i]['player_name'].values[0] get_data = await understat.get_player_matches(player_id = i) if len(get_data) > 0: # columns keys from json keys = list(get_data[0].keys()) for r in get_data: list_data.append( [i] + [player_name] + [ r[k] for k in keys ] ) # create dataframe list_data = pd.DataFrame( list_data , columns = ['player_id'] + ['player_name'] + keys ) list_data['date'] = pd.to_datetime(list_data['date']) # format data values for c in ['player_id', 'goals', 'shots', 'time', 'h_goals', 'a_goals', 'id', 'season','roster_id', 'assists', 'key_passes', 'npg']: list_data[c] = list_data[c].astype(np.int32) for c in ['xA', 'xG','npxG', 'xGChain','xGBuildup']: list_data[c] = list_data[c].astype(np.float32) list_data.rename(columns={'id':'IdMatch', 'date':'DateTime'}, inplace=True) return list_data # get_team_results(self, team_name, season, options=None, **kwargs) async def team_results(self): async with aiohttp.ClientSession() as session: understat = Understat(session) list_data = [] for i in teams_df[['TeamName','Season']].drop_duplicates().values: get_data = await understat.get_team_results(team_name = i[0], season = i[1]) if len(get_data) > 0: # columns keys from json keys = list(get_data[0].keys()) for r in get_data: list_data.append( [i[0]] + [i[1]] + [ r[k] for k in keys ] ) cols = [ 'TeamName', 'Season', 'IdMatch', 'Flag', 'h_a', 'HomeTeamId', 'HomeTeam', 'ShortHomeTeamName', 'AwayTeamId', 'AwayTeam', 'ShortAwayTeamName', 'FTHG', 'FTAG', 'HomeTeam_xG', 'AwayTeam_xG', 'DateTime', 'Frcst_proba_w', 'Frcst_proba_d', 'Frcst_proba_l', 'Result' ] series_list_data = [] for i in list_data: series_list_data.append(self.json_to_series(i)) df_team_results = pd.DataFrame(series_list_data, columns= cols) df_team_results['DateTime'] = pd.to_datetime(df_team_results['DateTime']) # format data values for c in ['Season','IdMatch','HomeTeamId','AwayTeamId','FTHG','FTAG']: df_team_results[c] = df_team_results[c].astype(np.int32) for c in ['HomeTeam_xG','AwayTeam_xG','Frcst_proba_w','Frcst_proba_d', 'Frcst_proba_l']: df_team_results[c] = df_team_results[c].astype(np.float32) return df_team_results async def get_parse_data(self, update_data=True, resaved_data=True): if update_data: df = await self.get_league_results() fixtures_df = await self.fixtures() df['IsResult'] = True fixtures_df['IsResult'] = False df = pd.concat([df,fixtures_df],sort=False) for c in ['IdMatch', 'Season','HomeTeamId','AwayTeamId']: df[c] = df[c].astype(np.int32) for c in ['HomeTeam_xG','AwayTeam_xG','WinProba','DrawProba','LoseProba','FTHG','FTAG']: df[c] = df[c].astype(np.float32) df['DateTime'] = pd.to_datetime(df['DateTime']) df['Date'] = df['DateTime'].dt.date teams_df = await self.teams() if resaved_data: df.to_pickle('./data/df.pkl') teams_df.to_pickle('./data/teams_df.pkl') else: try: df = pd.read_pickle('./data/df.pkl') teams_df =
pd.read_pickle('./data/teams_df.pkl')
pandas.read_pickle
# -*- coding: utf-8 -*- import datetime import os import pandas as pd import logging from src.config import PROC_DATA_DIR, DT_ID_COLS, AQ_COLS def _series_as_str(column: pd.Series, zfill_len: int = 2) -> pd.Series: if zfill_len: return column.astype(str).str.zfill(zfill_len) else: return column.astype(str) def create_dt_features(stations_df: pd.DataFrame) -> pd.DataFrame: """ Build year, month, day, weekday columns and relevant average values""" dt_stations_df = stations_df.copy().set_index('date') dt_stations_df['year'] = _series_as_str(dt_stations_df.index.year) dt_stations_df['month'] = _series_as_str(dt_stations_df.index.month) dt_stations_df['year_month'] = dt_stations_df.index.strftime('%Y-%m') dt_stations_df['day'] = _series_as_str(dt_stations_df.index.day) dt_stations_df['weekofyear'] = _series_as_str(dt_stations_df.index.weekofyear) dt_stations_df['wday'] = _series_as_str(dt_stations_df.index.weekday, zfill_len=1) return dt_stations_df def load_air_quality_data(proc_file: str = 'stations_data.csv') -> pd.DataFrame: """ Read processed data from csv. Date is parsed as datetime object. """ path_to_file = os.path.join(PROC_DATA_DIR, proc_file) logging.info("loading file {f}".format(f=path_to_file)) stations_df =
pd.read_csv(path_to_file, parse_dates=['date'])
pandas.read_csv
# # Copyright (C) 2021 The Delta Lake Project Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from datetime import date from typing import Optional, Sequence import pandas as pd from delta_sharing.protocol import AddFile, Metadata, Table from delta_sharing.reader import DeltaSharingReader from delta_sharing.rest_client import ListFilesInTableResponse, DataSharingRestClient from delta_sharing.tests.conftest import ENABLE_INTEGRATION, SKIP_MESSAGE def test_to_pandas_non_partitioned(tmp_path): pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) pdf2 = pd.DataFrame({"a": [4, 5, 6], "b": ["d", "e", "f"]}) pdf1.to_parquet(tmp_path / "pdf1.parquet") pdf2.to_parquet(tmp_path / "pdf2.parquet") class RestClientMock: def list_files_in_table( self, table: Table, *, predicateHints: Optional[Sequence[str]] = None, limitHint: Optional[int] = None, ) -> ListFilesInTableResponse: assert table == Table("table_name", "share_name", "schema_name") metadata = Metadata( schema_string=( '{"fields":[' '{"metadata":{},"name":"a","nullable":true,"type":"long"},' '{"metadata":{},"name":"b","nullable":true,"type":"string"}' '],"type":"struct"}' ) ) add_files = [ AddFile( url=str(tmp_path / "pdf1.parquet"), id="pdf1", partition_values={}, size=0, stats="", ), AddFile( url=str(tmp_path / "pdf2.parquet"), id="pdf2", partition_values={}, size=0, stats="", ), ] return ListFilesInTableResponse( table=table, protocol=None, metadata=metadata, add_files=add_files ) reader = DeltaSharingReader(Table("table_name", "share_name", "schema_name"), RestClientMock()) pdf = reader.to_pandas() expected = pd.concat([pdf1, pdf2]).reset_index(drop=True) pd.testing.assert_frame_equal(pdf, expected) def test_to_pandas_partitioned(tmp_path): pdf1 = pd.DataFrame({"a": [1, 2, 3]}) pdf2 = pd.DataFrame({"a": [4, 5, 6]}) pdf1.to_parquet(tmp_path / "pdf1.parquet") pdf2.to_parquet(tmp_path / "pdf2.parquet") class RestClientMock: def list_files_in_table( self, table: Table, *, predicateHints: Optional[Sequence[str]] = None, limitHint: Optional[int] = None, ) -> ListFilesInTableResponse: assert table == Table("table_name", "share_name", "schema_name") metadata = Metadata( schema_string=( '{"fields":[' '{"metadata":{},"name":"a","nullable":true,"type":"long"},' '{"metadata":{},"name":"b","nullable":true,"type":"string"}' '],"type":"struct"}' ) ) add_files = [ AddFile( url=str(tmp_path / "pdf1.parquet"), id="pdf1", partition_values={"b": "x"}, size=0, stats="", ), AddFile( url=str(tmp_path / "pdf2.parquet"), id="pdf2", partition_values={"b": "y"}, size=0, stats="", ), ] return ListFilesInTableResponse( table=table, protocol=None, metadata=metadata, add_files=add_files ) reader = DeltaSharingReader(Table("table_name", "share_name", "schema_name"), RestClientMock()) pdf = reader.to_pandas() expected1 = pdf1.copy() expected1["b"] = "x" expected2 = pdf2.copy() expected2["b"] = "y" expected =
pd.concat([expected1, expected2])
pandas.concat
""" Setup directories & files for new experiment. Based on init_runame.yml file, sets up: - inits/ - runs/ - jobs/ - sims/ - subjob.s """ import os import numpy as np import pandas as pd import yaml from numpy import genfromtxt from ideotype.utils import (get_filelist, stomata_waterstress, estimate_pdate) from ideotype.data import DATA_PATH def read_inityaml(run_name, yamlfile=None): """ Read in init_runame yaml file. yaml file inclues all setup info for a particular experiment run. Parameters ---------- run_name: str Run name for particular batch of simulations. yamlfile: str default None - function reads init_runame.yml file in project dirct. a testing yamlfile path need to be passed for testing purposes. Returns ------- dict_setup: dictionary Dictionary that only includes experiment setup info. """ # Default situation if yamlfile is None: # Fetch yaml file with experiment setup specs # yaml files all stored in ideotype/data/inits/ fname_init = os.path.join(DATA_PATH, 'inits', 'init_' + run_name + '.yml') # Manul input a test yamlfile to function for testing purposes else: fname_init = yamlfile if not os.path.isfile(fname_init): # check whether init_.yml file exists raise ValueError(f'init param file {fname_init} does not exist!') # read in init param yaml file with open(fname_init, 'r') as pfile: dict_init = yaml.safe_load(pfile) if not dict_init['setup']['run_name'] == run_name: raise ValueError('mismatch run_name between yaml file name' 'and setup record within yaml file!') dict_setup = dict_init['setup'] dict_setup['params'] = dict_init['params'] dict_setup['specs'] = dict_init['specs'] dict_setup['init'] = dict_init['init'] dict_setup['time'] = dict_init['time'] dict_setup['climate'] = dict_init['climate'] dict_setup['management'] = dict_init['management'] dict_setup['cultivar'] = dict_init['cultivar'] return dict_setup def read_siteinfo(file_siteinfo, file_siteyears): """ Read in site info and siteyears. Parameters: ----------- file_siteinfo : str file path for site info file_siteyears : str file path for siteyears info Returns: -------- site_info : pd dataframe siteyears : pd dataframe """ site_info = pd.read_csv(file_siteinfo, dtype={'USAF': str}, usecols=[0, 1, 3, 4, 8, 9, 10]) site_info.columns = ['site', 'class', 'station', 'state', 'tzone', 'lat', 'lon'] siteyears = pd.read_csv(file_siteyears, dtype=str) return site_info, siteyears def make_dircts(run_name, yamlfile=None, cont_years=True, cont_cvars=True): """ Make all required directories in experiment directory. Directories include experiment-specific subdirectories for: 1. /inits 1.1 /inits/cultivars 1.2 /inits/customs 2. /jobs 3. /runs 4. /sims Parameters ---------- run_name: str Run name for specific batch of simualtions. yamlfile: str Default None - function reads init_runame.yml file in project dirct. a testing yamlfile path need to be passed for testing purposes. cont_years: Bool Default True How yaml file stores simulation years info. True: stored start and end year assuming all years in between. False: stores individual years (testing purposes) cont_cvars: Bool Default True How yaml file stores simulation cvars info. True: stored single number representing the total number of cultivas. Fals: stored specific cultivars (testing purposes). """ # Read in setup yaml file dict_setup = read_inityaml(run_name, yamlfile=yamlfile) # Set up project directory dirct_project = dict_setup['path_project'] # Set up filepaths if dict_setup['base_path'] == 'testing': basepath = DATA_PATH fpath_siteinfo = os.path.join(basepath, *dict_setup['site_info']) fpath_siteyears = os.path.join(basepath, *dict_setup['siteyears']) else: fpath_siteinfo = os.path.join( DATA_PATH, 'sites', dict_setup['site_info']) fpath_siteyears = os.path.join( DATA_PATH, 'siteyears', dict_setup['siteyears']) # Read in site-years df_siteinfo, df_siteyears = read_siteinfo(fpath_siteinfo, fpath_siteyears) # *** /inits/cultivars dirct_inits_cultivars = os.path.join(dirct_project, 'inits', 'cultivars', run_name) # Check if folder exits, only execute if not if not os.path.isdir(dirct_inits_cultivars): os.mkdir(dirct_inits_cultivars) else: raise ValueError(f'directory {dirct_inits_cultivars} already exists!') # *** /jobs dirct_jobs = os.path.join(dirct_project, 'jobs', run_name) if not os.path.isdir(dirct_jobs): os.mkdir(dirct_jobs) else: raise ValueError(f'directory {dirct_jobs} already exists!') # Set up years & cvars info years = dict_setup['specs']['years'] # fetch from init_runame.yml cvars = dict_setup['specs']['cvars'] # fetch from init_runame.yml # Check if cultivar in yamlfile is continuous or not # False case mostly for testing purposes cultivars = list() if cont_cvars is True: cvars_iter = np.arange(cvars[0]) else: cvars_iter = cvars # Assemble cultivars for var in cvars_iter: cultivar = 'var_' + str(var) cultivars.append(cultivar) # *** /inits/customs dirct_inits_customs = os.path.join( dirct_project, 'inits', 'customs', run_name) if not os.path.isdir(dirct_inits_customs): os.mkdir(dirct_inits_customs) else: raise ValueError( f'directory {dirct_inits_customs} already exists!') for cultivar in cultivars: os.mkdir(os.path.join(dirct_inits_customs, cultivar)) for row in np.arange(df_siteyears.shape[0]): siteyear = (f'{df_siteyears.iloc[row].site}_' f'{df_siteyears.iloc[row].year}') dirct_inits_customs_siteyear = os.path.join(dirct_project, 'inits', 'customs', run_name, cultivar, siteyear) os.mkdir(dirct_inits_customs_siteyear) # *** /runs & /sims for folder in (['runs'], ['sims']): dirct_folder = os.path.join(dirct_project, *folder, run_name) if not os.path.isdir(dirct_folder): # make /runs or /sims directory with run_name os.mkdir(dirct_folder) # check if years in yaml file are consecutive range or individual # False case mostly for testing if cont_years is True: years_iter = np.arange(years[0], years[1]+1) else: years_iter = years # create top level year directories for year in years_iter: os.mkdir(os.path.join(dirct_folder, str(year))) # create second layer cultivar directories for cultivar in cultivars: os.mkdir(os.path.join(dirct_folder, str(year), str(cultivar))) else: raise ValueError(f'directory {dirct_folder} already exists!') def make_inits(run_name, yamlfile=None, cont_cvars=True): """ Create custom init files for MAIZSIM sims. Parameters ---------- run_name: str run name for batch of experiments. yamlfile: str default None - function reads init_runame.yml file in project dirct. a testing yamlfile path need to be passed for testing purposes. Returns ------- init.txt time.txt climate.txt management.txt """ dict_setup = read_inityaml(run_name, yamlfile=yamlfile) dirct_project = dict_setup['path_project'] dirct_init = os.path.join(dirct_project, 'inits', 'customs', run_name) # only execute if no run files already exist filelist = get_filelist(os.path.expanduser(dirct_init)) if len(filelist) == 0: # read in site_info & siteyears info if dict_setup['base_path'] == 'testing': basepath = DATA_PATH fpath_siteinfo = os.path.join(basepath, *dict_setup['site_info']) fpath_siteyears = os.path.join(basepath, *dict_setup['siteyears']) fpath_params = os.path.join(basepath, *dict_setup['path_params']) fpath_weas = os.path.join(basepath, *dict_setup['path_wea']) else: fpath_siteinfo = os.path.join( DATA_PATH, 'sites', dict_setup['site_info']) fpath_siteyears = os.path.join( DATA_PATH, 'siteyears', dict_setup['siteyears']) fpath_params = os.path.join( DATA_PATH, 'params', dict_setup['path_params']) fpath_weas = os.path.join( dict_setup['path_project'], *dict_setup['path_wea']) df_siteinfo, df_siteyears = read_siteinfo(fpath_siteinfo, fpath_siteyears) df_params = pd.read_csv(fpath_params) # fetch & setup site-years info data = genfromtxt(fpath_siteyears, delimiter=',', skip_header=1, usecols=(0, 1), dtype=('U6', int, int, 'U10')) siteyears = [] for row in data: siteyears.append(str(row[0]) + '_' + str(row[1])) # Set up cultivars cvars = dict_setup['specs']['cvars'] # fetch cultivar numbers # Check if cultivar in yamlfile is continuous or not # False case for control sim & testing purposes cultivars = list() if cont_cvars is True: cvars_iter = np.arange(cvars[0]) else: cvars_iter = cvars # assemble cultivars for var in cvars_iter: cultivar = 'var_' + str(var) cultivars.append(cultivar) # Loop through cultivars for cultivar in cultivars: for siteyear in siteyears: site = siteyear.split('_')[0] year = siteyear.split('_')[1] lat = df_siteinfo[df_siteinfo.site == site].lat.item() lon = df_siteinfo[df_siteinfo.site == site].lon.item() # *** init.txt init_txt = open(os.path.join(dirct_init, cultivar, siteyear, 'init.txt'), 'w') # Dynamic pdate but gdd not perturbed if dict_setup['init']['plant_date'] == 'dynamic': # use default gdd_threhold value gdd = dict_setup['params']['gdd'] start, sowing = estimate_pdate(fpath_weas, site, year, gdd) # Dynamic pdate with perturbed gdd elif dict_setup['init']['plant_date'] == 'dynamic_perturbed': # use perturbed gdd value gdd = df_params.loc[int(cultivar.split('_')[-1]), 'gdd'] start, sowing = estimate_pdate(fpath_weas, site, year, gdd) # Standard pdate across asll sites else: sowing = f'{dict_setup["init"]["plant_date"]}{year}' sowing = "'" + sowing + "'" # requires single quote start = f'{dict_setup["init"]["start_date"]}{year}' start = "'" + start + "'" end = f'{dict_setup["init"]["end_date"]}{year}' end = "'" + end + "'" # set up init.txt text strings pop = df_params.loc[int(cultivar.split('_')[-1]), 'pop'] str1 = '*** initialization data ***\n' str2 = ('poprow\trowsp\tplant_density\trowang\t' 'x_seed\ty_seed\ttab\tCEC\teomult\tco2\n') str3 = (f'{pop*(dict_setup["init"]["rowsp"])/100:.1f}\t' f'{dict_setup["init"]["rowsp"]:.1f}\t' f'{pop:.1f}\t' f'{dict_setup["init"]["rowang"]:.1f}\t' f'{dict_setup["init"]["x_seed"]:.1f}\t' f'{dict_setup["init"]["y_seed"]:.1f}\t' f'{dict_setup["init"]["cec"]:.2f}\t' f'{dict_setup["init"]["eomult"]:.2f}\t' f'{dict_setup["init"]["co2"]:.0f}\n') str4 = 'latitude\tlongitude\taltitude\n' str5 = (f'{lat:.2f}\t' f'{lon:.2f}\t' f'{dict_setup["init"]["alt"]:.2f}\n') str6 = 'autoirrigate\n' str7 = f'{dict_setup["init"]["irrigate"]}\n' str8 = 'begin\tsowing\tend\ttimestep (mins)\n' str9 = (start + '\t' + sowing + '\t' + end + '\t' f'{dict_setup["init"]["timestep"]:.0f}\n') str10 = ('output soils data (g03, g04, g05, and g06 files)' ' 1 if true\n') str11 = 'no soil files\toutputsoil files\n' if dict_setup["init"]["soil"]: str12 = '0\t1\n' else: str12 = '1\t0\n' strings = [str1, str2, str3, str4, str5, str6, str7, str8, str9, str10, str11, str12] init_txt.writelines(strings) init_txt.close() # *** time.txt time_txt = open(os.path.join(dirct_init, cultivar, siteyear, 'time.txt'), 'w') # set up text strings str1 = '*** synchronizer information ***\n' str2 = 'initial time\tdt\tdtmin\tdmul1\tdmul2\ttfin\n' str3 = (start + '\t' + f'{dict_setup["time"]["dt"]}\t' f'{dict_setup["time"]["dt_min"]}\t' f'{dict_setup["time"]["dmul1"]}\t' f'{dict_setup["time"]["dmul2"]}\t' + end + '\n') str4 = 'output variables, 1 if true\tDaily\tHourly\n' if dict_setup['time']['output_timestep'] == 'hourly': output_timestep = '0\t1\n' else: output_timestep = '1\t0\n' str5 = output_timestep str6 = 'weather data, 1 if true\tDaily\tHourly\n' if dict_setup['time']['input_timestep'] == 'hourly': input_timestep = '0\t1\n' else: input_timestep = '1\t0\n' str7 = input_timestep strings = [str1, str2, str3, str4, str5, str6, str7] time_txt.writelines(strings) time_txt.close() # *** climate.txt climate_txt = open(os.path.join(dirct_init, cultivar, siteyear, 'climate.txt'), 'w') # put together txt strings str1 = '*** standard meteorological data ***\n' str2 = 'latitude\n' str3 = f'{lat}\n' str4 = ('daily bulb temp, daily wind, rain intensity, ' 'daily conc, furrow, relative humidity, co2\n') str5 = (f'{dict_setup["climate"]["daily_bulb"]}\t' f'{dict_setup["climate"]["daily_wind"]}\t' f'{dict_setup["climate"]["rain_intensity"]}\t' f'{dict_setup["climate"]["daily_conc"]}\t' f'{dict_setup["climate"]["furrow"]}\t' f'{dict_setup["climate"]["relative_humidity"]}\t' f'{dict_setup["climate"]["daily_co2"]}\n') str6 = ('parameters for unit conversion:' 'BSOLAR BTEMP ATEMP ERAIN BWIND BIR\n') str7 = 'BSOLAR is 1e6/3600 to go from jm-2h-1 to wm-2\n' str8 = (f'{dict_setup["climate"]["bsolar"]}\t' f'{dict_setup["climate"]["btemp"]}\t' f'{dict_setup["climate"]["atemp"]}\t' f'{dict_setup["climate"]["erain"]}\t' f'{dict_setup["climate"]["bwind"]}\t' f'{dict_setup["climate"]["bir"]}\n') str9 = 'average values for the site\n' str10 = 'WINDA\tIRAV\tConc\tCO2\n' str11 = (f'{dict_setup["climate"]["winda"]}\t' f'{dict_setup["climate"]["conc"]}\n') strings = [str1, str2, str3, str4, str5, str6, str7, str8, str9, str10, str11] climate_txt.writelines(strings) climate_txt.close() # *** management.txt management_txt = open(os.path.join(dirct_init, cultivar, siteyear, 'management.txt'), 'w') # addressing N application date according to dynamic pdate sowing_date = pd.to_datetime(sowing, format="'%m/%d/%Y'") appl_date1 = sowing_date +
pd.DateOffset(days=14)
pandas.DateOffset
# -*- coding: utf-8 -*- __author__ = "<NAME>" __all__ = ["MiniRocket"] import multiprocessing import numpy as np import pandas as pd from numba import get_num_threads, njit, prange, set_num_threads, vectorize from sktime.transformations.base import BaseTransformer class MiniRocket(BaseTransformer): """MINIROCKET. MINImally RandOm Convolutional KErnel Transform **Univariate** Unviariate input only. Use class MiniRocketMultivariate for multivariate input. @article{dempster_etal_2020, author = {<NAME> Schmidt, <NAME> and Webb, <NAME>}, title = {{MINIROCKET}: A Very Fast (Almost) Deterministic Transform for Time Series Classification}, year = {2020}, journal = {arXiv:2012.08791} } Parameters ---------- num_kernels : int, number of random convolutional kernels (default 10,000) max_dilations_per_kernel : int, maximum number of dilations per kernel (default 32) n_jobs : int, optional (default=1) The number of jobs to run in parallel for `transform`. ``-1`` means using all processors. random_state : int, random seed (optional, default None) """ _tags = { "univariate-only": True, "fit_is_empty": False, "scitype:transform-input": "Series", # what is the scitype of X: Series, or Panel "scitype:transform-output": "Primitives", # what is the scitype of y: None (not needed), Primitives, Series, Panel "scitype:instancewise": False, # is this an instance-wise transform? "X_inner_mtype": "numpy3D", # which mtypes do _fit/_predict support for X? "y_inner_mtype": "None", # which mtypes do _fit/_predict support for X? } def __init__( self, num_kernels=10_000, max_dilations_per_kernel=32, n_jobs=1, random_state=None, ): self.num_kernels = num_kernels self.max_dilations_per_kernel = max_dilations_per_kernel self.n_jobs = n_jobs self.random_state = random_state super(MiniRocket, self).__init__() def _fit(self, X, y=None): """Fits dilations and biases to input time series. Parameters ---------- X : 3D np.ndarray of shape = [n_instances, n_dimensions, series_length] panel of time series to transform y : ignored argument for interface compatibility Returns ------- self """ random_state = ( np.int32(self.random_state) if isinstance(self.random_state, int) else None ) X = X[:, 0, :].astype(np.float32) _, n_timepoints = X.shape if n_timepoints < 9: raise ValueError( ( f"n_timepoints must be >= 9, but found {n_timepoints};" " zero pad shorter series so that n_timepoints == 9" ) ) self.parameters = _fit( X, self.num_kernels, self.max_dilations_per_kernel, random_state ) return self def _transform(self, X, y=None): """Transform input time series. Parameters ---------- X : 3D np.ndarray of shape = [n_instances, n_dimensions, series_length] panel of time series to transform y : ignored argument for interface compatibility Returns ------- pandas DataFrame, transformed features """ X = X[:, 0, :].astype(np.float32) # change n_jobs dependend on value and existing cores prev_threads = get_num_threads() if self.n_jobs < 1 or self.n_jobs > multiprocessing.cpu_count(): n_jobs = multiprocessing.cpu_count() else: n_jobs = self.n_jobs set_num_threads(n_jobs) X_ = _transform(X, self.parameters) set_num_threads(prev_threads) return
pd.DataFrame(X_)
pandas.DataFrame
import pandas as pd import os import numpy as np import gc import copy import datetime import warnings from tqdm import tqdm from scipy import sparse from numpy import array from scipy.sparse import csr_matrix from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfTransformer ############################################### #########数据加载 ############################################### user_app = pd.read_csv('../../data/processed_data/user_app.csv', dtype={'uId':np.int32, 'appId':str}) app_info = pd.read_csv('../../data/processed_data/app_info.csv', dtype={'appId':str, 'category':int}) ############################################### ########## 压缩函数 ############################################### # 对数据进行类型压缩,节约内存 from tqdm import tqdm_notebook class _Data_Preprocess: def __init__(self): self.int8_max = np.iinfo(np.int8).max self.int8_min = np.iinfo(np.int8).min self.int16_max = np.iinfo(np.int16).max self.int16_min = np.iinfo(np.int16).min self.int32_max = np.iinfo(np.int32).max self.int32_min = np.iinfo(np.int32).min self.int64_max = np.iinfo(np.int64).max self.int64_min = np.iinfo(np.int64).min self.float16_max = np.finfo(np.float16).max self.float16_min = np.finfo(np.float16).min self.float32_max = np.finfo(np.float32).max self.float32_min = np.finfo(np.float32).min self.float64_max = np.finfo(np.float64).max self.float64_min = np.finfo(np.float64).min ''' function: _get_type(self,min_val, max_val, types) get the correct types that our columns can trans to ''' def _get_type(self, min_val, max_val, types): if types == 'int': if max_val <= self.int8_max and min_val >= self.int8_min: return np.int8 elif max_val <= self.int16_max <= max_val and min_val >= self.int16_min: return np.int16 elif max_val <= self.int32_max and min_val >= self.int32_min: return np.int32 return None elif types == 'float': if max_val <= self.float16_max and min_val >= self.float16_min: return np.float16 if max_val <= self.float32_max and min_val >= self.float32_min: return np.float32 if max_val <= self.float64_max and min_val >= self.float64_min: return np.float64 return None ''' function: _memory_process(self,df) column data types trans, to save more memory ''' def _memory_process(self, df): init_memory = df.memory_usage().sum() / 1024 ** 2 / 1024 print('Original data occupies {} GB memory.'.format(init_memory)) df_cols = df.columns for col in tqdm_notebook(df_cols): try: if 'float' in str(df[col].dtypes): max_val = df[col].max() min_val = df[col].min() trans_types = self._get_type(min_val, max_val, 'float') if trans_types is not None: df[col] = df[col].astype(trans_types) elif 'int' in str(df[col].dtypes): max_val = df[col].max() min_val = df[col].min() trans_types = self._get_type(min_val, max_val, 'int') if trans_types is not None: df[col] = df[col].astype(trans_types) except: print(' Can not do any process for column, {}.'.format(col)) afterprocess_memory = df.memory_usage().sum() / 1024 ** 2 / 1024 print('After processing, the data occupies {} GB memory.'.format(afterprocess_memory)) return df memory_preprocess = _Data_Preprocess() # 用法: # baseSet=memory_preprocess._memory_process(baseSet) ############################################### ########## 统计用户安装app的数量和占比 ############################################### app_counts = user_app[['appId']].drop_duplicates().count() userSub = user_app.groupby('uId')['appId'].nunique().reset_index().rename(columns={'appId': 'user_app_active_counts'}) userSub['user_app_active_ratio'] = userSub['user_app_active_counts'].apply(lambda x: x/app_counts) del app_counts user_app_active_counts = userSub.copy() ############################################### ########统计用户每个年龄段安装的app ############################################### age_train = pd.read_csv('../../data/processed_data/age_train.csv',dtype={'uId':np.int32, 'age_group':np.int8}) userSub = pd.merge(age_train, user_app, how='left', on='uId') userSub=pd.pivot_table(userSub, values='uId', index=['appId'],columns=['age_group'],aggfunc='count', fill_value=0) userSub['sum']=userSub.sum(axis=1) userSub= userSub.reset_index() userSub.rename(columns={1:'age_1',2:'age_2',3:'age_3',4:'age_4',5:'age_5',6:'age_6'},inplace=True) userSub.drop(axis=0, index=0, inplace=True) userSub['age1_%']= userSub.apply(lambda x: round(x['age_1']/x['sum'],2),axis=1) userSub['age2_%']= userSub.apply(lambda x: round(x['age_2']/x['sum'],2),axis=1) userSub['age3_%']= userSub.apply(lambda x: round(x['age_3']/x['sum'],2),axis=1) userSub['age4_%']= userSub.apply(lambda x: round(x['age_4']/x['sum'],2),axis=1) userSub['age5_%']= userSub.apply(lambda x: round(x['age_5']/x['sum'],2),axis=1) userSub['age6_%']= userSub.apply(lambda x: round(x['age_6']/x['sum'],2),axis=1) age1 = userSub[(userSub['age1_%'] >= 0.3)][['appId']].copy() age1['age_num1'] = 1 age2 = userSub[(userSub['age2_%'] >= 0.6)][['appId']].copy() age2['age_num2'] = 1 age3 = userSub[(userSub['age3_%'] >= 0.6)][['appId']].copy() age3['age_num3'] = 1 age4 = userSub[(userSub['age4_%'] >= 0.6)][['appId']].copy() age4['age_num4'] = 1 age5 = userSub[(userSub['age5_%'] >= 0.3)][['appId']].copy() age5['age_num5'] = 1 age6 = userSub[(userSub['age6_%'] >= 0.3)][['appId']].copy() age6['age_num6'] = 1 userSub = pd.merge(user_app, age1, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age2, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age3, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age4, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age5, how='left', on='appId').fillna(0) userSub = pd.merge(userSub, age6, how='left', on='appId').fillna(0) userSub = userSub.groupby('uId').sum().reset_index() user_active_app_age = userSub.copy() ############################################### ########## 用户安装各app类型的数量 ############################################### userSub = pd.merge(user_app, app_info, how='left', on='appId').fillna(method='pad') userSub = pd.pivot_table(userSub, values='appId', index=['uId'],columns=['category'], aggfunc='count', fill_value=0).reset_index() userSub['use_app_cate_nums']=0 for i in range(25): userSub['use_app_cate_nums']+=userSub[float(i)] for i in range(26,30): userSub['use_app_cate_nums']+=userSub[float(i)] for i in range(34,36): userSub['use_app_cate_nums']+=userSub[float(i)] for i in range(25): userSub[str(float(i))+ '_ratio']=userSub[float(i)]/userSub['use_app_cate_nums'] for i in range(26,30): userSub[str(float(i))+ '_ratio']=userSub[float(i)]/userSub['use_app_cate_nums'] for i in range(34,36): userSub[str(float(i))+ '_ratio']=userSub[float(i)]/userSub['use_app_cate_nums'] user_active_category_counts = userSub.copy() ############################################### ########## 用户安装了多少种app类型 ############################################### userSub = pd.merge(user_app, app_info, how='left', on='appId').fillna(method='pad') userSub = userSub[['uId', 'category']].groupby('uId')['category'].nunique().reset_index() userSub.rename(columns={'category': 'active_cate_nums'}, inplace=True) user_active_cate_nums = userSub.copy() ############################################### ########## 计算每个app的目标客户年龄指数 ############################################### age_train = pd.read_csv('../../data/processed_data/age_train.csv',dtype={'uId':np.int32, 'age_group':np.int8}) userSub = pd.merge(age_train, user_app, how='left', on='uId') userSub=pd.pivot_table(userSub, values='uId', index=['appId'],columns=['age_group'], aggfunc='count', fill_value=0) userSub['sum']=userSub.sum(axis=1) userSub= userSub.reset_index() userSub.rename(columns={1:'age_1',2:'age_2',3:'age_3',4:'age_4',5:'age_5',6:'age_6'},inplace=True) userSub.drop(axis=0, index=0, inplace=True) userSub['age1_%']= userSub.apply(lambda x: round(x['age_1']/x['sum'],2),axis=1) userSub['age2_%']= userSub.apply(lambda x: round(x['age_2']/x['sum'],2),axis=1) userSub['age3_%']= userSub.apply(lambda x: round(x['age_3']/x['sum'],2),axis=1) userSub['age4_%']= userSub.apply(lambda x: round(x['age_4']/x['sum'],2),axis=1) userSub['age5_%']= userSub.apply(lambda x: round(x['age_5']/x['sum'],2),axis=1) userSub['age6_%']= userSub.apply(lambda x: round(x['age_6']/x['sum'],2),axis=1) # 计算每个app的目标客户年龄指数(计算方法 :sum(app在该年龄段N安装比例 * 年龄段数值N * 10 / 对应年龄段样本比例)) userSub['age_weight']=userSub.apply(lambda x:(10*x['age1_%']/0.03 +20*x['age2_%']/0.2 +30*x['age3_%']/0.3 +40*x['age4_%']/0.25 +50*x['age5_%']/0.15 +60*x['age6_%']/0.075) ,axis=1) userSub=userSub[['appId','age_weight']] userSub=
pd.merge(user_app,userSub,how='left',on='appId')
pandas.merge
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from colors import bluered10 def open_vm(paths_object, channel, scale, trials=None): data_path = paths_object.biophys_output file_name = f'wns_{channel}_{scale}_v.dat' file_path = os.path.join(data_path, file_name) data = pd.read_csv(file_path, sep=r'\s+', header=None, usecols=trials) return data def open_im(paths_object, channel, scale, trials=None): data_path = paths_object.biophys_output file_name = f'wns_{channel}_{scale}_i.dat' file_path = os.path.join(data_path, file_name) data =
pd.read_csv(file_path, sep=r'\s+', header=None, usecols=trials)
pandas.read_csv
import re import datetime as dt import numpy as np import pandas as pd from path import Path from PIL import Image import base64 from io import BytesIO import plotly import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots from skimage import io import onion_trees as ot import visualize as bv import json import statsmodels as sm from statsmodels.formula.api import ols from data import STATE2ABBREV, COUNTY_CORRECTIONS import bjorn_support as bs import mutations as bm def load_img(img_filepath): img = io.imread(img_filepath) pil_img = Image.fromarray(img) # PIL image object prefix = "data:image/png;base64," with BytesIO() as stream: pil_img.save(stream, format="png") base64_string = prefix + base64.b64encode(stream.getvalue()).decode("utf-8") fig = go.Figure(go.Image(source=base64_string)) fig.update_layout(margin=dict(l=0, r=0, b=0, t=0), coloraxis_showscale=False, template='plotly_white', autosize=True) fig.update_xaxes(showticklabels=False).update_yaxes(showticklabels=False) return fig def world_time_relative(data, feature, values, res, strain='B117', vocs=['B.1.1.7', 'B.1.1.70']): if len(values)==1: data.loc[:, 'weekday'] = data['date'].dt.weekday data.loc[:, 'date'] = data['date'] - data['weekday'] * dt.timedelta(days=1) results = (data.loc[(data[feature]==values[0])] .drop_duplicates(subset=['date', 'strain'])) total_samples = (data[(~data['pangolin_lineage'].isin(vocs))] .groupby('date') .agg(total_samples=('strain', 'nunique'))) else: res = res.copy() # res.loc[:, 'tmp'] = res['date'].str.split('-') # res = res[res['tmp'].str.len()>=3] # res.loc[:, 'date'] = pd.to_datetime(res['date'], errors='coerce') res.loc[:, 'weekday'] = res['date'].dt.weekday res.loc[:, 'date'] = res['date'] - res['weekday'] * dt.timedelta(days=1) total_samples = (res[(~res['pangolin_lineage'].isin(vocs))] .groupby('date') .agg(total_samples=('strain', 'nunique')) .reset_index()) results = res[(res['is_vui']==True)].drop_duplicates(subset=['date', 'strain']) b117_world_time = (results.groupby('date') .agg(num_samples=('strain', 'nunique'), country_counts=('country', lambda x: np.unique(x, return_counts=True)), divisions=('division', 'unique'), locations=('location', 'unique')) .reset_index()) b117_world_time.loc[:, 'countries'] = b117_world_time['country_counts'].apply(lambda x: list(x[0])) b117_world_time.loc[:, 'country_counts'] = b117_world_time['country_counts'].apply(lambda x: list(x[1])) b117_world_time = pd.merge(b117_world_time, total_samples, on='date', how='right') b117_world_time.loc[:, ['countries', 'divisions', 'locations']].fillna('', inplace=True) b117_world_time.loc[:, ['num_samples', 'total_samples']] = b117_world_time[['num_samples', 'total_samples']].fillna(0) first_detected = b117_world_time.loc[b117_world_time['num_samples']>0]['date'].min() first_countries = b117_world_time.loc[b117_world_time['date']==first_detected, 'countries'].values[0] b117_world_time = b117_world_time[b117_world_time['date']>=first_detected] b117_world_time['cum_num_samples'] = b117_world_time['num_samples'].cumsum() b117_world_time.loc[:, 'cum_total_samples'] = b117_world_time['total_samples'].cumsum() b117_world_time.loc[:, 'rel_freq'] = b117_world_time['cum_num_samples'] / b117_world_time['cum_total_samples'] fig = go.Figure(data=go.Scatter(y=b117_world_time['rel_freq'], x=b117_world_time['date'], name='B.1.1.7 samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_world_time[['num_samples', 'countries', 'country_counts', 'divisions', 'locations', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>Country(s) Reported: %{text[1]}</b><br>" + "<b>Cases Per Country: %{text[2]}</b><br>" + "<b>State(s) Reported: %{text[3]}</b><br>" + "<b>County(s) Reported: %{text[4]}</b><br>" + "<b>Date: %{text[5]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_world_time.loc[b117_world_time['date']==first_detected, 'rel_freq'].values[0], text=f"On Earth, {strain} 1st detected in <br> {', '.join(first_countries)} <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-250, ax=100) fig.update_layout(yaxis_title=f'Relative cumulative frequency of {strain} on Earth', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, fig.update_yaxes(side = 'right') return fig def world_time(data, feature, values, res, strain='B117', sampling_type='random'): if len(values)==1: results = (data.loc[(data[feature]==values[0])] .drop_duplicates(subset=['date', 'strain'])) else: # results = (data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) results = (res[(res['is_vui']==True)] .drop_duplicates(subset=['date', 'strain'])) b117_world_time = (results.groupby('date') .agg(num_samples=('strain', 'nunique'), country_counts=('country', lambda x: np.unique(x, return_counts=True)), divisions=('division', 'unique'), locations=('location', 'unique')) .reset_index()) b117_world_time.loc[:, 'countries'] = b117_world_time['country_counts'].apply(lambda x: list(x[0])) b117_world_time.loc[:, 'country_counts'] = b117_world_time['country_counts'].apply(lambda x: list(x[1])) b117_world_time.loc[:, 'date'] = pd.to_datetime(b117_world_time['date'], errors='coerce') b117_world_time['cum_num_samples'] = b117_world_time['num_samples'].cumsum() first_detected = b117_world_time['date'].min() first_countries = b117_world_time.loc[b117_world_time['date']==first_detected, 'countries'] fig = go.Figure(data=go.Scatter(y=b117_world_time['cum_num_samples'], x=b117_world_time['date'], name='B.1.1.7 samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_world_time[['num_samples', 'countries', 'country_counts', 'divisions', 'locations', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>Country(s) Reported: %{text[1]}</b><br>" + "<b>Cases Per Country: %{text[2]}</b><br>" + "<b>State(s) Reported: %{text[3]}</b><br>" + "<b>County(s) Reported: %{text[4]}</b><br>" + "<b>Date: %{text[5]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_world_time.loc[b117_world_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"On Earth, {strain} 1st detected in <br> {', '.join(first_countries.values[0])} <br> on <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-250, ax=100) fig.update_layout(yaxis_title='Global cumulative number of cases over time', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, fig.update_yaxes(side = 'right') return fig def us_time_relative(data, feature, values, res, strain='B117', country='USA', vocs=['B.1.1.7', 'B.1.1.70']): if len(values)==1: data.loc[:, 'weekday'] = data['date'].dt.weekday data.loc[:, 'date'] = data['date'] - data['weekday'] * dt.timedelta(days=1) results = (data.loc[(data[feature]==values[0])& (data['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) total_samples = (data[(~data['pangolin_lineage'].isin(vocs))& (data['country']=='United States of America')] .groupby('date') .agg(total_samples=('strain', 'nunique'))) else: # results = (data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) res = res.copy() # res.loc[:, 'tmp'] = res['date'].str.split('-') # res = res[res['tmp'].str.len()>=3] # res.loc[:, 'date'] = pd.to_datetime(res['date'], errors='coerce') res.loc[:, 'weekday'] = res['date'].dt.weekday res.loc[:, 'date'] = res['date'] - res['weekday'] * dt.timedelta(days=1) total_samples = (res[(~res['pangolin_lineage'].isin(vocs)) &(res['country']=='United States of America')] .groupby('date') .agg(total_samples=('strain', 'nunique')) .reset_index()) results = (res[(res['is_vui']==True) & (res['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) results['purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_us_time = (random.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) b117_us_time.loc[:, 'states'] = b117_us_time['state_counts'].apply(lambda x: list(x[0])) b117_us_time.loc[:, 'state_counts'] = b117_us_time['state_counts'].apply(lambda x: list(x[1])) b117_us_time = pd.merge(b117_us_time, total_samples, on='date', how='right') b117_us_time.loc[:, 'states'].fillna('', inplace=True) b117_us_time.loc[:, ['num_samples', 'total_samples']] = b117_us_time[['num_samples', 'total_samples']].fillna(0) sdrop_us_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_us_time.loc[:, 'states'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[0])) sdrop_us_time.loc[:, 'state_counts'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[1])) sdrop_us_time = pd.merge(sdrop_us_time, total_samples, on='date', how='right') sdrop_us_time.loc[:, 'states'].fillna('', inplace=True) sdrop_us_time.loc[:, ['num_samples', 'total_samples']] = sdrop_us_time[['num_samples', 'total_samples']].fillna(0) fig = go.Figure() if b117_us_time[b117_us_time['num_samples']>0].shape[0] > 0: first_detected = b117_us_time.loc[b117_us_time['num_samples']>0]['date'].min() first_states = b117_us_time.loc[b117_us_time['date']==first_detected, 'states'].values[0] b117_us_time = b117_us_time[b117_us_time['date']>=first_detected] b117_us_time.loc[:, 'cum_num_samples'] = b117_us_time['num_samples'].cumsum() b117_us_time.loc[:, 'cum_total_samples'] = b117_us_time['total_samples'].cumsum() b117_us_time.loc[:, 'rel_freq'] = b117_us_time['cum_num_samples'] / b117_us_time['cum_total_samples'] fig.add_trace( go.Scatter(y=b117_us_time['rel_freq'], x=b117_us_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_us_time.loc[b117_us_time['date']==first_detected, 'rel_freq'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states)} <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) if sdrop_us_time[sdrop_us_time['num_samples']>0].shape[0] > 0: first_detected = sdrop_us_time.loc[sdrop_us_time['num_samples']>0]['date'].min() first_states = sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'states'].values[0] sdrop_us_time = sdrop_us_time[sdrop_us_time['date']>=first_detected] sdrop_us_time.loc[:, 'cum_num_samples'] = sdrop_us_time['num_samples'].cumsum() sdrop_us_time.loc[:, 'cum_total_samples'] = sdrop_us_time['total_samples'].cumsum() sdrop_us_time.loc[:, 'rel_freq'] = sdrop_us_time['cum_num_samples'] / sdrop_us_time['cum_total_samples'] fig.add_trace( go.Scatter(y=sdrop_us_time['rel_freq'], x=sdrop_us_time['date'], name='biased sampling <br> (more info in a later section)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) fig.add_annotation(x=first_detected, y=sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'rel_freq'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states)} <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Relative cumulative frequency of {strain} in USA', xaxis_title='Collection Date', template='plotly_white', autosize=True, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ))#, height=850, return fig def us_time(data, feature, values, res, strain='B117', country='USA', sampling_type='random'): if len(values)==1: results = (data.loc[(data[feature]==values[0]) & (data['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) else: # results = (data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) results = (res[(res['is_vui']==True) & (res['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) if sampling_type!='random': results['purpose_of_sequencing'] = 'S' else: results['purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_us_time = (random.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) b117_us_time.loc[:, 'states'] = b117_us_time['state_counts'].apply(lambda x: list(x[0])) b117_us_time.loc[:, 'state_counts'] = b117_us_time['state_counts'].apply(lambda x: list(x[1])) b117_us_time.loc[:, 'date'] = pd.to_datetime(b117_us_time['date'], errors='coerce') b117_us_time['cum_num_samples'] = b117_us_time['num_samples'].cumsum() sdrop_us_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_us_time.loc[:, 'states'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[0])) sdrop_us_time.loc[:, 'state_counts'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[1])) sdrop_us_time.loc[:, 'date'] = pd.to_datetime(sdrop_us_time['date'], errors='coerce') sdrop_us_time['cum_num_samples'] = sdrop_us_time['num_samples'].cumsum() fig = go.Figure() if b117_us_time.shape[0] > 0: fig.add_trace( go.Scatter(y=b117_us_time['cum_num_samples'], x=b117_us_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) first_detected = b117_us_time['date'].min() first_states = b117_us_time.loc[b117_us_time['date']==first_detected, 'states'] fig.add_annotation(x=first_detected, y=b117_us_time.loc[b117_us_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states.values[0])} <br> on <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) if sdrop_us_time.shape[0] > 0: fig.add_trace( go.Scatter(y=sdrop_us_time['cum_num_samples'], x=sdrop_us_time['date'], name='biased sampling <br> (see notes on sampling)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) first_detected = sdrop_us_time['date'].min() first_states = sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'states'] fig.add_annotation(x=first_detected, y=sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states.values[0])} <br> on <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Cumulative number of cases over time in {country}', xaxis_title='Collection Date', template='plotly_white', autosize=True, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ))#, height=850, return fig def ca_time_relative(data, feature, values, res, strain='B117', state='California', vocs=['B.1.1.7', 'B.1.1.70']): if len(values)==1: data.loc[:, 'weekday'] = data['date'].dt.weekday data.loc[:, 'date'] = data['date'] - data['weekday'] * dt.timedelta(days=1) results = (data.loc[(data[feature]==values[0])& (data['division']==state)] .drop_duplicates(subset=['date', 'strain'])) total_samples = (data[(~data['pangolin_lineage'].isin(vocs))& (data['division']==state)] .groupby('date') .agg(total_samples=('strain', 'nunique'))) else: res = res.copy() # res.loc[:, 'tmp'] = res['date'].str.split('-') # res = res[res['tmp'].str.len()>=3] # res.loc[:, 'date'] = pd.to_datetime(res['date'], errors='coerce') res.loc[:, 'weekday'] = res['date'].dt.weekday res.loc[:, 'date'] = res['date'] - res['weekday'] * dt.timedelta(days=1) total_samples = (res[(~res['pangolin_lineage'].isin(vocs)) &(res['division']==state)] .groupby('date') .agg(total_samples=('strain', 'nunique')) .reset_index()) results = res[(res['is_vui']==True) & (res['division']==state)].drop_duplicates(subset=['date', 'strain']) results.loc[:, 'purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_ca_time = (random.groupby('date') .agg(num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True))) .reset_index()) b117_ca_time.loc[:, 'counties'] = b117_ca_time['county_counts'].apply(lambda x: list(x[0])) b117_ca_time.loc[:, 'county_counts'] = b117_ca_time['county_counts'].apply(lambda x: list(x[1])) # b117_ca_time.loc[:, 'date'] = pd.to_datetime(b117_ca_time['date'], # errors='coerce') b117_ca_time = pd.merge(b117_ca_time, total_samples, on='date', how='right') b117_ca_time.loc[:, 'counties'].fillna('', inplace=True) b117_ca_time.loc[:, ['num_samples', 'total_samples']] = b117_ca_time[['num_samples', 'total_samples']].fillna(0) sdrop_ca_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_ca_time.loc[:, 'counties'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[0])) sdrop_ca_time.loc[:, 'county_counts'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[1])) # sdrop_ca_time.loc[:, 'date'] = pd.to_datetime(sdrop_ca_time['date'], errors='coerce') sdrop_ca_time = pd.merge(sdrop_ca_time, total_samples, on='date', how='right') sdrop_ca_time.loc[:, 'counties'].fillna('', inplace=True) sdrop_ca_time.loc[:, ['num_samples', 'total_samples']].fillna(0, inplace=True) fig = go.Figure() if b117_ca_time[b117_ca_time['num_samples']>0].shape[0] > 0: first_detected = b117_ca_time.loc[b117_ca_time['num_samples']>0]['date'].min() first_counties = b117_ca_time.loc[b117_ca_time['date']==first_detected, 'counties'].values[0] b117_ca_time = b117_ca_time[b117_ca_time['date']>=first_detected] b117_ca_time.loc[:, 'cum_num_samples'] = b117_ca_time['num_samples'].cumsum() b117_ca_time.loc[:, 'cum_total_samples'] = b117_ca_time['total_samples'].cumsum() b117_ca_time.loc[:, 'rel_freq'] = b117_ca_time['cum_num_samples'] / b117_ca_time['cum_total_samples'] fig.add_trace( go.Scatter(y=b117_ca_time['rel_freq'], x=b117_ca_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>County(s) Reported: %{text[1]}</b><br>" + "<b>Cases per County: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_ca_time.loc[b117_ca_time['date']==first_detected, 'rel_freq'].values[0], text=f"In CA, {strain} 1st detected in <br> {', '.join(first_counties)} county(s) <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) if sdrop_ca_time[sdrop_ca_time['num_samples']>0].shape[0] > 0: first_detected = sdrop_ca_time.loc[sdrop_ca_time['num_samples']>0]['date'].min() first_counties = sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'counties'].values[0] sdrop_ca_time = sdrop_ca_time[sdrop_ca_time['date']>=first_detected] sdrop_ca_time.loc[:, 'cum_num_samples'] = sdrop_ca_time['num_samples'].cumsum() sdrop_ca_time.loc[:, 'cum_total_samples'] = sdrop_ca_time['total_samples'].cumsum() sdrop_ca_time.loc[:, 'rel_freq'] = sdrop_ca_time['cum_num_samples'] / sdrop_ca_time['cum_total_samples'] fig.add_trace( go.Scatter(y=sdrop_ca_time['rel_freq'], x=sdrop_ca_time['date'], name='biased sampling (read next section)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>" ) ) fig.add_annotation(x=first_detected, y=sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'rel_freq'].values[0], text=f"""In CA, {strain} 1st detected in <br> {', '.join(first_counties)} county(s) <br> on week of <br> {first_detected.date()}""", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Relative cumulative frequency of {strain} in CA', xaxis_title='Collection Date', template='plotly_white', showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ), autosize=True#, autosize=True )#, height=850, return fig def ca_time(data, feature, values, res, strain='B117', state='California', sampling_type='random'): if len(values)==1: results = (data.loc[(data[feature]==values[0]) & (data['division']==state)] .drop_duplicates(subset=['date', 'strain'])) else: # results = (data.groupby(['date', 'country', 'division', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) results = res[(res['is_vui']==True) &(res['division']==state)].drop_duplicates(subset=['date', 'strain']) if sampling_type!='random': results['purpose_of_sequencing'] = 'S' else: results['purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_ca_time = (random.groupby('date') .agg(num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True))) .reset_index()) b117_ca_time.loc[:, 'counties'] = b117_ca_time['county_counts'].apply(lambda x: list(x[0])) b117_ca_time.loc[:, 'county_counts'] = b117_ca_time['county_counts'].apply(lambda x: list(x[1])) b117_ca_time.loc[:, 'date'] = pd.to_datetime(b117_ca_time['date'], errors='coerce') b117_ca_time.loc[:, 'cum_num_samples'] = b117_ca_time['num_samples'].cumsum() sdrop_ca_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_ca_time.loc[:, 'counties'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[0])) sdrop_ca_time.loc[:, 'county_counts'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[1])) sdrop_ca_time.loc[:, 'date'] = pd.to_datetime(sdrop_ca_time['date'], errors='coerce') sdrop_ca_time['cum_num_samples'] = sdrop_ca_time['num_samples'].cumsum() fig = go.Figure() if b117_ca_time.shape[0] > 0: fig.add_trace( go.Scatter(y=b117_ca_time['cum_num_samples'], x=b117_ca_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>County(s) Reported: %{text[1]}</b><br>" + "<b>Cases per County: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) first_detected = b117_ca_time['date'].min() first_counties = b117_ca_time.loc[b117_ca_time['date']==first_detected, 'counties'] fig.add_annotation(x=first_detected, y=b117_ca_time.loc[b117_ca_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In CA, {strain} 1st detected in <br> {', '.join(first_counties.values[0])} <br> on {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) if sdrop_ca_time.shape[0] > 0: fig.add_trace( go.Scatter(y=sdrop_ca_time['cum_num_samples'], x=sdrop_ca_time['date'], name='biased sampling <br> (see notes on sampling)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>" ) ) first_detected = sdrop_ca_time['date'].min() first_counties = sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'counties'] fig.add_annotation(x=first_detected, y=sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In CA, {strain} 1st detected in <br> {', '.join(first_counties.values[0])} <br> on {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Cumulative number of {strain} in CA', xaxis_title='Collection Date', template='plotly_white', autosize=True, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ))#, height=850, return fig def strain_nt_distance(data, feature, values, strain='B117', sample_sz=250, vocs=['B.1.1.7', 'B.1.351', 'B.1.1.70']): clock_rate = 8e-4 if feature=='pangolin_lineage': dists_df = create_lineage_data(data, feature, values, strain=strain, sample_sz=sample_sz, vocs=vocs) elif feature=='mutation': dists_df = create_distance_data(data, mutations=set(values), strain=strain, sample_sz=sample_sz, vocs=vocs) else: raise ValueError(f"Feature of type {feature} is not yet available for analysis. Aborting...") dists_df['num_subs'] = dists_df['mutations'].str.len() / 29904 # ignore seqs with unexpectedly high dists dists_df = dists_df[dists_df['num_subs']<=0.0013] dists_df = dists_df[~dists_df['date'].isna()] dists_df.loc[:, 'date'] = pd.to_datetime(dists_df['date'], errors='coerce') dists_df['time'] = dists_df['date'].astype(str).apply(bv.decimal_date) b117_model = ols('num_subs ~ time', data=dists_df[dists_df['group']!='outgroup']).fit() b117_model.params['time'] = clock_rate b117_preds = dists_df[dists_df['group']!='outgroup'].copy() b117_model.params['Intercept'] = np.mean(b117_preds['num_subs'] - (clock_rate*b117_preds['time'])) b117_preds.loc[:, 'predictions'] = b117_model.predict(b117_preds['time']) b117_n = int(b117_preds.shape[0] / 2) outgrp_model = ols('num_subs ~ time', data=dists_df[dists_df['group']=='outgroup']).fit() outgrp_model.params['time'] = clock_rate outgrp_preds = dists_df[dists_df['group']=='outgroup'].copy() outgrp_model.params['Intercept'] = np.mean(outgrp_preds['num_subs'] - (clock_rate*outgrp_preds['time'])) outgrp_preds.loc[:, 'predictions'] = outgrp_model.predict(outgrp_preds['time']) outgrp_n = int(outgrp_preds.shape[0] / 3) fig = go.Figure( data=go.Scatter(y=dists_df[dists_df['group']==f'Lineage {strain} in US']['num_subs'], x=dists_df[dists_df['group']==f'Lineage {strain} in US']['date'], name=f'{strain} (US)', mode='markers', hovertemplate = 'Sample: %{text}', marker_color='rgba(220,20,60,.6)')) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']==f'Lineage {strain}']['num_subs'], x=dists_df[dists_df['group']==f'Lineage {strain}']['date'], mode='markers', marker_color='rgba(30,144,255,.6)', name=f'{strain} (non-US)' )) # fig.add_trace(go.Scatter(y=b117_preds['predictions'], # x=b117_preds['date'], name='OLS (B.1.1.7)', # mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=b117_preds.iloc[b117_n]['date'], y=b117_preds.iloc[b117_n]['predictions'], text=f"{strain} Lineage", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='outgroup']['num_subs'], x=dists_df[dists_df['group']=='outgroup']['date'], mode='markers', marker_color='rgb(211,211,211, .6)', name='outgroup' )) # fig.add_trace(go.Scatter(y=outgrp_preds['predictions'], # x=outgrp_preds['date'], name='OLS (outgroup)', # mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=outgrp_preds.iloc[outgrp_n]['date'], y=outgrp_preds.iloc[outgrp_n]['predictions'], text=f"outgroup", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.update_layout(yaxis_title='Genetic Distance (root-to-tip)', xaxis_title='Collection Date', template='plotly_white', autosize=True, margin={"l":1}, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) )#, height=850, fig.update_yaxes(side = 'right') return fig def create_lineage_data(data, feature, values, strain, sample_sz=250, vocs=['B.1.1.7', 'B.1.1.70', 'B.1.351']): data = (data.groupby(['date', 'country', 'division', 'location', 'pangolin_lineage', 'strain']) .agg(mutations=('mutation', 'unique')).reset_index()) first_detected = data.loc[data[feature].isin(values), 'date'].min() mutations = set(data.loc[(data[feature].isin(values)) &(data['date']==first_detected), 'mutations'].explode().unique()) data['d_w'] = data['mutations'].apply(compute_similarity, args=(mutations,)) outgroup = (data[(~data[feature].isin(values)) &(~data['pangolin_lineage'].isin(vocs))] .nlargest(sample_sz, 'd_w')['strain'] .unique()) try: ingroup = data.loc[(data[feature].isin(values))].sample(sample_sz)['strain'].unique() except: ingroup = data.loc[(data[feature].isin(values))]['strain'].unique() usgroup = data.loc[(data[feature].isin(values)) & (data['country']=='United States of America'), 'strain'].unique() data = data.loc[(data['strain'].isin(ingroup)) | (data['strain'].isin(outgroup)) | (data['strain'].isin(usgroup))] data.loc[:, 'group'] = 'nan' data.loc[data['strain'].isin(outgroup), 'group'] = 'outgroup' data.loc[(data['strain'].isin(ingroup)), 'group'] = f'Lineage {strain}' data.loc[(data['strain'].isin(usgroup)), 'group'] = f'Lineage {strain} in US' return data def create_distance_data(data: pd.DataFrame, mutations: set, strain: str, sample_sz: int=250, vocs: list=['B.1.1.7', 'B.1.351']): data = (data.groupby(['date', 'country', 'division', 'location', 'pangolin_lineage', 'strain']) .agg(mutations=('mutation', 'unique')).reset_index()) data['is_vui'] = data['mutations'].apply(is_vui, args=(mutations,)) ref_muts = extract_mutations(data) data['d_w'] = data['mutations'].apply(compute_similarity, args=(ref_muts,)) outgroup = (data[(data['is_vui']==False) &(~data['pangolin_lineage'].isin(vocs))] .sample(sample_sz)['strain'] .unique()) try: ingroup = data.loc[(data['is_vui']==True)].sample(sample_sz)['strain'].unique() except: ingroup = data.loc[(data['is_vui']==True)]['strain'].unique() usgroup = data.loc[(data['is_vui']==True) & (data['country']=='United States of America'), 'strain'].unique() data = data.loc[(data['strain'].isin(ingroup)) | (data['strain'].isin(outgroup)) | (data['strain'].isin(usgroup))] data['group'] = 'outgroup' data.loc[(data['strain'].isin(ingroup)), 'group'] = f'Lineage {strain}' data.loc[(data['strain'].isin(usgroup)), 'group'] = f'Lineage {strain} in US' return data def is_vui(x, mutations: set): return mutations.issubset(set(x)) def extract_mutations(data: pd.DataFrame): first_detected = data.loc[data['is_vui']==True, 'date'].min() mutations = data.loc[(data['is_vui']==True) &(data['date']==first_detected), 'mutations'].explode().unique() return set(mutations) def compute_similarity(x, reference_mutations: set): common_mutations = set(x) & reference_mutations return len(common_mutations) def b117_nt_distance(gisaid_data, tree_fp, b117_meta, sample_sz=250, clock_rate=8e-4): # nabla_symbol = u"\u2207" croft_meta = pd.read_csv(b117_meta, sep='\t') croft_meta = croft_meta[croft_meta['Country']!='USA'].copy() # extract B117 samples from Emma Croft's build b117_meta = croft_meta[croft_meta['Pangolin Lineage']=='B.1.1.7'].sample(sample_sz) # extract outgroup samples from Emma Croft's build outgrp_meta = croft_meta[croft_meta['Pangolin Lineage']!='B.1.1.7'].sample(sample_sz) # extract B117 US samples from GISAID us_b117 = gisaid_data[(gisaid_data['country']=='United States of America') & (gisaid_data['pangolin_lineage']=='B.1.1.7')].copy() # consolidate data and analyze b117_data = gisaid_data[(gisaid_data['strain'].isin(b117_meta['Strain'].unique())) |(gisaid_data['strain'].isin(outgrp_meta['Strain'].unique())) |(gisaid_data['strain'].isin(us_b117['strain'].unique()))].copy() b117_data.drop_duplicates(subset=['strain', 'pos', 'alt_codon'], inplace=True) # b117_data = b117_data[b117_data['gene']=='S'] dists_df = (b117_data.groupby(['strain', 'date']) .agg(num_nt_subs=('strain', 'count')) .reset_index()) dists_df['num_nt_subs'] = dists_df['num_nt_subs'] / 29903 dists_df = dists_df[~dists_df['date'].isna()] dists_df.loc[:, 'group'] = 'outgroup' dists_df.loc[dists_df['strain'].isin(b117_meta['Strain'].unique()), 'group'] = 'B.1.1.7 (non-US)' dists_df.loc[dists_df['strain'].isin(us_b117['strain'].unique()), 'group'] = 'B.1.1.7 (US)' dists_df = dists_df.loc[~((dists_df['group']=='outgroup') & (dists_df['num_nt_subs']>=0.001))] dists_df.loc[:, 'date'] = pd.to_datetime(dists_df['date'], errors='coerce') dists_df['time'] = dists_df['date'].astype(str).apply(bv.decimal_date) b117_model = ols('num_nt_subs ~ time', data=dists_df[dists_df['group']!='outgroup']).fit() b117_model.params['time'] = clock_rate b117_preds = dists_df[dists_df['group']!='outgroup'].copy() b117_model.params['Intercept'] = np.mean(b117_preds['num_nt_subs'] - (clock_rate*b117_preds['time'])) b117_preds.loc[:, 'predictions'] = b117_model.predict(b117_preds['time']) b117_n = int(b117_preds.shape[0] / 2) outgrp_model = ols('num_nt_subs ~ time', data=dists_df[dists_df['group']=='outgroup']).fit() outgrp_model.params['time'] = clock_rate outgrp_preds = dists_df[dists_df['group']=='outgroup'].copy() outgrp_model.params['Intercept'] = np.mean(outgrp_preds['num_nt_subs'] - (clock_rate*outgrp_preds['time'])) outgrp_preds.loc[:, 'predictions'] = outgrp_model.predict(outgrp_preds['time']) outgrp_n = int(outgrp_preds.shape[0] / 3) fig = go.Figure( data=go.Scatter(y=dists_df[dists_df['group']=='B.1.1.7 (US)']['num_nt_subs'], x=dists_df[dists_df['group']=='B.1.1.7 (US)']['date'], name='B.1.1.7 (US)', mode='markers', text=dists_df[dists_df['group']=='B.1.1.7 (US)']['strain'], hovertemplate = 'Sample: %{text}', marker_color='rgba(220,20,60,.6)')) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='B.1.1.7 (non-US)']['num_nt_subs'], x=dists_df[dists_df['group']=='B.1.1.7 (non-US)']['date'], mode='markers', marker_color='rgba(30,144,255,.6)', name='B.1.1.7 (non-US)' )) fig.add_trace(go.Scatter(y=b117_preds['predictions'], x=b117_preds['date'], name='OLS (B.1.1.7)', mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=b117_preds.iloc[b117_n]['date'], y=b117_preds.iloc[b117_n]['predictions'], text=f"B117 Lineage", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='outgroup']['num_nt_subs'], x=dists_df[dists_df['group']=='outgroup']['date'], mode='markers', marker_color='rgb(211,211,211, .6)', name='outgroup' )) fig.add_trace(go.Scatter(y=outgrp_preds['predictions'], x=outgrp_preds['date'], name='OLS (outgroup)', mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=outgrp_preds.iloc[outgrp_n]['date'], y=outgrp_preds.iloc[outgrp_n]['predictions'], text=f"outgroup", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.update_layout(yaxis_title='Genetic Distance (root-to-tip)', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, return fig def b117_aa_distance(gisaid_data, b117_meta, sample_sz=250): croft_meta = pd.read_csv(b117_meta, sep='\t') croft_meta = croft_meta[croft_meta['Country']!='USA'].copy() # extract B117 samples from Emma Croft's build b117_meta = croft_meta[croft_meta['Pangolin Lineage']=='B.1.1.7'].sample(sample_sz) # extract outgroup samples from Emma Croft's build outgrp_meta = croft_meta[croft_meta['Pangolin Lineage']!='B.1.1.7'].sample(sample_sz) # extract B117 US samples from GISAID us_b117 = gisaid_data[(gisaid_data['country']=='United States of America') & (gisaid_data['pangolin_lineage']=='B.1.1.7')].copy() # consolidate data and analyze b117_data = gisaid_data[(gisaid_data['strain'].isin(b117_meta['Strain'].unique())) |(gisaid_data['strain'].isin(outgrp_meta['Strain'].unique())) |(gisaid_data['strain'].isin(us_b117['strain'].unique()))] b117_data.loc[:, 'nonsyn'] = False b117_data.loc[b117_data['ref_aa']!=b117_data['alt_aa'], 'nonsyn'] = True b117_data.loc[:, 'S_nonsyn'] = False b117_data.loc[(b117_data['gene']=='S') & (b117_data['ref_aa']!=b117_data['alt_aa']), 'S_nonsyn'] = True dists_df = (b117_data.groupby(['strain', 'date']) .agg(num_nonsyn_muts=('nonsyn', 'sum'), num_S_nonsyn_muts=('S_nonsyn', 'sum')) .reset_index()) dists_df = dists_df[~dists_df['date'].isna()] dists_df.loc[:, 'group'] = 'outgroup' dists_df.loc[dists_df['strain'].isin(b117_meta['Strain'].unique()), 'group'] = 'B.1.1.7 (non-US)' dists_df.loc[dists_df['strain'].isin(us_b117['strain'].unique()), 'group'] = 'B.1.1.7 (US)' dists_df.loc[:, 'date'] =
pd.to_datetime(dists_df['date'], errors='coerce')
pandas.to_datetime
# basics import numpy as np import pandas as pd import os # segnlp from segnlp.utils.stat_sig import compare_dists class RankItem(dict): def __init__(self, id:str, v:float, scores:np.ndarray, metric:str, random_seeds : np.ndarray, ): self["id"] = id self["v"] = v self["max"] = np.max(scores) self["min"] = np.min(scores) self["mean"] = np.mean(scores) self["std"] = np.std(scores) self["metric"] = metric self["top_random_seed"] = random_seeds[np.argmax(scores)] class Ranking: @property def rankings(self): return
pd.read_csv(self._path_to_rankings, index_col=0)
pandas.read_csv
""" @author: <NAME> file: main_queue.py """ from __future__ import print_function from scoop import futures import multiprocessing import numpy as np import pandas as pd import timeit import ZIPapliences as A_ZIP class load_generation: """ Class prepares the system for generating load Attributes ---------- START_TIME_Q (pandas datetime): start time to generate load data END_TIME_Q (pandas datetime): end time to generate load data Queue_type (int): 0=inf; 1=C; 2=Ct P_U_B (int): percentage upper boud --> e.g. 2 = 200% from the reference physical_machine (int): 1 = single node 2 = multiple nodes NUM_WORKERS (int): number of workers used when generating load in a single node NUM_HOMES (int): number of homes being generated OUT_PUT_FILE_NAME_pre (str): file path to write output OUT_PUT_FILE_NAME (str): prefix of file name to be writen OUT_PUT_FILE_NAME_end (str): end of file name OUT_PUT_FILE_NAME_summary_pre (str): file path to write output OUT_PUT_FILE_NAME_summary (str): prefix of summary file name to be writen TIME_DELT (pandas datetime): 1 minute TIME_DELT_FH (pandas datetime): 1 hour TIME_DELT_FD (pandas datetime): 1 day base_max (float): rescaling load reference uper bound base_min (float): rescaling load reference lower bound ref_load (pandas series): reference load DF_A (pandas dataframe): appliances characteristics DF_ZIP_summer (pandas dataframe): appliances participation during the summer DF_ZIP_winter (pandas dataframe): appliances participation during the winter DF_ZIP_spring (pandas dataframe): appliances participation during the spring APP_parameter_list (list): input parameters [(float) p.u. percentage of schedulable appliances 0.5=50%, (int) appliance set size, (int) average power rating in Watts, (int) stander power rating in Watts, (float) average duration in hours, (float) stander duration in hours, (float) average duration of the scheduling window in hours, (float) stander duration of the scheduling window in hours] Methods ------- __init__ : create object with the parameters for the load generation read_data : load input data """ def __init__(self,ST,ET,T,P,M,NW,NH): """ Create load_generation object Parameters ---------- ST (str): start time to generate load data e.g. '2014-01-01 00:00:00' ET (str): end time to generate load data T (int): 0=inf; 1=C; 2=Ct P (int): percentage upper boud --> e.g. 2 = 200% from the reference M (int): 1 = single node 2 = multiple nodes NW (int): number of workers used when generating load in a single node NH (int): number of homes being generated """ self.START_TIME_Q = pd.to_datetime(ST) self.END_TIME_Q = pd.to_datetime(ET) self.Queue_type = T self.P_U_B = P self.physical_machine = M self.NUM_WORKERS = NW self.NUM_HOMES = NH self.OUT_PUT_FILE_NAME_pre = 'outputdata/multy/' self.OUT_PUT_FILE_NAME = 'multHDF' self.OUT_PUT_FILE_NAME_end = '.h5' self.OUT_PUT_FILE_NAME_summary_pre = 'outputdata/summary/' self.OUT_PUT_FILE_NAME_summary = 'summaryHDF' #Auxiliary variables self.TIME_DELT =
pd.to_timedelta('0 days 00:01:00')
pandas.to_timedelta
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, 'a', 'a']}) expected = DataFrame({'A': ['a', np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by='A').reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame(dict(A=date_range('2012-1-1', periods=3, freq='D'), B=date_range('2012-1-2', periods=3, freq='D'), C=Timestamp('20120101') - timedelta(minutes=5, seconds=5))) diffs = DataFrame(dict(A=df['A'] - df['C'], B=df['A'] - df['B'])) # min result = diffs.min() assert result[0] == diffs.loc[0, 'A'] assert result[1] == diffs.loc[0, 'B'] result = diffs.min(axis=1) assert (result == diffs.loc[0, 'B']).all() # max result = diffs.max() assert result[0] == diffs.loc[2, 'A'] assert result[1] == diffs.loc[2, 'B'] result = diffs.max(axis=1) assert (result == diffs['A']).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df['A'] - df['C'], B=df['B'] - df['A'])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed['C'] = 'foo' mixed['D'] = 1 mixed['E'] = 1. mixed['F'] = Timestamp('20130101') # results in an object array result = mixed.min() expected = Series([pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), 'foo', 1, 1.0, Timestamp('20130101')], index=mixed.columns) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[['A', 'B']].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[['A', 'B']].min() expected = Series([timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=['A', 'B']) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame({'time': date_range('20130102', periods=5), 'time2': date_range('20130105', periods=5)}) df['off1'] = df['time2'] - df['time'] assert df['off1'].dtype == 'timedelta64[ns]' df['off2'] = df['time'] - df['time2'] df._consolidate_inplace() assert df['off1'].dtype == 'timedelta64[ns]' assert df['off2'].dtype == 'timedelta64[ns]' def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize('method, unit', [ ('sum', 0), ('prod', 1), ]) def test_sum_prod_nanops(self, method, unit): idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(df, method)(min_count=0) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64')
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
""" .. _serp: Import Search Engine Results Pages (SERPs) for Google and YouTube ================================================================= """ __all__ = ['SERP_GOOG_VALID_VALS', 'YOUTUBE_TOPIC_IDS', 'YOUTUBE_VID_CATEGORY_IDS', 'serp_goog', 'serp_youtube', 'set_logging_level', 'youtube_channel_details', 'youtube_video_details'] import datetime import logging from itertools import product import pandas as pd if int(pd.__version__[0]) >= 1: from pandas import json_normalize else: from pandas.io.json import json_normalize import requests SERP_GOOG_LOG_FMT = ('%(asctime)s | %(levelname)s | %(filename)s:%(lineno)d ' '| %(funcName)s | %(message)s') logging.basicConfig(format=SERP_GOOG_LOG_FMT) ############################################################################## # Google variables ############################################################################## SERP_GOOG_VALID_VALS = dict( fileType={ 'bas', 'c', 'cc', 'cpp', 'cs', 'cxx', 'doc', 'docx', 'dwf', 'gpx', 'h', 'hpp', 'htm', 'html', 'hwp', 'java', 'kml', 'kmz', 'odp', 'ods', 'odt', 'pdf', 'pl', 'ppt', 'pptx', 'ps', 'py', 'rtf', 'svg', 'swf', 'tex', 'text', 'txt', 'wap', 'wml', 'xls', 'xlsx', 'xml', }, c2coff={0, 1}, cr={ 'countryAF', 'countryAL', 'countryDZ', 'countryAS', 'countryAD', 'countryAO', 'countryAI', 'countryAQ', 'countryAG', 'countryAR', 'countryAM', 'countryAW', 'countryAU', 'countryAT', 'countryAZ', 'countryBS', 'countryBH', 'countryBD', 'countryBB', 'countryBY', 'countryBE', 'countryBZ', 'countryBJ', 'countryBM', 'countryBT', 'countryBO', 'countryBA', 'countryBW', 'countryBV', 'countryBR', 'countryIO', 'countryBN', 'countryBG', 'countryBF', 'countryBI', 'countryKH', 'countryCM', 'countryCA', 'countryCV', 'countryKY', 'countryCF', 'countryTD', 'countryCL', 'countryCN', 'countryCX', 'countryCC', 'countryCO', 'countryKM', 'countryCG', 'countryCD', 'countryCK', 'countryCR', 'countryCI', 'countryHR', 'countryCU', 'countryCY', 'countryCZ', 'countryDK', 'countryDJ', 'countryDM', 'countryDO', 'countryTP', 'countryEC', 'countryEG', 'countrySV', 'countryGQ', 'countryER', 'countryEE', 'countryET', 'countryEU', 'countryFK', 'countryFO', 'countryFJ', 'countryFI', 'countryFR', 'countryFX', 'countryGF', 'countryPF', 'countryTF', 'countryGA', 'countryGM', 'countryGE', 'countryDE', 'countryGH', 'countryGI', 'countryGR', 'countryGL', 'countryGD', 'countryGP', 'countryGU', 'countryGT', 'countryGN', 'countryGW', 'countryGY', 'countryHT', 'countryHM', 'countryVA', 'countryHN', 'countryHK', 'countryHU', 'countryIS', 'countryIN', 'countryID', 'countryIR', 'countryIQ', 'countryIE', 'countryIL', 'countryIT', 'countryJM', 'countryJP', 'countryJO', 'countryKZ', 'countryKE', 'countryKI', 'countryKP', 'countryKR', 'countryKW', 'countryKG', 'countryLA', 'countryLV', 'countryLB', 'countryLS', 'countryLR', 'countryLY', 'countryLI', 'countryLT', 'countryLU', 'countryMO', 'countryMK', 'countryMG', 'countryMW', 'countryMY', 'countryMV', 'countryML', 'countryMT', 'countryMH', 'countryMQ', 'countryMR', 'countryMU', 'countryYT', 'countryMX', 'countryFM', 'countryMD', 'countryMC', 'countryMN', 'countryMS', 'countryMA', 'countryMZ', 'countryMM', 'countryNA', 'countryNR', 'countryNP', 'countryNL', 'countryAN', 'countryNC', 'countryNZ', 'countryNI', 'countryNE', 'countryNG', 'countryNU', 'countryNF', 'countryMP', 'countryNO', 'countryOM', 'countryPK', 'countryPW', 'countryPS', 'countryPA', 'countryPG', 'countryPY', 'countryPE', 'countryPH', 'countryPN', 'countryPL', 'countryPT', 'countryPR', 'countryQA', 'countryRE', 'countryRO', 'countryRU', 'countryRW', 'countrySH', 'countryKN', 'countryLC', 'countryPM', 'countryVC', 'countryWS', 'countrySM', 'countryST', 'countrySA', 'countrySN', 'countryCS', 'countrySC', 'countrySL', 'countrySG', 'countrySK', 'countrySI', 'countrySB', 'countrySO', 'countryZA', 'countryGS', 'countryES', 'countryLK', 'countrySD', 'countrySR', 'countrySJ', 'countrySZ', 'countrySE', 'countryCH', 'countrySY', 'countryTW', 'countryTJ', 'countryTZ', 'countryTH', 'countryTG', 'countryTK', 'countryTO', 'countryTT', 'countryTN', 'countryTR', 'countryTM', 'countryTC', 'countryTV', 'countryUG', 'countryUA', 'countryAE', 'countryUK', 'countryUS', 'countryUM', 'countryUY', 'countryUZ', 'countryVU', 'countryVE', 'countryVN', 'countryVG', 'countryVI', 'countryWF', 'countryEH', 'countryYE', 'countryYU', 'countryZM', 'countryZW' }, gl={ 'ad', 'ae', 'af', 'ag', 'ai', 'al', 'am', 'an', 'ao', 'aq', 'ar', 'as', 'at', 'au', 'aw', 'az', 'ba', 'bb', 'bd', 'be', 'bf', 'bg', 'bh', 'bi', 'bj', 'bm', 'bn', 'bo', 'br', 'bs', 'bt', 'bv', 'bw', 'by', 'bz', 'ca', 'cc', 'cd', 'cf', 'cg', 'ch', 'ci', 'ck', 'cl', 'cm', 'cn', 'co', 'cr', 'cs', 'cu', 'cv', 'cx', 'cy', 'cz', 'de', 'dj', 'dk', 'dm', 'do', 'dz', 'ec', 'ee', 'eg', 'eh', 'er', 'es', 'et', 'fi', 'fj', 'fk', 'fm', 'fo', 'fr', 'ga', 'gd', 'ge', 'gf', 'gh', 'gi', 'gl', 'gm', 'gn', 'gp', 'gq', 'gr', 'gs', 'gt', 'gu', 'gw', 'gy', 'hk', 'hm', 'hn', 'hr', 'ht', 'hu', 'id', 'ie', 'il', 'in', 'io', 'iq', 'ir', 'is', 'it', 'jm', 'jo', 'jp', 'ke', 'kg', 'kh', 'ki', 'km', 'kn', 'kp', 'kr', 'kw', 'ky', 'kz', 'la', 'lb', 'lc', 'li', 'lk', 'lr', 'ls', 'lt', 'lu', 'lv', 'ly', 'ma', 'mc', 'md', 'mg', 'mh', 'mk', 'ml', 'mm', 'mn', 'mo', 'mp', 'mq', 'mr', 'ms', 'mt', 'mu', 'mv', 'mw', 'mx', 'my', 'mz', 'na', 'nc', 'ne', 'nf', 'ng', 'ni', 'nl', 'no', 'np', 'nr', 'nu', 'nz', 'om', 'pa', 'pe', 'pf', 'pg', 'ph', 'pk', 'pl', 'pm', 'pn', 'pr', 'ps', 'pt', 'pw', 'py', 'qa', 're', 'ro', 'ru', 'rw', 'sa', 'sb', 'sc', 'sd', 'se', 'sg', 'sh', 'si', 'sj', 'sk', 'sl', 'sm', 'sn', 'so', 'sr', 'st', 'sv', 'sy', 'sz', 'tc', 'td', 'tf', 'tg', 'th', 'tj', 'tk', 'tl', 'tm', 'tn', 'to', 'tr', 'tt', 'tv', 'tw', 'tz', 'ua', 'ug', 'uk', 'um', 'us', 'uy', 'uz', 'va', 'vc', 've', 'vg', 'vi', 'vn', 'vu', 'wf', 'ws', 'ye', 'yt', 'za', 'zm', 'zw', }, filter={0, 1}, hl={ 'af', 'sq', 'sm', 'ar', 'az', 'eu', 'be', 'bn', 'bh', 'bs', 'bg', 'ca', 'zh-CN', 'zh-TW', 'hr', 'cs', 'da', 'nl', 'en', 'eo', 'et', 'fo', 'fi', 'fr', 'fy', 'gl', 'ka', 'de', 'el', 'gu', 'iw', 'hi', 'hu', 'is', 'id', 'ia', 'ga', 'it', 'ja', 'jw', 'kn', 'ko', 'la', 'lv', 'lt', 'mk', 'ms', 'ml', 'mt', 'mr', 'ne', 'no', 'nn', 'oc', 'fa', 'pl', 'pt-BR', 'pt-PT', 'pa', 'ro', 'ru', 'gd', 'sr', 'si', 'sk', 'sl', 'es', 'su', 'sw', 'sv', 'tl', 'ta', 'te', 'th', 'ti', 'tr', 'uk', 'ur', 'uz', 'vi', 'cy', 'xh', 'zu' }, imgColorType={ 'color', 'gray', 'mono', 'trans' }, imgDominantColor={ 'black', 'blue', 'brown', 'gray', 'green', 'orange', 'pink', 'purple', 'red', 'teal', 'white', 'yellow', }, imgSize={ 'huge', 'icon', 'large', 'medium', 'small', 'xlarge', 'xxlarge', }, imgType={ 'clipart', 'face', 'lineart', 'stock', 'photo', 'animated' }, lr={ 'lang_ar', 'lang_bg', 'lang_ca', 'lang_zh-CN', 'lang_zh-TW', 'lang_hr', 'lang_cs', 'lang_da', 'lang_nl', 'lang_en', 'lang_et', 'lang_fi', 'lang_fr', 'lang_de', 'lang_el', 'lang_iw', 'lang_hu', 'lang_is', 'lang_id', 'lang_it', 'lang_ja', 'lang_ko', 'lang_lv', 'lang_lt', 'lang_no', 'lang_pl', 'lang_pt', 'lang_ro', 'lang_ru', 'lang_sr', 'lang_sk', 'lang_sl', 'lang_es', 'lang_sv', 'lang_tr', }, num={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, rights={ 'cc_publicdomain', 'cc_attribute', 'cc_sharealike', 'cc_noncommercial', 'cc_nonderived' }, safe={'active', 'off'}, searchType={None, 'image'}, siteSearchFilter={'e', 'i'}, start=range(1, 92) ) ############################################################################## # YouTube variables ############################################################################## YOUTUBE_TOPIC_IDS = { 'Entertainment topics': {'Entertainment (parent topic)': '/m/02jjt', 'Humor': '/m/09kqc', 'Movies': '/m/02vxn', 'Performing arts': '/m/05qjc', 'Professional wrestling': '/m/066wd', 'TV shows': '/m/0f2f9'}, 'Gaming topics': {'Action game': '/m/025zzc', 'Action-adventure game': '/m/02ntfj', 'Casual game': '/m/0b1vjn', 'Gaming (parent topic)': '/m/0bzvm2', 'Music video game': '/m/02hygl', 'Puzzle video game': '/m/04q1x3q', 'Racing video game': '/m/01sjng', 'Role-playing video game': '/m/0403l3g', 'Simulation video game': '/m/021bp2', 'Sports game': '/m/022dc6', 'Strategy video game': '/m/03hf_rm'}, 'Lifestyle topics': {'Fashion': '/m/032tl', 'Fitness': '/m/027x7n', 'Food': '/m/02wbm', 'Hobby': '/m/03glg', 'Lifestyle (parent topic)': '/m/019_rr', 'Pets': '/m/068hy', 'Physical attractiveness [Beauty]': '/m/041xxh', 'Technology': '/m/07c1v', 'Tourism': '/m/07bxq', 'Vehicles': '/m/07yv9'}, 'Music topics': {'Christian music': '/m/02mscn', 'Classical music': '/m/0ggq0m', 'Country': '/m/01lyv', 'Electronic music': '/m/02lkt', 'Hip hop music': '/m/0glt670', 'Independent music': '/m/05rwpb', 'Jazz': '/m/03_d0', 'Music (parent topic)': '/m/04rlf', 'Music of Asia': '/m/028sqc', 'Music of Latin America': '/m/0g293', 'Pop music': '/m/064t9', 'Reggae': '/m/06cqb', 'Rhythm and blues': '/m/06j6l', 'Rock music': '/m/06by7', 'Soul music': '/m/0gywn'}, 'Other topics': {'Knowledge': '/m/01k8wb'}, 'Society topics': {'Business': '/m/09s1f', 'Health': '/m/0kt51', 'Military': '/m/01h6rj', 'Politics': '/m/05qt0', 'Religion': '/m/06bvp', 'Society (parent topic)': '/m/098wr'}, 'Sports topics': {'American football': '/m/0jm_', 'Baseball': '/m/018jz', 'Basketball': '/m/018w8', 'Boxing': '/m/01cgz', 'Cricket': '/m/09xp_', 'Football': '/m/02vx4', 'Golf': '/m/037hz', 'Ice hockey': '/m/03tmr', 'Mixed martial arts': '/m/01h7lh', 'Motorsport': '/m/0410tth', 'Sports (parent topic)': '/m/06ntj', 'Tennis': '/m/07bs0', 'Volleyball': '/m/07_53'} } YOUTUBE_VID_CATEGORY_IDS = { 'Action/Adventure': '32', 'Anime/Animation': '31', 'Autos & Vehicles': '2', 'Classics': '33', 'Comedy': '34', 'Documentary': '35', 'Drama': '36', 'Education': '27', 'Entertainment': '24', 'Family': '37', 'Film & Animation': '1', 'Foreign': '38', 'Gaming': '20', 'Horror': '39', 'Howto & Style': '26', 'Movies': '30', 'Music': '10', 'News & Politics': '25', 'Nonprofits & Activism': '29', 'People & Blogs': '22', 'Pets & Animals': '15', 'Sci-Fi/Fantasy': '40', 'Science & Technology': '28', 'Short Movies': '18', 'Shorts': '42', 'Shows': '43', 'Sports': '17', 'Thriller': '41', 'Trailers': '44', 'Travel & Events': '19', 'Videoblogging': '21' } SERP_YTUBE_VALID_VALS = dict( channelType={'any', 'show'}, eventType={'completed', 'live', 'upcoming'}, forContentOwner={True, False, 'true', 'false'}, forDeveloper={True, False, 'true', 'false'}, forMine={True, False, 'true', 'false'}, maxResults=range(51), order={'date', 'rating', 'relevance', 'title', 'videoCount', 'viewCount'}, regionCode={ 'ad', 'ae', 'af', 'ag', 'ai', 'al', 'am', 'an', 'ao', 'aq', 'ar', 'as', 'at', 'au', 'aw', 'az', 'ba', 'bb', 'bd', 'be', 'bf', 'bg', 'bh', 'bi', 'bj', 'bm', 'bn', 'bo', 'br', 'bs', 'bt', 'bv', 'bw', 'by', 'bz', 'ca', 'cc', 'cd', 'cf', 'cg', 'ch', 'ci', 'ck', 'cl', 'cm', 'cn', 'co', 'cr', 'cs', 'cu', 'cv', 'cx', 'cy', 'cz', 'de', 'dj', 'dk', 'dm', 'do', 'dz', 'ec', 'ee', 'eg', 'eh', 'er', 'es', 'et', 'fi', 'fj', 'fk', 'fm', 'fo', 'fr', 'ga', 'gd', 'ge', 'gf', 'gh', 'gi', 'gl', 'gm', 'gn', 'gp', 'gq', 'gr', 'gs', 'gt', 'gu', 'gw', 'gy', 'hk', 'hm', 'hn', 'hr', 'ht', 'hu', 'id', 'ie', 'il', 'in', 'io', 'iq', 'ir', 'is', 'it', 'jm', 'jo', 'jp', 'ke', 'kg', 'kh', 'ki', 'km', 'kn', 'kp', 'kr', 'kw', 'ky', 'kz', 'la', 'lb', 'lc', 'li', 'lk', 'lr', 'ls', 'lt', 'lu', 'lv', 'ly', 'ma', 'mc', 'md', 'mg', 'mh', 'mk', 'ml', 'mm', 'mn', 'mo', 'mp', 'mq', 'mr', 'ms', 'mt', 'mu', 'mv', 'mw', 'mx', 'my', 'mz', 'na', 'nc', 'ne', 'nf', 'ng', 'ni', 'nl', 'no', 'np', 'nr', 'nu', 'nz', 'om', 'pa', 'pe', 'pf', 'pg', 'ph', 'pk', 'pl', 'pm', 'pn', 'pr', 'ps', 'pt', 'pw', 'py', 'qa', 're', 'ro', 'ru', 'rw', 'sa', 'sb', 'sc', 'sd', 'se', 'sg', 'sh', 'si', 'sj', 'sk', 'sl', 'sm', 'sn', 'so', 'sr', 'st', 'sv', 'sy', 'sz', 'tc', 'td', 'tf', 'tg', 'th', 'tj', 'tk', 'tl', 'tm', 'tn', 'to', 'tr', 'tt', 'tv', 'tw', 'tz', 'ua', 'ug', 'uk', 'um', 'us', 'uy', 'uz', 'va', 'vc', 've', 'vg', 'vi', 'vn', 'vu', 'wf', 'ws', 'ye', 'yt', 'za', 'zm', 'zw', }, relevanceLanguage={ 'af', 'sq', 'sm', 'ar', 'az', 'eu', 'be', 'bn', 'bh', 'bs', 'bg', 'ca', 'zh-CN', 'zh-TW', 'zh-Hans', 'zh-Hant', 'hr', 'cs', 'da', 'nl', 'en', 'eo', 'et', 'fo', 'fi', 'fr', 'fy', 'gl', 'ka', 'de', 'el', 'gu', 'iw', 'hi', 'hu', 'is', 'id', 'ia', 'ga', 'it', 'ja', 'jw', 'kn', 'ko', 'la', 'lv', 'lt', 'mk', 'ms', 'ml', 'mt', 'mr', 'ne', 'no', 'nn', 'oc', 'fa', 'pl', 'pt-BR', 'pt-PT', 'pa', 'ro', 'ru', 'gd', 'sr', 'si', 'sk', 'sl', 'es', 'su', 'sw', 'sv', 'tl', 'ta', 'te', 'th', 'ti', 'tr', 'uk', 'ur', 'uz', 'vi', 'cy', 'xh', 'zu' }, safeSearch={'moderate', 'none', 'strict'}, topicId={ '/m/04rlf', '/m/02mscn', '/m/0ggq0m', '/m/01lyv', '/m/02lkt', '/m/0glt670', '/m/05rwpb', '/m/03_d0', '/m/028sqc', '/m/0g293', '/m/064t9', '/m/06cqb', '/m/06j6l', '/m/06by7', '/m/0gywn', '/m/0bzvm2', '/m/025zzc', '/m/02ntfj', '/m/0b1vjn', '/m/02hygl', '/m/04q1x3q', '/m/01sjng', '/m/0403l3g', '/m/021bp2', '/m/022dc6', '/m/03hf_rm', '/m/06ntj', '/m/0jm_', '/m/018jz', '/m/018w8', '/m/01cgz', '/m/09xp_', '/m/02vx4', '/m/037hz', '/m/03tmr', '/m/01h7lh', '/m/0410tth', '/m/07bs0', '/m/07_53', '/m/02jjt', '/m/09kqc', '/m/02vxn', '/m/05qjc', '/m/066wd', '/m/0f2f9', '/m/019_rr', '/m/032tl', '/m/027x7n', '/m/02wbm', '/m/03glg', '/m/068hy', '/m/041xxh', '/m/07c1v', '/m/07bxq', '/m/07yv9', '/m/098wr', '/m/09s1f', '/m/0kt51', '/m/01h6rj', '/m/05qt0', '/m/06bvp', '/m/01k8wb' }, type={'channel', 'playlist', 'video'}, videoCaption={'any', 'closedCaption', 'none'}, videoCategoryId={ '1', '2', '10', '15', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44' }, videoDefinition={'any', 'high', 'standard'}, videoDimension={'2d', '3d', 'any'}, videoDuration={'any', 'long', 'medium', 'short'}, videoEmbeddable={'any', True, 'true'}, videoLicense={'any', 'creativeCommon', 'youtube'}, videoSyndicated={'any', True, 'true'}, videoType={'any', 'episode', 'movie'}, ) def _split_by_comma(s, length=50): """Group a comma-separated string into a list of at-most ``length``-length words each.""" str_split = s.split(',') str_list = [] for i in range(0, len(str_split) + length, length): temp_str = ','.join(str_split[i:i+length]) if temp_str: str_list.append(temp_str) return str_list def youtube_video_details(key, vid_ids): """Return details of videos for which the ids are given. Assumes ``ids`` is a comma-separated list of video ids with no spaces.""" base_url = ('https://www.googleapis.com/youtube/v3/videos?part=' 'contentDetails,id,liveStreamingDetails,localizations,player,' 'recordingDetails,snippet,statistics,status,topicDetails') vid_ids = _split_by_comma(vid_ids, length=50) final_df = pd.DataFrame() for vid_id in vid_ids: params = {'id': vid_id, 'key': key} logging.info(msg='Requesting: ' + 'video details') video_resp = requests.get(base_url, params=params) if video_resp.status_code >= 400: raise Exception(video_resp.json()) items_df = pd.DataFrame(video_resp.json()['items']) details = ['snippet', 'topicDetails', 'statistics', 'status', 'contentDetails'] detail_df = pd.DataFrame() for detail in details: try: detail_df = pd.concat([ detail_df, pd.DataFrame([x[detail] for x in video_resp.json()['items']]) ], axis=1) except KeyError: continue temp_df = pd.concat([items_df, detail_df], axis=1) final_df = final_df.append(temp_df, sort=False, ignore_index=True) return final_df def youtube_channel_details(key, channel_ids): """Return details of channels for which the ids are given. Assumes ``ids`` is a comma-separated list of channel ids with no spaces.""" base_url = ('https://www.googleapis.com/youtube/v3/channels?part=' 'snippet,contentDetails,statistics') channel_ids = _split_by_comma(channel_ids, length=50) final_df = pd.DataFrame() for channel_id in channel_ids: params = {'id': channel_id, 'key': key} logging.info(msg='Requesting: ' + 'channel details') channel_resp = requests.get(base_url, params=params) if channel_resp.status_code >= 400: raise Exception(channel_resp.json()) items_df = pd.DataFrame(channel_resp.json()['items']) details = ['snippet', 'statistics', 'contentDetails'] detail_df = pd.DataFrame() for detail in details: try: detail_df = pd.concat([ detail_df, pd.DataFrame([x[detail] for x in channel_resp.json()['items']]) ], axis=1) except KeyError: continue temp_df = pd.concat([items_df, detail_df], axis=1) final_df = final_df.append(temp_df, sort=False, ignore_index=True) return final_df def _dict_product(d): """Return the product of all values of a dict, while coupling each value with its key. This is used to generate multiple queries out of possibly multiple arguments in serp_goog. >>> d = {'a': [1], 'b': [2, 3, 4], 'c': [5, 6]} >>> _dict_product(d) >>> [{'a': 1, 'b': 2, 'c': 5}, {'a': 1, 'b': 2, 'c': 6}, {'a': 1, 'b': 3, 'c': 5}, {'a': 1, 'b': 3, 'c': 6}, {'a': 1, 'b': 4, 'c': 5}, {'a': 1, 'b': 4, 'c': 6}] """ items = list(d.items()) keys = [x[0] for x in items] values = [x[1] for x in items] dicts = [] for prod in product(*values): tempdict = dict(zip(keys, prod)) dicts.append(tempdict) return dicts def serp_goog(q, cx, key, c2coff=None, cr=None, dateRestrict=None, exactTerms=None, excludeTerms=None, fileType=None, filter=None, gl=None, highRange=None, hl=None, hq=None, imgColorType=None, imgDominantColor=None, imgSize=None, imgType=None, linkSite=None, lowRange=None, lr=None, num=None, orTerms=None, relatedSite=None, rights=None, safe=None, searchType=None, siteSearch=None, siteSearchFilter=None, sort=None, start=None): """Query Google and get search results in a DataFrame. For each parameter, you can supply single or multiple values / arguments. If you pass multiple arguments, all the possible combinations of arguments (the product) will be requested, and you will get one DataFrame combining all queries. See examples below. :param q: The search expression. :param cx: The custom search engine ID to use for this request. :param key: The API key of your custom search engine. :param c2coff: Enables or disables Simplified and Traditional Chinese Search. The default value for this parameter is 0 (zero), meaning that the feature is enabled. Supported values are:1: Disabled0: Enabled (default) :param cr: Restricts search results to documents originating in a particular country. You may use Boolean operators in the cr parameter's value.Google Search determines the country of a document by analyzing:the top- level domain (TLD) of the document's URLthe geographic location of the Web server's IP addressSee the Country Parameter Values page for a list of valid values for this parameter. :param dateRestrict: Restricts results to URLs based on date. Supported values include:d[number]: requests results from the specified number of past days. - d[number]: requests results from the specified number of past days. - w[number]: requests results from the specified number of past weeks. - m[number]: requests results from the specified number of past months. - y[number]: requests results from the specified number of past years. :param exactTerms: Identifies a phrase that all documents in the search results must contain. :param excludeTerms: Identifies a word or phrase that should not appear in any documents in the search results. :param fileType: Restricts results to files of a specified extension. A list of file types indexable by Google can be found in Search Console Help Center. :param filter: Controls turning on or off the duplicate content filter.See Automatic Filtering for more information about Google's search results filters. Note that host crowding filtering applies only to multi-site searches.By default, Google applies filtering to all search results to improve the quality of those results. Acceptable values are: "0": Turns off duplicate content filter. "1": Turns on duplicate content filter. :param gl: Geolocation of end user. The gl parameter value is a two-letter country code. The gl parameter boosts search results whose country of origin matches the parameter value. See the Country Codes page for a list of valid values.Specifying a gl parameter value should lead to more relevant results. This is particularly true for international customers and, even more specifically, for customers in English- speaking countries other than the United States. :param highRange: Specifies the ending value for a search range.Use lowRange and highRange to append an inclusive search range of lowRange...highRange to the query. :param hl: Sets the user interface language. Explicitly setting this parameter improves the performance and the quality of your search results.See the Interface Languages section of Internationalizing Queries and Results Presentation for more information, and Supported Interface Languages for a list of supported languages. :param hq: Appends the specified query terms to the query, as if they were combined with a logical AND operator. :param imgColorType: Returns black and white, grayscale, or color images: mono, gray, and color. Acceptable values are: "color": color "gray": gray "mono": mono :param imgDominantColor: Returns images of a specific dominant color. Acceptable values are: "black": black "blue": blue "brown": brown "gray": gray "green": green "orange": orange "pink": pink "purple": purple "red": red "teal": teal "white": white "yellow": yellow :param imgSize: Returns images of a specified size. Acceptable values are: "huge": huge "icon": icon "large": large "medium": medium "small": small "xlarge": xlarge "xxlarge": xxlarge :param imgType: Returns images of a type. Acceptable values are: "clipart": clipart "face": face "lineart": lineart "news": news "photo": photo :param linkSite: Specifies that all search results should contain a link to a particular URL :param lowRange: Specifies the starting value for a search range. Use lowRange and highRange to append an inclusive search range of lowRange...highRange to the query. :param lr: Restricts the search to documents written in a particular language (e.g., lr=lang_ja). Acceptable values are: "lang_ar": Arabic "lang_bg": Bulgarian "lang_ca": Catalan "lang_cs": Czech "lang_da": Danish "lang_de": German "lang_el": Greek "lang_en": English "lang_es": Spanish "lang_et": Estonian "lang_fi": Finnish "lang_fr": French "lang_hr": Croatian "lang_hu": Hungarian "lang_id": Indonesian "lang_is": Icelandic "lang_it": Italian "lang_iw": Hebrew "lang_ja": Japanese "lang_ko": Korean "lang_lt": Lithuanian "lang_lv": Latvian "lang_nl": Dutch "lang_no": Norwegian "lang_pl": Polish "lang_pt": Portuguese "lang_ro": Romanian "lang_ru": Russian "lang_sk": Slovak "lang_sl": Slovenian "lang_sr": Serbian "lang_sv": Swedish "lang_tr": Turkish "lang_zh- CN": Chinese (Simplified) "lang_zh-TW": Chinese (Traditional) :param num: Number of search results to return.Valid values are integers between 1 and 10, inclusive. :param orTerms: Provides additional search terms to check for in a document, where each document in the search results must contain at least one of the additional search terms. :param relatedSite: Specifies that all search results should be pages that are related to the specified URL. :param rights: Filters based on licensing. Supported values include: cc_publicdomain, cc_attribute, cc_sharealike, cc_noncommercial, cc_nonderived, and combinations of these. :param safe: Search safety level. Acceptable values are: "active": Enables SafeSearch filtering. "off": Disables SafeSearch filtering. (default) :param searchType: Specifies the search type: image. If unspecified, results are limited to webpages. Acceptable values are: "image": custom image search. :param siteSearch: Specifies all search results should be pages from a given site. :param siteSearchFilter: Controls whether to include or exclude results from the site named in the siteSearch parameter. Acceptable values are: "e": exclude "i": include :param sort: The sort expression to apply to the results. :param start: The index of the first result to return.Valid value are integers starting 1 (default) and the second result is 2 and so forth. For example &start=11 gives the second page of results with the default "num" value of 10 results per page.Note: No more than 100 results will ever be returned for any query with JSON API, even if more than 100 documents match the query, so setting (start + num) to more than 100 will produce an error. Note that the maximum value for num is 10. The following function call will produce two queries: "hotel" in the USA, and "hotel" in France >>> serp_goog(q='hotel', gl=['us', 'fr'], cx='YOUR_CX', key='YOUR_KEY') The below function call will prouce four queries and make four requests: "fligts" in UK "fligts" in Australia "tickets" in UK "tickets" in Australia 'cr' here refers to 'country restrict', which focuses on content originating from the specified country. >>> serp_goog(q=['flights', 'tickets'], cr=['countryUK', 'countryAU'], cx='YOUR_CX', key='YOUR_KEY') """ params = locals() supplied_params = {k: v for k, v in params.items() if params[k] is not None} for p in supplied_params: if isinstance(supplied_params[p], (str, int)): supplied_params[p] = [supplied_params[p]] for p in supplied_params: if p in SERP_GOOG_VALID_VALS: if not set(supplied_params[p]).issubset(SERP_GOOG_VALID_VALS[p]): raise ValueError('Please make sure you provide a' ' valid value for "{}", valid values:\n' '{}'.format(p, sorted(SERP_GOOG_VALID_VALS[p]))) params_list = _dict_product(supplied_params) base_url = 'https://www.googleapis.com/customsearch/v1?' specified_cols = ['searchTerms', 'rank', 'title', 'snippet', 'displayLink', 'link', 'queryTime', 'totalResults'] responses = [] for param in params_list: param_log = ', '.join([k + '=' + str(v) for k, v in param.items()]) logging.info(msg='Requesting: ' + param_log) resp = requests.get(base_url, params=param) if resp.status_code >= 400: raise Exception(resp.json()) responses.append(resp) result_df = pd.DataFrame() for i, resp in enumerate(responses): request_metadata = resp.json()['queries']['request'][0] del request_metadata['title'] search_info = resp.json()['searchInformation'] if int(search_info['totalResults']) == 0: df = pd.DataFrame(columns=specified_cols, index=range(1)) df['searchTerms'] = request_metadata['searchTerms'] # These keys don't appear in the response so they have to be # added manually for missing in ['lr', 'num', 'start', 'c2coff']: if missing in params_list[i]: df[missing] = params_list[i][missing] else: df = pd.DataFrame(resp.json()['items']) df['cseName'] = resp.json()['context']['title'] start_idx = request_metadata['startIndex'] df['rank'] = range(start_idx, start_idx + len(df)) for missing in ['lr', 'num', 'start', 'c2coff']: if missing in params_list[i]: df[missing] = params_list[i][missing] meta_columns = {**request_metadata, **search_info} df = df.assign(**meta_columns) df['queryTime'] = datetime.datetime.now(tz=datetime.timezone.utc) df['queryTime'] = pd.to_datetime(df['queryTime']) if 'image' in df: img_df =
json_normalize(df['image'])
pandas.io.json.json_normalize
# python regression_randombag_sample.py MSA_NAME LEN_SEEDS NUM_SAMPLE SAMPLE_FRAC # python regression_randombag_sample.py Atlanta 3 NUM_SAMPLE SAMPLE_FRAC import setproctitle setproctitle.setproctitle("covid-19-vac@chenlin") import sys import os import constants import functions import numpy as np import pandas as pd import pickle from sklearn import preprocessing import statsmodels.api as sm from statsmodels.stats.outliers_influence import summary_table from sklearn.preprocessing import StandardScaler from sklearn import linear_model from scipy import stats import math import pdb ############################################################################### # Main variables root = '/data/chenlin/COVID-19/Data' timestring = '20210206' MSA_NAME = sys.argv[1] MSA_NAME_FULL = constants.MSA_NAME_FULL_DICT[MSA_NAME] print('\nMSA_NAME: ',MSA_NAME) RANDOM_SEED_LIST = [66,42,5] LEN_SEEDS = int(sys.argv[2]) print('Num of random seeds: ', LEN_SEEDS) print('Random seeds: ',RANDOM_SEED_LIST[:LEN_SEEDS]) LASSO_alpha = 0.1 #float(sys.argv[2]) #print('LASSO_alpha:',LASSO_alpha) NUM_SAMPLE = int(sys.argv[3]); print('Num of samples: ', NUM_SAMPLE) SAMPLE_FRAC = float(sys.argv[4]); print('Sample fraction: ', SAMPLE_FRAC) ############################################################################### # Load Common Data: No need for reloading when switching among differet MSAs. # Load POI-CBG visiting matrices f = open(os.path.join(root, MSA_NAME, '%s_2020-03-01_to_2020-05-02.pkl'%MSA_NAME_FULL), 'rb') poi_cbg_visits_list = pickle.load(f) f.close() # Load ACS Data for matching with NYT Data acs_data = pd.read_csv(os.path.join(root,'list1.csv'),header=2) acs_msas = [msa for msa in acs_data['CBSA Title'].unique() if type(msa) == str] # Load NYT Data nyt_data = pd.read_csv(os.path.join(root, 'us-counties.csv')) # Load Demographic Data filepath = os.path.join(root,"safegraph_open_census_data/data/cbg_b01.csv") cbg_agesex =
pd.read_csv(filepath)
pandas.read_csv
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'], index=[0])) expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan])) tm.assert_frame_equal(df, expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_drop(self): # unique s = Series([1, 2], index=['one', 'two']) expected = Series([1], index=['one']) result = s.drop(['two']) assert_series_equal(result, expected) result = s.drop('two', axis='rows') assert_series_equal(result, expected) # non-unique # GH 5248 s = Series([1, 1, 2], index=['one', 'two', 'one']) expected = Series([1, 2], index=['one', 'one']) result = s.drop(['two'], axis=0) assert_series_equal(result, expected) result = s.drop('two') assert_series_equal(result, expected) expected = Series([1], index=['two']) result = s.drop(['one']) assert_series_equal(result, expected) result = s.drop('one') assert_series_equal(result, expected) # single string/tuple-like s = Series(range(3), index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a', )) # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.ix[1:] assert_series_equal(result, expected) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2, 3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3], index=[False]) assert_series_equal(result, expected) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) self.assertEqual(aa.name, 'ts') self.assertEqual(ea.name, 'ts') self.assertEqual(ab.name, 'ts') self.assertEqual(eb.name, 'ts') for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) _check_align(self.ts[:0], self.ts[:-5], how=kind, fill=-1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) _check_align(self.ts[:-5], self.ts[:0], how=kind, fill=-1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) _check_align(self.ts[:0], self.ts[:0], how=kind, fill=-1) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_align_multiindex(self): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assertTrue(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): self.assertEqual(val, self.ts[idx]) # return a copy the same index here result = self.ts.reindex() self.assertFalse((result is self.ts)) def test_reindex_nan(self): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed self.empty.reindex(self.ts.index, method='pad') # it works # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10), dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a', 'g', 'c', 'f'] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inferrence of new dtype s = Series([True, False, False, True], index=list('abcd')) new_index = 'agc' result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=lrange(0, 5)) result = s.shift(1).fillna(method='bfill') expected = Series(False, index=lrange(0, 5)) assert_series_equal(result, expected) def test_reindex_nearest(self): s = Series(np.arange(10, dtype='int64')) target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = Series(np.around(target).astype('int64'), target) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest') assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=1) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) assert_series_equal(expected, actual) def test_reindex_backfill(self): pass def test_reindex_int(self): ts = self.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_int.dtype, np.float_) # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) self.assertEqual(reindexed_int.dtype, np.int_) def test_reindex_bool(self): # A series other than float, int, string, or object ts = self.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_bool.dtype, np.object_) # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) self.assertEqual(reindexed_bool.dtype, np.bool_) def test_reindex_bool_pad(self): # fail ts = self.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(self.ts.index, method='pad') self.assertTrue(isnull(filled_bool[:5]).all()) def test_reindex_like(self): other = self.ts[::2] assert_series_equal(self.ts.reindex(other.index), self.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013, 3, 5) day2 = datetime(2013, 5, 5) day3 = datetime(2014, 3, 5) series1 = Series([5, None, None], [day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected = Series([5, np.nan], index=[day1, day3]) assert_series_equal(result, expected) def test_reindex_fill_value(self): # ----------------------------------------------------------- # floats floats = Series([1., 2., 3.]) result = floats.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2., 3., 0], index=[1, 2, 3]) assert_series_equal(result, expected) # ----------------------------------------------------------- # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) self.assertTrue(issubclass(result.dtype.type, np.integer)) assert_series_equal(result, expected) # ----------------------------------------------------------- # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected =
Series([2, 3, np.nan], index=[1, 2, 3], dtype=object)
pandas.Series
from mimic3benchmark.readers import DecompensationReader, InHospitalMortalityReader import pandas as pd import logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) logger.debug("hello") # reader = DecompensationReader(dataset_dir='data/decompensation/train', # listfile='data/decompensation/train/listfile.csv') reader =InHospitalMortalityReader(dataset_dir='data/in-hospital-mortality/train', listfile='data/in-hospital-mortality/train/listfile.csv') print("we have 100k indices, and they get split between train and test. ") print("we also have different episodes split as well") # print("Contains all the pertinent info for rejoining everything") print(reader.read_example(10)) print("so we have this 10th example. Now, what do we do to it?") print(reader.read_example(10)["name"]) patient_id = reader.read_example(10)["name"].split("_")[0] MIMIC_ROOT = "data/root/train/" MIMIC_og_data_ROOT = "data/physionet.org/files/mimiciii/1.4/" notes_table = "NOTEEVENTS.csv" import os with open(os.path.join(MIMIC_ROOT, patient_id, "stays.csv"), "r") as file: print("finding relevant info for {}".format(patient_id)) entries = [] for line in file: stuff = line.split(",") print(stuff) entries.append(stuff[0:3]) entries = entries[1:] print("why are there two things in here? Because there are two episodes") print("the reason is that. the mortality prediction only uses 1 episode. The reason is that they may remove or invalidate parts of it for the mortality prediction" "For instance! the stay may have been < 48 hours" "but the decompensation prediction episode for examples uses 2 episodes") # subj_id = # hadm_id = bb # icustay_id = cc print("now, we will do some interesting joining!") df = pd.read_csv(os.path.join(MIMIC_og_data_ROOT, notes_table)) df.CHARTDATE = pd.to_datetime(df.CHARTDATE) df.CHARTTIME =
pd.to_datetime(df.CHARTTIME)
pandas.to_datetime
import pickle import os import numpy as np import torch.nn.functional as F import torch import pandas as pd import anndata as ad from scETM import scETM from multiprocessing import Pool from itertools import repeat def simulate_mean_diff_once(data): half = len(data) // 2 ind = np.arange(len(data)) np.random.shuffle(ind) md = data[ind[:half]].mean(0) - data[ind[half:half * 2]].mean(0) return md def simulate_mean_diff(data, repeats): mds = [] for _ in range(repeats): mds.append(simulate_mean_diff_once(data)) return mds def calc_md_pval(series, delta_kept, mds_simulated): mds = [] unique = series.unique() for t in unique: test = delta_kept[series == t] # (cells_test, topics) ctrl = delta_kept[series != t] # (cells_ctrl, topics) md = test.mean(0) - ctrl.mean(0) # (topics) mds.append(md) mds = np.array(mds) # (cell_types, topics) mds_simulated = np.array(mds_simulated) pvals = (mds_simulated.T[None, ...] > mds[..., None]).sum(-1) + 1 / (reps + 1) # (cell_types, topics, *repeats*) pvals =
pd.DataFrame(pvals, index=unique, columns=topic_kept)
pandas.DataFrame
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0,
pd.Timestamp("2015-01-09")
pandas.Timestamp
from datetime import datetime, timedelta import numpy as np import pytest import pytz from pandas._libs.tslibs import iNaT import pandas.compat as compat from pandas import ( DatetimeIndex, Index, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, isna) from pandas.core.arrays import PeriodArray from pandas.util import testing as tm @pytest.mark.parametrize("nat,idx", [(Timestamp("NaT"), DatetimeIndex), (Timedelta("NaT"), TimedeltaIndex), (Period("NaT", freq="M"), PeriodArray)]) def test_nat_fields(nat, idx): for field in idx._field_ops: # weekday is a property of DTI, but a method # on NaT/Timestamp for compat with datetime if field == "weekday": continue result = getattr(NaT, field) assert np.isnan(result) result = getattr(nat, field) assert np.isnan(result) for field in idx._bool_ops: result = getattr(NaT, field) assert result is False result = getattr(nat, field) assert result is False def test_nat_vector_field_access(): idx = DatetimeIndex(["1/1/2000", None, None, "1/4/2000"]) for field in DatetimeIndex._field_ops: # weekday is a property of DTI, but a method # on NaT/Timestamp for compat with datetime if field == "weekday": continue result = getattr(idx, field) expected = Index([getattr(x, field) for x in idx]) tm.assert_index_equal(result, expected) ser = Series(idx) for field in DatetimeIndex._field_ops: # weekday is a property of DTI, but a method # on NaT/Timestamp for compat with datetime if field == "weekday": continue result = getattr(ser.dt, field) expected = [getattr(x, field) for x in idx] tm.assert_series_equal(result, Series(expected)) for field in DatetimeIndex._bool_ops: result = getattr(ser.dt, field) expected = [getattr(x, field) for x in idx] tm.assert_series_equal(result, Series(expected)) @pytest.mark.parametrize("klass", [Timestamp, Timedelta, Period]) @pytest.mark.parametrize("value", [None, np.nan, iNaT, float("nan"), NaT, "NaT", "nat"]) def test_identity(klass, value): assert klass(value) is NaT @pytest.mark.parametrize("klass", [Timestamp, Timedelta, Period]) @pytest.mark.parametrize("value", ["", "nat", "NAT", None, np.nan]) def test_equality(klass, value): if klass is Period and value == "": pytest.skip("Period cannot parse empty string") assert klass(value).value == iNaT @pytest.mark.parametrize("klass", [Timestamp, Timedelta]) @pytest.mark.parametrize("method", ["round", "floor", "ceil"]) @pytest.mark.parametrize("freq", ["s", "5s", "min", "5min", "h", "5h"]) def test_round_nat(klass, method, freq): # see gh-14940 ts = klass("nat") round_method = getattr(ts, method) assert round_method(freq) is ts @pytest.mark.parametrize("method", [ "astimezone", "combine", "ctime", "dst", "fromordinal", "fromtimestamp", "isocalendar", "strftime", "strptime", "time", "timestamp", "timetuple", "timetz", "toordinal", "tzname", "utcfromtimestamp", "utcnow", "utcoffset", "utctimetuple", "timestamp" ]) def test_nat_methods_raise(method): # see gh-9513, gh-17329 msg = "NaTType does not support {method}".format(method=method) with pytest.raises(ValueError, match=msg): getattr(NaT, method)() @pytest.mark.parametrize("method", [ "weekday", "isoweekday" ]) def test_nat_methods_nan(method): # see gh-9513, gh-17329 assert np.isnan(getattr(NaT, method)()) @pytest.mark.parametrize("method", [ "date", "now", "replace", "today", "tz_convert", "tz_localize" ]) def test_nat_methods_nat(method): # see gh-8254, gh-9513, gh-17329 assert getattr(NaT, method)() is NaT @pytest.mark.parametrize("get_nat", [ lambda x: NaT, lambda x: Timedelta(x), lambda x: Timestamp(x) ]) def test_nat_iso_format(get_nat): # see gh-12300 assert get_nat("NaT").isoformat() == "NaT" @pytest.mark.parametrize("klass,expected", [ (Timestamp, ["freqstr", "normalize", "to_julian_date", "to_period", "tz"]), (Timedelta, ["components", "delta", "is_populated", "to_pytimedelta", "to_timedelta64", "view"]) ]) def test_missing_public_nat_methods(klass, expected): # see gh-17327 # # NaT should have *most* of the Timestamp and Timedelta methods. # Here, we check which public methods NaT does not have. We # ignore any missing private methods. nat_names = dir(NaT) klass_names = dir(klass) missing = [x for x in klass_names if x not in nat_names and not x.startswith("_")] missing.sort() assert missing == expected def _get_overlap_public_nat_methods(klass, as_tuple=False): """ Get overlapping public methods between NaT and another class. Parameters ---------- klass : type The class to compare with NaT as_tuple : bool, default False Whether to return a list of tuples of the form (klass, method). Returns ------- overlap : list """ nat_names = dir(NaT) klass_names = dir(klass) overlap = [x for x in nat_names if x in klass_names and not x.startswith("_") and callable(getattr(klass, x))] # Timestamp takes precedence over Timedelta in terms of overlap. if klass is Timedelta: ts_names = dir(Timestamp) overlap = [x for x in overlap if x not in ts_names] if as_tuple: overlap = [(klass, method) for method in overlap] overlap.sort() return overlap @pytest.mark.parametrize("klass,expected", [ (Timestamp, ["astimezone", "ceil", "combine", "ctime", "date", "day_name", "dst", "floor", "fromisoformat", "fromordinal", "fromtimestamp", "isocalendar", "isoformat", "isoweekday", "month_name", "now", "replace", "round", "strftime", "strptime", "time", "timestamp", "timetuple", "timetz", "to_datetime64", "to_numpy", "to_pydatetime", "today", "toordinal", "tz_convert", "tz_localize", "tzname", "utcfromtimestamp", "utcnow", "utcoffset", "utctimetuple", "weekday"]), (Timedelta, ["total_seconds"]) ]) def test_overlap_public_nat_methods(klass, expected): # see gh-17327 # # NaT should have *most* of the Timestamp and Timedelta methods. # In case when Timestamp, Timedelta, and NaT are overlap, the overlap # is considered to be with Timestamp and NaT, not Timedelta. # "fromisoformat" was introduced in 3.7 if klass is Timestamp and not compat.PY37: expected.remove("fromisoformat") assert _get_overlap_public_nat_methods(klass) == expected @pytest.mark.parametrize("compare", ( _get_overlap_public_nat_methods(Timestamp, True) + _get_overlap_public_nat_methods(Timedelta, True)) ) def test_nat_doc_strings(compare): # see gh-17327 # # The docstrings for overlapping methods should match. klass, method = compare klass_doc = getattr(klass, method).__doc__ nat_doc = getattr(NaT, method).__doc__ assert klass_doc == nat_doc _ops = { "left_plus_right": lambda a, b: a + b, "right_plus_left": lambda a, b: b + a, "left_minus_right": lambda a, b: a - b, "right_minus_left": lambda a, b: b - a, "left_times_right": lambda a, b: a * b, "right_times_left": lambda a, b: b * a, "left_div_right": lambda a, b: a / b, "right_div_left": lambda a, b: b / a, } @pytest.mark.parametrize("op_name", list(_ops.keys())) @pytest.mark.parametrize("value,val_type", [ (2, "scalar"), (1.5, "scalar"), (np.nan, "scalar"), (timedelta(3600), "timedelta"), (Timedelta("5s"), "timedelta"), (datetime(2014, 1, 1), "timestamp"), (Timestamp("2014-01-01"), "timestamp"), (Timestamp("2014-01-01", tz="UTC"), "timestamp"), (Timestamp("2014-01-01", tz="US/Eastern"), "timestamp"), (pytz.timezone("Asia/Tokyo").localize(datetime(2014, 1, 1)), "timestamp"), ]) def test_nat_arithmetic_scalar(op_name, value, val_type): # see gh-6873 invalid_ops = { "scalar": {"right_div_left"}, "timedelta": {"left_times_right", "right_times_left"}, "timestamp": {"left_times_right", "right_times_left", "left_div_right", "right_div_left"} } op = _ops[op_name] if op_name in invalid_ops.get(val_type, set()): if (val_type == "timedelta" and "times" in op_name and isinstance(value, Timedelta)): msg = "Cannot multiply" else: msg = "unsupported operand type" with pytest.raises(TypeError, match=msg): op(NaT, value) else: if val_type == "timedelta" and "div" in op_name: expected = np.nan else: expected = NaT assert op(NaT, value) is expected @pytest.mark.parametrize("val,expected", [ (np.nan, NaT), (NaT, np.nan), (np.timedelta64("NaT"), np.nan) ]) def test_nat_rfloordiv_timedelta(val, expected): # see gh-#18846 # # See also test_timedelta.TestTimedeltaArithmetic.test_floordiv td = Timedelta(hours=3, minutes=4) assert td // val is expected @pytest.mark.parametrize("op_name", [ "left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left" ]) @pytest.mark.parametrize("value", [ DatetimeIndex(["2011-01-01", "2011-01-02"], name="x"), DatetimeIndex(["2011-01-01", "2011-01-02"], name="x"), TimedeltaIndex(["1 day", "2 day"], name="x"), ]) def test_nat_arithmetic_index(op_name, value): # see gh-11718 exp_name = "x" exp_data = [NaT] * 2 if isinstance(value, DatetimeIndex) and "plus" in op_name: expected = DatetimeIndex(exp_data, name=exp_name, tz=value.tz) else: expected = TimedeltaIndex(exp_data, name=exp_name) tm.assert_index_equal(_ops[op_name](NaT, value), expected) @pytest.mark.parametrize("op_name", [ "left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left" ]) @pytest.mark.parametrize("box", [TimedeltaIndex, Series]) def test_nat_arithmetic_td64_vector(op_name, box): # see gh-19124 vec = box(["1 day", "2 day"], dtype="timedelta64[ns]") box_nat = box([NaT, NaT], dtype="timedelta64[ns]") tm.assert_equal(_ops[op_name](vec, NaT), box_nat) def test_nat_pinned_docstrings(): # see gh-17327 assert NaT.ctime.__doc__ == datetime.ctime.__doc__ def test_to_numpy_alias(): # GH 24653: alias .to_numpy() for scalars expected = NaT.to_datetime64() result = NaT.to_numpy() assert isna(expected) and isna(result) @pytest.mark.parametrize("other", [
Timedelta(0)
pandas.Timedelta
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Covid statistics Netherlands - functions related to data loading. Exports: - `init_data()`: load data, store into global DFS, download updates if necessary. - `DFS`: dict with initialized data (DataFrames). Created on Sat Oct 23 16:06:32 2021 @author: @hk_nien on Twitter """ import re import io import urllib import urllib.request from pathlib import Path import time import pandas as pd import nl_regions try: DATA_PATH = Path(__file__).parent / 'data' except NameError: DATA_PATH = Path('data') # this will contain dataframes, initialized by init_data(). # - mun: municipality demograhpics # - cases: cases by municipality # - events: Dutch events by date # - Rt_rivm: RIVM Rt estimates # - anomalies: anomaly data DFS = {} def _str_datetime(t): return t.strftime('%a %d %b %H:%M') def load_events(): """Return events DataFrame. - index: DateTime start. - 'Date_stop': DateTime - 'Description': Description string. - 'Flags': None or string (to indicate that it is only shown in a particular type of grahp. """ df = pd.read_csv(DATA_PATH / 'events_nl.csv', comment='#') df['Date'] = pd.to_datetime(df['Date']) +
pd.Timedelta('12:00:00')
pandas.Timedelta
import pendulum as pdl import sys sys.path.append(".") # the memoization-related library import loguru import itertools import portion import klepto.keymaps import CacheIntervals as ci from CacheIntervals.utils import flatten from CacheIntervals.utils import pdl2pd, pd2pdl from CacheIntervals.utils import Timer from CacheIntervals.Intervals import pd2po, po2pd from CacheIntervals.RecordInterval import RecordIntervals, RecordIntervalsPandas class QueryRecorder: ''' A helper class ''' pass class MemoizationWithIntervals(object): ''' The purpose of this class is to optimise the number of call to a function retrieving possibly disjoint intervals: - do standard caching for a given function - additively call for a date posterior to one already cached is supposed to yield a pandas Frame which can be obtained by concatenating the cached result and a -- hopefully much -- smaller query Maintains a list of intervals that have been called. With a new interval: - ''' keymapper = klepto.keymaps.stringmap(typed=False, flat=False) def __init__(self, pos_args=None, names_kwarg=None, classrecorder=RecordIntervalsPandas, aggregation=lambda listdfs: pd.concat(listdfs, axis=0), debug=False, # memoization=klepto.lru_cache( # cache=klepto.archives.hdf_archive( # f'{pdl.today().to_date_string()}_memoization.hdf5'), # keymap=keymapper), memoization=klepto.lru_cache( cache=klepto.archives.dict_archive(), keymap=keymapper), **kwargs): ''' :param pos_args: the indices of the positional arguments that will be handled as intervals :param names_kwarg: the name of the named parameters that will be handled as intervals :param classrecorder: the interval recorder type we want to use :param memoization: a memoization algorithm ''' # A dictionary of positional arguments indices # that are intervals self.argsi = {} self.kwargsi = {} # if pos_args is not None: # for posarg in pos_args: # self.argsi[posarg] = classrecorder(**kwargs) self.pos_args_itvl = pos_args if pos_args is not None else [] #print(self.args) # if names_kwarg is not None: # for namedarg in names_kwarg: # self.kwargsi[namedarg] = classrecorder(**kwargs) self.names_kwargs_itvl = names_kwarg if names_kwarg is not None else {} #print(self.kwargs) self.memoization = memoization self.aggregation = aggregation self.debugQ = debug self.argsdflt = None self.kwargsdflt = None self.time_last_call = pdl.today() self.classrecorder = classrecorder self.kwargsrecorder = kwargs self.argssolver = None self.query_recorder = QueryRecorder() def __call__(self, f): ''' The interval memoization leads to several calls to the standard memoised function and generates a list of return values. The aggregation is needed for the doubly lazy function to have the same signature as the To access, the underlying memoized function pass get_function_cachedQ=True to the kwargs of the overloaded call (not of this function :param f: the function to memoize :return: the wrapper to the memoized function ''' if self.argssolver is None: self.argssolver = ci.Functions.ArgsSolver(f, split_args_kwargsQ=True) @self.memoization def f_cached(*args, **kwargs): ''' The cached function is used for a double purpose: 1. for standard calls, will act as the memoised function in a traditional way 2. Additively when pass parameters of type QueryRecorder, it will create or retrieve the interval recorders associated with the values of non-interval parameters. In this context, we use the cached function as we would a dictionary. ''' QueryRecorderQ = False args_new = [] kwargs_new = {} ''' check whether this is a standard call to the user function or a request for the interval recorders ''' for i,arg in enumerate(args): if isinstance(arg, QueryRecorder): args_new.append(self.classrecorder(**self.kwargsrecorder)) QueryRecorderQ = True else: args_new.append(args[i]) for name in kwargs: if isinstance(kwargs[name], QueryRecorder): kwargs_new[name] = self.classrecorder(**self.kwargsrecorder) QueryRecorderQ = True else: kwargs_new[name] = kwargs[name] if QueryRecorderQ: return args_new, kwargs_new return f(*args, **kwargs) def wrapper(*args, **kwargs): if kwargs.get('get_function_cachedQ', False): return f_cached #loguru.logger.debug(f'function passed: {f_cached}') loguru.logger.debug(f'args passed: {args}') loguru.logger.debug(f'kwargs passed: {kwargs}') # First pass: resolve the recorders dargs_exp, kwargs_exp = self.argssolver(*args, **kwargs) # Intervals are identified by position and keyword name # 1. First get the interval recorders args_exp = list(dargs_exp.values()) args_exp_copy = args_exp.copy() kwargs_exp_copy = kwargs_exp.copy() for i in self.pos_args_itvl: args_exp_copy[i] = self.query_recorder for name in self.names_kwargs_itvl: kwargs_exp_copy[name] = self.query_recorder args_with_ri, kwargs_with_ri = f_cached(*args_exp_copy, **kwargs_exp_copy) # 2. Now get the the actual list of intervals for i in self.pos_args_itvl: # reuse args_exp_copy to store the list args_exp_copy[i] = args_with_ri[i](args_exp[i]) for name in self.names_kwargs_itvl: # reuse kwargs_exp_copy to store the list kwargs_exp_copy[name] = kwargs_with_ri[name](kwargs_exp[name]) '''3. Then generate all combination of parameters 3.a - args''' ns_args = range(len(args_exp)) lists_possible_args = [[args_exp[i]] if i not in self.pos_args_itvl else args_exp_copy[i] for i in ns_args] # Take the cartesian product of these calls_args = list( map(list,itertools.product(*lists_possible_args))) '''3.b kwargs''' #kwargs_exp_vals = kwargs_exp_copy.values() names_kwargs = list(kwargs_exp_copy.keys()) lists_possible_kwargs = [[kwargs_exp[name]] if name not in self.names_kwargs_itvl else kwargs_exp_copy[name] for name in names_kwargs] calls_kwargs = list(map(lambda l: dict(zip(names_kwargs,l)), itertools.product(*lists_possible_kwargs))) calls = list(itertools.product(calls_args, calls_kwargs)) if self.debugQ: results = [] for call in calls: with Timer() as timer: results.append(f_cached(*call[0], **call[1]) ) print('Timer to demonstrate caching:') timer.display(printQ=True) else: results = [f_cached(*call[0], **call[1]) for call in calls] result = self.aggregation(results) return result return wrapper if __name__ == "__main__": import logging import daiquiri import pandas as pd import time daiquiri.setup(logging.DEBUG) logging.getLogger('OneTick64').setLevel(logging.WARNING) logging.getLogger('databnpp.ODCB').setLevel(logging.WARNING) logging.getLogger('requests_kerberos').setLevel(logging.WARNING) pd.set_option('display.max_rows', 200) pd.set_option('display.width', 600) pd.set_option('display.max_columns', 200) tssixdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-5)) tsfivedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-4)) tsfourdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-3)) tsthreedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-2)) tstwodaysago = pdl2pd(pdl.yesterday('UTC').add(days=-1)) tsyesterday = pdl2pd(pdl.yesterday('UTC')) tstoday = pdl2pd(pdl.today('UTC')) tstomorrow = pdl2pd(pdl.tomorrow('UTC')) tsintwodays = pdl2pd(pdl.tomorrow('UTC').add(days=1)) tsinthreedays = pdl2pd(pdl.tomorrow('UTC').add(days=2)) def print_calls(calls): print( list( map( lambda i: (i.left, i.right), calls))) def print_calls_dates(calls): print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) def display_calls(calls): loguru.logger.info( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Testing record intervals -> ok if True: itvals = RecordIntervals() calls = itvals(portion.closed(pdl.yesterday(), pdl.today())) print(list(map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) print(list(map(lambda i: type(i), calls))) calls = itvals( portion.closed(pdl.yesterday().add(days=-1), pdl.today().add(days=1))) #print(calls) print( list( map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) # Testing record intervals pandas -> ok if True: itvals = RecordIntervalsPandas() # yesterday -> today calls = itvals(pd.Interval(pdl2pd(pdl.yesterday()), pdl2pd(pdl.today()), closed='left')) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> tomorrow: should yield 3 intervals calls = itvals(pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.today().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> day after tomorrow: should yield 4 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.tomorrow().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # 2 days before yesterday -> 2day after tomorrow: should yield 6 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) print(list(map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Further tests on record intervals pandas if False: itvals = RecordIntervalsPandas() calls = itvals(pd.Interval(tstwodaysago, tstomorrow, closed='left')) display_calls(calls) calls = itvals(
pd.Interval(tstwodaysago, tsyesterday)
pandas.Interval
# Copyright (c) 2019-2022, NVIDIA CORPORATION. import glob import math import os import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask from dask import dataframe as dd from dask.utils import natural_sort_key import cudf import dask_cudf # Check if create_metadata_file is supported by # the current dask.dataframe version need_create_meta = pytest.mark.skipif( dask_cudf.io.parquet.create_metadata_file is None, reason="Need create_metadata_file support in dask.dataframe.", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], }, index=pd.Index(range(nrows), name="index"), ) # Sorted ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.mark.parametrize("stats", [True, False]) def test_roundtrip_from_dask(tmpdir, stats): tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine="pyarrow") files = sorted( (os.path.join(tmpdir, f) for f in os.listdir(tmpdir)), key=natural_sort_key, ) # Read list of parquet files ddf2 = dask_cudf.read_parquet(files, gather_statistics=stats) dd.assert_eq(ddf, ddf2, check_divisions=stats) # Specify columns=['x'] ddf2 = dask_cudf.read_parquet( files, columns=["x"], gather_statistics=stats ) dd.assert_eq(ddf[["x"]], ddf2, check_divisions=stats) # Specify columns='y' ddf2 = dask_cudf.read_parquet(files, columns="y", gather_statistics=stats) dd.assert_eq(ddf[["y"]], ddf2, check_divisions=stats) # Now include metadata ddf2 = dask_cudf.read_parquet(tmpdir, gather_statistics=stats) dd.assert_eq(ddf, ddf2, check_divisions=stats) # Specify columns=['x'] (with metadata) ddf2 = dask_cudf.read_parquet( tmpdir, columns=["x"], gather_statistics=stats ) dd.assert_eq(ddf[["x"]], ddf2, check_divisions=stats) # Specify columns='y' (with metadata) ddf2 = dask_cudf.read_parquet(tmpdir, columns="y", gather_statistics=stats) dd.assert_eq(ddf[["y"]], ddf2, check_divisions=stats) def test_roundtrip_from_dask_index_false(tmpdir): tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine="pyarrow") ddf2 = dask_cudf.read_parquet(tmpdir, index=False) dd.assert_eq(ddf.reset_index(drop=False), ddf2) def test_roundtrip_from_dask_none_index_false(tmpdir): tmpdir = str(tmpdir) path = os.path.join(tmpdir, "test.parquet") df2 = ddf.reset_index(drop=True).compute() df2.to_parquet(path, engine="pyarrow") ddf3 = dask_cudf.read_parquet(path, index=False) dd.assert_eq(df2, ddf3) @pytest.mark.parametrize("write_meta", [True, False]) def test_roundtrip_from_dask_cudf(tmpdir, write_meta): tmpdir = str(tmpdir) gddf = dask_cudf.from_dask_dataframe(ddf) gddf.to_parquet(tmpdir, write_metadata_file=write_meta) gddf2 = dask_cudf.read_parquet(tmpdir) dd.assert_eq(gddf, gddf2, check_divisions=write_meta) def test_roundtrip_none_rangeindex(tmpdir): fn = str(tmpdir.join("test.parquet")) gdf = cudf.DataFrame( {"id": [0, 1, 2, 3], "val": [None, None, 0, 1]}, index=pd.RangeIndex(start=5, stop=9), ) dask_cudf.from_cudf(gdf, npartitions=2).to_parquet(fn) ddf2 = dask_cudf.read_parquet(fn) dd.assert_eq(gdf, ddf2, check_index=True) def test_roundtrip_from_pandas(tmpdir): fn = str(tmpdir.join("test.parquet")) # First without specifying an index dfp = df.copy() dfp.to_parquet(fn, engine="pyarrow", index=False) dfp = dfp.reset_index(drop=True) ddf2 = dask_cudf.read_parquet(fn) dd.assert_eq(dfp, ddf2, check_index=True) # Now, specifying an index dfp = df.copy() dfp.to_parquet(fn, engine="pyarrow", index=True) ddf2 = dask_cudf.read_parquet(fn, index=["index"]) dd.assert_eq(dfp, ddf2, check_index=True) def test_strings(tmpdir): fn = str(tmpdir) dfp = pd.DataFrame( {"a": ["aa", "bbb", "cccc"], "b": ["hello", "dog", "man"]} ) dfp.set_index("a", inplace=True, drop=True) ddf2 = dd.from_pandas(dfp, npartitions=2) ddf2.to_parquet(fn, engine="pyarrow") read_df = dask_cudf.read_parquet(fn, index=["a"]) dd.assert_eq(ddf2, read_df.compute().to_pandas()) read_df_cats = dask_cudf.read_parquet( fn, index=["a"], strings_to_categorical=True ) dd.assert_eq(read_df_cats.dtypes, read_df_cats.compute().dtypes) dd.assert_eq(read_df_cats.dtypes[0], "int32") def test_dask_timeseries_from_pandas(tmpdir): fn = str(tmpdir.join("test.parquet")) ddf2 = dask.datasets.timeseries(freq="D") pdf = ddf2.compute() pdf.to_parquet(fn, engine="pyarrow") read_df = dask_cudf.read_parquet(fn) dd.assert_eq(ddf2, read_df.compute()) @pytest.mark.parametrize("index", [False, None]) @pytest.mark.parametrize("stats", [False, True]) def test_dask_timeseries_from_dask(tmpdir, index, stats): fn = str(tmpdir) ddf2 = dask.datasets.timeseries(freq="D") ddf2.to_parquet(fn, engine="pyarrow", write_index=index) read_df = dask_cudf.read_parquet(fn, index=index, gather_statistics=stats) dd.assert_eq( ddf2, read_df, check_divisions=(stats and index), check_index=index ) @pytest.mark.parametrize("index", [False, None]) @pytest.mark.parametrize("stats", [False, True]) def test_dask_timeseries_from_daskcudf(tmpdir, index, stats): fn = str(tmpdir) ddf2 = dask_cudf.from_cudf( cudf.datasets.timeseries(freq="D"), npartitions=4 ) ddf2.name = ddf2.name.astype("object") ddf2.to_parquet(fn, write_index=index) read_df = dask_cudf.read_parquet(fn, index=index, gather_statistics=stats) dd.assert_eq( ddf2, read_df, check_divisions=(stats and index), check_index=index ) @pytest.mark.parametrize("index", [False, True]) def test_empty(tmpdir, index): fn = str(tmpdir) dfp = pd.DataFrame({"a": [11.0, 12.0, 12.0], "b": [4, 5, 6]})[:0] if index: dfp.set_index("a", inplace=True, drop=True) ddf2 = dd.from_pandas(dfp, npartitions=2) ddf2.to_parquet(fn, write_index=index, engine="pyarrow") read_df = dask_cudf.read_parquet(fn) dd.assert_eq(ddf2, read_df.compute()) def test_filters(tmpdir): tmp_path = str(tmpdir) df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.npartitions == 5 ddf.to_parquet(tmp_path, engine="pyarrow") a = dask_cudf.read_parquet(tmp_path, filters=[("x", ">", 4)]) assert a.npartitions == 3 assert (a.x > 3).all().compute() b = dask_cudf.read_parquet(tmp_path, filters=[("y", "==", "c")]) assert b.npartitions == 1 b = b.compute().to_pandas() assert (b.y == "c").all() c = dask_cudf.read_parquet( tmp_path, filters=[("y", "==", "c"), ("x", ">", 6)] ) assert c.npartitions <= 1 assert not len(c) def test_filters_at_row_group_level(tmpdir): tmp_path = str(tmpdir) df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.npartitions == 5 ddf.to_parquet(tmp_path, engine="pyarrow", row_group_size=10 / 5) a = dask_cudf.read_parquet(tmp_path, filters=[("x", "==", 1)]) assert a.npartitions == 1 assert (a.shape[0] == 2).compute() ddf.to_parquet(tmp_path, engine="pyarrow", row_group_size=1) b = dask_cudf.read_parquet(tmp_path, filters=[("x", "==", 1)]) assert b.npartitions == 1 assert (b.shape[0] == 1).compute() @pytest.mark.parametrize("metadata", [True, False]) @pytest.mark.parametrize("daskcudf", [True, False]) @pytest.mark.parametrize( "parts", [["year", "month", "day"], ["year", "month"], ["year"]] ) def test_roundtrip_from_dask_partitioned(tmpdir, parts, daskcudf, metadata): tmpdir = str(tmpdir) df = pd.DataFrame() df["year"] = [2018, 2019, 2019, 2019, 2020, 2021] df["month"] = [1, 2, 3, 3, 3, 2] df["day"] = [1, 1, 1, 2, 2, 1] df["data"] = [0, 0, 0, 0, 0, 0] df.index.name = "index" if daskcudf: ddf2 = dask_cudf.from_cudf(cudf.from_pandas(df), npartitions=2) ddf2.to_parquet( tmpdir, write_metadata_file=metadata, partition_on=parts ) else: ddf2 = dd.from_pandas(df, npartitions=2) ddf2.to_parquet( tmpdir, engine="pyarrow", write_metadata_file=metadata, partition_on=parts, ) df_read = dd.read_parquet(tmpdir, engine="pyarrow") gdf_read = dask_cudf.read_parquet(tmpdir) # TODO: Avoid column selection after `CudfEngine` # can be aligned with dask/dask#6534 columns = list(df_read.columns) assert set(df_read.columns) == set(gdf_read.columns) dd.assert_eq( df_read.compute(scheduler=dask.get)[columns], gdf_read.compute(scheduler=dask.get)[columns], ) assert gdf_read.index.name == "index" # Check that we don't have uuid4 file names for _, _, files in os.walk(tmpdir): for fn in files: if not fn.startswith("_"): assert "part" in fn if parse_version(dask.__version__) > parse_version("2021.07.0"): # This version of Dask supports `aggregate_files=True`. # Check that we can aggregate by a partition name. df_read = dd.read_parquet( tmpdir, engine="pyarrow", aggregate_files="year" ) gdf_read = dask_cudf.read_parquet(tmpdir, aggregate_files="year") dd.assert_eq(df_read, gdf_read) @pytest.mark.parametrize("metadata", [True, False]) @pytest.mark.parametrize("chunksize", [None, 1024, 4096, "1MiB"]) def test_chunksize(tmpdir, chunksize, metadata): nparts = 2 df_size = 100 row_group_size = 5 df = pd.DataFrame( { "a": np.random.choice(["apple", "banana", "carrot"], size=df_size), "b": np.random.random(size=df_size), "c": np.random.randint(1, 5, size=df_size), "index": np.arange(0, df_size), } ).set_index("index") ddf1 = dd.from_pandas(df, npartitions=nparts) ddf1.to_parquet( str(tmpdir), engine="pyarrow", row_group_size=row_group_size, write_metadata_file=metadata, ) if metadata: path = str(tmpdir) else: dirname = str(tmpdir) files = os.listdir(dirname) assert "_metadata" not in files path = os.path.join(dirname, "*.parquet") ddf2 = dask_cudf.read_parquet( path, chunksize=chunksize, split_row_groups=True, gather_statistics=True, ) ddf2.compute(scheduler="synchronous") dd.assert_eq(ddf1, ddf2, check_divisions=False) num_row_groups = df_size // row_group_size if not chunksize: assert ddf2.npartitions == num_row_groups else: assert ddf2.npartitions < num_row_groups if parse_version(dask.__version__) > parse_version("2021.07.0"): # This version of Dask supports `aggregate_files=True`. # Test that it works as expected. ddf3 = dask_cudf.read_parquet( path, chunksize=chunksize, split_row_groups=True, gather_statistics=True, aggregate_files=True, ) dd.assert_eq(ddf1, ddf3, check_divisions=False) if not chunksize: # Files should not be aggregated assert ddf3.npartitions == num_row_groups elif chunksize == "1MiB": # All files should be aggregated into # one output partition assert ddf3.npartitions == 1 else: # Files can be aggregated together, but # chunksize is not large enough to produce # a single output partition assert ddf3.npartitions < num_row_groups @pytest.mark.parametrize("row_groups", [1, 3, 10, 12]) @pytest.mark.parametrize("index", [False, True]) def test_row_groups_per_part(tmpdir, row_groups, index): nparts = 2 df_size = 100 row_group_size = 5 file_row_groups = 10 # Known apriori npartitions_expected = math.ceil(file_row_groups / row_groups) * 2 df = pd.DataFrame( { "a": np.random.choice(["apple", "banana", "carrot"], size=df_size), "b": np.random.random(size=df_size), "c": np.random.randint(1, 5, size=df_size), "index": np.arange(0, df_size), } ) if index: df = df.set_index("index") ddf1 = dd.from_pandas(df, npartitions=nparts) ddf1.to_parquet( str(tmpdir), engine="pyarrow", row_group_size=row_group_size, write_metadata_file=True, ) ddf2 = dask_cudf.read_parquet( str(tmpdir), row_groups_per_part=row_groups, ) dd.assert_eq(ddf1, ddf2, check_divisions=False) assert ddf2.npartitions == npartitions_expected @need_create_meta @pytest.mark.parametrize("partition_on", [None, "a"]) def test_create_metadata_file(tmpdir, partition_on): tmpdir = str(tmpdir) # Write ddf without a _metadata file df1 = cudf.DataFrame({"b": range(100), "a": ["A", "B", "C", "D"] * 25}) df1.index.name = "myindex" ddf1 = dask_cudf.from_cudf(df1, npartitions=10) ddf1.to_parquet( tmpdir, write_metadata_file=False, partition_on=partition_on, ) # Add global _metadata file if partition_on: fns = glob.glob(os.path.join(tmpdir, partition_on + "=*/*.parquet")) else: fns = glob.glob(os.path.join(tmpdir, "*.parquet")) dask_cudf.io.parquet.create_metadata_file( fns, split_every=3, # Force tree reduction ) # Check that we can now read the ddf # with the _metadata file present ddf2 = dask_cudf.read_parquet( tmpdir, gather_statistics=True, split_row_groups=False, index="myindex", ) if partition_on: ddf1 = df1.sort_values("b") ddf2 = ddf2.compute().sort_values("b") ddf2.a = ddf2.a.astype("object") dd.assert_eq(ddf1, ddf2) @need_create_meta def test_create_metadata_file_inconsistent_schema(tmpdir): # NOTE: This test demonstrates that the CudfEngine # can be used to generate a global `_metadata` file # even if there are inconsistent schemas in the dataset. # Write file 0 df0 = pd.DataFrame({"a": [None] * 10, "b": range(10)}) p0 = os.path.join(tmpdir, "part.0.parquet") df0.to_parquet(p0, engine="pyarrow") # Write file 1 b = list(range(10)) b[1] = None df1 = pd.DataFrame({"a": range(10), "b": b}) p1 = os.path.join(tmpdir, "part.1.parquet") df1.to_parquet(p1, engine="pyarrow") # New pyarrow-dataset base can handle an inconsistent # schema (even without a _metadata file), but computing # and dtype validation may fail ddf1 = dask_cudf.read_parquet(str(tmpdir), gather_statistics=True) # Add global metadata file. # Dask-CuDF can do this without requiring schema # consistency. dask_cudf.io.parquet.create_metadata_file([p0, p1]) # Check that we can still read the ddf # with the _metadata file present ddf2 = dask_cudf.read_parquet(str(tmpdir), gather_statistics=True) # Check that the result is the same with and # without the _metadata file. Note that we must # call `compute` on `ddf1`, because the dtype of # the inconsistent column ("a") may be "object" # before computing, and "int" after dd.assert_eq(ddf1.compute(), ddf2) dd.assert_eq(ddf1.compute(), ddf2.compute()) @pytest.mark.parametrize( "data", [ ["dog", "cat", "fish"], [[0], [1, 2], [3]], [None, [1, 2], [3]], [{"f1": 1}, {"f1": 0, "f2": "dog"}, {"f2": "cat"}], [None, {"f1": 0, "f2": "dog"}, {"f2": "cat"}], ], ) def test_cudf_dtypes_from_pandas(tmpdir, data): # Simple test that we can read in list and struct types fn = str(tmpdir.join("test.parquet")) dfp =
pd.DataFrame({"data": data})
pandas.DataFrame
from pathlib import Path from shutil import copyfile import pandas as pd import numpy as np import unicodedata from haversine import haversine import time import ast from sklearn.metrics import average_precision_score import statistics """ Evaluate ranking for MAP """ def find_closest_distance(altname, gscoords): """ This method returns the distance (in kilometers) between the candidate location and the gold standard coordinates. In the case that a candidate name in the gazetteer can refer to more than one entity, we select the entity closest to the gold standard coordinates. """ tCoords = [list(k) for k in altname.values] distance = 100000 # we instantiate "distance" with an impossibly large distance for candCoord in tCoords: candDistance = haversine(candCoord, gscoords) if candDistance <= distance: distance = candDistance return distance def mapeval_candidates(cand_distance, gazetteer, coords, km, maxCands, metrics, lowercase): if type(cand_distance) == list: cand_distance = cand_distance[0] candidates_fd = sorted(cand_distance.items(), key=lambda kv: kv[1])[:maxCands] highest = 0.0 try: highest = candidates_fd[-1][1] except IndexError: highest = 0.0 candidates = [] for c in candidates_fd: candidates.append(c[0]) closest_candidates = [] for cand in candidates: if lowercase: candcoords = gazetteer[gazetteer["altname"] == unicodedata.normalize('NFKD', str(cand.lower()))][["lat", "lon"]] else: candcoords = gazetteer[gazetteer["altname"] == unicodedata.normalize('NFKD', str(cand))][["lat", "lon"]] closest_candidates.append(find_closest_distance(candcoords, coords)) y_truearray = [] y_scorearray = [] for i in range(len(closest_candidates)): if closest_candidates[i] <= km: y_truearray.append(1) else: y_truearray.append(0) if metrics == "faiss": if highest == 0.0: y_scorearray.append(0.0) else: y_scorearray.append(1.0 - cand_distance[candidates[i]]/highest) else: y_scorearray.append(1.0 - cand_distance[candidates[i]]) return y_truearray, y_scorearray def evaluate_ranking(gazetteer_name, candrank_dataset, deezymatch_model): maxCands = 20 # Candidates cutoff for MAP # if not Path("mapped_results/DeezyMapEval_" + candrank_dataset + "_" + gazetteer_name + "_" + deezymatch_model + ".txt", "w").is_file() and not Path("mapped_results/LevDamMapEval_" + candrank_dataset + "_" + gazetteer_name + ".txt").is_file() and not Path("mapped_results/ExactMapEval_" + candrank_dataset + "_" + gazetteer_name + ".txt").is_file(): # Load gazetteer (for DeezyMatch) gazetteer = pd.read_pickle("../datasets/gazetteers/" + gazetteer_name + ".pkl") gazetteer = gazetteer[gazetteer['lat'].notna()] gazetteer = gazetteer[gazetteer['lon'].notna()] gazetteer["altname"] = gazetteer["altname"].str.normalize("NFKD") # Load gazetteer and lower-case it (for LevDam) gazetteer_lc = pd.read_pickle("../datasets/gazetteers/" + gazetteer_name + ".pkl") gazetteer_lc = gazetteer_lc[gazetteer_lc['lat'].notna()] gazetteer_lc = gazetteer_lc[gazetteer_lc['lon'].notna()] gazetteer_lc["altname"] = gazetteer_lc["altname"].str.lower().str.normalize("NFKD") # Load gold standard dataset datasetdf =
pd.read_pickle("../datasets/candidate_ranking_datasets/" + candrank_dataset + ".pkl")
pandas.read_pickle
""" Importing necessary libraires. """ import tweepy import json import re import string from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import pandas as pd from tensorflow.python.keras.preprocessing.text import Tokenizer from tensorflow.python.keras.preprocessing.sequence import pad_sequences from tensorflow.python.keras.models import model_from_json import random from flask import Flask,render_template,url_for,request import numpy as np import emoji app = Flask(__name__) """ Function to render page http://127.0.0.1:5000/ """ @app.route('/') def hello(st=''): print("HOME") return render_template('home.html',title='home') """ Function to render page http://127.0.0.1:5000/analysis """ @app.route('/analysis',methods=['POST','GET','OPTIONS']) def analysis(): """ Taking search query into the variable 'key'. """ key=request.form['InputText'] """ Performing authentication to access twitter's data. (Use twitter developer credentials below and uncomment the following piece commented code). """ """ consumer_key = '' consumer_secret = '' access_token = '' access_token_secret = '' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) """ """ Creating an api object using tweepy. """ api = tweepy.API (auth) """ Fetching tweets and storing them in results array. 'num' variable denotes the number of tweets to be fetched. """ results = [] num = 50 for tweet in tweepy.Cursor (api.search, q = key, lang = "en").items(num): results.append(tweet) """ Creating a pandas dataframe to capture tweet information. """ dataset=pd.DataFrame() dataset["tweet_id"]=pd.Series([tweet.id for tweet in results]) dataset["username"]=pd.Series([tweet.author.screen_name for tweet in results]) dataset["text"]=pd.Series([tweet.text for tweet in results]) dataset["followers"]=pd.Series([tweet.author.followers_count for tweet in results]) dataset["hashtags"]=pd.Series([tweet.entities.get('hashtags') for tweet in results]) dataset["emojis"]=pd.Series([','.join(c for c in tweet.text if c in emoji.UNICODE_EMOJI) for tweet in results]) """ Following piece of code is used to generate wordcloud of the hashtags used in fetched tweets """ Hashtag_df = pd.DataFrame(columns=["Hashtag"]) j = 0 for tweet in range(0,len(results)): hashtag = results[tweet].entities.get('hashtags') for i in range(0,len(hashtag)): Htag = hashtag[i]['text'] Hashtag_df.at[j,'Hashtag']=Htag j = j+1 Hashtag_Combined = " ".join(Hashtag_df['Hashtag'].values.astype(str)) text=" ".join(dataset['text'].values.astype(str)) cleaned_text = " ".join([word for word in text.split() if word !="https" and word !="RT" and word !="co" ]) wc = WordCloud(width=500,height=500,background_color="white", stopwords=STOPWORDS).generate(Hashtag_Combined) plt.imshow(wc) plt.axis("off") r =random.randint(1,101) st = 'static\hashtag'+ str(r) +'.png' plt.savefig(st, dpi=300) """ Following piece of code is used to get a list of top 5 hashtags """ hashtag=Hashtag_Combined.split(" ") df=pd.DataFrame() df['hashtags']=
pd.Series([i for i in hashtag])
pandas.Series
import numpy as np import pandas as pd pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', 1000) pd.set_option('display.colheader_justify', 'center')
pd.set_option('display.precision', 3)
pandas.set_option
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ description: Qualify Tidepool Datasets version: 0.0.1 created: 2018-02-21 author: <NAME> dependencies: * this requires the tidals package, which is automatically downloaded when you load in the tidepool data analytics development (tda-dev) environment license: BSD-2-Clause TODO: * [] make saving the metadata optional, and by default to no """ # %% REQUIRED LIBRARIES import os import sys import argparse import json import pandas as pd import datetime as dt import importlib # load tidals package locally if it does not exist globally if importlib.util.find_spec("tidals") is None: tidalsPath = os.path.abspath( os.path.join( os.path.dirname(__file__), "..", "..", "tidepool-analysis-tools")) if tidalsPath not in sys.path: sys.path.insert(0, tidalsPath) import tidals as td # %% USER INPUTS codeDescription = "Qualify Tidepool datasets" parser = argparse.ArgumentParser(description=codeDescription) parser.add_argument("-d", "--date-stamp", dest="dateStamp", default=dt.datetime.now().strftime("%Y-%m-%d"), help="date in '%Y-%m-%d' format needed to call unique " + "donor list (e.g., PHI-2018-03-02-uniqueDonorList)") parser.add_argument("-o", "--output-data-path", dest="dataPath", default=os.path.abspath( os.path.join( os.path.dirname(__file__), "..", "data")), help="the output path where the data is stored") parser.add_argument("-s", "--start-index", dest="startIndex", default=0, help="donor index (integer) to start at") parser.add_argument("-e", "--end-index", dest="endIndex", default=-1, help="donor index (integer) to end at," + "-1 will result in 1 file if startIndex != 0," + "and will default to number of unique donors" + "if startIndex = 0, or endIndex = -2") parser.add_argument("-q", "--qualification-criteria", dest="qualificationCriteria", default=os.path.abspath( os.path.join( os.path.dirname(__file__), "tidepool-qualification-criteria.json")), type=argparse.FileType('r'), help="JSON file to be processed, see " + "tidepool-qualification-critier.json " + "for a list of required fields") args = parser.parse_args() # %% FUNCTIONS def defineStartAndEndIndex(args, nDonors): startIndex = int(args.startIndex) endIndex = int(args.endIndex) if endIndex == -1: if startIndex == 0: endIndex = nDonors else: endIndex = startIndex + 1 if endIndex == -2: endIndex = nDonors return startIndex, endIndex def removeNegativeDurations(df): if "duration" in list(df): nNegativeDurations = sum(df.duration < 0) if nNegativeDurations > 0: df = df[~(df.duration < 0)] return df, nNegativeDurations def addUploadDate(df): uploadTimes = pd.DataFrame(df[df.type == "upload"].groupby("uploadId").time.describe()["top"]) uploadTimes.reset_index(inplace=True) uploadTimes.rename(columns={"top": "uploadTime"}, inplace=True) df = pd.merge(df, uploadTimes, how='left', on='uploadId') return df def filterAndSort(groupedDF, filterByField, sortByField): filterDF = groupedDF.get_group(filterByField).dropna(axis=1, how="all") filterDF = filterDF.sort_values(sortByField) return filterDF def getClosedLoopDays(groupedData, qualCriteria, metadata): # filter by basal data and sort by time if "basal" in groupedData.type.unique(): basalData = filterAndSort(groupedData, "basal", "time") # get closed loop days nTB = qualCriteria["nTempBasalsPerDayIsClosedLoop"] tbDataFrame = basalData.loc[basalData.deliveryType == "temp", ["time"]] tbDataFrame.index = pd.to_datetime(tbDataFrame["time"]) tbDataFrame = tbDataFrame.drop(["time"], axis=1) tbDataFrame["basal.temp.count"] = 1 nTempBasalsPerDay = tbDataFrame.resample("D").sum() closedLoopDF = pd.DataFrame(nTempBasalsPerDay, index=nTempBasalsPerDay.index.date) closedLoopDF["date"] = nTempBasalsPerDay.index.date closedLoopDF["basal.closedLoopDays"] = \ closedLoopDF["basal.temp.count"] >= nTB nClosedLoopDays = closedLoopDF["basal.closedLoopDays"].sum() # get the number of days with 670g basalData["date"] = pd.to_datetime(basalData.time).dt.date bdGroup = basalData.groupby("date") topPump = bdGroup.deviceId.describe()["top"] med670g = pd.DataFrame(topPump.str.contains("1780")).rename(columns={"top":"670g"}) med670g.reset_index(inplace=True) n670gDays = med670g["670g"].sum() else: closedLoopDF = pd.DataFrame(columns=["basal.closedLoopDays", "date"]) med670g = pd.DataFrame(columns=["670g", "date"]) nClosedLoopDays = 0 n670gDays = 0 metadata["basal.closedLoopDays.count"] = nClosedLoopDays metadata["med670gDays.count"] = n670gDays return closedLoopDF, med670g, metadata def removeInvalidCgmValues(df): nBefore = len(df) # remove values < 38 and > 402 mg/dL df = df.query("(value >= 2.109284236597303) and" + "(value <= 22.314006924003046)") nRemoved = nBefore - len(df) return df, nRemoved def removeDuplicates(df, criteriaDF): nBefore = len(df) df = df.loc[~(df[criteriaDF].duplicated())] df = df.reset_index(drop=True) nDuplicatesRemoved = nBefore - len(df) return df, nDuplicatesRemoved def removeCgmDuplicates(df, timeCriterion): if timeCriterion in df: df.sort_values(by=[timeCriterion, "uploadTime"], ascending=[False, False], inplace=True) dfIsNull = df[df[timeCriterion].isnull()] dfNotNull = df[df[timeCriterion].notnull()] dfNotNull, nDuplicatesRemoved = removeDuplicates(dfNotNull, [timeCriterion, "value"]) df = pd.concat([dfIsNull, dfNotNull]) df.sort_values(by=[timeCriterion, "uploadTime"], ascending=[False, False], inplace=True) else: nDuplicatesRemoved = 0 return df, nDuplicatesRemoved def getStartAndEndTimes(df, dateTimeField): dfBeginDate = df[dateTimeField].min() dfEndDate = df[dateTimeField].max() return dfBeginDate, dfEndDate def getCalculatorCounts(groupedData, metadata): if "wizard" in groupedData.type.unique(): # filter by calculator data and sort by time calculatorData = filterAndSort(groupedData, "wizard", "time") # add dayIndex calculatorData["dayIndex"] = pd.DatetimeIndex(calculatorData["time"]).date # get rid of duplicates calculatorData, nDuplicatesRemoved = \ removeDuplicates(calculatorData, ["time", "bolus"]) metadata["calculator.duplicatesRemoved.count"] = nDuplicatesRemoved # get start and end times calculatorBeginDate, calculatorEndDate = getStartAndEndTimes(calculatorData, "dayIndex") metadata["calculator.beginDate"] = calculatorBeginDate metadata["calculator.endDate"] = calculatorEndDate # group by day and get number of calculator boluses catDF = calculatorData.groupby(calculatorData["dayIndex"]) calculatorPerDay = pd.DataFrame() calculatorPerDay["calculator.count"] = catDF.bolus.count() calculatorPerDay["date"] = calculatorPerDay.index else: calculatorPerDay = pd.DataFrame(columns=["calculator.count", "date"]) return calculatorPerDay, metadata def getListOfDexcomCGMDays(df): # search for dexcom cgms searchfor = ["Dex", "tan", "IR", "unk"] # create dexcom boolean field if "deviceId" in df.columns.values: totalCgms = len(df.deviceId.notnull()) df["dexcomCGM"] = df.deviceId.str.contains("|".join(searchfor)) percentDexcomCGM = df.dexcomCGM.sum() / totalCgms * 100 return df, percentDexcomCGM def dexcomCriteria(df): # if day is closed loop or non-dexcom set to 0 isClosedLoop = (df["basal.closedLoopDays"].fillna(False)) isNonDexcom = ~(df["cgm.dexcomOnly"].fillna(False)) df.loc[(isClosedLoop | isNonDexcom), ["bolus.count", "cgm.count"]] = 0 return df def isQualifyingDay(df, bolusCriteria, percentCgmCriteria, cgmPoints1Day): df["cgm.percentage"] = df["cgm.count"] / cgmPoints1Day df["qualifyingDay"] = ((df["bolus.count"] >= bolusCriteria) & (df["cgm.percentage"] >= percentCgmCriteria)) # calculate the gaps in the data and group them df["nonQualifyingDay"] = ~df["qualifyingDay"] df["qualifyAndNotQualifyGroups"] = \ ((df.qualifyingDay != df.qualifyingDay.shift()).cumsum()) df["gapGroup"] = df["qualifyAndNotQualifyGroups"] * df["nonQualifyingDay"] return df def getSummaryStats(df, dayStatsDF): df["contiguous.maxCgmPercentage"] = dayStatsDF["cgm.percentage"].max() numberQualifyingDays = dayStatsDF.qualifyingDay.sum() df["qualifyingDays.count"] = numberQualifyingDays numberContiguousDays = len(dayStatsDF) df["contiguous.count"] = numberContiguousDays percentQualifyingDays = round((numberQualifyingDays / numberContiguousDays) * 100, 1) df["qualifyingDays.percent"] = percentQualifyingDays avgBolusCalculations = \ round(dayStatsDF.loc[dayStatsDF.qualifyingDay == 1, "calculator.count"].mean(), 1) df["qualfiyingDays.avgBolusCalculatorCount"] = avgBolusCalculations return df def getQualifyingTier(df, criteriaName, contDayCriteria, avgBolusCalculationsCriteria, percQualDayCriteria, maxGapToContRatioCriteria): tempDF = pd.DataFrame(columns=["avgBolusCalculationsPerDay", "numberContiguousDays", "percentQualifyingDays", "maxGapToContiguousRatio", "tier"]) for i in range(0, len(df)-(contDayCriteria-1)): tempIndex = min(i+contDayCriteria, len(df)) numberContiguousDays = df["date"].iloc[i:tempIndex].count() tempDF.loc[i, "numberContiguousDays"] = numberContiguousDays avgBolusCalculationsPerDay = \ df["calculator.count"].iloc[i:tempIndex].mean() tempDF.loc[i, "avgBolusCalculationsPerDay"] = \ avgBolusCalculationsPerDay percentQualifyingDays = \ df.qualifyingDay.iloc[i:tempIndex].sum() / contDayCriteria * 100 tempDF.loc[i, "percentQualifyingDays"] = percentQualifyingDays gapGroups = \ df.gapGroup.iloc[i:tempIndex].loc[df.gapGroup > 0].astype(str) if len(gapGroups) > 0: maxGapToContiguousRatio = \ gapGroups.describe()["freq"] / contDayCriteria * 100 else: maxGapToContiguousRatio = 0 tempDF.loc[i, "maxGapToContiguousRatio"] = maxGapToContiguousRatio tier = (numberContiguousDays == contDayCriteria and avgBolusCalculationsPerDay >= avgBolusCalculationsCriteria and percentQualifyingDays >= percQualDayCriteria and maxGapToContiguousRatio <= maxGapToContRatioCriteria) tempDF.loc[i, "tier"] = tier df = pd.concat([df, tempDF.add_prefix(criteriaName + ".")], axis=1) # if the dataset qualified tierName = criteriaName + "." + "tier" if sum(df[tierName].fillna(0) * 1) > 0: tierGroupName = criteriaName + ".group" tierGapGroupName = criteriaName + ".gapGroup" df[tierGroupName] = ((df[tierName] != df[tierName].shift()).cumsum()) df[tierGapGroupName] = df[tierGroupName] * df[tierName] groupObj = df[df[tierGapGroupName] > 0].groupby(tierGapGroupName) biggestGroup = groupObj[tierGroupName].count().idxmax() qualifiedBeginDate = groupObj.get_group(biggestGroup).date.min() qualifiedEndDate = \ groupObj.get_group(biggestGroup).date.max() + \ pd.Timedelta(days=contDayCriteria) nDaysToDeliever = (qualifiedEndDate - qualifiedBeginDate).days qualifyingResults = {"qualified": True, "qualified.beginDate": qualifiedBeginDate, "qualified.endDate": qualifiedEndDate, "qualified.nDaysToDeliever": nDaysToDeliever} else: qualifyingResults = {"qualified": False} return df, qualifyingResults def qualify(df, metaDF, q, idx): q["maxGapToContigRatio"] metaDF[q["tierAbbr"] + ".topTier"] = q["tierAbbr"] + "0" for j in range(0, len(q["tierNames"])): df, qualifyingResults = \ getQualifyingTier(df, q["tierNames"][j], q["minContiguousDays"][j], q["avgBolusCalcsPerDay"][j], q["percentDaysQualifying"][j], q["maxGapToContigRatio"][j]) qrDF = pd.DataFrame(qualifyingResults, index=[idx]). \ add_prefix(q["tierNames"][j] + ".") metaDF = pd.concat([metaDF, qrDF], axis=1) if qualifyingResults["qualified"]: metaDF[q["tierAbbr"] + ".topTier"] = \ q["tierNames"][j] return df, metaDF # %% GLOBAL VARIABLES qualifiedOn = dt.datetime.now().strftime("%Y-%m-%d") phiDateStamp = "PHI-" + args.dateStamp qualCriteria = json.load(args.qualificationCriteria) criteriaMaxCgmPointsPerDay = \ 1440 / qualCriteria["timeFreqMin"] # input folder(s) donorFolder = os.path.join(args.dataPath, phiDateStamp + "-donor-data") if not os.path.isdir(donorFolder): sys.exit("{0} is not a directory".format(donorFolder)) donorJsonData = os.path.join(donorFolder, phiDateStamp + "-donorJsonData", "") if not os.path.isdir(donorJsonData): sys.exit("{0} is not a directory".format(donorJsonData)) # create output folder(s) donorQualifyFolder = os.path.join(donorFolder, args.dateStamp + "-qualified", "") if not os.path.exists(donorQualifyFolder): os.makedirs(donorQualifyFolder) # load in list of unique donors donorPath = os.path.join(donorFolder, phiDateStamp + "-uniqueDonorList.csv") uniqueDonors = pd.read_csv(donorPath, index_col="dIndex") nUniqueDonors = len(uniqueDonors) allMetaData = pd.DataFrame() # define start and end index startIndex, endIndex = defineStartAndEndIndex(args, nUniqueDonors) # %% START OF CODE # loop through each donor for dIndex in range(startIndex, endIndex): # load in all data for user metadata = pd.DataFrame(index=[dIndex]) userID = uniqueDonors.loc[dIndex, "userID"] phiUserID = "PHI-" + userID jsonFileName = os.path.join(donorJsonData, phiUserID + ".json") fileSize = os.stat(jsonFileName).st_size if os.path.exists(jsonFileName): metadata["fileSize"] = fileSize if fileSize > 1000: data = td.load.load_json(jsonFileName) # attach upload time to each record, for resolving duplicates if "upload" in data.type.unique(): data = addUploadDate(data) # filter by only hybridClosedLoop data if "hClosedLoop" in qualCriteria["name"]: if "basal" in data.type.unique(): data["date"] = pd.to_datetime(data.time).dt.date bd = data[(data.type == "basal") & (data.deliveryType == "temp")] tempBasalCounts = pd.DataFrame(bd.groupby("date").deliveryType.count()).reset_index() tempBasalCounts.rename({"deliveryType": "tempBasalCounts"}, axis=1, inplace=True) data = pd.merge(data, tempBasalCounts, on="date") data = data[data.tempBasalCounts >= qualCriteria["nTempBasalsPerDayIsClosedLoop"]] else: data = pd.DataFrame(columns=list(data)) # filter by only 670g data if "m670g" in qualCriteria["name"]: data = data[data.deviceId.str.contains("1780")] # flatten json data = td.clean.flatten_json(data) if (("cbg" in data.type.unique()) and ("bolus" in data.type.unique())): # get rid of all negative durations data, numberOfNegativeDurations = removeNegativeDurations(data) metadata["all.negativeDurationsRemoved.count"] = numberOfNegativeDurations # group data by type groupedData = data.groupby(by="type") # %% CGM # filter by cgm and sort by time cgmData = filterAndSort(groupedData, "cbg", "time") # get rid of cbg values too low/high (< 38 & > 402 mg/dL) cgmData, numberOfInvalidCgmValues = removeInvalidCgmValues(cgmData) metadata["cgm.invalidValues.count"] = numberOfInvalidCgmValues # get rid of duplicates that have the same ["deviceTime", "value"] cgmData, nDuplicatesRemovedDeviceTime = removeCgmDuplicates(cgmData, "deviceTime") metadata["cgm.nDuplicatesRemovedDeviceTime.count"] = nDuplicatesRemovedDeviceTime # get rid of duplicates that have the same ["time", "value"] cgmData, nDuplicatesRemovedUtcTime = removeCgmDuplicates(cgmData, "time") metadata["cgm.nDuplicatesRemovedUtcTime.count"] = \ nDuplicatesRemovedUtcTime # round time to the nearest 5 minutes cgmData = td.clean.round_time(cgmData, timeIntervalMinutes=5, timeField="time", roundedTimeFieldName="roundedTime", verbose=False) # get rid of duplicates that have the same "roundedTime" cgmData, nDuplicatesRemovedRoundedTime = removeDuplicates(cgmData, "roundedTime") metadata["cgm.nDuplicatesRemovedRoundedTime.count"] = nDuplicatesRemovedRoundedTime # calculate day or date of data cgmData["dayIndex"] = cgmData.roundedTime.dt.date # get start and end times cgmBeginDate, cgmEndDate = getStartAndEndTimes(cgmData, "dayIndex") metadata["cgm.beginDate"] = cgmBeginDate metadata["cgm.endDate"] = cgmEndDate # get a list of dexcom cgms cgmData, percentDexcom = getListOfDexcomCGMDays(cgmData) metadata["cgm.percentDexcomCGM"] = percentDexcom # group by date (day) and get stats catDF = cgmData.groupby(cgmData["dayIndex"]) cgmRecordsPerDay = \ pd.DataFrame(catDF.value.count()). \ rename(columns={"value": "cgm.count"}) dayDate = catDF.dayIndex.describe()["top"] dexcomCGM = catDF.dexcomCGM.describe()["top"] nTypesCGM = catDF.dexcomCGM.describe()["unique"] cgmRecordsPerDay["cgm.dexcomOnly"] = \ (dexcomCGM & (nTypesCGM == 1)) cgmRecordsPerDay["date"] = cgmRecordsPerDay.index # %% BOLUS # filter by bolus and sort by time bolusData = filterAndSort(groupedData, "bolus", "time") # get rid of duplicates bolusData, nDuplicatesRemoved = removeDuplicates(bolusData, ["time", "normal"]) metadata["bolus.duplicatesRemoved.count"] = nDuplicatesRemoved # calculate day or date of data bolusData["dayIndex"] = pd.DatetimeIndex(bolusData.time).date # get start and end times bolusBeginDate, bolusEndDate = getStartAndEndTimes(bolusData, "dayIndex") metadata["bolus.beginDate"] = bolusBeginDate metadata["bolus.endDate"] = bolusEndDate # group by date and get bolusRecordsPerDay catDF = bolusData.groupby(bolusData["dayIndex"]) bolusRecordsPerDay = \ pd.DataFrame(catDF.subType.count()). \ rename(columns={"subType": "bolus.count"}) bolusRecordsPerDay["date"] = bolusRecordsPerDay.index # %% GET CALCULATOR DATA (AKA WIZARD DATA) calculatorRecordsPerDay, metadata = getCalculatorCounts(groupedData, metadata) # %% GET CLOSED LOOP DAYS WITH TEMP BASAL DATA isClosedLoopDay, is670g, metadata = \ getClosedLoopDays(groupedData, qualCriteria, metadata) # %% CONTIGUOUS DATA # calculate the start and end of contiguous data contiguousBeginDate = max(cgmBeginDate, bolusBeginDate) contiguousEndDate = min(cgmEndDate, bolusEndDate) metadata["contiguous.beginDate"] = contiguousBeginDate metadata["contiguous.endDate"] = contiguousEndDate # create a dataframe over the contiguous time series rng = pd.date_range(contiguousBeginDate, contiguousEndDate).date contiguousData = pd.DataFrame(rng, columns=["date"]) # merge data contiguousData = pd.merge(contiguousData, bolusRecordsPerDay, on="date", how="left") contiguousData = pd.merge(contiguousData, cgmRecordsPerDay, on="date", how="left") contiguousData = pd.merge(contiguousData, calculatorRecordsPerDay, on="date", how="left") contiguousData = pd.merge(contiguousData, isClosedLoopDay, on="date", how="left") contiguousData = pd.merge(contiguousData, is670g, on="date", how="left") # fill in nan's with 0s for dataType in ["bolus", "cgm", "calculator", "basal.temp"]: contiguousData[dataType + ".count"] = \ contiguousData[dataType + ".count"].fillna(0) if ((len(contiguousData) > 0) & (sum(contiguousData["cgm.count"] > 0) > 0) & (sum(contiguousData["bolus.count"] > 0) > 0)): # create an output folder userQualifyFolder = os.path.join(donorQualifyFolder, userID) if not os.path.exists(userQualifyFolder): os.makedirs(userQualifyFolder) # %% QUALIFICATION AT DAY LEVEL # dexcom specific qualification criteria if qualCriteria["name"] == "dexcom": contiguousData = dexcomCriteria(contiguousData) # determine if each day qualifies contiguousData = \ isQualifyingDay(contiguousData, qualCriteria["bolusesPerDay"], qualCriteria["cgmPercentPerDay"], criteriaMaxCgmPointsPerDay) # calcuate summary stats metadata = getSummaryStats(metadata, contiguousData) # %% QUALIFICATION OF DATASET contiguousData, metadata = qualify(contiguousData, metadata, qualCriteria, dIndex) # %% SAVE RESULTS contiguousData.index.name = "dayIndex" dSFileName = os.path.join( userQualifyFolder, userID + "-qualified-as-" + metadata[qualCriteria["tierAbbr"] + ".topTier"].values[0] + "-on-" + qualifiedOn + "-for-" + qualCriteria["name"] + "-dayStats.csv") contiguousData.to_csv(dSFileName) # append meta data to the user results allMetaData =
pd.concat([allMetaData, metadata], axis=0, sort=False)
pandas.concat
import pandas as pd import numpy as np from uszipcode import SearchEngine from uszipcode.model import ZipcodeTypeEnum from multiprocessing import Pool import itertools import csv import os def get_location_demographics_from_dict(address, result_limit=None, savepath='', by_city_state=True): """ Takes in a dictionary and returns the lat long based on the maximum amount of detail able to be provided. If an address is not able to be found, it will write the city and state to a a csv titled 'bad_address.csv' in the local directory. Parameters ---------- address: dict { 'city': str or None, 'state': str or None, 'zip': str or None, } Uses the maximumly detailed address to retunr a lat, long tuple result_limit: int Limits the number of zip codes returned. Use None for all zip codes. savepath: str The location to save the city-state pairs that are invalid. This should be a directory and not a file name. by_city_state: bool Dictates whether the uszipcodes search function should use a city-state pair or a zipcode. Both options are set inside the address: dict. Returns ------- result: list of SimpeZipcode(s) All potential matches for the provided input. Examples -------- address = { 'city': 'New York', 'state': 'NY', 'zip': None, 'country': 'US' } print(len(get_location_demographics_from_dict(address, result_limit=None))) # There are 101 zipcodes for NYC in the Database. >>> 101 """ # optimize input address for lookup address['city'] = address['city'].title().lstrip().rstrip() address['state'] = address['state'].upper().lstrip().rstrip() address['zip'] = str(address['zip'])[:5] engine = SearchEngine( simple_or_comprehensive=SearchEngine.SimpleOrComprehensiveArgEnum.simple ) try: if by_city_state: result = engine.by_city_and_state(city=address['city'], state=address['state'], zipcode_type=ZipcodeTypeEnum.Standard, returns=result_limit) else: result = engine.by_zipcode(zipcode=address['zip']) except ValueError as v: # print('Could not find value for City:', address['city'], 'State:',address['state'], 'skipping instead.') # trigger function to drop these records in a CSV function for later analysis with open(os.path.abspath(f'{savepath}/value_errors.csv'), 'a', encoding='UTF8', newline='') as f: writer = csv.writer(f) row = address['row'].to_frame().T.values.flatten().tolist() if f.tell()==0: header = ['Zip', 'City', 'State', 'Value Error'] header += [i for i in range(0, len(row))] writer.writerow(header) data = [address['zip'], address['city'], address['state'], v] data += row writer.writerow(data) return [] return result def construct_municipal_area(address, result_limit=None, savepath='', by_city_state=True): """ Takes in an address dictionary and returns a pandas dataframe of all zipcodes that correspond to that municipal area. This dataframe can be used to create flexible geographic generalizations. Parameters ---------- address: dict { 'city': str or None, 'state': str or None, 'zip': str or None, } result_limit: int or None Set to None for the best result. Otherwise limits the number of zipcodes. savepath: str The location to save the data while run is in-progress. Allows for results to be inspected prior to completion. This should be a directory and not a file name. by_city_state: bool Dictates whether the uszipcodes search function should use a city-state pair or a zipcode. Both options are set inside the address: dict. Returns ------- pd.DataFrame A pandas dataframe with a variety of metrics by zipcode in accordance to the inputed address. Example ------- df = construct_municipal_area(address={ 'city': 'New York', 'state': 'NY' }, result_limit=None) print(df.shape) >>> (101, 12) """ simple_zipcodes = get_location_demographics_from_dict(address, result_limit=result_limit, savepath=savepath, by_city_state=by_city_state) if by_city_state and len(simple_zipcodes) == 0: return
pd.DataFrame()
pandas.DataFrame
from sklearn import datasets from sklearn.datasets import load_breast_cancer from tensorflow import keras import pandas as pd import numpy as np from src.auxiliary_functions.auxiliary_functions import fd def fetch_data_set(name: str, samples_per_class_synthetic: int = 100, noise_synthetic: float = 0.1): """ Loads the data sets. Args: Args: name: str Name of the data set. data set name: # samples / # features / # classes - 'abalone': 4067 / 10 / 16 - 'banknote': 1372 / 4 / 2 - 'cancer': 569 / 30 / 2 - 'digits': 1797 / 64 / 10 - 'htru2': 17898 / 8 / 2 - 'iris': 150 / 4 / 3 - 'madelon': 2600 / 500 / 2 - 'seeds': 210 / 7 / 3 - 'sonar': 208 / 60 / 2 - 'spam': 4601 / 57 / 2 - 'synthetic': 2 x samples_per_class_synthetic / 3 / 2 - 'voice': 126 / 310 / 2 - 'wine': 178 / 13 / 3 samples_per_class_synthetic: int, Optional (Default is 100.) noise_synthetic: int, Optional (Default is 0.1.) Returns: X: np.ndarray Data. y: np.ndarray Labels. """ if name == "abalone": X, y = download_abalone() elif name == 'banknote': X, y = download_banknote() elif name == 'cancer': X, y = download_cancer() elif name == 'digits': X, y = download_digits() elif name == 'htru2': X, y = download_htru2() elif name == 'iris': X, y = download_iris() elif name == 'madelon': X, y = download_madelon() elif name == 'sonar': X, y = download_sonar() elif name == 'spam': X, y = download_spam() elif name == 'synthetic': X, y = create_synthetic_data(samples_per_class_synthetic, noise_synthetic) elif name == 'seeds': X, y = download_seeds() elif name == 'voice': X, y = download_voice() elif name == 'wine': X, y = download_wine() else: X, y = None, None print("No valid data set was selected.") return fd(X), fd(y) def download_abalone(): """ Downloads the 'abalone' data set, turns the 'Sex' category to three numerical features: 'Male', 'Female', and 'Infant', and then delets all classes except the ones with {5, 6, ..., 20} 'Rings', ultimately culminating in a data set of 4067 samples with 10 features 'Male', 'Female', 'Infant', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', and 'Shell weight' and the label 'Rings'. Returns: X: np.array Data. y: np.array Labels. Data set information: Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time- consuming task. Other measurements, which are easier to obtain, are used to predict the age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem. From the original data examples with missing values were removed (the majority having the predicted value missing), and the ranges of the continuous values have been scaled for use with an ANN (by dividing by 200). Attribute information: Given is the attribute name, attribute type, the measurement unit and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem. Name / Data Type / Measurement Unit / Description ----------------------------- Sex / nominal / -- / M, F, and I (infant) Length / continuous / mm / Longest shell measurement Diameter / continuous / mm / perpendicular to length Height / continuous / mm / with meat in shell Whole weight / continuous / grams / whole abalone Shucked weight / continuous / grams / weight of meat Viscera weight / continuous / grams / gut weight (after bleeding) Shell weight / continuous / grams / after being dried Rings / integer / -- / +1.5 gives the age in years Class distribution: Class Examples ----- -------- 1 1 2 1 3 15 4 57 5 115 6 259 7 391 8 568 9 689 10 634 11 487 12 267 13 203 14 126 15 103 16 67 17 58 18 42 19 32 20 26 21 14 22 6 23 9 24 2 25 1 26 1 27 2 29 1 ----- ---- Total 4177 References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("abalone", "https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data") column_names = ['Sex', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings'] dataset = pd.read_csv(dataset_path, names=column_names) cleanup_nums = {"Sex": {"M": 1, "F": 2, "I": 3}} dataset = dataset.replace(cleanup_nums) dataset['Sex'] = dataset['Sex'].map({1: 'Male', 2: 'Female', 3: 'Infant'}) dataset = pd.get_dummies(dataset, prefix='', prefix_sep='') dataset = dataset[['Male', 'Female', 'Infant', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight', 'Rings']] dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) smaller = (y <= 20).flatten() X = X[smaller, :] y = y[smaller, :] larger = (y >= 5).flatten() X = X[larger, :] y = y[larger, :] assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 4067, "Wrong number of samples." assert X.shape[1] == 10, "Wrong number of features." return X, y def download_banknote(): """ Downloads the 'banknote' data set, a data set of 1372 samples with 4 features 'Variance of wavelet transformed image', 'Skewness of wavelet transformed image ','Curtosis of wavelet transformed image', and 'Entropy of image'. The labels indicate whether a banknote is fake or not. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ dataset_path = keras.utils.get_file("banknote", "https://archive.ics.uci.edu/ml/machine-learning-databases/00267/data_banknote_authentication.txt") column_names = ['Variance of wavelet transformed image', 'Skewness of wavelet transformed image ', 'Curtosis of wavelet transformed image', 'Entropy of image', 'Class'] dataset = pd.read_csv(dataset_path, names=column_names) dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 1372, "Wrong number of samples." assert X.shape[1] == 4, "Wrong number of features." return X, y def download_cancer(): """Downloads the 'cancer' data set. It consists of 569 samples of 30 features, which are used to predict whether a tumor is benign or malignant. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ X, y = load_breast_cancer(return_X_y=True) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 569, "Wrong number of samples." assert X.shape[1] == 30, "Wrong number of features." return X, y def download_digits(): """ Downloads the 'digits' data set, a data set of 1797 samples with 64 features and 10 classes. The goal is to determine the hand-written number corresponding to each sample. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ digits = datasets.load_digits() X = digits.data y = digits.target assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 1797, "Wrong number of samples." assert X.shape[1] == 64, "Wrong number of features." return X, y def download_htru2(): """ Downloads the 'htru2' data set, a data set of 17898 samples with 8 features and 2 classes. Candidates must be classified in to pulsar and non-pulsar classes to aid discovery. htru2 is a data set which describes a sample of pulsar candidates collected during the High Time Resolution Universe Survey (South) [1]. Returns: X: np.array Data. y: np.array Labels. References: [1] <NAME> et al., 'The High Time Resolution Universe Pulsar Survey - I. System Configuration and Initial Discoveries',2010, Monthly Notices of the Royal Astronomical Society, vol. 409, pp. 619-627. DOI: 10.1111/j.1365-2966.2010.17325.x [2] <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ try: dataset = pd.read_csv("data_sets/HTRU_2/HTRU_2.csv", header=None, engine='python') except: dataset = pd.read_csv("../data_sets/HTRU_2/HTRU_2.csv", header=None, engine='python') dataset = dataset.to_numpy() X = dataset[:, :-1] y = fd(dataset[:, -1]) assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 17898, "Wrong number of samples." assert X.shape[1] == 8, "Wrong number of features." return X, y def download_iris(): """ Downloads the 'iris' data set, a data set of 150 samples with 4 features 'sepal length in cm', 'sepal width in cm', 'petal length in cm', and 'petal width in cm'. The goal is to determine to which of the three classes each sample belongs. Returns: X: np.array Data. y: np.array Labels. References: <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ iris = datasets.load_iris() X = iris.data y = iris.target assert X.shape[0] == y.shape[0], "Number of data points does not coincide with the number of labels." assert X.shape[0] == 150, "Wrong number of samples." assert X.shape[1] == 4, "Wrong number of features." return X, y def download_madelon(): """ Downloads the training and validation samples of the 'madelon' data set, a binary classification data set totalling 2600 samples with 500 features. References: [1] <NAME>, <NAME>, <NAME>, <NAME>, 2004. Result analysis of the NIPS 2003 feature selection challenge. In: NIPS. [Web Link]. [2] <NAME>. and <NAME>. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. """ path_X_train = keras.utils.get_file("madelon_train_data", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/madelon_train.data") X_train = pd.read_csv(path_X_train, sep=" ", header=None).to_numpy()[:, :-1] path_y_train = keras.utils.get_file("madelon_train_labels", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/madelon_train.labels") y_train = pd.read_csv(path_y_train, sep=" ", header=None).to_numpy() path_X_valid = keras.utils.get_file("madelon_valid_data", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/MADELON/madelon_valid.data") X_valid = pd.read_csv(path_X_valid, sep=" ", header=None).to_numpy()[:, :-1] path_y_valid = keras.utils.get_file("madelon_valid_labels", "https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/madelon_valid.labels") y_valid =
pd.read_csv(path_y_valid, sep=" ", header=None)
pandas.read_csv
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ return format_object_attrs(self) def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Series. If None, defaults to original index name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame result = DataFrame(self._shallow_copy(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) try: return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not isinstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def _summary(self, name=None): """ Return a summarized representation Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def summary(self, name=None): """ Return a summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key _index_shared_docs['_convert_slice_indexer'] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # if we are not a slice, then we are done if not isinstance(key, slice): return key # validate iloc if kind == 'iloc': return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == 'getitem': """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # TODO: i, j are not used anywhere if start is not None: i = self.get_loc(start) # noqa if stop is not None: j = self.get_loc(stop) # noqa is_positional = False except KeyError: if self.inferred_type == 'mixed-integer-float': raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: try: indexer = self.slice_indexer(start, stop, step, kind=kind) except Exception: if is_index_slice: if self.is_integer(): raise else: indexer = key else: raise return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs['_convert_arr_indexer'] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) return keyarr _index_shared_docs['_convert_index_indexer'] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs['_convert_list_indexer'] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): if (kind in [None, 'iloc', 'ix'] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex)): if self.inferred_type == 'mixed-integer': indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) from pandas.core.indexing import maybe_convert_indices return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == 'integer': keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ consistent invalid indexer message """ raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".format( form=form, klass=type(self), key=key, kind=type(key))) def get_duplicates(self): """ Extract duplicated index elements. Returns a sorted list of index elements which appear more than once in the index. .. deprecated:: 0.23.0 Use idx[idx.duplicated()].unique() instead Returns ------- array-like List of duplicated indexes. See Also -------- Index.duplicated : Return boolean array denoting duplicates. Index.drop_duplicates : Return Index with duplicates removed. Examples -------- Works on different Index of types. >>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates() [2, 3] >>> pd.Index([1., 2., 2., 3., 3., 3., 4.]).get_duplicates() [2.0, 3.0] >>> pd.Index(['a', 'b', 'b', 'c', 'c', 'c', 'd']).get_duplicates() ['b', 'c'] Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex: >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03', ... '2018-01-03', '2018-01-04', '2018-01-04'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex(['2018-01-03', '2018-01-04'], dtype='datetime64[ns]', freq=None) Sorts duplicated elements even when indexes are unordered. >>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates() [2, 3] Return empty array-like structure when all elements are unique. >>> pd.Index([1, 2, 3, 4]).get_duplicates() [] >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex([], dtype='datetime64[ns]', freq=None) """ warnings.warn("'get_duplicates' is deprecated and will be removed in " "a future release. You can use " "idx[idx.duplicated()].unique() instead", FutureWarning, stacklevel=2) return self[self.duplicated()].unique() def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _constructor(self): return type(self) @cache_readonly def _engine(self): # property, for now, slow to look up return self._engine_type(lambda: self._ndarray_values, len(self)) def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError("Too many levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name)) def _get_level_number(self, level): self._validate_index_level(level) return 0 @cache_readonly def inferred_type(self): """ return a string of the type inferred from the values """ return lib.infer_dtype(self) def _is_memory_usage_qualified(self): """ return a boolean if we need a qualified .info display """ return self.is_object() def is_type_compatible(self, kind): return kind == self.inferred_type @cache_readonly def is_all_dates(self): if self._data is None: return False return is_datetime_array(_ensure_object(self.values)) def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): self._data = state.pop('data') for k, v in compat.iteritems(state): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." .format(self.__class__.__name__)) __bool__ = __nonzero__ _index_shared_docs['__contains__'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs) def __contains__(self, key): hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False _index_shared_docs['contains'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['contains'] % _index_doc_kwargs) def contains(self, key): hash(key) try: return key in self._engine except (TypeError, ValueError): return False def __hash__(self): raise TypeError("unhashable type: %r" % type(self).__name__) def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key) key = com._values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name): """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError('all inputs must be Index') names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return _concat._concat_index_asobject(to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class """ # must be overridden in specific classes return _concat._concat_index_asobject(to_concat, name) _index_shared_docs['take'] = """ return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError See also -------- numpy.ndarray.take """ @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable(self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value) else: if allow_fill and fill_value is not None: msg = 'Unable to fill values because {0} cannot contain NA' raise ValueError(msg.format(self.__class__.__name__)) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take """ indices = _ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken @cache_readonly def _isnan(self): """ return if each value is nan""" if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: w, = self._isnan.nonzero() return w else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ if self._can_hold_na: return self._isnan.any() else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). .. versionadded:: 0.20.0 Returns ------- numpy.ndarray A boolean array of whether my values are NA See Also -------- pandas.Index.notna : boolean inverse of isna. pandas.Index.dropna : omit entries with missing values. pandas.isna : top-level isna. Series.isna : detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. .. versionadded:: 0.20.0 Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See also -------- Index.notnull : alias of notna Index.isna: inverse of notna pandas.notna : top-level notna Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna def putmask(self, mask, value): """ return a new Index of the values set with the mask See also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep='NaN', **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=('\t', '\r', '\n')) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify='left')) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ actually format my specific types """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) try: return array_equivalent(com._values_from_object(self), com._values_from_object(other)) except Exception: return False def identical(self, other): """Similar to equals, but check that other comparable attributes are also equal """ return (self.equals(other) and all((getattr(self, c, None) == getattr(other, c, None) for c in self._comparables)) and type(self) == type(other)) def asof(self, label): """ For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also -------- get_loc : asof is a thin wrapper around get_loc with method='pad' """ try: loc = self.get_loc(label, method='pad') except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ locs = self.values[mask].searchsorted(where.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- pandas.Series.sort_values : Sort values of a Series. pandas.DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): raise TypeError("cannot sort an Index object in-place, use " "sort_values instead") def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- sorted_index : Index """ return self.sort_values(return_indexer=True, ascending=ascending) def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index shifted index See Also -------- Series.shift : Shift values of Series. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. """ raise NotImplementedError("Not supported for type %s" % type(self).__name__) def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def __add__(self, other): return Index(np.array(self) + other) def __radd__(self, other): return Index(other + np.array(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): raise TypeError("cannot perform __sub__ with this index type: " "{typ}".format(typ=type(self).__name__)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def _get_consensus_name(self, other): """ Given 2 indexes, give a consensus name meaning we take the not None one, or None if the names differ. Return a new object if we are resetting the name """ if self.name != other.name: if self.name is None or other.name is None: name = self.name or other.name else: name = None if self.name != name: return self._shallow_copy(name=name) return self def union(self, other): """ Form the union of two Index objects and sorts if possible. Parameters ---------- other : Index or array-like Returns ------- union : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if len(other) == 0 or self.equals(other): return self._get_consensus_name(other) if len(self) == 0: return other._get_consensus_name(self) # TODO: is_dtype_union_equal is a hack around # 1. buggy set ops with duplicates (GH #13432) # 2. CategoricalIndex lacking setops (GH #10186) # Once those are fixed, this workaround can be removed if not is_dtype_union_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.union(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = _concat._concat_compat((lvals, other_diff)) try: lvals[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) else: types = frozenset((self.inferred_type, other.inferred_type)) if not types & _unsortable_types: result.sort() else: result = lvals try: result = np.sort(result) except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_union_result(other, result) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self.__class__(result, name=name) def intersection(self, other): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`, preserving the order of the calling index. Parameters ---------- other : Index or array-like Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if self.equals(other): return self._get_consensus_name(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.intersection(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_union_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.unique1d( Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if self.name != other.name: taken.name = None return taken def difference(self, other): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') """ self._assert_can_do_setop(other) if self.equals(other): return self._shallow_copy([]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name, freq=None) def symmetric_difference(self, other, result_name=None): """ Compute the symmetric difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like result_name : str Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, assume_unique=True) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) _index_shared_docs['get_loc'] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples --------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs['get_loc']) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError('tolerance argument only valid if using pad, ' 'backfill or nearest lookups') try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError('get_loc requires scalar valued input') loc = indexer.item() if loc == -1: raise KeyError(key) return loc def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ # if we have something that is Index-like, then # use this, e.g. DatetimeIndex s = getattr(series, '_values', None) if isinstance(s, (ExtensionArray, Index)) and is_scalar(key): # GH 20825 # Unify Index and ExtensionArray treatment # First try to convert the key to a location # If that fails, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if is_integer(key): return s[key] s = com._values_from_object(series) k = com._values_from_object(key) k = self._convert_scalar_indexer(k, kind='getitem') try: return self._engine.get_value(s, k, tz=getattr(series.dtype, 'tz', None)) except KeyError as e1: if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: raise try: return libindex.get_value_box(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: # pragma: no cover raise e1 except TypeError: # python 3 if is_scalar(key): # pragma: no cover raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ self._engine.set_value(com._values_from_object(arr), com._values_from_object(key), value) def _get_level_values(self, level): """ Return an Index of values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index ``self``, as there is only one level in the Index. See also --------- pandas.MultiIndex.get_level_values : get values for a level of a MultiIndex """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- index : Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError("Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".format(len(level), self.nlevels)) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_labels = list(self.labels) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_labels.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_labels[0] == -1 result = new_levels[0].take(new_labels[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) _index_shared_docs['get_indexer'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. """ @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = _ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return _ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer(ptarget, method=method, limit=limit, tolerance=tolerance) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer(target, method=method, limit=limit, tolerance=tolerance) if not self.is_unique: raise InvalidIndexError('Reindexing only valid with uniquely' ' valued Index objects') if method == 'pad' or method == 'backfill': indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == 'nearest': indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError('tolerance argument only valid if doing pad, ' 'backfill or nearest reindexing') if limit is not None: raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexing') indexer = self._engine.get_indexer(target._ndarray_values) return _ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'target index size') return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = (self._engine.get_pad_indexer if method == 'pad' else self._engine.get_backfill_indexer) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance(target._ndarray_values, indexer, tolerance) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets """ if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and target are monotonic' % method) side = 'left' if method == 'pad' else 'right' # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, 'pad', limit=limit) right_indexer = self.get_indexer(target, 'backfill', limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer _index_shared_docs['get_indexer_non_unique'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array """ @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = _ensure_index(target) if is_categorical(target): target = target.astype(target.dtype.categories.dtype) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if self.is_all_dates: self = Index(self.asi8) tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return _ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ guaranteed return of an indexer even when non-unique This dispatches to get_indexer or get_indexer_nonunique as appropriate """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works from pandas.core.indexes.datetimes import DatetimeIndex if self.inferred_type == 'date' and isinstance(other, DatetimeIndex): return DatetimeIndex(self), other elif self.inferred_type == 'boolean': if not is_object_dtype(self.dtype): return self.astype('object'), other.astype('object') return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples from .multi import MultiIndex if isinstance(values, MultiIndex): values = values.values values = _ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in compat.iteritems(result)} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super(Index, self)._map_values( mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get('name'): names = [attributes.get('name')] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes['copy'] = False if not new_values.size: # empty attributes['dtype'] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. .. versionadded:: 0.18.1 Support for values as a set. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], labels=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _can_reindex(self, indexer): """ *this is an internal non-public method* Check if we are allowing reindexing with this particular indexer Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, 'name') # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop('freq', None) # don't preserve freq target = self._simple_new(None, dtype=self.dtype, **attrs) else: target = _ensure_index(target) if level is not None: if method is not None: raise TypeError('Fill method not supported if level passed') _, indexer, _ = self._join_level(target, level, how='right', return_indexers=True) else: if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer(target, method=method, limit=limit, tolerance=tolerance) else: if method is not None or limit is not None: raise ValueError("cannot reindex a non-unique index " "with a method or limit") indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ *this is an internal non-public method* Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ target = _ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = _ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = _ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = _ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = 0 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels, freq=None) return new_index, indexer, new_indexer _index_shared_docs['join'] = """ *this is an internal non-public method* Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : boolean, default False sort : boolean, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword) .. versionadded:: 0.20.0 Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs['join']) def join(self, other, how='left', level=None, return_indexers=False, sort=False): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level(other, level, how=how, return_indexers=return_indexers) other = _ensure_index(other) if len(other) == 0 and how in ('left', 'outer'): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ('right', 'outer'): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {'right': 'left', 'left': 'right'}.get(how, how) result = other.join(self, how=how, level=level, return_indexers=return_indexers) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic(other, how=how, return_indexers=return_indexers) else: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic(other, how=how, return_indexers=return_indexers) except TypeError: pass if how == 'left': join_index = self elif how == 'right': join_index = other elif how == 'inner': join_index = self.intersection(other) elif how == 'outer': join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # figure out join names self_names = com._not_none(*self.names) other_names = com._not_none(*other.names) overlap = list(set(self_names) & set(other_names)) # need at least 1 in common, but not more than 1 if not len(overlap): raise ValueError("cannot join with no level specified and no " "overlapping names") if len(overlap) > 1: raise NotImplementedError("merging with more than one level " "overlap on a multi-index is not " "implemented") jl = overlap[0] # make the indices into mi's that match if not (self_is_mi and other_is_mi): flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {'right': 'left', 'left': 'right'}.get(how, how) level = other.names.index(jl) result = self._join_level(other, level, how=how, return_indexers=return_indexers) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result # 2 multi-indexes raise NotImplementedError("merging with both multi-indexes is not " "implemented") def _join_non_unique(self, other, how='left', return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers([self._ndarray_values], [other._ndarray_values], how=how, sort=True) left_idx = _ensure_platform_int(left_idx) right_idx = _ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level(self, other, level, how='left', return_indexers=False, keep_order=True): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If `keep_order` == True, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ returns sorter for the inner most level while preserving the order of higher levels """ if labels[0].size == 0: return np.empty(0, dtype='int64') if len(labels) == 1: lab = _ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = _ensure_int64(labels[-1]) return lib.get_level_sorter(lab, _ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError('Join on level between two MultiIndex objects ' 'is ambiguous') left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {'right': 'left', 'left': 'right'}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError('Index._join_level on non-unique index ' 'is not implemented') new_level, left_lev_indexer, right_lev_indexer = \ old_level.join(right, how=how, return_indexers=True) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.labels[:level + 1]) join_index = left[left_indexer] else: left_lev_indexer = _ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_labels = algos.take_nd(rev_indexer, left.labels[level], allow_fill=False) new_labels = list(left.labels) new_labels[level] = new_lev_labels new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_labels != -1 if not mask.all(): new_labels = [lab[mask] for lab in new_labels] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_labels.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_labels, ngroups) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0]:] new_labels = [lab[left_indexer] for lab in new_labels] else: # sort the leaves mask = new_lev_labels != -1 mask_all = mask.all() if not mask_all: new_labels = [lab[mask] for lab in new_labels] left_indexer = _get_leaf_sorter(new_labels[:level + 1]) new_labels = [lab[left_indexer] for lab in new_labels] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex(levels=new_levels, labels=new_labels, names=left.names, verify_integrity=False) if right_lev_indexer is not None: right_indexer = algos.take_nd(right_lev_indexer, join_index.labels[level], allow_fill=False) else: right_indexer = join_index.labels[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = (None if left_indexer is None else _ensure_platform_int(left_indexer)) right_indexer = (None if right_indexer is None else _ensure_platform_int(right_indexer)) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how='left', return_indexers=False): if self.equals(other): ret_index = other if how == 'right' else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == 'left': join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == 'right': join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == 'left': join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == 'right': join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else _ensure_platform_int(lidx) ridx = None if ridx is None else _ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return Index(joined, name=name) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples --------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index then try to cast to an int if equivalent """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ if we are positional indexer validate that we have appropriate typed bounds must be an integer """ assert kind in ['ix', 'loc', 'getitem', 'iloc'] if key is None: pass elif is_integer(key): pass elif kind in ['iloc', 'getitem']: self._invalid_indexer(form, key) return key _index_shared_docs['_maybe_cast_slice_bound'] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs['_maybe_cast_slice_bound']) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ['ix', 'loc', 'getitem', None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ['ix'] and (self.holds_integer() or self.is_floating())): self._invalid_indexer('slice', label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer('slice', label) return label def _searchsorted_monotonic(self, label, side='left'): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted(label, side='right' if side == 'left' else 'left') return len(self) - pos raise ValueError('index must be monotonic increasing or decreasing') def _get_loc_only_exact_matches(self, key): """ This is overridden on subclasses (namely, IntervalIndex) to control get_slice_bound. """ return self.get_loc(key) def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} """ assert kind in ['ix', 'loc', 'getitem', None] if side not in ('left', 'right'): raise ValueError("Invalid value for side kwarg," " must be either 'left' or 'right': %s" % (side, )) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self._get_loc_only_exact_matches(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view('u1')) else: slc = lib.maybe_indices_to_slice(slc.astype('i8'), len(self)) if isinstance(slc, np.ndarray): raise KeyError("Cannot get %s slice bound for non-unique " "label: %r" % (side, original_label)) if isinstance(slc, slice): if side == 'left': return slc.start else: return slc.stop else: if side == 'right': return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int Notes ----- This method only works if the index is monotonic or unique. Examples --------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) See Also -------- Index.get_loc : Get location for a single label """ inc = (step is None or step >= 0) if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start start_slice = None if start is not None: start_slice = self.get_slice_bound(start, 'left', kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, 'right', kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index """ if is_scalar(item) and isna(item): # GH 18295 item = self._na_value _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors='raise'): """ Make new Index with passed list of labels deleted Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If none of the labels are found in the selected axis """ arr_dtype = 'object' if self.dtype == 'object' else None labels = com._index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != 'ignore': raise KeyError( 'labels %s not contained in axis' % labels[mask]) indexer = indexer[~mask] return self.delete(indexer) _index_shared_docs['index_unique'] = ( """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex) .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """) @Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super(Index, self).unique() return self._shallow_copy(result) def drop_duplicates(self, keep='first'): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : equivalent method on Series DataFrame.drop_duplicates : equivalent method on DataFrame Index.duplicated : related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super(Index, self).drop_duplicates(keep=keep) def duplicated(self, keep='first'): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) Returns ------- numpy.ndarray See Also -------- pandas.Series.duplicated : Equivalent method on pandas.Series pandas.DataFrame.duplicated : Equivalent method on pandas.DataFrame pandas.Index.drop_duplicates : Remove duplicate values from Index """ return super(Index, self).duplicated(keep=keep) _index_shared_docs['fillna'] = """ Fill NA/NaN values with the specified value Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns ------- filled : %(klass)s """ @Appender(_index_shared_docs['fillna']) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs['dropna'] = """ Return Index without NA/NaN values Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @
Appender(_index_shared_docs['dropna'])
pandas.util._decorators.Appender
import json import plotly import re import pandas as pd from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize, sent_tokenize from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar, Scatter from sklearn.externals import joblib from sklearn.base import BaseEstimator, TransformerMixin from sqlalchemy import create_engine import nltk #nltk.download(['punkt', 'wordnet','stopwords']) app = Flask(__name__) class StartingVerbExtractor(BaseEstimator, TransformerMixin): ''' extract information whether text starts with verb or verbal phrase can be used as estimator in sklearn (transform) returns: 0 or 1 ''' def starting_verb(self, text): sentence_list = nltk.sent_tokenize(text) for sentence in sentence_list: pos_tags = nltk.pos_tag(tokenize(sentence)) try: first_word, first_tag = pos_tags[0] if first_tag in ['VB', 'VBP'] or first_word == 'RT': return 1 except: return 0 return 0 def fit(self, x, y=None): return self def transform(self, X): X_tagged = pd.Series(X).apply(self.starting_verb) return pd.DataFrame(X_tagged) def tokenize(text): ''' simple tokenization: keep only chars and numbers, convert to lowercase, tokenize and lemmatize using nltk text: str that will be tokenized returns new_tokens (list of extracted tokens) ''' #remove punctuation text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) #get tokens tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() new_tokens = [] for tok in tokens: new_tokens.append(lemmatizer.lemmatize(tok).strip()) return new_tokens # load data engine = create_engine('sqlite:///data/DisasterResponse.db') df =
pd.read_sql_table('messages', engine)
pandas.read_sql_table
""" Indicator data preprocessing module. The low-level metrics do not correspond to the high-level SLAs, and the indicators are corresponding and merged according to the method of time stamp proximity search.. """ import time import sys import pandas as pd import numpy as np class Preprocess(object): def __init__(self, metrics, qos, output): self.metrics = metrics self.qos = qos self.output = output def execute(self) -> None: """ Execute preprocessing """ self.__load_and_generate_output() def __load_and_generate_output(self): # timestamp,context-switches,branch-misses,...... metrics = pd.read_table(self.metrics, header=0, sep=',', index_col=0) # timestamp qos qos =
pd.read_table(self.qos, header=0, index_col=0)
pandas.read_table
#coding=utf-8 import tushare as ts import talib as ta import numpy as np import pandas as pd import os,time,sys,re,datetime import csv import scipy import smtplib from email.mime.text import MIMEText #from email.MIMEMultipart import MIMEMultipart #获取股票列表 #code,代码 name,名称 industry,所属行业 area,地区 pe,市盈率 outstanding,流通股本 totals,总股本(万) totalAssets,总资产(万)liquidAssets,流动资产 # fixedAssets,固定资产 reserved,公积金 reservedPerShare,每股公积金 eps,每股收益 bvps,每股净资 pb,市净率 timeToMarket,上市日期 def Get_Stock_List(): df = ts.get_stock_basics() return df #修改了的函数,按照多个指标进行分析 #按照MACD,KDJ等进行分析 def Get_TA(df_Code,Dist): operate_array1=[] operate_array2=[] operate_array3=[] count = 0 for code in df_Code.index: # index,0 - 6 date:日期 open:开盘价 high:最高价 close:收盘价 low:最低价 volume:成交量 price_change:价格变动 p_change:涨跌幅 # 7-12 ma5:5日均价 ma10:10日均价 ma20:20日均价 v_ma5:5日均量v_ma10:10日均量 v_ma20:20日均量 df = ts.get_hist_data(code,start='2014-11-20') dflen = df.shape[0] count = count + 1 if dflen>35: try: (df,operate1) = Get_MACD(df) (df,operate2) = Get_KDJ(df) (df,operate3) = Get_RSI(df) except Exception as e: Write_Blog(e,Dist) pass operate_array1.append(operate1) #round(df.iat[(dflen-1),16],2) operate_array2.append(operate2) operate_array3.append(operate3) if count == 0: Write_Blog(str(count),Dist) df_Code['MACD']=pd.Series(operate_array1,index=df_Code.index) df_Code['KDJ']=pd.Series(operate_array2,index=df_Code.index) df_Code['RSI']=pd.Series(operate_array3,index=df_Code.index) return df_Code #通过MACD判断买入卖出 def Get_MACD(df): #参数12,26,9 macd, macdsignal, macdhist = ta.MACD(np.array(df['close']), fastperiod=12, slowperiod=26, signalperiod=9) SignalMA5 = ta.MA(macdsignal, timeperiod=5, matype=0) SignalMA10 = ta.MA(macdsignal, timeperiod=10, matype=0) SignalMA20 = ta.MA(macdsignal, timeperiod=20, matype=0) #13-15 DIFF DEA DIFF-DEA df['macd']=
pd.Series(macd,index=df.index)
pandas.Series
from dataset import SurgeryDataset import dataset import click from train import get_train_val_data_loaders, run_epoch from model import get_model_name, save_model, save_results, get_model import torch.nn as nn import pandas as pd from torch.utils.data import DataLoader import cv2 import utils def get_test_data_loaders(segments_df, batch_size, data_dir='data/', model='BLV', balance=True, pre_crop_size=256, aug_method='val', segment_length=5): df = segments_df.sort_values(by=['video_id', 'start_seconds']) test_dataset = SurgeryDataset(df, data_dir=data_dir, mode='test', model=model, balance=balance, pre_crop_size=pre_crop_size, aug_method=aug_method, segment_length=segment_length) print("Number of segments: %d" % test_dataset.__len__()) test_data_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=False) return test_data_loader def evaluate(net, video_ids, anns_path, batch_size=64, experiment_dir=None, use_anns=False, balance=False): segments_df = dataframe_from_video_ids(video_ids, anns_path, use_anns=use_anns) test_data_loader = get_test_data_loaders(segments_df, batch_size, balance=balance) criterion = nn.BCELoss() optimizer = None net.eval() val_accuracy, y_true, y_score, results = run_epoch(test_data_loader, net, optimizer, criterion, 0) df =
pd.DataFrame(results)
pandas.DataFrame
import numpy as np import pandas as pd from pathlib import Path from typing import Dict, List, Union from fastprogress import progress_bar from scipy.interpolate import UnivariateSpline from scipy import integrate from tsfresh import extract_relevant_features, extract_features class BasicOperationsOnSpectrum: def __init__(self, **kwargs): self.kwargs = kwargs def fit_transform(self, X: pd.DataFrame): return self.transform(X) def transform(self, X: pd.DataFrame): operations = self.kwargs["operations"] prefix = self.kwargs["prefix"] + "_" result_dict: Dict[str, List[Union[int, float]]] = { op: [] for op in operations } base_dir = Path("input/atma5/spectrum") for _, row in progress_bar(X.iterrows(), total=len(X)): spectrum = pd.read_csv( base_dir / row.spectrum_filename, sep="\t", header=None) for op in operations: result_dict[op].append(spectrum[1].__getattribute__(op)()) df = pd.DataFrame(result_dict) df.columns = [prefix + c for c in df.columns] return df class SpectrumIntegral: def __init__(self, **kwargs): self.kwargs = kwargs def fit_transform(self, X: pd.DataFrame): return self.transform(X) def transform(self, X: pd.DataFrame): unique_filenames = X["spectrum_filename"].unique() integrals = [] for filename in progress_bar(unique_filenames): spec = X.query(f"spectrum_filename == '{filename}'") x = spec["wl"].values y = spec["intensity"].values method = self.kwargs["how"] integrals.append(integrate.__getattribute__(method)(y, x)) return
pd.DataFrame({"spectrum_integral": integrals})
pandas.DataFrame
import unittest import os import tempfile from collections import namedtuple from blotter import blotter from pandas.util.testing import assert_frame_equal, assert_series_equal, \ assert_dict_equal import pandas as pd import numpy as np class TestBlotter(unittest.TestCase): def setUp(self): cdir = os.path.dirname(__file__) self.prices = os.path.join(cdir, 'data/prices') self.rates = os.path.join(cdir, 'data/rates/daily_interest_rates.csv') self.log = os.path.join(cdir, 'data/events.log') self.meta_log = os.path.join(cdir, 'data/meta_data.log') def tearDown(self): pass def assertEventsEqual(self, evs1, evs2): if len(evs1) != len(evs2): raise(ValueError("Event lists length mismatch")) for ev1, ev2 in zip(evs1, evs2): self.assertEqual(ev1.type, ev2.type) assert_dict_equal(ev1.data, ev2.data) def assertEventTypes(self, evs1, evs2): msg = "Event lists length mismatch\n\nLeft:\n%s \nRight:\n%s" left_msg = "" for ev in evs1: left_msg += str(ev) + "\n" right_msg = "" for ev in evs2: right_msg += ev.type + "\n" msg = msg % (left_msg, right_msg) if len(evs1) != len(evs2): raise(ValueError(msg)) for ev1, ev2 in zip(evs1, evs2): if ev1.type is not ev2.type: raise(ValueError(msg)) def assertDictDataFrameEqual(self, dict1, dict2): self.assertEqual(dict1.keys(), dict2.keys()) for key in dict1.keys(): try: assert_frame_equal(dict1[key], dict2[key]) except AssertionError as e: e.args = (("\nfor key %s\n" % key) + e.args[0],) raise e def make_blotter(self): blt = blotter.Blotter(self.prices, self.rates) return blt def test_get_actions(self): actions = [(pd.Timedelta("16h"), "PNL"), (pd.Timedelta("16h"), "INTEREST")] old_ts = pd.Timestamp("2017-01-04T10:30") new_ts = pd.Timestamp("2017-01-06T10:30") ac_ts = blotter.Blotter._get_actions(old_ts, new_ts, actions) idx = pd.DatetimeIndex([pd.Timestamp("2017-01-04T16:00"), pd.Timestamp("2017-01-04T16:00"), pd.Timestamp("2017-01-05T16:00"), pd.Timestamp("2017-01-05T16:00")]) ac_ts_ex = pd.Series(["PNL", "INTEREST", "PNL", "INTEREST"], index=idx) assert_series_equal(ac_ts, ac_ts_ex) def test_get_actions_weekend_filter(self): actions = [(pd.Timedelta("16h"), "PNL"), (pd.Timedelta("16h"), "INTEREST")] old_ts = pd.Timestamp("2017-01-06T10:30") new_ts = pd.Timestamp("2017-01-09T16:30") ac_ts = blotter.Blotter._get_actions(old_ts, new_ts, actions) idx = pd.DatetimeIndex([pd.Timestamp("2017-01-06T16:00"), pd.Timestamp("2017-01-06T16:00"), pd.Timestamp("2017-01-09T16:00"), pd.Timestamp("2017-01-09T16:00")]) ac_ts_ex = pd.Series(["PNL", "INTEREST", "PNL", "INTEREST"], index=idx) assert_series_equal(ac_ts, ac_ts_ex) def test_trade_undefined_instrument(self): blt = self.make_blotter() ts = pd.Timestamp('2016-12-10T08:30:00') instr = 'CLZ6' qty = 1 price = 48.56 def make_trade(): blt._trade(ts, instr, qty, price) self.assertRaises(KeyError, make_trade) def test_get_meta_data(self): blt = blt = blotter.Blotter(self.prices, self.rates, base_ccy="USD") # currency of instrument defaults to base ccy of blotter when not given blt.define_generic("CL", margin=0.1, multiplier=100, commission=2.5, isFX=False) meta = namedtuple('metadata', ['ccy', 'margin', 'multiplier', 'commission', 'isFX']) metadata_exp = meta("USD", 0.1, 100, 2.5, False) metadata = blt._gnrc_meta["CL"] self.assertEqual(metadata, metadata_exp) def test_get_holdings_empty(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') hlds = blt.get_holdings_value(ts) assert_series_equal(hlds, pd.Series()) def test_get_holdings_value_no_fx_conversion(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 blt.define_generic("SXM", "ZAR", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt._trade(ts, 'SXMZ15', qty, price) def no_fx(): return blt.get_holdings_value(ts) self.assertRaises(KeyError, no_fx) def test_get_holdings_timestamp_before(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-05T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-04T00:00:00') def get_holdings(): blt.get_holdings_value(ts) self.assertRaises(ValueError, get_holdings) def test_get_holdings_base_ccy(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') hlds = blt.get_holdings_value(ts) hlds_exp = pd.Series([2082.73 * 100], index=['ESZ15']) assert_series_equal(hlds, hlds_exp) def test_get_holds_AUD_instr_AUDUSD_fxrate(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'APZ15' qty = 1 price = 5200 blt.define_generic("AP", "AUD", 0.1, 1, 2.5) blt.map_instrument("AP", "APZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') hlds = blt.get_holdings_value(ts) hlds_exp = pd.Series([5283 * 0.73457], index=['APZ15']) assert_series_equal(hlds, hlds_exp) def test_get_holds_CAD_instr_USDCAD_fxrate(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'SXMZ15' qty = 1 price = 802.52 blt.define_generic("SXM", "CAD", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt._trade(ts, instr, qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') hlds = blt.get_holdings_value(ts) hlds_exp = pd.Series([795.95 / 1.3183], index=['SXMZ15']) assert_series_equal(hlds, hlds_exp) def test_get_instruments_empty(self): blt = self.make_blotter() blt.connect_market_data() instrs = blt.get_instruments() assert_series_equal(instrs, pd.Series()) def test_get_instruments_multiplier(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price) instrs = blt.get_instruments() instrs_exp = pd.Series([qty], index=['ESZ15']) assert_series_equal(instrs, instrs_exp) def test_get_instruments_two_ccy(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr1 = 'ESZ15' instr2 = 'CLZ15' qty = 1 price = 2081 blt.define_generic("ES", "USD", 0.1, 100, 2.5) blt.map_instrument("ES", "ESZ15") blt.define_generic("CL", "CAD", 0.1, 1, 2.5) blt.map_instrument("CL", "CLZ15") blt._trade(ts, instr1, qty, price) blt._trade(ts, instr2, qty, price) instrs = blt.get_instruments() instrs_exp = pd.Series([qty, qty], index=['CLZ15', 'ESZ15']) assert_series_equal(instrs, instrs_exp) def test_get_trades_one_future_base_to_base(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 mid_price = 2080.75 blt.define_generic("ES", "USD", 0.1, 50, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price, mid_price) trades = blt.get_trades() cols = ['instrument', 'quantity', 'multiplier', 'price', 'ntc_price', 'ccy', 'fx_to_base'] exp_trades = pd.DataFrame([[instr, 1, 50, price, mid_price, "USD", 1.0]], index=[ts], columns=cols) exp_trades.index.name = 'timestamp' assert_frame_equal(trades, exp_trades) def test_get_trades_one_future_with_mid_price_fx(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price = 2081 mid_price = 2080.75 blt.define_generic("ES", "CAD", 0.1, 50, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, instr, qty, price, mid_price) trades = blt.get_trades() cols = ['instrument', 'quantity', 'multiplier', 'price', 'ntc_price', 'ccy', 'fx_to_base'] exp_trades = pd.DataFrame([[instr, 1, 50, price, mid_price, "CAD", 1 / 1.3125]], index=[ts], columns=cols) exp_trades.index.name = 'timestamp' assert_frame_equal(trades, exp_trades) def test_get_trades_two_futures(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') instr = 'ESZ15' qty = 1 price1 = 2081 mid_price1 = 2080.75 price2 = 2083 mid_price2 = 2082.75 blt.define_generic("ES", "USD", 0.1, 50, 2.5) blt.map_instrument("ES", "ESZ15") blt.map_instrument("ES", "ESF16") blt._trade(ts, instr, qty, price1, mid_price1) blt._trade(ts, instr, qty, price2, mid_price2) trades = blt.get_trades() cols = ['instrument', 'quantity', 'multiplier', 'price', 'ntc_price', 'ccy', 'fx_to_base'] data = [[instr, 1, 50, price1, mid_price1, "USD", 1.0], [instr, 1, 50, price2, mid_price2, "USD", 1.0]] exp_trades = pd.DataFrame(data, index=[ts, ts], columns=cols) exp_trades.index.name = 'timestamp' assert_frame_equal(trades, exp_trades) def test_create_unknown_event(self): blt = self.make_blotter() ts = pd.Timestamp('2015-08-03T00:00:00') def create_unknown(): return blt.create_events(ts, "NotAllowed") self.assertRaises(NotImplementedError, create_unknown) def test_dispatch_unknown_event(self): blt = self.make_blotter() ev = blotter._Event("NotAnEvent", {"timestamp": pd.Timestamp('2015-01-01')}) def dispatch_unknown(): blt.dispatch_events([ev]) self.assertRaises(NotImplementedError, dispatch_unknown) def test_create_interest_event(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-03T00:00:00') blt._holdings.update_cash(ts, "AUD", 1000000) blt._holdings.update_cash(ts, "JPY", 1000000) ts = pd.Timestamp('2015-08-04T00:00:00') evs = blt.create_events(ts, "INTEREST") irates = pd.read_csv(self.rates, index_col=0, parse_dates=True) aud_int = irates.loc[ts, "AUD"] / 365 * 1000000 jpy_int = irates.loc[ts, "JPY"] / 365 * 1000000 evs_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "AUD", "quantity": aud_int}), blotter._Event("INTEREST", {"timestamp": ts, "ccy": "JPY", "quantity": jpy_int})] self.assertEventsEqual(evs, evs_exp) def test_create_interest_event_no_rate(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-03T00:00:00') # No ZAR data blt._holdings.update_cash(ts, "ZAR", 1000000) ts = pd.Timestamp('2015-08-04T00:00:00') def get_interest(): return blt.create_events(ts, "INTEREST") self.assertRaises(KeyError, get_interest) def test_create_interest_weekend_event(self): blt = self.make_blotter() blt.connect_market_data() ts = pd.Timestamp('2015-08-06T00:00:00') blt._holdings.update_cash(ts, "AUD", 1000000) blt._holdings.update_cash(ts, "JPY", 1000000) ts = pd.Timestamp('2015-08-07T00:00:00') evs = blt.create_events(ts, "INTEREST") irates = pd.read_csv(self.rates, index_col=0, parse_dates=True) aud_int = irates.loc[ts, "AUD"] / 365 * 3 * 1000000 jpy_int = irates.loc[ts, "JPY"] / 365 * 3 * 1000000 evs_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "AUD", "quantity": aud_int}), blotter._Event("INTEREST", {"timestamp": ts, "ccy": "JPY", "quantity": jpy_int})] self.assertEventsEqual(evs, evs_exp) def test_create_margin_event(self): blt = blotter.Blotter(self.prices, self.rates, base_ccy="USD", margin_charge=0.015) blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = 1 price = 0 blt.define_generic("SXM", "CAD", 0.1, 1, 2.5) blt.map_instrument("SXM", "SXMZ15") blt.define_generic("ES", "USD", 0.05, 1, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, 'SXMZ15', qty, price) blt._trade(ts, "ESZ15", qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') ev = blt.create_events(ts, "MARGIN") rates = pd.read_csv(self.rates, index_col=0, parse_dates=True) es_fp = os.path.join(self.prices, 'ESZ15.csv') es = pd.read_csv(es_fp, index_col=0, parse_dates=True) sxm_fp = os.path.join(self.prices, 'SXMZ15.csv') sxm = pd.read_csv(sxm_fp, index_col=0, parse_dates=True) usdcad_fp = os.path.join(self.prices, 'USDCAD.csv') usdcad = pd.read_csv(usdcad_fp, index_col=0, parse_dates=True) es_notional = es.loc[ts].values * qty * 0.05 sxm_notional = sxm.loc[ts].values * qty * 0.1 / usdcad.loc[ts].values notnl = float(es_notional + sxm_notional) quantity = notnl * (rates.loc[ts, "USD"] + 0.015) / 365 ev_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "USD", "quantity": quantity})] self.assertEventsEqual(ev, ev_exp) def test_create_short_margin_event(self): blt = blotter.Blotter(self.prices, self.rates, base_ccy="USD", margin_charge=0.015) blt.connect_market_data() ts = pd.Timestamp('2015-08-04T00:00:00') qty = -1 price = 0 blt.define_generic("ES", "USD", 0.05, 1, 2.5) blt.map_instrument("ES", "ESZ15") blt._trade(ts, "ESZ15", qty, price) ts = pd.Timestamp('2015-08-05T00:00:00') ev = blt.create_events(ts, "MARGIN") rates = pd.read_csv(self.rates, index_col=0, parse_dates=True) es_fp = os.path.join(self.prices, 'ESZ15.csv') es = pd.read_csv(es_fp, index_col=0, parse_dates=True) es_notional = float(es.loc[ts].values * np.abs(qty) * 0.05) quantity = es_notional * (rates.loc[ts, "USD"] + 0.015) / 365 ev_exp = [blotter._Event("INTEREST", {"timestamp": ts, "ccy": "USD", "quantity": quantity})] self.assertEventsEqual(ev, ev_exp) def test_create_pnl_event(self): blt = self.make_blotter() blt.connect_market_data() ts =
pd.Timestamp('2015-08-04T00:00:00')
pandas.Timestamp
import pandas as pd import numpy as np def clean_last_season(): fantasy_data =
pd.read_csv('../resources/1617playerdata.csv', sep=',', encoding='utf-8')
pandas.read_csv
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import quantipy as qp # from matplotlib import pyplot as plt # import matplotlib.image as mpimg import string import pickle import warnings try: import seaborn as sns from PIL import Image except: pass from quantipy.core.cache import Cache from quantipy.core.view import View from quantipy.core.view_generators.view_mapper import ViewMapper from quantipy.core.view_generators.view_maps import QuantipyViews from quantipy.core.helpers.functions import emulate_meta from quantipy.core.tools.view.logic import (has_any, has_all, has_count, not_any, not_all, not_count, is_lt, is_ne, is_gt, is_le, is_eq, is_ge, union, intersection, get_logic_index) from quantipy.core.helpers.functions import (paint_dataframe, emulate_meta, get_text, finish_text_key) from quantipy.core.tools.dp.prep import recode from quantipy.core.tools.qp_decorators import lazy_property from operator import add, sub, mul from operator import truediv as div #from scipy.stats.stats import _ttest_finish as get_pval from scipy.stats._stats_py import _ttest_finish as get_pval from scipy.stats import chi2 as chi2dist from scipy.stats import f as fdist from itertools import combinations, chain, product from collections import defaultdict, OrderedDict, Counter import gzip try: import dill except: pass import json import copy import time import sys import re from quantipy.core.rules import Rules _TOTAL = '@' _AXES = ['x', 'y'] class ChainManager(object): def __init__(self, stack): self.stack = stack self.__chains = [] self.source = 'native' self.build_info = {} self._hidden = [] def __str__(self): return '\n'.join([chain.__str__() for chain in self]) def __repr__(self): return self.__str__() def __getitem__(self, value): if isinstance(value, str): element = self.__chains[self._idx_from_name(value)] is_folder = isinstance(element, dict) if is_folder: return list(element.values())[0] else: return element else: return self.__chains[value] def __len__(self): """returns the number of cached Chains""" return len(self.__chains) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < self.__len__(): obj = self[self.n] self.n += 1 return obj else: raise StopIteration next = __next__ def add_chain(self, chain): self.__chains.append(chain) @property def folders(self): """ Folder indices, names and number of stored ``qp.Chain`` items (as tuples). """ return [(self.__chains.index(f), list(f.keys())[0], len(list(f.values())[0])) for f in self if isinstance(f, dict)] @property def singles(self): """ The list of all non-folder ``qp.Chain`` indices and names (as tuples). """ return list(zip(self.single_idxs, self.single_names)) @property def chains(self): """ The flattened list of all ``qp.Chain`` items of self. """ all_chains = [] for c in self: if isinstance(c, dict): all_chains.extend(list(c.values())[0]) else: all_chains.append(c) return all_chains @property def folder_idxs(self): """ The folders' index positions in self. """ return [f[0] for f in self.folders] @property def folder_names(self): """ The folders' names from self. """ return [f[1] for f in self.folders] @property def single_idxs(self): """ The ``qp.Chain`` instances' index positions in self. """ return [self.__chains.index(c) for c in self if isinstance(c, Chain)] @property def single_names(self): """ The ``qp.Chain`` instances' names. """ return [s.name for s in self if isinstance(s, Chain)] @property def hidden(self): """ All ``qp.Chain`` elements that are hidden. """ return [c.name for c in self.chains if c.hidden] @property def hidden_folders(self): """ All hidden folders. """ return [n for n in self._hidden if n in self.folder_names] def _content_structure(self): return ['folder' if isinstance(k, dict) else 'single' for k in self] def _singles_to_idx(self): return {name: i for i, name in list(self._idx_to_singles().items())} def _idx_to_singles(self): return dict(self.singles) def _idx_fold(self): return dict([(f[0], f[1]) for f in self.folders]) def _folders_to_idx(self): return {name: i for i, name in list(self._idx_fold().items())} def _names(self, unroll=False): if not unroll: return self.folder_names + self.single_names else: return [c.name for c in self.chains] def _idxs_to_names(self): singles = self.singles folders = [(f[0], f[1]) for f in self.folders] return dict(singles + folders) def _names_to_idxs(self): return {n: i for i, n in list(self._idxs_to_names().items())} def _name_from_idx(self, name): return self._idxs_to_names()[name] def _idx_from_name(self, idx): return self._names_to_idxs()[idx] def _is_folder_ref(self, ref): return ref in self._folders_to_idx() or ref in self._idx_fold() def _is_single_ref(self, ref): return ref in self._singles_to_idx or ref in self._idx_to_singles() def _uniquify_names(self): all_names = Counter(self.single_names + self.folder_names) single_name_occ = Counter(self.single_names) folder_name_occ = {folder: Counter([c.name for c in self[folder]]) for folder in self.folder_names} for struct_name in all_names: if struct_name in folder_name_occ: iter_over = folder_name_occ[struct_name] is_folder = struct_name else: iter_over = single_name_occ is_folder = False for name, occ in list(iter_over.items()): if occ > 1: new_names = ['{}_{}'.format(name, i) for i in range(1, occ + 1)] idx = [s[0] for s in self.singles if s[1] == name] pairs = list(zip(idx, new_names)) if is_folder: for idx, c in enumerate(self[is_folder]): c.name = pairs[idx][1] else: for p in pairs: self.__chains[p[0]].name = p[1] return None def _set_to_folderitems(self, folder): """ Will keep only the ``values()`` ``qp.Chain`` item list from the named folder. Use this for within-folder-operations... """ if not folder in self.folder_names: err = "A folder named '{}' does not exist!".format(folder) raise KeyError(err) else: org_chains = self.__chains[:] org_index = self._idx_from_name(folder) self.__chains = self[folder] return org_chains, org_index def _rebuild_org_folder(self, folder, items, index): """ After a within-folder-operation this method is using the returns of ``_set_to_folderitems`` to rebuild the originating folder. """ self.fold(folder) new_folder = self.__chains[:] self.__chains = items self.__chains[index] = new_folder[0] return None @staticmethod def _dupes_in_chainref(chain_refs): return len(set(chain_refs)) != len(chain_refs) def _check_equality(self, other, return_diffs=True): """ """ chains1 = self.chains chains2 = other.chains diffs = {} if not len(chains1) == len(chains2): return False else: paired = list(zip(chains1, chains2)) for c1, c2 in paired: atts1 = c1.__dict__ atts2 = c2.__dict__ for att in list(atts1.keys()): if isinstance(atts1[att], (pd.DataFrame, pd.Index)): if not atts1[att].equals(atts2[att]): diffs[att] = [atts1[att], atts2[att]] else: if atts1[att] != atts2[att]: diffs[att] = [atts1[att], atts2[att]] return diffs if return_diffs else not diffs def _test_same_structure(self, other): """ """ folders1 = self.folders singles1 = self.singles folders2 = other.folders singles2 = other.singles if (folders1 != folders2 or singles1 != singles2): return False else: return True def equals(self, other): """ Test equality of self to another ``ChainManager`` object instance. .. note:: Only the flattened list of ``Chain`` objects stored are tested, i.e. any folder structure differences are ignored. Use ``compare()`` for a more detailed comparison. Parameters ---------- other : ``qp.ChainManager`` Another ``ChainManager`` object to compare. Returns ------- equality : bool """ return self._check_equality(other, False) def compare(self, other, strict=True, full_summary=True): """ Compare structure and content of self to another ``ChainManager`` instance. Parameters ---------- other : ``qp.ChainManager`` Another ``ChainManager`` object to compare. strict : bool, default True Test if the structure of folders vs. single Chain objects is the same in both ChainManager instances. full_summary : bool, default True ``False`` will disable the detailed comparison ``pd.DataFrame`` that informs about differences between the objects. Returns ------- result : str A brief feedback message about the comparison results. """ diffs = [] if strict: same_structure = self._test_same_structure(other) if not same_structure: diffs.append('s') check = self._check_equality(other) if isinstance(check, bool): diffs.append('l') else: if check: diffs.append('c') report_full = ['_frame', '_x_keys', '_y_keys', 'index', '_columns', 'base_descriptions', 'annotations'] diffs_in = '' if diffs: if 'l' in diffs: diffs_in += '\n -Length (number of stored Chain objects)' if 's' in diffs: diffs_in += '\n -Structure (folders and/or single Chain order)' if 'c' in diffs: diffs_in += '\n -Chain elements (properties and content of Chain objects)' if diffs_in: result = 'ChainManagers are not identical:\n' result += '--------------------------------' + diffs_in else: result = 'ChainManagers are identical.' print(result) return None def save(self, path, keep_stack=False): """ """ if not keep_stack: del self.stack self.stack = None f = open(path, 'wb') pickle.dump(self, f, pickle.HIGHEST_PROTOCOL) f.close() return None @staticmethod def load(path): """ """ f = open(path, 'rb') obj = pickle.load(f) f.close() return obj def _toggle_vis(self, chains, mode='hide'): if not isinstance(chains, list): chains = [chains] for chain in chains: if isinstance(chain, dict): fname = list(chain.keys())[0] elements = list(chain.values())[0] fidx = self._idx_from_name(fname) folder = self[fidx][fname] for c in folder: if c.name in elements: c.hidden = True if mode == 'hide' else False if mode == 'hide' and not c.name in self._hidden: self._hidden.append(c.name) if mode == 'unhide' and c.name in self._hidden: self._hidden.remove(c.name) else: if chain in self.folder_names: for c in self[chain]: c.hidden = True if mode == 'hide' else False else: self[chain].hidden = True if mode == 'hide' else False if mode == 'hide': if not chain in self._hidden: self._hidden.append(chain) else: if chain in self._hidden: self._hidden.remove(chain) return None def hide(self, chains): """ Flag elements as being hidden. Parameters ---------- chains : (list) of int and/or str or dict The ``qp.Chain`` item and/or folder names to hide. To hide *within* a folder use a dict to map the desired Chain names to the belonging folder name. Returns ------- None """ self._toggle_vis(chains, 'hide') return None def unhide(self, chains=None): """ Unhide elements that have been set as ``hidden``. Parameters ---------- chains : (list) of int and/or str or dict, default None The ``qp.Chain`` item and/or folder names to unhide. To unhide *within* a folder use a dict to map the desired Chain names to the belonging folder name. If not provided, all hidden elements will be unhidden. Returns ------- None """ if not chains: chains = self.folder_names + self.single_names self._toggle_vis(chains, 'unhide') return None def clone(self): """ Return a full (deep) copy of self. """ return copy.deepcopy(self) def insert(self, other_cm, index=-1, safe_names=False): """ Add elements from another ``ChainManager`` instance to self. Parameters ---------- other_cm : ``quantipy.ChainManager`` A ChainManager instance to draw the elements from. index : int, default -1 The positional index after which new elements will be added. Defaults to -1, i.e. elements are appended at the end. safe_names : bool, default False If True and any duplicated element names are found after the operation, names will be made unique (by appending '_1', '_2', '_3', etc.). Returns ------ None """ if not isinstance(other_cm, ChainManager): raise ValueError("other_cm must be a quantipy.ChainManager instance.") if not index == -1: before_c = self.__chains[:index+1] after_c = self.__chains[index+1:] new_chains = before_c + other_cm.__chains + after_c self.__chains = new_chains else: self.__chains.extend(other_cm.__chains) if safe_names: self._uniquify_names() return None def merge(self, folders, new_name=None, drop=True): """ Unite the items of two or more folders, optionally providing a new name. If duplicated ``qp.Chain`` items are found, the first instance will be kept. The merged folder will take the place of the first folder named in ``folders``. Parameters ---------- folders : list of int and/or str The folders to merge refernced by their positional index or by name. new_name : str, default None Use this as the merged folder's name. If not provided, the name of the first folder in ``folders`` will be used instead. drop : bool, default True If ``False``, the original folders will be kept alongside the new merged one. Returns ------- None """ if not isinstance(folders, list): err = "'folders' must be a list of folder references!" raise TypeError(err) if len(folders) == 1: err = "'folders' must contain at least two folder names!" raise ValueError(err) if not all(self._is_folder_ref(f) for f in folders): err = "One or more folder names from 'folders' do not exist!" ValueError(err) folders = [f if isinstance(f, str) else self._name_from_idx(f) for f in folders] folder_idx = self._idx_from_name(folders[0]) if not new_name: new_name = folders[0] merged_items = [] seen_names = [] for folder in folders: for chain in self[folder]: if not chain.name in seen_names: merged_items.append(chain) seen_names.append(chain.name) if drop: self.__chains[folder_idx] = {new_name: merged_items} remove_folders = folders[1:] if new_name != folders[0] else folders for r in remove_folders: self.remove(r) else: start = self.__chains[:folder_idx] end = self.__chains[folder_idx:] self.__chains = start + [{new_name: merged_items}] + end return None def fold(self, folder_name=None, chains=None): """ Arrange non-``dict`` structured ``qp.Chain`` items in folders. All separate ``qp.Chain`` items will be mapped to their ``name`` property being the ``key`` in the transformed ``dict`` structure. Parameters ---------- folder_name : str, default None Collect all items in a folder keyed by the provided name. If the key already exists, the items will be appended to the ``dict`` values. chains : (list) of int and/or str, default None Select specific ``qp.Chain`` items by providing their positional indices or ``name`` property value for moving only a subset to the folder. Returns ------- None """ if chains: if not isinstance(chains, list): chains = [chains] if any(self._is_folder_ref(c) for c in chains): err = 'Cannot build folder from other folders!' raise ValueError(err) all_chain_names = [] singles = [] for c in chains: if isinstance(c, str): all_chain_names.append(c) elif isinstance(c, int) and c in self._idx_to_singles(): all_chain_names.append(self._idx_to_singles()[c]) for c in all_chain_names: singles.append(self[self._singles_to_idx()[c]]) else: singles = [s for s in self if isinstance(s, Chain)] if self._dupes_in_chainref(singles): err = "Cannot build folder from duplicate qp.Chain references: {}" raise ValueError(err.format(singles)) for s in singles: if folder_name: if folder_name in self.folder_names: self[folder_name].append(s) else: self.__chains.append({folder_name: [s]}) del self.__chains[self._singles_to_idx()[s.name]] else: self.__chains[self._singles_to_idx()[s.name]] = {s.name: [s]} return None def unfold(self, folder=None): """ Remove folder but keep the collected items. The items will be added starting at the old index position of the original folder. Parameters ---------- folder : (list of) str, default None The name of the folder to drop and extract items from. If not provided all folders will be unfolded. Returns ------- None """ if not folder: folder = self.folder_names else: if not isinstance(folder, list): folder = [folder] invalid = [f for f in folder if f not in self.folder_names] if invalid: err = "Folder(s) named '{}' not found.".format(invalid) raise KeyError(err) for f in folder: old_pos = self._idx_from_name(f) items = self[f] start = self.__chains[: old_pos] end = self.__chains[old_pos + 1: ] self.__chains = start + items + end return None def remove(self, chains, folder=None, inplace=True): """ Remove (folders of) ``qp.Chain`` items by providing a list of indices or names. Parameters ---------- chains : (list) of int and/or str ``qp.Chain`` items or folders by provided by their positional indices or ``name`` property. folder : str, default None If a folder name is provided, items will be dropped within that folder only instead of removing all found instances. inplace : bool, default True By default the new order is applied inplace, set to ``False`` to return a new object instead. Returns ------- None """ if inplace: cm = self else: cm = self.clone() if folder: org_chains, org_index = cm._set_to_folderitems(folder) if not isinstance(chains, list): chains = [chains] remove_idxs= [c if isinstance(c, int) else cm._idx_from_name(c) for c in chains] if cm._dupes_in_chainref(remove_idxs): err = "Cannot remove with duplicate chain references: {}" raise ValueError(err.format(remove_idxs)) new_items = [] for pos, c in enumerate(cm): if not pos in remove_idxs: new_items.append(c) cm.__chains = new_items if folder: cm._rebuild_org_folder(folder, org_chains, org_index) if inplace: return None else: return cm def cut(self, values, ci=None, base=False, tests=False): """ Isolate selected axis values in the ``Chain.dataframe``. Parameters ---------- values : (list of) str The string must indicate the raw (i.e. the unpainted) second level axis value, e.g. ``'mean'``, ``'net_1'``, etc. ci : {'counts', 'c%', None}, default None The cell item version to target if multiple frequency representations are present. base : bool, default False Controls keeping any existing base view aggregations. tests : bool, default False Controls keeping any existing significance test view aggregations. Returns ------- None """ if not isinstance(values, list): values = [values] if 'cbase' in values: values[values.index('cbase')] = 'All' if base and not 'All' in values: values = ['All'] + values for c in self.chains: # force ci parameter for proper targeting on array summaries... if c.array_style == 0 and ci is None: _ci = c.cell_items.split('_')[0] if not _ci.startswith('counts'): ci = '%' else: ci = 'counts' if c.sig_test_letters: c._remove_letter_header() idxs, names, order = c._view_idxs( values, keep_tests=tests, keep_bases=base, names=True, ci=ci) idxs = [i for _, i in sorted(zip(order, idxs))] names = [n for _, n in sorted(zip(order, names))] if c.ci_count > 1: c._non_grouped_axis() if c.array_style == 0: c._fill_cells() start, repeat = c._row_pattern(ci) c._frame = c._frame.iloc[start::repeat, idxs] else: c._frame = c._frame.iloc[idxs, :] c.index = c._slice_edited_index(c.index, idxs) new_views = OrderedDict() for v in c.views.copy(): if not v in names: del c._views[v] else: c._views[v] = names.count(v) if not c._array_style == 0: if not tests: c.sig_test_letters = None else: c._frame = c._apply_letter_header(c._frame) c.edited = True return None def join(self, title='Summary'): """ Join **all** ``qp.Chain```elements, concatenating along the matching axis. Parameters ---------- title : {str, 'auto'}, default 'Summary' The new title for the joined axis' index representation. Returns ------- None """ custom_views = [] self.unfold() chains = self.chains totalmul = len(chains[0]._frame.columns.get_level_values(0).tolist()) concat_dfs = [] new_labels = [] for c in chains: new_label = [] if c.sig_test_letters: c._remove_letter_header() c._frame = c._apply_letter_header(c._frame) df = c.dataframe if not c.array_style == 0: new_label.append(df.index.get_level_values(0).values.tolist()[0]) new_label.extend((len(c.describe()) - 1) * ['']) else: new_label.extend(df.index.get_level_values(1).values.tolist()) names = ['Question', 'Values'] join_idx = pd.MultiIndex.from_product([[title], new_label], names=names) df.index = join_idx df.rename(columns={c._x_keys[0]: 'Total'}, inplace=True) if not c.array_style == 0: custom_views.extend(c._views_per_rows()) else: df.columns.set_levels(levels=[title]*totalmul, level=0, inplace=True) concat_dfs.append(df) new_df = pd.concat(concat_dfs, axis=0, join='inner') self.chains[0]._frame = new_df self.reorder([0]) self.rename({self.single_names[0]: title}) self.fold() self.chains[0]._custom_views = custom_views return None def reorder(self, order, folder=None, inplace=True): """ Reorder (folders of) ``qp.Chain`` items by providing a list of new indices or names. Parameters ---------- order : list of int and/or str The folder or ``qp.Chain`` references to determine the new order of items. Any items not referenced will be removed from the new order. folder : str, default None If a folder name is provided, items will be sorted within that folder instead of applying the sorting to the general items collection. inplace : bool, default True By default the new order is applied inplace, set to ``False`` to return a new object instead. Returns ------- None """ if inplace: cm = self else: cm = self.clone() if folder: org_chains, org_index = self._set_to_folderitems(folder) if not isinstance(order, list): err = "'order' must be a list!" raise ValueError(err) new_idx_order = [] for o in order: if isinstance(o, int): new_idx_order.append(o) else: new_idx_order.append(self._idx_from_name(o)) if cm._dupes_in_chainref(new_idx_order): err = "Cannot reorder from duplicate qp.Chain references: {}" raise ValueError(err.format(new_idx_order)) items = [self.__chains[idx] for idx in new_idx_order] cm.__chains = items if folder: cm._rebuild_org_folder(folder, org_chains, org_index) if inplace: return None else: return cm def rename(self, names, folder=None): """ Rename (folders of) ``qp.Chain`` items by providing a mapping of old to new keys. Parameters ---------- names : dict Maps existing names to the desired new ones, i.e. {'old name': 'new names'} pairs need to be provided. folder : str, default None If a folder name is provided, new names will only be applied within that folder. This is without effect if all ``qp.Chain.name`` properties across the items are unique. Returns ------- None """ if not isinstance(names, dict): err = "''names' must be a dict of old_name: new_name pairs." raise ValueError(err) if folder and not folder in self.folder_names: err = "A folder named '{}' does not exist!".format(folder) raise KeyError(err) for old, new in list(names.items()): no_folder_name = folder and not old in self._names(False) no_name_across = not folder and not old in self._names(True) if no_folder_name and no_name_across: err = "'{}' is not an existing folder or ``qp.Chain`` name!" raise KeyError(err.format(old)) else: within_folder = old not in self._names(False) if not within_folder: idx = self._idx_from_name(old) if not isinstance(self.__chains[idx], dict): self.__chains[idx].name = new else: self.__chains[idx] = {new: self[old][:]} else: iter_over = self[folder] if folder else self.chains for c in iter_over: if c.name == old: c.name = new return None def _native_stat_names(self, idxvals_list, text_key=None): """ """ if not text_key: text_key = 'en-GB' replacements = { 'en-GB': { 'Weighted N': 'Base', # Crunch 'N': 'Base', # Crunch 'Mean': 'Mean', # Dims 'StdDev': 'Std. dev', # Dims 'StdErr': 'Std. err. of mean', # Dims 'SampleVar': 'Sample variance' # Dims }, } native_stat_names = [] for val in idxvals_list: if val in replacements[text_key]: native_stat_names.append(replacements[text_key][val]) else: native_stat_names.append(val) return native_stat_names def _get_ykey_mapping(self): ys = [] letters = string.ascii_uppercase + string.ascii_lowercase for c in self.chains: if c._y_keys not in ys: ys.append(c._y_keys) return list(zip(ys, letters)) def describe(self, by_folder=False, show_hidden=False): """ Get a structual summary of all ``qp.Chain`` instances found in self. Parameters ---------- by_folder : bool, default False If True, only information on ``dict``-structured (folder-like) ``qp.Chain`` items is shown, multiindexed by folder names and item enumerations. show_hidden : bool, default False If True, the summary will also include elements that have been set hidden using ``self.hide()``. Returns ------- None """ folders = [] folder_items = [] variables = [] names = [] array_sum = [] sources = [] banner_ids = [] item_pos = [] hidden = [] bannermap = self._get_ykey_mapping() for pos, chains in enumerate(self): is_folder = isinstance(chains, dict) if is_folder: folder_name = list(chains.keys()) chains = list(chains.values())[0] folder_items.extend(list(range(0, len(chains)))) item_pos.extend([pos] * len(chains)) else: chains = [chains] folder_name = [None] folder_items.append(None) item_pos.append(pos) if chains[0].structure is None: variables.extend([c._x_keys[0] for c in chains]) names.extend([c.name for c in chains]) folders.extend(folder_name * len(chains)) array_sum.extend([True if c.array_style > -1 else False for c in chains]) sources.extend(c.source if not c.edited else 'edited' for c in chains) for c in chains: for m in bannermap: if m[0] == c._y_keys: banner_ids.append(m[1]) else: variables.extend([chains[0].name]) names.extend([chains[0].name]) folders.extend(folder_name) array_sum.extend([False]) sources.extend(c.source for c in chains) banner_ids.append(None) for c in chains: if c.hidden: hidden.append(True) else: hidden.append(False) df_data = [item_pos, names, folders, folder_items, variables, sources, banner_ids, array_sum, hidden] df_cols = ['Position', 'Name', 'Folder', 'Item', 'Variable', 'Source', 'Banner id', 'Array', 'Hidden'] df = pd.DataFrame(df_data).T df.columns = df_cols if by_folder: df = df.set_index(['Position', 'Folder', 'Item']) if not show_hidden: df = df[df['Hidden'] == False][df.columns[:-1]] return df def from_mtd(self, mtd_doc, ignore=None, paint=True, flatten=False): """ Convert a Dimensions table document (.mtd) into a collection of quantipy.Chain representations. Parameters ---------- mtd_doc : (pandified) .mtd A Dimensions .mtd file or the returned result of ``pandify_mtd()``. A "pandified" .mtd consists of ``dict`` of ``pandas.DataFrame`` and metadata ``dict``. Additional text here... ignore : bool, default False Text labels : bool, default True Text flatten : bool, default False Text Returns ------- self : quantipy.ChainManager Will consist of Quantipy representations of the pandas-converted .mtd file. """ def relabel_axes(df, meta, sigtested, labels=True): """ """ for axis in ['x', 'y']: if axis == 'x': transf_axis = df.index else: transf_axis = df.columns levels = transf_axis.nlevels axis_meta = 'index-emetas' if axis == 'x' else 'columns-emetas' for l in range(0, levels): if not (sigtested and axis == 'y' and l == levels -1): org_vals = transf_axis.get_level_values(l).tolist() org_names = [ov.split('|')[0] for ov in org_vals] org_labs = [ov.split('|')[1] for ov in org_vals] new_vals = org_labs if labels else org_names if l > 0: for no, axmeta in enumerate(meta[axis_meta]): if axmeta['Type'] != 'Category': new_vals[no] = axmeta['Type'] new_vals = self._native_stat_names(new_vals) rename_dict = {old: new for old, new in zip(org_vals, new_vals)} if axis == 'x': df.rename(index=rename_dict, inplace=True) df.index.names = ['Question', 'Values'] * (levels / 2) else: df.rename(columns=rename_dict, inplace=True) if sigtested: df.columns.names = (['Question', 'Values'] * (levels / 2) + ['Test-IDs']) else: df.columns.names = ['Question', 'Values'] * (levels / 2) return None def split_tab(tab): """ """ df, meta = tab['df'], tab['tmeta'] mtd_slicer = df.index.get_level_values(0) meta_limits = list(OrderedDict( (i, mtd_slicer.tolist().count(i)) for i in mtd_slicer).values()) meta_slices = [] for start, end in enumerate(meta_limits): if start == 0: i_0 = 0 else: i_0 = meta_limits[start-1] meta_slices.append((i_0, end)) df_slicers = [] for e in mtd_slicer: if not e in df_slicers: df_slicers.append(e) dfs = [df.loc[[s], :].copy() for s in df_slicers] sub_metas = [] for ms in meta_slices: all_meta = copy.deepcopy(meta) idx_meta = all_meta['index-emetas'][ms[0]: ms[1]] all_meta['index-emetas'] = idx_meta sub_metas.append(all_meta) return list(zip(dfs, sub_metas)) def _get_axis_vars(df): axis_vars = [] for axis in [df.index, df.columns]: ax_var = [v.split('|')[0] for v in axis.unique().levels[0]] axis_vars.append(ax_var) return axis_vars[0][0], axis_vars[1] def to_chain(basic_chain_defintion, add_chain_meta): new_chain = Chain(None, basic_chain_defintion[1]) new_chain.source = 'Dimensions MTD' new_chain.stack = None new_chain.painted = True new_chain._meta = add_chain_meta new_chain._frame = basic_chain_defintion[0] new_chain._x_keys = [basic_chain_defintion[1]] new_chain._y_keys = basic_chain_defintion[2] new_chain._given_views = None new_chain._grp_text_map = [] new_chain._text_map = None # new_chain._pad_id = None # new_chain._array_style = None new_chain._has_rules = False # new_chain.double_base = False # new_chain.sig_test_letters = None # new_chain.totalize = True # new_chain._meta['var_meta'] = basic_chain_defintion[-1] # new_chain._extract_base_descriptions() new_chain._views = OrderedDict() new_chain._views_per_rows() for vk in new_chain._views_per_rows(): if not vk in new_chain._views: new_chain._views[vk] = new_chain._views_per_rows().count(vk) return new_chain def mine_mtd(tab_collection, paint, chain_coll, folder=None): failed = [] unsupported = [] for name, sub_tab in list(tab_collection.items()): try: if isinstance(list(sub_tab.values())[0], dict): mine_mtd(sub_tab, paint, chain_coll, name) else: tabs = split_tab(sub_tab) chain_dfs = [] for tab in tabs: df, meta = tab[0], tab[1] nestex_x = None nested_y = (df.columns.nlevels % 2 == 0 and df.columns.nlevels > 2) sigtested = (df.columns.nlevels % 2 != 0 and df.columns.nlevels > 2) if sigtested: df = df.swaplevel(0, axis=1).swaplevel(0, 1, 1) else: invalid = ['-', '*', '**'] df = df.applymap( lambda x: float(x.replace(',', '.').replace('%', '')) if isinstance(x, str) and not x in invalid else x ) x, y = _get_axis_vars(df) df.replace('-', np.NaN, inplace=True) relabel_axes(df, meta, sigtested, labels=paint) colbase_l = -2 if sigtested else -1 for base in ['Base', 'UnweightedBase']: df = df.drop(base, axis=1, level=colbase_l) chain = to_chain((df, x, y), meta) chain.name = name chain_dfs.append(chain) if not folder: chain_coll.extend(chain_dfs) else: folders = [(i, list(c.keys())[0]) for i, c in enumerate(chain_coll, 0) if isinstance(c, dict)] if folder in [f[1] for f in folders]: pos = [f[0] for f in folders if f[1] == folder][0] chain_coll[pos][folder].extend(chain_dfs) else: chain_coll.append({folder: chain_dfs}) except: failed.append(name) return chain_coll chain_coll = [] chains = mine_mtd(mtd_doc, paint, chain_coll) self.__chains = chains return self def from_cmt(self, crunch_tabbook, ignore=None, cell_items='c', array_summaries=True): """ Convert a Crunch multitable document (tabbook) into a collection of quantipy.Chain representations. Parameters ---------- crunch_tabbook : ``Tabbook`` object instance Text ignore : bool, default False Text cell_items : {'c', 'p', 'cp'}, default 'c' Text array_summaries : bool, default True Text Returns ------- self : quantipy.ChainManager Will consist of Quantipy representations of the Crunch table document. """ def cubegroups_to_chain_defs(cubegroups, ci, arr_sum): """ Convert CubeGroup DataFrame to a Chain.dataframe. """ chain_dfs = [] # DataFrame edits to get basic Chain.dataframe rep. for idx, cubegroup in enumerate(cubegroups): cubegroup_df = cubegroup.dataframe array = cubegroup.is_array # split arrays into separate dfs / convert to summary df... if array: ai_aliases = cubegroup.subref_aliases array_elements = [] dfs = [] if array_summaries: arr_sum_df = cubegroup_df.copy().unstack()['All'] arr_sum_df.is_summary = True x_label = arr_sum_df.index.get_level_values(0).tolist()[0] x_name = cubegroup.rowdim.alias dfs.append((arr_sum_df, x_label, x_name)) array_elements = cubegroup_df.index.levels[1].values.tolist() ai_df = cubegroup_df.copy() idx = cubegroup_df.index.droplevel(0) ai_df.index = idx for array_element, alias in zip(array_elements, ai_aliases): dfs.append((ai_df.loc[[array_element], :].copy(), array_element, alias)) else: x_label = cubegroup_df.index.get_level_values(0).tolist()[0] x_name = cubegroup.rowdim.alias dfs = [(cubegroup_df, x_label, x_name)] # Apply QP-style DataFrame conventions (indexing, names, etc.) for cgdf, x_var_label, x_var_name in dfs: is_summary = hasattr(cgdf, 'is_summary') if is_summary: cgdf = cgdf.T y_var_names = ['@'] x_names = ['Question', 'Values'] y_names = ['Array', 'Questions'] else: y_var_names = cubegroup.colvars x_names = ['Question', 'Values'] y_names = ['Question', 'Values'] cgdf.index = cgdf.index.droplevel(0) # Compute percentages? if cell_items == 'p': _calc_pct(cgdf) # Build x-axis multiindex / rearrange "Base" row idx_vals = cgdf.index.values.tolist() cgdf = cgdf.reindex([idx_vals[-1]] + idx_vals[:-1]) idx_vals = cgdf.index.values.tolist() mi_vals = [[x_var_label], self._native_stat_names(idx_vals)] row_mi = pd.MultiIndex.from_product(mi_vals, names=x_names) cgdf.index = row_mi # Build y-axis multiindex y_vals = [('Total', 'Total') if y[0] == 'All' else y for y in cgdf.columns.tolist()] col_mi = pd.MultiIndex.from_tuples(y_vals, names=y_names) cgdf.columns = col_mi if is_summary: cgdf = cgdf.T chain_dfs.append((cgdf, x_var_name, y_var_names, cubegroup._meta)) return chain_dfs def _calc_pct(df): df.iloc[:-1, :] = df.iloc[:-1, :].div(df.iloc[-1, :]) * 100 return None def to_chain(basic_chain_defintion, add_chain_meta): """ """ new_chain = Chain(None, basic_chain_defintion[1]) new_chain.source = 'Crunch multitable' new_chain.stack = None new_chain.painted = True new_chain._meta = add_chain_meta new_chain._frame = basic_chain_defintion[0] new_chain._x_keys = [basic_chain_defintion[1]] new_chain._y_keys = basic_chain_defintion[2] new_chain._given_views = None new_chain._grp_text_map = [] new_chain._text_map = None new_chain._pad_id = None new_chain._array_style = None new_chain._has_rules = False new_chain.double_base = False new_chain.sig_test_letters = None new_chain.totalize = True new_chain._meta['var_meta'] = basic_chain_defintion[-1] new_chain._extract_base_descriptions() new_chain._views = OrderedDict() for vk in new_chain._views_per_rows(): if not vk in new_chain._views: new_chain._views[vk] = new_chain._views_per_rows().count(vk) return new_chain # self.name = name OK! # self._meta = Crunch meta OK! # self._x_keys = None OK! # self._y_keys = None OK! # self._frame = None OK! # self.totalize = False OK! -> But is True! # self.stack = stack OK! -> N/A # self._has_rules = None OK! -> N/A # self.double_base = False OK! -> N/A # self.sig_test_letters = None OK! -> N/A # self._pad_id = None OK! -> N/A # self._given_views = None OK! -> N/A # self._grp_text_map = [] OK! -> N/A # self._text_map = None OK! -> N/A # self.grouping = None ? # self._group_style = None ? # self._transl = qp.core.view.View._metric_name_map() * with CMT/MTD self.source = 'Crunch multitable' cubegroups = crunch_tabbook.cube_groups meta = {'display_settings': crunch_tabbook.display_settings, 'weight': crunch_tabbook.weight} if cell_items == 'c': meta['display_settings']['countsOrPercents'] = 'counts' elif cell_items == 'p': meta['display_settings']['countsOrPercents'] = 'percent' chain_defs = cubegroups_to_chain_defs(cubegroups, cell_items, array_summaries) self.__chains = [to_chain(c_def, meta) for c_def in chain_defs] return self # ------------------------------------------------------------------------ def from_cluster(self, clusters): """ Create an OrderedDict of ``Cluster`` names storing new ``Chain``\s. Parameters ---------- clusters : cluster-like ([dict of] quantipy.Cluster) Text ... Returns ------- new_chain_dict : OrderedDict Text ... """ self.source = 'native (old qp.Cluster of qp.Chain)' qp.set_option('new_chains', True) def check_cell_items(views): c = any('counts' in view.split('|')[-1] for view in views) p = any('c%' in view.split('|')[-1] for view in views) cp = c and p if cp: cell_items = 'counts_colpct' else: cell_items = 'counts' if c else 'colpct' return cell_items def check_sigtest(views): """ """ levels = [] sigs = [v.split('|')[1] for v in views if v.split('|')[1].startswith('t.')] for sig in sigs: l = '0.{}'.format(sig.split('.')[-1]) if not l in levels: levels.append(l) return levels def mine_chain_structure(clusters): cluster_defs = [] for cluster_def_name, cluster in list(clusters.items()): for name in cluster: if isinstance(list(cluster[name].items())[0][1], pd.DataFrame): cluster_def = {'name': name, 'oe': True, 'df': list(cluster[name].items())[0][1], 'filter': chain.filter, 'data_key': chain.data_key} else: xs, views, weight = [], [], [] for chain_name, chain in list(cluster[name].items()): for v in chain.views: w = v.split('|')[-2] if w not in weight: weight.append(w) if v not in views: views.append(v) xs.append(chain.source_name) ys = chain.content_of_axis cluster_def = {'name': '{}-{}'.format(cluster_def_name, name), 'filter': chain.filter, 'data_key': chain.data_key, 'xs': xs, 'ys': ys, 'views': views, 'weight': weight[-1], 'bases': 'both' if len(weight) == 2 else 'auto', 'cell_items': check_cell_items(views), 'tests': check_sigtest(views)} cluster_defs.append(cluster_def) return cluster_defs from quantipy.core.view_generators.view_specs import ViewManager cluster_specs = mine_chain_structure(clusters) for cluster_spec in cluster_specs: oe = cluster_spec.get('oe', False) if not oe: vm = ViewManager(self.stack) vm.get_views(cell_items=cluster_spec['cell_items'], weight=cluster_spec['weight'], bases=cluster_spec['bases'], stats= ['mean', 'stddev', 'median', 'min', 'max'], tests=cluster_spec['tests']) self.get(data_key=cluster_spec['data_key'], filter_key=cluster_spec['filter'], x_keys = cluster_spec['xs'], y_keys = cluster_spec['ys'], views=vm.views, orient='x', prioritize=True) else: meta = [cluster_spec['data_key'], cluster_spec['filter']] df, name = cluster_spec['df'], cluster_spec['name'] self.add(df, meta_from=meta, name=name) return None @staticmethod def _force_list(obj): if isinstance(obj, (list, tuple)): return obj return [obj] def _check_keys(self, data_key, keys): """ Checks given keys exist in meta['columns'] """ keys = self._force_list(keys) meta = self.stack[data_key].meta valid = list(meta['columns'].keys()) + list(meta['masks'].keys()) invalid = ['"%s"' % _ for _ in keys if _ not in valid and _ != _TOTAL] if invalid: raise ValueError("Keys %s do not exist in meta['columns'] or " "meta['masks']." % ", ".join(invalid)) return keys def add(self, structure, meta_from=None, meta=None, name=None): """ Add a pandas.DataFrame as a Chain. Parameters ---------- structure : ``pandas.Dataframe`` The dataframe to add to the ChainManger meta_from : list, list-like, str, default None The location of the meta in the stack. Either a list-like object with data key and filter key or a str as the data key meta : quantipy meta (dict) External meta used to paint the frame name : ``str``, default None The name to give the resulting chain. If not passed, the name will become the concatenated column names, delimited by a period Returns ------- appended : ``quantipy.ChainManager`` """ name = name or '.'.join(structure.columns.tolist()) chain = Chain(self.stack, name, structure=structure) chain._frame = chain.structure chain._index = chain._frame.index chain._columns = chain._frame.columns chain._frame_values = chain._frame.values if meta_from: if isinstance(meta_from, str): chain._meta = self.stack[meta_from].meta else: data_key, filter_key = meta_from chain._meta = self.stack[data_key][filter_key].meta elif meta: chain._meta = meta self.__chains.append(chain) return self def get(self, data_key, filter_key, x_keys, y_keys, views, orient='x', rules=True, rules_weight=None, prioritize=True, folder=None): """ TODO: Full doc string Get a (list of) Chain instance(s) in either 'x' or 'y' orientation. Chain.dfs will be concatenated along the provided 'orient'-axis. """ # TODO: VERIFY data_key # TODO: VERIFY filter_key # TODO: Add verbose arg to get() x_keys = self._check_keys(data_key, x_keys) y_keys = self._check_keys(data_key, y_keys) if folder and not isinstance(folder, str): err = "'folder' must be a name provided as string!" raise ValueError(err) if orient == 'x': it, keys = x_keys, y_keys else: it, keys = y_keys, x_keys for key in it: x_key, y_key = (key, keys) if orient == 'x' else (keys, key) chain = Chain(self.stack, key) chain = chain.get(data_key, filter_key, self._force_list(x_key), self._force_list(y_key), views, rules=rules, rules_weight=rules_weight, prioritize=prioritize, orient=orient) folders = self.folder_names if folder in folders: idx = self._idx_from_name(folder) self.__chains[idx][folder].append(chain) else: if folder: self.__chains.append({folder: [chain]}) else: self.__chains.append(chain) return None def paint_all(self, *args, **kwargs): """ Apply labels, sig. testing conversion and other post-processing to the ``Chain.dataframe`` property. Use this to prepare a ``Chain`` for further usage in an Excel or Power- point Build. Parameters ---------- text_key : str, default meta['lib']['default text'] The language version of any variable metadata applied. text_loc_x : str, default None The key in the 'text' to locate the text_key for the ``pandas.DataFrame.index`` labels text_loc_y : str, default None The key in the 'text' to locate the text_key for the ``pandas.DataFrame.columns`` labels display : {'x', 'y', ['x', 'y']}, default None Text axes : {'x', 'y', ['x', 'y']}, default None Text view_level : bool, default False Text transform_tests : {False, 'full', 'cells'}, default cells Text totalize : bool, default False Text Returns ------- None The ``.dataframe`` is modified inplace. """ for chain in self: if isinstance(chain, dict): for c in list(chain.values())[0]: c.paint(*args, **kwargs) else: chain.paint(*args, **kwargs) return None HEADERS = ['header-title', 'header-left', 'header-center', 'header-right'] FOOTERS = ['footer-title', 'footer-left', 'footer-center', 'footer-right'] VALID_ANNOT_TYPES = HEADERS + FOOTERS + ['notes'] VALID_ANNOT_CATS = ['header', 'footer', 'notes'] VALID_ANNOT_POS = ['title', 'left', 'center', 'right'] class ChainAnnotations(dict): def __init__(self): super(ChainAnnotations, self).__init__() self.header_title = [] self.header_left = [] self.header_center = [] self.header_right = [] self.footer_title = [] self.footer_left = [] self.footer_center = [] self.footer_right = [] self.notes = [] for v in VALID_ANNOT_TYPES: self[v] = [] def __setitem__(self, key, value): self._test_valid_key(key) return super(ChainAnnotations, self).__setitem__(key, value) def __getitem__(self, key): self._test_valid_key(key) return super(ChainAnnotations, self).__getitem__(key) def __repr__(self): headers = [(h.split('-')[1], self[h]) for h in self.populated if h.split('-')[0] == 'header'] footers = [(f.split('-')[1], self[f]) for f in self.populated if f.split('-')[0] == 'footer'] notes = self['notes'] if self['notes'] else [] if notes: ar = 'Notes\n' ar += '-{:>16}\n'.format(str(notes)) else: ar = 'Notes: None\n' if headers: ar += 'Headers\n' for pos, text in list(dict(headers).items()): ar += ' {:>5}: {:>5}\n'.format(str(pos), str(text)) else: ar += 'Headers: None\n' if footers: ar += 'Footers\n' for pos, text in list(dict(footers).items()): ar += ' {:>5}: {:>5}\n'.format(str(pos), str(text)) else: ar += 'Footers: None' return ar def _test_valid_key(self, key): """ """ if key not in VALID_ANNOT_TYPES: splitted = key.split('-') if len(splitted) > 1: acat, apos = splitted[0], splitted[1] else: acat, apos = key, None if apos: if acat == 'notes': msg = "'{}' annotation type does not support positions!" msg = msg.format(acat) elif not acat in VALID_ANNOT_CATS and not apos in VALID_ANNOT_POS: msg = "'{}' is not a valid annotation type!".format(key) elif acat not in VALID_ANNOT_CATS: msg = "'{}' is not a valid annotation category!".format(acat) elif apos not in VALID_ANNOT_POS: msg = "'{}' is not a valid annotation position!".format(apos) else: msg = "'{}' is not a valid annotation type!".format(key) raise KeyError(msg) @property def header(self): h_dict = {} for h in HEADERS: if self[h]: h_dict[h.split('-')[1]] = self[h] return h_dict @property def footer(self): f_dict = {} for f in FOOTERS: if self[f]: f_dict[f.split('-')[1]] = self[f] return f_dict @property def populated(self): """ The annotation fields that are defined. """ return sorted([k for k, v in list(self.items()) if v]) @staticmethod def _annot_key(a_type, a_pos): if a_pos: return '{}-{}'.format(a_type, a_pos) else: return a_type def set(self, text, category='header', position='title'): """ Add annotation texts defined by their category and position. Parameters ---------- category : {'header', 'footer', 'notes'}, default 'header' Defines if the annotation is treated as a *header*, *footer* or *note*. position : {'title', 'left', 'center', 'right'}, default 'title' Sets the placement of the annotation within its category. Returns ------- None """ if not category: category = 'header' if not position and category != 'notes': position = 'title' if category == 'notes': position = None akey = self._annot_key(category, position) self[akey].append(text) self.__dict__[akey.replace('-', '_')].append(text) return None CELL_DETAILS = {'en-GB': {'cc': 'Cell Contents', 'N': 'Counts', 'c%': 'Column Percentages', 'r%': 'Row Percentages', 'str': 'Statistical Test Results', 'cp': 'Column Proportions', 'cm': 'Means', 'stats': 'Statistics', 'mb': 'Minimum Base', 'sb': 'Small Base', 'up': ' indicates result is significantly higher than the result in the Total column', 'down': ' indicates result is significantly lower than the result in the Total column' }, 'fr-FR': {'cc': 'Contenu cellule', 'N': 'Total', 'c%': 'Pourcentage de colonne', 'r%': 'Pourcentage de ligne', 'str': 'Résultats test statistique', 'cp': 'Proportions de colonne', 'cm': 'Moyennes de colonne', 'stats': 'Statistiques', 'mb': 'Base minimum', 'sb': 'Petite base', 'up': ' indique que le résultat est significativement supérieur au résultat de la colonne Total', 'down': ' indique que le résultat est significativement inférieur au résultat de la colonne Total' }} class Chain(object): def __init__(self, stack, name, structure=None): self.stack = stack self.name = name self.structure = structure self.source = 'native' self.edited = False self._custom_views = None self.double_base = False self.grouping = None self.sig_test_letters = None self.totalize = False self.base_descriptions = None self.painted = False self.hidden = False self.annotations = ChainAnnotations() self._array_style = None self._group_style = None self._meta = None self._x_keys = None self._y_keys = None self._given_views = None self._grp_text_map = [] self._text_map = None self._custom_texts = {} self._transl = qp.core.view.View._metric_name_map() self._pad_id = None self._frame = None self._has_rules = None self._flag_bases = None self._is_mask_item = False self._shapes = None class _TransformedChainDF(object): """ """ def __init__(self, chain): c = chain.clone() self.org_views = c.views self.df = c._frame self._org_idx = self.df.index self._edit_idx = list(range(0, len(self._org_idx))) self._idx_valmap = {n: o for n, o in zip(self._edit_idx, self._org_idx.get_level_values(1))} self.df.index = self._edit_idx self._org_col = self.df.columns self._edit_col = list(range(0, len(self._org_col))) self._col_valmap = {n: o for n, o in zip(self._edit_col, self._org_col.get_level_values(1))} self.df.columns = self._edit_col self.array_mi = c._array_style == 0 self.nested_y = c._nested_y self._nest_mul = self._nesting_multiplier() return None def _nesting_multiplier(self): """ """ levels = self._org_col.nlevels if levels == 2: return 1 else: return (levels / 2) + 1 def _insert_viewlikes(self, new_index_flat, org_index_mapped): inserts = [new_index_flat.index(val) for val in new_index_flat if not val in list(org_index_mapped.values())] flatviews = [] for name, no in list(self.org_views.items()): e = [name] * no flatviews.extend(e) for vno, i in enumerate(inserts): flatviews.insert(i, '__viewlike__{}'.format(vno)) new_views = OrderedDict() no_of_views = Counter(flatviews) for fv in flatviews: if not fv in new_views: new_views[fv] = no_of_views[fv] return new_views def _updated_index_tuples(self, axis): """ """ if axis == 1: current = self.df.columns.values.tolist() mapped = self._col_valmap org_tuples = self._org_col.tolist() else: current = self.df.index.values.tolist() mapped = self._idx_valmap org_tuples = self._org_idx.tolist() merged = [mapped[val] if val in mapped else val for val in current] # ================================================================ if (self.array_mi and axis == 1) or axis == 0: self._transf_views = self._insert_viewlikes(merged, mapped) else: self._transf_views = self.org_views # ================================================================ i = d = 0 new_tuples = [] for merged_val in merged: idx = i-d if i-d != len(org_tuples) else i-d-1 if org_tuples[idx][1] == merged_val: new_tuples.append(org_tuples[idx]) else: empties = ['*'] * self._nest_mul new_tuple = tuple(empties + [merged_val]) new_tuples.append(new_tuple) d += 1 i += 1 return new_tuples def _reindex(self): """ """ y_names = ['Question', 'Values'] if not self.array_mi: x_names = y_names else: x_names = ['Array', 'Questions'] if self.nested_y: y_names = y_names * (self._nest_mul - 1) tuples = self._updated_index_tuples(axis=1) self.df.columns = pd.MultiIndex.from_tuples(tuples, names=y_names) tuples = self._updated_index_tuples(axis=0) self.df.index = pd.MultiIndex.from_tuples(tuples, names=x_names) return None def export(self): """ """ return self._TransformedChainDF(self) def assign(self, transformed_chain_df): """ """ if not isinstance(transformed_chain_df, self._TransformedChainDF): raise ValueError("Must pass an exported ``Chain`` instance!") transformed_chain_df._reindex() self._frame = transformed_chain_df.df self.views = transformed_chain_df._transf_views return None def __str__(self): if self.structure is not None: return '%s...\n%s' % (self.__class__.__name__, str(self.structure.head())) str_format = ('%s...' '\nSource: %s' '\nName: %s' '\nOrientation: %s' '\nX: %s' '\nY: %s' '\nNumber of views: %s') return str_format % (self.__class__.__name__, getattr(self, 'source', 'native'), getattr(self, 'name', 'None'), getattr(self, 'orientation', 'None'), getattr(self, '_x_keys', 'None'), getattr(self, '_y_keys', 'None'), getattr(self, 'views', 'None')) def __repr__(self): return self.__str__() def __len__(self): """Returns the total number of cells in the Chain.dataframe""" return (len(getattr(self, 'index', [])) * len(getattr(self, 'columns', []))) def clone(self): """ """ return copy.deepcopy(self) @lazy_property def _default_text(self): tk = self._meta['lib']['default text'] if tk not in self._transl: self._transl[tk] = self._transl['en-GB'] return tk @lazy_property def orientation(self): """ TODO: doc string """ if len(self._x_keys) == 1 and len(self._y_keys) == 1: return 'x' elif len(self._x_keys) == 1: return 'x' elif len(self._y_keys) == 1: return 'y' if len(self._x_keys) > 1 and len(self._y_keys) > 1: return None @lazy_property def axis(self): # TODO: name appropriate? return int(self.orientation=='x') @lazy_property def axes(self): # TODO: name appropriate? if self.axis == 1: return self._x_keys, self._y_keys return self._y_keys, self._x_keys @property def dataframe(self): return self._frame @property def index(self): return self._index @index.setter def index(self, index): self._index = index @property def columns(self): return self._columns @columns.setter def columns(self, columns): self._columns = columns @property def frame_values(self): return self._frame_values @frame_values.setter def frame_values(self, frame_values): self._frame_values = frame_values @property def views(self): return self._views @views.setter def views(self, views): self._views = views @property def array_style(self): return self._array_style @property def shapes(self): if self._shapes is None: self._shapes = [] return self._shapes @array_style.setter def array_style(self, link): array_style = -1 for view in list(link.keys()): if link[view].meta()['x']['is_array']: array_style = 0 if link[view].meta()['y']['is_array']: array_style = 1 self._array_style = array_style @property def pad_id(self): if self._pad_id is None: self._pad_id = 0 else: self._pad_id += 1 return self._pad_id @property def sig_levels(self): sigs = set([v for v in self._valid_views(True) if v.split('|')[1].startswith('t.')]) tests = [t.split('|')[1].split('.')[1] for t in sigs] levels = [t.split('|')[1].split('.')[3] for t in sigs] sig_levels = {} for m in zip(tests, levels): l = '.{}'.format(m[1]) t = m[0] if t in sig_levels: sig_levels[t].append(l) else: sig_levels[t] = [l] return sig_levels @property def cell_items(self): if self.views: compl_views = [v for v in self.views if ']*:' in v] check_views = compl_views[:] or self.views.copy() for v in check_views: if v.startswith('__viewlike__'): if compl_views: check_views.remove(v) else: del check_views[v] non_freqs = ('d.', 't.') c = any(v.split('|')[3] == '' and not v.split('|')[1].startswith(non_freqs) and not v.split('|')[-1].startswith('cbase') for v in check_views) col_pct = any(v.split('|')[3] == 'y' and not v.split('|')[1].startswith(non_freqs) and not v.split('|')[-1].startswith('cbase') for v in check_views) row_pct = any(v.split('|')[3] == 'x' and not v.split('|')[1].startswith(non_freqs) and not v.split('|')[-1].startswith('cbase') for v in check_views) c_colpct = c and col_pct c_rowpct = c and row_pct c_colrow_pct = c_colpct and c_rowpct single_ci = not (c_colrow_pct or c_colpct or c_rowpct) if single_ci: if c: return 'counts' elif col_pct: return 'colpct' else: return 'rowpct' else: if c_colrow_pct: return 'counts_colpct_rowpct' elif c_colpct: if self._counts_first(): return 'counts_colpct' else: return 'colpct_counts' else: return 'counts_rowpct' @property def _ci_simple(self): ci = [] if self.views: for v in self.views: if 'significance' in v: continue if ']*:' in v: if v.split('|')[3] == '': if 'N' not in ci: ci.append('N') if v.split('|')[3] == 'y': if 'c%' not in ci: ci.append('c%') if v.split('|')[3] == 'x': if 'r%' not in ci: ci.append('r%') else: if v.split('|')[-1] == 'counts': if 'N' not in ci: ci.append('N') elif v.split('|')[-1] == 'c%': if 'c%' not in ci: ci.append('c%') elif v.split('|')[-1] == 'r%': if 'r%' not in ci: ci.append('r%') return ci @property def ci_count(self): return len(self.cell_items.split('_')) @property def contents(self): if self.structure: return nested = self._array_style == 0 if nested: dims = self._frame.shape contents = {row: {col: {} for col in range(0, dims[1])} for row in range(0, dims[0])} else: contents = dict() for row, idx in enumerate(self._views_per_rows()): if nested: for i, v in list(idx.items()): contents[row][i] = self._add_contents(v) else: contents[row] = self._add_contents(idx) return contents @property def cell_details(self): lang = self._default_text if self._default_text == 'fr-FR' else 'en-GB' cd = CELL_DETAILS[lang] ci = self.cell_items cd_str = '%s (%s)' % (cd['cc'], ', '.join([cd[_] for _ in self._ci_simple])) against_total = False if self.sig_test_letters: mapped = '' group = None i = 0 if (self._frame.columns.nlevels in [2, 3]) else 4 for letter, lab in zip(self.sig_test_letters, self._frame.columns.codes[-i]): if letter == '@': continue if group is not None: if lab == group: mapped += '/' + letter else: group = lab mapped += ', ' + letter else: group = lab mapped += letter test_types = cd['cp'] if self.sig_levels.get('means'): test_types += ', ' + cd['cm'] levels = [] for key in ('props', 'means'): for level in self.sig_levels.get(key, iter(())): l = '%s%%' % int(100. - float(level.split('+@')[0].split('.')[1])) if l not in levels: levels.append(l) if '+@' in level: against_total = True cd_str = cd_str[:-1] + ', ' + cd['str'] +'), ' cd_str += '%s (%s, (%s): %s' % (cd['stats'], test_types, ', '.join(levels), mapped) if self._flag_bases: flags = ([], []) [(flags[0].append(min), flags[1].append(small)) for min, small in self._flag_bases] cd_str += ', %s: %s (**), %s: %s (*)' % (cd['mb'], ', '.join(map(str, flags[0])), cd['sb'], ', '.join(map(str, flags[1]))) cd_str += ')' cd_str = [cd_str] if against_total: cd_str.extend([cd['up'], cd['down']]) return cd_str def describe(self): def _describe(cell_defs, row_id): descr = [] for r, m in list(cell_defs.items()): descr.append( [k if isinstance(v, bool) else v for k, v in list(m.items()) if v]) if any('is_block' in d for d in descr): blocks = self._describe_block(descr, row_id) calc = 'calc' in blocks for d, b in zip(descr, blocks): if b: d.append(b) if not calc else d.extend([b, 'has_calc']) return descr if self._array_style == 0: description = {k: _describe(v, k) for k, v in list(self.contents.items())} else: description = _describe(self.contents, None) return description def _fill_cells(self): """ """ self._frame = self._frame.fillna(method='ffill') return None # @lazy_property def _counts_first(self): for v in self.views: sname = v.split('|')[-1] if sname in ['counts', 'c%']: if sname == 'counts': return True else: return False #@property def _views_per_rows(self): """ """ base_vk = 'x|f|x:||{}|cbase' counts_vk = 'x|f|:||{}|counts' pct_vk = 'x|f|:|y|{}|c%' mean_vk = 'x|d.mean|:|y|{}|mean' stddev_vk = 'x|d.stddev|:|y|{}|stddev' variance_vk = 'x|d.var|:|y|{}|var' sem_vk = 'x|d.sem|:|y|{}|sem' if self.source == 'Crunch multitable': ci = self._meta['display_settings']['countsOrPercents'] w = self._meta['weight'] if ci == 'counts': main_vk = counts_vk.format(w if w else '') else: main_vk = pct_vk.format(w if w else '') base_vk = base_vk.format(w if w else '') metrics = [base_vk] + (len(self.dataframe.index)-1) * [main_vk] elif self.source == 'Dimensions MTD': ci = self._meta['cell_items'] w = None axis_vals = [axv['Type'] for axv in self._meta['index-emetas']] metrics = [] for axis_val in axis_vals: if axis_val == 'Base': metrics.append(base_vk.format(w if w else '')) if axis_val == 'UnweightedBase': metrics.append(base_vk.format(w if w else '')) elif axis_val == 'Category': metrics.append(counts_vk.format(w if w else '')) elif axis_val == 'Mean': metrics.append(mean_vk.format(w if w else '')) elif axis_val == 'StdDev': metrics.append(stddev_vk.format(w if w else '')) elif axis_val == 'StdErr': metrics.append(sem_vk.format(w if w else '')) elif axis_val == 'SampleVar': metrics.append(variance_vk.format(w if w else '')) return metrics else: # Native Chain views # ---------------------------------------------------------------- if self.edited and (self._custom_views and not self.array_style == 0): return self._custom_views else: if self._array_style != 0: metrics = [] if self.orientation == 'x': for view in self._valid_views(): view = self._force_list(view) initial = view[0] size = self.views[initial] metrics.extend(view * size) else: for view_part in self.views: for view in self._valid_views(): view = self._force_list(view) initial = view[0] size = view_part[initial] metrics.extend(view * size) else: counts = [] colpcts = [] rowpcts = [] metrics = [] ci = self.cell_items for v in list(self.views.keys()): if not v.startswith('__viewlike__'): parts = v.split('|') is_completed = ']*:' in v if not self._is_c_pct(parts): counts.extend([v]*self.views[v]) if self._is_r_pct(parts): rowpcts.extend([v]*self.views[v]) if (self._is_c_pct(parts) or self._is_base(parts) or self._is_stat(parts)): colpcts.extend([v]*self.views[v]) else: counts = counts + ['__viewlike__'] colpcts = colpcts + ['__viewlike__'] rowpcts = rowpcts + ['__viewlike__'] dims = self._frame.shape for row in range(0, dims[0]): if ci in ['counts_colpct', 'colpct_counts'] and self.grouping: if row % 2 == 0: if self._counts_first(): vc = counts else: vc = colpcts else: if not self._counts_first(): vc = counts else: vc = colpcts else: vc = counts if ci == 'counts' else colpcts metrics.append({col: vc[col] for col in range(0, dims[1])}) return metrics def _valid_views(self, flat=False): clean_view_list = [] valid = list(self.views.keys()) org_vc = self._given_views v_likes = [v for v in valid if v.startswith('__viewlike__')] if isinstance(org_vc, tuple): v_likes = tuple(v_likes) view_coll = org_vc + v_likes for v in view_coll: if isinstance(v, str): if v in valid: clean_view_list.append(v) else: new_v = [] for sub_v in v: if sub_v in valid: new_v.append(sub_v) if isinstance(v, tuple): new_v = list(new_v) if new_v: if len(new_v) == 1: new_v = new_v[0] if not flat: clean_view_list.append(new_v) else: if isinstance(new_v, list): clean_view_list.extend(new_v) else: clean_view_list.append(new_v) return clean_view_list def _add_contents(self, viewelement): """ """ if viewelement.startswith('__viewlike__'): parts = '|||||' viewlike = True else: parts = viewelement.split('|') viewlike = False return dict(is_default=self._is_default(parts), is_c_base=self._is_c_base(parts), is_r_base=self._is_r_base(parts), is_e_base=self._is_e_base(parts), is_c_base_gross=self._is_c_base_gross(parts), is_counts=self._is_counts(parts), is_c_pct=self._is_c_pct(parts), is_r_pct=self._is_r_pct(parts), is_res_c_pct=self._is_res_c_pct(parts), is_counts_sum=self._is_counts_sum(parts), is_c_pct_sum=self._is_c_pct_sum(parts), is_counts_cumsum=self._is_counts_cumsum(parts), is_c_pct_cumsum=self._is_c_pct_cumsum(parts), is_net=self._is_net(parts), is_block=self._is_block(parts), is_calc_only = self._is_calc_only(parts), is_mean=self._is_mean(parts), is_stddev=self._is_stddev(parts), is_min=self._is_min(parts), is_max=self._is_max(parts), is_median=self._is_median(parts), is_variance=self._is_variance(parts), is_sem=self._is_sem(parts), is_varcoeff=self._is_varcoeff(parts), is_percentile=self._is_percentile(parts), is_propstest=self._is_propstest(parts), is_meanstest=self._is_meanstest(parts), is_weighted=self._is_weighted(parts), weight=self._weight(parts), is_stat=self._is_stat(parts), stat=self._stat(parts), siglevel=self._siglevel(parts), is_viewlike=viewlike) def _row_pattern(self, target_ci): """ """ cisplit = self.cell_items.split('_') if target_ci == 'c%': start = cisplit.index('colpct') elif target_ci == 'counts': start = cisplit.index('counts') repeat = self.ci_count return (start, repeat) def _view_idxs(self, view_tags, keep_tests=True, keep_bases=True, names=False, ci=None): """ """ if not isinstance(view_tags, list): view_tags = [view_tags] rowmeta = self.named_rowmeta nested = self.array_style == 0 if nested: if self.ci_count > 1: rp_idx = self._row_pattern(ci)[0] rowmeta = rowmeta[rp_idx] else: rp_idx = 0 rowmeta = rowmeta[0] rows = [] for r in rowmeta: is_code = str(r[0]).isdigit() if 'is_counts' in r[1] and is_code: rows.append(('counts', r[1])) elif 'is_c_pct' in r[1] and is_code: rows.append(('c%', r[1])) elif 'is_propstest' in r[1]: rows.append((r[0], r[1])) elif 'is_meanstest' in r[1]: rows.append((r[0], r[1])) else: rows.append(r) invalids = [] if not keep_tests: invalids.extend(['is_propstest', 'is_meanstest']) if ci == 'counts': invalids.append('is_c_pct') elif ci == 'c%': invalids.append('is_counts') idxs = [] names = [] order = [] for i, row in enumerate(rows): if any([invalid in row[1] for invalid in invalids]): if not (row[0] == 'All' and keep_bases): continue if row[0] in view_tags: order.append(view_tags.index(row[0])) idxs.append(i) if nested: names.append(self._views_per_rows()[rp_idx][i]) else: names.append(self._views_per_rows()[i]) return (idxs, order) if not names else (idxs, names, order) @staticmethod def _remove_grouped_blanks(viewindex_labs): """ """ full = [] for v in viewindex_labs: if v == '': full.append(last) else: last = v full.append(last) return full def _slice_edited_index(self, axis, positions): """ """ l_zero = axis.get_level_values(0).values.tolist()[0] l_one = axis.get_level_values(1).values.tolist() l_one = [l_one[p] for p in positions] axis_tuples = [(l_zero, lab) for lab in l_one] if self.array_style == 0: names = ['Array', 'Questions'] else: names = ['Question', 'Values'] return pd.MultiIndex.from_tuples(axis_tuples, names=names) def _non_grouped_axis(self): """ """ axis = self._frame.index l_zero = axis.get_level_values(0).values.tolist()[0] l_one = axis.get_level_values(1).values.tolist() l_one = self._remove_grouped_blanks(l_one) axis_tuples = [(l_zero, lab) for lab in l_one] if self.array_style == 0: names = ['Array', 'Questions'] else: names = ['Question', 'Values'] self._frame.index = pd.MultiIndex.from_tuples(axis_tuples, names=names) return None @property def named_rowmeta(self): if self.painted: self.toggle_labels() d = self.describe() if self.array_style == 0: n = self._frame.columns.get_level_values(1).values.tolist() n = self._remove_grouped_blanks(n) mapped = {rowid: list(zip(n, rowmeta)) for rowid, rowmeta in list(d.items())} else: n = self._frame.index.get_level_values(1).values.tolist() n = self._remove_grouped_blanks(n) mapped = list(zip(n, d)) if not self.painted: self.toggle_labels() return mapped @lazy_property def _nested_y(self): return any('>' in v for v in self._y_keys) def _is_default(self, parts): return parts[-1] == 'default' def _is_c_base(self, parts): return parts[-1] == 'cbase' def _is_r_base(self, parts): return parts[-1] == 'rbase' def _is_e_base(self, parts): return parts[-1] == 'ebase' def _is_c_base_gross(self, parts): return parts[-1] == 'cbase_gross' def _is_base(self, parts): return (self._is_c_base(parts) or self._is_c_base_gross(parts) or self._is_e_base(parts) or self._is_r_base(parts)) def _is_counts(self, parts): return parts[1].startswith('f') and parts[3] == '' def _is_c_pct(self, parts): return parts[1].startswith('f') and parts[3] == 'y' def _is_r_pct(self, parts): return parts[1].startswith('f') and parts[3] == 'x' def _is_res_c_pct(self, parts): return parts[-1] == 'res_c%' def _is_net(self, parts): return parts[1].startswith(('f', 'f.c:f', 't.props')) and \ len(parts[2]) > 3 and not parts[2] == 'x++' def _is_calc_only(self, parts): if self._is_net(parts) and not self._is_block(parts): return ((self.__has_freq_calc(parts) or self.__is_calc_only_propstest(parts)) and not (self._is_counts_sum(parts) or self._is_c_pct_sum(parts))) else: return False def _is_block(self, parts): if self._is_net(parts): conditions = parts[2].split('[') multiple_conditions = len(conditions) > 2 expand = '+{' in parts[2] or '}+' in parts[2] complete = '*:' in parts[2] if expand or complete: return True if multiple_conditions: if self.__has_operator_expr(parts): return True return False return False return False def _stat(self, parts): if parts[1].startswith('d.'): return parts[1].split('.')[-1] else: return None # non-meta relevant helpers def __has_operator_expr(self, parts): e = parts[2] for syntax in [']*:', '[+{', '}+']: if syntax in e: e = e.replace(syntax, '') ops = ['+', '-', '*', '/'] return any(len(e.split(op)) > 1 for op in ops) def __has_freq_calc(self, parts): return parts[1].startswith('f.c:f') def __is_calc_only_propstest(self, parts): return self._is_propstest(parts) and self.__has_operator_expr(parts) @staticmethod def _statname(parts): split = parts[1].split('.') if len(split) > 1: return split[1] return split[-1] def _is_mean(self, parts): return self._statname(parts) == 'mean' def _is_stddev(self, parts): return self._statname(parts) == 'stddev' def _is_min(self, parts): return self._statname(parts) == 'min' def _is_max(self, parts): return self._statname(parts) == 'max' def _is_median(self, parts): return self._statname(parts) == 'median' def _is_variance(self, parts): return self._statname(parts) == 'var' def _is_sem(self, parts): return self._statname(parts) == 'sem' def _is_varcoeff(self, parts): return self._statname(parts) == 'varcoeff' def _is_percentile(self, parts): return self._statname(parts) in ['upper_q', 'lower_q', 'median'] def _is_counts_sum(self, parts): return parts[-1].endswith('counts_sum') def _is_c_pct_sum(self, parts): return parts[-1].endswith('c%_sum') def _is_counts_cumsum(self, parts): return parts[-1].endswith('counts_cumsum') def _is_c_pct_cumsum(self, parts): return parts[-1].endswith('c%_cumsum') def _is_weighted(self, parts): return parts[4] != '' def _weight(self, parts): if parts[4] != '': return parts[4] else: return None def _is_stat(self, parts): return parts[1].startswith('d.') def _is_propstest(self, parts): return parts[1].startswith('t.props') def _is_meanstest(self, parts): return parts[1].startswith('t.means') def _siglevel(self, parts): if self._is_meanstest(parts) or self._is_propstest(parts): return parts[1].split('.')[-1] else: return None def _describe_block(self, description, row_id): if self.painted: repaint = True self.toggle_labels() else: repaint = False vpr = self._views_per_rows() if row_id is not None: vpr = [v[1] for v in list(vpr[row_id].items())] idx = self.dataframe.columns.get_level_values(1).tolist() else: idx = self.dataframe.index.get_level_values(1).tolist() idx_view_map = list(zip(idx, vpr)) block_net_vk = [v for v in vpr if len(v.split('|')[2].split('['))>2 or '[+{' in v.split('|')[2] or '}+]' in v.split('|')[2]] has_calc = any([v.split('|')[1].startswith('f.c') for v in block_net_vk]) is_tested = any(v.split('|')[1].startswith('t.props') for v in vpr) if block_net_vk: expr = block_net_vk[0].split('|')[2] expanded_codes = set(map(int, re.findall(r'\d+', expr))) else: expanded_codes = [] for idx, m in enumerate(idx_view_map): if idx_view_map[idx][0] == '': idx_view_map[idx] = (idx_view_map[idx-1][0], idx_view_map[idx][1]) for idx, row in enumerate(description): if not 'is_block' in row: idx_view_map[idx] = None blocks_len = len(expr.split('],')) * (self.ci_count + is_tested) if has_calc: blocks_len -= (self.ci_count + is_tested) block_net_def = [] described_nets = 0 for e in idx_view_map: if e: if isinstance(e[0], str): if has_calc and described_nets == blocks_len: block_net_def.append('calc') else: block_net_def.append('net') described_nets += 1 else: code = int(e[0]) if code in expanded_codes: block_net_def.append('expanded') else: block_net_def.append('normal') else: block_net_def.append(e) if repaint: self.toggle_labels() return block_net_def def get(self, data_key, filter_key, x_keys, y_keys, views, rules=False, rules_weight=None, orient='x', prioritize=True): """ Get the concatenated Chain.DataFrame """ self._meta = self.stack[data_key].meta self._given_views = views self._x_keys = x_keys self._y_keys = y_keys concat_axis = 0 if rules: if not isinstance(rules, list): self._has_rules = ['x', 'y'] else: self._has_rules = rules # use_views = views[:] # for first in self.axes[0]: # for second in self.axes[1]: # link = self._get_link(data_key, filter_key, first, second) # for v in use_views: # if v not in link: # use_views.remove(v) for first in self.axes[0]: found = [] x_frames = [] for second in self.axes[1]: if self.axis == 1: link = self._get_link(data_key, filter_key, first, second) else: link = self._get_link(data_key, filter_key, second, first) if link is None: continue if prioritize: link = self._drop_substituted_views(link) found_views, y_frames = self._concat_views( link, views, rules_weight) found.append(found_views) try: if self._meta['columns'][link.x].get('parent'): self._is_mask_item = True except KeyError: pass # TODO: contains arrary summ. attr. # TODO: make this work y_frames = self._pad_frames(y_frames) self.array_style = link if self.array_style > -1: concat_axis = 1 if self.array_style == 0 else 0 y_frames = self._pad_frames(y_frames) x_frames.append(pd.concat(y_frames, axis=concat_axis)) self.shapes.append(x_frames[-1].shape) self._frame = pd.concat(self._pad(x_frames), axis=self.axis) if self._group_style == 'reduced' and self.array_style >- 1: scan_views = [v if isinstance(v, (tuple, list)) else [v] for v in self._given_views] scan_views = [v for v in scan_views if len(v) > 1] no_tests = [] for scan_view in scan_views: new_views = [] for view in scan_view: if not view.split('|')[1].startswith('t.'): new_views.append(view) no_tests.append(new_views) cond = any(len(v) >= 2 for v in no_tests) if cond: self._frame = self._reduce_grouped_index(self._frame, 2, self._array_style) if self.axis == 1: self.views = found[-1] else: self.views = found self.double_base = len([v for v in self.views if v.split('|')[-1] == 'cbase']) > 1 self._index = self._frame.index self._columns = self._frame.columns self._extract_base_descriptions() del self.stack return self def _toggle_bases(self, keep_weighted=True): df = self._frame is_array = self._array_style == 0 contents = self.contents[0] if is_array else self.contents has_wgt_b = [k for k, v in list(contents.items()) if v['is_c_base'] and v['is_weighted']] has_unwgt_b = [k for k, v in list(contents.items()) if v['is_c_base'] and not v['is_weighted']] if not (has_wgt_b and has_unwgt_b): return None if keep_weighted: drop_rows = has_unwgt_b names = ['x|f|x:|||cbase'] else: drop_rows = has_wgt_b names = ['x|f|x:||{}|cbase'.format(list(contents.values())[0]['weight'])] for v in self.views.copy(): if v in names: del self._views[v] df = self._frame if is_array: cols = [col for x, col in enumerate(df.columns.tolist()) if not x in drop_rows] df = df.loc[:, cols] else: rows = [row for x, row in enumerate(df.index.tolist()) if not x in drop_rows] df = df.loc[rows, :] self._frame = df self._index = df.index self._columns = df.columns return None def _slice_edited_index(self, axis, positions): """ """ l_zero = axis.get_level_values(0).values.tolist()[0] l_one = axis.get_level_values(1).values.tolist() l_one = [l_one[p] for p in positions] axis_tuples = [(l_zero, lab) for lab in l_one] if self.array_style == 0: names = ['Array', 'Questions'] else: names = ['Question', 'Values'] return pd.MultiIndex.from_tuples(axis_tuples, names=names) def _drop_substituted_views(self, link): if any(isinstance(sect, (list, tuple)) for sect in self._given_views): chain_views = list(chain.from_iterable(self._given_views)) else: chain_views = self._given_views has_compl = any(']*:' in vk for vk in link) req_compl = any(']*:' in vk for vk in chain_views) has_cumsum = any('++' in vk for vk in link) req_cumsum = any('++' in vk for vk in chain_views) if (has_compl and req_compl) or (has_cumsum and req_cumsum): new_link = copy.copy(link) views = [] for vk in link: vksplit = vk.split('|') method, cond, name = vksplit[1], vksplit[2], vksplit[-1] full_frame = name in ['counts', 'c%'] basic_sigtest = method.startswith('t.') and cond == ':' if not full_frame and not basic_sigtest: views.append(vk) for vk in link: if vk not in views: del new_link[vk] return new_link else: return link def _pad_frames(self, frames): """ TODO: doc string """ empty_frame = lambda f: pd.DataFrame(index=f.index, columns=f.columns) max_lab = max(f.axes[self.array_style].size for f in frames) for e, f in enumerate(frames): size = f.axes[self.array_style].size if size < max_lab: f = pd.concat([f, empty_frame(f)], axis=self.array_style) order = [None] * (size * 2) order[::2] = list(range(size)) order[1::2] = list(range(size, size * 2)) if self.array_style == 0: frames[e] = f.iloc[order, :] else: frames[e] = f.iloc[:, order] return frames def _get_link(self, data_key, filter_key, x_key, y_key): """ """ base = self.stack[data_key][filter_key] if x_key in base: base = base[x_key] if y_key in base: return base[y_key] else: if self._array_style == -1: self._y_keys.remove(y_key) else: self._x_keys.remove(x_key) return None def _index_switch(self, axis): """ Returns self.dataframe/frame index/ columns based on given x/ y """ return dict(x=self._frame.index, y=self._frame.columns).get(axis) def _pad(self, frames): """ Pad index/ columns when nlevels is less than the max nlevels in list of dataframes. """ indexes = [] max_nlevels = [max(f.axes[i].nlevels for f in frames) for i in (0, 1)] for e, f in enumerate(frames): indexes = [] for i in (0, 1): if f.axes[i].nlevels < max_nlevels[i]: indexes.append(self._pad_index(f.axes[i], max_nlevels[i])) else: indexes.append(f.axes[i]) frames[e].index, frames[e].columns = indexes return frames def _pad_index(self, index, size): """ Add levels to columns MultiIndex so the nlevels matches the biggest columns MultiIndex in DataFrames to be concatenated. """ pid = self.pad_id pad = ((size - index.nlevels) // 2) fill = int((pad % 2) == 1) names = list(index.names) names[0:0] = names[:2] * pad arrays = self._lzip(index.values) arrays[0:0] = [tuple('#pad-%s' % pid for _ in arrays[i]) for i in range(pad + fill)] * pad return pd.MultiIndex.from_arrays(arrays, names=names) @staticmethod def _reindx_source(df, varname, total): """ """ df.index = df.index.set_levels([varname], level=0, inplace=False) if df.columns.get_level_values(0).tolist()[0] != varname and total: df.columns = df.columns.set_levels([varname], level=0, inplace=False) return df def _concat_views(self, link, views, rules_weight, found=None): """ Concatenates the Views of a Chain. """ frames = [] totals = [[_TOTAL]] * 2 if found is None: found = OrderedDict() if self._text_map is None: self._text_map = dict() for view in views: try: self.array_style = link if isinstance(view, (list, tuple)): if not self.grouping: self.grouping = True if isinstance(view, tuple): self._group_style = 'reduced' else: self._group_style = 'normal' if self.array_style > -1: use_grp_type = 'normal' else: use_grp_type = self._group_style found, grouped = self._concat_views(link, view, rules_weight, found=found) if grouped: frames.append(self._group_views(grouped, use_grp_type)) else: agg = link[view].meta()['agg'] is_descriptive = agg['method'] == 'descriptives' is_base = agg['name'] in ['cbase', 'rbase', 'ebase', 'cbase_gross'] is_sum = agg['name'] in ['counts_sum', 'c%_sum'] is_net = link[view].is_net() oth_src = link[view].has_other_source() no_total_sign = is_descriptive or is_base or is_sum or is_net if link[view]._custom_txt and is_descriptive: statname = agg['fullname'].split('|')[1].split('.')[1] if not statname in self._custom_texts: self._custom_texts[statname] = [] self._custom_texts[statname].append(link[view]._custom_txt) if is_descriptive: text = agg['name'] try: self._text_map.update({agg['name']: text}) except AttributeError: self._text_map = {agg['name']: text} if agg['text']: name = dict(cbase='All').get(agg['name'], agg['name']) try: self._text_map.update({name: agg['text']}) except AttributeError: self._text_map = {name: agg['text'], _TOTAL: 'Total'} if agg['grp_text_map']: # try: if not agg['grp_text_map'] in self._grp_text_map: self._grp_text_map.append(agg['grp_text_map']) # except AttributeError: # self._grp_text_map = [agg['grp_text_map']] frame = link[view].dataframe if oth_src: frame = self._reindx_source(frame, link.x, link.y == _TOTAL) # RULES SECTION # ======================================================== # TODO: DYNAMIC RULES: # - all_rules_axes, rules_weight must be provided not hardcoded # - Review copy/pickle in original version!!! rules_weight = None if self._has_rules: rules = Rules(link, view, self._has_rules, rules_weight) # print rules.show_rules() # rules.get_slicer() # print rules.show_slicers() rules.apply() frame = rules.rules_df() # ======================================================== if not no_total_sign and (link.x == _TOTAL or link.y == _TOTAL): if link.x == _TOTAL: level_names = [[link.y], ['@']] elif link.y == _TOTAL: level_names = [[link.x], ['@']] try: frame.columns.set_levels(level_names, level=[0, 1], inplace=True) except ValueError: pass frames.append(frame) if view not in found: if self._array_style != 0: found[view] = len(frame.index) else: found[view] = len(frame.columns) if link[view]._kwargs.get('flag_bases'): flag_bases = link[view]._kwargs['flag_bases'] try: if flag_bases not in self._flag_bases: self._flag_bases.append(flag_bases) except TypeError: self._flag_bases = [flag_bases] except KeyError: pass return found, frames @staticmethod def _temp_nest_index(df): """ Flatten the nested MultiIndex for easier handling. """ # Build flat column labels flat_cols = [] order_idx = [] i = -1 for col in df.columns.values: flat_col_lab = ''.join(str(col[:-1])).strip() if not flat_col_lab in flat_cols: i += 1 order_idx.append(i) flat_cols.append(flat_col_lab) else: order_idx.append(i) # Drop unwanted levels (keep last Values Index-level in that process) levels = list(range(0, df.columns.nlevels-1)) drop_levels = levels[:-2]+ [levels[-1]] df.columns = df.columns.droplevel(drop_levels) # Apply the new flat labels and resort the columns df.columns.set_levels(levels=flat_cols, level=0, inplace=True) df.columns.set_codes(order_idx, level=0, inplace=True) return df, flat_cols @staticmethod def _replace_test_results(df, replacement_map, char_repr): """ Swap all digit-based results with letters referencing the column header. .. note:: The modified df will be stripped of all indexing on both rows and columns. """ all_dfs = [] ignore = False for col in list(replacement_map.keys()): target_col = df.columns[0] if col == '@' else col value_df = df[[target_col]].copy() if not col == '@': value_df.drop('@', axis=1, level=1, inplace=True) values = value_df.replace(np.NaN, '-').values.tolist() r = replacement_map[col] new_values = [] case = None for v in values: if isinstance(v[0], str): if char_repr == 'upper': case = 'up' elif char_repr == 'lower': case = 'low' elif char_repr == 'alternate': if case == 'up': case = 'low' else: case = 'up' for no, l in sorted(list(r.items()), reverse=True): v = [char.replace(str(no), l if case == 'up' else l.lower()) if isinstance(char, str) else char for char in v] new_values.append(v) else: new_values.append(v) part_df = pd.DataFrame(new_values) all_dfs.append(part_df) letter_df = pd.concat(all_dfs, axis=1) # Clean it up letter_df.replace('-', np.NaN, inplace=True) for signs in [('[', ''), (']', ''), (', ', '.')]: letter_df = letter_df.applymap(lambda x: x.replace(signs[0], signs[1]) if isinstance(x, str) else x) return letter_df @staticmethod def _get_abc_letters(no_of_cols, incl_total): """ Get the list of letter replacements depending on the y-axis length. """ repeat_alphabet = int(no_of_cols / 26) abc = list(string.ascii_uppercase) letters = list(string.ascii_uppercase) if repeat_alphabet: for r in range(0, repeat_alphabet): letter = abc[r] extend_abc = ['{}{}'.format(letter, l) for l in abc] letters.extend(extend_abc) if incl_total: letters = ['@'] + letters[:no_of_cols-1] else: letters = letters[:no_of_cols] return letters def _any_tests(self): vms = [v.split('|')[1] for v in list(self._views.keys())] return any('t.' in v for v in vms) def _no_of_tests(self): tests = [v for v in list(self._views.keys()) if v.split('|')[1].startswith('t.')] levels = [v.split('|')[1].split('.')[-1] for v in tests] return len(set(levels)) def _siglevel_on_row(self): """ """ vpr = self._views_per_rows() tests = [(no, v) for no, v in enumerate(vpr) if v.split('|')[1].startswith('t.')] s = [(t[0], float(int(t[1].split('|')[1].split('.')[3].split('+')[0]))/100.0) for t in tests] return s def transform_tests(self, char_repr='upper', display_level=True): """ Transform column-wise digit-based test representation to letters. Adds a new row that is applying uppercase letters to all columns (A, B, C, ...) and maps any significance test's result cells to these column indicators. """ if not self._any_tests(): return None # Preparation of input dataframe and dimensions of y-axis header df = self.dataframe.copy() number_codes = df.columns.get_level_values(-1).tolist() number_header_row = copy.copy(df.columns) if self._no_of_tests() != 2 and char_repr == 'alternate': char_repr = 'upper' has_total = '@' in self._y_keys if self._nested_y: df, questions = self._temp_nest_index(df) else: questions = self._y_keys all_num = number_codes if not has_total else [0] + number_codes[1:] # Set the new column header (ABC, ...) column_letters = self._get_abc_letters(len(number_codes), has_total) vals = df.columns.get_level_values(0).tolist() mi = pd.MultiIndex.from_arrays( (vals, column_letters)) df.columns = mi self.sig_test_letters = df.columns.get_level_values(1).tolist() # Build the replacements dict and build list of unique column indices test_dict = OrderedDict() for num_idx, col in enumerate(df.columns): if col[1] == '@': question = col[1] else: question = col[0] if not question in test_dict: test_dict[question] = {} number = all_num[num_idx] letter = col[1] test_dict[question][number] = letter letter_df = self._replace_test_results(df, test_dict, char_repr) # Re-apply indexing & finalize the new crossbreak column header if display_level: levels = self._siglevel_on_row() index = df.index.get_level_values(1).tolist() for i, l in levels: index[i] = '#Level: {}'.format(l) l0 = df.index.get_level_values(0).tolist()[0] tuples = [(l0, i) for i in index] index = pd.MultiIndex.from_tuples( tuples, names=['Question', 'Values']) letter_df.index = index else: letter_df.index = df.index letter_df.columns = number_header_row letter_df = self._apply_letter_header(letter_df) self._frame = letter_df return self def _remove_letter_header(self): self._frame.columns = self._frame.columns.droplevel(level=-1) return None def _apply_letter_header(self, df): """ """ new_tuples = [] org_names = [n for n in df.columns.names] idx = df.columns for i, l in zip(idx, self.sig_test_letters): new_tuples.append(i + (l, )) if not 'Test-IDs' in org_names: org_names.append('Test-IDs') mi = pd.MultiIndex.from_tuples(new_tuples, names=org_names) df.columns = mi return df def _extract_base_descriptions(self): """ """ if self.source == 'Crunch multitable': self.base_descriptions = self._meta['var_meta'].get('notes', None) else: base_texts = OrderedDict() arr_style = self.array_style if arr_style != -1: var = self._x_keys[0] if arr_style == 0 else self._y_keys[0] masks = self._meta['masks'] columns = self._meta['columns'] item = masks[var]['items'][0]['source'].split('@')[-1] test_item = columns[item] test_mask = masks[var] if 'properties' in test_mask: base_text = test_mask['properties'].get('base_text', None) elif 'properties' in test_item: base_text = test_item['properties'].get('base_text', None) else: base_text = None self.base_descriptions = base_text else: for x in self._x_keys: if 'properties' in self._meta['columns'][x]: bt = self._meta['columns'][x]['properties'].get('base_text', None) if bt: base_texts[x] = bt if base_texts: if self.orientation == 'x': self.base_descriptions = list(base_texts.values())[0] else: self.base_descriptions = list(base_texts.values()) return None def _ensure_indexes(self): if self.painted: self._frame.index, self._frame.columns = self.index, self.columns if self.structure is not None: self._frame.loc[:, :] = self.frame_values else: self.index, self.columns = self._frame.index, self._frame.columns if self.structure is not None: self.frame_values = self._frame.values def _finish_text_key(self, text_key, text_loc_x, text_loc_y): text_keys = dict() text_key = text_key or self._default_text if text_loc_x: text_keys['x'] = (text_loc_x, text_key) else: text_keys['x'] = text_key if text_loc_y: text_keys['y'] = (text_loc_y, text_key) else: text_keys['y'] = text_key return text_keys def paint(self, text_key=None, text_loc_x=None, text_loc_y=None, display=None, axes=None, view_level=False, transform_tests='upper', display_level=True, add_test_ids=True, add_base_texts='simple', totalize=False, sep=None, na_rep=None, transform_column_names=None, exclude_mask_text=False): """ Apply labels, sig. testing conversion and other post-processing to the ``Chain.dataframe`` property. Use this to prepare a ``Chain`` for further usage in an Excel or Power- point Build. Parameters ---------- text_keys : str, default None Text text_loc_x : str, default None The key in the 'text' to locate the text_key for the x-axis text_loc_y : str, default None The key in the 'text' to locate the text_key for the y-axis display : {'x', 'y', ['x', 'y']}, default None Text axes : {'x', 'y', ['x', 'y']}, default None Text view_level : bool, default False Text transform_tests : {False, 'upper', 'lower', 'alternate'}, default 'upper' Text add_test_ids : bool, default True Text add_base_texts : {False, 'all', 'simple', 'simple-no-items'}, default 'simple' Whether or not to include existing ``.base_descriptions`` str to the label of the appropriate base view. Selecting ``'simple'`` will inject the base texts to non-array type Chains only. totalize : bool, default True Text sep : str, default None The seperator used for painting ``pandas.DataFrame`` columns na_rep : str, default None numpy.NaN will be replaced with na_rep if passed transform_column_names : dict, default None Transformed column_names are added to the labeltexts. exclude_mask_text : bool, default False Exclude mask text from mask-item texts. Returns ------- None The ``.dataframe`` is modified inplace. """ self._ensure_indexes() text_keys = self._finish_text_key(text_key, text_loc_x, text_loc_y) if self.structure is not None: self._paint_structure(text_key, sep=sep, na_rep=na_rep) else: self.totalize = totalize if transform_tests: self.transform_tests(transform_tests, display_level) # Remove any letter header row from transformed tests... if self.sig_test_letters: self._remove_letter_header() if display is None: display = _AXES if axes is None: axes = _AXES self._paint(text_keys, display, axes, add_base_texts, transform_column_names, exclude_mask_text) # Re-build the full column index (labels + letter row) if self.sig_test_letters and add_test_ids: self._frame = self._apply_letter_header(self._frame) if view_level: self._add_view_level() self.painted = True return None def _paint_structure(self, text_key=None, sep=None, na_rep=None): """ Paint the dataframe-type Chain. """ if not text_key: text_key = self._meta['lib']['default text'] str_format = '%%s%s%%s' % sep column_mapper = dict() na_rep = na_rep or '' pattern = r'\, (?=\W|$)' for column in self.structure.columns: if not column in self._meta['columns']: continue meta = self._meta['columns'][column] if sep: column_mapper[column] = str_format % (column, meta['text'][text_key]) else: column_mapper[column] = meta['text'][text_key] if meta.get('values'): values = meta['values'] if isinstance(values, str): pointers = values.split('@') values = self._meta[pointers.pop(0)] while pointers: values = values[pointers.pop(0)] if meta['type'] == 'delimited set': value_mapper = { str(item['value']): item['text'][text_key] for item in values } series = self.structure[column] try: series = (series.str.split(';') .apply(pd.Series, 1) .stack(dropna=False) .map(value_mapper.get) #, na_action='ignore') .unstack()) first = series[series.columns[0]] rest = [series[c] for c in series.columns[1:]] self.structure[column] = ( first .str.cat(rest, sep=', ', na_rep='') .str.slice(0, -2) .replace(to_replace=pattern, value='', regex=True) .replace(to_replace='', value=na_rep) ) except AttributeError: continue else: value_mapper = { item['value']: item['text'][text_key] for item in values } self.structure[column] = (self.structure[column] .map(value_mapper.get, na_action='ignore') ) self.structure[column].fillna(na_rep, inplace=True) self.structure.rename(columns=column_mapper, inplace=True) def _paint(self, text_keys, display, axes, bases, transform_column_names, exclude_mask_text): """ Paint the Chain.dataframe """ indexes = [] for axis in _AXES: index = self._index_switch(axis) if axis in axes: index = self._paint_index(index, text_keys, display, axis, bases, transform_column_names, exclude_mask_text) indexes.append(index) self._frame.index, self._frame.columns = indexes def _paint_index(self, index, text_keys, display, axis, bases, transform_column_names, exclude_mask_text): """ Paint the Chain.dataframe.index1 """ error = "No text keys from {} found in {}" level_0_text, level_1_text = [], [] nlevels = index.nlevels if nlevels > 2: arrays = [] for i in range(0, nlevels, 2): index_0 = index.get_level_values(i) index_1 = index.get_level_values(i+1) tuples = list(zip(index_0.values, index_1.values)) names = (index_0.name, index_1.name) sub = pd.MultiIndex.from_tuples(tuples, names=names) sub = self._paint_index(sub, text_keys, display, axis, bases, transform_column_names, exclude_mask_text) arrays.extend(self._lzip(sub.ravel())) tuples = self._lzip(arrays) return pd.MultiIndex.from_tuples(tuples, names=index.names) levels = self._lzip(index.values) arrays = (self._get_level_0(levels[0], text_keys, display, axis, transform_column_names, exclude_mask_text), self._get_level_1(levels, text_keys, display, axis, bases)) new_index = pd.MultiIndex.from_arrays(arrays, names=index.names) return new_index def _get_level_0(self, level, text_keys, display, axis, transform_column_names, exclude_mask_text): """ """ level_0_text = [] for value in level: if str(value).startswith('#pad'): pass elif pd.notnull(value): if value in list(self._text_map.keys()): value = self._text_map[value] else: text = self._get_text(value, text_keys[axis], exclude_mask_text) if axis in display: if transform_column_names: value = transform_column_names.get(value, value) value = '{}. {}'.format(value, text) else: value = text level_0_text.append(value) if '@' in self._y_keys and self.totalize and axis == 'y': level_0_text = ['Total'] + level_0_text[1:] return list(map(str, level_0_text)) def _get_level_1(self, levels, text_keys, display, axis, bases): """ """ level_1_text = [] if text_keys[axis] in self._transl: tk_transl = text_keys[axis] else: tk_transl = self._default_text c_text = copy.deepcopy(self._custom_texts) if self._custom_texts else {} for i, value in enumerate(levels[1]): if str(value).startswith('#pad'): level_1_text.append(value) elif pd.isnull(value): level_1_text.append(value) elif str(value) == '': level_1_text.append(value) elif str(value).startswith('#Level: '): level_1_text.append(value.replace('#Level: ', '')) else: translate = list(self._transl[list(self._transl.keys())[0]].keys()) if value in list(self._text_map.keys()) and value not in translate: level_1_text.append(self._text_map[value]) elif value in translate: if value == 'All': text = self._specify_base(i, text_keys[axis], bases) else: text = self._transl[tk_transl][value] if value in c_text: add_text = c_text[value].pop(0) text = '{} {}'.format(text, add_text) level_1_text.append(text) elif value == 'All (eff.)': text = self._specify_base(i, text_keys[axis], bases) level_1_text.append(text) else: if any(self.array_style == a and axis == x for a, x in ((0, 'x'), (1, 'y'))): text = self._get_text(value, text_keys[axis], True) level_1_text.append(text) else: try: values = self._get_values(levels[0][i]) if not values: level_1_text.append(value) else: for item in self._get_values(levels[0][i]): if int(value) == item['value']: text = self._get_text(item, text_keys[axis]) level_1_text.append(text) except (ValueError, UnboundLocalError): if self._grp_text_map: for gtm in self._grp_text_map: if value in list(gtm.keys()): text = self._get_text(gtm[value], text_keys[axis]) level_1_text.append(text) return list(map(str, level_1_text)) @staticmethod def _unwgt_label(views, base_vk): valid = ['cbase', 'cbase_gross', 'rbase', 'ebase'] basetype = base_vk.split('|')[-1] views_split = [v.split('|') for v in views] multibase = len([v for v in views_split if v[-1] == basetype]) > 1 weighted = base_vk.split('|')[-2] w_diff = len([v for v in views_split if not v[-1] in valid and not v[-2] == weighted]) > 0 if weighted: return False elif multibase or w_diff: return True else: return False def _add_base_text(self, base_val, tk, bases): if self._array_style == 0 and bases != 'all': return base_val else: bt = self.base_descriptions if isinstance(bt, dict): bt_by_key = bt[tk] else: bt_by_key = bt if bt_by_key: if bt_by_key.startswith('%s:' % base_val): bt_by_key = bt_by_key.replace('%s:' % base_val, '') return '{}: {}'.format(base_val, bt_by_key) else: return base_val def _specify_base(self, view_idx, tk, bases): tk_transl = tk if tk in self._transl else self._default_text base_vk = self._valid_views()[view_idx] basetype = base_vk.split('|')[-1] unwgt_label = self._unwgt_label(list(self._views.keys()), base_vk) if unwgt_label: if basetype == 'cbase_gross': base_value = self._transl[tk_transl]['no_w_gross_All'] elif basetype == 'ebase': base_value = 'Unweighted effective base' else: base_value = self._transl[tk_transl]['no_w_All'] else: if basetype == 'cbase_gross': base_value = self._transl[tk_transl]['gross All'] elif basetype == 'ebase': base_value = 'Effective base' elif not bases or (bases == 'simple-no-items' and self._is_mask_item): base_value = self._transl[tk_transl]['All'] else: key = tk if isinstance(tk, tuple): _, key = tk base_value = self._add_base_text(self._transl[tk_transl]['All'], key, bases) return base_value def _get_text(self, value, text_key, item_text=False): """ """ if value in list(self._meta['columns'].keys()): col = self._meta['columns'][value] if item_text and col.get('parent'): parent = list(col['parent'].keys())[0].split('@')[-1] items = self._meta['masks'][parent]['items'] for i in items: if i['source'].split('@')[-1] == value: obj = i['text'] break else: obj = col['text'] elif value in list(self._meta['masks'].keys()): obj = self._meta['masks'][value]['text'] elif 'text' in value: obj = value['text'] else: obj = value return self._get_text_from_key(obj, text_key) def _get_text_from_key(self, text, text_key): """ Find the first value in a meta object's "text" key that matches a text_key for it's axis. """ if isinstance(text_key, tuple): loc, key = text_key if loc in text: if key in text[loc]: return text[loc][key] elif self._default_text in text[loc]: return text[loc][self._default_text] if key in text: return text[key] for key in (text_key, self._default_text): if key in text: return text[key] return '<label>' def _get_values(self, column): """ Returns values from self._meta["columns"] or self._meta["lib"]["values"][<mask name>] if parent is "array" """ if column in self._meta['columns']: values = self._meta['columns'][column].get('values', []) elif column in self._meta['masks']: values = self._meta['lib']['values'].get(column, []) if isinstance(values, str): keys = values.split('@') values = self._meta[keys.pop(0)] while keys: values = values[keys.pop(0)] return values def _add_view_level(self, shorten=False): """ Insert a third Index level containing View keys into the DataFrame. """ vnames = self._views_per_rows() if shorten: vnames = [v.split('|')[-1] for v in vnames] self._frame['View'] = pd.Series(vnames, index=self._frame.index) self._frame.set_index('View', append=True, inplace=True) def toggle_labels(self): """ Restore the unpainted/ painted Index, Columns appearance. """ if self.painted: self.painted = False else: self.painted = True attrs = ['index', 'columns'] if self.structure is not None: attrs.append('_frame_values') for attr in attrs: vals = attr[6:] if attr.startswith('_frame') else attr frame_val = getattr(self._frame, vals) setattr(self._frame, attr, getattr(self, attr)) setattr(self, attr, frame_val) if self.structure is not None: values = self._frame.values self._frame.loc[:, :] = self.frame_values self.frame_values = values return self @staticmethod def _single_column(*levels): """ Returns True if multiindex level 0 has one unique value """ return all(len(level) == 1 for level in levels) def _group_views(self, frame, group_type): """ Re-sort rows so that they appear as being grouped inside the Chain.dataframe. """ grouped_frame = [] len_of_frame = len(frame) frame = pd.concat(frame, axis=0) index_order = frame.index.get_level_values(1).tolist() index_order = index_order[:int(len(index_order) / len_of_frame)] gb_df = frame.groupby(level=1, sort=False) for i in index_order: grouped_df = gb_df.get_group(i) if group_type == 'reduced': grouped_df = self._reduce_grouped_index(grouped_df, len_of_frame-1) grouped_frame.append(grouped_df) grouped_frame = pd.concat(grouped_frame, verify_integrity=False) return grouped_frame @staticmethod def _reduce_grouped_index(grouped_df, view_padding, array_summary=-1): idx = grouped_df.index q = idx.get_level_values(0).tolist()[0] if array_summary == 0: val = idx.get_level_values(1).tolist() for index in range(1, len(val), 2): val[index] = '' grp_vals = val elif array_summary == 1: grp_vals = [] indexed = [] val = idx.get_level_values(1).tolist() for v in val: if not v in indexed or v == 'All': grp_vals.append(v) indexed.append(v) else: grp_vals.append('') else: val = idx.get_level_values(1).tolist()[0] grp_vals = [val] + [''] * view_padding mi = pd.MultiIndex.from_product([[q], grp_vals], names=idx.names) grouped_df.index = mi return grouped_df @staticmethod def _lzip(arr): """ """ return list(zip(*arr)) @staticmethod def _force_list(obj): if isinstance(obj, (list, tuple)): return obj return [obj] @classmethod def __pad_id(cls): cls._pad_id += 1 return cls._pad_id # class MTDChain(Chain): # def __init__(self, mtd_doc, name=None): # super(MTDChain, self).__init__(stack=None, name=name, structure=None) # self.mtd_doc = mtd_doc # self.source = 'Dimensions MTD' self.get = self._get # def _get(self, ignore=None, labels=True): # per_folder = OrderedDict() # failed = [] # unsupported = [] # for name, tab_def in self.mtd_doc.items(): # try: # if isinstance(tab_def.values()[0], dict): # unsupported.append(name) # else: # tabs = split_tab(tab_def) # chain_dfs = [] # for tab in tabs: # df, meta = tab[0], tab[1] # # SOME DFs HAVE TOO MANY / UNUSED LEVELS... # if len(df.columns.levels) > 2: # df.columns = df.columns.droplevel(0) # x, y = _get_axis_vars(df) # df.replace('-', np.NaN, inplace=True) # relabel_axes(df, meta, labels=labels) # df = df.drop('Base', axis=1, level=1) # try: # df = df.applymap(lambda x: float(x.replace(',', '.') # if isinstance(x, (str, unicode)) else x)) # except: # msg = "Could not convert df values to float for table '{}'!" # # warnings.warn(msg.format(name)) # chain_dfs.append(to_chain((df, x, y), meta)) # per_folder[name] = chain_dfs # except: # failed.append(name) # print 'Conversion failed for:\n{}\n'.format(failed) # print 'Subfolder conversion unsupported for:\n{}'.format(unsupported) # return per_folder ############################################################################## class Quantity(object): """ The Quantity object is the main Quantipy aggregation engine. Consists of a link's data matrix representation and sectional defintion of weight vector (wv), x-codes section (xsect) and y-codes section (ysect). The instance methods handle creation, retrieval and manipulation of the data input matrices and section definitions as well as the majority of statistical calculations. """ # ------------------------------------------------- # Instance initialization # ------------------------------------------------- def __init__(self, link, weight=None, use_meta=False, base_all=False): # Collect information on wv, x- and y-section self._uses_meta = use_meta self.ds = self._convert_to_dataset(link) self.d = self._data self.base_all = base_all self._dataidx = link.get_data().index if self._uses_meta: self.meta = self._meta if list(self.meta().values()) == [None] * len(list(self.meta().values())): self._uses_meta = False self.meta = None else: self.meta = None self._cache = link.get_cache() self.f = link.filter self.x = link.x self.y = link.y self.w = weight if weight is not None else '@1' self.is_weighted = False self.type = self._get_type() if self.type == 'nested': self.nest_def = Nest(self.y, self.d(), self.meta()).nest() self._squeezed = False self.idx_map = None self.xdef = self.ydef = None self.matrix = self._get_matrix() self.is_empty = self.matrix.sum() == 0 self.switched = False self.factorized = None self.result = None self.logical_conditions = [] self.cbase = self.rbase = None self.comb_x = self.comb_y = None self.miss_x = self.miss_y = None self.calc_x = self.calc_y = None self._has_x_margin = self._has_y_margin = False def __repr__(self): if self.result is not None: return '%s' % (self.result) else: return 'Quantity - x: {}, xdef: {} y: {}, ydef: {}, w: {}'.format( self.x, self.xdef, self.y, self.ydef, self.w) # ------------------------------------------------- # Matrix creation and retrievel # ------------------------------------------------- def _convert_to_dataset(self, link): ds = qp.DataSet('') ds._data = link.stack[link.data_key].data ds._meta = link.get_meta() return ds def _data(self): return self.ds._data def _meta(self): return self.ds._meta def _get_type(self): """ Test variable type that can be "simple", "nested" or "array". """ if self._uses_meta: masks = [self.x, self.y] if any(mask in list(self.meta()['masks'].keys()) for mask in masks): mask = { True: self.x, False: self.y}.get(self.x in list(self.meta()['masks'].keys())) if self.meta()['masks'][mask]['type'] == 'array': if self.x == '@': self.x, self.y = self.y, self.x return 'array' elif '>' in self.y: return 'nested' else: return 'simple' else: return 'simple' def _is_multicode_array(self, mask_element): return ( self.d()[mask_element].dtype == 'str' ) def _get_wv(self): """ Returns the weight vector of the matrix. """ return self.d()[[self.w]].values def weight(self): """ Weight by multiplying the indicator entries with the weight vector. """ self.matrix *= np.atleast_3d(self.wv) # if self.is_weighted: # self.matrix[:, 1:, 1:] *= np.atleast_3d(self.wv) # else: # self.matrix *= np.atleast_3d(self.wv) # self.is_weighted = True return None def unweight(self): """ Remove any weighting by dividing the matrix by itself. """ self.matrix /= self.matrix # self.matrix[:, 1:, 1:] /= self.matrix[:, 1:, 1:] # self.is_weighted = False return None def _get_total(self): """ Return a vector of 1s for the matrix. """ return self.d()[['@1']].values def _copy(self): """ Copy the Quantity instance, i.e. its data matrix, into a new object. """ m_copy = np.empty_like(self.matrix) m_copy[:] = self.matrix c = copy.copy(self) c.matrix = m_copy return c def _get_response_codes(self, var): """ Query the meta specified codes values for a meta-using Quantity. """ if self.type == 'array': rescodes = [v['value'] for v in self.meta()['lib']['values'][var]] else: values = emulate_meta( self.meta(), self.meta()['columns'][var].get('values', None)) rescodes = [v['value'] for v in values] return rescodes def _get_response_texts(self, var, text_key=None): """ Query the meta specified text values for a meta-using Quantity. """ if text_key is None: text_key = 'main' if self.type == 'array': restexts = [v[text_key] for v in self.meta()['lib']['values'][var]] else: values = emulate_meta( self.meta(), self.meta()['columns'][var].get('values', None)) restexts = [v['text'][text_key] for v in values] return restexts def _switch_axes(self): """ """ if self.switched: self.switched = False self.matrix = self.matrix.swapaxes(1, 2) else: self.switched = True self.matrix = self.matrix.swapaxes(2, 1) self.xdef, self.ydef = self.ydef, self.xdef self._x_indexers, self._y_indexers = self._y_indexers, self._x_indexers self.comb_x, self.comb_y = self.comb_y, self.comb_x self.miss_x, self.miss_y = self.miss_y, self.miss_x return self def _reset(self): for prop in list(self.__dict__.keys()): if prop in ['_uses_meta', 'base_all', '_dataidx', 'meta', '_cache', 'd', 'idx_map']: pass elif prop in ['_squeezed', 'switched']: self.__dict__[prop] = False else: self.__dict__[prop] = None self.result = None return None def swap(self, var, axis='x', inplace=True): """ Change the Quantity's x- or y-axis keeping filter and weight setup. All edits and aggregation results will be removed during the swap. Parameters ---------- var : str New variable's name used in axis swap. axis : {'x', 'y'}, default ``'x'`` The axis to swap. inplace : bool, default ``True`` Whether to modify the Quantity inplace or return a new instance. Returns ------- swapped : New Quantity instance with exchanged x- or y-axis. """ if axis == 'x': x = var y = self.y else: x = self.x y = var f, w = self.f, self.w if inplace: swapped = self else: swapped = self._copy() swapped._reset() swapped.x, swapped.y = x, y swapped.f, swapped.w = f, w swapped.type = swapped._get_type() swapped._get_matrix() if not inplace: return swapped def rescale(self, scaling, drop=False): """ Modify the object's ``xdef`` property reflecting new value defintions. Parameters ---------- scaling : dict Mapping of old_code: new_code, given as of type int or float. drop : bool, default False If True, codes not included in the scaling dict will be excluded. Returns ------- self """ proper_scaling = {old_code: new_code for old_code, new_code in list(scaling.items()) if old_code in self.xdef} xdef_ref = [proper_scaling[code] if code in list(proper_scaling.keys()) else code for code in self.xdef] if drop: to_drop = [code for code in self.xdef if code not in list(proper_scaling.keys())] self.exclude(to_drop, axis='x') self.xdef = xdef_ref return self def exclude(self, codes, axis='x'): """ Wrapper for _missingfy(...keep_codes=False, ..., keep_base=False, ...) Excludes specified codes from aggregation. """ self._missingfy(codes, axis=axis, keep_base=False, inplace=True) return self def limit(self, codes, axis='x'): """ Wrapper for _missingfy(...keep_codes=True, ..., keep_base=True, ...) Restrict the data matrix entires to contain the specified codes only. """ self._missingfy(codes, axis=axis, keep_codes=True, keep_base=True, inplace=True) return self def filter(self, condition, keep_base=True, inplace=False): """ Use a Quantipy conditional expression to filter the data matrix entires. """ if inplace: filtered = self else: filtered = self._copy() qualified_rows = self._get_logic_qualifiers(condition) valid_rows = self.idx_map[self.idx_map[:, 0] == 1][:, 1] filter_idx = np.in1d(valid_rows, qualified_rows) if keep_base: filtered.matrix[~filter_idx, 1:, :] = np.NaN else: filtered.matrix[~filter_idx, :, :] = np.NaN if not inplace: return filtered def _get_logic_qualifiers(self, condition): if not isinstance(condition, dict): column = self.x logic = condition else: column = list(condition.keys())[0] logic = list(condition.values())[0] idx, logical_expression = get_logic_index(self.d()[column], logic, self.d()) logical_expression = logical_expression.split(':')[0] if not column == self.x: logical_expression = logical_expression.replace('x[', column+'[') self.logical_conditions.append(logical_expression) return idx def _missingfy(self, codes, axis='x', keep_codes=False, keep_base=True, indices=False, inplace=True): """ Clean matrix from entries preserving or modifying the weight vector. Parameters ---------- codes : list A list of codes to be considered in cleaning. axis : {'x', 'y'}, default 'x' The axis to clean codes on. Refers to the Link object's x- and y- axes. keep_codes : bool, default False Controls whether the passed codes are kept or erased from the Quantity matrix data entries. keep_base: bool, default True Controls whether the weight vector is set to np.NaN alongside the x-section rows or remains unmodified. indices: bool, default False If ``True``, the data matrix indicies of the corresponding codes will be returned as well. inplace : bool, default True Will overwrite self.matrix with the missingfied matrix by default. If ``False``, the method will return a new np.array with the modified entries. Returns ------- self or numpy.array (and optionally a list of int when ``indices=True``) Either a new matrix is returned as numpy.array or the ``matrix`` property is modified inplace. """ if inplace: missingfied = self else: missingfied = self._copy() if axis == 'y' and self.y == '@' and not self.type == 'array': return self elif axis == 'y' and self.type == 'array': ni_err = 'Cannot missingfy array mask element sections!' raise NotImplementedError(ni_err) else: if axis == 'y': missingfied._switch_axes() mis_ix = missingfied._get_drop_idx(codes, keep_codes) mis_ix = [code + 1 for code in mis_ix] if mis_ix is not None: for ix in mis_ix: np.place(missingfied.matrix[:, ix], missingfied.matrix[:, ix] > 0, np.NaN) if not keep_base: if axis == 'x': self.miss_x = codes else: self.miss_y = codes if self.type == 'array': mask = np.nansum(missingfied.matrix[:, missingfied._x_indexers], axis=1, keepdims=True) mask /= mask mask = mask > 0 else: mask = np.nansum(np.sum(missingfied.matrix, axis=1, keepdims=False), axis=1, keepdims=True) > 0 missingfied.matrix[~mask] = np.NaN if axis == 'y': missingfied._switch_axes() if inplace: self.matrix = missingfied.matrix if indices: return mis_ix else: if indices: return missingfied, mis_ix else: return missingfied def _organize_global_missings(self, missings): hidden = [c for c in list(missings.keys()) if missings[c] == 'hidden'] excluded = [c for c in list(missings.keys()) if missings[c] == 'excluded'] shown = [c for c in list(missings.keys()) if missings[c] == 'shown'] return hidden, excluded, shown def _organize_stats_missings(self, missings): excluded = [c for c in list(missings.keys()) if missings[c] in ['d.excluded', 'excluded']] return excluded def _autodrop_stats_missings(self): if self.x == '@': pass elif self.ds._has_missings(self.x): missings = self.ds._get_missings(self.x) to_drop = self._organize_stats_missings(missings) self.exclude(to_drop) else: pass return None def _clean_from_global_missings(self): if self.x == '@': pass elif self.ds._has_missings(self.x): missings = self.ds._get_missings(self.x) hidden, excluded, shown = self._organize_global_missings(missings) if excluded: excluded_codes = excluded excluded_idxer = self._missingfy(excluded, keep_base=False, indices=True) else: excluded_codes, excluded_idxer = [], [] if hidden: hidden_codes = hidden hidden_idxer = self._get_drop_idx(hidden, keep=False) hidden_idxer = [code + 1 for code in hidden_idxer] else: hidden_codes, hidden_idxer = [], [] dropped_codes = excluded_codes + hidden_codes dropped_codes_idxer = excluded_idxer + hidden_idxer self._x_indexers = [x_idx for x_idx in self._x_indexers if x_idx not in dropped_codes_idxer] self.matrix = self.matrix[:, [0] + self._x_indexers] self.xdef = [x_c for x_c in self.xdef if x_c not in dropped_codes] else: pass return None def _get_drop_idx(self, codes, keep): """ Produces a list of indices referring to the given input matrix's axes sections in order to erase data entries. Parameters ---------- codes : list Data codes that should be dropped from or kept in the matrix. keep : boolean Controls if the the passed code defintion is interpreted as "codes to keep" or "codes to drop". Returns ------- drop_idx : list List of x section matrix indices. """ if codes is None: return None else: if keep: return [self.xdef.index(code) for code in self.xdef if code not in codes] else: return [self.xdef.index(code) for code in codes if code in self.xdef] def group(self, groups, axis='x', expand=None, complete=False): """ Build simple or logical net vectors, optionally keeping orginating codes. Parameters ---------- groups : list, dict of lists or logic expression The group/net code defintion(s) in form of... * a simple list: ``[1, 2, 3]`` * a dict of list: ``{'grp A': [1, 2, 3], 'grp B': [4, 5, 6]}`` * a logical expression: ``not_any([1, 2])`` axis : {``'x'``, ``'y'``}, default ``'x'`` The axis to group codes on. expand : {None, ``'before'``, ``'after'``}, default ``None`` If ``'before'``, the codes that are grouped will be kept and placed before the grouped aggregation; vice versa for ``'after'``. Ignored on logical expressions found in ``groups``. complete : bool, default False If True, codes that define the Link on the given ``axis`` but are not present in the ``groups`` defintion(s) will be placed in their natural position within the aggregation, respecting the value of ``expand``. Returns ------- None """ # check validity and clean combine instructions if axis == 'y' and self.type == 'array': ni_err_array = 'Array mask element sections cannot be combined.' raise NotImplementedError(ni_err_array) elif axis == 'y' and self.y == '@': val_err = 'Total link has no y-axis codes to combine.' raise ValueError(val_err) grp_def = self._organize_grp_def(groups, expand, complete, axis) combines = [] names = [] # generate the net vectors (+ possible expanded originating codes) for grp in grp_def: name, group, exp, logical = grp[0], grp[1], grp[2], grp[3] one_code = len(group) == 1 if one_code and not logical: vec = self._slice_vec(group[0], axis=axis) elif not logical and not one_code: vec, idx = self._grp_vec(group, axis=axis) else: vec = self._logic_vec(group) if axis == 'y': self._switch_axes() if exp is not None: m_idx = [ix for ix in self._x_indexers if ix not in idx] m_idx = self._sort_indexer_as_codes(m_idx, group) if exp == 'after': names.extend(name) names.extend([c for c in group]) combines.append( np.concatenate([vec, self.matrix[:, m_idx]], axis=1)) else: names.extend([c for c in group]) names.extend(name) combines.append( np.concatenate([self.matrix[:, m_idx], vec], axis=1)) else: names.extend(name) combines.append(vec) if axis == 'y': self._switch_axes() # re-construct the combined data matrix combines = np.concatenate(combines, axis=1) if axis == 'y': self._switch_axes() combined_matrix = np.concatenate([self.matrix[:, [0]], combines], axis=1) if axis == 'y': combined_matrix = combined_matrix.swapaxes(1, 2) self._switch_axes() # update the sectional information new_sect_def = list(range(0, combined_matrix.shape[1] - 1)) if axis == 'x': self.xdef = new_sect_def self._x_indexers = self._get_x_indexers() self.comb_x = names else: self.ydef = new_sect_def self._y_indexers = self._get_y_indexers() self.comb_y = names self.matrix = combined_matrix def _slice_vec(self, code, axis='x'): ''' ''' if axis == 'x': code_idx = self.xdef.index(code) + 1 else: code_idx = self.ydef.index(code) + 1 if axis == 'x': m_slice = self.matrix[:, [code_idx]] else: self._switch_axes() m_slice = self.matrix[:, [code_idx]] self._switch_axes() return m_slice def _grp_vec(self, codes, axis='x'): netted, idx = self._missingfy(codes=codes, axis=axis, keep_codes=True, keep_base=True, indices=True, inplace=False) if axis == 'y': netted._switch_axes() net_vec = np.nansum(netted.matrix[:, netted._x_indexers], axis=1, keepdims=True) net_vec /= net_vec return net_vec, idx def _logic_vec(self, condition): """ Create net vector of qualified rows based on passed condition. """ filtered = self.filter(condition=condition, inplace=False) net_vec = np.nansum(filtered.matrix[:, self._x_indexers], axis=1, keepdims=True) net_vec /= net_vec return net_vec def _grp_type(self, grp_def): if isinstance(grp_def, list): if not isinstance(grp_def[0], (int, float)): return 'block' else: return 'list' elif isinstance(grp_def, tuple): return 'logical' elif isinstance(grp_def, dict): return 'wildcard' def _add_unused_codes(self, grp_def_list, axis): ''' ''' query_codes = self.xdef if axis == 'x' else self.ydef frame_lookup = {c: [[c], [c], None, False] for c in query_codes} frame = [[code] for code in query_codes] for grpdef_idx, grpdef in enumerate(grp_def_list): for code in grpdef[1]: if [code] in frame: if grpdef not in frame: frame[frame.index([code])] = grpdef else: frame[frame.index([code])] = '-' frame = [code for code in frame if not code == '-'] for code in frame: if code[0] in list(frame_lookup.keys()): frame[frame.index([code[0]])] = frame_lookup[code[0]] return frame def _organize_grp_def(self, grp_def, method_expand, complete, axis): """ Sanitize a combine instruction list (of dicts): names, codes, expands. """ organized_def = [] codes_used = [] any_extensions = complete any_logical = False if method_expand is None and complete: method_expand = 'before' if not self._grp_type(grp_def) == 'block': grp_def = [{'net': grp_def, 'expand': method_expand}] for grp in grp_def: if any(isinstance(val, (tuple, dict)) for val in list(grp.values())): if complete: ni_err = ('Logical expr. unsupported when complete=True. ' 'Only list-type nets/groups can be completed.') raise NotImplementedError(ni_err) if 'expand' in list(grp.keys()): del grp['expand'] expand = None logical = True else: if 'expand' in list(grp.keys()): grp = copy.deepcopy(grp) expand = grp['expand'] if expand is None and complete: expand = 'before' del grp['expand'] else: expand = method_expand logical = False organized_def.append([list(grp.keys()), list(grp.values())[0], expand, logical]) if expand: any_extensions = True if logical: any_logical = True codes_used.extend(list(grp.values())[0]) if not any_logical: if len(set(codes_used)) != len(codes_used) and any_extensions: ni_err_extensions = ('Same codes in multiple groups unsupported ' 'with expand and/or complete =True.') raise NotImplementedError(ni_err_extensions) if complete: return self._add_unused_codes(organized_def, axis) else: return organized_def def _force_to_nparray(self): """ Convert the aggregation result into its numpy array equivalent. """ if isinstance(self.result, pd.DataFrame): self.result = self.result.values return True else: return False def _attach_margins(self): """ Force margins back into the current Quantity.result if none are found. """ if not self._res_is_stat(): values = self.result if not self._has_y_margin and not self.y == '@': margins = False values = np.concatenate([self.rbase[1:, :], values], 1) else: margins = True if not self._has_x_margin: margins = False values = np.concatenate([self.cbase, values], 0) else: margins = True self.result = values return margins else: return False def _organize_expr_def(self, expression, axis): """ """ # Prepare expression parts and lookups for indexing the agg. result val1, op, val2 = expression[0], expression[1], expression[2] if self._res_is_stat(): idx_c = [self.current_agg] offset = 0 else: if axis == 'x': idx_c = self.xdef if not self.comb_x else self.comb_x else: idx_c = self.ydef if not self.comb_y else self.comb_y offset = 1 # Test expression validity and find np.array indices / prepare scalar # values of the expression idx_err = '"{}" not found in {}-axis.' # [1] input is 1. scalar, 2. vector from the agg. result if isinstance(val1, list): if not val2 in idx_c: raise IndexError(idx_err.format(val2, axis)) val1 = val1[0] val2 = idx_c.index(val2) + offset expr_type = 'scalar_1' # [2] input is 1. vector from the agg. result, 2. scalar elif isinstance(val2, list): if not val1 in idx_c: raise IndexError(idx_err.format(val1, axis)) val1 = idx_c.index(val1) + offset val2 = val2[0] expr_type = 'scalar_2' # [3] input is two vectors from the agg. result elif not any(isinstance(val, list) for val in [val1, val2]): if not val1 in idx_c: raise IndexError(idx_err.format(val1, axis)) if not val2 in idx_c: raise IndexError(idx_err.format(val2, axis)) val1 = idx_c.index(val1) + offset val2 = idx_c.index(val2) + offset expr_type = 'vectors' return val1, op, val2, expr_type, idx_c @staticmethod def constant(num): return [num] def calc(self, expression, axis='x', result_only=False): """ Compute (simple) aggregation level arithmetics. """ unsupported = ['cbase', 'rbase', 'summary', 'x_sum', 'y_sum'] if self.result is None: raise ValueError('No aggregation to base calculation on.') elif self.current_agg in unsupported: ni_err = 'Aggregation type "{}" not supported.' raise NotImplementedError(ni_err.format(self.current_agg)) elif axis not in ['x', 'y']: raise ValueError('Invalid axis parameter: {}'.format(axis)) is_df = self._force_to_nparray() has_margin = self._attach_margins() values = self.result expr_name = list(expression.keys())[0] if axis == 'x': self.calc_x = expr_name else: self.calc_y = expr_name values = values.T expr = list(expression.values())[0] v1, op, v2, exp_type, index_codes = self._organize_expr_def(expr, axis) # ==================================================================== # TODO: generalize this calculation part so that it can "parse" # arbitrary calculation rules given as nested or concatenated # operators/codes sequences. if exp_type == 'scalar_1': val1, val2 = v1, values[[v2], :] elif exp_type == 'scalar_2': val1, val2 = values[[v1], :], v2 elif exp_type == 'vectors': val1, val2 = values[[v1], :], values[[v2], :] calc_res = op(val1, val2) # ==================================================================== if axis == 'y': calc_res = calc_res.T ap_axis = 0 if axis == 'x' else 1 if result_only: if not self._res_is_stat(): self.result = np.concatenate([self.result[[0], :], calc_res], ap_axis) else: self.result = calc_res else: self.result = np.concatenate([self.result, calc_res], ap_axis) if axis == 'x': self.calc_x = index_codes + [self.calc_x] else: self.calc_y = index_codes + [self.calc_y] self.cbase = self.result[[0], :] if self.type in ['simple', 'nested']: self.rbase = self.result[:, [0]] else: self.rbase = None if not self._res_is_stat(): self.current_agg = 'calc' self._organize_margins(has_margin) else: self.current_agg = 'calc' if is_df: self.to_df() return self def count(self, axis=None, raw_sum=False, margin=True, as_df=True): """ Count entries over all cells or per axis margin. Parameters ---------- axis : {None, 'x', 'y'}, deafult None When axis is None, the frequency of all cells from the uni- or multivariate distribution is presented. If the axis is specified to be either 'x' or 'y' the margin per axis becomes the resulting aggregation. raw_sum : bool, default False If True will perform a simple summation over the cells given the axis parameter. This ignores net counting of qualifying answers in favour of summing over all answers given when considering margins. margin : bool, deafult True Controls whether the margins of the aggregation result are shown. This also applies to margin aggregations themselves, since they contain a margin in (form of the total number of cases) as well. as_df : bool, default True Controls whether the aggregation is transformed into a Quantipy- multiindexed (following the Question/Values convention) pandas.DataFrame or will be left in its numpy.array format. Returns ------- self Passes a pandas.DataFrame or numpy.array of cell or margin counts to the ``result`` property. """ if axis is None and raw_sum: raise ValueError('Cannot calculate raw sum without axis.') if axis is None: self.current_agg = 'freq' elif axis == 'x': self.current_agg = 'cbase' if not raw_sum else 'x_sum' elif axis == 'y': self.current_agg = 'rbase' if not raw_sum else 'y_sum' if not self.w == '@1': self.weight() if not self.is_empty or self._uses_meta: counts = np.nansum(self.matrix, axis=0) else: counts = self._empty_result() self.cbase = counts[[0], :] if self.type in ['simple', 'nested']: self.rbase = counts[:, [0]] else: self.rbase = None if axis is None: self.result = counts elif axis == 'x': if not raw_sum: self.result = counts[[0], :] else: self.result = np.nansum(counts[1:, :], axis=0, keepdims=True) elif axis == 'y': if not raw_sum: self.result = counts[:, [0]] else: if self.x == '@' or self.y == '@': self.result = counts[:, [0]] else: self.result = np.nansum(counts[:, 1:], axis=1, keepdims=True) self._organize_margins(margin) if as_df: self.to_df() self.unweight() return self def _empty_result(self): if self._res_is_stat() or self.current_agg == 'summary': self.factorized = 'x' xdim = 1 if self._res_is_stat() else 8 if self.ydef is None: ydim = 1 elif self.ydef is not None and len(self.ydef) == 0: ydim = 2 else: ydim = len(self.ydef) + 1 else: if self.xdef is not None: if len(self.xdef) == 0: xdim = 2 else: xdim = len(self.xdef) + 1 if self.ydef is None: ydim = 1 elif self.ydef is not None and len(self.ydef) == 0: ydim = 2 else: ydim = len(self.ydef) + 1 elif self.xdef is None: xdim = 2 if self.ydef is None: ydim = 1 elif self.ydef is not None and len(self.ydef) == 0: ydim = 2 else: ydim = len(self.ydef) + 1 return np.zeros((xdim, ydim)) def _effective_n(self, axis=None, margin=True): self.weight() effective = (np.nansum(self.matrix, axis=0)**2 / np.nansum(self.matrix**2, axis=0)) self.unweight() start_on = 0 if margin else 1 if axis is None: return effective[start_on:, start_on:] elif axis == 'x': return effective[[0], start_on:] else: return effective[start_on:, [0]] def summarize(self, stat='summary', axis='x', margin=True, as_df=True): """ Calculate distribution statistics across the given axis. Parameters ---------- stat : {'summary', 'mean', 'median', 'var', 'stddev', 'sem', varcoeff', 'min', 'lower_q', 'upper_q', 'max'}, default 'summary' The measure to calculate. Defaults to a summary output of the most important sample statistics. axis : {'x', 'y'}, default 'x' The axis which is reduced in the aggregation, e.g. column vs. row means. margin : bool, default True Controls whether statistic(s) of the marginal distribution are shown. as_df : bool, default True Controls whether the aggregation is transformed into a Quantipy- multiindexed (following the Question/Values convention) pandas.DataFrame or will be left in its numpy.array format. Returns ------- self Passes a pandas.DataFrame or numpy.array of the descriptive (summary) statistic(s) to the ``result`` property. """ self.current_agg = stat if self.is_empty: self.result = self._empty_result() else: self._autodrop_stats_missings() if stat == 'summary': stddev, mean, base = self._dispersion(axis, measure='sd', _return_mean=True, _return_base=True) self.result = np.concatenate([ base, mean, stddev, self._min(axis), self._percentile(perc=0.25), self._percentile(perc=0.50), self._percentile(perc=0.75), self._max(axis) ], axis=0) elif stat == 'mean': self.result = self._means(axis) elif stat == 'var': self.result = self._dispersion(axis, measure='var') elif stat == 'stddev': self.result = self._dispersion(axis, measure='sd') elif stat == 'sem': self.result = self._dispersion(axis, measure='sem') elif stat == 'varcoeff': self.result = self._dispersion(axis, measure='varcoeff') elif stat == 'min': self.result = self._min(axis) elif stat == 'lower_q': self.result = self._percentile(perc=0.25) elif stat == 'median': self.result = self._percentile(perc=0.5) elif stat == 'upper_q': self.result = self._percentile(perc=0.75) elif stat == 'max': self.result = self._max(axis) self._organize_margins(margin) if as_df: self.to_df() return self def _factorize(self, axis='x', inplace=True): self.factorized = axis if inplace: factorized = self else: factorized = self._copy() if axis == 'y': factorized._switch_axes() np.copyto(factorized.matrix[:, 1:, :], np.atleast_3d(factorized.xdef), where=factorized.matrix[:, 1:, :]>0) if not inplace: return factorized def _means(self, axis, _return_base=False): fact = self._factorize(axis=axis, inplace=False) if not self.w == '@1': fact.weight() fact_prod = np.nansum(fact.matrix, axis=0) fact_prod_sum = np.nansum(fact_prod[1:, :], axis=0, keepdims=True) bases = fact_prod[[0], :] means = fact_prod_sum/bases if axis == 'y': self._switch_axes() means = means.T bases = bases.T if _return_base: return means, bases else: return means def _dispersion(self, axis='x', measure='sd', _return_mean=False, _return_base=False): """ Extracts measures of dispersion from the incoming distribution of X vs. Y. Can return the arithm. mean by request as well. Dispersion measure supported are standard deviation, variance, coeffiecient of variation and standard error of the mean. """ means, bases = self._means(axis, _return_base=True) unbiased_n = bases - 1 self.unweight() factorized = self._factorize(axis, inplace=False) factorized.matrix[:, 1:] -= means factorized.matrix[:, 1:] *= factorized.matrix[:, 1:, :] if not self.w == '@1': factorized.weight() diff_sqrt = np.nansum(factorized.matrix[:, 1:], axis=1) disp = np.nansum(diff_sqrt/unbiased_n, axis=0, keepdims=True) disp[disp <= 0] = np.NaN disp[np.isinf(disp)] = np.NaN if measure == 'sd': disp = np.sqrt(disp) elif measure == 'sem': disp = np.sqrt(disp) / np.sqrt((unbiased_n + 1)) elif measure == 'varcoeff': disp = np.sqrt(disp) / means self.unweight() if _return_mean and _return_base: return disp, means, bases elif _return_mean: return disp, means elif _return_base: return disp, bases else: return disp def _max(self, axis='x'): factorized = self._factorize(axis, inplace=False) vals = np.nansum(factorized.matrix[:, 1:, :], axis=1) return np.nanmax(vals, axis=0, keepdims=True) def _min(self, axis='x'): factorized = self._factorize(axis, inplace=False) vals = np.nansum(factorized.matrix[:, 1:, :], axis=1) if 0 not in factorized.xdef: np.place(vals, vals == 0, np.inf) return np.nanmin(vals, axis=0, keepdims=True) def _percentile(self, axis='x', perc=0.5): """ Computes percentiles from the incoming distribution of X vs.Y and the requested percentile value. The implementation mirrors the algorithm used in SPSS Dimensions and the EXAMINE procedure in SPSS Statistics. It based on the percentile defintion #6 (adjusted for survey weights) in: Hyndman, <NAME>. and <NAME> (1996) - "Sample Quantiles in Statistical Packages", The American Statistician, 50, No. 4, 361-365. Parameters ---------- axis : {'x', 'y'}, default 'x' The axis which is reduced in the aggregation, i.e. column vs. row medians. perc : float, default 0.5 Defines the percentile to be computed. Defaults to 0.5, the sample median. Returns ------- percs : np.array Numpy array storing percentile values. """ percs = [] factorized = self._factorize(axis, inplace=False) vals = np.nansum(np.nansum(factorized.matrix[:, 1:, :], axis=1, keepdims=True), axis=1) weights = (vals/vals)*self.wv for shape_i in range(0, vals.shape[1]): iter_weights = weights[:, shape_i] iter_vals = vals[:, shape_i] mask = ~np.isnan(iter_weights) iter_weights = iter_weights[mask] iter_vals = iter_vals[mask] sorter = np.argsort(iter_vals) iter_vals = np.take(iter_vals, sorter) iter_weights = np.take(iter_weights, sorter) iter_wsum = np.nansum(iter_weights, axis=0) iter_wcsum = np.cumsum(iter_weights, axis=0) k = (iter_wsum + 1.0) * perc if iter_vals.shape[0] == 0: percs.append(0.00) elif iter_vals.shape[0] == 1: percs.append(iter_vals[0]) elif iter_wcsum[0] > k: wcsum_k = iter_wcsum[0] percs.append(iter_vals[0]) elif iter_wcsum[-1] <= k: percs.append(iter_vals[-1]) else: wcsum_k = iter_wcsum[iter_wcsum <= k][-1] p_k_idx = np.searchsorted(np.ndarray.flatten(iter_wcsum), wcsum_k) p_k = iter_vals[p_k_idx] p_k1 = iter_vals[p_k_idx+1] w_k1 = iter_weights[p_k_idx+1] excess = k - wcsum_k if excess >= 1.0: percs.append(p_k1) else: if w_k1 >= 1.0: percs.append((1.0-excess)*p_k + excess*p_k1) else: percs.append((1.0-(excess/w_k1))*p_k + (excess/w_k1)*p_k1) return np.array(percs)[None, :] def _organize_margins(self, margin): if self._res_is_stat(): if self.type == 'array' or self.y == '@' or self.x == '@': self._has_y_margin = self._has_x_margin = False else: if self.factorized == 'x': if not margin: self._has_x_margin = False self._has_y_margin = False self.result = self.result[:, 1:] else: self._has_x_margin = False self._has_y_margin = True else: if not margin: self._has_x_margin = False self._has_y_margin = False self.result = self.result[1:, :] else: self._has_x_margin = True self._has_y_margin = False if self._res_is_margin(): if self.y == '@' or self.x == '@': if self.current_agg in ['cbase', 'x_sum']: self._has_y_margin = self._has_x_margin = False if self.current_agg in ['rbase', 'y_sum']: if not margin: self._has_y_margin = self._has_x_margin = False self.result = self.result[1:, :] else: self._has_x_margin = True self._has_y_margin = False else: if self.current_agg in ['cbase', 'x_sum']: if not margin: self._has_y_margin = self._has_x_margin = False self.result = self.result[:, 1:] else: self._has_x_margin = False self._has_y_margin = True if self.current_agg in ['rbase', 'y_sum']: if not margin: self._has_y_margin = self._has_x_margin = False self.result = self.result[1:, :] else: self._has_x_margin = True self._has_y_margin = False elif self.current_agg in ['freq', 'summary', 'calc']: if self.type == 'array' or self.y == '@' or self.x == '@': if not margin: self.result = self.result[1:, :] self._has_x_margin = False self._has_y_margin = False else: self._has_x_margin = True self._has_y_margin = False else: if not margin: self.result = self.result[1:, 1:] self._has_x_margin = False self._has_y_margin = False else: self._has_x_margin = True self._has_y_margin = True else: pass def _sort_indexer_as_codes(self, indexer, codes): mapping = sorted(zip(indexer, codes), key=lambda l: l[1]) return [i[0] for i in mapping] def _get_y_indexers(self): if self._squeezed or self.type in ['simple', 'nested']: if self.ydef is not None: idxs = list(range(1, len(self.ydef)+1)) return self._sort_indexer_as_codes(idxs, self.ydef) else: return [1] else: y_indexers = [] xdef_len = len(self.xdef) zero_based_ys = [idx for idx in range(0, xdef_len)] for y_no in range(0, len(self.ydef)): if y_no == 0: y_indexers.append(zero_based_ys) else: y_indexers.append([idx + y_no * xdef_len for idx in zero_based_ys]) return y_indexers def _get_x_indexers(self): if self._squeezed or self.type in ['simple', 'nested']: idxs = list(range(1, len(self.xdef)+1)) return self._sort_indexer_as_codes(idxs, self.xdef) else: x_indexers = [] upper_x_idx = len(self.ydef) start_x_idx = [len(self.xdef) * offset for offset in range(0, upper_x_idx)] for x_no in range(0, len(self.xdef)): x_indexers.append([idx + x_no for idx in start_x_idx]) return x_indexers def _squeeze_dummies(self): """ Reshape and replace initial 2D dummy matrix into its 3D equivalent. """ self.wv = self.matrix[:, [-1]] sects = [] if self.type == 'array': x_sections = self._get_x_indexers() y_sections = self._get_y_indexers() y_total = np.nansum(self.matrix[:, x_sections], axis=1) y_total /= y_total y_total = y_total[:, None, :] for sect in y_sections: sect = self.matrix[:, sect] sects.append(sect) sects = np.dstack(sects) self._squeezed = True sects = np.concatenate([y_total, sects], axis=1) self.matrix = sects self._x_indexers = self._get_x_indexers() self._y_indexers = [] elif self.type in ['simple', 'nested']: x = self.matrix[:, :len(self.xdef)+1] y = self.matrix[:, len(self.xdef)+1:-1] for i in range(0, y.shape[1]): sects.append(x * y[:, [i]]) sects = np.dstack(sects) self._squeezed = True self.matrix = sects self._x_indexers = self._get_x_indexers() self._y_indexers = self._get_y_indexers() #===================================================================== #THIS CAN SPEED UP PERFOMANCE BY A GOOD AMOUNT BUT STACK-SAVING #TIME & SIZE WILL SUFFER. WE CAN DEL THE "SQUEEZED" COLLECTION AT #SAVE STAGE. #===================================================================== # self._cache.set_obj(collection='squeezed', # key=self.f+self.w+self.x+self.y, # obj=(self.xdef, self.ydef, # self._x_indexers, self._y_indexers, # self.wv, self.matrix, self.idx_map)) def _get_matrix(self): wv = self._cache.get_obj('weight_vectors', self.w) if wv is None: wv = self._get_wv() self._cache.set_obj('weight_vectors', self.w, wv) total = self._cache.get_obj('weight_vectors', '@1') if total is None: total = self._get_total() self._cache.set_obj('weight_vectors', '@1', total) if self.type == 'array': xm, self.xdef, self.ydef = self._dummyfy() self.matrix = np.concatenate((xm, wv), 1) else: if self.y == '@' or self.x == '@': section = self.x if self.y == '@' else self.y xm, self.xdef = self._cache.get_obj('matrices', section) if xm is None: xm, self.xdef = self._dummyfy(section) self._cache.set_obj('matrices', section, (xm, self.xdef)) self.ydef = None self.matrix = np.concatenate((total, xm, total, wv), 1) else: xm, self.xdef = self._cache.get_obj('matrices', self.x) if xm is None: xm, self.xdef = self._dummyfy(self.x) self._cache.set_obj('matrices', self.x, (xm, self.xdef)) ym, self.ydef = self._cache.get_obj('matrices', self.y) if ym is None: ym, self.ydef = self._dummyfy(self.y) self._cache.set_obj('matrices', self.y, (ym, self.ydef)) self.matrix = np.concatenate((total, xm, total, ym, wv), 1) self.matrix = self.matrix[self._dataidx] self.matrix = self._clean() self._squeeze_dummies() self._clean_from_global_missings() return self.matrix def _dummyfy(self, section=None): if section is not None: # i.e. Quantipy multicode data if self.d()[section].dtype == 'str' or self.d()[section].dtype == 'object': section_data = self.d()[section].astype('str').str.get_dummies(';') if self._uses_meta: res_codes = self._get_response_codes(section) section_data.columns = [int(col) for col in section_data.columns] section_data = section_data.reindex(columns=res_codes) section_data.replace(np.NaN, 0, inplace=True) if not self._uses_meta: section_data.sort_index(axis=1, inplace=True) # i.e. Quantipy single-coded/numerical data else: section_data = pd.get_dummies(self.d()[section]) if self._uses_meta and not self._is_raw_numeric(section): res_codes = self._get_response_codes(section) section_data = section_data.reindex(columns=res_codes) section_data.replace(np.NaN, 0, inplace=True) section_data.rename( columns={ col: int(col) if float(col).is_integer() else col for col in section_data.columns }, inplace=True) return section_data.values, section_data.columns.tolist() elif section is None and self.type == 'array': a_i = [i['source'].split('@')[-1] for i in self.meta()['masks'][self.x]['items']] a_res = self._get_response_codes(self.x) dummies = [] if self._is_multicode_array(a_i[0]): for i in a_i: i_dummy = self.d()[i].str.get_dummies(';') i_dummy.columns = [int(col) for col in i_dummy.columns] dummies.append(i_dummy.reindex(columns=a_res)) else: for i in a_i: dummies.append(pd.get_dummies(self.d()[i]).reindex(columns=a_res)) a_data = pd.concat(dummies, axis=1) return a_data.values, a_res, a_i def _clean(self): """ Drop empty sectional rows from the matrix. """ mat = self.matrix.copy() mat_indexer = np.expand_dims(self._dataidx, 1) if not self.type == 'array': xmask = (np.nansum(mat[:, 1:len(self.xdef)+1], axis=1) > 0) if self.ydef is not None: if self.base_all: ymask = (np.nansum(mat[:, len(self.xdef)+1:-1], axis=1) > 0) else: ymask = (np.nansum(mat[:, len(self.xdef)+2:-1], axis=1) > 0) self.idx_map = np.concatenate( [np.expand_dims(xmask & ymask, 1), mat_indexer], axis=1) return mat[xmask & ymask] else: self.idx_map = np.concatenate( [np.expand_dims(xmask, 1), mat_indexer], axis=1) return mat[xmask] else: mask = (np.nansum(mat[:, :-1], axis=1) > 0) self.idx_map = np.concatenate( [np.expand_dims(mask, 1), mat_indexer], axis=1) return mat[mask] def _is_raw_numeric(self, var): return self.meta()['columns'][var]['type'] in ['int', 'float'] def _res_from_count(self): return self._res_is_margin() or self.current_agg == 'freq' def _res_from_summarize(self): return self._res_is_stat() or self.current_agg == 'summary' def _res_is_margin(self): return self.current_agg in ['tbase', 'cbase', 'rbase', 'x_sum', 'y_sum'] def _res_is_stat(self): return self.current_agg in ['mean', 'min', 'max', 'varcoeff', 'sem', 'stddev', 'var', 'median', 'upper_q', 'lower_q'] def to_df(self): if self.current_agg == 'freq': if not self.comb_x: self.x_agg_vals = self.xdef else: self.x_agg_vals = self.comb_x if not self.comb_y: self.y_agg_vals = self.ydef else: self.y_agg_vals = self.comb_y elif self.current_agg == 'calc': if self.calc_x: self.x_agg_vals = self.calc_x self.y_agg_vals = self.ydef if not self.comb_y else self.comb_y else: self.x_agg_vals = self.xdef if not self.comb_x else self.comb_x self.y_agg_vals = self.calc_y elif self.current_agg == 'summary': summary_vals = ['mean', 'stddev', 'min', '25%', 'median', '75%', 'max'] self.x_agg_vals = summary_vals self.y_agg_vals = self.ydef elif self.current_agg in ['x_sum', 'cbase']: self.x_agg_vals = 'All' if self.current_agg == 'cbase' else 'sum' self.y_agg_vals = self.ydef elif self.current_agg in ['y_sum', 'rbase']: self.x_agg_vals = self.xdef self.y_agg_vals = 'All' if self.current_agg == 'rbase' else 'sum' elif self._res_is_stat(): if self.factorized == 'x': self.x_agg_vals = self.current_agg self.y_agg_vals = self.ydef if not self.comb_y else self.comb_y else: self.x_agg_vals = self.xdef if not self.comb_x else self.comb_x self.y_agg_vals = self.current_agg # can this made smarter WITHOUT 1000000 IF-ELSEs above?: if ((self.current_agg in ['freq', 'cbase', 'x_sum', 'summary', 'calc'] or self._res_is_stat()) and not self.type == 'array'): if self.y == '@' or self.x == '@': self.y_agg_vals = '@' df = pd.DataFrame(self.result) idx, cols = self._make_multiindex() df.index = idx df.columns = cols self.result = df if not self.x == '@' else df.T if self.type == 'nested': self._format_nested_axis() return self def _make_multiindex(self): x_grps = self.x_agg_vals y_grps = self.y_agg_vals if not isinstance(x_grps, list): x_grps = [x_grps] if not isinstance(y_grps, list): y_grps = [y_grps] if not x_grps: x_grps = [None] if not y_grps: y_grps = [None] if self._has_x_margin: x_grps = ['All'] + x_grps if self._has_y_margin: y_grps = ['All'] + y_grps if self.type == 'array': x_unit = y_unit = self.x x_names = ['Question', 'Values'] y_names = ['Array', 'Questions'] else: x_unit = self.x if not self.x == '@' else self.y y_unit = self.y if not self.y == '@' else self.x x_names = y_names = ['Question', 'Values'] x = [x_unit, x_grps] y = [y_unit, y_grps] index = pd.MultiIndex.from_product(x, names=x_names) columns = pd.MultiIndex.from_product(y, names=y_names) return index, columns def _format_nested_axis(self): nest_mi = self._make_nest_multiindex() if not len(self.result.columns) > len(nest_mi.values): self.result.columns = nest_mi else: total_mi_values = [] for var in self.nest_def['variables']: total_mi_values += [var, -1] total_mi = pd.MultiIndex.from_product(total_mi_values, names=nest_mi.names) full_nest_mi = nest_mi.union(total_mi) for lvl, c in zip(list(range(1, len(full_nest_mi)+1, 2)), self.nest_def['level_codes']): full_nest_mi.set_levels(['All'] + c, level=lvl, inplace=True) self.result.columns = full_nest_mi return None def _make_nest_multiindex(self): values = [] names = ['Question', 'Values'] * (self.nest_def['levels']) for lvl_var, lvl_c in zip(self.nest_def['variables'], self.nest_def['level_codes']): values.append(lvl_var) values.append(lvl_c) mi = pd.MultiIndex.from_product(values, names=names) return mi def normalize(self, on='y'): """ Convert a raw cell count result to its percentage representation. Parameters ---------- on : {'y', 'x'}, default 'y' Defines the base to normalize the result on. ``'y'`` will produce column percentages, ``'x'`` will produce row percentages. Returns ------- self Updates an count-based aggregation in the ``result`` property. """ if self.x == '@': on = 'y' if on == 'x' else 'x' if on == 'y': if self._has_y_margin or self.y == '@' or self.x == '@': base = self.cbase else: if self._get_type() == 'array': base = self.cbase else: base = self.cbase[:, 1:] else: if self._has_x_margin: base = self.rbase else: base = self.rbase[1:, :] if isinstance(self.result, pd.DataFrame): if self.x == '@': self.result = self.result.T if on == 'y': base = np.repeat(base, self.result.shape[0], axis=0) else: base = np.repeat(base, self.result.shape[1], axis=1) self.result = self.result / base * 100 if self.x == '@': self.result = self.result.T return self def rebase(self, reference, on='counts', overwrite_margins=True): """ """ val_err = 'No frequency aggregation to rebase.' if self.result is None: raise ValueError(val_err) elif self.current_agg != 'freq': raise ValueError(val_err) is_df = self._force_to_nparray() has_margin = self._attach_margins() ref = self.swap(var=reference, inplace=False) if self._sects_identical(self.xdef, ref.xdef): pass elif self._sects_different_order(self.xdef, ref.xdef): ref.xdef = self.xdef ref._x_indexers = ref._get_x_indexers() ref.matrix = ref.matrix[:, ref._x_indexers + [0]] elif self._sect_is_subset(self.xdef, ref.xdef): ref.xdef = [code for code in ref.xdef if code in self.xdef] ref._x_indexers = ref._sort_indexer_as_codes(ref._x_indexers, self.xdef) ref.matrix = ref.matrix[:, [0] + ref._x_indexers] else: idx_err = 'Axis defintion is not a subset of rebase reference.' raise IndexError(idx_err) ref_freq = ref.count(as_df=False) self.result = (self.result/ref_freq.result) * 100 if overwrite_margins: self.rbase = ref_freq.rbase self.cbase = ref_freq.cbase self._organize_margins(has_margin) if is_df: self.to_df() return self @staticmethod def _sects_identical(axdef1, axdef2): return axdef1 == axdef2 @staticmethod def _sects_different_order(axdef1, axdef2): if not len(axdef1) == len(axdef2): return False else: if (x for x in axdef1 if x in axdef2): return True else: return False @staticmethod def _sect_is_subset(axdef1, axdef2): return set(axdef1).intersection(set(axdef2)) > 0 class Test(object): """ The Quantipy Test object is a defined by a Link and the view name notation string of a counts or means view. All auxiliary figures needed to arrive at the test results are computed inside the instance of the object. """ def __init__(self, link, view_name_notation, test_total=False): super(Test, self).__init__() # Infer whether a mean or proportion test is being performed view = link[view_name_notation] if view.meta()['agg']['method'] == 'descriptives': self.metric = 'means' else: self.metric = 'proportions' self.invalid = None self.no_pairs = None self.no_diffs = None self.parameters = None self.test_total = test_total self.mimic = None self.level = None # Calculate the required baseline measures for the test using the # Quantity instance self.Quantity = qp.Quantity(link, view.weights(), use_meta=True, base_all=self.test_total) self._set_baseline_aggregates(view) # Set information about the incoming aggregation # to be able to route correctly through the algorithms # and re-construct a Quantipy-indexed pd.DataFrame self.is_weighted = view.meta()['agg']['is_weighted'] self.has_calc = view.has_calc() self.x = view.meta()['x']['name'] self.xdef = view.dataframe.index.get_level_values(1).tolist() self.y = view.meta()['y']['name'] self.ydef = view.dataframe.columns.get_level_values(1).tolist() columns_to_pair = ['@'] + self.ydef if self.test_total else self.ydef self.ypairs = list(combinations(columns_to_pair, 2)) self.y_is_multi = view.meta()['y']['is_multi'] self.multiindex = (view.dataframe.index, view.dataframe.columns) def __repr__(self): return ('%s, total included: %s, test metric: %s, parameters: %s, ' 'mimicked: %s, level: %s ')\ % (Test, self.test_total, self.metric, self.parameters, self.mimic, self.level) def _set_baseline_aggregates(self, view): """ Derive or recompute the basic values required by the ``Test`` instance. """ grps, exp, compl, calc, exclude, rescale = view.get_edit_params() if exclude is not None: self.Quantity.exclude(exclude) if self.metric == 'proportions' and self.test_total and view._has_code_expr(): self.Quantity.group(grps, expand=exp, complete=compl) if self.metric == 'means': aggs = self.Quantity._dispersion(_return_mean=True, _return_base=True) self.sd, self.values, self.cbases = aggs[0], aggs[1], aggs[2] if not self.test_total: self.sd = self.sd[:, 1:] self.values = self.values[:, 1:] self.cbases = self.cbases[:, 1:] elif self.metric == 'proportions': if not self.test_total: self.values = view.dataframe.values.copy() self.cbases = view.cbases[:, 1:] self.rbases = view.rbases[1:, :] self.tbase = view.cbases[0, 0] else: agg = self.Quantity.count(margin=True, as_df=False) if calc is not None: calc_only = view._kwargs.get('calc_only', False) self.Quantity.calc(calc, axis='x', result_only=calc_only) self.values = agg.result[1:, :] self.cbases = agg.cbase self.rbases = agg.rbase[1:, :] self.tbase = agg.cbase[0, 0] def set_params(self, test_total=False, level='mid', mimic='Dim', testtype='pooled', use_ebase=True, ovlp_correc=True, cwi_filter=False, flag_bases=None): """ Sets the test algorithm parameters and defines the type of test. This method sets the test's global parameters and derives the necessary measures for the computation of the test statistic. The default values correspond to the SPSS Dimensions Column Tests algorithms that control for bias introduced by weighting and overlapping samples in the column pairs of multi-coded questions. .. note:: The Dimensions implementation uses variance pooling. Parameters ---------- test_total : bool, default False If set to True, the test algorithms will also include an existent total (@-) version of the original link and test against the unconditial data distribution. level : str or float, default 'mid' The level of significance given either as per 'low' = 0.1, 'mid' = 0.05, 'high' = 0.01 or as specific float, e.g. 0.15. mimic : {'askia', 'Dim'} default='Dim' Will instruct the mimicking of a software specific test. testtype : str, default 'pooled' Global definition of the tests. use_ebase : bool, default True If True, will use the effective sample sizes instead of the the simple weighted ones when testing a weighted aggregation. ovlp_correc : bool, default True If True, will consider and correct for respondent overlap when testing between multi-coded column pairs. cwi_filter : bool, default False If True, will check an incoming count aggregation for cells that fall below a treshhold comparison aggregation that assumes counts to be independent. flag_bases : list of two int, default None If provided, the output dataframe will replace results that have been calculated on (eff.) bases below the first int with ``'**'`` and mark results in columns with bases below the second int with ``'*'`` Returns ------- self """ # Check if the aggregation is non-empty # and that there are >1 populated columns if np.nansum(self.values) == 0 or len(self.ydef) == 1: self.invalid = True if np.nansum(self.values) == 0: self.no_diffs = True if len(self.ydef) == 1: self.no_pairs = True self.mimic = mimic self.comparevalue, self.level = self._convert_level(level) else: # Set global test algorithm parameters self.invalid = False self.no_diffs = False self.no_pairs = False valid_mimics = ['Dim', 'askia'] if mimic not in valid_mimics: raise ValueError('Failed to mimic: "%s". Select from: %s\n' % (mimic, valid_mimics)) else: self.mimic = mimic if self.mimic == 'askia': self.parameters = {'testtype': 'unpooled', 'use_ebase': False, 'ovlp_correc': False, 'cwi_filter': True, 'base_flags': None} self.test_total = False elif self.mimic == 'Dim': self.parameters = {'testtype': 'pooled', 'use_ebase': True, 'ovlp_correc': True, 'cwi_filter': False, 'base_flags': flag_bases} self.level = level self.comparevalue, self.level = self._convert_level(level) # Get value differences between column pairings if self.metric == 'means': self.valdiffs = np.array( [m1 - m2 for m1, m2 in combinations(self.values[0], 2)]) if self.metric == 'proportions': # special to askia testing: counts-when-independent filtering if cwi_filter: self.values = self._cwi() props = (self.values / self.cbases).T self.valdiffs = np.array([p1 - p2 for p1, p2 in combinations(props, 2)]).T # Set test specific measures for Dimensions-like testing: # [1] effective base usage if use_ebase and self.is_weighted: if not self.test_total: self.ebases = self.Quantity._effective_n(axis='x', margin=False) else: self.ebases = self.Quantity._effective_n(axis='x', margin=True) else: self.ebases = self.cbases # [2] overlap correction if self.y_is_multi and self.parameters['ovlp_correc']: self.overlap = self._overlap() else: self.overlap = np.zeros(self.valdiffs.shape) # [3] base flags if flag_bases: self.flags = {'min': flag_bases[0], 'small': flag_bases[1]} self.flags['flagged_bases'] = self._get_base_flags() else: self.flags = None return self # ------------------------------------------------- # Main algorithm methods to compute test statistics # ------------------------------------------------- def run(self): """ Performs the testing algorithm and creates an output pd.DataFrame. The output is indexed according to Quantipy's Questions->Values convention. Significant results between columns are presented as lists of integer y-axis codes where the column with the higher value is holding the codes of the columns with the lower values. NaN is indicating that a cell is not holding any sig. higher values compared to the others. """ if not self.invalid: sigs = self.get_sig() return self._output(sigs) else: return self._empty_output() def get_sig(self): """ TODO: implement returning tstats only. """ stat = self.get_statistic() stat = self._convert_statistic(stat) if self.metric == 'means': diffs = pd.DataFrame(self.valdiffs, index=self.ypairs, columns=self.xdef).T elif self.metric == 'proportions': stat = pd.DataFrame(stat, index=self.xdef, columns=self.ypairs) diffs = pd.DataFrame(self.valdiffs, index=self.xdef, columns=self.ypairs) if self.mimic == 'Dim': return diffs[(diffs != 0) & (stat < self.comparevalue)] elif self.mimic == 'askia': return diffs[(diffs != 0) & (stat > self.comparevalue)] def get_statistic(self): """ Returns the test statistic of the algorithm. """ return self.valdiffs / self.get_se() def get_se(self): """ Compute the standard error (se) estimate of the tested metric. The calculation of the se is defined by the parameters of the setup. The main difference is the handling of variances. **unpooled** implicitly assumes variance inhomogenity between the column pairing's samples. **pooled** treats variances effectively as equal. """ if self.metric == 'means': if self.parameters['testtype'] == 'unpooled': return self._se_mean_unpooled() elif self.parameters['testtype'] == 'pooled': return self._se_mean_pooled() elif self.metric == 'proportions': if self.parameters['testtype'] == 'unpooled': return self._se_prop_unpooled() if self.parameters['testtype'] == 'pooled': return self._se_prop_pooled() # ------------------------------------------------- # Conversion methods for levels and statistics # ------------------------------------------------- def _convert_statistic(self, teststat): """ Convert test statistics to match the decision rule of the test logic. Either transforms to p-values or returns the absolute value of the statistic, depending on the decision rule of the test. This is used to mimic other software packages as some tests' decision rules check test-statistic against pre-defined treshholds while others check sig. level against p-value. """ if self.mimic == 'Dim': ebases_pairs = [eb1 + eb2 for eb1, eb2 in combinations(self.ebases[0], 2)] dof = ebases_pairs - self.overlap - 2 dof[dof <= 1] = np.NaN return get_pval(dof, teststat)[1] elif self.mimic == 'askia': return abs(teststat) def _convert_level(self, level): """ Determines the comparison value for the test's decision rule. Checks whether the level of test is a string that defines low, medium, or high significance or an "actual" level of significance and converts it to a comparison level/significance level tuple. This is used to mimic other software packages as some test's decision rules check test-statistic against pre-defined treshholds while others check sig. level against p-value. """ if isinstance(level, str): if level == 'low': if self.mimic == 'Dim': comparevalue = siglevel = 0.10 elif self.mimic == 'askia': comparevalue = 1.65 siglevel = 0.10 elif level == 'mid': if self.mimic == 'Dim': comparevalue = siglevel = 0.05 elif self.mimic == 'askia': comparevalue = 1.96 siglevel = 0.05 elif level == 'high': if self.mimic == 'Dim': comparevalue = siglevel = 0.01 elif self.mimic == 'askia': comparevalue = 2.576 siglevel = 0.01 else: if self.mimic == 'Dim': comparevalue = siglevel = level elif self.mimic == 'askia': comparevalue = 1.65 siglevel = 0.10 return comparevalue, siglevel # ------------------------------------------------- # Standard error estimates calculation methods # ------------------------------------------------- def _se_prop_unpooled(self): """ Estimated standard errors of prop. diff. (unpool. var.) per col. pair. """ props = self.values/self.cbases unp_sd = ((props*(1-props))/self.cbases).T return np.array([np.sqrt(cat1 + cat2) for cat1, cat2 in combinations(unp_sd, 2)]).T def _se_mean_unpooled(self): """ Estimated standard errors of mean diff. (unpool. var.) per col. pair. """ sd_base_ratio = self.sd / self.cbases return np.array([np.sqrt(sd_b_r1 + sd_b_r2) for sd_b_r1, sd_b_r2 in combinations(sd_base_ratio[0], 2)])[None, :] def _se_prop_pooled(self): """ Estimated standard errors of prop. diff. (pooled var.) per col. pair. Controlling for effective base sizes and overlap responses is supported and applied as defined by the test's parameters setup. """ ebases_correc_pairs = np.array([1 / x + 1 / y for x, y in combinations(self.ebases[0], 2)]) if self.y_is_multi and self.parameters['ovlp_correc']: ovlp_correc_pairs = ((2 * self.overlap) / [x * y for x, y in combinations(self.ebases[0], 2)]) else: ovlp_correc_pairs = self.overlap counts_sum_pairs = np.array( [c1 + c2 for c1, c2 in combinations(self.values.T, 2)]) bases_sum_pairs = np.expand_dims( [b1 + b2 for b1, b2 in combinations(self.cbases[0], 2)], 1) pooled_props = (counts_sum_pairs/bases_sum_pairs).T return (np.sqrt(pooled_props * (1 - pooled_props) * (np.array(ebases_correc_pairs - ovlp_correc_pairs)))) def _se_mean_pooled(self): """ Estimated standard errors of mean diff. (pooled var.) per col. pair. Controlling for effective base sizes and overlap responses is supported and applied as defined by the test's parameters setup. """ ssw_base_ratios = self._sum_sq_w(base_ratio=True) enum = np.nan_to_num((self.sd ** 2) * (self.cbases-1)) denom = self.cbases-ssw_base_ratios enum_pairs = np.array([enum1 + enum2 for enum1, enum2 in combinations(enum[0], 2)]) denom_pairs = np.array([denom1 + denom2 for denom1, denom2 in combinations(denom[0], 2)]) ebases_correc_pairs = np.array([1/x + 1/y for x, y in combinations(self.ebases[0], 2)]) if self.y_is_multi and self.parameters['ovlp_correc']: ovlp_correc_pairs = ((2*self.overlap) / [x * y for x, y in combinations(self.ebases[0], 2)]) else: ovlp_correc_pairs = self.overlap[None, :] return (np.sqrt((enum_pairs/denom_pairs) * (ebases_correc_pairs - ovlp_correc_pairs))) # ------------------------------------------------- # Specific algorithm values & test option measures # ------------------------------------------------- def _sum_sq_w(self, base_ratio=True): """ """ if not self.Quantity.w == '@1': self.Quantity.weight() if not self.test_total: ssw = np.nansum(self.Quantity.matrix ** 2, axis=0)[[0], 1:] else: ssw = np.nansum(self.Quantity.matrix ** 2, axis=0)[[0], :] if base_ratio: return ssw/self.cbases else: return ssw def _cwi(self, threshold=5, as_df=False): """ Derives the count distribution assuming independence between columns. """ c_col_n = self.cbases c_cell_n = self.values t_col_n = self.tbase if self.rbases.shape[1] > 1: t_cell_n = self.rbases[1:, :] else: t_cell_n = self.rbases[0] np.place(t_col_n, t_col_n == 0, np.NaN) np.place(t_cell_n, t_cell_n == 0, np.NaN) np.place(c_col_n, c_col_n == 0, np.NaN) np.place(c_cell_n, c_cell_n == 0, np.NaN) cwi = (t_cell_n * c_col_n) / t_col_n cwi[cwi < threshold] = np.NaN if as_df: return pd.DataFrame(c_cell_n + cwi - cwi, index=self.xdef, columns=self.ydef) else: return c_cell_n + cwi - cwi def _overlap(self): if self.is_weighted: self.Quantity.weight() m = self.Quantity.matrix.copy() m = np.nansum(m, 1) if self.test_total else np.nansum(m[:, 1:, 1:], 1) if not self.is_weighted: m /= m m[m == 0] = np.NaN col_pairs = list(combinations(list(range(0, m.shape[1])), 2)) if self.parameters['use_ebase'] and self.is_weighted: # Overlap computation when effective base is being used w_sum_sq = np.array([np.nansum(m[:, [c1]] + m[:, [c2]], axis=0)**2 for c1, c2 in col_pairs]) w_sq_sum = np.array([np.nansum(m[:, [c1]]**2 + m[:, [c2]]**2, axis=0) for c1, c2 in col_pairs]) return np.nan_to_num((w_sum_sq/w_sq_sum)/2).T else: # Overlap with simple weighted/unweighted base size ovlp = np.array([np.nansum(m[:, [c1]] + m[:, [c2]], axis=0) for c1, c2 in col_pairs]) return (np.nan_to_num(ovlp)/2).T def _get_base_flags(self): bases = self.ebases[0] small = self.flags['small'] minimum = self.flags['min'] flags = [] for base in bases: if base >= small: flags.append('') elif base < small and base >= minimum: flags.append('*') else: flags.append('**') return flags # ------------------------------------------------- # Output creation # ------------------------------------------------- def _output(self, sigs): res = {y: {x: [] for x in self.xdef} for y in self.ydef} test_columns = ['@'] + self.ydef if self.test_total else self.ydef for col, val in sigs.items(): if self._flags_exist(): b1ix, b2ix = test_columns.index(col[0]), test_columns.index(col[1]) b1_ok = self.flags['flagged_bases'][b1ix] != '**' b2_ok = self.flags['flagged_bases'][b2ix] != '**' else: b1_ok, b2_ok = True, True for row, v in val.items(): if v > 0: if b2_ok: if col[0] == '@': res[col[1]][row].append('@H') else: res[col[0]][row].append(col[1]) if v < 0: if b1_ok: if col[0] == '@': res[col[1]][row].append('@L') else: res[col[1]][row].append(col[0]) test = pd.DataFrame(res).applymap(lambda x: str(x)) test = test.reindex(index=self.xdef, columns=self.ydef) if self._flags_exist(): test = self._apply_base_flags(test) test.replace('[]*', '*', inplace=True) test.replace('[]', np.NaN, inplace=True) # removing test results on post-aggregation rows [calc()] if self.has_calc: if len(test.index) > 1: test.iloc[-1:, :] = np.NaN else: test.iloc[:, :] = np.NaN test.index, test.columns = self.multiindex[0], self.multiindex[1] return test def _empty_output(self): """ """ values = self.values if self.metric == 'proportions': if self.no_pairs or self.no_diffs: values[:] = np.NaN if values.shape == (1, 1) or values.shape == (1, 0): values = [np.NaN] if self.metric == 'means': if self.no_pairs: values = [np.NaN] if self.no_diffs and not self.no_pairs: values[:] = np.NaN return pd.DataFrame(values, index=self.multiindex[0], columns=self.multiindex[1]) def _flags_exist(self): return (self.flags is not None and not all(self.flags['flagged_bases']) == '') def _apply_base_flags(self, sigres, replace=True): flags = self.flags['flagged_bases'] if self.test_total: flags = flags[1:] for res_col, flag in zip(sigres.columns, flags): if flag == '**': if replace: sigres[res_col] = flag else: sigres[res_col] = sigres[res_col] + flag elif flag == '*': sigres[res_col] = sigres[res_col] + flag return sigres class Nest(object): """ Description of class... """ def __init__(self, nest, data, meta): self.data = data self.meta = meta self.name = nest self.variables = nest.split('>') self.levels = len(self.variables) self.level_codes = [] self.code_maps = None self._needs_multi = self._any_multicoded() def nest(self): self._get_nested_meta() self._get_code_maps() interlocked = self._interlock_codes() if not self.name in self.data.columns: recode_map = {code: intersection(code_pair) for code, code_pair in enumerate(interlocked, start=1)} self.data[self.name] = np.NaN self.data[self.name] = recode(self.meta, self.data, target=self.name, mapper=recode_map) nest_info = {'variables': self.variables, 'level_codes': self.level_codes, 'levels': self.levels} return nest_info def _any_multicoded(self): return any(self.data[self.variables].dtypes == 'str') def _get_code_maps(self): code_maps = [] for level, var in enumerate(self.variables): mapping = [{var: [int(code)]} for code in self.level_codes[level]] code_maps.append(mapping) self.code_maps = code_maps return None def _interlock_codes(self): return list(product(*self.code_maps)) def _get_nested_meta(self): meta_dict = {} qtext, valtexts = self._interlock_texts() meta_dict['type'] = 'delimited set' if self._needs_multi else 'single' meta_dict['text'] = {'en-GB': '>'.join(qtext[0])} meta_dict['values'] = [{'text' : {'en-GB': '>'.join(valtext)}, 'value': c} for c, valtext in enumerate(valtexts, start=1)] self.meta['columns'][self.name] = meta_dict return None def _interlock_texts(self): all_valtexts = [] all_qtexts = [] for var in self.variables: var_valtexts = [] values = self.meta['columns'][var]['values'] all_qtexts.append(list(self.meta['columns'][var]['text'].values())) for value in values: var_valtexts.append(list(value['text'].values())[0]) all_valtexts.append(var_valtexts) self.level_codes.append([code['value'] for code in values]) interlocked_valtexts = list(product(*all_valtexts)) interlocked_qtexts = list(product(*all_qtexts)) return interlocked_qtexts, interlocked_valtexts ############################################################################## class Multivariate(object): def __init__(self): pass def _select_variables(self, x, y=None, w=None, drop_listwise=False): x_vars, y_vars = [], [] if not isinstance(x, list): x = [x] if not isinstance(y, list) and not y=='@': y = [y] if w is None: w = '@1' wrong_var_sel_1_on_1 = 'Can only analyze 1-to-1 relationships.' if self.analysis == 'Reduction' and (not (len(x) == 1 and len(y) == 1) or y=='@'): raise AttributeError(wrong_var_sel_1_on_1) for var in x: if self.ds._is_array(var): if self.analysis == 'Reduction': raise AttributeError(wrong_var_sel_1_on_1) x_a_items = self.ds._get_itemmap(var, non_mapped='items') x_vars += x_a_items else: x_vars.append(var) if y and not y == '@': for var in y: if self.ds._is_array(var): if self.analysis == 'Reduction': raise AttributeError(wrong_var_sel_1_on_1) y_a_items = self.ds._get_itemmap(var, non_mapped='items') y_vars += y_a_items else: y_vars.append(var) elif y == '@': y_vars = x_vars if x_vars == y_vars or y is None: data_slice = x_vars + [w] else: data_slice = x_vars + y_vars + [w] if self.analysis == 'Relations' and y != '@': self.x = self.y = x_vars + y_vars self._org_x, self._org_y = x_vars, y_vars else: self.x = self._org_x = x_vars self.y = self._org_y = y_vars self.w = w self._analysisdata = self.ds[data_slice] self._drop_missings() if drop_listwise: self._analysisdata.dropna(inplace=True) valid = self._analysisdata.index self.ds._data = self.ds._data.loc[valid, :] return None def _drop_missings(self): data = self._analysisdata.copy() for var in data.columns: if self.ds._has_missings(var): drop = self.ds._get_missing_list(var, globally=False) data[var].replace(drop, np.NaN, inplace=True) self._analysisdata = data return None def _has_analysis_data(self): if not hasattr(self, '_analysisdata'): raise AttributeError('No analysis variables assigned!') def _has_yvar(self): if self.y is None: raise AttributeError('Must select at least one y-variable or ' '"@"-matrix indicator!') def _get_quantities(self, create='all'): crossed_quantities = [] single_quantities = [] helper_stack = qp.Stack() helper_stack.add_data(self.ds.name, self.ds._data, self.ds._meta) w = self.w if self.w != '@1' else None for x, y in product(self.x, self.y): helper_stack.add_link(x=x, y=y) l = helper_stack[self.ds.name]['no_filter'][x][y] crossed_quantities.append(qp.Quantity(l, weight=w)) for x in self._org_x+self._org_y: helper_stack.add_link(x=x, y='@') l = helper_stack[self.ds.name]['no_filter'][x]['@'] single_quantities.append(qp.Quantity(l, weight=w)) self.single_quantities = single_quantities self.crossed_quantities = crossed_quantities return None class Reductions(Multivariate): def __init__(self, dataset): self.ds = dataset self.single_quantities = None self.crossed_quantities = None self.analysis = 'Reduction' def plot(self, type, point_coords): plt.set_autoscale_on = False plt.figure(figsize=(5, 5)) plt.xlim([-1, 1]) plt.ylim([-1, 1]) #plt.axvline(x=0.0, c='grey', ls='solid', linewidth=0.9) #plt.axhline(y=0.0, c='grey', ls='solid', linewidth=0.9) x = plt.scatter(point_coords['x'][0], point_coords['x'][1], edgecolor='w', marker='o', c='red', s=20) y = plt.scatter(point_coords['y'][0], point_coords['y'][1], edgecolor='k', marker='^', c='lightgrey', s=20) fig = x.get_figure() # print fig.get_axes()[0].grid() fig.get_axes()[0].tick_params(labelsize=6) fig.get_axes()[0].patch.set_facecolor('w') fig.get_axes()[0].grid(which='major', linestyle='solid', color='grey', linewidth=0.6) fig.get_axes()[0].xaxis.get_major_ticks()[0].label1.set_visible(False) x0 = fig.get_axes()[0].get_position().x0 y0 = fig.get_axes()[0].get_position().y0 x1 = fig.get_axes()[0].get_position().x1 y1 = fig.get_axes()[0].get_position().y1 text = 'Correspondence map' plt.figtext(x0+0.015, 1.09-y0, text, fontsize=12, color='w', fontweight='bold', verticalalignment='top', bbox={'facecolor':'red', 'alpha': 0.8, 'edgecolor': 'w', 'pad': 10}) label_map = self._get_point_label_map('CA', point_coords) for axis in list(label_map.keys()): for lab, coord in list(label_map[axis].items()): plt.annotate(lab, coord, ha='left', va='bottom', fontsize=6) plt.legend((x, y), (self.x[0], self.y[0]), loc='best', bbox_to_anchor=(1.325, 1.07), ncol=2, fontsize=6, title=' ') x_codes, x_texts = self.ds._get_valuemap(self.x[0], non_mapped='lists') y_codes, y_texts = self.ds._get_valuemap(self.y[0], non_mapped='lists') text = ' '*80 for var in zip(x_codes, x_texts): text += '\n{}: {}\n'.format(var[0], var[1]) fig.text(1.06-x0, 0.85, text, fontsize=5, verticalalignment='top', bbox={'facecolor':'red', 'edgecolor': 'w', 'pad': 10}) x_len = len(x_codes) text = ' '*80 for var in zip(y_codes, y_texts): text += '\n{}: {}\n'.format(var[0], var[1]) test = fig.text(1.06-x0, 0.85-((x_len)*0.0155)-((x_len)*0.0155)-0.05, text, fontsize=5, verticalalignment='top', bbox={'facecolor': 'lightgrey', 'alpha': 0.65, 'edgecolor': 'w', 'pad': 10}) logo = Image.open('C:/Users/alt/Documents/IPython Notebooks/Designs/Multivariate class/__resources__/YG_logo.png') newax = fig.add_axes([x0+0.005, y0-0.25, 0.1, 0.1], anchor='NE', zorder=-1) newax.imshow(logo) newax.axis('off') fig.savefig(self.ds.path + 'correspond.png', bbox_inches='tight', dpi=300) def correspondence(self, x, y, w=None, norm='sym', diags=True, plot=True): """ Perform a (multiple) correspondence analysis. Parameters ---------- norm : {'sym', 'princ'}, default 'sym' <DESCP> summary : bool, default True If True, the output will contain a dataframe that summarizes core information about the Inertia decomposition. plot : bool, default False If set to True, a correspondence map plot will be saved in the Stack's data path location. Returns ------- results: pd.DataFrame Summary of analysis results. """ self._select_variables(x, y, w) self._get_quantities() # 1. Chi^2 analysis obs, exp = self.expected_counts(x=x, y=y, return_observed=True) chisq, sig = self.chi_sq(x=x, y=y, sig=True) inertia = chisq / np.nansum(obs) # 2. svd on standardized residuals std_residuals = ((obs - exp) / np.sqrt(exp)) / np.sqrt(np.nansum(obs)) sv, row_eigen_mat, col_eigen_mat, ev = self._svd(std_residuals) # 3. row and column coordinates a = 0.5 if norm == 'sym' else 1.0 row_mass = self.mass(x=x, y=y, margin='x') col_mass = self.mass(x=x, y=y, margin='y') dim = min(row_mass.shape[0]-1, col_mass.shape[0]-1) row_sc = (row_eigen_mat * sv[:, 0] ** a) / np.sqrt(row_mass) col_sc = (col_eigen_mat.T * sv[:, 0] ** a) / np.sqrt(col_mass) if plot: # prep coordinates for plot item_sep = len(self.single_quantities[0].xdef) dim1_c = [r_s[0] for r_s in row_sc] + [c_s[0] for c_s in col_sc] # dim2_c = [r_s[1]*(-1) for r_s in row_sc] + [c_s[1]*(-1) for c_s in col_sc] dim2_c = [r_s[1] for r_s in row_sc] + [c_s[1] for c_s in col_sc] dim1_xitem, dim2_xitem = dim1_c[:item_sep], dim2_c[:item_sep] dim1_yitem, dim2_yitem = dim1_c[item_sep:], dim2_c[item_sep:] coords = {'x': [dim1_xitem, dim2_xitem], 'y': [dim1_yitem, dim2_yitem]} self.plot('CA', coords) plt.show() if diags: _dim = range(1, dim+1) chisq_stats = [chisq, 'sig: {}'.format(sig), 'dof: {}'.format((obs.shape[0] - 1)*(obs.shape[1] - 1))] _chisq = ([np.NaN] * (dim-3)) + chisq_stats _sig = ([np.NaN] * (dim-2)) + [chisq] _sv, _ev = sv[:dim, 0], ev[:dim, 0] _expl_inertia = 100 * (ev[:dim, 0] / inertia) _cumul_expl_inertia = np.cumsum(_expl_inertia) _perc_chisq = _expl_inertia / 100 * chisq labels = ['Dimension', 'Singular values', 'Eigen values', 'explained % of Inertia', 'cumulative % explained', 'explained Chi^2', 'Total Chi^2'] results = pd.DataFrame([_dim, _sv, _ev, _expl_inertia, _cumul_expl_inertia,_perc_chisq, _chisq]).T results.columns = labels results.set_index('Dimension', inplace=True) return results def _get_point_label_map(self, type, point_coords): if type == 'CA': xcoords = list(zip(point_coords['x'][0],point_coords['x'][1])) xlabels = self.crossed_quantities[0].xdef x_point_map = {lab: coord for lab, coord in zip(xlabels, xcoords)} ycoords = list(zip(point_coords['y'][0], point_coords['y'][1])) ylabels = self.crossed_quantities[0].ydef y_point_map = {lab: coord for lab, coord in zip(ylabels, ycoords)} return {'x': x_point_map, 'y': y_point_map} def mass(self, x, y, w=None, margin=None): """ Compute rel. margins or total cell frequencies of a contigency table. """ counts = self.crossed_quantities[0].count(margin=False) total = counts.cbase[0, 0] if margin is None: return counts.result.values / total elif margin == 'x': return counts.rbase[1:, :] / total elif margin == 'y': return (counts.cbase[:, 1:] / total).T def expected_counts(self, x, y, w=None, return_observed=False): """ Compute expected cell distribution given observed absolute frequencies. """ #self.single_quantities, self.crossed_quantities = self._get_quantities() counts = self.crossed_quantities[0].count(margin=False) total = counts.cbase[0, 0] row_m = counts.rbase[1:, :] col_m = counts.cbase[:, 1:] if not return_observed: return (row_m * col_m) / total else: return counts.result.values, (row_m * col_m) / total def chi_sq(self, x, y, w=None, sig=False, as_inertia=False): """ Compute global Chi^2 statistic, optionally transformed into Inertia. """ obs, exp = self.expected_counts(x=x, y=y, return_observed=True) diff_matrix = ((obs - exp)**2) / exp total_chi_sq = np.nansum(diff_matrix) if sig: dof = (obs.shape[0] - 1) * (obs.shape[1] - 1) sig_result = np.round(1 - chi2dist.cdf(total_chi_sq, dof), 3) if as_inertia: total_chi_sq /= np.nansum(obs) if sig: return total_chi_sq, sig_result else: return total_chi_sq def _svd(self, matrix, return_eigen_matrices=True, return_eigen=True): """ Singular value decomposition wrapping np.linalg.svd(). """ u, s, v = np.linalg.svd(matrix, full_matrices=False) s = s[:, None] if not return_eigen: if return_eigen_matrices: return s, u, v else: return s else: if return_eigen_matrices: return s, u, v, (s ** 2) else: return s, (s ** 2) class LinearModels(Multivariate): """ OLS REGRESSION, ... """ def __init__(self, dataset): self.ds = dataset.copy() self.single_quantities = None self.crossed_quantities = None self.analysis = 'LinearModels' def set_model(self, y, x, w=None, intercept=True): """ """ self._select_variables(x=x, y=y, w=w, drop_listwise=True) self._get_quantities() self._matrix = self.ds[self.y + self.x + [self.w]].dropna().values ymean = self.single_quantities[-1].summarize('mean', as_df=False) self._ymean = ymean.result[0, 0] self._use_intercept = intercept self.dofs = self._dofs() predictors = ' + '.join(self.x) if self._use_intercept: predictors = 'c + ' + predictors self.formula = '{} ~ {}'.format(y, predictors) return self def _dofs(self): """ """ correction = 1 if self._use_intercept else 0 obs = self._matrix[:, -1].sum() tdof = obs - correction mdof = len(self.x) rdof = obs - mdof - correction return [tdof, mdof, rdof] def _vectors(self): """ """ w = self._matrix[:, [-1]] y = self._matrix[:, [0]] x = self._matrix[:, 1:-1] x = np.concatenate([np.ones((x.shape[0], 1)), x], axis=1) return w, y, x def get_coefs(self, standardize=False): coefs = self._coefs() if not standardize else self._betas() coef_df = pd.DataFrame(coefs, index = ['-c-'] + self.x if self._use_intercept else self.x, columns = ['b'] if not standardize else ['beta']) coef_df.replace(np.NaN, '', inplace=True) return coef_df def _betas(self): """ """ corr_mat = Relations(self.ds).corr(self.x, self.y, self.w, n=False, sig=None, drop_listwise=True, matrixed=True) corr_mat = corr_mat.values predictors = corr_mat[:-1, :-1] y = corr_mat[:-1, [-1]] inv_predictors = np.linalg.inv(predictors) betas = inv_predictors.dot(y) if self._use_intercept: betas = np.vstack([[np.NaN], betas]) return betas def _coefs(self): """ """ w, y, x = self._vectors() coefs = np.dot(np.linalg.inv(np.dot(x.T, x*w)), np.dot(x.T, y*w)) return coefs def get_modelfit(self, r_sq=True): anova, fit_stats = self._sum_of_squares() dofs = np.round(np.array(self.dofs)[:, None], 0) anova_stats = np.hstack([anova, dofs, fit_stats]) anova_df = pd.DataFrame(anova_stats, index=['total', 'model', 'residual'], columns=['sum of squares', 'dof', 'R', 'R^2']) anova_df.replace(np.NaN, '', inplace=True) return anova_df def _sum_of_squares(self): """ """ w, y, x = self._vectors() x_w = x*w hat = x_w.dot(np.dot(np.linalg.inv(np.dot(x.T, x_w)), x.T)) tss = (w*(y - self._ymean)**2).sum()[None] rss = y.T.dot(np.dot(np.eye(hat.shape[0])-hat, y*w))[0] ess = tss-rss all_ss = np.vstack([tss, ess, rss]) rsq = np.vstack([[np.NaN], ess/tss, [np.NaN]]) r = np.sqrt(rsq) all_rs = np.hstack([r, rsq]) return all_ss, all_rs def estimate(self, estimator='ols', diags=True): """ """ # Wrap up the modularized computation methods coefs, betas = self.get_coefs(), self.get_coefs(True) modelfit = self.get_modelfit() # Compute diagnostics, i.e. standard errors and sig. of estimates/fit # prerequisites w, _, x = self._vectors() rss = modelfit.loc['residual', 'sum of squares'] ess = modelfit.loc['model', 'sum of squares'] # coefficients: std. errors, t-stats, sigs c_se = np.diagonal(np.sqrt(np.linalg.inv(np.dot(x.T,x*w)) * (rss/self.dofs[-1])))[None].T c_sigs = np.hstack(get_pval(self.dofs[-1], coefs/c_se)) c_diags = np.round(np.hstack([c_se, c_sigs]), 6) c_diags_df = pd.DataFrame(c_diags, index=coefs.index, columns=['se', 't-stat', 'p']) # modelfit: se, F-stat, ... m_se = np.vstack([[np.NaN], np.sqrt(rss/self.dofs[-1]), [np.NaN]]) m_fstat = np.vstack([[np.NaN], (ess/self.dofs[1]) / (rss/self.dofs[-1]), [np.NaN]]) m_sigs = 1-fdist.cdf(m_fstat, self.dofs[1], self.dofs[-1]) m_diags = np.round(np.hstack([m_se, m_fstat, m_sigs]), 6) m_diags_df = pd.DataFrame(m_diags, index=modelfit.index, columns=['se', 'F-stat', 'p']) # Put everything together parameter_results = pd.concat([coefs, betas, c_diags_df], axis=1) fit_summary =
pd.concat([modelfit, m_diags_df], axis=1)
pandas.concat
import numpy as np from glob import glob import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm import corner import hadcrut5 import re import os from scipy.stats import norm from settings import datafolder from tqdm import tqdm from steric_tools import parse_run print('combine_v2.py') # This file combines ice with steric. # # 1) Combine the dSdt and T estimates from all contributors # 2) Combine the TSLS estimates of all contributors (NOT DONE YET) np.random.seed(1337) #FIRST COMBINE THE dSdt vs T data. steric = pd.read_csv(f'{datafolder}/processed_data/ExtractedFromSSH/StericTvsRate_averaged.csv', index_col=0) steric['model_key'] = steric.model + ':p' + steric['p'].astype(str) + ':' + steric.startyr.astype(str) + ':' + steric.endyr.astype(str) + ':' + steric.scenario steric['probability_weight'] = 0.0 #--------------------------------- # steric = pd.read_csv(f'{datafolder}/processed_data/ExtractedFromSSH/StericTvsRate.csv', index_col=0) # steric = steric.join(parse_run(steric.run)) # steric['model_key'] = steric.model + ':p' + steric['p'] + ':' + steric.startyr.astype(str) + ':' + steric.endyr.astype(str) + ':' + steric.scenario # mymean = lambda x: x.mean() if x.dtype == np.float64 else x.iloc[0] # steric = steric.groupby(by=['model_key']).agg(mymean).reset_index() # steric['probability_weight'] = 0.0 # #Add a column with how many times each model_key appears in the dataset # counts = steric.pivot_table(index=['model_key'], aggfunc='size') # counts = pd.DataFrame(counts) # Convert Series to DataFrame # counts.index.name = 'model_key' # counts.reset_index(inplace=True) # Change row names to be a column # counts.columns = ['model_key', 'counts'] # steric = steric.merge(counts) # Merge dataframes on common column tfolder = f'{datafolder}/processed_data/ExtractedFromTamsin/' ice = {'WAIS': None, 'EAIS': None, 'PEN': None, 'GIC': None, 'GrIS': None} tsls_steric =
pd.read_csv(f'{datafolder}/processed_data/TSLS_estimates/tsls_steric.csv')
pandas.read_csv
### # Generate breakdown of missing data by column name ### # Output: # | state | eviction_records | demographic_records | joined_records | # | ------------- | ------------------------ | -------------------------- | --------------------------- | # | state fips | # of eviction record | # of demographic records | # of records in public data | ### import os import sys import csv import pandas as pd BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) EVICTIONS_DATA_DIR = os.path.join(BASE_DIR, 'data', 'full-evictions') DEMOGRAPHICS_DATA_DIR = os.path.join(BASE_DIR, 'data', 'demographics') if __name__ == '__main__': geography = sys.argv[1] filename = geography + '.csv' # load data frame with eviction records evictions_df = pd.read_csv( os.path.join(EVICTIONS_DATA_DIR, filename), dtype = { 'GEOID': 'object' }) # get list of geoids evictions_geoids = evictions_df.drop_duplicates('GEOID')['GEOID'].tolist() # load data frame with demographic records demographics_df = pd.read_csv( os.path.join(DEMOGRAPHICS_DATA_DIR, filename), dtype = { 'GEOID': 'object' }) # get unique geoids demographics_geoids = demographics_df.drop_duplicates('GEOID')['GEOID'].tolist() # get geoids that appear in eviction records but not demographics geoids_w_no_dem = list(set(evictions_geoids) - set(demographics_geoids)) # output as csv data = [] for item in geoids_w_no_dem: data.append({ 'type': geography, 'GEOID': item }) output_df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/python3 from collections import OrderedDict from datetime import datetime from docx import Document from docx.shared import Inches from docx.enum.text import WD_ALIGN_PARAGRAPH from glob import glob from joblib import dump, load from matplotlib import cm from matplotlib import pyplot from matplotlib.colors import ListedColormap, LinearSegmentedColormap from matplotlib.transforms import Bbox from PIL import Image from PIL import ImageDraw, ImageFont from scipy.stats import spearmanr, pearsonr from typing import Dict, Any import copy import cv2 import hashlib import itertools import json import math import matplotlib import matplotlib.colors as colors import matplotlib.pyplot as plt import multiprocessing import numpy as np import os import pandas as pd import pathlib import pickle import pylab import random import scipy.cluster.hierarchy as sch import seaborn as sns import shutil import sys import tempfile import time # delong import rpy2 import rpy2.robjects as robjects from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri pandas2ri.activate() from loadData import * from utils import * from parameters import * from evaluate_utils import * from contextlib import contextmanager ### parameters cFigNumber = 1 document = None def getResults (dList): mlflow.set_tracking_uri(TrackingPath) if os.path.exists("./results/results.feather") == False: results = [] for d in dList: current_experiment = dict(mlflow.get_experiment_by_name(d)) experiment_id = current_experiment['experiment_id'] runs = MlflowClient().search_runs(experiment_ids=experiment_id, max_results=50000) for r in runs: row = r.data.metrics row["UUID"] = r.info.run_uuid row["Model"] = r.data.tags["Version"] row["Parameter"] = r.data.tags["pID"] # stupid naming error row["Parameter"] = row["Parameter"] row["Model"] = row["Model"] row["FSel"], row["Clf"] = row["Model"].split("_") row["Dataset"] = d row["nFeatures"] = eval(row["Parameter"])[row["FSel"]]["nFeatures"] row["Path"] = os.path.join(TrackingPath, str(experiment_id), str(r.info.run_uuid), "artifacts") results.append(row) # read timings apath = os.path.join(row["Path"], "timings.json") with open(apath) as f: expData = json.load(f) row.update(expData) # read AUCs apath = os.path.join(row["Path"], "aucStats.json") with open(apath) as f: aucData = json.load(f) row.update(aucData) results = pd.DataFrame(results) print ("Pickling results") pickle.dump (results, open("./results/results.feather","wb")) else: print ("Restoring results") results = pickle.load(open("./results/results.feather", "rb")) return results def delongTest (predsX, predsY): pROC = importr('pROC') Y = predsX["y_true"].values scoresA = predsX["y_pred"].values scoresB = predsY["y_pred"].values rocA = pROC.roc (Y, scoresA) rocB = pROC.roc (Y, scoresB) aucA = pROC.auc(Y, scoresA) aucB = pROC.auc(Y, scoresB) #print ("AUC A:" + str(aucA)) #print ("AUC B:" + str(aucB)) robjects.globalenv['rocA'] = rocA robjects.globalenv['rocB'] = rocB z = rpy2.robjects.packages.reval ("library(pROC);z = roc.test(rocA, rocB, method= 'delong', progress='none'); p = z$p.value") z = robjects.r.z p = robjects.r.p[0] return p def getDeLongTest (dList, results): # check cache.. if os.path.exists("./results/delongTests.joblib") == False: rMatList = {} for d in dList: print(d) fSels = sorted(list(set(results["FSel"].values))) nList = sorted(list(set(results["nFeatures"].values))) clfs = sorted(list(set(results["Clf"].values))) rMat = np.zeros( (len(clfs), len(fSels) ) ) rMat = pd.DataFrame(rMat, index = clfs, columns = fSels) # get best overall aTable = results.query("Dataset == @d and FSel in @fSels") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() best = aTable.iloc[0].copy() # before we start, test if best model is different from random? predsX = pd.read_csv(os.path.join(best["Path"], "preds.csv")) predsY = predsX.copy() predsY["y_pred"] = 0.5 print ("Testing if best model is better than random:") p = delongTest (predsX, predsY) if p < 0.05: print ("Yes, p = ", p) else: print ("No, p = ", p) for c in clfs: for f in fSels: aTable = results.query("Dataset == @d and FSel == @f and Clf == @c") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() cur = aTable.iloc[0].copy() # load both preds predsX = pd.read_csv(os.path.join(best["Path"], "preds.csv")) predsY = pd.read_csv(os.path.join(cur["Path"], "preds.csv")) p = delongTest (predsX, predsY) if p < 0.05: pass else: rMat.at[c,f] = p rMatList[d] = rMat dump(rMatList, "./results/delongTests.joblib") else: print ("Restoring delong results") rMatList = load( "./results/delongTests.joblib") return rMatList def plot_DataHisto (dList): DPI = 300 fig, ax = plt.subplots(4,4, figsize = (25, 20), dpi = DPI) N = len(dList) palette = sns.color_palette("hls", N+N//3)[:N] for fidx, d in enumerate(dList): X, y = datasets[d] M = X.corr().values mask = np.triu(M*0+1, k =1) v = np.extract(mask, M) fidx_y= fidx % 4 fidx_x = fidx//4 doHistoPlot (v, d, "./results/Data_Hist_" + d + ".png", ax = ax[fidx_x][fidx_y], color = palette[fidx], fig = fig) # use last one, does not matter which one actually data = eval (d+"().getData('./data/')") y = data["Target"] X = data.drop(["Target"], axis = 1) X, y = preprocessData (X, y) arrays = [np.random.normal(loc=0, scale=1, size=(X.shape[0])) for s in range(X.shape[1])] X = np.vstack(arrays).T X = pd.DataFrame(X) M = X.corr().values mask = np.triu(M*0+1, k =1) f = np.extract(mask, M) doHistoPlot (f, "Normal", "./results/Data_Hist_Normal.png", ax = ax[3][3], color = "black", range = True, fig = fig) # remove unused plot for x, y in [ (3,2)]: ax[x][y] .spines['right'].set_visible(False) ax[x][y] .spines['top'].set_visible(False) ax[x][y] .spines['bottom'].set_visible(False) ax[x][y] .spines['left'].set_visible(False) ax[x][y] .spines['left'].set_visible(False) ax[x][y].xaxis.set_visible(False) ax[x][y].yaxis.set_visible(False) plt.tight_layout(pad=3.0) fig.savefig("./paper/Figure_2.png", facecolor = 'w', bbox_inches='tight') plt.close('all') plt.rc('text', usetex=False) pass def countModels (dList, results): rMatList = getDeLongTest (dList, results) cnts = {} for d in rMatList: z = rMatList[d] >= 0.05 cnts[d] = {"Count": int(np.sum(z.values)) - 1, # because best model does not count "AUC": np.round (np.max(results.query(' Dataset == @d')["AUC"]), 2) } df = pd.DataFrame(cnts).T[["AUC", "Count"]] df["Count"] = df["Count"].astype(np.uint32) df = df.sort_values(["AUC"], ascending = False) df.to_csv("./paper/Table_4.csv") # dont care which f, f = "MIM" z = results.query(' Dataset == @d and FSel == @f') nDataSets= len(set(results["Dataset"])) print ("#Datasets", nDataSets) print ("#Models per Dataset", results.shape[0]/nDataSets) nFSel= len(set(results["FSel"])) print ("#Models per FSel and Dataset", results.shape[0]/nDataSets/nFSel) nClf = len(set(results["Clf"])) print ("#Classifier", nClf) # number of features=1,2,..64= 7 nF = len(set(z["nFeatures"])) print ("Have", nF, "number of features") # number of hyperparameters cf = z["Clf"].value_counts()/nF print ("Have for each FSel", sum(cf.values), "models/hyperparameters") total = rMatList[d].shape[0]* rMatList[d].shape[1] - 1 # best model doesnt really count print ("Total stat.eq. models over all datasets:", np.mean(df["Count"]), "/", total) print ("Percentage of stat eq. models per dataset:", np.mean(df["Count"])/total) total = total*len(rMatList) print ("Total stat.eq. models over all datasets:", np.sum(df["Count"]), "/", total) print ("Percentage of stat.eq. models over all datasets:", np.sum(df["Count"])/total) def plot_modelAUCs (dList, results): print ("Plotting model AUCs") rMatList = getDeLongTest (dList, results) sTable = [] for d in rMatList.keys(): # no idea what pandas fct to use.. for f in rMatList[d].keys(): for c in rMatList[d].index: sTable.append({"Dataset": d, "FSel": f, "Clf": c, "p": rMatList[d].at[c,f]}) sTable = pd.DataFrame(sTable) for (i, (idx, row)) in enumerate(sTable.iterrows()): d, f, c = row["Dataset"], row["FSel"], row["Clf"] aTable = results.query ("Dataset == @d and FSel == @f and Clf == @c") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() cur = aTable.iloc[0].copy() sTable.at[idx, "AUC"] = cur["AUC"] sTable["Statistically Similar"] = sTable["p"] >= 0.05 if 1 == 1: DPI = 300 fig, ax = plt.subplots(figsize = (15, 10), dpi = DPI) sns.set(style='white') #strange but well # nFSel = len(set([k[0] for k in z.index])) palette = sns.color_palette("hls", 8)[0::4] sns.stripplot(x="AUC", y="Dataset", jitter = 0.25, data=sTable, palette = palette, hue = "Statistically Similar") plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.ylabel('Dataset', fontsize = 22, labelpad = 12) plt.xlabel('AUC-ROC', fontsize= 22, labelpad = 12) plt.setp(ax.get_legend().get_texts(), fontsize='16') # for legend text plt.setp(ax.get_legend().get_title(), fontsize='20') # for legend title #ax.set_xticks(nList[1:])#, rotation = 0, ha = "right", fontsize = 22) ax.xaxis.tick_bottom() ax.yaxis.tick_left() plt.tight_layout() fig.savefig("./paper/Figure_1.png", facecolor = 'w', bbox_inches='tight') print ("Done: Plotting model AUCs") pass def stability (u, v): assert (len(u) == len(v)) m = len(u) SC = 0 for i in range(m): for j in range(i+1,m): coef, p = pearsonr(u[i,:], v[j,:]) SC = SC + coef SC = 2/(m*(m-1))*SC return SC def getFPattern (model): z = [] for m in range(nCV): apath = os.path.join(model["Path"], "FPattern_" + str(m) + ".json") with open(apath) as f: expData = json.load(f) z.append(list(expData.values())) z = np.asarray(z) return z def getStability (model): z = getFPattern (model) SC = stability (z, z) return SC def plot_Stability_Curves (dList, results): global document; global cFigNumber; document = Document() font = document.styles['Normal'].font font.name = 'Arial' document.add_heading('Supplemental 2') document.add_paragraph(' ') document.add_heading('Stability vs. number of features', level = 2) document.add_paragraph(' ') # check cache.. if os.path.exists("./results/stability.joblib") == False: fTable = [] for d in dList: fSels = sorted(list(set(results["FSel"].values))) nList = sorted(list(set(results["nFeatures"].values))) for f in fSels: for n in nList: aTable = results.query("Dataset == @d and FSel == @f and nFeatures == @n").copy() for (i, (idx, row)) in enumerate(aTable.iterrows()): stab = getStability(row) aTable.at[idx, "Stability"] = stab # should be the same, but if there was any kind of numerical error, # taking median makes more sense fTable.append({"Dataset": d, "Feature Selection": f, "N": n, "Stability": np.median(aTable["Stability"]) }) dump(fTable, "./results/stability.joblib") else: print ("Restoring stability results") fTable = load( "./results/stability.joblib") # group by dataset and take mean df = pd.DataFrame(fTable) z = df.groupby(["Feature Selection", "N"]).median(["Stability"]) nList = sorted(list(set(df["N"].values))) def doPlot (z, fname): DPI = 300 fig, ax = plt.subplots(figsize = (10, 10), dpi = DPI) sns.set(style='white') #strange but well nFSel = len(set([k[0] for k in z.index])) palette = sns.color_palette("hls", nFSel+1)[0:nFSel] palette[2] = (0.9, 0.9, 0.2) line=sns.lineplot(x="N", y="Stability",hue="Feature Selection", palette = palette, marker="o", data=z, linewidth = 4) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.ylabel('Mean Stability', fontsize = 22, labelpad = 12) plt.xlabel('Number of Selected Features', fontsize= 22, labelpad = 12) plt.setp(ax.get_legend().get_texts(), fontsize='16') # for legend text plt.setp(ax.get_legend().get_title(), fontsize='20') # for legend title ax.set_xticks(nList[1:])#, rotation = 0, ha = "right", fontsize = 22) # set the linewidth of each legend object leg = ax.get_legend() for line in leg.get_lines(): line.set_linewidth(4.0) ax.xaxis.tick_bottom() ax.yaxis.tick_left() plt.tight_layout() fig.savefig(fname, facecolor = 'w', bbox_inches='tight') return plt, ax doPlot (z, "./paper/Figure_3.png") paragraph = document.add_paragraph('') document.add_picture("./paper/Figure_3.png", width=Inches(6.0)) paragraph = document.add_paragraph('Figure S' + str(cFigNumber) + ": Relation of feature stability with the number of selected features.") cFigNumber = cFigNumber + 1 # each dataset for d in dList: z = df.query("Dataset == @d") z = z.groupby(["Feature Selection", "N"]).median(["Stability"]) doPlot (z, "./results/Stability_" + d + ".png") # add to doc document.add_page_break() paragraph = document.add_paragraph(d) paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER document.add_picture("./results/Stability_"+d+".png", width=Inches(6.0)) paragraph = document.add_paragraph('Figure S' + str(cFigNumber) + ": Relation of feature stability with the number of selected features on dataset " + str(d) + ".") #paragraph = document.add_paragraph(" ") cFigNumber = cFigNumber + 1 document.add_page_break() document.save('./paper/Supplemental_2.docx') plt.close('all') pass def getSimilarity (cur, best): u = getFPattern (best) v = getFPattern (cur) SC = stability (u, v) return SC # cross similairty of a pattern def correlation (X, fu, fv): assert (len(fu) == len(fv)) cu = [] idxU = np.where(fu == 1.0)[0] idxV = np.where(fv == 1.0)[0] for u in idxU: cv = [] for v in idxV: corr, pval = pearsonr (X.values[:,u], X.values[:,v]) cv.append(np.abs(corr)) cu.append(np.max(cv)) CS = np.mean(cu) return CS # called ucorr in supplemental def getRawCorrelation (cur, best, X): assert (best["Dataset"] == cur["Dataset"]) patBest = getFPattern (best) patCur = getFPattern (cur) assert (len(patBest) == len(patCur)) m = len(patBest) CS = 0 for i in range(m): for j in range(m): coef = correlation (X, patBest[i,:], patCur[j,:]) CS = CS + coef CS = 1/(m*m)*CS return CS def getCorrelation (cur, best, X): assert (best["Dataset"] == cur["Dataset"]) CSp = getRawCorrelation (cur, best, X) CSm = getRawCorrelation (best, cur, X) return (CSp + CSm)/2.0 def highlight_cell(x,y, ax=None, **kwargs): rect = plt.Rectangle((x-.5, y-.5), 1,1, fill=False, **kwargs) ax = ax or plt.gca() ax.add_patch(rect) return rect def plot_Tables (dList, results, cType = None): # set params if cType == "Stability": sFile = "Supplemental 3" if cType == "Similarity": sFile = "Supplemental 4" if cType == "Correlation": sFile = "Supplemental 5" # create supplemental global document; global cFigNumber; document = Document() font = document.styles['Normal'].font font.name = 'Arial' document.add_heading(sFile) document.add_paragraph(' ') document.add_heading("Feature " + cType, level = 2) document.add_paragraph(' ') rMatList = getDeLongTest (dList, results) sscMatList = getSSC (dList, results) # prepare data for d in dList: # ssc contains only stat sim models z = sscMatList[d] rMat = rMatList[d] rMat = rMat.round(3) scMat = rMat.copy() strMat = rMat.copy() strMat = strMat.astype( dtype = "str") # get best one aTable = results.query("Dataset == @d") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() best = aTable.iloc[0].copy() bestc = best["Clf"] bestf = best["FSel"] for (i, (idx, row)) in enumerate(z.iterrows()): c = row["Classifier"] f = row["Feature Selection"] nF = row["nFeatures"] auc = row["AUC"] scMat.at[c,f] = row[cType] k = str(np.round(scMat.at[c, f], 2)) if k == "-0.0": k = "0.0" strMat.at[c,f] = r'\huge{' + k + "}\n\Large{AUC:" + str(auc) + " (p=" + str(rMat.at[c,f]) + ")"+ "\n" + "\large{\#Features: " + str(nF) + "}" strMat.at[c,f] if 1 == 1: plt.rc('text', usetex=True) plt.rcParams.update({ "font.family": "sans-serif", "font.sans-serif": ["Arial"]}) plt.rcParams['text.usetex'] = True plt.rcParams['text.latex.preamble'] = r''' \usepackage{mathtools} \usepackage{helvet} \renewcommand{\familydefault}{\sfdefault} ''' DPI = 300 fig, ax = plt.subplots(figsize = (17,14), dpi = DPI) sns.set(style='white') #ax = sns.heatmap(scMat, annot = cMat, cmap = "Blues", fmt = '', annot_kws={"fontsize":21}, linewidth = 2.0, linecolor = "black") dx = np.asarray(scMat, dtype = np.float64) pal = sns.light_palette("#8888bb", reverse=False, as_cmap=True) tnorm = colors.TwoSlopeNorm(vmin=0.0, vcenter=0.5, vmax=1.0) ax.imshow(dx, cmap=pal, norm = tnorm, interpolation='nearest', aspect = 0.49) # Major ticks mh, mw = scMat.shape ax.set_xticks(np.arange(0, mw, 1)) ax.set_yticks(np.arange(0, mh, 1)) # Minor ticks ax.set_xticks(np.arange(-.5, mw, 1), minor=True) ax.set_yticks(np.arange(-.5, mh, 1), minor=True) # Gridlines based on minor ticks ax.grid(which='minor', color='black', linestyle='-', linewidth=2) for i, c in enumerate(scMat.index): for j, f in enumerate(scMat.keys()): if rMat.at[c,f] < 0.05: ax.text(j, i, ' ', ha="center", va="center", color="k", fontsize = 12) elif scMat.at[c,f] < -0.95: ax.text(j, i, '\huge{N/A}', ha="center", va="center", color="k", fontsize = 12) else: ax.text(j, i, strMat.at[c, f], ha="center", va="center", color="k", fontsize = 12) plt.tight_layout() bestcidx = list(scMat.keys()).index(bestf) bestfidx = list(scMat.index).index(bestc) highlight_cell(bestcidx, bestfidx, color="royalblue", linewidth=10) ax.set_xticklabels(rMat.keys(), rotation = 45, ha = "right", fontsize = 22) ax.set_yticklabels(strTrans(rMat.index), rotation = 0, ha = "right", fontsize = 22) ax.yaxis.set_tick_params ( labelsize= 22) fig.savefig("./results/Table_" + cType + "_"+d+".png", facecolor = 'w', bbox_inches='tight') paragraph = document.add_paragraph(cType + " on " + d) paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER document.add_picture("./results/Table_" + cType + "_" + d+".png", width=Inches(6.0)) paragraph = document.add_paragraph('Figure S' + str(cFigNumber) + ": " + cType + " of the models on dataset " + str(d) + ". The best model is framed with a blue border, models that " + \ "were significantly different to the best model are not shown. Statistical significance was tested using a DeLong test.") cFigNumber = cFigNumber + 1 document.add_page_break() plt.close('all') plt.rc('text', usetex=False) document.save("./paper/" + sFile.replace(" ", "_") + ".docx") plt.close('all') pass def getSSC (dList, results): rMatList = getDeLongTest (dList, results) if os.path.exists("./results/ssc.feather") == False: sscMatList = {} for fidx, d in enumerate(dList): X, y = datasets[d] rMat = rMatList[d] rMat = rMat.round(3) fSels = sorted(list(set(results["FSel"].values))) nList = sorted(list(set(results["nFeatures"].values))) clfs = sorted(list(set(results["Clf"].values))) # get best overall aTable = results.query("Dataset == @d") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() best = aTable.iloc[0].copy() fTable = [] for c in clfs: for f in fSels: if rMat.at[c,f] > 0.05: aTable = results.query("Dataset == @d and FSel == @f and Clf == @c") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() cur = aTable.iloc[0].copy() sim = getSimilarity (cur, best) stab = getStability (cur) corr = getCorrelation (cur, best, X) fTable.append({"Feature Selection": f, "Classifier": c, "AUC": round(cur["AUC"],2), "nFeatures": cur["nFeatures"], "Stability": round(stab,2), "Similarity": round(sim, 2), "Correlation": round(corr,2)}) sscMatList[d] = pd.DataFrame(fTable) print ("Pickling SSC results") pickle.dump (sscMatList, open("./results/ssc.feather","wb")) else: print ("Restoring SSC results") sscMatList = pickle.load(open("./results/ssc.feather", "rb")) return sscMatList def table_ZZ (dList, results): rMatList = getDeLongTest (dList, results) sscMatList = getSSC (dList, results) # prepare data df = [] for d in dList: # ssc contains only stat sim models z = sscMatList[d] # did not save the best model, find it aTable = results.query("Dataset == @d") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() best = aTable.iloc[0].copy() for (i, (idx, row)) in enumerate(z.iterrows()): if row["Feature Selection"] == best["FSel"] and row["Classifier"] == best["Clf"] and row["nFeatures"] == best["nFeatures"]: continue df.append({"Dataset": d, "Stability": row["Stability"], "Similarity": row["Similarity"], "Correlation": row["Correlation"] }) df = pd.DataFrame(df) rMat = df.groupby(["Dataset"]).mean() minMat = df.groupby(["Dataset"]).min() maxMat = df.groupby(["Dataset"]).max() minMat = minMat.round(2).astype(str) maxMat = maxMat.round(2).astype(str) # labels need range labels = rMat.copy() labels = labels.round(2).astype(str) for c in list(labels.index): for f in list(labels.keys()): labels.at[c,f] = labels.at[c,f] + "\n(" + minMat.at[c,f] + "-" + maxMat.at[c,f] + ")" labels = np.array(labels) DPI = 300 if 1 == 1: fig, ax = plt.subplots(figsize = (10,15), dpi = DPI) sns.set(style='white') sns.heatmap(rMat, annot = labels, cmap = "Reds", fmt = '', annot_kws={"fontsize":21}, cbar = False) ax.set_xticklabels(rMat.keys(), rotation = 45, ha = "right", fontsize = 21) ax.set_yticklabels(rMat.index, rotation = 0, ha = "right", fontsize = 21) ax.yaxis.set_tick_params ( labelsize= 21) ax.set_xlabel ("", fontsize = 19) ax.set_ylabel ("", fontsize = 19) ax.set_title("", fontsize = 24) plt.tight_layout() fig.savefig("./paper/Figure_4.png", facecolor = 'w') def plot_ZZ (dList, results): rMatList = getDeLongTest (dList, results) sscMatList = getSSC (dList, results) def doPlot (z, v, fname, ax): sns.set(style='white') # prepare data df = [] z = z.sort_values(["Stability"], ascending = False).reset_index(drop = True) for (i, (idx, row)) in enumerate(z.iterrows()): p = v.at[row["Classifier"], row["Feature Selection"]] if p >= 0.05: df.append({"Value": row["Stability"], "Type": "Stability", "Index": idx}) df.append({"Value": row["Similarity"], "Type": "Similarity", "Index": idx}) df.append({"Value": row["Correlation"], "Type": "Correlation", "Index": idx}) df = pd.DataFrame(df) #z["Value"] = z["Value"].replace(-1, np.inf) palette = sns.color_palette("hls", 17)[4::6] try: line=sns.lineplot(x="Index", y="Value",hue="Type", palette = palette, marker="o", data=df, linewidth = 4, ax = ax, legend =None) except Exception as e: print(z) print(z.head()) raise(e) #ax = ax[0][0] ax.xaxis.set_tick_params(labelsize=20) ax.yaxis.set_tick_params(labelsize=20) ax.set_ylabel('Correlation', fontsize = 22, labelpad = 12) ax.set_xlabel('Model', fontsize= 22, labelpad = 12) ax.set_title(str(d), fontsize="24", fontweight="bold") ax.set_ylim(0, 1) ax.xaxis.tick_bottom() ax.yaxis.tick_left() extent = full_extent(ax).transformed(fig.dpi_scale_trans.inverted()) # extent = ax.get_tightbbox(fig.canvas.renderer).transformed(fig.dpi_scale_trans.inverted()) fig.savefig(fname, facecolor = 'w', bbox_inches=extent) return plt, ax DPI = 200 fig, ax = plt.subplots(4,4, figsize = (20, 20), dpi = DPI) for fidx, d in enumerate(dList): fidx_y= fidx % 4 fidx_x = fidx//4 z = sscMatList[d] v = rMatList[d] # fixme: add p value to sscmatlist.... doPlot (z, v, "./results/Overview_" + d + ".png", ax = ax[fidx_x][fidx_y]) # add legend to bottom right for x, y in [(3,3), (3,2)]: ax[x][y] .spines['right'].set_visible(False) ax[x][y] .spines['top'].set_visible(False) ax[x][y] .spines['bottom'].set_visible(False) ax[x][y] .spines['left'].set_visible(False) ax[x][y] .spines['left'].set_visible(False) ax[x][y].xaxis.set_visible(False) ax[x][y].yaxis.set_visible(False) palette = sns.color_palette("hls", 17)[4::6] labels = ["Stability", "Similarity", "Correlation"] handles = [matplotlib.patches.Patch(color=x, label=labels[v]) for v,x in enumerate(palette)] # Create legend ax[3][3].legend(handles=handles, loc = "lower right") # Get current axes object and turn off axis ax[3][3].set_axis_off() #ax[3][3].legend(loc = "lower right") plt.setp(ax[3][3].get_legend().get_texts(), fontsize='24') # for legend text plt.setp(ax[3][3].get_legend().get_title(), fontsize='24') # for legend title plt.tight_layout(pad=3.0) fig.savefig("./results/Figure_ZZ.png", facecolor = 'w', bbox_inches='tight') plt.close('all') plt.rc('text', usetex=False) pass # mean AUC of all stat. Sig. models vs mean correlation (pre/post/f-corr) def plot_TradeOff (dList, results): print ("Plotting trade off") rMatList = getDeLongTest (dList, results) sscMatList = getSSC (dList, results) # prepare data print ("Preparing data") df = [] for d in dList: # ssc contains only stat sim models z = sscMatList[d] # did not save the best model, find it aTable = results.query("Dataset == @d") aTable = aTable.sort_values("AUC", ascending = False).reset_index(drop = True).copy() best = aTable.iloc[0].copy() for (i, (idx, row)) in enumerate(z.iterrows()): if row["Feature Selection"] == best["FSel"] and row["Classifier"] == best["Clf"] and row["nFeatures"] == best["nFeatures"]: continue df.append({"Dataset": d, "AUC": row["AUC"], "Stability": row["Stability"], "Similarity": row["Similarity"], "Correlation": row["Correlation"] }) df = pd.DataFrame(df) count = df.groupby(["Dataset"]).count()["AUC"] df = df.groupby(["Dataset"]).mean() df["Count"] = count print ("Plotting") def doPlot(df, d, v1, v2): for ctype in [v2]: spfList = df[[v1, ctype]] R, pval = pearsonr(*zip (*spfList.values)) R2 = R*R print (R, pval) # fSels = [z[0] for z in spfList.index] # dSets = [z[1] for z in spfList.index] x, y = zip(*spfList.values) p, cov = np.polyfit(x, y, 1, cov=True) # parameters and covariance from of the fit of 1-D polynom. y_model = equation(p, x) # model using the fit parameters; NOTE: parameters here are coefficients # Statistics n = len(x) # number of observations ps = p.size # number of parameters dof = n - ps # degrees of freedom t = stats.t.ppf(0.975, n - ps) # used for CI and PI bands # Estimates of Error in Data/Model resid = y - y_model chi2 = np.sum((resid / y_model)**2) # chi-squared; estimates error in data chi2_red = chi2 / dof # reduced chi-squared; measures goodness of fit s_err = np.sqrt(np.sum(resid**2) / dof) # standard deviation of the error # plot if 1 == 1: DPI = 300 fig, ax = plt.subplots(figsize = (10, 10), dpi = DPI) # sns.scatterplot (x = x,y = y, ax = ax) sns.scatterplot (x = v1, y = ctype, data=df, ax = ax, s = 50, color = ".0") ax.plot(x, y_model, "-", color="0.1", linewidth=1.5, alpha=1.0, label="Fit") x2 = np.linspace(np.min(x), np.max(x), 100) y2 = equation(p, x2) # Confidence Interval (select one) plot_ci_manual(t, s_err, n, x, x2, y2, ax=ax) #plot_ci_bootstrap(x, y, resid, ax=ax) # Prediction Interval pi = t * s_err * np.sqrt(1 + 1/n + (x2 - np.mean(x))**2 / np.sum((x - np.mean(x))**2)) ax.fill_between(x2, y2 + pi, y2 - pi, color="None", linestyle="--") # ax.plot(x2, y2 - pi, "--", color="0.5", label="95% Prediction Limits") # ax.plot(x2, y2 + pi, "--", color="0.5") # Figure Modifications -------------------------------------------------------- # Borders ax.spines["top"].set_color("0.5") ax.spines["bottom"].set_color("0.5") ax.spines["left"].set_color("0.5") ax.spines["right"].set_color("0.5") ax.get_xaxis().set_tick_params(direction="out") ax.get_yaxis().set_tick_params(direction="out") ax.xaxis.tick_bottom() ax.yaxis.tick_left() #ax.invert_xaxis() # Labels #plt.title("Fit Plot for Weight", fontsize="14", fontweight="bold") plt.xticks(fontsize=20) plt.yticks(fontsize=20) if v2 == "Correlation": plt.ylabel('Mean Correlation', fontsize = 22, labelpad = 12) if v2 == "Stability": plt.ylabel('Mean Stability', fontsize = 22, labelpad = 12) if v2 == "Similarity": plt.ylabel('Mean Similarity', fontsize = 22, labelpad = 12) if v2 == "Count": plt.ylabel('Number of stat. similar Models', fontsize = 22, labelpad = 12) if v1 == "AUC": plt.xlabel('Mean AUC-ROC', fontsize= 22, labelpad = 12) if v1 == "Correlation": plt.xlabel('Mean Correlation', fontsize= 22, labelpad = 12) if v1 == "Sample Size": plt.xlabel('Sample Size', fontsize = 22, labelpad = 12) ax.set_xticks([50,250,500,750]) right = 0.95 ypos = 0.07 #0.93s legtext = '' if len(legtext ) > 0: ypos = 0.07 legtext=legtext+"\n" plt.rcParams.update({ "text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}) legpost = '' bbox_props = dict(fc="w", ec="0.5", alpha=0.9) pTxt = (' = {0:0.2f} ($p$ = {1:0.3f})').format(R2, pval) plt.text (right, ypos, (legtext + "$R^2$" + pTxt), horizontalalignment='right', size = 24, bbox = bbox_props, transform = ax.transAxes) plt.rcParams.update({ "text.usetex": False, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}) #ax.set_title("Stability vs AUC (" + d + ")", fontsize = 28) print ("Bias for", d) fig.tight_layout() #fig.savefig("./results/AUC_vs_" + ctype + "_"+ d + ".png", facecolor = 'w') if d == "all": if v2 == "Correlation" and v1 =="AUC": fig.savefig("./results/Figure_3A.png", facecolor = 'w') if v2 == "Count" and v1 == "AUC": fig.savefig("./results/Figure_3B.png", facecolor = 'w') if v2 == "Stability" and v1 == "AUC": fig.savefig("./results/Figure_3C.png", facecolor = 'w') if v2 == "Similarity" and v1 == "AUC": fig.savefig("./results/Figure_3D.png", facecolor = 'w') doPlot (df, d = "all", v1 = "AUC", v2 = "Correlation") doPlot (df, d = "all", v1 = "AUC", v2 = "Count") doPlot (df, d = "all", v1 = "AUC", v2 = "Stability") doPlot (df, d = "all", v1 = "AUC", v2 = "Similarity") plt.close('all') pass def addText (finalImage, text = '', org = (0,0), fontFace = '', fontSize = 12, color = (255,255,255)): # Convert the image to RGB (OpenCV uses BGR) #tmpImg = cv2.cvtColor(finalImage, cv2.COLOR_BGR2RGB) tmpImg = finalImage pil_im = Image.fromarray(tmpImg) draw = ImageDraw.Draw(pil_im) font = ImageFont.truetype(fontFace + ".ttf", fontSize) draw.text(org, text, font=font, fill = color) #tmpImg = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR) tmpImg = np.array(pil_im) return (tmpImg.copy()) def addBorder (img, pos, thickness): if pos == "H": img = np.hstack([255*np.ones(( img.shape[0],int(img.shape[1]*thickness), 3), dtype = np.uint8),img]) if pos == "V": img = np.vstack([255*np.ones(( int(img.shape[0]*thickness), img.shape[1], 3), dtype = np.uint8),img]) return img # just read both figures and merge them def join_plots(): fontFace = "Arial" imA = cv2.imread("./results/Figure_3B.png") imA = addText (imA, "(a)", (50,50), fontFace, 128, color=(0,0,0)) imB = cv2.imread("./results/Figure_3C.png") imB = addText (imB, "(b)", (50,50), fontFace, 112, color= (0,0,0)) imC = cv2.imread("./results/Figure_3D.png") imC = addText (imC, "(c)", (50,50), fontFace, 112, color=(0,0,0)) imD = cv2.imread("./results/Figure_3A.png") imD = addText (imD, "(d)", (50,50), fontFace, 112, color= (0,0,0)) #Image.fromarray(imD[::4,::4,:]) imB = addBorder (imB, "H", 0.075) imgU = np.hstack([imA, imB]) imD = addBorder (imD, "H", 0.075) imgL = np.hstack([imC, imD]) imgL = addBorder (imgL, "V", 0.075) img = np.vstack([imgU, imgL]) #Image.fromarray(img[::6,::6,:]) cv2.imwrite("./paper/Figure_5.png", img) def stabilityStats (dList, results): print ("Feature stability stats:") fTable = load( "./results/stability.joblib") # group by dataset and take mean df =
pd.DataFrame(fTable)
pandas.DataFrame
""" This script uses the HKplus functions to generate a channel centerline, run it for a certain number of years, then save the resulting centerline for later use. """ import math import matplotlib.pyplot as plt import HKplus as hkp import numpy as np import pandas as pd #Set Variables for centerline and curvature calculation D=3.4 #constant width-average channel depth (m) W = 100 #constant channel width (m) deltas = W//2; #spacing of nodes along centerline nit = 600 #number of iterations/how many timesteps to migrate the centerline Cf = 0.005 #dimensionless Chezy friction factor kl = 20/(365*24*60*60.0) #migration rate constant (m/s) dt = 2*365*24*60*60.0 #time step (s) pad= 200 #number of nodes for periodic boundary saved_ts = 20 #timeteps between saving centerlines crdist = 4*W #how close banks get before cutoff in m #Set Variables fror Cutoff nonlocal efects decay_rate = dt/(10*(365*24*60*60.0)); #this is the half-life on nonlocal effects, in units of seconds bump_scale = 0 #this is the magntiude of nonlocal effects in relative difference between #Set Result Directory result_dir = "data/InitialChannel/" ##change this to wherever you want to save your results #Choose name for centerline name= "experiment007" #Initiate Channel Object ch = hkp.generate_initial_channel(W,D,deltas,pad) #Initiate Channel Belt for migrating channel object chb = hkp.ChannelBelt(channels=[ch],cutoffs=[],cl_times=[0.0],cutoff_times=[], cutoff_dists = [], decay_rate = decay_rate, bump_scale = bump_scale, cut_thresh = 1000, sinuosity=[1]) #Plot initial centerline chb.plot_channels() plt.title(str(int(nit*dt/(365*24*60*60.0)))+ " years at "+ str(kl*(365*24*60*60.0))+ "m/yr") plt.show() #Migrate Centerline for nit chb.migrate_years(nit,saved_ts,deltas,pad,crdist,Cf,kl,dt) #Plot Resulting Centerline chb.plot_channels() plt.title(str(int(nit*dt/(365*24*60*60.0)))+ " years at "+ str(kl*(365*24*60*60.0))+ "m/yr") plt.show() #Save Sinuosity time series times = chb.cl_times sins = chb.sinuosity #uncommen t to save sinuosity series #sinseries = pd.DataFrame({'time':times, 'sinuosity': sins}); #sinseries.to_csv(result_dir+"InitialCL_"+name+"sinseries"+".csv", header = True, index = False) hkp.plot_sinuosity(times, sins) plt.show() #Save Resulting Centerline xes = chb.channels[-1].x yes = chb.channels[-1].y cl =
pd.DataFrame({'x': xes, 'y': yes})
pandas.DataFrame
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from pytz import timezone from sklearn.decomposition import KernelPCA from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import MinMaxScaler from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import my_scorer from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_daily_nwps class DatasetCreatorPCA: def __init__(self, project, data=None, n_jobs=1, test=False, dates=None): if test is None: raise NotImplemented('test is none for short-term, not implemented for PCA') self.data = data self.is_for_test = test self.project_name = project['_id'] self.static_data = project['static_data'] self.path_nwp_project = self.static_data['pathnwp'] self.path_data = self.static_data['path_data'] self.areas = self.static_data['areas'] self.area_group = self.static_data['area_group'] self.nwp_model = self.static_data['NWP_model'] self.nwp_resolution = self.static_data['NWP_resolution'] self.location = self.static_data['location'] self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = n_jobs self.variables = self.static_data['data_variables'] self.logger = create_logger(logger_name=f"log_{self.static_data['project_group']}", abs_path=self.path_nwp_project, logger_path=f"log_{self.static_data['project_group']}.log", write_type='a') if self.data is not None: self.dates = self.check_dates() elif dates is not None: self.dates = dates def check_dates(self): # Extract dates of power measurements. start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) return pd.DatetimeIndex(dates) def make_dataset_res(self): nwp_3d_pickle = 'nwps_3d_test.pickle' if self.is_for_test else 'nwps_3d.pickle' dataset_cnn_pickle = 'dataset_cnn_test.pickle' if self.is_for_test else 'dataset_cnn.pickle' nwp_3d_pickle = os.path.join(self.path_data, nwp_3d_pickle) dataset_cnn_pickle = os.path.join(self.path_data, dataset_cnn_pickle) if not (os.path.exists(nwp_3d_pickle) and os.path.exists(dataset_cnn_pickle)): data, x_3d = self.get_3d_dataset() else: data = joblib.load(nwp_3d_pickle) x_3d = joblib.load(dataset_cnn_pickle) # FIXME: unused variable data_path = self.path_data if not isinstance(self.areas, dict): self.dataset_for_single_farm(data, data_path) else: dates_stack = [] for t in self.dates: p_dates = pd.date_range(t + pd.DateOffset(hours=25), t + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in p_dates if dt in self.data.index] dates_stack.append(dates) flag = False for i, p_dates in enumerate(dates_stack): t = self.dates[i] file_name = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(file_name): nwps = joblib.load(file_name) for date in p_dates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except Exception: continue if flag: break self.dataset_for_multiple_farms(data, self.areas, lats_group, longs_group) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def get_3d_dataset(self): dates_stack = [] for t in self.dates: p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') # 47 hours: 00:00 -> 23:00 dates = [dt.strftime('%d%m%y%H%M') for dt in p_dates if dt in self.data.index] dates_stack.append(dates) # For each date we have prediction append the next 47 hours area = self.area_group if isinstance(self.areas, dict) else self.areas nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, area, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], p_dates, self.path_nwp_project, self.nwp_model, area, self.variables, self.compress, self.static_data['type']) for i, p_dates in enumerate(dates_stack)) x = np.array([]) data_var = dict() for var in self.variables: if (var == 'WS' and self.static_data['type'] == 'wind') or \ (var == 'Flux' and self.static_data['type'] == 'pv'): data_var[var + '_prev'] = x data_var[var] = x data_var[var + '_next'] = x else: data_var[var] = x data_var['dates'] = x x_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) x_3d = stack_3d(x_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) if self.is_for_test: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d_test.pickle')) joblib.dump(x_3d, os.path.join(self.path_data, 'dataset_cnn_test.pickle')) else: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d.pickle')) joblib.dump(x_3d, os.path.join(self.path_data, 'dataset_cnn.pickle')) self.logger.info('NWP stacked data saved') return data_var, x_3d def train_pca(self, data, components, level): scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data) param_grid = [{ "gamma": np.logspace(-3, 0, 20), }] kpca = KernelPCA(n_components=components, fit_inverse_transform=True, n_jobs=self.n_jobs) grid_search = GridSearchCV(kpca, param_grid, cv=3, scoring=my_scorer, n_jobs=self.n_jobs) grid_search.fit(data_scaled) kpca = grid_search.best_estimator_ fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') joblib.dump({'scaler': scaler, 'kpca': kpca}, fname) def pca_transform(self, data, components, level): fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') if not os.path.exists(fname): self.train_pca(data, components, level) models = joblib.load(fname) data_scaled = models['scaler'].transform(data) data_compress = models['kpca'].transform(data_scaled) return data_compress def dataset_for_single_farm(self, data, data_path): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.is_for_test: ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(data_path, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def dataset_for_multiple_farms(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.is_for_test: ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(self.path_data, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def make_dataset_res_offline(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_offline(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_offline(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t = self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_offline(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_offline(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] for dt in self.dates: if utc: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') dates = [t.strftime('%d%m%y%H%M') for t in pdates] dates_stack.append(dates) else: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) else: nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_offline(self, data): dataset_X =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from tqdm import tqdm import multiprocessing as mp import os def save_local_csv(): # collect rotated local structure into one pandas DataFrame file for flag in ['train', 'validation', 'test']: df_list = [] # count = 0 num = 0 flist =
pd.read_csv(f'cath_Ingraham_{flag}.txt')
pandas.read_csv
""" Parse FGDC metadata """ import re from pathlib import Path import geopandas as gpd import pandas as pd from bs4 import BeautifulSoup from shapely.geometry import box def parse_xml(xml, fields): soup = BeautifulSoup(xml) # Field names must be unique within the FGDC metadata data = {} for field in fields: xml_field = soup.find(field) data[field] = xml_field and xml_field.text return data def parse_meta(meta_dir): meta_dir = Path(meta_dir) xy_regex = re.compile(r'x(\d{2})y(\d{3})') data = [] i = 0 for meta_file in meta_dir.glob('**/*.xml'): name = meta_file.stem x, y = xy_regex.search(name).groups() project_dir = meta_file.parents[1].name with meta_file.open() as f: d = parse_xml( f.read(), fields=['utmzone', 'westbc', 'eastbc', 'northbc', 'southbc']) d['name'] = name d['x'] = x d['y'] = y d['project_dir'] = project_dir data.append(d) i += 1 if i % 1000 == 0: print(i) return pd.DataFrame(data) def meta_to_wgs84(df): """Convert meta file with multiple UTM zones to WGS84 TODO check that projected position is near WGS bounds from metadata file. At least a couple occurences of elevation in the ocean. Probably should be utm 11 instead of 10. """ df['x'] = pd.to_numeric(df['x']) df['y'] =
pd.to_numeric(df['y'])
pandas.to_numeric
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result =
concat(frames, axis=1)
pandas.concat
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng =
pd.period_range('1/1/2000', periods=5)
pandas.period_range
# %% import json from collections import Counter import matplotlib as mpl import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotnine import scipy import seaborn as sns from matplotlib import rc from pandas.plotting import register_matplotlib_converters from plotnine import ( aes, element_text, facet_wrap, geom_bar, ggplot, labs, scale_color_hue, theme, theme_light, ) from tqdm import notebook font_path = "/usr/share/fonts/truetype/nanum/NanumBarunGothic.ttf" font_name = fm.FontProperties(fname=font_path, size=10).get_name() plt.rc("font", family=font_name, size=12) plt.rcParams["figure.figsize"] = (20, 10) register_matplotlib_converters() mpl.font_manager._rebuild() mpl.pyplot.rc("font", family="NanumGothic") # %% # 입력데이터 로드 train = pd.read_json("../input/melon-playlist/train.json", typ="frame") test = pd.read_json("../input/melon-playlist/test.json", typ="frame") val = pd.read_json("../input/melon-playlist/val.json", typ="frame") genre =
pd.read_json("../input/melon-playlist/genre_gn_all.json", typ="series")
pandas.read_json
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT,
Timestamp("2011-01-03")
pandas.Timestamp
""" @author: <NAME> @email: <EMAIL> script to generate node2vec embeddings """ from node2vec import Node2Vec import json import networkx as nx import pandas as pd from sklearn.manifold import TSNE from sklearn.decomposition import PCA import matplotlib.pyplot as plt from stellargraph import StellarGraph from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import f1_score, classification_report import seaborn as sns from sklearn.model_selection import StratifiedKFold from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import numpy as np if __name__ == "__main__": data = json.loads(open("graph.json").read()) graph = nx.node_link_graph(data) G = StellarGraph.from_networkx(graph) print(G.info()) n2v = Node2Vec(graph, dimensions=128, workers=4, num_walks=10, walk_length=10) model = n2v.fit(window=10, min_count=1, batch_words=4) print(model) ordered_vocab = [(term, voc.index, voc.count) for term, voc in model.wv.vocab.items()] ordered_vocab = sorted(ordered_vocab, key=lambda k: k[2]) ordered_terms, term_indices, term_counts = zip(*ordered_vocab) word_vectors = pd.DataFrame(model.wv.syn0[term_indices, :], index=ordered_terms) word_vectors.to_csv("data_embds.csv", index=False) #labels = word_vectors pca = PCA(n_components=2) components = pca.fit_transform(word_vectors) _class= [graph.nodes[int(node_id)]["_class"] for node_id in ordered_terms] components_2d =
pd.DataFrame({1:components[:,0], 2:components[:,1], "class":_class}, index=ordered_terms)
pandas.DataFrame
import pandas as pd import numpy as np import inspect # via stackoverflow and blog post... from <NAME> / <NAME> (?) def sorted_alphanumeric(l, reverse=False): """ Sorts the given iterable alphanumerically. If values are numeric, sort numerically; if strings, alphanumerically. If string operations don't work we just sort normally; this works for numeric types. """ try: convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(l, key=alphanum_key, reverse=reverse) except TypeError: return sorted(l, reverse=reverse) def guess_positive(categories): # try to guess which category should be 1 (vs 0) # go through positive-looking values in order of priority (somewhat arbitrary) for positive_value in ['true','yes','y','positive','pos','2','1']: # never # go through categories in order, since with case-insensitive string # representations, we could conceivably have more than one match for category in reversed(categories): if str(category).lower()==positive_value: return category # we didn't see a likely guess return None def guess_negative(categories): # try to guess which category should be encoded as 0 # go through positive-looking values in order of priority (somewhat arbitrary) for negative_value in ['false', 'no', 'negative', 'neg', 'n', '0', '1']: # go through categories in order, since with case-insensitive string # representations, we could conceivably have more than one match for category in categories: if str(category).lower()==negative_value: return category # we didn't see a likely guess return None def one_hot_single(data, categories=None, expand_binary=False, name=None, base_category=None, treat_missing_as_zero=False): """ Given a series of M categorical values, with N categories, return (encoded, categories, base_category), where - encoded is a binary-encoded MxN DataFrame of 0's and 1's, where each column corresponds to a category (or Mx(N-1) if we have a base category), - categories is the list of categories used for encoding, - base_category is the category that was encoded as a row of zeroes, or None if no base was used. The category name is encoded in the columns of the returned DataFrame, i.e. each column name is of form {OriginalFieldName}_{CategoryName}. If base_category is provided, encode this category as all zeroes, so that one less column is created and there is no redundancy. If expand_binary is False, and input series has only two levels, keep it as one binary column even if base_category is not provided. In this case, try to guess which of the two categories is which. The category treated as base will be returned in base_category and will not appear in the output. """ if len(data.shape)>1: data = data.iloc[:,0] # make Series vec = data.astype('category') if categories is None: categories = vec.cat.categories else: # when categories are supplied, check they account for all data # if user-supplied categories don't cover data, # pandas' default behaviour will be to create missing data # we instead want to raise an error if not set(data).issubset(set(categories)): print('data', data) print('supplied categories', categories) raise ValueError( "Cannot encode data as categories in categorical field {}".format(name) + " do not match categories in previously-fit data. You must set your" + " categorical Series to have all expected category levels." + " New categories were: {}".format(set(data)-set(categories))) vec.cat.set_categories(categories, inplace=True) # Do encoding, with one column per category # This will incorrectly encode missing values using index of code, i.e. index -1 encoded = pd.DataFrame(np.eye(len(categories), dtype=int)[vec.cat.codes]) # Fix missing values: set to zero or to missing missing_rows = data.isnull() if np.any(missing_rows): if treat_missing_as_zero: encoded.loc[list(missing_rows),:] = 0 else: encoded.loc[list(missing_rows),:] = None if name is None: name = data.name encoded.columns = ['{}_{}'.format(name, c) for c in vec.cat.categories] encoded.index = data.index # If base_category is None for >2 categories, use no base (create all columns) # When there are 2 categories and expand_binary=False, we must pick a base # If we are encoding for transform, in this situation, it will be set already # If we are encoding for fit we may have to choose based on the data if base_category is None and not expand_binary and len(categories)==2: if vec.cat.ordered: base_category = vec.cat.categories[0] else: # try to guess binary base_category (actually, guess positive) positive_category = guess_positive(categories) assert positive_category is None or positive_category in categories # this will be the first category if positive_category was None, # otherwise the non-positive category base_category = [c for c in categories if c != positive_category][0] # If we know or have picked base_category, encode this as zeroes by deleting that column if base_category is not None: encoded.drop("{}_{}".format(name, base_category), axis=1, inplace=True) return (encoded,categories,base_category) def one_hot_group(data, categories=None, expand_binary=False, base_category=None, name=None, treat_missing_as_zero=False): """ Given a dataframe of only categorical values, with M rows, and a total of N distinct categories, return (encoded, categories, base_category), where - encoded is a binary-encoded MxN DataFrame of 0's and 1's, where each column corresponds to a category (or Mx(N-1) if we have a base category), - categories is the list of categories used for encoding, - base_category is the category that was encoded as a row of zeroes, or None if no base was used. For one_hot_group this will be the same base_category that was passed in. All columns are treated as entries in the *same* category, i.e. more than one column in a row of the output encoding may be 1. If any input column is null, it is ignored and fewer 1's are set for that row. However, if treat_missing_as_zero==False (the default), and ALL inputs for a row are null, return a row of None's - i.e. assume data is missing. If treat_missing_as_zero==True, return a row of zeroes - i.e. assume the values for that row are not missing, but that there are truly no categories set. The category name is encoded in the columns of the returned DataFrame, i.e. each column name is of form {name}_{CategoryName}, where name is provided. If category levels between input columns are not identical, the union of categories will be used, sorted alphanumerically in output. If base_category is provided, encode this category as all zeroes, so that one less column is created and there is no redundancy. """ # First make sure categorical; re-encode consistently later for c in data: data[c] = data[c].astype('category') # Get all categories in all columns category_list = [data[c].cat.categories for c in data] observed_categories = set(sum(category_list,[])) # If categories were provided, check they cover data if categories is not None: if not set(observed_categories).issubset(set(categories)): raise ValueError( "Cannot encode data as categories in categorical field {}".format(name) + " do not match expected categories." + " If you used fit_df, you must set your training data Categorical dtype" + " to have all expected category levels." + " New categories were: {}".format(set(observed_categories)-set(categories))) else: # if any one category-set is a superset of all the others, use that for cats in category_list: if set(cats) == all_categories: categories = cats break # if still no valid category set, use union of all if categories is None: categories = sorted_alphanumeric(set.union(*[set(cats) for cats in category_list])) # Re-encode category codes consistently # (and unordered - this should not matter?) for c in data: data[c].cat.set_categories(categories, inplace=True) # Encode each column and take union encoded = np.zeros((len(data), len(categories)), dtype=int) for c in data: # NB this sets missing values to code -1, which will be mis-encoded by np indexing vec = data[c].cat.codes encoded_var = np.eye(len(categories))[vec] # Fix missing values: set to zero for sake of OR operation encoded_var[data[c].isnull(),:] = 0 encoded = np.logical_or(encoded, encoded_var) encoded = pd.DataFrame(encoded.astype(int)) # If desired, set entirely missing values to missing if not treat_missing_as_zero: missing_rows = np.all(data.isnull(),axis=1) if np.any(missing_rows): encoded.loc[list(missing_rows),:] = None if name is None: name = '_'.join(data.columns) encoded.columns = ['{}_{}'.format(name, c) for c in categories] encoded.index = data.index # If we know base_category, encode this as zeroes by deleting that column if base_category is not None: encoded.drop("{}_{}".format(name, base_category), axis=1, inplace=True) return (encoded,categories,base_category) def one_hot(data, categories=None, expand_binary=False, base_category=None, name=None, treat_missing_as_zero=False): """ Binary-encode categorical data. We can handle a single Series or a categorical DataFrame where each column is to be encoded into the same output variable. Calls one_hot_single() and one_hot_group(). """ if base_category is not None and treat_missing_as_zero: raise ValueError("Cannot use base_category when treat_missing_as_zero " + "is True; meaning of all-zero row is overloaded.") if len(data.shape)==1 or data.shape[1]==1: # We have a single column return one_hot_single(data, categories=categories, expand_binary=expand_binary, base_category=base_category, name=name, treat_missing_as_zero=treat_missing_as_zero) else: # We have a group of multiple columns return one_hot_group(data, categories=categories, expand_binary=expand_binary, base_category=base_category, name=name, treat_missing_as_zero=treat_missing_as_zero) def one_hot_many(df, expand_binary=False, base_categories=None, grouped_columns=None, treat_missing_as_zero=False, map_features=None): """ Given a dataframe containing all categorical columns, one-hot encode them all. dtypes which can be converted to categories (e.g. strings and booleans) will also be handled, although any categories missing in the data will not be known. Convenient usage is to pass in your df with .select_dtypes([np.object, 'category', 'bool']). If base_categories is provided, it should be a dict mapping df column names to the category representing the null value for that column. These will be passed as base_category to one_hot() grouped_columns should be a dict of the form {outputfieldname:[listofinputfields]}. Any fields in these lists will be encoded as if they were one binary-encoded variable, with the union of their values treated as levels in the variable. """ if base_categories is None: base_categories = {} if grouped_columns is None: grouped_columns = {} if map_features is None: map_features = {} grouped_inputs = set(sum(grouped_columns.values(),[])) for field in df.columns: if field not in grouped_inputs: grouped_columns[field] = [field] for field in grouped_inputs: if field not in df.columns: raise ValueError('Grouped field {} not in input dataframe'.format(field)) encoded_list = [] feature_mapping = dict() base_categories_used = dict() for (fieldname,inputlist) in grouped_columns.items(): encoded_field, categories, base_category = one_hot( df[inputlist], treat_missing_as_zero=treat_missing_as_zero, categories=map_features.get(fieldname,None), base_category=base_categories.get(fieldname,None), name=fieldname) encoded_list.append(encoded_field) feature_mapping[fieldname] = list(categories) base_categories_used[fieldname] = base_category # may be none return (pd.concat(encoded_list, axis=1), feature_mapping, base_categories_used) # datetimes are not yet handled def encode(df, expand_binary=False, base_categories=None, grouped_columns=None, treat_missing_as_zero=False, drop_unhandled=False, map_features=None): """ Encode columns of a dataframe numerically, according to their Series dtype. Return - the encoded dataframe - a dict giving any mappings from original columns to encoded columns - any base categories used for categoricals to remove redundant columns Encodings are: - categoricals, objects/strings and booleans will be binary (one-hot) encoded - numeric columns will be unchanged - datetimes are currently not handled correctly and will be unchanged, and a warning will be issued """ # Categories category_columns = df.select_dtypes([np.object, 'category', 'bool']).columns if len(category_columns) > 1: encoded_categories, feature_mapping, base_categories_used = one_hot_many( df.select_dtypes([np.object, 'category', 'bool']), expand_binary=expand_binary, base_categories=base_categories, grouped_columns=grouped_columns, treat_missing_as_zero=treat_missing_as_zero, map_features = map_features) else: encoded_categories = pd.DataFrame(index=df.index) feature_mapping = dict() # Numbers numeric_columns = df.select_dtypes([np.number]).columns # Dates date_columns = df.select_dtypes(['datetime']).columns if len(date_columns) > 0: print("Warning: dates not yet handled by encoding: {}".format(date_columns)) encoded_columns = set.union( set(category_columns),set(numeric_columns),set(date_columns)) unhandled_columns = list(set(df.columns) - encoded_columns) if len(unhandled_columns) > 0: print("Warning: some column types were not recognised during encoding: {}".format(unhandled_columns)) if drop_unhandled: result = pd.concat([encoded_categories, df[numeric_columns], df[date_columns]], axis=1), else: # we are keeping these columns as the user apparently thinks numpy will handle them result = pd.concat([encoded_categories, df[numeric_columns], df[date_columns], df[unhandled_columns]], axis=1) return (result, feature_mapping, base_categories_used) fit_docstring = ''' fit_df wraps the fit method, allowing X to be a pandas.DataFrame. Refer to the fit method documentation for functionality details. fit parameters are: {} ''' transform_docstring = ''' transform_df wraps the transform method, allowing X to be a pandas.DataFrame. Refer to the transform method documentation for functionality details. transform parameters are: {} ''' predict_docstring = ''' predict_df wraps the predict method, allowing X to be a pandas.DataFrame. This method returns a Series of class predictions. Refer to the predict method documentation for functionality details. predict parameters are: {} ''' predict_log_proba_docstring = ''' predict_log_proba_df wraps the predict_log_proba method, allowing X to be a pandas.DataFrame. This method returns a DataFrame of log-probabilities. Refer to the predict_log_proba method documentation for functionality details. predict_log_proba parameters are: {} ''' predict_proba_docstring = ''' predict_proba_df wraps the predict_proba method, allowing X to be a pandas.DataFrame. This method returns a DataFrame of probabilities. Refer to the predict_proba method documentation for functionality details. predict_proba parameters are: {} ''' feature_importances_docstring = ''' feature_importances_df_ is a property wrapping feature_importances_, allowing X to be a pandas.DataFrame. It returns feature importances as a pandas Series representing the original dataframe fields. For categorical variables, importances are calculated using the sqrt of the sum of squares of mapped feature importances. Refer to the feature_importances_ property documentation for functionality details. ''' def encode_for_fit(model, X, expand_binary=False, base_categories=None, grouped_columns=None, treat_missing_as_zero=False, drop_unhandled=False): ''' Encode a dataframe as numerical values, and store all needed metadata about the encoding in the model. feature_mapping stored specifies the categories used in the fit, which will be taken from the Series.cat categories if available, and their order in the encoding, with the first category considered the base category. If expand_binary=False and there are two categories for some feature, the first of the categories in the list will not occur in the encoded data and will be stored in feature_mapping but not feature_lookup. feature_lookup covers encoded fieldnames of all types, not just categories, and allows us to look up the feature name from the original fit dataframe. ''' # we don't pass in map_features; this will be based on category dtypes encoded, feature_mapping, base_categories_used = encode(X, expand_binary=expand_binary, treat_missing_as_zero=treat_missing_as_zero, base_categories=base_categories, grouped_columns=grouped_columns, drop_unhandled=drop_unhandled) model.expand_binary = expand_binary if grouped_columns is None: grouped_columns = {} model.grouped_columns = grouped_columns model.treat_missing_as_zero = treat_missing_as_zero model.drop_unhandled = drop_unhandled model.base_categories_used = base_categories_used model.features_original = list(X.columns) model.features_encoded = list(encoded.columns) model.feature_mapping = feature_mapping # store lookup of original feature names for all encoded columns model.feature_lookup = {} for (feature,mappedlist) in feature_mapping.items(): if not expand_binary and len(mappedlist)==2: mappedlist = mappedlist[1:] for mapped in mappedlist: model.feature_lookup['{}_{}'.format(feature,mapped)] = feature # store lookup of original feature names for unmapped features (i.e. non-categorical) for feature in model.features_encoded: if feature not in model.feature_lookup: model.feature_lookup[feature] = feature return encoded def encode_for_transform(model, X): ''' Encode a dataframe as numerical values, using the same encoding as used in the fit. ''' encoded, _feature_mapping, _base_categories = encode( X, expand_binary=model.expand_binary, base_categories=model.base_categories_used, map_features=model.feature_mapping, grouped_columns=model.grouped_columns, treat_missing_as_zero=model.treat_missing_as_zero, drop_unhandled=model.drop_unhandled) return encoded def add_fit(model): parameters = inspect.signature(model.fit).parameters if 'y' in parameters and parameters['y'].default == inspect._empty: # if we define this elsewhere, model.fit_df.__name__ will be wrong def fit_df(self, X, y, expand_binary=False, base_categories=None, grouped_columns=None, treat_missing_as_zero=False, drop_unhandled=False, **kwargs): ''' fit_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_fit(self, X, expand_binary=expand_binary, base_categories=base_categories, grouped_columns=grouped_columns, treat_missing_as_zero=treat_missing_as_zero, drop_unhandled=drop_unhandled) return self.fit(encoded, y, **kwargs) elif 'y' in parameters: def fit_df(self, X, y=parameters['y'].default, expand_binary=False, base_categories=None, grouped_columns=None, treat_missing_as_zero=False, drop_unhandled=False, **kwargs): ''' fit_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_fit(self, X, expand_binary=expand_binary, base_categories=base_categories, grouped_columns=grouped_columns, treat_missing_as_zero=treat_missing_as_zero, drop_unhandled=drop_unhandled) return self.fit(encoded, y, **kwargs) else: def fit_df(self, X, expand_binary=False, base_categories=None, grouped_columns=None, treat_missing_as_zero=False, drop_unhandled=False, **kwargs): ''' fit_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_fit(self, X, expand_binary=expand_binary, base_categories=base_categories, grouped_columns=grouped_columns, treat_missing_as_zero=treat_missing_as_zero, drop_unhandled=drop_unhandled) return self.fit(encoded, **kwargs) model.fit_df = fit_df.__get__(model) model.fit_df.__func__.__qualname__ = '.'.join( model.fit.__qualname__.split('.')[:-1] + ['fit_df']) model.fit_df.__func__.__doc__ = fit_docstring.format( str(inspect.signature(model.fit))) # if preserving original docstring would add model.fit.__doc__ def add_transform(model): def transform_df(self, X, **kwargs): ''' transform_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_transform(self, X) return self.transform(encoded, **kwargs) model.transform_df = transform_df.__get__(model) model.transform_df.__func__.__qualname__ = '.'.join( model.transform.__qualname__.split('.')[:-1] + ['transform_df']) model.transform_df.__func__.__doc__ = transform_docstring.format( str(inspect.signature(model.transform))) def add_predict(model): def predict_df(self, X, **kwargs): ''' predict_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_transform(self, X) # TODO: encode with categorical matching input y? # will already do classes based on classes_ result = self.predict(encoded, **kwargs) return pd.Series(result, index=X.index) model.predict_df = predict_df.__get__(model) model.predict_df.__func__.__qualname__ = '.'.join( model.predict.__qualname__.split('.')[:-1] + ['predict_df']) model.predict_df.__func__.__doc__ = transform_docstring.format( str(inspect.signature(model.predict))) def add_predict_proba(model): def predict_proba_df(self, X, **kwargs): ''' predict_proba_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_transform(self, X) result = self.predict_proba(encoded, **kwargs) return pd.DataFrame(result, index=X.index, columns=self.classes_) model.predict_proba_df = predict_proba_df.__get__(model) model.predict_proba_df.__func__.__qualname__ = '.'.join( model.predict_proba.__qualname__.split('.')[:-1] + ['predict_proba_df']) model.predict_proba_df.__func__.__doc__ = transform_docstring.format( str(inspect.signature(model.predict_proba))) def add_predict_log_proba(model): def predict_log_proba_df(self, X, **kwargs): ''' predict_log_proba_df method to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' encoded = encode_for_transform(self, X) result = self.predict_log_proba(encoded, **kwargs) return pd.DataFrame(result, index=X.index, columns=self.classes_) model.predict_log_proba_df = predict_log_proba_df.__get__(model) model.predict_log_proba_df.__func__.__qualname__ = '.'.join( model.predict_log_proba.__qualname__.split('.')[:-1] + ['predict_log_proba_df']) model.predict_log_proba_df.__func__.__doc__ = transform_docstring.format( str(inspect.signature(model.predict_log_proba))) def add_feature_importances(model): def feature_importances_df(self): ''' feature_importances_df_ property to be added to the model. This docstring should be overwritten - if it's visible, please report a bug. ''' raw_importances =
pd.Series(self.feature_importances_, index=self.features_encoded)
pandas.Series
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=
pd.DataFrame(dateofterms)
pandas.DataFrame