prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import io import time import boto3 from boto3.s3.transfer import TransferConfig from icecream import ic import awswrangler as wr from datetime import datetime import pandas as pd from pathlib_mate import Path boto_ses = boto3.session.Session() s3_client = boto_ses.client("s3") class Config: bucket = "aws-data-lab-sanhe-aws-etl-solutions" key_prefix = "s3splitmerge/poc/merge-multiple-json-file" n_file = 3 n_records_per_file = 150000 bucket = "aws-data-lab-sanhe-aws-etl-solutions" key_prefix = "s3splitmerge/poc/merge-multiple-json-file" def create_test_data(): n_file = 3 n_records_per_file = 150000 columns = ["id", "value"] value = "<EMAIL>" for nth_file in range(1, 1+n_file): start_id = (nth_file - 1) * n_records_per_file + 1 end_id = start_id + n_records_per_file df =
pd.DataFrame(columns=columns)
pandas.DataFrame
# --- # jupyter: # jupytext: # cell_metadata_filter: all,-execution,-papermill,-trusted # formats: ipynb,py//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] tags=[] # # Description # %% [markdown] tags=[] # This notebook is similar to `30-gls_on_phenotypes-phenomexcan.ipynb` but for eMERGE S-MultiXcan results instead of PhenomeXcan. # # Since we don't have partition/clusters of eMERGE results, we selected the same set of LVs from the run on PhenomeXcan (`30-gls_on_phenotypes-phenomexcan.ipynb`); and regarding traits, we take the top 20 traits from each LVs to create a list of trait/LVs pairs to run GLSPhenoplier on. # %% [markdown] tags=[] # # Environment variables # %% tags=[] # %load_ext autoreload # %autoreload 2 # %% tags=[] import conf # %% tags=[] N_JOBS = conf.GENERAL["N_JOBS"] display(N_JOBS) # %% tags=[] # %env MKL_NUM_THREADS=$N_JOBS # %env OPEN_BLAS_NUM_THREADS=$N_JOBS # %env NUMEXPR_NUM_THREADS=$N_JOBS # %env OMP_NUM_THREADS=$N_JOBS # %% [markdown] tags=[] # # Modules # %% tags=[] from pathlib import Path import statsmodels.api as sm import numpy as np import pandas as pd from sklearn.preprocessing import scale from tqdm import tqdm from gls import GLSPhenoplier # %% [markdown] tags=[] # # Settings # %% tags=[] N_TOP_TRAITS_FROM_LV = 20 # %% tags=[] OUTPUT_DIR = conf.RESULTS["GLS"] display(OUTPUT_DIR) OUTPUT_DIR.mkdir(exist_ok=True, parents=True) # %% tags=[] OUTPUT_FILENAME = OUTPUT_DIR / "gls_phenotypes-emerge.pkl" display(OUTPUT_FILENAME) # %% [markdown] tags=[] # # Load data # %% [markdown] tags=[] # ## eMERGE traits info # %% tags=[] # FIXME: in the future, there will be a specific entry in config for the eMERGE directory that should be replaced here input_filepath = Path( conf.DATA_DIR, "emerge", "eMERGE_III_PMBB_GSA_v2_2020_phecode_AFR_EUR_cc50_counts_w_dictionary.txt", ).resolve() display(input_filepath) # %% tags=[] emerge_traits_df = pd.read_csv( input_filepath, sep="\t", dtype={"phecode": str}, usecols=["phecode", "phenotype", "category"], ) # %% tags=[] emerge_traits_df = emerge_traits_df.rename( columns={ "phenotype": "phecode_phenotype", "category": "phecode_category", } ) # %% tags=[] emerge_traits_df.shape # %% tags=[] emerge_traits_df.head() # %% [markdown] tags=[] # ## eMERGE (S-MultiXcan) projection # %% tags=[] input_filepath = Path( conf.RESULTS["PROJECTIONS_DIR"], "projection-emerge-smultixcan-mashr-zscores.pkl", ).resolve() display(input_filepath) # %% tags=[] emerge_projection = pd.read_pickle(input_filepath) # %% tags=[] emerge_projection.shape # %% tags=[] emerge_projection.head() # %% [markdown] tags=[] # ## eMERGE (S-MultiXcan) # %% tags=[] # FIXME: in the future, there will be a specific entry in config for the eMERGE directory that should be replaced here emerge_smultixcan_zscores_filepath = Path( conf.DATA_DIR, "emerge", "gene_assoc", "emerge-smultixcan-mashr-zscores.pkl", ).resolve() display(emerge_smultixcan_zscores_filepath) # %% tags=[] _tmp = pd.read_pickle(emerge_smultixcan_zscores_filepath) # %% tags=[] _tmp.shape # %% tags=[] _tmp.head() # %% [markdown] tags=[] # ## GLS results on PhenomeXcan # %% [markdown] tags=[] # Read results obtained with `30-gls_on_phenotypes.ipynb` (PhenomeXcan) # %% tags=[] input_filepath = conf.RESULTS["GLS"] / "gls_phenotypes-phenomexcan.pkl" display(input_filepath) # %% tags=[] gls_phenomexcan = pd.read_pickle(input_filepath) # %% tags=[] gls_phenomexcan.shape # %% tags=[] gls_phenomexcan.head() # %% [markdown] tags=[] # ## MultiPLIER summary # %% tags=[] multiplier_model_summary =
pd.read_pickle(conf.MULTIPLIER["MODEL_SUMMARY_FILE"])
pandas.read_pickle
# Copyright 2020, 37.78 Tecnologia Ltda. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import pickle from sklearn.preprocessing import MultiLabelBinarizer from constants import DATA_DIR import utils class MIMIC_Dataset: def __init__(self): self.name = 'MIMIC' def load_preprocessed(self, path=DATA_DIR): with open(f'{path}mimic3_data.pkl', 'rb') as file: self.df = pickle.load(file) def save_preprocessed(self, path=DATA_DIR): pd.to_pickle(self.df, f'{path}mimic3_data.pkl') def preprocess(self, verbose=1): df_text = (pd.read_csv(f'{DATA_DIR}NOTEEVENTS.csv.gz') .query("CATEGORY == 'Discharge summary'") .drop_duplicates('TEXT') .drop_duplicates('HADM_ID') [['SUBJECT_ID','HADM_ID','TEXT']]) df_icds = (
pd.read_csv(f'{DATA_DIR}DIAGNOSES_ICD.csv.gz')
pandas.read_csv
import os import df2img import disnake import pandas as pd import bots.config_discordbot as cfg from bots.config_discordbot import gst_imgur, logger from bots.helpers import save_image from bots.menus.menu import Menu from gamestonk_terminal.stocks.due_diligence import ark_model def arktrades_command(ticker: str = "", num: int = 10): """Displays trades made by ark [cathiesark.com]""" # Debug user input if cfg.DEBUG: logger.debug("dd-arktrades %s", ticker) if ticker: ark_holdings = ark_model.get_ark_trades_by_ticker(ticker) if ark_holdings.empty: raise Exception( "Issue getting data from cathiesark.com. Likely no trades found.\n" ) ark_holdings["Total"] = ark_holdings["Total"] / 1_000_000 ark_holdings.rename(columns={"direction": "B/S", "weight": "F %"}, inplace=True) ark_holdings = ark_holdings.drop( columns=["ticker", "everything.profile.companyName"] ) ark_holdings.index =
pd.Series(ark_holdings.index)
pandas.Series
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) df = pd.read_sql_query( "select * from types_test_data", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = pd.concat( list( pd.read_sql_query( "select * from types_test_data", self.conn, chunksize=1 ) ), ignore_index=True, ) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) expected.to_sql("test_datetime_tz", self.conn, index=False) if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H") expected = DataFrame({"nums": range(5)}, index=dates) expected.to_sql("foo_table", self.conn, index_label="info_date") result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.to_sql("test_datetime", self.conn) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan df.to_sql("test_datetime", self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_table("test_time", self.conn)
tm.assert_frame_equal(res, df)
pandas._testing.assert_frame_equal
import pandas as pd import dill as pickle from load_test_data import write_dict_to_pkl def load_pickled_model(filename): ''' INPUT - filename: str, path and name of the file OUTPUT - model: sklearn classifier model, fit already Returns the unpickled model ''' with open(filename, 'r') as f: model = pickle.load(f) f.close() return model def load_processed_csv_for_predictions(filename): ''' INPUT - filename: str, path and name of the processed csv file to make predictions on OUTPUT - X: this is a 2d array of the features - user_id_array: 1d array of the features Returns ''' df =
pd.read_csv(filename)
pandas.read_csv
import os, glob import datetime import pandas as pd clear_last = 1 def update_csv_ts1(dataset_name, network_name, train_acc, train_loss, test_acc, test_loss, current_epoch, da1, now): global clear_last new_row = [dataset_name, network_name, train_loss, test_loss, train_acc, test_acc, current_epoch, da1] save_path = './result/result_csv/' + dataset_name + '_' + network_name + '_' + da1 + '_' + now + '_result.csv' if clear_last == 1: # for initial clear_last = 0 csvcolumns = ['dataset_name', 'network_name', 'train_loss', 'test_loss', 'train_acc', 'test_acc', 'epoch', 'da1'] df = pd.DataFrame(columns=csvcolumns) if not os.path.exists('./result/result_csv/'): os.makedirs('./result/result_csv/') df.to_csv(save_path) df = pd.read_csv(save_path, index_col=0) series = pd.Series(new_row, index=df.columns) df = df.append(series, ignore_index=True) df.to_csv(save_path) def update_csv_ts5(dataset_name, network_name, train_acc, train_loss, test_acc, test_loss, current_epoch, da1, p1, da2, p2, da3, p3, da4, p4, da5, p5, consis_lambda, now): global clear_last new_row = [dataset_name, network_name, train_loss, test_loss, train_acc, test_acc, current_epoch, da1, p1, da2, p2, da3, p3, da4, p4, da5, p5, consis_lambda] save_path = './result/result_csv/' + dataset_name + '_' + network_name + '_' + da1 +'-' + da2 +'-' + da3 +'-' + da4 +'-' + da5 + '_' + str(consis_lambda) + '_' + now + '_result.csv' if clear_last == 1: # for initial clear_last = 0 csvcolumns = ['dataset_name', 'network_name', 'train_loss', 'test_loss', 'train_acc', 'test_acc', 'epoch', 'da1', 'param1', 'da2', 'param2', 'da3', 'param3', 'da4', 'param4', 'da5', 'param5', 'consis_lambda'] df = pd.DataFrame(columns=csvcolumns) if not os.path.exists('./result/result_csv/'): os.makedirs('./result/result_csv/') df.to_csv(save_path) df = pd.read_csv(save_path, index_col=0) series =
pd.Series(new_row, index=df.columns)
pandas.Series
#! python3 # coding: utf-8 # Script to update g values in FG-5/A-10 .project.txt files with laser drift and(or) a soil moisture correction. # # The script works on project.txt files in a specified directory (and subdirectories). The g value in each # .project.txt file is updated, and a comment added that describes the magnitude of the correction. The original # .project.txt file is copied to a new file, where 'project.txt' in the filename is replaced with 'original.txt'. # # Laser drift corrections are taken from an Excel workbook, specified as a parameter in the script. # # Soil moisture corrections are taken from a text file downloaded from the # ORNL DAAC. 2017. Soil Moisture Visualizer. ORNL DAAC, Oak Ridge, Tennessee, USA. # http://dx.doi.org/10.3334/ORNLDAAC/1366 # # This service provides SMAP root zone soil moisture for a point location, from March 2015 onward. SMAP data # represent the mean value of a 9 x 9km grid; all points within a cell have the same soil moisture time series. # # A csv-file summary of the corrections is written, with the filename "Corrections_YYYY-MM-DD.csv" # # Written for Python 2.7, updated for compatibility with Python 3.5 in 2018 # # <NAME> # USGS # # Updated 11/2/2018: Tkinter now tkinter, specify filedialog as import (lines 38-39). Updated line 61 to current tkinter syntax. # Added lines 98-100 to check for previous correction (existing 'original.txt' file) and break loop if found. # Changed line 101 from <if string.find(fname, 'project.txt') != -1:> to <elif fname.find('project.txt') != -1:> # Tested on partial copy of TAMA directory on 11/2/2018. Test successful. # Tested on a directory with some files updated and some not - by the timestamp of files # it only applied the correction to previously uncorrected project.txt files. # import string import os from tkinter import filedialog from tkinter import * import datetime import pandas as pd from time import strftime # User-specified options update_laser = True laser_cal_file = "\\\\Igswztwwgszona\\Gravity Data Archive\\Absolute Data\\A-10\\Instrument Maintenance\\Calibrations\\A10-008 clock and laser calibrations.xlsx" laser_cal_worksheet = "DRIFT LOOKUP TABLE" update_SM = False if update_SM: sm_file = "BCnw_daily-smap-ORNL-DAAC-1s19jW.txt" write_corrections_to_file = True # Either use a specified directory, or show a GUI for the user to decide pwd = os.getcwd() root = Tk() root.withdraw() data_directory = filedialog.askdirectory( parent=root,initialdir=pwd) # data_directory = u'\\\\Igswztwwgszona\\Gravity Data Archive\\Absolute Data\\A-10\\Final Data\\Big Chino' laser_corr, drift_rate, elapsed_days = -999, -999, -999 sm_at_time_of_g, sm, sm_corr = -999, -999, -999 if update_laser: xl = pd.ExcelFile(laser_cal_file) df_drift = xl.parse(laser_cal_worksheet) if update_SM: df_sm = pd.read_csv(sm_file, header=4) sm_date = df_sm["time"] sm = df_sm["SMAP_rootzone"] else: sm_corr = -999 sm_at_time_of_g sm =
pd.DataFrame([-999])
pandas.DataFrame
# Copyright 2020 The Private Cardinality Estimation Framework Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Analyze the simulation results.""" import os import shutil import matplotlib.pyplot as plt import numpy as np import pandas as pd from wfa_cardinality_estimation_evaluation_framework.common import plotting from wfa_cardinality_estimation_evaluation_framework.evaluations import evaluator from wfa_cardinality_estimation_evaluation_framework.simulations import simulator ERROR_MARGIN_NAME = 'error_margin' PROPORTION_OF_RUNS_NAME = 'proportion_of_runs' ERROR_MARGIN = 0.05 PROPORTION_OF_RUNS = 0.95 RUNNING_TIME_SCALE = 3600 # Convert seconds to hour. SKETCH_ESTIMATOR_NAME = 'sketch_estimator' SCENARIO_NAME = 'scenario' NUM_ESTIMABLE_SETS = 'num_estimable_sets' RAW_RESULT_DF = 'df' CARDINALITY_SOURCE = 'source' CARDINALITY_VALUE = 'cardinality' FREQUENCY_LEVEL = 'frequency_level' # The file that summarize the maximum number of sets that can be estimated # within 5% (or specified by the error_margin) relative error for at least 95% # (or specified by the proportion_of_runs) runs. It has columns of estimator, # scenario and num_estimable_sets. NUM_ESTIMABLE_SETS_FILENAME = 'num_estimable_sets.csv' BOXPLOT_FILENAME = 'boxplot.png' BARPLOT_ESTIMABLE_SETS_FILENAME = 'barplot_estimable_sets.png' BARPLOT_MAX_SETS_FILENAME = 'barplot_max_sets.png' XLABEL_ROTATE = 'xlabel_rotate' BOXPLOT_SIZE_WIDTH_INCH = 'boxplot_size_width_inch' BOXPLOT_SIZE_HEIGHT_INCH = 'boxplot_size_height_inch' BARPLOT_SIZE_WIDTH_INCH = 'barplot_size_width_inch' BARPLOT_SIZE_HEIGHT_INCH = 'barplot_size_height_inch' PLOT_PARAMS = { XLABEL_ROTATE: 0, BOXPLOT_SIZE_WIDTH_INCH: 12, BOXPLOT_SIZE_HEIGHT_INCH: 6, BARPLOT_SIZE_WIDTH_INCH: 12, BARPLOT_SIZE_HEIGHT_INCH: 6, } # Variables related with getting analysis results. SKETCH_ESTIMATOR_COLNAME = 'sketch_estimator' RUNNING_TIME_COLNAME = 'running_time' KEY_DESCRIPTION_TO_FILE_DIR = 'description_to_file_dir' KEY_NUM_ESTIMABLE_SETS_STATS_DF = 'num_estimable_sets_stats_df' KEY_RUNNING_TIME_DF = 'running_time_df' def get_num_estimable_sets(df, num_sets, relative_error, error_margin, proportion_of_runs): """Get the number of estimable sets. For example, set error_margin = 0.05 and proportion_of_runs = 0.95. Then the number of estimable sets is defined as the number of sets whose union cardinality can be estimated such that 95% of the runs are within a 5% relative error. Args: df: a pd.DataFrame that have columns of num_sets and relative_error. num_sets: a column name in df that specifies the number of sets. relative_error: a column name in df that specifies the relative error. error_margin: a positive number setting the upper bound of the error. By default, set to 0.05. proportion_of_runs: a number between 0 and 1 that specifies the proportion of runs. By default, set to 0.95. Returns: The number of estimable sets. """ if not set([num_sets, relative_error]).issubset(df.columns): raise ValueError(f'{num_sets} or {relative_error} not found in df.') def count_estimable(e): return np.mean(np.abs(e) < error_margin) >= proportion_of_runs df_estimable = ( df[df[num_sets] > 1].groupby(num_sets) .agg({relative_error: count_estimable})) df_estimable = df_estimable.rename( columns={relative_error: 'is_estimable'}) num_of_estimable = 0 for n in df_estimable.index.values: if df_estimable.loc[n, 'is_estimable']: num_of_estimable = n else: break return num_of_estimable class EstimatorEvaluationAnalyzer(object): """Analyze the estimator evaluation results.""" def __init__(self, out_dir, evaluation_directory, evaluation_run_name, evaluation_name, estimable_criteria_list, plot_params=None): """Construct an analyzer. Args: out_dir: the output directory of analysis results. evaluation_directory: the output directory of evaluation results. The analyzer will read the evaluation results and output summary tables and plots. evaluation_run_name: the run name of the evaluation. evaluation_name: the name of the evaluation config. estimable_criteria_list: a list of tuples of error_margin and proportion_of_runs. An error_margin is a positive number setting the upper bound of the error, and the proportion_of_runs is a number between 0 and 1 that specifies the desired proportion of runs within the error margin. plot_params: a dictionary of the parameters of plot functions. If not given, will use PLOT_PARAMS. Also see PLOT_PARAMS for how it is defined. """ self.estimable_criteria_list = estimable_criteria_list if plot_params is None: self.plot_params = PLOT_PARAMS else: self.plot_params = plot_params # Get all the raw results. self.evaluation_file_dirs = evaluator.load_directory_tree( out_dir=evaluation_directory, run_name=evaluation_run_name, evaluation_name=evaluation_name) self.raw_df = ( CardinalityEstimatorEvaluationAnalyzer .read_evaluation_results(self.evaluation_file_dirs)) # Create the analysis directory. if out_dir is None: out_dir = os.getcwd() if out_dir != evaluation_directory: shutil.copytree( self.evaluation_file_dirs[evaluator.KEY_RUN_DIR], os.path.join(out_dir, evaluation_run_name)) self.analysis_file_dirs = evaluator.load_directory_tree( out_dir=out_dir, run_name=evaluation_run_name, evaluation_name=evaluation_name) def __call__(self): num_estimable_sets_stats_df = ( self.get_relative_error_stats_of_num_of_estimable_sets()) df_filename = os.path.join( self.analysis_file_dirs[evaluator.KEY_EVALUATION_DIR], NUM_ESTIMABLE_SETS_FILENAME) with open(df_filename, 'w') as f: num_estimable_sets_stats_df.to_csv(f, index=False) self._save_plot_num_sets_vs_metric() @classmethod def read_evaluation_results(cls, file_dirs): """Read evaluation results. Args: file_dirs: a dictionary of file directories of the evaluation which is generated by the create_directory method of evaluator.Evaluation. Returns: A pandas.DataFrame containing columns of the estimator name, the scenario name, and the corresponding raw evaluation result data frame. """ df_list = [] for estimator_name in file_dirs[evaluator.KEY_ESTIMATOR_DIRS].keys(): for scenario_name in file_dirs[estimator_name].keys(): df_file = os.path.join( file_dirs[estimator_name][scenario_name], evaluator.RAW_RESULT_DF_FILENAME) with open(df_file, 'r') as f: df = pd.read_csv(f) df[SKETCH_ESTIMATOR_NAME] = estimator_name df[SCENARIO_NAME] = scenario_name df_list.append(df) return pd.concat(df_list, ignore_index=True) def get_num_estimable_sets_df(self): """Summarize the number of estimable sets by estimators and scenarios.""" def _get_num_estimable_sets_series(df, **kwargs): return pd.Series({ NUM_ESTIMABLE_SETS: get_num_estimable_sets(df, **kwargs)}) df_list = [] for criteria in self.estimable_criteria_list: df = self.raw_df.groupby([SKETCH_ESTIMATOR_NAME, SCENARIO_NAME]).apply( _get_num_estimable_sets_series, num_sets=simulator.NUM_SETS, relative_error=self.error_metric_column, error_margin=criteria[0], proportion_of_runs=criteria[1]).reset_index() df[ERROR_MARGIN_NAME] = criteria[0] df[PROPORTION_OF_RUNS_NAME] = criteria[1] df_list.append(df) return
pd.concat(df_list, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @version: 1.4.0 @file: GSP_main.py @time: 2021/1/26 10:50 @functions: graph signal processing main script @update: support Yeo-ICN definition @update: support ICN-level brain activity and connecitivty strength saving """ import numpy as np import glob import os import time import matplotlib.pyplot as plt from pygsp import graphs, filters, plotting from GSP_utilities import surrogate_BOLD_create, save_variable, load_variable import pandas as pd from dppd import dppd dp, X = dppd() # 1. path locations and parameters start = time.time() deriv_path = '/home/amax/data/cye/MScohort_BIDS_clean/derivatives' connectome_path = os.path.join(deriv_path, 'mrtrix') xcpengine_path = os.path.join(deriv_path, 'xcpengine') network_assign_path = 'CAB-NP_v1.1_Labels-ReorderedbyNetworks_Yeo.csv' num_BOLD_timepoints = 180 num_rand = 100 # number of surrogates functional_type = 'BOLD' tract_type = 'meanlength' # one of the following: invlength, invnodevol, level-participant_connectome, meanlength ICN_type = 'Yeo' # one of the following: 'Yeo', 'Cole' normalize_type = 'both' # 'W': normalize W; 'L': normalize Laplacian (Preti method); 'both': normalize both W and Laplacian # 2. read network assignment for hcpmmp network_assign_csv = pd.read_csv(network_assign_path) network_assign_csv = dp(network_assign_csv).mutate(NETWORK=X.Yeo_NETWORK).pd network_assign_csv = dp(network_assign_csv).mutate(NETWORKKEY=X.Yeo_NETWORKKEY).pd num_network_df = dp(network_assign_csv).summarise((X.NETWORKKEY, np.max, 'hp_max')).pd num_network = num_network_df.iloc[0,0] network_rowindex_ls = [] for network_i in range(1,num_network+1): df_network = dp(network_assign_csv).filter_by(X.NETWORKKEY == network_i).pd network_rowindex_ls.append(df_network.index.values) network_unique_df = dp(network_assign_csv).distinct('NETWORKKEY').pd network_unique_df = network_unique_df.sort_values(by='NETWORKKEY',ascending = True) network_unique_df = dp(network_unique_df).filter_by(-X.NETWORK.isin(['Undefine'])).pd # remove undefined ICN network_unique_df = network_unique_df.reset_index() # 3. define group of interests cohort1 = 'ms' cohort2 = 'nc' cohort3 = 'nmo' cohort4 = 'cis' cohort1_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort1 + '*')) cohort2_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort2 + '*')) cohort3_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort3 + '*')) cohort4_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort4 + '*')) cohort_connectome_ls = cohort1_connectome_ls + cohort2_connectome_ls + cohort3_connectome_ls + cohort4_connectome_ls cohort_connectome_ls.sort() cohort1_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort1 + '*')) cohort2_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort2 + '*')) cohort3_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort3 + '*')) cohort4_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort4 + '*')) cohort_fmri_ls = cohort1_fmri_ls + cohort2_fmri_ls + cohort3_fmri_ls + cohort4_fmri_ls cohort_name_ls = [os.path.basename(item) for item in cohort_connectome_ls] remove_name_ls = ['sub-nc011','sub-nc039', 'sub-nmo002', 'sub-nmo019', 'sub-cis002','sub-cis015', 'sub-ms015'] # problematic cases cohort_name_ls = list(set(cohort_name_ls) - set(remove_name_ls)) # remove problematic cases for i in remove_name_ls: # remove problematic cases cohort_connectome_ls = [x for x in cohort_connectome_ls if i not in x] cohort_fmri_ls = [x for x in cohort_fmri_ls if i not in x] cohort_name_ls.sort() cohort_connectome_ls.sort() cohort_fmri_ls.sort() if len(cohort_connectome_ls) != len(cohort_fmri_ls): print('Number of connectome and xcpengine results not matched') # 4. create a dataframe to store individual filepath path_dict = {'subname':cohort_name_ls, 'mrtrix_path': cohort_connectome_ls, 'xcp_path':cohort_fmri_ls} path_df = pd.DataFrame(path_dict, columns=['subname','mrtrix_path','xcp_path']) path_df = dp(path_df).mutate(connectome_path=X.mrtrix_path + '/connectome/' + X.subname +'_parc-hcpmmp1_' + tract_type + '.csv').pd path_df = dp(path_df).mutate(BOLD_series_path=X.xcp_path + '/fcon/hcpmmp/hcpmmp.1D').pd path_df = dp(path_df).mutate(fmri_map_path=X.xcp_path + '/roiquant/hcpmmp/' + X.subname +'_hcpmmp_mean.csv').pd print('finished step 4') # 5. load individual connectome as ndarray num_parcels = len(network_assign_csv) num_sub = len(path_df) path_df_nc = dp(path_df).filter_by(X.subname.str.contains('nc')).pd num_nc = len(path_df_nc) nc_idx = path_df_nc.index connectome_array = np.zeros(shape=(num_parcels, num_parcels, num_sub)) for sub_idx in range(len(path_df)): indiviudal_connectome = np.genfromtxt(path_df.loc[sub_idx, 'connectome_path'], delimiter=',') connectome_array[:,:,sub_idx] = indiviudal_connectome # 6. load individual BOLD series and fill missing part according to /fcon/hcpmmp/missing.txt BOLD_series_3D = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) for sub_idx in range(len(path_df)): BOLD_series = np.genfromtxt(path_df.loc[sub_idx, 'BOLD_series_path']) BOLD_series = BOLD_series.T missing_path = os.path.join(path_df.loc[sub_idx, 'xcp_path'], 'fcon', 'hcpmmp', 'hcpmmp_missing.txt') if os.path.exists(missing_path): missing_parcel_id = np.genfromtxt(missing_path, dtype=int) if missing_parcel_id.size == 1: # only one parcel missing if BOLD_series[missing_parcel_id-1,:].sum() != 0: print("missing parcel not match for subject {}".format(sub_idx)) network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] BOLD_series[missing_parcel_id-1,:] = np.mean(BOLD_series[network_parcel_idx,:]) else: # multiple parcels missing for missing_idx in missing_parcel_id: network_key = network_assign_csv.loc[missing_idx-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] BOLD_series[missing_idx-1,:] = np.mean(BOLD_series[network_parcel_idx,:]) BOLD_series_3D[:,:,sub_idx] = BOLD_series print('finished loading individual BOLD series and filling missing part') # 7. load fmri parametric map and fill missing part according to /fcon/hcpmmp/missing.txt fmri_paramap = np.zeros(shape=(num_parcels, num_sub)) paramap_str = 'mean_alffZ' for sub_idx in range(len(path_df)): fmri_map = pd.read_csv(path_df.loc[sub_idx, 'fmri_map_path'],index_col=0) fmri_map = fmri_map.loc[:,paramap_str] missing_path = os.path.join(path_df.loc[sub_idx, 'xcp_path'], 'fcon', 'hcpmmp', 'hcpmmp_missing.txt') if os.path.exists(missing_path): missing_parcel_id = np.genfromtxt(missing_path, dtype=int) if missing_parcel_id.size == 1: # only one parcel missing if not np.isnan(fmri_map[missing_parcel_id]): print("missing parcel not match for subject {}".format(sub_idx)) network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] fmri_map[int(missing_parcel_id)] = np.mean(fmri_map[network_parcel_idx]) fmri_map = fmri_map.to_numpy() else: # multiple parcels missing network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_rowindex_ls = np.array(network_rowindex_ls, dtype=object) network_parcel_idx = network_rowindex_ls[network_key-1] for parcel_i in range(missing_parcel_id.size): fmri_map[int(missing_parcel_id[parcel_i])] = np.mean(fmri_map[network_parcel_idx[parcel_i]]) fmri_map = fmri_map.to_numpy() fmri_paramap[:,sub_idx] = fmri_map print('finished loading fmri parametric map and fill missing part') # 8. load connectome and functional signal and do GSP if functional_type == 'BOLD': # func_sig is BOLD_series_3D func_sig = BOLD_series_3D s_head_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) s_rand_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub, num_rand)) else: raise ValueError('undefined functional signal') G_U_cohort = np.zeros(shape=(num_parcels, num_parcels, num_sub)) for sub_idx in range(len(path_df)): W = np.genfromtxt(path_df.loc[sub_idx, 'connectome_path'], delimiter=',') # Symmetric Normalization of adjacency matrix D = np.diag(np.sum(W,1)) #degree D_power = np.power(D, (-1/2)) D_power[np.isinf(D_power)] = 0 Wsymm = D_power @ W @ D_power #The eigenvector matrix G.U is used to define the Graph Fourier Transform of the graph signal S if normalize_type == 'W': G = graphs.Graph(Wsymm) G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U elif normalize_type == 'L': G = graphs.Graph(W, lap_type = 'normalized') G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U elif normalize_type == 'both': Wsymm = np.triu(Wsymm) + np.triu(Wsymm).T - np.diag(np.triu(Wsymm).diagonal()) # force symmetric G = graphs.Graph(Wsymm, lap_type = 'normalized') G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U # L = np.eye(len(Wsymm)) - Wsymm # lamda, U = np.linalg.eig(L) # U = U[:, np.argsort(lamda)] if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_head = U.T @ func_sig[:,:,sub_idx] s_head_cohort[:,:,sub_idx] = s_head # calcualte surrogate for individual s_rand_cohort[:,:,sub_idx,:] = surrogate_BOLD_create(U, func_sig[:,:,sub_idx], num_rand) print('finished Graph Fourier Transform') # save_variable(G_U_cohort, 'G_U_cohort.pkl') # save_variable(s_head_cohort, 's_head_cohort.pkl') # save_variable(s_rand_cohort, 's_rand_cohort.pkl') # G_U_cohort = load_variable('G_U_cohort.pkl') # s_head_cohort = load_variable('s_head_cohort.pkl') # s_rand_cohort = load_variable('s_rand_cohort.pkl') # 8.5(optional). plot Sihag2020 plot # take nc001 as example nc001_idx = path_df.subname[path_df.subname == 'sub-nc001'].index.tolist()[0] s_low = G_U_cohort[:,0:4, nc001_idx] @ s_head_cohort[0:4,:,nc001_idx] s_high = G_U_cohort[:,-55:-51, nc001_idx] @ s_head_cohort[-55:-51,:,nc001_idx] np.savetxt("nc001_s_low_both.csv", s_low, delimiter=",") np.savetxt("nc001_s_high_both.csv", s_high, delimiter=",") # 9. calculate the median-split threshold NC_index = [cohort_name_ls.index(x) for x in cohort_name_ls if 'nc' in x] if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_head_NC = s_head_cohort[:,:,NC_index] s_head_NC_square = np.power(s_head_NC, 2) #s_head_NC_square = np.power(s_head_NC_square, 1/2) s_head_NC_square_mean = np.mean(s_head_NC_square, (1,2)) # average for each timepoint and each subject s_head_NC_AUCTOT = np.trapz(s_head_NC_square_mean) i=0 AUC=0 while AUC < s_head_NC_AUCTOT/2: AUC = np.trapz(s_head_NC_square_mean[:i]) i = i + 1 cutoff = i-1 print('finished calculating the median-split threshold') print('cutoff = {}'.format(cutoff)) # 10. calculate decoupling index for empirical data if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_aligned_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) s_liberal_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) for sub_idx in range(len(path_df)): s_aligned_cohort[:,:,sub_idx] = G_U_cohort[:,0:cutoff, sub_idx] @ s_head_cohort[0:cutoff,:,sub_idx] s_liberal_cohort[:,:,sub_idx] = G_U_cohort[:,cutoff-1:-1, sub_idx] @ s_head_cohort[cutoff-1:-1,:,sub_idx] s_aligned_individual = np.linalg.norm(s_aligned_cohort, ord=2, axis=1) s_liberal_individual = np.linalg.norm(s_liberal_cohort, ord=2, axis=1) s_deCoupIdx_individual = s_liberal_individual / s_aligned_individual s_aligned = np.mean(s_aligned_individual[:,nc_idx], axis=1) s_liberal = np.mean(s_liberal_individual[:,nc_idx], axis=1) s_deCoupIdx_node = s_liberal/s_aligned # only for NC print('finished calculating decoupling index for empirical data') # 11. calculate decoupling index for surrogate data only for NC if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_aligned_cohort_rand = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_nc, num_rand)) s_liberal_cohort_rand = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_nc, num_rand)) for i, sub_idx in enumerate(nc_idx): for rand_idx in range(num_rand): s_aligned_cohort_rand[:,:,i,rand_idx] = G_U_cohort[:,0:cutoff, sub_idx] @ s_rand_cohort[0:cutoff,:,sub_idx,rand_idx] s_liberal_cohort_rand[:,:,i,rand_idx] = G_U_cohort[:,cutoff-1:-1, sub_idx] @ s_rand_cohort[cutoff-1:-1,:,sub_idx,rand_idx] # norm for BOLD timepoints s_aligned_norm_rand = np.linalg.norm(s_aligned_cohort_rand, ord=2, axis=1) s_liberal_norm_rand = np.linalg.norm(s_liberal_cohort_rand, ord=2, axis=1) # average for cohorts s_aligned_rand = np.mean(s_aligned_norm_rand, axis=1) s_liberal_rand = np.mean(s_liberal_norm_rand, axis=1) # decoupling index s_deCoupIdx_node_rand = s_liberal_rand/s_aligned_rand print('finished calculating decoupling index for surrogate data') # 12. network-level harmonics for emperical and surrogate data s_aligned_network = np.zeros(shape=(num_network)) s_liberal_network = np.zeros(shape=(num_network)) s_aligned_network_individual = np.zeros(shape=(num_network, num_sub)) s_liberal_network_individual = np.zeros(shape=(num_network, num_sub)) s_aligned_network_rand = np.zeros(shape=(num_network, num_rand)) s_liberal_network_rand = np.zeros(shape=(num_network, num_rand)) for i in range(num_network): s_aligned_network[i] = np.mean(s_aligned[network_rowindex_ls[i]]) s_liberal_network[i] = np.mean(s_liberal[network_rowindex_ls[i]]) s_aligned_network_individual[i,:] = np.mean(s_aligned_individual[network_rowindex_ls[i],:], axis=0) s_liberal_network_individual[i,:] = np.mean(s_liberal_individual[network_rowindex_ls[i],:], axis=0) s_aligned_network_rand[i,:] = np.mean(s_aligned_rand[network_rowindex_ls[i],:], axis=0) s_liberal_network_rand[i,:] = np.mean(s_liberal_rand[network_rowindex_ls[i],:], axis=0) s_deCoupIdx_network = s_liberal_network/s_aligned_network s_deCoupIdx_network_individual = s_liberal_network_individual/s_aligned_network_individual s_deCoupIdx_network_rand = s_liberal_network_rand/s_aligned_network_rand # 13. brain-level harmonics for emperical and surrogate data s_aligned_brain = np.mean(s_aligned) s_liberal_brain = np.mean(s_liberal) s_deCoupIdx_brain = s_liberal_brain/s_aligned_brain s_aligned_brain_individual = np.mean(s_aligned_individual, axis=0) s_liberal_brain_individual = np.mean(s_liberal_individual, axis=0) s_deCoupIdx_brain_individual = s_liberal_brain_individual/s_aligned_brain_individual s_aligned_brain_rand = np.mean(s_aligned_rand, axis=0) s_liberal_brain_rand = np.mean(s_liberal_rand, axis=0) s_deCoupIdx_brain_rand = s_liberal_brain_rand/s_aligned_brain_rand print('s_deCoupIdx_brain = {}'.format(s_deCoupIdx_brain)) # 14. significance of surrogate for plot # node-level s_deCoupIdx_node_significance = np.logical_or((np.percentile(s_deCoupIdx_node_rand, 5, axis=1) >= s_deCoupIdx_node), (np.percentile(s_deCoupIdx_node_rand, 95, axis=1) <= s_deCoupIdx_node)) s_deCoupIdx_node_significance = s_deCoupIdx_node_significance.astype(np.int) # network-level s_deCoupIdx_network_significance = np.logical_or((np.percentile(s_deCoupIdx_network_rand, 5, axis=1) >= s_deCoupIdx_network), (np.percentile(s_deCoupIdx_network_rand, 95, axis=1) <= s_deCoupIdx_network)) s_deCoupIdx_network_significance = s_deCoupIdx_network_significance.astype(np.int) # brain-level s_deCoupIdx_brain_significance = np.logical_or((np.percentile(s_deCoupIdx_brain_rand, 5, axis=0) >= s_deCoupIdx_brain), (np.percentile(s_deCoupIdx_brain_rand, 95, axis=0) <= s_deCoupIdx_brain)) # 15. save results to csv if normalize_type == 'W': normalize_str = '_W' elif normalize_type == 'L': normalize_str = '_L' elif normalize_type == 'both': normalize_str = '_both' if functional_type == 'BOLD': # func_sig is BOLD_series_3D csv_folder = 'BOLD_4D_' + tract_type + '_' + normalize_str if not os.path.exists(os.path.abspath(csv_folder)): os.mkdir(os.path.abspath(csv_folder)) # save surrogate (ndarray with num_rand × num_region) s_deCoupIdx_node_rand_df = pd.DataFrame(data = s_deCoupIdx_node_rand.T, columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_rand_df = pd.DataFrame(data = s_deCoupIdx_network_rand.T, columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_brain_rand_df = pd.DataFrame(data = s_deCoupIdx_brain_rand) s_deCoupIdx_node_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_rand_df.csv')) s_deCoupIdx_network_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_rand_df.csv')) s_deCoupIdx_brain_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_rand_df.csv')) # save surrogate significance (ndarray with 1 × num_region) s_deCoupIdx_node_significance_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_node_significance, axis=0), columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_significance_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_network_significance, axis=0), columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_node_significance_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_significance_df.csv')) s_deCoupIdx_network_significance_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_significance_df.csv')) with open(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_significance.txt'), 'w') as output_file: output_file.write(str(s_deCoupIdx_brain_significance)) # save empirical harmonics for NC cohort (for plot usage, ndarray with 1 × num_region) s_deCoupIdx_node_empirical_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_node, axis=0), columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_empirical_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_network, axis=0), columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_node_empirical_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_empirical_df.csv')) s_deCoupIdx_network_empirical_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' +'-network_empirical_df.csv')) with open(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_empirical.txt'), 'w') as output_file: output_file.write(str(s_deCoupIdx_brain)) # save subject-level harmonics (ndarray with num_sub × num_region) s_deCoupIdx_node_individual_df = pd.DataFrame(data = s_deCoupIdx_individual.T, columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_individual_df = pd.DataFrame(data = s_deCoupIdx_network_individual.T, columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_brain_individual_df = pd.DataFrame(data = s_deCoupIdx_brain_individual) s_deCoupIdx_node_individual_df = pd.concat([path_df.loc[:,'subname'],s_deCoupIdx_node_individual_df],axis=1) s_deCoupIdx_network_individual_df = pd.concat([path_df.loc[:,'subname'],s_deCoupIdx_network_individual_df],axis=1) s_deCoupIdx_brain_individual_df = pd.concat([path_df.loc[:,'subname'],s_deCoupIdx_brain_individual_df],axis=1) s_deCoupIdx_node_individual_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_individual_df.csv')) s_deCoupIdx_network_individual_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_individual_df.csv')) s_deCoupIdx_brain_individual_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_individual_df.csv')) # 16.(optional) save connectivity strength # parcel-level connectome_parcel_individual = np.zeros(shape=(num_sub, num_parcels)) # mean of nonzero def non_zero_mean(np_arr): exist = (np_arr != 0) num = np_arr.sum(axis=1) den = exist.sum(axis=1) return num/den for sub_idx in range(num_sub): connectome_parcel_individual[sub_idx,:] = non_zero_mean(connectome_array[:,:,sub_idx]) connectome_parcel_individual_df = pd.DataFrame(data = connectome_parcel_individual, columns = network_assign_csv.loc[:,'LABEL']) connectome_parcel_individual_df = pd.concat([path_df.loc[:,'subname'], connectome_parcel_individual_df],axis=1) connectome_parcel_individual_df.to_csv(os.path.join(os.path.abspath(csv_folder), 'connectome_' + '-parcel_individual_df.csv')) # ICN-level connectome_network_individual = np.zeros(shape=(num_network, num_sub)) for i in range(num_network): network_i = network_unique_df.loc[i,'NETWORK'] parcel_network_df = dp(network_assign_csv).filter_by(X.NETWORK.isin([network_i])).pd parcel_network_id = parcel_network_df.loc[:,'INDEX'].to_numpy() connectome_network_individual[i,:] = np.mean(connectome_array[np.ix_(parcel_network_id-1,parcel_network_id-1)], axis=(0,1)) connectome_network_individual_df =
pd.DataFrame(data = connectome_network_individual.T, columns = network_unique_df.loc[:,'NETWORK'])
pandas.DataFrame
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort = pd.Series([], dtype="float", name="cbt_bird_1inten_mort") self.cbt_bird_low_lc50 = pd.Series([], dtype="float", name="cbt_bird_low_lc50") self.cbt_bird_sub_direct = pd.Series([], dtype="float", name="cbt_bird_sub_direct") self.cbt_bird_grow_noec = pd.Series([], dtype="float", name="cbt_bird_grow_noec") self.cbt_bird_grow_loec = pd.Series([], dtype="float", name="cbt_bird_grow_loec") self.cbt_bird_repro_noec = pd.Series([], dtype="float", name="cbt_bird_repro_noec") self.cbt_bird_repro_loec = pd.Series([], dtype="float", name="cbt_bird_repro_loec") self.cbt_bird_behav_noec = pd.Series([], dtype="float", name="cbt_bird_behav_noec") self.cbt_bird_behav_loec = pd.Series([], dtype="float", name="cbt_bird_behav_loec") self.cbt_bird_sensory_noec = pd.Series([], dtype="float", name="cbt_bird_sensory_noec") self.cbt_bird_sensory_loec = pd.Series([], dtype="float", name="cbt_bird_sensory_loec") self.cbt_bird_sub_indirect = pd.Series([], dtype="float", name="cbt_bird_sub_indirect") # concentration-based toxicity (cbt) : reptiles, terrestrial-phase amphibians (mg-pest/kg-diet food) self.cbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="cbt_reptile_1inmill_mort") self.cbt_reptile_1inten_mort = pd.Series([], dtype="float", name="cbt_reptile_1inten_mort") self.cbt_reptile_low_lc50 = pd.Series([], dtype="float", name="cbt_reptile_low_lc50") self.cbt_reptile_sub_direct = pd.Series([], dtype="float", name="cbt_reptile_sub_direct") self.cbt_reptile_grow_noec = pd.Series([], dtype="float", name="cbt_reptile_grow_noec") self.cbt_reptile_grow_loec = pd.Series([], dtype="float", name="cbt_reptile_grow_loec") self.cbt_reptile_repro_noec = pd.Series([], dtype="float", name="cbt_reptile_repro_noec") self.cbt_reptile_repro_loec = pd.Series([], dtype="float", name="cbt_reptile_repro_loec") self.cbt_reptile_behav_noec = pd.Series([], dtype="float", name="cbt_reptile_behav_noec") self.cbt_reptile_behav_loec = pd.Series([], dtype="float", name="cbt_reptile_behav_loec") self.cbt_reptile_sensory_noec = pd.Series([], dtype="float", name="cbt_reptile_sensory_noec") self.cbt_reptile_sensory_loec = pd.Series([], dtype="float", name="cbt_reptile_sensory_loec") self.cbt_reptile_sub_indirect = pd.Series([], dtype="float", name="cbt_reptile_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body weight (mg-pest/kg-bw(ww)) self.cbt_inv_bw_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inmill_mort") self.cbt_inv_bw_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inten_mort") self.cbt_inv_bw_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_bw_low_lc50") self.cbt_inv_bw_sub_direct = pd.Series([], dtype="float", name="cbt_inv_bw_sub_direct") self.cbt_inv_bw_grow_noec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_noec") self.cbt_inv_bw_grow_loec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_loec") self.cbt_inv_bw_repro_noec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_noec") self.cbt_inv_bw_repro_loec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_loec") self.cbt_inv_bw_behav_noec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_noec") self.cbt_inv_bw_behav_loec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_loec") self.cbt_inv_bw_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_noec") self.cbt_inv_bw_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_loec") self.cbt_inv_bw_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_bw_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body diet (mg-pest/kg-food(ww)) self.cbt_inv_food_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inmill_mort") self.cbt_inv_food_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inten_mort") self.cbt_inv_food_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_food_low_lc50") self.cbt_inv_food_sub_direct = pd.Series([], dtype="float", name="cbt_inv_food_sub_direct") self.cbt_inv_food_grow_noec = pd.Series([], dtype="float", name="cbt_inv_food_grow_noec") self.cbt_inv_food_grow_loec = pd.Series([], dtype="float", name="cbt_inv_food_grow_loec") self.cbt_inv_food_repro_noec = pd.Series([], dtype="float", name="cbt_inv_food_repro_noec") self.cbt_inv_food_repro_loec = pd.Series([], dtype="float", name="cbt_inv_food_repro_loec") self.cbt_inv_food_behav_noec = pd.Series([], dtype="float", name="cbt_inv_food_behav_noec") self.cbt_inv_food_behav_loec = pd.Series([], dtype="float", name="cbt_inv_food_behav_loec") self.cbt_inv_food_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_noec") self.cbt_inv_food_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_loec") self.cbt_inv_food_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_food_sub_indirect") # concentration-based toxicity (cbt) : invertebrates soil (mg-pest/kg-soil(dw)) self.cbt_inv_soil_1inmill_mort =
pd.Series([], dtype="float", name="cbt_inv_soil_1inmill_mort")
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sat Oct 17 09:22:24 2020 @author: tjcombs The data is from the following source: https://www.kaggle.com/anikannal/solar-power-generation-data """ import pandas as pd def get_generation_data(): ''' Returns a DataFrame of the solar power generation data. DATE_TIME: Date and time for each observation. Observations recorded at 15 minute intervals. PLANT_ID: PLANT_ID = 4135001 ==> PLANT = 1 PLANT_ID = 4136001 ==> PLANT = 2 SOURCE_KEY: The inverter id. DC_POWER: Amount of DC power generated by the inverter (source_key) in this 15 minute interval. Units - kW. AC_POWER: Amount of AC power generated by the inverter (source_key) in this 15 minute interval. Units - kW. DAILY_YIELD: Daily yield is a cumulative sum of power generated on that day, till that point in time. TOTAL_YIELD: This is the total yield for the inverter till that point in time. ''' plant1_generation = pd.read_csv('archive/Plant_1_Generation_Data.csv') plant1_generation['DATE_TIME'] = pd.to_datetime(plant1_generation['DATE_TIME']) plant2_generation = pd.read_csv('archive/Plant_2_Generation_Data.csv') plant2_generation['DATE_TIME'] = pd.to_datetime(plant2_generation['DATE_TIME']) # The two data sets have the same columns assert(set(plant1_generation) == set(plant2_generation)) # Combine datasets generation =
pd.concat((plant1_generation, plant2_generation))
pandas.concat
import QUANTAXIS as QA import numpy as np import talib import pandas as pd import scipy.signal as signal import matplotlib.pyplot as plt # 定义MACD函数 def TA_MACD(prices, fastperiod=12, slowperiod=26, signalperiod=9): ''' 参数设置: fastperiod = 12 slowperiod = 26 signalperiod = 9 返回: macd - dif, signal - dea, hist * 2 - bar, delta ''' macd, signal, hist = talib.MACD(prices, fastperiod=fastperiod, slowperiod=slowperiod, signalperiod=signalperiod) delta = np.r_[np.nan, np.diff(hist * 2)] return np.c_[macd, signal, hist * 2, delta] # 定义MA函数 def TA_MA(prices, timeperiod=5): ''' 参数设置: timeperiod = 5 返回: ma ''' ma = talib.MA(prices, timeperiod=timeperiod) return ma # 定义RSI函数 def TA_RSI(prices, timeperiod=12): ''' 参数设置: timeperiod = 12 返回: ma ''' rsi = talib.RSI(prices, timeperiod=timeperiod) delta = np.r_[np.nan, np.diff(rsi)] return np.c_[rsi, delta] # 定义RSI函数 def TA_BBANDS(prices, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0): ''' 参数设置: timeperiod = 5 nbdevup = 2 nbdevdn = 2 返回: up, middle, low ''' up, middle, low = talib.BBANDS(prices, timeperiod, nbdevup, nbdevdn, matype) ch = (up - low) / low delta = np.r_[np.nan, np.diff(ch)] ma30 = TA_MA(prices, timeperiod=30) boll_band_channel_padding = (ma30 - low) / low padding_delta = np.r_[np.nan, np.diff(boll_band_channel_padding)] ch_ma30 = talib.MA(ch, timeperiod=30) return np.c_[up, middle, low, ch, ch_ma30, delta, padding_delta] def TA_KDJ(hight, low, close, fastk_period=9, slowk_matype=0, slowk_period=3, slowd_period=3): ''' 参数设置: fastk_period = 0 lowk_matype = 0, slowk_period = 3, slowd_period = 3 返回: K, D, J ''' K, D = talib.STOCH(hight, low, close, fastk_period=fastk_period, slowk_matype=slowk_matype, slowk_period=slowk_period, slowd_period=slowd_period) J = 3 * K - 2 * D delta = np.r_[np.nan, np.diff(J)] return np.c_[K, D, J, delta] def TA_CCI(high, low, close, timeperiod=14): """ 名称:平均趋向指数的趋向指数 简介:使用ADXR指标,指标判断ADX趋势。 """ real = talib.CCI(high, low, close, timeperiod=14) delta = np.r_[np.nan, np.diff(real)] return np.c_[real, delta] # 写个指标 so easy def ifup20(data): # QA内建指标计算 Python原生代码 return (QA.MA(data.close, 5)-QA.MA(data.close, 20)).dropna() > 0 def ifup20_TA(data): # TA-lib计算 return (TA_MA(data.close, 5)-TA_MA(data.close, 20)).dropna() > 0 # apply到 QADataStruct上 # 写个自定义指标 MAX_FACTOR QA内建指标计算 Python原生代码 def ifmaxfactor_greater(data): RSI = QA.QA_indicator_RSI(data) CCI = QA.QA_indicator_CCI(data) KDJ = QA.QA_indicator_KDJ(data) MAX_FACTOR = CCI['CCI'] + (RSI['RSI1'] - 50) * 4 + (KDJ['KDJ_J'] - 50) * 4 MAX_FACTOR_delta = np.r_[np.nan, np.diff(MAX_FACTOR)] REGRESSION_BASELINE = (RSI['RSI1'] - 50) * 4 return ((MAX_FACTOR+MAX_FACTOR_delta)-(REGRESSION_BASELINE-133)).dropna() > 0 # 写个自定义指标 MAX_FACTOR TA-lib计算 def ifmaxfactor_greater_TA(data): RSI = TA_RSI(data.close) CCI = TA_CCI(data.high, data.low, data.close) KDJ = TA_KDJ(data.high, data.low, data.close) MAX_FACTOR = CCI[:,0] + (RSI[:,0] - 50) * 4 + (KDJ[:,2] - 50) * 4 MAX_FACTOR_delta = np.r_[np.nan, np.diff(MAX_FACTOR)] REGRESSION_BASELINE = (RSI[:,0] - 50) * 4 return
pd.DataFrame(((MAX_FACTOR+MAX_FACTOR_delta)-(REGRESSION_BASELINE-133)), index=data.index)
pandas.DataFrame
import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import backend as K from sklearn.preprocessing import StandardScaler class ModelNBEATS(): def __init__(self, y, params, **kwargs): """Creates a TCNN model object. Params: y - pandas DataFrame/Series with all time series required for modeling purposes. **kwargs: xreg - pandas DataFrame with all external regressors (for prediction purposes, additional periods must be included) scale_data - bool, use standard scaler to scale data to 0-1 range; default True num_layers - int, number of dense layers to use in NBEATS block; default 4 num_neurons - int, number of neurons within each dense layer default 128 stacks - list/str, list or comma separated str of values for stacks; default: 'generic, trend, seasonality, generic' activation - str; default 'relu' optimizer - str/keras optimizer object; default 'adam' num_epoch - int, number of epochs for training; default 100 loss - str/keras optimizer object, used for loss evaluation in training; default 'mse' verbose - parameter to control log/print when fitting the model """ def __init__(self, y, **kwargs): if isinstance(y, pd.Series): self.id = y.name self.out = 1 else: self.id = y.columns self.out = len(y.columns) self.xreg = kwargs.get('xreg', pd.DataFrame()) if self.xreg.shape[0]>0: self.y = y.join(self.xreg).replace([np.inf, -np.inf], 0).fillna(0) else: self.y = y.replace([np.inf, -np.inf], 0).fillna(0) self.y_norm = self.y.copy() self.scale_data = kwargs.get('scale_data', True) if self.scale_data: self.scaler = StandardScaler().fit(y) self.y_norm[self.id] = self.scaler.transform(y) self.num_layers = kwargs.get('num_layers',4) self.num_neurons = kwargs.get('num_neurons',128) self.stacks = kwargs.get('stacks', 'generic, trend, seasonality, generic') if type(self.stacks)==str: self.stacks=self.stacks.split(',') self.activation = kwargs.get('activation','relu') self.optimizer = kwargs.get('optimizer','adam') self.num_epoch = kwargs.get('num_epoch',100) self.loss = kwargs.get('loss','mse') self.model = None self.verbose = kwargs.get('verbose', 1) class NBeatsBlock(tf.keras.layers.Layer): def __init__(self, input_size: int, theta_size: int, horizon: int, n_neurons: int, n_layers: int, stack_type: str, **kwargs): super().__init__(**kwargs) self.input_size = input_size self.theta_size = theta_size self.horizon = horizon self.n_neurons = n_neurons self.n_layers = n_layers self.stack_type = stack_type # by default block contains stack of 4 fully connected layers each has ReLU activation self.hidden = [tf.keras.layers.Dense(n_neurons, activation="relu") for _ in range(n_layers)] # Output of block is a theta layer with linear activation self.theta_layer = tf.keras.layers.Dense(theta_size, activation="linear", name="theta") def linear_space(self, backcast_length, forecast_length, is_forecast=True): ls = K.arange(-float(backcast_length), float(forecast_length), 1) / forecast_length return ls[backcast_length:] if is_forecast else K.abs(K.reverse(ls[:backcast_length], axes=0)) def seasonality_model(self, thetas, backcast_length, forecast_length, is_forecast): p = thetas.get_shape().as_list()[-1] p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1) t = self.linear_space(backcast_length, forecast_length, is_forecast=is_forecast) s1 = K.stack([K.cos(2 * np.pi * i * t) for i in range(p1)]) s2 = K.stack([K.sin(2 * np.pi * i * t) for i in range(p2)]) if p == 1: s = s2 else: s = K.concatenate([s1, s2], axis=0) s = K.cast(s, np.float32) return K.dot(thetas, s) def trend_model(self, thetas, backcast_length, forecast_length, is_forecast): p = thetas.shape[-1] # take time dimension t = self.linear_space(backcast_length, forecast_length, is_forecast=is_forecast) t = K.transpose(K.stack([t for i in range(p)])) t = K.cast(t, np.float32) return K.dot(thetas, K.transpose(t)) def call(self, inputs): x = inputs for layer in self.hidden: x = layer(x) theta = self.theta_layer(x) if self.stack_type == 'generic': backcast, forecast = theta[:, :self.input_size], theta[:, -self.horizon:] elif self.stack_type == 'seasonal': backcast = tf.keras.layers.Lambda(self.seasonality_model, arguments={'is_forecast': False, 'backcast_length': self.theta_size, 'forecast_length': self.horizon}, name='seasonal')(theta[:, :self.input_size]) forecast = tf.keras.layers.Lambda(self.seasonality_model, arguments={'is_forecast': True, 'backcast_length': self.theta_size, 'forecast_length': self.horizon}, name='seasonal')(theta[:, -self.horizon:]) else: backcast = tf.keras.layers.Lambda(self.trend_model, arguments={'is_forecast': False, 'backcast_length': self.theta_size, 'forecast_length': self.horizon}, name='trend')(theta[:, :self.input_size]) forecast = tf.keras.layers.Lambda(self.trend_model, arguments={'is_forecast': True, 'backcast_length': self.theta_size, 'forecast_length': self.horizon}, name='trend')(theta[:, -self.horizon:]) return backcast, forecast def _define_model_object(self): """ Build NBEATS model arhitecture """ if self.model is not None: return self.model else: shape_t, shape_f = len(self.y.index)//2, self.y_norm.shape[1] inputs = tf.keras.layers.Input(shape=(shape_t, shape_f)) initial_block = self.NBeatsBlock(input_size=shape_t, theta_size=shape_f, horizon=1, n_neurons=self.num_neurons, n_layers=self.num_layers, stack_type=self.stacks[0]) residuals, forecast = initial_block(inputs) for i in range(1, len(self.stacks)): backcast, block_forecast = self.NBeatsBlock(input_size=shape_t, theta_size=shape_f, horizon=1, n_neurons=self.num_neurons, n_layers=self.num_layers, stack_type=self.stacks[i])(residuals) residuals = tf.keras.layers.subtract([residuals, backcast], name=f"subtract_{i}") forecast = tf.keras.layers.add([forecast, block_forecast], name=f"add_{i}") model = tf.keras.Model(inputs=inputs, outputs=forecast[0]) return model def fit(self): """ Fit model to the provided data """ model = self._define_model_object() generator = tf.keras.preprocessing.sequence.TimeseriesGenerator(self.y_norm.values, self.y_norm[self.id].values, length=model.input.get_shape()[1], batch_size=1) model.compile(optimizer=self.optimizer, loss=self.loss) model.fit(generator, steps_per_epoch=1, epochs=self.num_epoch, shuffle=False, verbose=self.verbose) self.model = model return self.model def save(self, path): """ Save model object - provide full path, for example: '~/usr/models/mymodel.h5' """ self.model.save(path) def load(self, path): """ Load model object - provide full path, for example: '~/usr/models/mymodel.h5' """ self.model = tf.keras.models.load_model(path) def predict(self, h): """ Generate predictions for h steps ahead Params: h - number of steps to forecast If xreg data was used during the training, it must be included for next h periods in the future """ periods=pd.date_range(start=max(self.y.index), periods=h+1, freq=self.y.index.freq)[1:] pred = pd.DataFrame(data=[], columns=self.y.columns, index=periods) if self.xreg.shape[0]>0: pred[self.xreg.columns] = self.xreg[self.xreg.index.isin(pred.index)].values tmp_pred = self.y_norm[-self.model.input.get_shape()[1]:] for i in range(h): inp = np.asarray(tmp_pred[-self.model.input.get_shape()[1]:].values.reshape((1, self.model.input.get_shape()[1], self.y_norm.shape[1]))).astype(np.float32) p = self.model.predict(inp, verbose=0) pred.loc[pred.index[i], self.id] = p tmp_pred =
pd.concat([tmp_pred, pred.iloc[[i]]])
pandas.concat
import pandas as pd import numpy as np def read_market_value_csv(location='../data/data_money/', season_start=2005, season_end=2020, col_names=['club', 'squad_size', 'avg_age', 'num_foreigners', 'market_value', 'av_market_value']): """ Devuelve un DataFrame que contiene el valor estimado de los equipos por temporada. :param location: :param season_start: :param season_end: :param col_names: :return: """ market_value = pd.DataFrame(columns=col_names) for season in range(season_start, season_end + 1): temp_df = pd.read_csv(location + 'tm-' + str(season) + '-' + str(season + 1) + '.csv') temp_df['season'] = season market_value = pd.concat( [market_value, temp_df]) return market_value teams =
pd.read_csv('../data/teams.csv')
pandas.read_csv
import numpy as np import pandas as pd from IPython.display import display, Markdown as md, clear_output from datetime import datetime, timedelta import plotly.figure_factory as ff import qgrid import re from tqdm import tqdm class ProtectListener(): def __init__(self, pp_log, lng): """ Class to analyse protection information. ... Attributes: ----------- df (pd.DataFrame): raw data extracted from Wikipedia API. lng (str): langauge from {'en', 'de'} inf_str / exp_str (str): "indefinite" / "expires" for English "unbeschränkt" / "bis" for Deutsch """ self.lng = lng self.df = pp_log if self.lng == "en": self.inf_str = "indefinite" self.exp_str = "expires" elif self.lng == "de": self.inf_str = "unbeschränkt" self.exp_str = "bis" else: display(md("This language is not supported yet.")) self.inf_str = "indefinite" self.exp_str = "expires" def get_protect(self, level="semi_edit"): """ Main function of ProtectListener. ... Parameters: ----------- level (str): select one from {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"} ... Returns: ----------- final_table (pd.DataFrame): detailed dataframe containing protection records for a particular type/level. plot_table (pd.DataFrame): dataframe for further Gantt Chart plotting. """ if len(self.df) == 0: display(md(f"No {level} protection records!")) return None, pd.DataFrame(columns=["Task", "Start", "Finish", "Resource"]) else: self.df = self.df.drop(self.df[self.df["action"] == "move_prot"].index).reset_index(drop=True) if len(self.df) == 0: display(md(f"No {level} protection records!")) return None,
pd.DataFrame(columns=["Task", "Start", "Finish", "Resource"])
pandas.DataFrame
import numpy as np import pandas as pd import sys, os import urllib.request import socket import datetime import json import constants import conversion import re PASTAVAILABILITYOUTFILE = 'prediction/pastavailabilities-' + datetime.datetime.now().replace(microsecond=0).isoformat() + '.csv' CURRENTPASTAVAILABILITYFILE = 'prediction/pastavailabilities-current.csv' BASEURL = 'https://dev.hsl.fi/citybike/stations/' def fetchAndWriteCurrentAvailability(): """Fetch the citybike availability from HSL API for the last 12 hours. Note: the availabilities are the spot availabilities at the even hours. Write the availabilities in the folder /prediction. """ timeNowAsDateTime = datetime.datetime.utcnow().replace(microsecond=0) timeNow = datetime.datetime.utcnow().replace(microsecond=0).isoformat() timeStr = formatTimeStringToHSL(timeNow) times = [] timeStrs = [] for x in range(13): times.append((timeNowAsDateTime - datetime.timedelta(hours=x)).isoformat()) timeStrs.append(formatTimeStringToHSL(times[x])) df = fetchSeriesOfFiles(timeStrs) df['time'] = df['time'].apply(lambda t: conversion.getUTCTimeStampFromTimeStampString(str(t))) # Write to csv # Disabled: write out timestamped past availability file. Uncomment next line to enable. #df.to_csv(PASTAVAILABILITYOUTFILE, index=False) df.to_csv(CURRENTPASTAVAILABILITYFILE, index=False) def formatTimeStringToHSL(time): timeStr = str(time) timeStr = timeStr.translate({ord(c): None for c in '-:'}) timeStr = timeStr[:11] + '0001Z' return timeStr def formatTimeStringToData(timeStr): timeStr = timeStr[:11] + '0000Z' time = datetime.datetime.strptime(timeStr, "%Y%m%dT%H%M%SZ") return time def parseAndWriteWeatherForecast(response): """ # Write to csv, both timestamped version and replace current df_weatherPred.to_csv(WEATHERFORECASTOUTFILE, index=False) df_weatherPred.to_csv(CURRENTWEATHERFORECASTFILE, index=False) print('Latest weather forecast fetched.') """ def fetchSingleFile(timeStr): reqURL = BASEURL + 'stations_' + timeStr + '.json' print('Sending request to: ', reqURL) req = urllib.request.Request(reqURL) try: response = urllib.request.urlopen(req, timeout=10) #parseAndWriteWeatherForecast(response) return json.load(response) except socket.timeout: print('Bike availability data could not be fetched.') print(' Socket timed out - URL %s', req) return False except urllib.error.URLError as e: print('Bike availability data could not be fetched.') if hasattr(e, 'reason'): print(' Program failed to reach HSL server.') print(' Reason: ', e.reason) elif hasattr(e, 'code'): print('Bike availability data could not be fetched.') print(' The HSL server couldn\'t fulfill the request.') print(' Error code: ', e.code) return False def fetchSeriesOfFiles(timeStrs): aggregateDf =
pd.DataFrame(columns=['stationid', 'time', 'avlbikes'])
pandas.DataFrame
def meanOrderFrequency(path_to_dataset): """ Displays the mean order frequency by utilizing the orders table. :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) import pandas as pd order_file_path = path_to_dataset + '/orders.csv' orders = pd.read_csv(order_file_path) print('On an average, people order once every ', orders['days_since_prior_order'].mean(), 'days') def numOrdersVsDays(path_to_dataset): """ Displays the number of orders and how this number varies with change in days since last order. :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib order_file_path = path_to_dataset + '/orders.csv' orders = pd.read_csv(order_file_path) order_by_date = orders.groupby(by='days_since_prior_order').count() fig = plt.figure(figsize = [15, 7.5]) ax = fig.add_subplot() order_by_date['order_id'].plot.bar(color = '0.75') ax.set_xticklabels(ax.get_xticklabels(), fontsize= 15) plt.yticks(fontsize=16) ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)))) ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000)))) ax.set_xlabel('Days since previous order', fontsize=16) ax.set_ylabel('Number of orders / 1000', fontsize=16) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_children()[7].set_color('0.1') ax.get_children()[14].set_color('0.1') ax.get_children()[21].set_color('0.1') ax.get_children()[30].set_color('0.1') my_yticks = ax.get_yticks() plt.yticks([my_yticks[-2]], visible=True) plt.xticks(rotation = 'horizontal'); def numOrderDaysSizeBubble(path_to_dataset): """ Plots a bubble plot in which: x: Days since Previous Order y: Number of orders/1000 size: Average Size of order given it was placed on x :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns assert isinstance(path_to_dataset, str) order_file_path = path_to_dataset + '/orders.csv' order_product_prior_file_path = path_to_dataset + '/order_products__prior.csv' orders = pd.read_csv(order_file_path) order_products_prior = pd.read_csv(order_product_prior_file_path) order_id_count_products = order_products_prior.groupby(by='order_id').count() orders_with_count = order_id_count_products.merge(orders, on='order_id') order_by_date = orders.groupby(by='days_since_prior_order').count() # take above table and group by days_since_prior_order df_mean_order_size = orders_with_count.groupby(by='days_since_prior_order').mean()['product_id'] df_mean_order_renamed = df_mean_order_size.rename('average_order_size') bubble_plot_dataframe = pd.concat([order_by_date['order_id'], df_mean_order_renamed], axis=1) bubble_plot_dataframe['average_order_size'].index.to_numpy() fig = plt.figure(figsize=[15,7.5]) ax = fig.add_subplot() plt.scatter(bubble_plot_dataframe['average_order_size'].index.to_numpy(), bubble_plot_dataframe['order_id'].values, s=((bubble_plot_dataframe['average_order_size'].values/bubble_plot_dataframe['average_order_size'].values.mean())*10)**3.1, alpha=0.5, c = '0.5') plt.xticks(np.arange(0, 31, 1.0)); ax.xaxis.grid(True) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_xlabel('Days since previous order', fontsize=16) ax.set_ylabel('Number of orders / 1000', fontsize=16) ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)))) ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000)))) my_yticks = ax.get_yticks() plt.yticks([my_yticks[-2], my_yticks[0]], visible=True); fig = plt.figure(figsize=[10,9]) ax = fig.add_subplot() plt.scatter(bubble_plot_dataframe['average_order_size'].index.to_numpy()[:8], bubble_plot_dataframe['order_id'].values[:8], s=((bubble_plot_dataframe['average_order_size'].values[:8]/bubble_plot_dataframe['average_order_size'].values.mean())*10)**3.1, alpha=0.5, c = '0.5') plt.xticks(np.arange(0, 8, 1.0)); ax.xaxis.grid(True) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_xlabel('Days since previous order', fontsize=16) ax.set_ylabel('Number of orders / 1000', fontsize=16) ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x)))) ax.get_yaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x/1000)))) my_yticks = ax.get_yticks() plt.yticks([my_yticks[-2], my_yticks[0]], visible=True); def orderTimeHeatMaps(path_to_dataset): """ Plots the distribution of order with respect to hour of day and day of the week. :param path_to_dataset: this path should have all the .csv files for the dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np order_file_path = path_to_dataset + '/orders.csv' orders = pd.read_csv(order_file_path) grouped_data = orders.groupby(["order_dow", "order_hour_of_day"])["order_number"].aggregate("count").reset_index() grouped_data = grouped_data.pivot('order_dow', 'order_hour_of_day', 'order_number') grouped_data.index = pd.CategoricalIndex(grouped_data.index, categories=[0,1,2,3,4,5,6]) grouped_data.sort_index(level=0, inplace=True) plt.figure(figsize=(12,6)) hour_of_day = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14','15','16', '17', '18', '19','20', '21', '22', '23'] dow = [ 'SUN', 'MON', 'TUES', 'WED', 'THUR','FRI','SAT'] ax = sns.heatmap(grouped_data, xticklabels=hour_of_day,yticklabels=dow,cbar_kws={'label': 'Number Of Orders Made/1000'}) cbar = ax.collections[0].colorbar cbar.set_ticks([0, 10000, 20000, 30000, 40000, 50000]) cbar.set_ticklabels(['0','10.0','20.0','30.0','40.0','50.0']) ax.figure.axes[-1].yaxis.label.set_size(15) ax.figure.axes[0].yaxis.label.set_size(15) ax.figure.axes[0].xaxis.label.set_size(15) ax.set(xlabel='Hour of Day', ylabel= "Day of the Week") ax.set_title("Number of orders made by Day of the Week vs Hour of Day", fontsize=15) plt.show() grouped_data = orders.groupby(["order_dow", "order_hour_of_day"])["order_number"].aggregate("count").reset_index() grouped_data = grouped_data.pivot('order_dow', 'order_hour_of_day', 'order_number') grouped_data.index = pd.CategoricalIndex(grouped_data.index, categories=[0,1,2,3,4,5,6]) grouped_data.sort_index(level=0, inplace=True) plt.figure(figsize=(12,6)) hour_of_day = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14','15','16', '17', '18', '19','20', '21', '22', '23'] dow = [ 'SUN', 'MON', 'TUES', 'WED', 'THUR','FRI','SAT'] ax = sns.heatmap(np.log(grouped_data), xticklabels=hour_of_day,yticklabels=dow,cbar=False) cbar = ax.collections[0].colorbar ax.figure.axes[-1].yaxis.label.set_size(15) ax.figure.axes[0].yaxis.label.set_size(15) ax.figure.axes[0].xaxis.label.set_size(15) ax.set(xlabel='Hour of Day', ylabel= "Day of the Week") ax.set_title("Number of orders made by Day of the Week vs Hour of Day (Log Scale)", fontsize=15) plt.show() def generateWordCloud(path_to_dataset): """ Generates word cloud. :param path_to_dataset: path to dataset :type path_to_dataset: str """ assert isinstance(path_to_dataset, str) from wordcloud import WordCloud import pandas as pd import matplotlib.pyplot as plt product_path = path_to_dataset + "/products.csv" aisles_path = path_to_dataset + "/aisles.csv" departments_path = path_to_dataset + "/departments.csv" order_product_prior_path = path_to_dataset + "/order_products__prior.csv" df_products = pd.read_csv(product_path) df_aisles = pd.read_csv(aisles_path) df_departments =
pd.read_csv(departments_path)
pandas.read_csv
# -*- coding: utf-8 -*- # Copyright © 2021 by <NAME>. All rights reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. """Mix of utilities.""" import argparse import json import logging from pathlib import Path from typing import Any, Callable, Dict, List import pandas as pd import yaml from ndj_pipeline import config, model, post def clean_column_names(column_list: List[str]) -> Dict[str, str]: """Simple string cleaning rules for columns. Args: column_list: Column names to be cleaned Returns: A dict mapping old and cleaned column names. """ new_column_list = [ ( col.lower() .strip() .replace(" ", "_") .replace(r"/", "_") .replace(r"\n", "_") .replace(r"\\", "_") .replace(r"\t", "_") .replace(" ", "_") .replace("^", "") ) for col in column_list ] return dict(zip(column_list, new_column_list)) def get_model(function: str) -> Callable: """Simple redirection to get named function from model.py.""" return getattr(model, function) def get_post(function: str) -> Callable: """Simple redirection to get named function from post.py.""" return getattr(post, function) def load_model_config(model_config_path: str) -> Dict[str, Any]: """Loads model config, either from yaml or json format.""" config_path = Path(model_config_path) if config_path.suffix == ".yaml": return yaml.safe_load(config_path.open()) elif config_path.suffix == ".json": return json.load(config_path.open()) else: raise ValueError(f"Unsupported config file type {model_config_path}") def get_model_path(model_config: Dict[str, Any]) -> Path: """Returns the model path from config file.""" return Path(config.default_model_folder, model_config["run_name"]) def create_model_folder(model_config: Dict[str, Any]) -> None: """Create model asset folder and write config if it doesn't exist.""" model_path = get_model_path(model_config) if model_path.exists(): return None else: model_path.mkdir() config = Path(model_path, "config.json") with open(config, "w") as f: json.dump(model_config, f, indent=4) def create_tables_html() -> None: """Scan schemas directory to create HTML page for data documentation.""" schema_paths = Path("schemas").glob("*.yaml") html_list = [] for schema_path in schema_paths: logging.info(f"Loading schema from {schema_path}") with open(schema_path, "r") as f: schema = yaml.safe_load(f) table_name = f"<h1>{schema_path.stem.title()}</h1>" html_list.append(table_name) table_comment = schema.get("comment", "") html_list.append(table_comment) table_html = parse_schema_to_table(schema) html_list.append(table_html) output_path = Path("docs", "data_dictionary.html") logging.info(f"Saving data dictionary to {output_path}") html = "\n<p>\n".join(html_list) with open(output_path, "w") as f: f.write(html) def parse_schema_to_table(schema: Dict[str, Any]) -> str: """Parses a table schema into a HTML table for use in documentation.""" data =
pd.DataFrame.from_dict(schema["columns"], orient="index")
pandas.DataFrame.from_dict
import re import time from functools import partial from itertools import product from multiprocessing import Manager, Pool import pandas as pd from numpy.random import shuffle from toolz import partition_all from toolz.dicttoolz import valfilter from cnswd.mongodb import get_db from cnswd.setting.constants import MARKET_START, MAX_WORKER from cnswd.utils import make_logger from cnswd.websource.wy import fetch_company_info from .base import get_stock_status logger = make_logger('网易公司资料') NAMES = ['公司简介', 'IPO资料'] START = MARKET_START.tz_localize(None) def create_index_for(collection): # 不存在索性信息时,创建索引 if not collection.index_information(): collection.create_index([("股票代码", 1)]) def need_refresh(collection2, code): """是否需要刷新 简单规则: 如果已经存在IPO日期,且24小时内已经刷新 ❌ 否则 ✔ """ now = pd.Timestamp('now') doc = collection2.find_one({'股票代码': code}) if doc: # 当更新间隔时间超过一天,且上市日期为空时才需要更新 cond1 = now - doc['更新时间'] >= pd.Timedelta(days=1) cond2 = pd.isnull(doc.get('上市日期', None)) return cond1 and cond2 else: return True def _droped_null(doc): res = {} for k, v in doc.items(): if not
pd.isnull(doc[k])
pandas.isnull
from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(result, expected) msg = "The 'errors' keyword in " with tm.assert_produces_warning(FutureWarning, match=msg): # where (we ignore the errors=) result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) # with a non-datetime result = ser.fillna("foo") expected = Series([Timestamp("20130101"), "foo"]) tm.assert_series_equal(result, expected) # assignment ser2 = ser.copy() ser2[1] = "foo" tm.assert_series_equal(ser2, expected) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 ser = Series([1.0, np.nan]) result = ser.fillna(0, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) # infer int64 from float64 when fillna value is a dict ser = Series([1.0, np.nan]) result = ser.fillna({1: 0}, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) def test_timedelta_fillna(self, frame_or_series): # GH#3371 ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) td = ser.diff() obj = frame_or_series(td) # reg fillna result = obj.fillna(Timedelta(seconds=0)) expected = Series( [ timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # interpreted as seconds, no longer supported msg = "value should be a 'Timedelta', 'NaT', or array of those. Got 'int'" with pytest.raises(TypeError, match=msg): obj.fillna(1) result = obj.fillna(Timedelta(seconds=1)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(timedelta(days=1, seconds=1)) expected = Series( [ timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(np.timedelta64(10 ** 9)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(NaT) expected = Series( [ NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ], dtype="m8[ns]", ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # ffill td[2] = np.nan obj = frame_or_series(td) result = obj.ffill() expected = td.fillna(Timedelta(seconds=0)) expected[0] = np.nan expected = frame_or_series(expected) tm.assert_equal(result, expected) # bfill td[2] = np.nan obj = frame_or_series(td) result = obj.bfill() expected = td.fillna(Timedelta(seconds=0)) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) expected = frame_or_series(expected) tm.assert_equal(result, expected) def test_datetime64_fillna(self): ser = Series( [ Timestamp("20130101"),
Timestamp("20130101")
pandas.Timestamp
########################################################################## ## Summary ########################################################################## ''' Runs a Flask-based web server that can dynamically run our models for us. Warning - overall pretty quick and dirty - not great attention payed to consistent or short variable names, or the ability to reuse code sections. Just getting a website up in time for the presentation. ''' ########################################################################## ## Imports & Configuration ########################################################################## from flask import Flask from flask import render_template import pickle import pandas import json from sklearn.ensemble import RandomForestClassifier import numpy from sklearn.preprocessing import StandardScaler, Imputer, LabelEncoder, MinMaxScaler, OneHotEncoder from sklearn.pipeline import Pipeline def clean_dataframe(dataframe, debug=False): ''' A modified version of clean_dataframe copied from the prediction/data_utilities.py, edited so that it can operate standalone (had conflicts with Flask) ''' #Convert all the categorical names to numbers. with open('meta.json', 'r') as f: meta = json.load(f) categorical_features = meta['categorical_features'] for column_name in categorical_features: if column_name in dataframe.columns: categories = categorical_features[column_name] categories_map = {x:i for i,x in enumerate(categories)} dataframe[column_name] = dataframe[column_name].map(categories_map) #Replacing string values in rent replace_mapping = { 'median_rent': {'-': numpy.nan,'100-': 100, '2,000+': 2000}} try: dataframe.replace(to_replace=replace_mapping, inplace=True) dataframe['median_rent'] =
pandas.to_numeric(dataframe['median_rent'], errors='ignore')
pandas.to_numeric
# coding: utf-8 # Create input features for the boosted decision tree model. import os import sys import math import datetime import pandas as pd from sklearn.pipeline import Pipeline from common.features.lag import LagFeaturizer from common.features.rolling_window import RollingWindowFeaturizer from common.features.stats import PopularityFeaturizer from common.features.temporal import TemporalFeaturizer # Append TSPerf path to sys.path tsperf_dir = os.getcwd() if tsperf_dir not in sys.path: sys.path.append(tsperf_dir) # Import TSPerf components from utils import df_from_cartesian_product import retail_sales.OrangeJuice_Pt_3Weeks_Weekly.common.benchmark_settings as bs pd.set_option("display.max_columns", None) def oj_preprocess(df, aux_df, week_list, store_list, brand_list, train_df=None): df["move"] = df["logmove"].apply(lambda x: round(math.exp(x))) df = df[["store", "brand", "week", "move"]].copy() # Create a dataframe to hold all necessary data d = {"store": store_list, "brand": brand_list, "week": week_list} data_grid = df_from_cartesian_product(d) data_filled = pd.merge(data_grid, df, how="left", on=["store", "brand", "week"]) # Get future price, deal, and advertisement info data_filled = pd.merge(data_filled, aux_df, how="left", on=["store", "brand", "week"]) # Fill missing values if train_df is not None: data_filled =
pd.concat(train_df, data_filled)
pandas.concat
import os import zipfile import pandas as pd # import flirt import flirt.reader.empatica def get_features_for_empatica_archive(zip_file_path: str, window_length: int = 180, window_step_size: int = 1, hrv_features: bool = True, eda_features: bool = True, acc_features: bool = True, debug: bool = False) -> pd.DataFrame: """ This function provides a standard set of HRV, EDA, ACC features for a given Empatica archive \ (e.g. downloaded from E4 connect) Parameters ---------- zip_file_path : str path to the Empatica zip file window_length : int the epoch width (window size) in seconds, for which features should be calculated window_step_size : int the step size for the sliding window in seconds hrv_features : bool whether HRV features should be calculated from the archive eda_features : bool whether EDA features should be calculated from the archive acc_features : bool whether ACC features should be calculated from the archive debug : bool whether debug output should be printed Returns ------- pd.DataFrame a pandas DataFrame containing a standard set of features for Empatica Examples -------- >>> import flirt.simple >>> features = flirt.simple.get_features_for_empatica_archive("1560460372_A12345.zip") """ if zip_file_path is None or not os.path.isfile(zip_file_path) or not zipfile.is_zipfile(zip_file_path): raise ValueError('zip file does note exist %s' % zip_file_path) if debug: print("Reading files") df_hrv_features = pd.DataFrame() df_eda_features = pd.DataFrame() df_acc_features = pd.DataFrame() with zipfile.ZipFile(zip_file_path) as zip_file: if hrv_features: with zip_file.open("IBI.csv") as f: ibi_data = flirt.reader.empatica.read_ibi_file_into_df(f) if debug: print("Calculating HRV features") df_hrv_features = flirt.hrv.get_hrv_features(ibi_data.iloc[:, 0], window_length=window_length, window_step_size=window_step_size) if eda_features: with zip_file.open("EDA.csv") as f: eda_data = flirt.reader.empatica.read_eda_file_into_df(f) if debug: print("Calculating EDA features") df_eda_features = flirt.eda.get_eda_features(eda_data.iloc[:, 0], window_length=window_length, window_step_size=window_step_size).add_prefix('eda_') if acc_features: with zip_file.open("ACC.csv") as f: acc_data = flirt.reader.empatica.read_acc_file_into_df(f) if debug: print("Calculating ACC features") df_acc_features = flirt.acc.get_acc_features(acc_data[:], window_length=window_length, window_step_size=window_step_size).add_prefix('acc_') return __merge_features(df_hrv_features, df_eda_features, df_acc_features, freq='%ds' % window_step_size) def __merge_features(hrv_features: pd.DataFrame, eda_features: pd.DataFrame, acc_features: pd.DataFrame, freq: str = '1s') -> pd.DataFrame: if hrv_features.empty and eda_features.empty and acc_features.empty: print("Received empty input features, returning empty df") return
pd.DataFrame()
pandas.DataFrame
# -*- coding: UTF-8 -*- """ @CreateDate: 2020/07/18 @Author: <NAME> @File: process.py @Project: stagewiseNN """ import os import sys from pathlib import Path from typing import Sequence, Mapping, Optional, Union, Callable import logging import pandas as pd import numpy as np import scanpy as sc from scipy import sparse from sklearn.preprocessing import label_binarize from ._scale import wrapper_scale def check_dirs(path): if os.path.exists(path): print('already exists:\n\t%s' % path) else: os.makedirs(path) print('a new directory made:\n\t%s' % path) def reverse_dict(d: dict, ): """ the values of the dict must be list-like type """ d_rev = {} for k in d.keys(): vals = d[k] _d = dict.fromkeys(vals, k) d_rev.update(_d) return d_rev def describe_dataframe(df: pd.DataFrame, **kwargs): for c in df.columns: print(c.center(40, '-'), **kwargs) print(describe_series(df[c], asstr=True), **kwargs) def describe_series( srs: Sequence, max_cats: int = 100, asstr: bool = False, ): """ inspect data-structure """ srs = pd.Series(srs) if len(srs.unique()) <= max_cats: desc_type = 'Value counts' result = srs.value_counts(dropna=False) elif isinstance(srs[0], (int, float)): desc_type = 'Numerical summary' result = srs.describe() else: desc_type = 'Header lines' result = srs.head() if asstr: return f'{desc_type}:\n{result}' else: return result, desc_type def make_binary(mat): mat_bin = mat.copy() mat_bin[mat_bin > 0] = 1. return mat_bin def set_adata_hvgs( adata: sc.AnnData, gene_list: Optional[Sequence] = None, indicator: Optional[Sequence[bool]] = None, slim: bool = True, copy: bool = False, ): """ Setting the given (may be pre-computed) set of genes as highly variable, if `copy` is False, changes will be made to the input adata. if slim is True and adata.raw is None, raw data will be backup. """ if copy: adata = adata.copy() logging.info( 'Setting the given set of %d genes as highly variable' % len(gene_list)) if (indicator is None) and (gene_list is not None): indicator = [g in gene_list for g in adata.var_names] adata.var['highly_variable'] = indicator if slim: if adata.raw is None: adata.raw = adata logging.info('slimming adata to contain only HVGs') adata = adata[:, adata.var['highly_variable']].copy() return adata def change_names( seq: Sequence, mapping: Optional[Mapping] = None, **kwmaps ) -> list: mapping = {} if mapping is None else mapping mapping.update(kwmaps) func = lambda x: mapping.get(x, x) return list(map(func, seq)) def normalize_default( adata, target_sum=None, copy=False, log_only=False, ): """Normalizing datasets with default settings (total-counts normalization followed by log(x+1) transform). Parameters ---------- adata ``AnnData`` object target_sum scale factor of total-count normalization copy whether to copy the dataset log_only whether to skip the "total-counts normalization" and only perform log(x+1) transform Returns ------- ``AnnData`` or None """ if copy: adata = adata.copy() logging.info('A copy of AnnData made!') else: logging.info('No copy was made, the input AnnData will be changed!') logging.info('normalizing datasets with default settings.') if not log_only: logging.info( f'performing total-sum normalization, target_sum={target_sum}...') sc.pp.normalize_total(adata, target_sum=target_sum) else: logging.info('skipping total-sum normalization') sc.pp.log1p(adata) return adata def normalize_log_then_total( adata, target_sum=None, copy=False, ): """ For SplitSeq data, performing log(x+1) BEFORE total-sum normalization will results a better UMAP visualization (e.g. clusters would be less confounded by different total-counts ). """ if copy: adata = adata.copy() logging.info('A copy of AnnData made!') sc.pp.log1p(adata, ) sc.pp.normalize_total(adata, target_sum=target_sum, ) return adata def groupwise_hvgs_freq( adata, groupby='batch', return_hvgs: bool = True, **hvg_kwds, ): """ Separately compute highly variable genes (HVGs) for each group, and count the frequencies of genes being selected as HVGs among those groups. Parameters ---------- adata the ``AnnData`` object groupby a column name in ``adata.obs`` specifying batches or groups that you would like to independently compute HVGs. return_hvgs whether to return the computed dict of HVG-lists for each group hvg_kwds Other Parameters for ``sc.pp.highly_variable_genes`` Returns ------- hvg_freq: dict the HVG frequencies hvg_dict: dict returned only if ``return_hvgs`` is True """ from collections import Counter hvg_dict = {} hvg_freq = Counter() group_labels = adata.obs[groupby] for g in group_labels.unique(): _adt = adata[group_labels == g].copy() sc.pp.highly_variable_genes(_adt, **hvg_kwds) _hvgs = _adt.var[_adt.var['highly_variable']].index hvg_freq += Counter(_hvgs) if return_hvgs: hvg_dict[g] = list(_hvgs) hvg_freq = dict(hvg_freq) if return_hvgs: return hvg_freq, hvg_dict return hvg_freq def take_high_freq_elements( freq: Mapping, min_freq: int = 3): return list(filter(lambda x: freq[x] >= min_freq, freq.keys())) def set_precomputed_neighbors( adata, distances, connectivities, n_neighbors=15, metric='cosine', # pretended parameter method='umap', # pretended parameter metric_kwds=None, # pretended parameter use_rep=None, # pretended parameter n_pcs=None, # pretended parameter key_added=None, # ): if key_added is None: key_added = 'neighbors' conns_key = 'connectivities' dists_key = 'distances' else: conns_key = key_added + '_connectivities' dists_key = key_added + '_distances' if connectivities is None: connectivities = distances.copy().tocsr() connectivities[connectivities > 0] = 1 adata.obsp[dists_key] = distances adata.obsp[conns_key] = connectivities adata.uns[key_added] = {} neighbors_dict = adata.uns[key_added] neighbors_dict['connectivities_key'] = conns_key neighbors_dict['distances_key'] = dists_key neighbors_dict['params'] = {'n_neighbors': n_neighbors, 'method': method} neighbors_dict['params']['metric'] = metric if metric_kwds is not None: neighbors_dict['params']['metric_kwds'] = metric_kwds if use_rep is not None: neighbors_dict['params']['use_rep'] = use_rep if n_pcs is not None: neighbors_dict['params']['n_pcs'] = n_pcs return adata def quick_preprocess_raw( adata: sc.AnnData, target_sum: Optional[int] = None, hvgs: Optional[Sequence] = None, batch_key=None, copy=True, log_first: bool = False, **hvg_kwds ) -> sc.AnnData: """ Go through the data-analysis pipeline, including normalization, HVG selection, and z-scoring (centering and scaling) Parameters ---------- adata the ``Anndata`` object target_sum the target total counts after normalization. If `None`, after normalization, each observation (cell) has a total count equal to the median of total counts for observations (cells) before normalization. hvgs highly variable genes to be used for dimensionality reduction (centering and PCA) batch_key a column name in ``adata.obs`` specifying the batch labels copy whether to make a co[y of the input data. if `False`, the data object will be change inplace. log_first for some data distributions, perform log(x+1) before total-count normalization might give a better result (e.g. clustering results may be less affected by the sequencing depths) hvg_kwds other key-word parameters for ``sc.pp.highly_variable_genes`` Returns ------- """ if copy: _adata = adata.copy() logging.info('A copy of AnnData made!') else: _adata = adata logging.info('No copy was made, the input AnnData will be changed!') # 1: normalization if log_first: normalize_log_then_total(_adata, target_sum=target_sum) else: normalize_default(_adata, target_sum=target_sum) # 2: HVG selection (skipped if `hvgs` is given) if hvgs is None: sc.pp.highly_variable_genes( _adata, batch_key=batch_key, **hvg_kwds) indicator = _adata.var['highly_variable'] # _adata = _adata[:, _adata.var['highly_variable']] else: indicator = None _adata = set_adata_hvgs(_adata, gene_list=hvgs, indicator=indicator, ) # 3: z-score wrapper_scale(_adata, groupby=batch_key) return _adata def label_binarize_each(labels, classes, sparse_out=True): lb1hot = label_binarize(labels, classes=classes, sparse_output=sparse_out) if len(classes) == 2: lb1hot = lb1hot.toarray() lb1hot = np.c_[1 - lb1hot, lb1hot] if sparse_out: lb1hot = sparse.csc_matrix(lb1hot) return lb1hot def group_mean(X, labels, binary=False, classes=None, features=None, print_groups=True): """ This function may work with more efficiency than `df.groupby().mean()` when handling sparse matrix. Parameters ---------- X: shape (n_samples, n_features) labels: shape (n_samples, ) classes: optional names of groups features: optional names of features print_groups: bool whether to inspect the groups """ classes = np.unique(labels, ) if classes is None else classes if binary: X = (X > 0) # .astype('float') print('Binarized...the results will be the expression proportions.') if len(classes) == 1: grp_mean = X.mean(axis=0).T else: lb1hot = label_binarize_each(labels, classes=classes, sparse_out=True) print(f'Calculating feature averages for {len(classes)} groups') if print_groups: print(classes) grp_mean = X.T.dot(lb1hot) / lb1hot.sum(axis=0) grp_mean =
pd.DataFrame(grp_mean, columns=classes, index=features)
pandas.DataFrame
import argparse import logging from keras.models import Sequential from keras.layers import * import pandas as pd from sklearn.preprocessing import MinMaxScaler import xarray as xr # ---------------------------------------------------------------------------------------------------------------------- # set up a basic, global _logger which will write to the console as standard error logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') _logger = logging.getLogger(__name__) # ---------------------------------------------------------------------------------------------------------------------- def pull_vars_into_dataframe(dataset, variables, level, hemisphere=None): """ Create a pandas DataFrame from the specified variables of an xarray DataSet. :param dataset: xarray.DataSet :param variables: list of variables to be extracted from the DataSet and included in the resulting DataFrame :param level: the level index (all times, lats, and lons included from this indexed level) :param hemisphere: 'north', 'south', or None :return: """ # the dataframe we'll populate and return df =
pd.DataFrame()
pandas.DataFrame
# ============================================================================= # File: DocSim_class.py # Author: <NAME>, <NAME> # Functions: # init: (defining the class object) # input: dataframe: data, # string: text, name of the column in data that contains text as a single string # Additional features: # factors: defined in preprocessing function. Retreived in getFeatureName function # vectorized_documents: defined in preprocessing function. Retreived in getFeatureName function # similarity_scores: defined in doc_sim function. Retreived in getSimalarityScore function # preprocessing: # input: optional boolean parameters: remove_stopwords, stem, tfidf, LSA. Default False # optional list of additional stopwords: filler_words. Default empty list # optional int number of LSA topics: lsa_n_components. Default 2 # output: Returns a dataframe with an additional column "cleaned_vectorized_document" # that contains the preprocessed and vectorized documents. # Note: Preprocessing does not change the dataframe used in defining the class. # It returns a copy of the preprocessed dataframe and saves the list of words # corresponding to the word vectors to the object. # get_feature_names: # input: None # output: Returns the list of words that corresponds to the numeric vectors # get_preprocessed_text: # input: None # output: Returns the series 'clean_processed_text'. # ============================================================================= #%% # Standard Library Modules import os import re import string import datetime #Related 3rd Party Modules import nltk nltk.download('wordnet') import pandas import numpy import scipy import string #sklearn does not automatically import its subpackages import sklearn import sklearn.metrics import sklearn.decomposition import sklearn.feature_extraction #%% # DocSim Class class DocSim: #defining the class """ Parameters ---------- data : dataframe Dataframe where one column contains the text from the documents. skill : String Specify the name of the column that contains the skill information. study : String Specify the name of the column that contains the study information. doc_type : String Specify the name of the column that contains the document type. e.g. "script" or "transcript" text : String Specify the name of the column that contains the document text. """ def __init__(self, data, skill, study, doc_type, doc_id, text): # Initialize the attributes self.data = data.fillna("NA") self.doc_id = doc_id self.skill = skill self.study = study self.doc_type = doc_type self.text = text # The column of preprocessed numeric vectors self.vectorized_documents = "Apply function 'preprocessing' before \ 'get_preprocessed_text' to get the column 'clean_vectorized_document'" # The word vector corresponding to the numeric vector self.tfidf_factors = "Apply function 'preprocessing' before \ 'get_tfidf_feature_names' to get the feature names associated \ with the numeric vectors in 'clean_vectorized_document'" self.lsa_factors = "Apply function 'preprocessing' before \ 'get_lsa_feature_names' to get the feature names associated \ with the numeric vectors in 'clean_vectorized_document'" # Check if column name specified is correct if self.text not in self.data.columns: raise SystemExit(f"Incorrect 'text' used. \ Cannot find {self.text} in data") if self.skill not in self.data.columns: raise SystemExit(f"Incorrect 'skill' used. \ Cannot find {self.skill} in data") if self.study not in self.data.columns: raise SystemExit(f"Incorrect 'study' used. \ Cannot find {self.study} in data") if self.doc_type not in self.data.columns: raise SystemExit(f"Incorrect 'doc_type' used. \ Cannot find {self.doc_type} in data") # clean and convert text to numeric vector def preprocessing(self, remove_stopwords = False, filler_words = [], stem = False, lemm = False, tfidf = False, tfidf_level = 'skill', lsa = False, lsa_n_components = 2, ngram = 1, remove_punctuation = None): """ Parameters ---------- remove_stopwords : Boolean, optional Remove stopwords and punctuation from the Natural Language Toolkit's (NLTK) pre-specified list. The default is False. filler_words : List of strings, optional Specify any additional stop words to be removed. The default is []. stem : Boolean, optional Replace all word derivatives with a single stem. The default is False. tfidf : Boolean, optional Weight each word frequency using term frequency–inverse document frequency (tf-idf) weighting. The default is False. tfidf_level: string, ['full', 'study', 'skill', 'document'] Specify the level of hierarchy to apply tf-idf lsa : Boolean, optional Apply the dimentionality reduction technique Latent Semantic Analysis (LSA). The default is False. lsa_n_components : Int, optional The number of topics in the output data. The default is 2. Returns ------- df : Dataframe A copy data with an additional column containing the preprocessed and vectorized documents. Package Dependencies ------ nltk string sklearn """ # Make a copy of the data df = self.data.copy() # Isolate text column as lowercase text = self.data[self.text].str.lower() # Convert filler words from list to a set filler_words = set(filler_words) # Define a set of stopwords if remove_stopwords: filler_words = filler_words.union(\ set(nltk.corpus.stopwords.words('english'))) # Add punctuation to stopwords, if applicable if (remove_punctuation is None and remove_stopwords) \ or remove_punctuation: filler_words = filler_words.union(set(string.punctuation)) # If no items have been added to filler words, # define stopwords as None if not filler_words: filler_words = None # Set aside ngram filler words to remove later ngram_fillers = [] if not filler_words is None and len(filler_words) > 0: ngram_fillers = [x for x in filler_words if " " in x] # print(filler_words) # Stem words by cutting off at the root of the word if stem: if filler_words == None: filler_words = [filler_words] # Tokenize # text = text.apply(lambda x: nltk.tokenize.casual.casual_tokenize(x)) text = text.apply(lambda x: nltk.tokenize.word_tokenize(x)) # Set up the stemmer and apply stemming stemmer = nltk.stem.SnowballStemmer('english') text = text.apply(lambda x: [stemmer.stem(item) for item in x]) # Remove filler words if possible, and join together text = text.apply(lambda x: \ ' '.join([y for y in x if y not in filler_words])) # Ensure filler words are not applied multiple times filler_words = None # Lemmantize by converting words to a simpler form elif lemm: if filler_words == None: filler_words = [filler_words] # text = text.apply(lambda x: nltk.tokenize.casual.casual_tokenize(x)) text = text.apply(lambda x: nltk.tokenize.word_tokenize(x)) # Set up the lemmatizer and apply wnl = nltk.stem.WordNetLemmatizer() text = text.apply(lambda x: [wnl.lemmatize(item) for item in x]) # Remove filler words if possible, and join together text = text.apply(lambda x: \ ' '.join([y for y in x if y not in filler_words])) # Ensure filler words are not applied multiple times filler_words = None # Remove ngram > 1 stop words, filler words, # and/or punctuation that are in filler_words if ngram_fillers: for nf in ngram_fillers: text = text.apply(lambda x: x.lower().replace(nf.lower(), " ")) # Vectorize the text: using tf-idf weights if tfidf: # Create default TFIDFVectorizer input parameters tf_params = {'lowercase': True, 'stop_words': filler_words, 'ngram_range': (1, ngram)} # Lookup dictionary for alternative TF-IDF parameter settings tfopts = {"bool": ["binary", True], "l1": ["norm", "l1"], "l2": ["norm", "l2"], "logn": ["smooth_idf", True], "sub": ["sublinear_tf", True], "tf_only": ["use_idf", False]} # Handle alternative tf-idf options using lookup dict if tfidf in tfopts.keys(): b = tfopts[tfidf] tf_params[b[0]] = b[1] # Handle different level of TF-IDF if tfidf_level == 'full': # Tfidf Vectorizer # vectorizer = sklearn.feature_extraction.text.\ # TfidfVectorizer(lowercase = True, # stop_words = filler_words, # ngram_range = (1, ngram)) vectorizer = sklearn.feature_extraction.text.\ TfidfVectorizer(**tf_params) vectors = vectorizer.fit_transform(text.tolist()) # Save feature names self.tfidf_factors = [('full', vectorizer.get_feature_names())] # TF-IDF at each appropriate Level else: level_opts = {'skill': self.skill, 'study': self.study, 'document': self.doc_id} df = df.sort_values(level_opts[tfidf_level]) vectors = self.tfidf_preprocessing(level = level_opts[tfidf_level], text = text, tfidf_params = tf_params) # filler_words = filler_words, # ngram = ngram, # If tf-idf is not enabled, vectorize the text using word counts else: # Count vectorize vectorizer = sklearn.feature_extraction.text.\ CountVectorizer(lowercase = True, stop_words = filler_words, ngram_range = (1, ngram)) vectors = vectorizer.fit_transform(text.tolist()) # Save feature names self.tfidf_factors = [('full', vectorizer.get_feature_names())] # Apply LSA using the vectorized text if lsa: # Check if the number of LSA components is >= the number of features if lsa_n_components >= min([len(self.tfidf_factors[x][1]) \ for x in range(0, len(self.tfidf_factors))]): raise SystemExit("lsa_n_components is too large for this set of documents.\ lsa_n_components must be less than " + str(min([len(self.tfidf_factors[x][1]) for x in range(0, len(self.tfidf_factors))]))) # Rename the vectors vectorized_text = vectors # Define the LSA function lsa_function = sklearn.decomposition.TruncatedSVD( \ n_components = lsa_n_components, random_state = 100) # Convert text to vectors vectors = lsa_function.fit_transform(vectorized_text).tolist() # Define list of topic numbers self.lsa_factors = ['topic ' + str(i) for i in range(1, lsa_n_components + 1)] # Save the vectorized documents to the class self.vectorized_documents = vectors df["cleaned_vectorized_document"] = vectors return df # Append preprocessed text to the dataframe and return denselist = vectors.todense().tolist() # # Save the vectorized documents to the class self.vectorized_documents = denselist df["cleaned_vectorized_document"] = denselist return df def tfidf_preprocessing(self, level, text, tfidf_params = None): #filler_words, ngram = 1, """ Apply TF-IDF at different level of hierarchy Parameters ---------- level: string Column name of the level of hierarchy in self.data text: Pandas Series A Pandas series of raw text for each document filler_words: list A list of filler words to be removed from TF-IDF process """ less_params = tfidf_params.copy() leaveout = ['binary', 'norm', 'smooth_idf', 'sublinear_tf', 'use_idf'] less_params = {k: less_params[k] for k in less_params.keys() if k not in leaveout} # Get all unique words for mapping vectorizer = sklearn.feature_extraction.text.\ CountVectorizer(**less_params) vectors = vectorizer.fit_transform(text.tolist()) # Save feature names as a dictionary of Data Frame unique_words = vectorizer.get_feature_names() df_all = pandas.DataFrame(index = unique_words) # Write the text back to self.data and sort by skill # so that the ordering is correct self.data = self.data.sort_values(level) self.data[self.text] = text # Create empty list to store results vectors = list() self.tfidf_factors = list() for index in self.data[level].unique(): # if not index or index is numpy.nan: # continue # Extract the raw text for this study group tmp_text = self.data.loc[ self.data[level] == index, [self.doc_id, self.text]] # print(index, len(tmp_text.index)) # Train and Fit TF-IDF vectorizer = sklearn.feature_extraction.text.\ TfidfVectorizer(**tfidf_params) tmp_vectors = vectorizer.fit_transform( tmp_text[self.text].tolist()) # Get the TF-IDF weights and feature names tmp_weights = tmp_vectors.todense().tolist() tmp_factors = vectorizer.get_feature_names() # Store weights as a data frame df_tmp = pandas.DataFrame(numpy.transpose(tmp_weights), index = tmp_factors) # Match with all unique words for identical structure vectors2 = df_all \ .join(df_tmp, how = "left") \ .fillna(0) vectors += vectors2.to_numpy() \ .T \ .tolist() # # each row is a unique word, each column is a unique document # vocab = pandas.DataFrame.from_dict(vectorizer.vocabulary_, # orient="index", columns=["count"]) # vectors2.index.name = "i" # vocab.index.name = "i" # vocab = vocab.merge(vectors2, how="outer", on='i') # print(vocab.head()) # Store features self.tfidf_factors += [(index, tmp_factors)] # Convert vectors back to sparse matrix return scipy.sparse.csr_matrix(vectors) # Get the series containing the vectorized documents def get_preprocessed_text(self): """ Get the series containing the vectorized documents """ return self.vectorized_documents # Get the features names for the numeric vector def get_tfidf_feature_names(self): """ Get the features names for the tfidf feature names """ return self.tfidf_factors def get_lsa_feature_names(self): """ Get the features names for the lsa feature names """ return self.lsa_factors def get_skill(self): """ Get the series containing the unique skills """ return self.data[self.skill].unique() def get_doc_type(self): """ Get the series containing the unique document type """ return self.data[self.doc_type].unique() def get_study(self, skill_id = []): """ Get the series containing the unique study information by skill Parameters ---------- skill_id: list Put in the skill id that you want to look at. """ if len(skill_id) == 0: skill_id = self.get_skill() return self.data[self.data[self.skill] \ .isin(skill_id)][self.study].unique() def check_preprocessing_input(self, remove_stopwords, filler_words, stem, lemm, tfidf, tfidf_level, lsa, lsa_n_components, ngram, remove_punctuation): # Check if the method is coded correctly # if method not in ('cosine'): # raise SystemExit("Incorrect 'method' used. Use 'cosine'") # Check preprocessing settings: if remove_stopwords not in (True, False): raise SystemExit("Incorrect 'remove_stopwords' used. \ Use True or False") if stem not in (True, False): raise SystemExit("Incorrect 'stem' used. Use True or False") if lemm not in (True, False): raise SystemExit("Incorrect 'lemm' used. Use True or False") if stem and lemm: raise SystemExit("Stemmed text may not also be lemmatized.") if remove_punctuation not in (True, False, None): raise SystemExit("Incorrect 'remove_punctuation' used. Use True or False") if tfidf not in (True, False, "bool", "l1", "l2", "logn", "sub", "tf_only"): raise SystemExit("Incorrect 'tfidf' used. Use True or False") if tfidf_level not in ('full', 'skill', 'study', 'document'): raise SystemExit("Incorrect 'tfidf_level' used. Use \ 'full', 'skill', 'study' or 'document'. ") if lsa not in (True, False): raise SystemExit("Incorrect 'lsa' used. Use True or False") if type(lsa_n_components) is not int: raise SystemExit("Incorrect 'LSA_n_components' used. \ LSA_n_components must be an integer") elif lsa_n_components < 2: raise SystemExit("Incorrect 'LSA_n_components' used. \ Set LSA_n_components as an int that is greater than or equal to 2") def create_sparse_matrix(self, data, col = 'cleaned_vectorized_document'): """ Convert the vectorized column to a sparse matrix A sparse matrix is a matrix that majority of the elements are zero. To save memory space and tos increase computational efficiency, we convert the vectorized column to a sparse matrix to improve the performance. `cleaned_vectorized_document` is the column generated by the preprocessing() function above. It is the reserved column name that specifies the output of preprocessing. Parameter ---------- data: Data Frame Data Frame object that contains the column of the vectorized text col: String Column name of the column that contains vectorized text """ return scipy.sparse.csr_matrix([i for i in data[col]]) # Scenario #1: Normal def normal_comparison(self, method = 'cosine', remove_stopwords = False, filler_words = [], stem = False, lemm = False, tfidf = False, tfidf_level = 'skill', lsa = False, lsa_n_components = 2, ngram = 1, remove_punctuation = None): """ Get the cosine similarity between each transcripts to the benchmark script for each skills """ # Check Input Value self.check_preprocessing_input(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # NLP Preprocessing: self.document_matrix = self.preprocessing(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # Sufficiency Check if self.document_matrix.empty: raise SystemExit("Insufficient data to process.") # Collect the transcripts and sort by skill transcript = self.document_matrix.\ loc[self.document_matrix[self.doc_type] == 'transcript'].\ sort_values(self.skill) # Calculate the Similarity Score if method == 'cosine': # Create an empty list to store the similarity scores similarity_score = numpy.array([]) # iterate over different skills for skills in self.get_skill(): # Extract the script for this skill tmp_script = self.document_matrix.\ loc[(self.document_matrix[self.doc_type] == 'script') & \ (self.document_matrix[self.skill] == skills)] # Extract the transcript for this skill tmp_transcript = transcript.\ loc[self.document_matrix[self.skill] == skills] # Calculate the similarity score and store it similarity_score = numpy.concatenate([similarity_score, sklearn.metrics.pairwise.\ cosine_similarity(self.create_sparse_matrix(tmp_script), self.create_sparse_matrix(tmp_transcript), dense_output = True). \ reshape(1, -1)[0]]) # Write the similarity score back to the orignial DF transcript['similarity_score'] = \ similarity_score.reshape(-1, 1) #.round(6) # Return the output data frame return(transcript) else: # Create an empty list to store the similarity scores similarity_score = numpy.array([]) # iterate over different skills for skills in self.get_skill(): # Extract the script for this skill tmp_script = self.document_matrix.\ loc[(self.document_matrix[self.doc_type] == 'script') & \ (self.document_matrix[self.skill] == skills)] # Extract the transcript for this skill tmp_transcript = transcript.\ loc[self.document_matrix[self.skill] == skills] primary_distance = sklearn.metrics.pairwise_distances( X=self.create_sparse_matrix(tmp_transcript), Y=self.create_sparse_matrix(tmp_script), metric = method, #"cosine", "euclidean", 'manhattan' force_all_finite = False) #, #dense_output = True) # Calculate the similarity score and store it similarity_score = numpy.concatenate([similarity_score, primary_distance.reshape(1, -1)[0]]) # Write the similarity score back to the orignial DF transcript['similarity_score'] = \ similarity_score.reshape(-1, 1) #.round(6) # Return the output data frame return(transcript) # Scenario #2: Pairwise def pairwise_comparison(self, method = 'cosine', remove_stopwords = False, filler_words = [], stem = False, lemm = False, tfidf = False, tfidf_level = 'skill', lsa = False, lsa_n_components = 2, ngram = 1, remove_punctuation = None): """ Get the cosine similarity among each transcripts within skills """ # Check Input Value self.check_preprocessing_input(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation ) # NLP Preprocessing: self.document_matrix = self.preprocessing(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # Sufficiency Check if self.document_matrix.empty: raise SystemExit("Insufficient data to process.") # Collect the transcripts and sort by skill transcript = self.document_matrix.\ loc[self.document_matrix[self.doc_type] == 'transcript'].\ sort_values(self.skill) # Calculate the Similarity Score if method == 'cosine': # Create an empty list to store the similarity scores similarity_score = numpy.array([]) # iterate over different skills for skills in self.get_skill(): # Extract the transcript for this skill tmp_transcript = transcript.\ loc[self.document_matrix[self.skill] == skills] # Calculate the similarity score and store it # Steps: # 1. Calculate the pairwise similarity # 2. Apply the average function along the axis 0 # 3. Store the values within similarity_score array similarity_score = numpy.concatenate([similarity_score, numpy.apply_along_axis(lambda x: (sum(x) - 1) / (len(x) - 1), 0, sklearn.metrics.pairwise.cosine_similarity( X = self.create_sparse_matrix(tmp_transcript), dense_output = True))]) # Write the similarity score back to the orignial DF transcript['similarity_score'] = \ similarity_score.reshape(-1, 1) #.round(6) # Return the output data frame return(transcript) # Scenario 3 def within_study_normal_average(self, method = 'cosine', remove_stopwords = False, filler_words = [], stem = False, lemm = False, tfidf = False, tfidf_level = 'skill', lsa = False, lsa_n_components = 2, ngram = 1, remove_punctuation = None): """ Get the average similarity score for each study """ output = self.normal_comparison(method = method, remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) return output[[self.study, 'similarity_score']].\ groupby([self.study]).\ mean().\ reset_index() # Scenario 4 def across_study_within_skill_normal_average(self, method = 'cosine', remove_stopwords = False, filler_words = [], stem = False, lemm = False, tfidf = False, tfidf_level = 'skill', lsa = False, lsa_n_components = 2, ngram = 1, remove_punctuation = None): """ Get the average similarity score for each study """ # Check Input Value self.check_preprocessing_input(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # NLP Preprocessing: self.document_matrix = self.preprocessing(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # Remove non-transcripts, sort by skill, study tmp_data = self.document_matrix.copy().\ loc[self.document_matrix[self.doc_type] == 'transcript'].\ sort_values([self.skill, self.study]) # Create an empty list to store the similarity scores similarity_score = list() # iterate over different skills for skills in self.get_skill(): # Within each skill, iterate over different study for studies in self.get_study(skill_id = [skills]): # doc_type = 'script' will have nan for study if pandas.isnull(studies): pass else: # tmp_script will be the study we want to compare tmp_script = tmp_data.\ loc[(tmp_data[self.skill] == skills) & (tmp_data[self.study] == studies)]. \ reset_index() # tmp_transcript will be all other studies within the skill tmp_transcript = tmp_data.\ loc[(tmp_data[self.skill] == skills) & (tmp_data[self.study] != studies)].\ reset_index() # Iterate over each transcripts for index, _ in tmp_script.iterrows(): similarity_score += [sklearn.metrics.pairwise.cosine_similarity( self.create_sparse_matrix(tmp_script.iloc[index,]), self.create_sparse_matrix(tmp_transcript), dense_output = True).mean()] # Average of all tmp_transcripts # Write the similarity score back to the orignial DF tmp_data['similarity_score'] = numpy.asarray(similarity_score).\ reshape(-1, 1) #.round(6) # Return the output data frame return(tmp_data) # Scenario 5 def across_study_across_skill_normal_average(self, method = 'cosine', remove_stopwords = False, filler_words = [], stem = False, lemm = False, tfidf = False, tfidf_level = 'skill', lsa = False, lsa_n_components = 2, ngram = 1, remove_punctuation = None): """ Get the average similarity score for each study """ # Check Input Value self.check_preprocessing_input(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # NLP Preprocessing: self.document_matrix = self.preprocessing(remove_stopwords = remove_stopwords, filler_words = filler_words, stem = stem, lemm = lemm, tfidf = tfidf, tfidf_level = tfidf_level, lsa = lsa, lsa_n_components = lsa_n_components, ngram = ngram, remove_punctuation = remove_punctuation) # Remove non-transcripts, sort by skill, study tmp_data = self.document_matrix.copy().\ loc[self.document_matrix[self.doc_type] == 'transcript'].\ sort_values([self.skill, self.study]) # Create an empty list to store the similarity scores similarity_score = list() # Within each skill, iterate over different study for studies in self.get_study(): # doc_type = 'script' will have nan for study if pandas.isnull(studies): pass else: # tmp_script will be the study we want to compare tmp_script = tmp_data.loc[tmp_data[self.study] == studies]. \ reset_index() # tmp_transcript will be all other studies within the skill tmp_transcript = tmp_data.loc[tmp_data[self.study] != studies]. \ reset_index() # Iterate over each transcripts for index, _ in tmp_script.iterrows(): similarity_score += [sklearn.metrics.pairwise.cosine_similarity( self.create_sparse_matrix(tmp_script.iloc[index,]), self.create_sparse_matrix(tmp_transcript), dense_output = True).mean()] # Average of all tmp_transcripts # Write the similarity score back to the orignial DF tmp_data['similarity_score'] = numpy.asarray(similarity_score).\ reshape(-1, 1) #.round(6) # Return the output data frame return(tmp_data) class PreprocessCorpusText: """ Parameters ---------- source_dir : String Maybe either: Directory address containing .txt files of corpus documents. Or: Dataframe where each row contains the text of a corpus document. """ def collect_directory(self, source_dir, recursive=False): """ Extract each line of each file in a directory [source_dir] of text documents. Return a single dataframe of labeled lines from documents. """ # columns of final DF output dfcolumns=['doc_id', 'source_dir', 'subdir', 'filename', \ "collected", "rtlen", "rawtext"] collect_df = pandas.DataFrame() # if seeking recursive search, look in all subfolders as default # otherwise, return first result of os.walk(), i.e. base folder only src_dir = os.walk(source_dir) if not recursive: src_dir = next(src_dir) # enumerate all files in given directory f = [os.path.join(root, name) \ for root, _, files in os.walk(source_dir) \ for name in files if ".txt" in name] if not f: raise SystemExit("The target directory must contain .txt files.") # for each text file identified, extract text lines for i, file in enumerate(f): #open source file # sometimes problems with utf-8 or latin-1 encodings, # cp1252 appeared to work consistently with open(file, encoding="cp1252") as f: #remove all non-ascii characters by encoding ascii # then decode again # strip lines of extra whitespace lines = [line.encode("ascii", "ignore")\ .decode().rstrip('\n') for line in f] # create dataframe of lines to modify df = pandas.DataFrame(lines,columns=["rawtext"]) # strip any remaining extremity whitespace df['rawtext'] = df['rawtext'].str.strip() # add line length df['rtlen'] = df.rawtext.str.len() # remove any zero length or NA lines df = df[df.rtlen > 0] df = df.dropna() # add incrementing ID per file df['doc_id'] = i #fs = file.split("\\")[-3:] splitpath = list(os.path.split(file)) splitpath[0] = splitpath[0].replace(source_dir, "") splitpath = [source_dir] + splitpath df[['source_dir', 'subdir', 'filename']] = splitpath #df['dir_path'], df['filename'] df['collected'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') df = df[dfcolumns] #df['dir_path'] = # df = df.assign(**{'parentdir1':fs[0], # 'parentdir2':fs[1], # 'filename':fs[2]}) collect_df = collect_df.append(df) collect_df['line_id'] = collect_df.index return collect_df def explode_lines(self, col_name): """ Given a column named [col_name] containing line breaks, explode the dataset so that every single line is a separate row. returns new instance of the class object """ if col_name not in self.df.columns: raise SystemExit("Input [col_name] must be a column in this dataset.") # remove unhelpful \r character obj = self.copy() obj.df = obj.df.replace("\r", "") # separate multi-line text to individual rows obj.df[col_name] = obj.df[col_name].str.split("\n") obj.df = obj.df.explode(col_name) # clean up any resulting empty rows obj.df = obj.df.dropna(subset=[col_name]) return obj def copy(self): """ create a new instance of PreprocessCorpusText, with the same data as this instance """ return PreprocessCorpusText(self.df, text=self.curr_txt) def __init__(self, data_source, recursive=False, text=None): #, directory=None, document_dataframe=None validentry = "Some data source must be added, either a directory of txt files, or an existing Pandas dataframe of documents." if isinstance(data_source, pandas.DataFrame): if not text: raise SystemExit("This class requires input dataframes to" + \ " specify the column containing document" + \ " text with [text].") self.df = data_source.copy() cols_check = {'doc_id': self.df.index, 'source_dir': pandas.NA, 'subdir': pandas.NA, 'filename': pandas.NA, 'collected': datetime.datetime.now()\ .strftime('%Y-%m-%d %H:%M:%S'), 'rawtext': self.df[text] } checkcols = self.df.columns for cc in cols_check.keys(): if cc not in checkcols: self.df[cc] = cols_check[cc] self.curr_txt = text self.data_sources = "dataframe" elif os.path.isdir(str(data_source)): self.data_sources = data_source self.df = self.collect_directory(data_source, recursive) self.curr_txt = "rawtext" else: raise SystemExit(validentry) self.__name__ = "PreprocessCorpusText" def group_by_speaker(self, speaker): """ Returns dataframe where text has been joined by speaker. Accepts source [dataframe], and column names for speaker [speaker], text to be concatenated [text], and ID to identify each unique document [doc_id]. returns new instance of the class object """ obj = self.copy() stablecols = ["doc_id", "source_dir", "subdir", \ "filename", "collected", speaker] #select columns not abstractable to documents, remove duplicates limdf = self.df.copy() limdf = limdf[["doc_id", "period", "filename", "collected"]].drop_duplicates() errmsg = "[speaker] must all be a column name in the given dataset" if not isinstance(speaker, str) or \ speaker not in obj.df.columns: raise SystemExit(errmsg) if not isinstance(obj.df, pandas.DataFrame): raise SystemExit(errmsg) # print(obj.curr_txt) # concatenate text by speaker speak_red = obj.df.groupby([speaker, "doc_id"])\ [obj.curr_txt].apply(' '.join).reset_index() obj.df = pandas.merge(limdf, speak_red, \ how="inner", on="doc_id") print("Speaker names extracted") return obj def extr(self, x, pattern, mult): """ Function for Pandas Apply vectorizing. Extract from src text [x] to add to a separate column if any match of the given regex [pattern]. If [mult]=True then extract multiple regex pattern group matches. """ if not x or x is numpy.nan: return numpy.nan out = re.findall(pattern, x) if not out: #exit if no matches at all return numpy.nan if type(out[0]) == tuple: out = [x.strip() for x in list(out[0]) if x] elif len(out) > 1: out = [x.strip() for x in out if x] if not out: #exit if matches are all empty return numpy.nan if type(out) == list and not mult: out = out[0] return out def add_col_from_extract(self, df1, colfrom, newcolname, regex, \ mult=False, from_prev_row=False): """ Return the original given dataframe [df1] with a new column [newcolname] created from matches returned from the given regex pattern [regex] applied to a src column [colfrom]. If [mult]=True, returns list of all matches, not just first. If from_prev_row, returns [regex] match from previous instead of current row. returns new instance of the class object """ # obj = self.copy() # df1 = obj.df # colfrom = self.curr_txt # create empty column df1[newcolname] = numpy.nan # if shifting, use shift function inside where equals [shift_equals] if from_prev_row: df1['prevrow'] = df1[colfrom].shift(1, axis = 0) df1[newcolname] = df1.apply( \ lambda x: self.extr(x['prevrow'], regex, mult), axis=1) # df1[newcolname] = numpy.where( \ # df1[colfrom].shift(1, axis = 0) == regex, # df1[colfrom], numpy.nan) # remove extracted text from src column df1[colfrom] = numpy.where(~df1[newcolname].isnull(), "",df1[colfrom]) df1 = df1.drop(columns=["prevrow"]) else: # otherwise, add regex match to new column df1[newcolname] = df1[colfrom].apply( \ lambda x: self.extr(x, regex, mult)) # remove extracted text from src column df1[colfrom] = df1[colfrom].apply(lambda x: \ re.sub(regex, "", x).strip()) # clean up beginning/end of reduced src column df1[colfrom] = df1[colfrom].str.lstrip(": ").str.strip() df1[colfrom] = df1[colfrom].str.lstrip("-") # return output print(f"{newcolname} extracted into a new column") return df1 def addumn(self, colname, contents): """ Add a new column to the dataset, named [colname], and the values should be [contents]. If [contents] is a string and the name of an existing column, copy existing column [contents] to the new column. """ if isinstance(contents, str) and contents in self.df.columns: self.df[colname] = self.df[contents].copy() else: self.df[colname] = contents def new_text_column(self, new_text_name): """ create a new column of text to process named [new_text_name], automatically updates internal text col tracking returns new instance of the class object """ obj = self.copy() obj.addumn(new_text_name, obj.curr_txt) obj.curr_txt = new_text_name return obj def join_dataset(self, newdf, join_on, assign_text): """ join current dataset with new dataset [newdf], assuming inner join, join on the column named [join_on] which must exist in both datasets for the benefit of the object, set column named [assign_text] as text analysis target returns new instance of the class object """ obj = self.copy() obj.df = pandas.merge(obj.df, newdf, how="inner", on=join_on) obj.curr_txt = assign_text return obj # convert timestamp to numeric second counter def colon_delim_timestamp_to_second(self, x): """ Apply vectorizer function, accepts raw text like timestamp, returns number of hours, minutes, and seconds converted to a single numeric seconds value. """ if
pandas.isna(x)
pandas.isna
import pandas as pd import numpy as np import pytest import re import tubular import tubular.testing.helpers as h import tubular.testing.test_data as data_generators_p import input_checker from input_checker._version import __version__ from input_checker.checker import InputChecker from input_checker.exceptions import InputCheckerError class TestInit(object): """Tests for InputChecker.init().""" def test_super_init_called(self, mocker): """Test that init calls BaseTransformer.init.""" expected_call_args = {0: {"args": (), "kwargs": {"columns": ["a", "b"]}}} with h.assert_function_call( mocker, tubular.base.BaseTransformer, "__init__", expected_call_args ): InputChecker(columns=["a", "b"]) def test_inheritance(self): """Test that InputChecker inherits from tubular.base.BaseTransformer.""" x = InputChecker() h.assert_inheritance(x, tubular.base.BaseTransformer) def test_arguments(self): """Test that InputChecker init has expected arguments.""" h.test_function_arguments( func=InputChecker.__init__, expected_arguments=[ "self", "columns", "categorical_columns", "numerical_columns", "datetime_columns", "skip_infer_columns", ], expected_default_values=(None, None, None, None, None), ) def test_version_attribute(self): """Test that __version__ attribute takes expected value.""" x = InputChecker(columns=["a"]) h.assert_equal_dispatch( expected=__version__, actual=x.version_, msg="__version__ attribute", ) def test_columns_attributes_generated(self): """Test all columns attributes are saved with InputChecker init""" x = InputChecker( columns=["a", "b", "c", "d"], numerical_columns=["a"], categorical_columns=["b"], datetime_columns=["d"], skip_infer_columns=["c"], ) df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x.fit(df) assert hasattr(x, "columns") is True, "columns attribute not present after init" assert ( hasattr(x, "numerical_columns") is True ), "numerical_columns attribute not present after init" assert ( hasattr(x, "categorical_columns") is True ), "categorical_columns attribute not present after init" assert ( hasattr(x, "datetime_columns") is True ), "datetime_columns attribute not present after init" assert ( hasattr(x, "skip_infer_columns") is True ), "skip_infer_columns attribute not present after init" def test_check_type_called(self, mocker): """Test all check type is called by the init method.""" spy = mocker.spy(input_checker.checker.InputChecker, "_check_type") x = InputChecker( columns=["a", "b", "c", "d"], numerical_columns=["a"], categorical_columns=["b"], datetime_columns=["d"], skip_infer_columns=["c"], ) assert ( spy.call_count == 5 ), "unexpected number of calls to InputChecker._check_type with init" call_0_args = spy.call_args_list[0] call_0_pos_args = call_0_args[0] call_1_args = spy.call_args_list[1] call_1_pos_args = call_1_args[0] call_2_args = spy.call_args_list[2] call_2_pos_args = call_2_args[0] call_3_args = spy.call_args_list[3] call_3_pos_args = call_3_args[0] call_4_args = spy.call_args_list[4] call_4_pos_args = call_4_args[0] expected_pos_args_0 = ( x, ["a", "b", "c", "d"], "input columns", [list, type(None), str], ) expected_pos_args_1 = ( x, ["b"], "categorical columns", [list, str, type(None)], ) expected_pos_args_2 = ( x, ["a"], "numerical columns", [list, dict, str, type(None)], ) expected_pos_args_3 = ( x, ["d"], "datetime columns", [list, dict, str, type(None)], ) expected_pos_args_4 = ( x, ["c"], "skip infer columns", [list, type(None)], ) assert ( expected_pos_args_0 == call_0_pos_args ), "positional args unexpected in _check_type call for columns argument" assert ( expected_pos_args_1 == call_1_pos_args ), "positional args unexpected in _check_type call for categorical columns argument" assert ( expected_pos_args_2 == call_2_pos_args ), "positional args unexpected in _check_type call for numerical columns argument" assert ( expected_pos_args_3 == call_3_pos_args ), "positional args unexpected in _check_type call for datetime columns argument" assert ( expected_pos_args_4 == call_4_pos_args ), "positional args unexpected in _check_type call for skip infer columns argument" def test_check_is_string_value_called(self, mocker): """Test all check string is called by the init method when option set to infer.""" spy = mocker.spy(input_checker.checker.InputChecker, "_is_string_value") x = InputChecker( numerical_columns="infer", categorical_columns="infer", datetime_columns="infer", ) assert ( spy.call_count == 3 ), "unexpected number of calls to InputChecker._is_string_value with init" call_0_args = spy.call_args_list[0] call_0_pos_args = call_0_args[0] call_1_args = spy.call_args_list[1] call_1_pos_args = call_1_args[0] call_2_args = spy.call_args_list[2] call_2_pos_args = call_2_args[0] expected_pos_args_0 = (x, x.categorical_columns, "categorical columns", "infer") expected_pos_args_1 = (x, x.numerical_columns, "numerical columns", "infer") expected_pos_args_2 = (x, x.datetime_columns, "datetime columns", "infer") assert ( expected_pos_args_0 == call_0_pos_args ), "positional args unexpected in _is_string_value call for numerical columns argument" assert ( expected_pos_args_1 == call_1_pos_args ), "positional args unexpected in _is_string_value call for categorical columns argument" assert ( expected_pos_args_2 == call_2_pos_args ), "positional args unexpected in _is_string_value call for categorical columns argument" def test_check_is_empty_called(self, mocker): """Test all check is empty is called by the init method.""" spy = mocker.spy(input_checker.checker.InputChecker, "_is_empty") x = InputChecker( columns=["a", "b", "c", "d"], numerical_columns=["a"], categorical_columns=["b", "c"], datetime_columns=["d"], ) assert ( spy.call_count == 4 ), "unexpected number of calls to InputChecker._is_empty with init" call_0_args = spy.call_args_list[0] call_0_pos_args = call_0_args[0] call_1_args = spy.call_args_list[1] call_1_pos_args = call_1_args[0] call_2_args = spy.call_args_list[2] call_2_pos_args = call_2_args[0] call_3_args = spy.call_args_list[3] call_3_pos_args = call_3_args[0] expected_pos_args_0 = (x, "input columns", ["a", "b", "c", "d"]) expected_pos_args_1 = (x, "categorical columns", ["b", "c"]) expected_pos_args_2 = (x, "numerical columns", ["a"]) expected_pos_args_3 = (x, "datetime columns", ["d"]) assert ( expected_pos_args_0 == call_0_pos_args ), "positional args unexpected in _is_empty call for categorical columns argument" assert ( expected_pos_args_1 == call_1_pos_args ), "positional args unexpected in _is_empty call for numerical columns argument" assert ( expected_pos_args_2 == call_2_pos_args ), "positional args unexpected in _is_empty call for numerical columns argument" assert ( expected_pos_args_3 == call_3_pos_args ), "positional args unexpected in _is_empty call for numerical columns argument" def test_check_is_listed_in_columns_called(self, mocker): spy = mocker.spy(input_checker.checker.InputChecker, "_is_listed_in_columns") InputChecker( columns=["a", "b", "c", "d"], numerical_columns=["a"], categorical_columns=["b", "c"], datetime_columns=["d"], ) assert ( spy.call_count == 1 ), "unexpected number of calls to InputChecker._is_listed_in_columns with init" class TestConsolidateInputs(object): def test_arguments(self): """Test that _consolidate_inputs has expected arguments.""" h.test_function_arguments( func=InputChecker._consolidate_inputs, expected_arguments=["self", "X"], expected_default_values=None, ) def test_infer_datetime_columns(self): """Test that _consolidate_inputs infers the correct datetime columns""" x = InputChecker(datetime_columns="infer") df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) df["e"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08-04-2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x.fit(df) assert x.datetime_columns == [ "d", "e", ], "infer datetime not finding correct columns" def test_infer_datetime_dict(self): """Test that _consolidate_inputs infers the correct datetime dict""" x = InputChecker(datetime_columns="infer") df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x.fit(df) assert ( x.datetime_dict["d"]["maximum"] is False ), "infer numerical not specifying maximum value check as true" assert ( x.datetime_dict["d"]["minimum"] is True ), "infer numerical not specifying maximum value check as true" def test_infer_categorical_columns(self): """Test that _consolidate_inputs infers the correct categorical columns""" x = InputChecker(categorical_columns="infer") df = data_generators_p.create_df_2() df["d"] = [True, True, False, True, True, False, np.nan] df["d"] = df["d"].astype("bool") x.fit(df) assert x.categorical_columns == [ "b", "c", "d", ], "infer categorical not finding correct columns" def test_infer_numerical_columns(self): """Test that _consolidate_inputs infers the correct numerical columns""" x = InputChecker(numerical_columns="infer") df = data_generators_p.create_df_2() x.fit(df) assert x.numerical_columns == [ "a" ], "infer numerical not finding correct columns" def test_infer_numerical_skips_infer_columns(self): """Test that _consolidate_inputs skips right columns when inferring numerical""" x = InputChecker(numerical_columns="infer", skip_infer_columns=["a"]) df = data_generators_p.create_df_2() df["d"] = df["a"] x.fit(df) assert x.numerical_columns == [ "d" ], "infer numerical not finding correct columns when skipping infer columns" def test_infer_categorical_skips_infer_columns(self): """Test that _consolidate_inputs skips right columns when inferring categorical""" x = InputChecker(categorical_columns="infer", skip_infer_columns=["b"]) df = data_generators_p.create_df_2() x.fit(df) assert x.categorical_columns == [ "c" ], "infer categorical not finding correct columns when skipping infer columns" def test_infer_datetime_skips_infer_columns(self): """Test that _consolidate_inputs skips right columns when inferring datetime""" x = InputChecker(datetime_columns="infer", skip_infer_columns=["d"]) df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) df["a"] = df["d"] x.fit(df) assert x.datetime_columns == [ "a" ], "infer datetime not finding correct columns when skipping infer columns" def test_infer_numerical_dict(self): """Test that _consolidate_inputs infers the correct numerical dict""" x = InputChecker(numerical_columns="infer") df = data_generators_p.create_df_2() x.fit(df) assert ( x.numerical_dict["a"]["maximum"] is True ), "infer numerical not specifying maximum value check as true" assert ( x.numerical_dict["a"]["minimum"] is True ), "infer numerical not specifying minimum value check as true" def test_datetime_type(self): """Test that datetime columns is a list after calling _consolidate_inputs""" x = InputChecker(datetime_columns="infer") df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x.fit(df) assert ( type(x.datetime_columns) is list ), f"incorrect datetime_columns type returned from _consolidate_inputs - expected: list but got: {type(x.datetime_columns)} " def test_categorical_type(self): """Test that categorical columns is a list after calling _consolidate_inputs""" x = InputChecker(categorical_columns="infer") df = data_generators_p.create_df_2() x.fit(df) assert ( type(x.categorical_columns) is list ), f"incorrect categorical_columns type returned from _consolidate_inputs - expected: list but got: {type(x.categorical_columns)} " def test_numerical_type(self): """Test that numerical columns and dict are a list and dict after calling _consolidate_inputs""" x = InputChecker(numerical_columns="infer") df = data_generators_p.create_df_2() x.fit(df) assert ( type(x.numerical_columns) is list ), f"incorrect numerical_columns type returned from _consolidate_inputs - expected: list but got: {type(x.numerical_columns)} " assert ( type(x.numerical_dict) is dict ), f"incorrect numerical_dict type returned from _consolidate_inputs - expected: dict but got: {type(x.numerical_dict)} " def test_check_is_subset_called(self, mocker): """Test all check _is_subset is called by the _consolidate_inputs method.""" x = InputChecker( columns=["a", "b", "c", "d"], numerical_columns=["a"], categorical_columns=["c"], datetime_columns=["d"], skip_infer_columns=["b"], ) df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) spy = mocker.spy(input_checker.checker.InputChecker, "_is_subset") x.fit(df) assert ( spy.call_count == 5 ), "unexpected number of calls to InputChecker._is_subset with _consolidate_inputs" call_0_args = spy.call_args_list[0] call_0_pos_args = call_0_args[0] call_1_args = spy.call_args_list[1] call_1_pos_args = call_1_args[0] call_2_args = spy.call_args_list[2] call_2_pos_args = call_2_args[0] call_3_args = spy.call_args_list[3] call_3_pos_args = call_3_args[0] call_4_args = spy.call_args_list[4] call_4_pos_args = call_4_args[0] expected_pos_args_0 = (x, "skip infer columns", ["b"], df) expected_pos_args_1 = (x, "input columns", ["a", "b", "c", "d"], df) expected_pos_args_2 = (x, "categorical columns", ["c"], df) expected_pos_args_3 = (x, "numerical columns", ["a"], df) expected_pos_args_4 = (x, "datetime columns", ["d"], df) assert ( expected_pos_args_0 == call_0_pos_args ), "positional args unexpected in _is_subset call for skip_infer_columns columns argument" assert ( expected_pos_args_1 == call_1_pos_args ), "positional args unexpected in _is_subset call for input columns argument" assert ( expected_pos_args_2 == call_2_pos_args ), "positional args unexpected in _is_subset call for categorical columns argument" assert ( expected_pos_args_3 == call_3_pos_args ), "positional args unexpected in _is_subset call for numerical columns argument" assert ( expected_pos_args_4 == call_4_pos_args ), "positional args unexpected in _is_subset call for datetime columns argument" class TestFitTypeChecker(object): """Tests for InputChecker._fit_type_checker().""" def test_arguments(self): """Test that InputChecker _fit_type_checker has expected arguments.""" h.test_function_arguments( func=InputChecker._fit_type_checker, expected_arguments=["self", "X"] ) def test_no_column_classes_before_fit(self): """Test column_classes is not present before fit called""" x = InputChecker() assert ( hasattr(x, "column_classes") is False ), "column_classes attribute present before fit" def test_column_classes_after_fit(self): """Test column_classes is present after fit called""" df = data_generators_p.create_df_2() x = InputChecker() x.fit(df) assert hasattr( x, "column_classes" ), "column_classes attribute not present after fit" def test_correct_columns_classes(self): """Test fit type checker saves types for correct columns after fit called""" df = data_generators_p.create_df_2() x = InputChecker(columns=["a"]) x.fit(df) assert list(x.column_classes.keys()) == [ "a" ], f"incorrect values returned from _fit_value_checker - expected: ['a'] but got: {list(x.column_classes.keys())}" def test_correct_classes_identified(self): """Test fit type checker identifies correct classes is present after fit called""" df = data_generators_p.create_df_2() x = InputChecker() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x.fit(df) assert ( x.column_classes["a"] == "float64" ), f"incorrect type returned from _fit_type_checker for column 'a' - expected: float64 but got: {x.column_classes['a']}" assert ( x.column_classes["b"] == "object" ), f"incorrect type returned from _fit_type_checker for column 'b' - expected: object but got: {x.column_classes['b']}" assert ( x.column_classes["c"] == "category" ), f"incorrect type returned from _fit_type_checker for column 'c' - expected: category but got: {x.column_classes['c']}" assert ( x.column_classes["d"] == "datetime64[ns]" ), f"incorrect type returned from _fit_type_checker for column 'd' - expected: datetime64[ns] but got: {x.column_classes['d']}" class TestFitNullChecker(object): """Tests for InputChecker._fit_null_checker().""" def test_arguments(self): """Test that InputChecker _fit_null_checker has expected arguments.""" h.test_function_arguments( func=InputChecker._fit_null_checker, expected_arguments=["self", "X"] ) def test_no_expected_values_before_fit(self): """Test null_map is not present before fit called""" x = InputChecker() assert hasattr(x, "null_map") is False, "null_map attribute present before fit" def test_expected_values_after_fit(self): """Test null_map is present after fit called""" df = data_generators_p.create_df_2() x = InputChecker() x.fit(df) assert hasattr(x, "null_map"), "null_map attribute not present after fit" def test_correct_columns_nulls(self): """Test fit nulls checker saves map for correct columns after fit called""" df = data_generators_p.create_df_2() x = InputChecker(columns=["a"]) x.fit(df) assert list(x.null_map.keys()) == [ "a" ], f"incorrect values returned from _fit_null_checker - expected: ['a'] but got: {list(x.null_map.keys())}" def test_correct_classes_identified(self): """Test fit null checker identifies correct columns with nulls after fit called""" df = data_generators_p.create_df_2() x = InputChecker() df["b"] = df["b"].fillna("a") x.fit(df) assert ( x.null_map["a"] == 1 ), f"incorrect values returned from _fit_null_checker - expected: 1 but got: {x.null_map['a']}" assert ( x.null_map["b"] == 0 ), f"incorrect values returned from _fit_null_checker - expected: 0 but got: {x.null_map['b']}" assert ( x.null_map["c"] == 1 ), f"incorrect values returned from _fit_null_checker - expected: 1 but got: {x.null_map['c']}" class TestFitValueChecker(object): """Tests for InputChecker._fit_value_checker().""" def test_arguments(self): """Test that InputChecker _fit_value_checker has expected arguments.""" h.test_function_arguments( func=InputChecker._fit_value_checker, expected_arguments=["self", "X"] ) def test_no_expected_values_before_fit(self): """Test expected_values is not present before fit called""" x = InputChecker(categorical_columns=["b", "c"]) assert ( hasattr(x, "expected_values") is False ), "expected_values attribute present before fit" def test_expected_values_after_fit(self): """Test expected_values is present after fit called""" df = data_generators_p.create_df_2() x = InputChecker(categorical_columns=["b", "c"]) x.fit(df) assert hasattr( x, "expected_values" ), "expected_values attribute not present after fit" def test_correct_columns_map(self): """Test fit value checker saves levels for correct columns after fit called""" df = data_generators_p.create_df_2() x = InputChecker(categorical_columns=["b", "c"]) x.fit(df) assert list(x.expected_values.keys()) == [ "b", "c", ], f"incorrect values returned from _fit_value_checker - expected: ['b', 'c'] but got: {list(x.expected_values.keys())}" def test_correct_values_identified(self): """Test fit value checker identifies corrcet levels after fit called""" df = data_generators_p.create_df_2() df["d"] = [True, True, False, True, True, False, np.nan] df["d"] = df["d"].astype("bool") x = InputChecker(categorical_columns=["b", "c", "d"]) x.fit(df) assert x.expected_values["b"] == [ "a", "b", "c", "d", "e", "f", np.nan, ], f"incorrect values returned from _fit_value_checker - expected: ['a', 'b', 'c', 'd', 'e', 'f', np.nan] but got: {x.expected_values['b']}" assert x.expected_values["c"] == [ "a", "b", "c", "d", "e", "f", np.nan, ], f"incorrect values returned from _fit_value_checker - expected: ['a', 'b', 'c', 'd', 'e', 'f', np.nan] but got: {x.expected_values['c']}" assert x.expected_values["d"] == [ True, False, ], f"incorrect values returned from _fit_value_checker - expected: [True, False, np.nan] but got: {x.expected_values['d']}" class TestFitNumericalChecker(object): """Tests for InputChecker._fit_numerical_checker().""" def test_arguments(self): """Test that InputChecker _fit_numerical_checker has expected arguments.""" h.test_function_arguments( func=InputChecker._fit_numerical_checker, expected_arguments=["self", "X"] ) def test_no_expected_values_before_fit(self): """Test numerical_values is not present before fit called""" x = InputChecker() assert ( hasattr(x, "numerical_values") is False ), "numerical_values attribute present before fit" def test_expected_values_after_fit(self): """Test numerical_values is present after fit called""" df = data_generators_p.create_df_2() x = InputChecker(numerical_columns=["a"]) x.fit(df) assert hasattr( x, "numerical_values" ), "numerical_values attribute not present after fit" def test_correct_columns_num_values(self): """Test fit numerical checker saves values for correct columns after fit called""" df = data_generators_p.create_df_2() x = InputChecker(numerical_columns=["a"]) x.fit(df) assert list(x.numerical_values.keys()) == [ "a" ], f"incorrect values returned from numerical_values - expected: ['a'] but got: {list(x.numerical_values.keys())}" def test_correct_numerical_values_identified(self): """Test fit numerical checker identifies correct range values after fit called""" df = data_generators_p.create_df_2() x = InputChecker(numerical_columns=["a"]) x.fit(df) assert ( x.numerical_values["a"]["maximum"] == 6 ), f"incorrect values returned from _fit_numerical_checker - expected: 1 but got: {x.numerical_values['a']['maximum']}" assert ( x.numerical_values["a"]["minimum"] == 1 ), f"incorrect values returned from _fit_numerical_checker - expected: 0 but got: {x.numerical_values['a']['minimum']}" def test_correct_numerical_values_identified_dict(self): """Test fit numerical checker identifies correct range values after fit called when inputting a dictionary""" df = data_generators_p.create_df_2() numerical_dict = {} numerical_dict["a"] = {} numerical_dict["a"]["maximum"] = True numerical_dict["a"]["minimum"] = False x = InputChecker(numerical_columns=numerical_dict) x.fit(df) assert ( x.numerical_values["a"]["maximum"] == 6 ), f"incorrect values returned from _fit_numerical_checker - expected: 1 but got: {x.numerical_values['a']['maximum']}" assert ( x.numerical_values["a"]["minimum"] is None ), f"incorrect values returned from _fit_numerical_checker - expected: None but got: {x.numerical_values['a']['minimum']}" class TestFitDatetimeChecker(object): """Tests for InputChecker._fit_datetime_checker().""" def test_arguments(self): """Test that InputChecker _fit_value_checker has expected arguments.""" h.test_function_arguments( func=InputChecker._fit_datetime_checker, expected_arguments=["self", "X"] ) def test_no_datetime_values_before_fit(self): """Test expected_values is not present before fit called""" x = InputChecker(datetime_columns=["b", "c"]) assert ( hasattr(x, "datetime_values") is False ), "datetime_values attribute present before fit" def test_datetime_values_after_fit(self): """Test datetime_values is present after fit called""" df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) df["e"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08-04-2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x = InputChecker(datetime_columns=["d", "e"]) x.fit(df) assert hasattr( x, "datetime_values" ), "datetime_values attribute not present after fit" def test_correct_columns_map(self): """Test fit datetime checker saves minimum dates for correct columns after fit called""" df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) df["e"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08-04-2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x = InputChecker(datetime_columns=["d", "e"]) x.fit(df) assert list(x.datetime_values.keys()) == [ "d", "e", ], f"incorrect values returned from _fit_datetime_checker - expected: ['d', 'e'] but got: {list(x.datetime_values.keys())} " def test_correct_datetime_values_identified(self): """Test fit datetime checker identifies correct minimum bound after fit called""" df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) x = InputChecker(datetime_columns=["d"]) x.fit(df) expected_min_d = pd.to_datetime("15/10/2018").date() actual_min_d = x.datetime_values["d"]["minimum"] actual_max_d = x.datetime_values["d"]["maximum"] assert ( actual_min_d == expected_min_d ), f"incorrect values returned from _fit_datetime_checker - expected: {expected_min_d}, but got: {actual_min_d}" assert ( actual_max_d is None ), f"incorrect values returned from _fit_datetime_checker - expected: None, but got: {actual_max_d}" def test_correct_datetime_values_identified_dict(self): """Test fit datetime checker identifies correct range values after fit called when inputting a dictionary""" df = data_generators_p.create_df_2() df["d"] = pd.to_datetime( [ "01/02/2020", "01/02/2021", "08/04/2019", "01/03/2020", "29/03/2019", "15/10/2018", "24/07/2020", ] ) datetime_dict = {"d": {"maximum": True, "minimum": True}} x = InputChecker(datetime_columns=datetime_dict) x.fit(df) expected_min_d = pd.to_datetime("15/10/2018").date() expected_max_d =
pd.to_datetime("01/02/2021")
pandas.to_datetime
import os import pandas as pd from ccf.config import LoadSettings from ccf.redcap import CachedRedcap from utils.utils import strip_special_chars, to_numeric, convert_nan, synchronize_dtypes def load(): config = LoadSettings() downloads_dir = config["KSADS"]["download_dir"] snapshots = [os.path.join(downloads_dir, x) for x in sorted(os.listdir(downloads_dir)) if x.startswith("snapshot")] latest_snapshot = snapshots[-1] print("Latest snapshot is ", latest_snapshot) # %% ksads = pd.read_csv(latest_snapshot, low_memory=False) ksads = strip_special_chars(ksads) ksads.dateofinterview = pd.to_datetime(ksads.dateofinterview) complete_columns = ksads.columns[ksads.columns.str.endswith("_complete")] ksads["common_complete"] = 1 ksads[complete_columns] = ksads[complete_columns].mask(ksads[complete_columns].isna(), 0).astype(int) # %% redcap = CachedRedcap() current_redcap = redcap("ksads") current_redcap.dateofinterview =
pd.to_datetime(current_redcap.dateofinterview)
pandas.to_datetime
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' Input: messages, the messages received from different channels after the disaster categories, the messages corresponding categories Output: df the data file after merging the messages and categories tables ''' messages = pd.read_csv(messages_filepath) categories =
pd.read_csv(categories_filepath)
pandas.read_csv
"""Calculate a Confusion Matrix for multi-class classification results 2019 <NAME> """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns class ConfusionMatrix: """Calculate a Confusion Matrix Parameters ---------- y : array-like, true labels p : array-like, predicted labels of same type and length as y Attributes ---------- y : see above p : see above df : Pandas DataFrame, aligned y and p data dfg : Pandas DataFrame, grouped by (y, p) combinations and counts a : Numpy array, confusion matrix values df_cm : Pandas DataFrame, confusion matrix values with row/column labels """ def __init__(self, y, p): assert type(y) == type(p) assert len(y) == len(p) self.categorical = False if isinstance(y[0], str): self.categorical = True if self.categorical: from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(y) y = le.transform(y) p = le.transform(p) self.y = y self.p = p self.df = pd.DataFrame({'y': self.y, 'p': self.p}) self.n_classes = len(self.df.y.unique()) self.labels = range(self.n_classes) if self.categorical: self.labels = le.inverse_transform(self.labels) self.a = np.zeros((self.n_classes, self.n_classes)) self.dfg = self.df.groupby(['p', 'y']).size().reset_index().rename(columns={0: 'n'}) _ = self.dfg.apply(lambda x: self.assemble_cm(x), axis=1) self.df_cm =
pd.DataFrame(self.a, self.labels, self.labels)
pandas.DataFrame
# -*- coding: utf-8 -*- import sys import jpstocks import warnings import pandas as pd import datetime as dt import time as time from sqlalchemy import create_engine warnings.simplefilter("ignore", category=UserWarning) q = jpstocks.Quotes() categories = [ '0050', # 農林・水産業 '1050', # 鉱業 '2050', # 建設業 '3050', # 食料品 '3100', # 繊維製品 '3150', # パルプ・紙 '3200', # 化学 '3250', # 医薬品 '3300', # 石油・石炭製品 '3350', # ゴム製品 '3400', # ガラス・土石製品 '3450', # 鉄鋼 '3500', # 非鉄金属 '3550', # 金属製品 '3600', # 機械 '3650', # 電気機器 '3700', # 輸送機器 '3750', # 精密機器 '3800', # その他製品 '4050', # 電気・ガス業 '5050', # 陸運業 '5100', # 海運業 '5150', # 空運業 '5200', # 倉庫・運輸関連業 '5250', # 情報・通信 '6050', # 卸売業 '6100', # 小売業 '7050', # 銀行業 '7100', # 証券業 '7150', # 保険業 '7200', # その他金融業 '8050', # 不動産業 '9050' # サービス業 ] for i in range(len(categories)): try: brands = q.get_brand(categories[i]) except: pass lis = [] for b in brands: f = q.get_finance(b.ccode) # start = dt.date.today() start = dt.datetime(2020, 2, 7) # end = dt.date.today() end = dt.datetime(2020, 2, 7) try: h = q.get_historical_prices(b.ccode, jpstocks.DAILY, start_date=start, end_date=end) except jpstocks.exceptions.CCODENotFoundException: pass try: yesterdayPrice = h.__getitem__(0).close if ((f.years_low + f.years_high) / 2 - yesterdayPrice) / ((f.years_low + f.years_high) / 2) > 0: # 低于平均价(平均价-现在价 / 平均价) dic = { 'category_code': categories[i], 'market_name': b.market, 'stock_code': b.ccode, 'company_name': b.name, 'market_cap': f.market_cap / 100, # 亿日元 'years_low_price': f.years_low, 'years_high_price': f.years_high, 'years_average_price': (f.years_low + f.years_high) / 2, 'yesterday_price': yesterdayPrice, 'diff_average_price': yesterdayPrice - (f.years_low + f.years_high) / 2, # 平均差价 'decline_ratio': '%.2f' % ((((f.years_low + f.years_high) / 2 - yesterdayPrice) / ((f.years_low + f.years_high) / 2)) * 100), # 平均价跌幅比率 'dividend_one': f.dividend_one, 'price_min': '%.2f' %(f.price_min / 10000), # 万日元 'create_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) } lis.append(dic) except: pass engine = create_engine( 'mysql+pymysql://aliyun:[email protected]:3306/blog') sql = "delete from t_stock_info where create_time < " + "'" + dt.date.today().__str__() + "'" try: pd.read_sql_query(sql, engine) except: print('deleted') df =
pd.DataFrame(lis)
pandas.DataFrame
import json, os import pandas as pd import numpy as np from sklearn import preprocessing from joblib import dump, load def doFeatureEngineering(rawData, rawDataFormat, trainingMode, dropCols, binaryCols, catCols, numericalCols, toPredict, saveCSV, saveX, savey, oheModelFile): print('Loading the data ...') if rawDataFormat == 'json': data = json.load(open(rawData)) df = pd.DataFrame(data['result']['records']) elif rawDataFormat == 'csv': df =
pd.read_csv(raw_data)
pandas.read_csv
import pandas as pd import itertools import matplotlib.pyplot as plt import numpy as np import pickle from src.utils.utils import get_file_names from src.utils.utils import get_file_path def display_features(features, feature_names): df =
pd.DataFrame(data=features, columns=feature_names)
pandas.DataFrame
########################################################################################################### ## IMPORTS ########################################################################################################### import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import pickle from keras.layers.advanced_activations import LeakyReLU, ELU, ReLU from keras.models import Sequential, Model, model_from_json from keras.layers import Activation, Convolution2D, Conv2D, LocallyConnected2D, MaxPooling2D, AveragePooling2D, GlobalAveragePooling2D, BatchNormalization, Flatten, Dense, Dropout, Input, concatenate, add, Add, ZeroPadding2D, GlobalMaxPooling2D, DepthwiseConv2D from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping from keras.optimizers import Adam from keras.regularizers import l2 #from keras.activations import linear, elu, tanh, relu from keras import metrics, losses, initializers, backend from keras.utils import multi_gpu_model from keras.initializers import glorot_uniform, Constant, lecun_uniform from keras import backend as K os.environ["PATH"] += os.pathsep + "C:/ProgramData/Anaconda3/GraphViz/bin/" os.environ["PATH"] += os.pathsep + "C:/Anaconda/Graphviz2.38/bin/" from keras.utils.vis_utils import plot_model from sklearn.model_selection import train_test_split import tensorflow as tf np.random.seed(42) tf.random.set_seed(42) tf.get_logger().setLevel('ERROR') physical_devices = tf.config.list_physical_devices('GPU') for pd_dev in range(len(physical_devices)): tf.config.experimental.set_memory_growth(physical_devices[pd_dev], True) ##from tensorflow.compat.v1.keras.backend import set_session ##config = tf.compat.v1.ConfigProto() ##config.gpu_options.per_process_gpu_memory_fraction = 0.9 ##config.gpu_options.allow_growth = True ##config.log_device_placement = True ##set_session(config) #config = tf.compat.v1.ConfigProto() #config.gpu_options.allow_growth = True #config.log_device_placement = True #sess = tf.compat.v1.InteractiveSession(config = config) #set_session(sess) #backend.set_session(sess) ########################################################################################################### ## PLOTTING PALETTE ########################################################################################################### # Create a dict object containing U.C. Berkeley official school colors for plot palette # reference : https://alumni.berkeley.edu/brand/color-palette berkeley_palette = {'berkeley_blue' : '#003262', 'california_gold' : '#FDB515', 'metallic_gold' : '#BC9B6A', 'founders_rock' : '#2D637F', 'medalist' : '#E09E19', 'bay_fog' : '#C2B9A7', 'lawrence' : '#00B0DA', 'sather_gate' : '#B9D3B6', 'pacific' : '#53626F', 'soybean' : '#9DAD33', 'california_purple' : '#5C3160', 'south_hall' : '#6C3302'} ########################################################################################################### ## CLASS CONTAINING MODEL ZOO ########################################################################################################### class Models(object): def __init__(self, model_path, **kwargs): super(Models, self).__init__(** kwargs) # validate that the constructor parameters were provided by caller if (not model_path): raise RuntimeError('path to model files must be provided on initialization.') # ensure all are string snd leading/trailing whitespace removed model_path = str(model_path).replace('\\', '/').strip() if (not model_path.endswith('/')): model_path = ''.join((model_path, '/')) # validate the existence of the data path if (not os.path.isdir(model_path)): raise RuntimeError("Models path specified'%s' is invalid." % model_path) self.__models_path = model_path self.__GPU_count = len(tf.config.list_physical_devices('GPU')) self.__MIN_early_stopping = 10 #------------------------------------------------ # Private Methods #------------------------------------------------ # plotting method for keras history arrays def __plot_keras_history(self, history, metric, model_name, feature_name, file_name, verbose = False): # Plot the performance of the model training fig = plt.figure(figsize=(15,8),dpi=80) ax = fig.add_subplot(121) ax.plot(history.history[metric][1:], color = berkeley_palette['founders_rock'], label = 'Train', marker = 'o', markersize = 4, alpha = 0.9) ax.plot(history.history["".join(["val_",metric])][1:], color = berkeley_palette['medalist'], label = 'Validation', marker = 'o', markersize = 4, alpha = 0.9) ax.set_title(" ".join(['Model Performance',"(" + model_name + ")"]) + "\n" + feature_name, color = berkeley_palette['berkeley_blue'], fontsize = 15, fontweight = 'bold') ax.spines["top"].set_alpha(.0) ax.spines["bottom"].set_alpha(.3) ax.spines["right"].set_alpha(.0) ax.spines["left"].set_alpha(.3) ax.set_xlabel("Epoch", fontsize = 12, horizontalalignment='right', x = 1.0, color = berkeley_palette['berkeley_blue']) ax.set_ylabel(metric, fontsize = 12, horizontalalignment='right', y = 1.0, color = berkeley_palette['berkeley_blue']) plt.legend(loc = 'upper right') ax = fig.add_subplot(122) ax.plot(history.history['loss'][1:], color = berkeley_palette['founders_rock'], label = 'Train', marker = 'o', markersize = 4, alpha = 0.9) ax.plot(history.history["".join(["val_loss"])][1:], color = berkeley_palette['medalist'], label = 'Validation', marker = 'o', markersize = 4, alpha = 0.9) ax.set_title(" ".join(['Model Performance',"(" + model_name + ")"]) + "\n" + feature_name, color = berkeley_palette['berkeley_blue'], fontsize = 15, fontweight = 'bold') ax.spines["top"].set_alpha(.0) ax.spines["bottom"].set_alpha(.3) ax.spines["right"].set_alpha(.0) ax.spines["left"].set_alpha(.3) ax.set_xlabel("Epoch", fontsize = 12, horizontalalignment='right', x = 1.0, color = berkeley_palette['berkeley_blue']) ax.set_ylabel("Loss", fontsize = 12, horizontalalignment='right', y = 1.0, color = berkeley_palette['berkeley_blue']) plt.legend(loc = 'upper right') plt.tight_layout() plt.savefig(file_name, dpi=300) if verbose: print("Training plot file saved to '%s'." % file_name) plt.close() # load Keras model files from json / h5 def __load_keras_model(self, model_name, model_file, model_json, verbose = False): """Loads a Keras model from disk""" if not os.path.isfile(model_file): raise RuntimeError("Model file '%s' does not exist; exiting inferencing." % model_file) if not os.path.isfile(model_json): raise RuntimeError("Model file '%s' does not exist; exiting inferencing." % model_json) # load model file if verbose: print("Retrieving model: %s..." % model_name) json_file = open(model_json, "r") model_json_data = json_file.read() json_file.close() model = model_from_json(model_json_data) model.load_weights(model_file) return model # Performs standard scaling on a 4D image def __4d_Scaler(self, arr, ss, fit = False, verbose = False): """Performs standard scaling of the 4D array with the 'ss' model provided by caller""" #Unwinds a (instances, rows, columns, layers) array to 2D for standard scaling num_instances, num_rows, num_columns, num_layers = arr.shape arr_copy = np.reshape(arr, (-1, num_columns)) # fit the standard scaler if fit: if verbose: print("Fitting SCALER and transforming...") arr_copy = ss.fit_transform(arr_copy) else: if verbose: print("Transforming SCALER only...") arr_copy = ss.transform(arr_copy) arr = np.reshape(arr_copy, (num_instances, num_rows, num_columns, num_layers)) return arr # resnet identity block builder def __identity_block(self, model, kernel_size, filters, stage, block): """modularized identity block for resnet""" filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), kernel_initializer='he_normal', name=conv_name_base + '2a')(model) x = BatchNormalization(axis=3, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=3, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), kernel_initializer='he_normal', name=conv_name_base + '2c')(x) x = BatchNormalization(axis=3, name=bn_name_base + '2c')(x) x = add([x, model]) x = Activation('relu')(x) return x # resnet conv block builder def __conv_block(self, model, kernel_size, filters, stage, block, strides=(2, 2)): """conv block builder for resnet""" filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), strides=strides, kernel_initializer='he_normal', name=conv_name_base + '2a')(model) x = BatchNormalization(axis=3, name=bn_name_base + '2a')(x) x =Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=3, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), kernel_initializer='he_normal', name=conv_name_base + '2c')(x) x = BatchNormalization(axis=3, name=bn_name_base + '2c')(x) shortcut = Conv2D(filters3, (1, 1), strides=strides, kernel_initializer='he_normal', name=conv_name_base + '1')(model) shortcut = BatchNormalization( axis=3, name=bn_name_base + '1')(shortcut) x = add([x, shortcut]) x = Activation('relu')(x) return x # create a layerable inception module def __inception_module(self, model, filters_1x1, filters_3x3_reduce, filters_3x3, filters_5x5_reduce, filters_5x5, filters_pool_proj, kernel_init, bias_init, name = None): """modularized inception block for layering""" # Connection Layer 1 (1x1) conv_1x1 = Convolution2D(filters_1x1, (1, 1), padding = 'same', activation = 'relu', kernel_initializer = kernel_init, bias_initializer = bias_init) (model) # Connection Layer 2 (3x3) conv_3x3 = Convolution2D(filters_3x3_reduce, (1, 1), padding = 'same', activation = 'relu', kernel_initializer = kernel_init, bias_initializer = bias_init) (model) conv_3x3 = Convolution2D(filters_3x3, (3, 3), padding = 'same', activation = 'relu', kernel_initializer = kernel_init, bias_initializer = bias_init) (conv_3x3) # Connection Layer 3 (5x5) conv_5x5 = Convolution2D(filters_5x5_reduce, (1, 1), padding = 'same', activation = 'relu', kernel_initializer = kernel_init, bias_initializer = bias_init) (model) conv_5x5 = Convolution2D(filters_5x5, (5, 5), padding = 'same', activation = 'relu', kernel_initializer = kernel_init, bias_initializer = bias_init) (conv_5x5) # Connection Layer 4 (pool) pool_proj = MaxPooling2D((3, 3), strides = (1, 1), padding = 'same') (model) pool_proj = Convolution2D(filters_pool_proj, (1, 1), padding = 'same', activation = 'relu', kernel_initializer = kernel_init, bias_initializer = bias_init) (pool_proj) # Concatenation layer output = concatenate(inputs = [conv_1x1, conv_3x3, conv_5x5, pool_proj], axis = 3, name = name) return output # return an InceptionV3 output tensor after applying Conv2D and BatchNormalization def __conv2d_bn(self, x, filters, num_row, num_col, padding = 'same', strides = (1, 1), name = None): if name is not None: bn_name = name + '_bn' conv_name = name + '_conv' else: bn_name = None conv_name = None bn_axis = 3 x = Convolution2D(filters, (num_row, num_col), strides = strides, padding = padding, use_bias = False, name = conv_name) (x) x = BatchNormalization(axis = bn_axis, scale = False, name = bn_name) (x) x = ReLU(name = name) (x) return x # a residual block for resnext def __resnext_block(self, x, filters, kernel_size = 3, stride = 1, groups = 32, conv_shortcut = True, name = None): if conv_shortcut is True: shortcut = Conv2D((64 // groups) * filters, 1, strides = stride, use_bias = False, name = name + '_0_conv') (x) shortcut = BatchNormalization(axis = 3, epsilon=1.001e-5, name = name + '_0_bn') (shortcut) else: shortcut = x x = Conv2D(filters, 1, use_bias = False, name = name + '_1_conv') (x) x = BatchNormalization(axis = 3, epsilon = 1.001e-5, name = name + '_1_bn') (x) x = Activation('relu', name = name + '_1_relu') (x) c = filters // groups x = ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + '_2_pad')(x) x = DepthwiseConv2D(kernel_size, strides = stride, depth_multiplier = c, use_bias = False, name = name + '_2_conv') (x) kernel = np.zeros((1, 1, filters * c, filters), dtype = np.float32) for i in range(filters): start = (i // c) * c * c + i % c end = start + c * c kernel[:, :, start:end:c, i] = 1. x = Conv2D(filters, 1, use_bias = False, trainable = False, kernel_initializer = {'class_name': 'Constant','config': {'value': kernel}}, name = name + '_2_gconv') (x) x = BatchNormalization(axis=3, epsilon = 1.001e-5, name = name + '_2_bn') (x) x = Activation('relu', name=name + '_2_relu') (x) x = Conv2D((64 // groups) * filters, 1, use_bias = False, name = name + '_3_conv') (x) x = BatchNormalization(axis = 3, epsilon=1.001e-5, name = name + '_3_bn') (x) x = Add(name = name + '_add') ([shortcut, x]) x = Activation('relu', name = name + '_out') (x) return x # a set of stacked residual blocks for ResNeXt def __resnext_stack(self, x, filters, blocks, stride1 = 2, groups = 32, name = None, dropout = None): x = self.__resnext_block(x, filters, stride = stride1, groups = groups, name = name + '_block1') for i in range(2, blocks + 1): x = self.__resnext_block(x, filters, groups = groups, conv_shortcut = False, name = name + '_block' + str(i)) if not dropout is None: x = Dropout(dropout) (x) return x def __bn_relu(self, x, bn_name = None, relu_name = None): norm = BatchNormalization(axis = 3, name = bn_name) (x) return Activation("relu", name = relu_name) (norm) def __bn_relu_conv(self, **conv_params): filters = conv_params["filters"] kernel_size = conv_params["kernel_size"] strides = conv_params.setdefault("strides", (1, 1)) dilation_rate = conv_params.setdefault("dilation_rate", (1, 1)) conv_name = conv_params.setdefault("conv_name", None) bn_name = conv_params.setdefault("bn_name", None) relu_name = conv_params.setdefault("relu_name", None) kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") padding = conv_params.setdefault("padding", "same") kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) def f(x): activation = self.__bn_relu(x, bn_name = bn_name, relu_name = relu_name) return Conv2D(filters = filters, kernel_size = kernel_size, strides = strides, padding = padding, dilation_rate = dilation_rate, kernel_initializer = kernel_initializer, kernel_regularizer = kernel_regularizer, name = conv_name) (activation) return f def __conv_bn_relu(self, **conv_params): filters = conv_params["filters"] kernel_size = conv_params["kernel_size"] strides = conv_params.setdefault("strides", (1, 1)) dilation_rate = conv_params.setdefault("dilation_rate", (1, 1)) conv_name = conv_params.setdefault("conv_name", None) bn_name = conv_params.setdefault("bn_name", None) relu_name = conv_params.setdefault("relu_name", None) kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") padding = conv_params.setdefault("padding", "same") kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) def f(x): x = Conv2D(filters = filters, kernel_size = kernel_size, strides = strides, padding = padding, dilation_rate = dilation_rate, kernel_initializer = kernel_initializer, kernel_regularizer = kernel_regularizer, name = conv_name) (x) return self.__bn_relu(x, bn_name = bn_name, relu_name = relu_name) return f def __block_name_base(self, stage, block): if block < 27: block = '%c' % (block + 97) # 97 is the ascii number for lowercase 'a' conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' return conv_name_base, bn_name_base def __shortcut(self, input_feature, residual, conv_name_base = None, bn_name_base = None): input_shape = K.int_shape(input_feature) residual_shape = K.int_shape(residual) stride_width = int(round(input_shape[1] / residual_shape[1])) stride_height = int(round(input_shape[2] / residual_shape[2])) equal_channels = input_shape[3] == residual_shape[3] shortcut = input_feature # 1 X 1 conv if shape is different. Else identity. if stride_width > 1 or stride_height > 1 or not equal_channels: print('reshaping via a convolution...') if conv_name_base is not None: conv_name_base = conv_name_base + '1' shortcut = Conv2D(filters=residual_shape[3], kernel_size=(1, 1), strides=(stride_width, stride_height), padding="valid", kernel_initializer="he_normal", kernel_regularizer=l2(0.0001), name=conv_name_base)(input_feature) if bn_name_base is not None: bn_name_base = bn_name_base + '1' shortcut = BatchNormalization(axis=3, name=bn_name_base)(shortcut) return add([shortcut, residual]) def __basic_block(self, filters, stage, block, transition_strides = (1, 1), dilation_rate = (1, 1), is_first_block_of_first_layer = False, dropout = None, residual_unit = None): def f(input_features): conv_name_base, bn_name_base = self.__block_name_base(stage, block) if is_first_block_of_first_layer: # don't repeat bn->relu since we just did bn->relu->maxpool x = Conv2D(filters = filters, kernel_size = (3, 3), strides = transition_strides, dilation_rate = dilation_rate, padding = "same", kernel_initializer = "he_normal", kernel_regularizer = l2(1e-4), name = conv_name_base + '2a') (input_features) else: x = residual_unit(filters = filters, kernel_size = (3, 3), strides = transition_strides, dilation_rate = dilation_rate, conv_name_base = conv_name_base + '2a', bn_name_base = bn_name_base + '2a') (input_features) if dropout is not None: x = Dropout(dropout) (x) x = residual_unit(filters = filters, kernel_size = (3, 3), conv_name_base = conv_name_base + '2b', bn_name_base = bn_name_base + '2b') (x) return self.__shortcut(input_features, x) return f def __bottleneck(self, filters, stage, block, transition_strides = (1, 1), dilation_rate = (1, 1), is_first_block_of_first_layer = False, dropout = None, residual_unit = None): """Bottleneck architecture for > 34 layer resnet. Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf Returns: A final conv layer of filters * 4 """ def f(input_feature): conv_name_base, bn_name_base = self.__block_name_base(stage, block) if is_first_block_of_first_layer: # don't repeat bn->relu since we just did bn->relu->maxpool x = Conv2D(filters=filters, kernel_size=(1, 1), strides=transition_strides, dilation_rate=dilation_rate, padding="same", kernel_initializer="he_normal", kernel_regularizer=l2(1e-4), name=conv_name_base + '2a')(input_feature) else: x = residual_unit(filters=filters, kernel_size=(1, 1), strides=transition_strides, dilation_rate=dilation_rate, conv_name_base=conv_name_base + '2a', bn_name_base=bn_name_base + '2a')(input_feature) if dropout is not None: x = Dropout(dropout)(x) x = residual_unit(filters=filters, kernel_size=(3, 3), conv_name_base=conv_name_base + '2b', bn_name_base=bn_name_base + '2b')(x) if dropout is not None: x = Dropout(dropout)(x) x = residual_unit(filters=filters * 4, kernel_size=(1, 1), conv_name_base=conv_name_base + '2c', bn_name_base=bn_name_base + '2c')(x) return self.__shortcut(input_feature, x) return f # builds a residual block for resnet with repeating bottleneck blocks def __residual_block(self, block_function, filters, blocks, stage, transition_strides = None, transition_dilation_rates = None, dilation_rates = None, is_first_layer = False, dropout = None, residual_unit = None): if transition_dilation_rates is None: transition_dilation_rates = [(1, 1)] * blocks if transition_strides is None: transition_strides = [(1, 1)] * blocks if dilation_rates is None: dilation_rates = [1] * blocks def f(x): for i in range(blocks): is_first_block = is_first_layer and i == 0 x = block_function(filters=filters, stage=stage, block=i, transition_strides=transition_strides[i], dilation_rate=dilation_rates[i], is_first_block_of_first_layer=is_first_block, dropout=dropout, residual_unit=residual_unit)(x) return x return f ###################################################### ###################################################### ###################################################### ### KERAS MODEL ZOO ###################################################### ###################################################### ###################################################### #------------------------------------------------ # NaimishNet Model # ref: https://arxiv.org/abs/1710.00977 #------------------------------------------------ def get_keras_naimishnet(self, X, Y, batch_size, epoch_count, X_val = None, Y_val = None, val_split = 0.1, shuffle = True, feature_name = "unknown", recalculate_pickle = True, full = True, verbose = False): __MODEL_NAME = "Keras - NaimishNet" __MODEL_FNAME_PREFIX = "KERAS_NAIMISHNET/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): os.makedirs(nested_dir) __model_file_name = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, ".json"]) __history_params_file = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, "_params.csv"]) __history_performance_file = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, "_history.csv"]) __history_plot_file = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, "_plot.png"]) __model_architecture_plot_file = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, "_model_plot.png"]) if verbose: print("Retrieving model: %s..." % "".join([__MODEL_NAME, "_", feature_name, __MODEL_SUFFIX])) # Create or load the model if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)) or recalculate_pickle: if verbose: print("Pickle file for '%s' MODEL not found or skipped by caller." % feature_name) act = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08) lss = 'mean_squared_error' mtrc = ['mae','mse'] #ke = initializers.lecun_uniform(seed = 42) ke = 'glorot_uniform' stop_at = np.max([int(0.1 * epoch_count), self.__MIN_early_stopping]) es = EarlyStopping(patience = stop_at, verbose = verbose) cp = ModelCheckpoint(filepath = __model_file_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_mae') if self.__GPU_count > 1: dev = "/cpu:0" else: dev = "/gpu:0" with tf.device(dev): l1 = Input((96, 96, 1)) l2 = Convolution2D(32, (4, 4), kernel_initializer = ke, padding = 'valid', activation = 'elu') (l1) #l3 = ELU() (l2) l3 = MaxPooling2D(pool_size=(2,2), strides = (2,2)) (l2) l4 = Dropout(rate = 0.1) (l3) l5 = Convolution2D(64, (3, 3), kernel_initializer = ke, padding = 'valid', activation = 'elu') (l4) #l7 = ELU() (l6) l6 = MaxPooling2D(pool_size=(2,2), strides = (2,2)) (l5) l7 = Dropout(rate = 0.2) (l6) l8 = Convolution2D(128, (2, 2), kernel_initializer = ke, padding = 'valid', activation = 'elu') (l7) #l11 = ELU() (l10) l9 = MaxPooling2D(pool_size=(2,2), strides = (2,2)) (l8) l10 = Dropout(rate = 0.3) (l9) l11 = Convolution2D(256, (1, 1), kernel_initializer = ke, padding = 'valid', activation = 'elu') (l10) #l15 = ELU() (l14) l12 = MaxPooling2D(pool_size=(2,2), strides = (2,2)) (l11) l13 = Dropout(rate = 0.4) (l12) l14 = Flatten() (l13) l15 = Dense(1000, activation = 'elu') (l14) #l20 = ELU() (l19) l16 = Dropout(rate = 0.5) (l15) #l22 = Dense(1000) (l21) #l23 = linear(l22) l17 = Dense(1000, activation = 'linear') (l16) l18 = Dropout(rate = 0.6) (l17) l19 = Dense(2) (l18) model = Model(inputs = [l1], outputs = [l19]) model.compile(optimizer = act, loss = lss, metrics = mtrc) if verbose: print(model.summary()) # Compile the model if self.__GPU_count > 1: strategy = tf.distribute.MirroredStrategy() with strategy.scope(): parallel_model = multi_gpu_model(model, gpus = self.__GPU_count) parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) else: parallel_model = model parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) if (X_val is None) or (Y_val is None): history = parallel_model.fit(X, Y, validation_split = val_split, batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) else: history = parallel_model.fit(X, Y, validation_data = (X_val, Y_val), batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) # print and/or save a performance plot self.__plot_keras_history(history = history, metric = 'mse', model_name = __MODEL_NAME, feature_name = feature_name, file_name = __history_plot_file, verbose = verbose) # save the model, parameters, and performance history model_json = parallel_model.to_json() with open(__model_json_file, "w") as json_file: json_file.write(model_json) hist_params = pd.DataFrame(history.params) hist_params.to_csv(__history_params_file) hist = pd.DataFrame(history.history) hist.to_csv(__history_performance_file) if verbose: print("Model JSON, history, and parameters file saved.") # save a plot of the model architecture plot_model(parallel_model, to_file = __model_architecture_plot_file, rankdir = 'TB', show_shapes = True, show_layer_names = True, expand_nested = True, dpi=300) else: if verbose: print("Loading history and params files for '%s' MODEL..." % feature_name) hist_params = pd.read_csv(__history_params_file) hist = pd.read_csv(__history_performance_file) if verbose: print("Loading pickle file for '%s' MODEL from file '%s'" % (feature_name, __model_file_name)) modparallel_modelel = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) return parallel_model, hist_params, hist # inferencing def predict_keras_naimishnet(self, X, feature_name = "unknown", full = True, verbose = False): __MODEL_NAME = "Keras - NaimishNet" __MODEL_FNAME_PREFIX = "KERAS_NAIMISHNET/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): raise RuntimeError("Model path '%s' does not exist; exiting inferencing." % nested_dir) __model_file_name = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, "NaimishNet_", feature_name, __MODEL_SUFFIX, ".json"]) if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)): raise RuntimeError("One or some of the following files are missing; prediction cancelled:\n\n'%s'\n'%s'\n" % (__model_file_name, __model_json_file)) # load the Keras model for the specified feature model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) # predict if verbose: print("Predicting %d (x,y) coordinates for '%s'..." % (len(X), feature_name)) Y = model.predict(X, verbose = verbose) if verbose: print("Predictions completed!") return Y #------------------------------------------------ # Kaggle1 Model # Inspired by: https://www.kaggle.com/balraj98/data-augmentation-for-facial-keypoint-detection #------------------------------------------------ def get_keras_kaggle1(self, X, Y, batch_size, epoch_count, val_split = 0.05, X_val = None, Y_val = None, shuffle = True, feature_name = "ALL_FEATURES", recalculate_pickle = True, full = True, verbose = False): __MODEL_NAME = "Keras - Kaggle1" __MODEL_FNAME_PREFIX = "KERAS_KAGGLE1/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): os.makedirs(nested_dir) __model_file_name = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".json"]) __history_params_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_params.csv"]) __history_performance_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_history.csv"]) __history_plot_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_plot.png"]) __model_architecture_plot_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_model_plot.png"]) ##__scaler_file = "".join([nested_dir, feature_name, "_scaler.pkl"]) if verbose: print("Retrieving model: %s..." % "".join([__MODEL_NAME, __MODEL_SUFFIX])) # Create or load the model if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)) or recalculate_pickle: if verbose: print("Pickle file for '%s' MODEL not found or skipped by caller." % feature_name) #act = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08) act = 'adam' #lss = losses.mean_squared_error lss = 'mean_squared_error' #mtrc = [metrics.RootMeanSquaredError()] mtrc = ['mae','mse'] stop_at = np.max([int(0.1 * epoch_count), self.__MIN_early_stopping]) es = EarlyStopping(patience = stop_at, verbose = verbose) cp = ModelCheckpoint(filepath = __model_file_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_mae') if self.__GPU_count > 1: dev = "/cpu:0" else: dev = "/gpu:0" with tf.device(dev): model = Sequential() # Input dimensions: (None, 96, 96, 1) model.add(Convolution2D(32, (3,3), padding='same', use_bias=False, input_shape=(96,96,1))) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 96, 96, 32) model.add(Convolution2D(32, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # CDB: 3/5 DROPOUT ADDED model.add(Dropout(0.2)) # Input dimensions: (None, 48, 48, 32) model.add(Convolution2D(64, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 48, 48, 64) model.add(Convolution2D(64, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # CDB: 3/5 DROPOUT ADDED model.add(Dropout(0.25)) # Input dimensions: (None, 24, 24, 64) model.add(Convolution2D(96, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 24, 24, 96) model.add(Convolution2D(96, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # CDB: 3/5 DROPOUT ADDED model.add(Dropout(0.15)) # Input dimensions: (None, 12, 12, 96) model.add(Convolution2D(128, (3,3),padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 12, 12, 128) model.add(Convolution2D(128, (3,3),padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # CDB: 3/5 DROPOUT ADDED model.add(Dropout(0.3)) # Input dimensions: (None, 6, 6, 128) model.add(Convolution2D(256, (3,3),padding='same',use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 6, 6, 256) model.add(Convolution2D(256, (3,3),padding='same',use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) # CDB: 3/5 DROPOUT ADDED model.add(Dropout(0.2)) # Input dimensions: (None, 3, 3, 256) model.add(Convolution2D(512, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 3, 3, 512) model.add(Convolution2D(512, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # TEST added 4/8 model.add(Dropout(0.3)) model.add(Convolution2D(1024, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 3, 3, 512) model.add(Convolution2D(1024, (3,3), padding='same', use_bias=False)) model.add(LeakyReLU(alpha = 0.1)) model.add(BatchNormalization()) # Input dimensions: (None, 3, 3, 512) model.add(Flatten()) model.add(Dense(1024,activation='relu')) # CDB DROPOUT INCREASED FROM 0.1 to 0.2 model.add(Dropout(0.15)) if full: model.add(Dense(30)) else: model.add(Dense(8)) if verbose: print(model.summary()) # Compile the model if self.__GPU_count > 1: strategy = tf.distribute.MirroredStrategy() with strategy.scope(): parallel_model = multi_gpu_model(model, gpus = self.__GPU_count) parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) else: parallel_model = model parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) if (X_val is None) or (Y_val is None): history = parallel_model.fit(X, Y, validation_split = val_split, batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) else: history = parallel_model.fit(X, Y, validation_data = (X_val, Y_val), batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) # print and/or save a performance plot self.__plot_keras_history(history = history, metric = 'mse', #metric = 'root_mean_squared_error', model_name = __MODEL_NAME, feature_name = feature_name, file_name = __history_plot_file, verbose = verbose) # save the model, parameters, and performance history model_json = parallel_model.to_json() with open(__model_json_file, "w") as json_file: json_file.write(model_json) hist_params = pd.DataFrame(history.params) hist_params.to_csv(__history_params_file) hist = pd.DataFrame(history.history) hist.to_csv(__history_performance_file) if verbose: print("Model JSON, history, and parameters file saved.") # save a plot of the model architecture plot_model(parallel_model, to_file = __model_architecture_plot_file, rankdir = 'TB', show_shapes = True, show_layer_names = True, expand_nested = True, dpi=300) else: if verbose: print("Loading history and params files for '%s' MODEL..." % feature_name) hist_params = pd.read_csv(__history_params_file) hist = pd.read_csv(__history_performance_file) if verbose: print("Loading pickle file for '%s' MODEL from file '%s'" % (feature_name, __model_file_name)) parallel_model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) return parallel_model, hist_params, hist # inferencing def predict_keras_kaggle1(self, X, feature_name = "unknown", full = True, verbose = False): __MODEL_NAME = "Keras - Kaggle1" __MODEL_FNAME_PREFIX = "KERAS_KAGGLE1/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): raise RuntimeError("Model path '%s' does not exist; exiting inferencing." % nested_dir) __model_file_name = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".json"]) ##__scaler_file = "".join([nested_dir, feature_name, "_scaler.pkl"]) if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)):## or (not os.path.isfile(__scaler_file)): raise RuntimeError("One or some of the following files are missing; prediction cancelled:\n\n'%s'\n'%s'\n" % ##'%s'\n" % (__model_file_name, __model_json_file))##, __scaler_file)) # Load the training scaler for this model ##if verbose: print("Loading SCALER for '%s' and zero-centering X." % feature_name) ##scaler = pickle.load(open(__scaler_file, "rb")) ##X = self.__4d_Scaler(arr = X, ss = scaler, fit = False, verbose = verbose) # load the Keras model for the specified feature model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) # predict if verbose: print("Predicting %d (x,y) coordinates for '%s'..." % (len(X), feature_name)) Y = model.predict(X, verbose = verbose) if verbose: print("Predictions completed!") return Y #------------------------------------------------------------- # LeNet5 Model # Inspired by: Google's LeNet5 for MNSIST - Modified #------------------------------------------------------------- def get_keras_lenet5(self, X, Y, batch_size, epoch_count, X_val = None, Y_val = None, val_split = 0.1, shuffle = True, feature_name = "ALL_FEATURES", recalculate_pickle = True, full = True, verbose = False): __MODEL_NAME = "Keras - LeNet5" __MODEL_FNAME_PREFIX = "KERAS_LENET5/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): os.makedirs(nested_dir) __model_file_name = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".json"]) __model_architecture_plot_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_model_plot.png"]) __history_params_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_params.csv"]) __history_performance_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_history.csv"]) __history_plot_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_plot.png"]) if verbose: print("Retrieving model: %s..." % "".join([__MODEL_NAME, __MODEL_SUFFIX])) # Create or load the model if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)) or recalculate_pickle: if verbose: print("Pickle file for '%s' MODEL not found or skipped by caller." % feature_name) #if (X_val is None) or (Y_val is None): # if verbose: print("No validation set specified; creating a split based on %.2f val_split parameter." % val_split) # X, Y, X_val, Y_val = train_test_split(X, Y, test_size = val_split, random_state = 42) act = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8) lss = 'mean_squared_error' mtrc = ['mae','mse'] stop_at = np.max([int(0.1 * epoch_count), self.__MIN_early_stopping]) es = EarlyStopping(patience = stop_at, verbose = verbose) cp = ModelCheckpoint(filepath = __model_file_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_mae') if self.__GPU_count > 1: dev = "/cpu:0" else: dev = "/gpu:0" with tf.device(dev): model = Sequential() model.add(Convolution2D(filters = 6, kernel_size = (3, 3), input_shape = (96, 96, 1))) model.add(ReLU()) # CDB: 3/5 added Batch Normalization #model.add(BatchNormalization()) model.add(AveragePooling2D()) #model.add(Dropout(0.2)) model.add(Convolution2D(filters = 16, kernel_size = (3, 3))) model.add(ReLU()) # CDB: 3/5 added Batch Normalization #model.add(BatchNormalization()) model.add(AveragePooling2D()) #model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512)) model.add(ReLU()) #model.add(Dropout(0.1)) model.add(Dense(256)) model.add(ReLU()) #model.add(Dropout(0.2)) if full: model.add(Dense(30)) else: model.add(Dense(8)) if verbose: print(model.summary()) # Compile the model if self.__GPU_count > 1: strategy = tf.distribute.MirroredStrategy() with strategy.scope(): parallel_model = multi_gpu_model(model, gpus = self.__GPU_count) else: parallel_model = model parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) if (X_val is None) or (Y_val is None): history = parallel_model.fit(X, Y, validation_split = val_split, batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) else: history = parallel_model.fit(X, Y, validation_data = (X_val, Y_val), batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) # print and/or save a performance plot self.__plot_keras_history(history = history, metric = 'mse', model_name = __MODEL_NAME, feature_name = feature_name, file_name = __history_plot_file, verbose = verbose) # save the model, parameters, and performance history model_json = parallel_model.to_json() with open(__model_json_file, "w") as json_file: json_file.write(model_json) hist_params = pd.DataFrame(history.params) hist_params.to_csv(__history_params_file) hist = pd.DataFrame(history.history) hist.to_csv(__history_performance_file) # save a plot of the model architecture plot_model(parallel_model, to_file = __model_architecture_plot_file, rankdir = 'TB', show_shapes = True, show_layer_names = True, expand_nested = True, dpi=300) if verbose: print("Model JSON, history, and parameters file saved.") else: if verbose: print("Loading history and params files for '%s' MODEL..." % feature_name) hist_params = pd.read_csv(__history_params_file) hist = pd.read_csv(__history_performance_file) if verbose: print("Loading pickle file for '%s' MODEL from file '%s'" % (feature_name, __model_file_name)) parallel_model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) return parallel_model, hist_params, hist # inferencing def predict_keras_lenet5(self, X, feature_name = "ALL_FEATURES", full = True, verbose = False): __MODEL_NAME = "Keras - LeNet5" __MODEL_FNAME_PREFIX = "KERAS_LENET5/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): raise RuntimeError("Model path '%s' does not exist; exiting inferencing." % nested_dir) __model_file_name = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".json"]) if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)): raise RuntimeError("One or some of the following files are missing; prediction cancelled:\n\n'%s'\n'%s'\n" % (__model_file_name, __model_json_file)) # load the Keras model for the specified feature model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) # predict if verbose: print("Predicting %d (x,y) coordinates for '%s'..." % (len(X), feature_name)) Y = model.predict(X, verbose = verbose) if verbose: print("Predictions completed!") return Y #------------------------------------------------------------- # Inception V1 # Inspired by : https://arxiv.org/abs/1409.4842 #------------------------------------------------------------- def get_keras_inception(self, X, Y, batch_size, epoch_count, val_split = 0.1, shuffle = True, feature_name = "ALL_FEATURES", recalculate_pickle = True, X_val = None, Y_val = None, full = True, verbose = False): __MODEL_NAME = "Keras - Inception" __MODEL_FNAME_PREFIX = "KERAS_INCEPTION/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): os.makedirs(nested_dir) __model_file_MAIN_name = "".join([nested_dir, "inception_MAIN_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_file_AUX1_name = "".join([nested_dir, "inception_AUX1_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_file_AUX2_name = "".join([nested_dir, "inception_AUX2_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, ".json"]) __model_architecture_plot_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_plot.png"]) __history_params_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_params.csv"]) __history_performance_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_history.csv"]) __history_plot_file_main = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_main_output_mse_plot.png"]) __history_plot_file_auxilliary1 = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_auxilliary_output_1_mse_plot.png"]) __history_plot_file_auxilliary2 = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_auxilliary_output_2_mse_plot.png"]) if verbose: print("Retrieving model: %s..." % "".join([__MODEL_NAME, __MODEL_SUFFIX])) # Create or load the model if (not os.path.isfile(__model_file_MAIN_name)) or (not os.path.isfile(__model_file_AUX1_name)) or (not os.path.isfile(__model_file_AUX2_name)) or (not os.path.isfile(__model_json_file)) or recalculate_pickle: if verbose: print("Pickle file for '%s' MODEL not found or skipped by caller." % __MODEL_NAME) act = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8) lss = 'mean_squared_error' mtrc = ['mae','mse'] stop_at = np.max([int(0.1 * epoch_count), self.__MIN_early_stopping]) es = EarlyStopping(patience = stop_at, verbose = verbose) cp_main = ModelCheckpoint(filepath = __model_file_MAIN_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_main_output_mae') cp_aux1 = ModelCheckpoint(filepath = __model_file_AUX1_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_auxilliary_output_1_mae') cp_aux2 = ModelCheckpoint(filepath = __model_file_AUX2_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_auxilliary_output_2_mae') kernel_init = glorot_uniform() bias_init = Constant(value = 0.2) if self.__GPU_count > 1: dev = "/cpu:0" else: dev = "/gpu:0" with tf.device(dev): # Input image shape (H, W, C) input_img = Input(shape=(96, 96, 1)) # Top Layer (Begin MODEL) model = Convolution2D(filters = 64, kernel_size = (7, 7), padding = 'same', strides = (2, 2), activation = 'relu', name = 'conv_1_7x7/2', kernel_initializer = kernel_init, bias_initializer = bias_init) (input_img) model = MaxPooling2D((3, 3), padding = 'same', strides = (2, 2), name = 'max_pool_1_3x3/2') (model) model = Convolution2D(64, (1, 1), padding = 'same', strides = (1, 1), activation = 'relu', name = 'conv_2a_3x3/1') (model) model = Convolution2D(192, (3, 3), padding = 'same', strides = (1, 1), activation = 'relu', name = 'conv_2b_3x3/1') (model) model = MaxPooling2D((3, 3), padding = 'same', strides = (2, 2), name = 'max_pool_2_3x3/2') (model) # Inception Module model = self.__inception_module(model, filters_1x1 = 64, filters_3x3_reduce = 96, filters_3x3 = 128, filters_5x5_reduce = 16, filters_5x5 = 32, filters_pool_proj = 32, kernel_init = kernel_init, bias_init = bias_init, name = 'inception_3a') # Inception Module model = self.__inception_module(model, filters_1x1 = 128, filters_3x3_reduce = 128, filters_3x3 = 192, filters_5x5_reduce = 32, filters_5x5 = 96, filters_pool_proj = 64, kernel_init = kernel_init, bias_init = bias_init, name = 'inception_3b') model = MaxPooling2D((3, 3), padding = 'same', strides = (2, 2), name= 'max_pool_3_3x3/2') (model) # Inception Module model = self.__inception_module(model, filters_1x1 = 192, filters_3x3_reduce = 96, filters_3x3 = 208, filters_5x5_reduce = 16, filters_5x5 = 48, filters_pool_proj = 64, kernel_init = kernel_init, bias_init = bias_init, name = 'inception_4a') # CDB 3/5 DROPOUT ADDED model = Dropout(0.2) (model) # Begin MODEL1 (auxillary output) model1 = AveragePooling2D((5, 5), padding = 'same', strides = 3, name= 'avg_pool_4_5x5/2') (model) model1 = Convolution2D(128, (1, 1), padding = 'same', activation = 'relu') (model1) model1 = Flatten() (model1) model1 = Dense(1024, activation = 'relu') (model1) model1 = Dropout(0.3) (model1) if full: model1 = Dense(30, name = 'auxilliary_output_1') (model1) else: model1 = Dense(8, name = 'auxilliary_output_1') (model1) # Resume MODEL w/ Inception model = self.__inception_module(model, filters_1x1 = 160, filters_3x3_reduce = 112, filters_3x3 = 224, filters_5x5_reduce = 24, filters_5x5 = 64, filters_pool_proj = 64, kernel_init = kernel_init, bias_init = bias_init, name='inception_4b') model = self.__inception_module(model, filters_1x1 = 128, filters_3x3_reduce = 128, filters_3x3 = 256, filters_5x5_reduce = 24, filters_5x5 = 64, filters_pool_proj = 64, kernel_init = kernel_init, bias_init = bias_init, name='inception_4c') model = self.__inception_module(model, filters_1x1 = 112, filters_3x3_reduce = 144, filters_3x3 = 288, filters_5x5_reduce = 32, filters_5x5 = 64, filters_pool_proj = 64, kernel_init = kernel_init, bias_init = bias_init, name='inception_4d') # CDB : 3/5 DROPOUT ADDED model = Dropout(0.2) (model) # Begin MODEL2 (auxilliary output) model2 = AveragePooling2D((5, 5), strides = 3) (model) model2 = Convolution2D(128, (1, 1), padding = 'same', activation = 'relu') (model2) model2 = Flatten() (model2) model2 = Dense(1024, activation = 'relu') (model2) model2 = Dropout(0.3) (model2) if full: model2 = Dense(30, name = 'auxilliary_output_2') (model2) else: model2 = Dense(8, name = 'auxilliary_output_2') (model2) # Resume MODEL w/ Inception model = self.__inception_module(model, filters_1x1 = 256, filters_3x3_reduce = 160, filters_3x3 = 320, filters_5x5_reduce = 32, filters_5x5 = 128, filters_pool_proj = 128, kernel_init = kernel_init, bias_init = bias_init, name='inception_4e') model = MaxPooling2D((3, 3), padding = 'same', strides = (2, 2), name = 'max_pool_4_3x3/2') (model) model = self.__inception_module(model, filters_1x1 = 256, filters_3x3_reduce = 160, filters_3x3 = 320, filters_5x5_reduce = 32, filters_5x5 = 128, filters_pool_proj = 128, kernel_init = kernel_init, bias_init = bias_init, name='inception_5a') model = self.__inception_module(model, filters_1x1 = 384, filters_3x3_reduce = 192, filters_3x3 = 384, filters_5x5_reduce = 48, filters_5x5 = 128, filters_pool_proj = 128, kernel_init = kernel_init, bias_init = bias_init, name='inception_5b') model = GlobalAveragePooling2D(name = 'avg_pool_5_3x3/1') (model) model = Dropout(0.3) (model) # Output Layer (Main) if full: model = Dense(30, name = 'main_output') (model) else: model = Dense(8, name = 'main_output') (model) model = Model(input_img, [model, model1, model2], name = 'Inception') if verbose: print(model.summary()) # Compile the model if self.__GPU_count > 1: strategy = tf.distribute.MirroredStrategy() with strategy.scope(): parallel_model = multi_gpu_model(model, gpus = self.__GPU_count) parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) else: parallel_model = model parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) if (X_val is None) or (Y_val is None): history = parallel_model.fit(X, [Y, Y, Y], validation_split = val_split, batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp_main, cp_aux1, cp_aux2], verbose = verbose) else: history = parallel_model.fit(X, [Y, Y, Y], validation_data = (X_val, [Y_val, Y_val, Y_val]), batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp_main, cp_aux1, cp_aux2], verbose = verbose) # print and/or save a performance plot for m, f in zip(['main_output_mse', 'auxilliary_output_1_mse', 'auxilliary_output_2_mse'], [__history_plot_file_main, __history_plot_file_auxilliary1, __history_plot_file_auxilliary2]): try: self.__plot_keras_history(history = history, metric = m, model_name = __MODEL_NAME, feature_name = feature_name, file_name = f, verbose = False) except: print("error during history plot generation; skipped.") pass # save the model, parameters, and performance history model_json = parallel_model.to_json() with open(__model_json_file, "w") as json_file: json_file.write(model_json) hist_params = pd.DataFrame(history.params) hist_params.to_csv(__history_params_file) hist = pd.DataFrame(history.history) hist.to_csv(__history_performance_file) # save a plot of the model architecture try: plot_model(parallel_model, to_file = __model_architecture_plot_file, rankdir = 'TB', show_shapes = True, show_layer_names = True, expand_nested = True, dpi=300) except: print("error during model plot generation; skiopped.") pass if verbose: print("Model JSON, history, and parameters file saved.") else: if verbose: print("Loading history and params files for '%s' MODEL..." % feature_name) hist_params = pd.read_csv(__history_params_file) hist = pd.read_csv(__history_performance_file) if verbose: print("Loading pickle file for '%s' MODEL (MAIN) from file '%s'" % (__MODEL_NAME, __model_file_MAIN_name)) main_model = self.__load_keras_model(__MODEL_NAME, __model_file_MAIN_name, __model_json_file, verbose = verbose) if verbose: print("Loading pickle file for '%s' MODEL (AUX1) from file '%s'" % (__MODEL_NAME, __model_file_AUX1_name)) aux1_model = self.__load_keras_model(__MODEL_NAME, __model_file_AUX1_name, __model_json_file, verbose = verbose) if verbose: print("Loading pickle file for '%s' MODEL (AUX2) from file '%s'" % (__MODEL_NAME, __model_file_AUX2_name)) aux2_model = self.__load_keras_model(__MODEL_NAME, __model_file_AUX2_name, __model_json_file, verbose = verbose) return main_model, aux1_model, aux2_model, hist_params, hist # inferencing def predict_keras_inception(self, X, feature_name = "ALL_FEATURES", full = True, verbose = False): __MODEL_NAME = "Keras - Inception" __MODEL_FNAME_PREFIX = "KERAS_INCEPTION/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): raise RuntimeError("Model path '%s' does not exist; exiting inferencing." % nested_dir) __model_file_MAIN_name = "".join([nested_dir, "inception_MAIN_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_file_AUX1_name = "".join([nested_dir, "inception_AUX1_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_file_AUX2_name = "".join([nested_dir, "inception_AUX2_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, ".json"]) if (not os.path.isfile(__model_file_MAIN_name)) or (not os.path.isfile(__model_file_AUX1_name)) or (not os.path.isfile(__model_file_AUX2_name)) or (not os.path.isfile(__model_json_file)): raise RuntimeError("One or some of the following files are missing; prediction cancelled:\n\n'%s'\n'%s'\n'%s'\n'%s'\n\n" % (__model_file_MAIN_name, __model_file_AUX1_name, __model_file_AUX2_name, __model_json_file)) # load the Keras model for the specified feature main_model = self.__load_keras_model(__MODEL_NAME, __model_file_MAIN_name, __model_json_file, verbose = verbose) aux1_model = self.__load_keras_model(__MODEL_NAME, __model_file_AUX1_name, __model_json_file, verbose = verbose) aux2_model = self.__load_keras_model(__MODEL_NAME, __model_file_AUX2_name, __model_json_file, verbose = verbose) # predict if verbose: print("Predicting %d (x,y) coordinates for 'MAIN' model file..." % len(X)) Y_main = main_model.predict(X, verbose = verbose) Y_main_columns = [node.op.name for node in main_model.outputs] if verbose: print("Predicting %d (x,y) coordinates for 'AUX1' model file..." % len(X)) Y_aux1 = aux1_model.predict(X, verbose = verbose) Y_aux1_columns = [node.op.name for node in aux1_model.outputs] if verbose: print("Predicting %d (x,y) coordinates for 'AUX2' model file..." % len(X)) Y_aux2 = aux2_model.predict(X, verbose = verbose) Y_aux2_columns = [node.op.name for node in aux2_model.outputs] if verbose: print("Predictions completed!") return Y_main, Y_aux1, Y_aux2, Y_main_columns, Y_aux1_columns, Y_aux2_columns #------------------------------------------------ # ConvNet5 Simple Model #------------------------------------------------ def get_keras_convnet5(self, X, Y, batch_size, epoch_count, val_split = 0.1, X_val = None, Y_val = None, shuffle = True, feature_name = "ALL_FEATURES", recalculate_pickle = True, full = True, verbose = False): __MODEL_NAME = "Keras - ConvNet5" __MODEL_FNAME_PREFIX = "KERAS_CONVNET5/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): os.makedirs(nested_dir) __model_file_name = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".json"]) __history_params_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_params.csv"]) __history_performance_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_history.csv"]) __history_plot_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_plot.png"]) __model_architecture_plot_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, "_model_plot.png"]) if verbose: print("Retrieving model: %s..." % "".join([__MODEL_NAME, __MODEL_SUFFIX])) # Create or load the model if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)) or recalculate_pickle: if verbose: print("Pickle file for '%s' MODEL not found or skipped by caller." % feature_name) act = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08) lss = 'mean_squared_error' mtrc = ['mae','mse'] stop_at = np.max([int(0.1 * epoch_count), self.__MIN_early_stopping]) es = EarlyStopping(patience = stop_at, verbose = verbose) cp = ModelCheckpoint(filepath = __model_file_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_mae') if self.__GPU_count > 1: dev = "/cpu:0" else: dev = "/gpu:0" with tf.device(dev): model = Sequential(name = 'ConvNet5') # Input dimensions: (None, 96, 96, 1) model.add(Convolution2D(16, (3,3), padding = 'same', activation = 'relu', input_shape=(96,96,1))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.1)) model.add(Convolution2D(32, (3,3), padding = 'same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Convolution2D(64, (3,3), padding = 'same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.1)) model.add(Convolution2D(128, (3,3), padding = 'same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(256, (3,3), padding = 'same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.15)) model.add(Flatten()) model.add(Dense(1024, activation = 'relu')) model.add(Dropout(0.1)) model.add(Dense(512, activation = 'relu')) model.add(Dropout(0.1)) if full: model.add(Dense(30)) else: model.add(Dense(8)) if verbose: print(model.summary()) # Compile the model if self.__GPU_count > 1: strategy = tf.distribute.MirroredStrategy() with strategy.scope(): parallel_model = multi_gpu_model(model, gpus = self.__GPU_count) parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) else: parallel_model = model parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) if (X_val is None) or (Y_val is None): history = parallel_model.fit(X, Y, validation_split = val_split, batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) else: history = parallel_model.fit(X, Y, validation_data = (X_val, Y_val), batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp], verbose = verbose) # print and/or save a performance plot self.__plot_keras_history(history = history, metric = 'mse', model_name = __MODEL_NAME, feature_name = feature_name, file_name = __history_plot_file, verbose = verbose) # save the model, parameters, and performance history model_json = parallel_model.to_json() with open(__model_json_file, "w") as json_file: json_file.write(model_json) hist_params = pd.DataFrame(history.params) hist_params.to_csv(__history_params_file) hist = pd.DataFrame(history.history) hist.to_csv(__history_performance_file) if verbose: print("Model JSON, history, and parameters file saved.") # save a plot of the model architecture plot_model(parallel_model, to_file = __model_architecture_plot_file, rankdir = 'TB', show_shapes = True, show_layer_names = True, expand_nested = True, dpi=300) else: if verbose: print("Loading history and params files for '%s' MODEL..." % feature_name) hist_params = pd.read_csv(__history_params_file) hist = pd.read_csv(__history_performance_file) if verbose: print("Loading pickle file for '%s' MODEL from file '%s'" % (feature_name, __model_file_name)) parallel_model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) return parallel_model, hist_params, hist # inferencing def predict_keras_convnet5(self, X, feature_name = "unknown", full = True, verbose = False): __MODEL_NAME = "Keras - ConvNet5" __MODEL_FNAME_PREFIX = "KERAS_CONVNET5/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): raise RuntimeError("Model path '%s' does not exist; exiting inferencing." % nested_dir) __model_file_name = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, feature_name, __MODEL_SUFFIX, ".json"]) ##__scaler_file = "".join([nested_dir, feature_name, "_scaler.pkl"]) if (not os.path.isfile(__model_file_name)) or (not os.path.isfile(__model_json_file)): raise RuntimeError("One or some of the following files are missing; prediction cancelled:\n\n'%s'\n'%s'\n" % (__model_file_name, __model_json_file)) # load the Keras model for the specified feature model = self.__load_keras_model(__MODEL_NAME, __model_file_name, __model_json_file, verbose = verbose) # predict if verbose: print("Predicting %d (x,y) coordinates for '%s'..." % (len(X), feature_name)) Y = model.predict(X, verbose = verbose) if verbose: print("Predictions completed!") return Y #------------------------------------------------------------- # Inception V3 # Inspired by : http://arxiv.org/abs/1512.00567 #------------------------------------------------------------- def get_keras_inceptionv3(self, X, Y, batch_size, epoch_count, val_split = 0.1, shuffle = True, feature_name = "ALL_FEATURES", recalculate_pickle = True, X_val = None, Y_val = None, full = True, verbose = False): __MODEL_NAME = "Keras - Inceptionv3" __MODEL_FNAME_PREFIX = "KERAS_INCEPTIONV3/" if full: __MODEL_SUFFIX = "_30" else: __MODEL_SUFFIX = "_8" nested_dir = "".join([self.__models_path,__MODEL_FNAME_PREFIX]) if not os.path.exists(nested_dir): os.makedirs(nested_dir) __model_file_MAIN_name = "".join([nested_dir, "inception_MAIN_", feature_name, __MODEL_SUFFIX, ".h5"]) __model_json_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, ".json"]) __model_architecture_plot_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_plot.png"]) __history_params_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_params.csv"]) __history_performance_file = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_history.csv"]) __history_plot_file_main = "".join([nested_dir, "inception_", feature_name, __MODEL_SUFFIX, "_main_output_mse_plot.png"]) if verbose: print("Retrieving model: %s..." % "".join([__MODEL_NAME, __MODEL_SUFFIX])) # Create or load the model if (not os.path.isfile(__model_file_MAIN_name)) or (not os.path.isfile(__model_json_file)) or recalculate_pickle: if verbose: print("Pickle file for '%s' MODEL not found or skipped by caller." % __MODEL_NAME) act = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8) lss = 'mean_squared_error' mtrc = ['mae','mse'] stop_at = np.max([int(0.1 * epoch_count), self.__MIN_early_stopping]) es = EarlyStopping(patience = stop_at, verbose = verbose) cp_main = ModelCheckpoint(filepath = __model_file_MAIN_name, verbose = verbose, save_best_only = True, mode = 'min', monitor = 'val_mae') kernel_init = glorot_uniform() bias_init = Constant(value = 0.2) if self.__GPU_count > 1: dev = "/cpu:0" else: dev = "/gpu:0" with tf.device(dev): # Input image shape (H, W, C) input_img = Input(shape = (96, 96, 1)) # Begin Inception V3 x = self.__conv2d_bn(x = input_img, filters = 32, num_row = 3, num_col = 3, strides = (2, 2), padding = 'valid') x = self.__conv2d_bn(x = x, filters = 32, num_row = 3, num_col = 3, strides = (1, 1), padding = 'valid') x = self.__conv2d_bn(x = x, filters = 64, num_row = 3, num_col = 3, strides = (1, 1), padding = 'same') x = MaxPooling2D((3, 3), strides = (2, 2)) (x) x = self.__conv2d_bn(x = x, filters = 80, num_row = 1, num_col = 1, strides = (1, 1), padding = 'valid') x = self.__conv2d_bn(x = x, filters = 192, num_row = 3, num_col = 3, strides = (1, 1), padding = 'valid') x = MaxPooling2D((3, 3), strides = (2, 2)) (x) branch1x1 = self.__conv2d_bn(x = x, filters = 64, num_row = 1, num_col = 1, strides = (1, 1), padding = 'same') branch5x5 = self.__conv2d_bn(x = x, filters = 48, num_row = 1, num_col = 1, strides = (1, 1), padding = 'same') branch5x5 = self.__conv2d_bn(x = branch5x5, filters = 64, num_row = 5, num_col = 5, strides = (1, 1), padding = 'same') branch3x3dbl = self.__conv2d_bn(x = x, filters = 64, num_row = 1, num_col = 1, strides = (1, 1), padding = 'same') branch3x3dbl = self.__conv2d_bn(x = branch3x3dbl, filters = 96, num_row = 3, num_col = 3, strides = (1, 1), padding = 'same') branch3x3dbl = self.__conv2d_bn(x = branch3x3dbl, filters = 96, num_row = 3, num_col = 3, strides = (1, 1), padding = 'same') branch_pool = AveragePooling2D((3, 3), strides = (1, 1), padding = 'same') (x) branch_pool = self.__conv2d_bn(x = branch_pool, filters = 32, num_row = 1, num_col = 1, strides = (1, 1), padding = 'same') x = concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis = 3, name = 'mixed0') branch1x1 = self.__conv2d_bn(x, 64, 1, 1) branch5x5 = self.__conv2d_bn(x, 48, 1, 1) branch5x5 = self.__conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = self.__conv2d_bn(x, 64, 1, 1) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides = (1, 1), padding = 'same') (x) branch_pool = self.__conv2d_bn(branch_pool, 64, 1, 1) x = concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis = 3, name = 'mixed1') branch1x1 = self.__conv2d_bn(x, 64, 1, 1) branch5x5 = self.__conv2d_bn(x, 48, 1, 1) branch5x5 = self.__conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = self.__conv2d_bn(x, 64, 1, 1) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides = (1, 1), padding = 'same') (x) branch_pool = self.__conv2d_bn(branch_pool, 64, 1, 1) x = concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis = 3, name = 'mixed2') branch3x3 = self.__conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid') branch3x3dbl = self.__conv2d_bn(x, 64, 1, 1) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2)) (x) x = concatenate( [branch3x3, branch3x3dbl, branch_pool], axis = 3, name = 'mixed3') branch1x1 = self.__conv2d_bn(x, 192, 1, 1) branch7x7 = self.__conv2d_bn(x, 128, 1, 1) branch7x7 = self.__conv2d_bn(branch7x7, 128, 1, 7) branch7x7 = self.__conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = self.__conv2d_bn(x, 128, 1, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 128, 1, 7) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides = (1, 1), padding = 'same') (x) branch_pool = self.__conv2d_bn(branch_pool, 192, 1, 1) x = concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis = 3, name = 'mixed4') for i in range(2): branch1x1 = self.__conv2d_bn(x, 192, 1, 1) branch7x7 = self.__conv2d_bn(x, 160, 1, 1) branch7x7 = self.__conv2d_bn(branch7x7, 160, 1, 7) branch7x7 = self.__conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = self.__conv2d_bn(x, 160, 1, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 160, 1, 7) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides = (1, 1), padding = 'same') (x) branch_pool = self.__conv2d_bn(branch_pool, 192, 1, 1) x = concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis = 3, name = 'mixed' + str(5 + i)) branch1x1 = self.__conv2d_bn(x, 192, 1, 1) branch7x7 = self.__conv2d_bn(x, 192, 1, 1) branch7x7 = self.__conv2d_bn(branch7x7, 192, 1, 7) branch7x7 = self.__conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = self.__conv2d_bn(x, 192, 1, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 192, 1, 7) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = self.__conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides = (1, 1), padding = 'same') (x) branch_pool = self.__conv2d_bn(branch_pool, 192, 1, 1) x = concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis = 3, name = 'mixed7') branch3x3 = self.__conv2d_bn(x, 192, 1, 1) branch3x3 = self.__conv2d_bn(branch3x3, 320, 3, 3,strides=(2, 2), padding='valid') branch7x7x3 = self.__conv2d_bn(x, 192, 1, 1) branch7x7x3 = self.__conv2d_bn(branch7x7x3, 192, 1, 7) branch7x7x3 = self.__conv2d_bn(branch7x7x3, 192, 7, 1) branch7x7x3 = self.__conv2d_bn(branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = concatenate( [branch3x3, branch7x7x3, branch_pool], axis = 3, name = 'mixed8') for i in range(2): branch1x1 = self.__conv2d_bn(x, 320, 1, 1) branch3x3 = self.__conv2d_bn(x, 384, 1, 1) branch3x3_1 = self.__conv2d_bn(branch3x3, 384, 1, 3) branch3x3_2 = self.__conv2d_bn(branch3x3, 384, 3, 1) branch3x3 = concatenate( [branch3x3_1, branch3x3_2], axis = 3, name = 'mixed9_' + str(i)) branch3x3dbl = self.__conv2d_bn(x, 448, 1, 1) branch3x3dbl = self.__conv2d_bn(branch3x3dbl, 384, 3, 3) branch3x3dbl_1 = self.__conv2d_bn(branch3x3dbl, 384, 1, 3) branch3x3dbl_2 = self.__conv2d_bn(branch3x3dbl, 384, 3, 1) branch3x3dbl = concatenate( [branch3x3dbl_1, branch3x3dbl_2], axis = 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = self.__conv2d_bn(branch_pool, 192, 1, 1) x = concatenate( [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis = 3, name = 'mixed' + str(9 + i)) x = GlobalAveragePooling2D(name = 'avg_pool') (x) x = Dropout(0.3) (x) if full: x = Dense(30) (x) else: x = Dense(8) (x) model = Model(input_img, x, name = 'InceptionV3') if verbose: print(model.summary()) # Compile the model if self.__GPU_count > 1: strategy = tf.distribute.MirroredStrategy() with strategy.scope(): parallel_model = multi_gpu_model(model, gpus = self.__GPU_count) parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) else: parallel_model = model parallel_model.compile(optimizer = act, loss = lss, metrics = mtrc) if (X_val is None) or (Y_val is None): history = parallel_model.fit(X, Y, validation_split = val_split, batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp_main], verbose = verbose) else: history = parallel_model.fit(X, Y, validation_data = (X_val, Y_val), batch_size = batch_size * self.__GPU_count, epochs = epoch_count, shuffle = shuffle, callbacks = [es, cp_main], verbose = verbose) # print and/or save a performance plot self.__plot_keras_history(history = history, metric = 'mse', model_name = __MODEL_NAME, feature_name = feature_name, file_name = __history_plot_file_main, verbose = verbose) # save the model, parameters, and performance history model_json = parallel_model.to_json() with open(__model_json_file, "w") as json_file: json_file.write(model_json) hist_params = pd.DataFrame(history.params) hist_params.to_csv(__history_params_file) hist = pd.DataFrame(history.history) hist.to_csv(__history_performance_file) # save a plot of the model architecture try: plot_model(parallel_model, to_file = __model_architecture_plot_file, rankdir = 'TB', show_shapes = True, show_layer_names = True, expand_nested = True, dpi=300) except: print("error during model plot generation; skiopped.") pass if verbose: print("Model JSON, history, and parameters file saved.") else: if verbose: print("Loading history and params files for '%s' MODEL..." % feature_name) hist_params = pd.read_csv(__history_params_file) hist =
pd.read_csv(__history_performance_file)
pandas.read_csv
from catboost import CatBoostRegressor import pandas as pd from earthquake import config def get_features(): return [ 'ffti_av_change_rate_roll_mean_1000', 'percentile_roll_std_30_window_50', 'skew', 'percentile_roll_std_10_window_100', 'percentile_roll_std_30_window_50', 'percentile_roll_std_20_window_1000', 'ffti_exp_Moving_average_30000_mean', 'range_3000_4000', 'max_last_10000', 'mfcc_4_avg', 'fftr_percentile_roll_std_80_window_10000', 'percentile_roll_std_1_window_100', 'ffti_abs_trend', 'av_change_abs_roll_mean_50', 'mfcc_15_avg' ] def submit(): """Make prediction and prepare results for submission. """ features = get_features() train_set =
pd.read_csv(config.path_to_train)
pandas.read_csv
import numpy as np import pandas as pd from scipy.stats import mode from tqdm import tqdm from geopy.geocoders import Nominatim from datetime import datetime def handle_bornIn(x): skip_vals = ['16-Mar', '23-May', 'None'] if x not in skip_vals: return datetime(2012, 1, 1).year - datetime(int(x), 1, 1).year else: return 23 def handle_gender(x): if x == 'male': return 1 else: return 0 def handle_memberSince(x): skip_vals = ['--None'] if pd.isna(x): return datetime(2012, 1, 1) elif x not in skip_vals: return datetime.strptime(x, '%d-%m-%Y') else: return datetime(2012, 1, 1) def process_tours_df(data_content): dtype = {} cols = data_content.tours_df.columns[9:] for d in cols: dtype[d] = np.int16 data_content.tours_df = data_content.tours_df.astype(dtype) data_content.tours_df['area'] = data_content.tours_df['city'] + ' ' + data_content.tours_df['state'] + ' ' + \ data_content.tours_df['pincode'] + ' ' + data_content.tours_df['country'] data_content.tours_df['area'] = data_content.tours_df['area'].apply(lambda x: x.lstrip() if type(x) == str else x) data_content.tours_df['area'] = data_content.tours_df['area'].apply(lambda x: x.rstrip() if type(x) == str else x) data_content.tours_df.drop(['city', 'state', 'pincode', 'country'], axis=1, inplace=True) data_content.tours_df['tour_date'] = data_content.tours_df['tour_date'].apply( lambda x: datetime(int(x.split('-')[2]), int(x.split('-')[1]), int(x.split('-')[0]), 23, 59)) def process_tour_convoy_df(data_content): print('Initializing tour_convoy_df...', flush=True) data_content.tour_convoy_df['total_going'] = 0 data_content.tour_convoy_df['total_not_going'] = 0 data_content.tour_convoy_df['total_maybe'] = 0 data_content.tour_convoy_df['total_invited'] = 0 data_content.tour_convoy_df['fraction_going'] = 0 data_content.tour_convoy_df['fraction_not_going'] = 0 data_content.tour_convoy_df['fraction_maybe'] = 0 known_bikers = set() lis = ['going', 'not_going', 'maybe', 'invited'] pbar = tqdm(total=data_content.tour_convoy_df.shape[0], bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') pbar.set_description("Step 1 of 2") for idx, _ in data_content.tour_convoy_df.iterrows(): s = [0, 0, 0] for j, l in enumerate(lis): if not pd.isna(data_content.tour_convoy_df.loc[idx, l]): biker = data_content.tour_convoy_df.loc[idx, l].split() data_content.tour_convoy_df.loc[idx, 'total_' + l] = len(biker) if j != 3: s[j] = len(biker) for bik in biker: known_bikers.add(bik) if sum(s) != 0: for j in range(3): data_content.tour_convoy_df.loc[idx, 'fraction_' + lis[j]] = s[j] / sum(s) pbar.update(1) pbar.close() mean = data_content.tour_convoy_df['total_invited'].mean() std = data_content.tour_convoy_df['total_invited'].std() data_content.tour_convoy_df['fraction_invited'] = data_content.tour_convoy_df['total_invited'].apply( lambda x: (x - mean) / std) biker_tour_convoy_df = dict() for biker in list(known_bikers): biker_tour_convoy_df[biker] = [[], [], [], []] pbar = tqdm(total=data_content.tour_convoy_df.shape[0], bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') pbar.set_description("Step 2 of 2") for idx, _ in data_content.tour_convoy_df.iterrows(): for l in lis: if not pd.isna(data_content.tour_convoy_df.loc[idx, l]): biker = data_content.tour_convoy_df.loc[idx, l].split() for bik in biker: biker_tour_convoy_df[bik][lis.index(l)] += \ [data_content.tour_convoy_df.loc[idx, 'tour_id']] pbar.update(1) pbar.close() for key, _ in biker_tour_convoy_df.items(): for i in range(4): biker_tour_convoy_df[key][i] = ' '.join(list(set(biker_tour_convoy_df[key][i]))) biker_tour_convoy_df = pd.DataFrame.from_dict(biker_tour_convoy_df, orient='index') biker_tour_convoy_df.reset_index(inplace=True) biker_tour_convoy_df.columns = ['biker_id'] + lis print('tour_convoy_df ready...', flush=True) return biker_tour_convoy_df def get_coordinates(locations, data_content): geolocation_map = {} locator = Nominatim(user_agent="Kolibri") for i in tqdm(range(len(locations)), disable=False, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}'): # noinspection PyBroadException try: location = locator.geocode(locations[i]) geolocation_map[locations[i]] = [location.latitude, location.longitude] except: # Called when there is presumably some noise in the Address location # noinspection PyBroadException data_content.noise += [locations[i]] geolocation_map[locations[i]] = [np.nan, np.nan] location_df = pd.DataFrame({'location': list(locations), 'latitude': np.array(list(geolocation_map.values()))[:, 0], 'longitude': np.array(list(geolocation_map.values()))[:, 1]}) return geolocation_map, location_df def initialize_locations(data_content): # noinspection PyBroadException try: location_df = pd.read_csv(data_content.base_dir + 'temp/location.csv') location_from_csv = True except: location_df = None location_from_csv = False if location_from_csv: geolocation = {} print('Initializing Locations from DataFrame...', flush=True) for i, l in enumerate(location_df['location'].tolist()): geolocation[l] = [location_df.loc[i, 'latitude'], location_df.loc[i, 'longitude']] else: print('Initializing Locations from Nominatim...', flush=True) biker_location = data_content.bikers_df['area'].dropna().drop_duplicates().tolist() geolocation, location_df = get_coordinates(biker_location, data_content) return geolocation, location_df def impute_location_from_tour_convoy(data_content): # From tour_convoy unk_loc = data_content.bikers_df[
pd.isna(data_content.bikers_df['latitude'])
pandas.isna
from scipy.sparse import data from sklearn.cluster import KMeans import numpy as np import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm from sklearn.manifold import TSNE import os import csv TOP25 = 5 srcPath = 'data/static/time_distribution.csv' kmeansPath = 'data/static/kmeans.csv' def getDataset(): # 这是设置取样规则的,如果要重新取样记得删掉data/static/kmeans.csv文件 # if not os.path.exists(kmeansPath): if True: X = [] df = pd.read_csv(srcPath) for idx, row in tqdm(df.iterrows(), total=df.shape[0], desc="Dataset"): if row['TOTAL'] < 10: # 取样规则在这里 continue data = [row['DAWN'], row['MORNING'], row['AFTERNOON'], row['NIGHT']] X.append(list(map(lambda x: round(x/row['TOTAL'], 2), data))) with open(os.path.join('data/static', 'kmeans.csv'), 'w+') as f: writer = csv.writer(f) writer.writerow(['DAWN', 'MORNING', 'AFTERNOON', 'NIGHT']) writer.writerows(X) df = pd.read_csv(kmeansPath) print("shape is:", df.shape) return df def decideK(df): # 通过找肘点确定分类数量 dataset = [] for idx, row in df.iterrows(): dataset.append([row['DAWN'], row['MORNING'], row['AFTERNOON'], row['NIGHT']]) SSE = [] K = [] for n_cluster in tqdm(range(1, 20), desc='decideK'): cls = KMeans(n_clusters=n_cluster, max_iter=10000) cls.fit(dataset) SSE.append(cls.inertia_) K.append(n_cluster) plt.scatter(K, SSE) plt.plot(K, SSE) plt.xlabel("K") plt.ylabel("SSE") plt.show() def kmeans(df): df =
pd.read_csv(kmeansPath)
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function, division # Built-ins import os, sys, time, datetime, uuid, pickle, gzip, bz2, zipfile, requests, operator, warnings, functools from collections import OrderedDict, defaultdict, Mapping from io import TextIOWrapper import xml.etree.ElementTree as ET import importlib # Version-specific modules if sys.version_info.major == 2: import pathlib2 as pathlib import string import bz2file setattr(bz2, "open", bz2file.open) # Hack to use open with bz2 else: import pathlib # External from tqdm import tqdm, tqdm_notebook, tqdm_gui import pandas as pd import numpy as np # ===== # Formatting # ===== # Remove pairwise nan def remove_pairwise_nan(a, b, checks=True): """ Remove nan values for a pairwise function Benchmark: data:150 dimensionality pd.Series with 1 nan in a checks=True: 177 µs ± 14.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) checks=False: 111 µs ± 1.91 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) """ if checks: assert isinstance(a, (np.ndarray, pd.Series)) assert type(a) is type(b), "`a` and `b` must be the same type" assert a.size == b.size, "`a` and `b` must be the same size. The sizes are {} and {}, respectively".format(a.size, b.size) if isinstance(a, pd.Series): assert np.all(a.index == b.index), "`a` and `b` must be the same index" index = None name_a = None name_b = None if isinstance(a, pd.Series): index = a.index name_a = a.name name_b = b.name a = a.values b = b.values mask_nan = ~np.logical_or(np.isnan(a), np.isnan(b)) a = a[mask_nan] b = b[mask_nan] if index is not None: a = pd.Series(a, index=index[mask_nan], name=name_a) b = pd.Series(b, index=index[mask_nan], name=name_b) return (a,b) # Format pairwise def format_pairwise(a, b, nans_ok=True, assert_not_empty=True): """ Prepare two pd.Series for a pairwise operation by getting overlapping indices and droping nan """ # Assert a and b are series assert isinstance(a, pd.Series) assert isinstance(b, pd.Series) # Get overlap of index index = a.index & b.index if assert_not_empty: assert index.size > 0, "There are no overlapping elements between a.index and b.index" a = a[index] b = b[index] number_of_nans = pd.concat([a.isnull(), b.isnull()]).sum() if number_of_nans > 0: if nans_ok: a, b = remove_pairwise_nan(a,b,checks=False) else: raise ValueError("`nans_ok=False` and there are {} total `nan` between `a` and `b`".format(number_of_nans)) return a, b # Format memory def format_memory(B, unit="infer", return_units=True): """ Return the given bytes as a human readable KB, MB, GB, or TB string 1 KB = 1024 Bytes Adapted from the following source (@whereisalext): https://stackoverflow.com/questions/12523586/python-format-size-application-converting-b-to-kb-mb-gb-tb/52379087 """ B = float(B) KB = float(1024) MB = float(KB ** 2) # 1,048,576 GB = float(KB ** 3) # 1,073,741,824 TB = float(KB ** 4) # 1,099,511,627,776 # Human readable size_in_b = int(B) size_in_kb = B/KB size_in_mb = B/MB size_in_gb = B/GB size_in_tb = B/TB if return_units: size_in_b = '{0} B'.format(size_in_b) size_in_kb = '{0:.3f} KB'.format(size_in_kb) size_in_mb = '{0:.3f} MB'.format(size_in_mb) size_in_gb = '{0:.3f} GB'.format(size_in_gb) size_in_tb = '{0:.3f} TB'.format(size_in_tb) unit = unit.lower() assert_acceptable_arguments(unit.lower(), {"infer", "b", "kb", "mb", "gb", "tb"}) if unit != "infer": return {"b":size_in_b, "kb":size_in_kb, "mb":size_in_mb, "gb":size_in_gb, "tb":size_in_tb}[unit] else: if B < KB: return size_in_b elif KB <= B < MB: return size_in_kb elif MB <= B < GB: return size_in_mb elif GB <= B < TB: return size_in_gb elif TB <= B: return size_in_tb # Get duration def format_duration(t0): """ Adapted from @john-fouhy: https://stackoverflow.com/questions/538666/python-format-timedelta-to-string """ duration = time.time() - t0 hours, remainder = divmod(duration, 3600) minutes, seconds = divmod(remainder, 60) return "{:02}:{:02}:{:02}".format(int(hours), int(minutes), int(seconds)) # Format file path def format_path(path, into=str, absolute=False): assert not is_file_like(path), "`path` cannot be file-like" if hasattr(path, "absolute"): path = str(path.absolute()) if hasattr(path, "path"): path = str(path.path) if absolute: path = os.path.abspath(path) return into(path) # Format header for printing def format_header(text, line_character="=", n=None): if n is None: n = len(text) line = n*line_character return "{}\n{}\n{}".format(line, text, line) # ============ # Dictionaries # ============ # Dictionary as a tree def dict_tree(): """ Source: https://gist.github.com/hrldcpr/2012250 """ return defaultdict(dict_tree) # Reverse a dictionary def dict_reverse(d): into = type(d) data = [(v,k) for k,v in d.items()] return into(data) # Expand dictionary def dict_expand(d, into=pd.Series, **kwargs): """ Convert {group:[elements]} ==> {element[i]:group[j]} """ return into(OrderedDict((r,p) for p,q in d.items() for r in q), **kwargs) # Fill dictionary def dict_fill(d, index, filler_value=np.nan, into=dict): data = [(k,filler_value) for k in index if k not in d] + list(d.items()) return into(data) # Build a dictionary from repeated elements def dict_build(input_data, into=dict): """ input_data: [(value, iterable)] d_output: {key_in_iterable:value} """ d_output = OrderedDict() for value, iterable in input_data: for key in iterable: d_output[key] = value return into(d_output) # Fold dictionary def dict_collapse(d, into=dict): """ Folds dictionary into dict of lists """ d_collapsed = defaultdict(list) for k,v in d.items(): d_collapsed[v].append(k) return into(d_collapsed) # Subset a dictionary def dict_filter(d, keys, into=dict): """ keys can be an iterable or function """ if hasattr(keys, "__call__"): f = keys keys = filter(f, d.keys()) return into(map(lambda k:(k,d[k]), keys)) # Convert python dictionary to bash def dict_py_to_bash(d, bash_obj_name="DICT"): """ Adapted from source: * https://stackoverflow.com/questions/1494178/how-to-define-hash-tables-in-bash Converts a Python dictionary or pd.Series to a bash dictionary. """ bash_placeholder = "declare -A {}=(".format(bash_obj_name) for k,v in d.items(): bash_placeholder += ' ["{}"]="{}"'.format(k,v) bash_placeholder += ")" return bash_placeholder # =========== # Assertions # =========== def assert_acceptable_arguments(query, target, operation="le", message="Invalid option provided. Please refer to the following for acceptable arguments:"): """ le: operator.le(a, b) : <= eq: operator.eq(a, b) : == ge: operator.ge(a, b) : >= """ # If query is not a nonstring iterable or a tuple if any([ not is_nonstring_iterable(query), isinstance(query,tuple), ]): query = [query] query = set(query) target = set(target) func_operation = getattr(operator, operation) assert func_operation(query,target), "{}\n{}".format(message, target) # Check packages def check_packages(packages, namespace=None, language="python", import_into_backend=False, verbose=False): """ Check if packages are available (and import into global namespace) Handles python and R packages via rpy2 If package is a tuple then imports as follows: ("numpy", "np") where "numpy" is full package name and "np" is abbreviation If R packages are being checked, please install rpy2 To import packages into current namespace: namespace = globals() To import packages in backend, e.g. if this is used in a module/script, use `import_into_backend` packages: str, non-tuple iterable usage: @check_packages(["sklearn", "scipy"], language="python") def f(): pass @check_packages(["ape"], language="r") def f(): pass """ # Force packages into sorted non-redundant list if isinstance(packages,(str, tuple)): packages = [packages] packages = set(packages) # Set up decorator for Python imports if language.lower() == "python": import_package = importlib.import_module importing_error = ImportError # Set up decorator for R imports if language.lower() == "r": try: import rpy2 except ImportError: raise Exception("Please install 'rpy2' to import R packages") from rpy2.robjects.packages import importr from rpy2 import __version__ as rpy2_version rpy2_version_major = int(rpy2_version.split(".")[0]) assert rpy2_version_major > 1, "Please update your rpy2 version" if rpy2_version_major == 2: from rpy2.rinterface import RRuntimeError importing_error = RRuntimeError if rpy2_version_major == 3: # from rpy2.rinterface_lib.embedded import RRuntimeError from rpy2.robjects.packages import PackageNotInstalledError importing_error = PackageNotInstalledError import_package = importr # Wrapper def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): missing_packages = [] for pkg in packages: if isinstance(pkg, tuple): assert len(pkg) == 2, "If a package is tuple type then it must have 2 elements e.g. ('numpy', 'np')" pkg_name, pkg_variable = pkg else: pkg_name = pkg_variable = pkg try: package = import_package(pkg_name) if import_into_backend: globals()[pkg_variable] = package if namespace is not None: namespace[pkg_variable] = package if verbose: print("Importing {} as {}".format(pkg_name, pkg_variable), True, file=sys.stderr) except importing_error: missing_packages.append(pkg_name) if verbose: print("Cannot import {}:".format(pkg_name), False, file=sys.stderr) assert not missing_packages, "Please install the following {} packages to use this function:\n{}".format(language.capitalize(), ", ".join(missing_packages)) return func(*args, **kwargs) return wrapper return decorator # =========== # Types # =========== def is_function(obj): return hasattr(obj, "__call__") def is_file_like(obj): return hasattr(obj, "read") def is_dict(obj): return isinstance(obj, Mapping) def is_nonstring_iterable(obj): condition_1 = hasattr(obj, "__iter__") condition_2 = not type(obj) == str return all([condition_1,condition_2]) def is_dict_like(obj): condition_1 = is_dict(obj) condition_2 = isinstance(obj, pd.Series) return any([condition_1, condition_2]) def is_all_same_type(iterable): iterable_types = set(map(lambda obj:type(obj), iterable)) return len(iterable_types) == 1 def is_number(x, num_type = np.number): return np.issubdtype(type(x), num_type) def is_query_class(x,query, case_sensitive=False): # Format single search queries if type(query) == str: query = [query] # Remove case if necessary x_classname = str(x.__class__) if not case_sensitive: x_classname = x_classname.lower() query = map(lambda q:q.lower(),query) # Check if any of the tags in query are in the input class verdict = any(q in x_classname for q in query) return verdict def is_path_like(obj, path_must_exist=True): condition_1 = type(obj) == str condition_2 = hasattr(obj, "absolute") condition_3 = hasattr(obj, "path") obj_is_path_like = any([condition_1, condition_2, condition_3]) if path_must_exist: if obj_is_path_like: return os.path.exists(obj) else: return False else: return obj_is_path_like def is_in_namespace(variable_names, namespace, func_logic=all): """ Check if variable names are in the namespace (i.e. globals()) """ assert hasattr(variable_names, "__iter__"), "`variable_names` should be either a single string on an object or an iterable of strings of variable names" if isinstance(variable_names, str): variable_names = [variable_names] namespace = set(namespace) return func_logic(map(lambda x: x in namespace, variable_names)) def is_symmetrical(X, tol=None): assert len(X.shape) == 2 , "`X` must be 2-dimensional" assert X.shape[0] == X.shape[1], "`X` must be square" X = X.copy() if isinstance(X, pd.DataFrame): X = X.values np.fill_diagonal(X, 0) if tol is None: return np.all(np.tril(X) == np.triu(X).T) if tol: return (np.tril(X) - np.triu(X).T).ravel().min() < tol def is_graph(obj, attr="has_edge"): return hasattr(obj, attr) @check_packages(["matplotlib"]) def is_color(obj): from matplotlib.colors import to_rgba # Note: This can't handle values that are RGB in (0-255) only (0,1) try: to_rgba(obj) return True except ValueError: verdict = False if is_nonstring_iterable(obj): if all(isinstance(c, (float, int)) for c in obj): # Check [0,1] if all(0 <= c <= 1 for c in obj): verdict = True # # Check [0,255] # if not verdict: # if all(0 <= c <= 255 for c in obj): # verdict = True return verdict @check_packages(["matplotlib"]) def get_color_midpoint(a, b, alpha=1.0, return_type="hex"): from matplotlib.colors import to_rgba, to_hex assert_acceptable_arguments(return_type, {"rgba", "rgb", "hex"}) a = to_rgba(a, alpha=alpha) b = to_rgba(b, alpha=alpha) c = tuple(np.stack([a,b]).mean(axis=0)) if return_type == "rgba": return c if return_type == "rgb": return c[:-1] if return_type == "hex": return to_hex(c) # ======= # Utility # ======= # Infer compression def infer_compression(path): path = format_path(path) compression = None ext_zip = (".zip") ext_gzip = (".gz", ".gzip", ".pgz") ext_bz2 = (".bz2", ".bzip2", ".pbz2") if path.endswith(ext_gzip): compression= "gzip" if path.endswith(ext_bz2): compression = "bz2" if path.endswith(ext_zip): compression = "zip" return compression # Get current timestamp def get_timestamp(fmt="%Y-%m-%d %H:%M:%S"): return datetime.datetime.utcnow().strftime(fmt) # Wrapper for tqdm def pv(iterable, description=None, version=None, total=None, unit='it'): """ Progress viewer Wrapper for `tqdm`: https://github.com/tqdm/tqdm """ assert_acceptable_arguments([version], {None, "gui", "notebook"}) func = tqdm if version == "notebook": func = tqdm_notebook if version == "gui": func = tqdm_gui return tqdm( iterable, desc=description, total=total, unit=unit, ) # Creates a unique identifier def get_unique_identifier(): return uuid.uuid4().hex def contains(query, include, exclude=None): """ Is anything from `include` in `query` that doesn't include anything from `exclude` `query` can be any iterator that is not a generator """ if isinstance(include, str): include = [include] condition_A = any(x in query for x in include) if exclude is not None: if type(exclude) == str: exclude = [exclude] condition_B = all(x not in query for x in exclude) return all([condition_A, condition_B]) else: return condition_A # Consecutive replace on a string def consecutive_replace(x, *patterns): if len(patterns) == 1: patterns = patterns[0] for (a,b) in patterns: x = x.replace(a,b) return x # Boolean def boolean(x, true_values={"true", "t", "yes", "1"}, false_values={"false", "f", "no", "0"}, assertion_message="Please choose either: 'True' or 'False'"): """ Not case sensitive """ x = str(x).lower() option = None if x in list(map(str,true_values)): option = True if x in list(map(str,false_values)): option = False assert option is not None, assertion_message return option # Truncate a float by a certain precision def to_precision(x, precision=5, into=float): return into(("{0:.%ie}" % (precision-1)).format(x)) # Left padding def pad_left(x, block_size=3, fill=0): """ Pad a string representation of digits """ if len(x) > block_size: return x else: right = np.array(list(str(x))) left = np.repeat(str(fill), block_size - right.size ) return "".join(np.concatenate([left, right])) # Join as strings def join_as_strings(delimiter="_", *args): return delimiter.join(list(map(str, args))) # ============= # Iterables # ============= # Fragment a sequence string def fragment(seq, K=5, step=1, overlap=False): K = int(K) step = int(step) if not overlap: step = K iterable = range(0, len(seq) - K + 1, step) for i in iterable: frag = seq[i:i+K] yield frag # Get depth of an iterable def iterable_depth(arg, exclude=None): # Adapted from the following SO post: # https://stackoverflow.com/questions/6039103/counting-depth-or-the-deepest-level-a-nested-list-goes-to # @marco-sulla exclude = set([str]) if exclude is not None: if not hasattr(exclude, "__iter__"): exclude = [exclude] exclude.update(exclude) if isinstance(arg, tuple(exclude)): return 0 try: if next(iter(arg)) is arg: # avoid infinite loops return 1 except TypeError: return 0 try: depths_in = map(lambda x: iterable_depth(x, exclude), arg.values()) except AttributeError: try: depths_in = map(lambda x: iterable_depth(x, exclude), arg) except TypeError: return 0 try: depth_in = max(depths_in) except ValueError: depth_in = 0 return 1 + depth_in # Flatten nested iterables def flatten(nested_iterable, into=list, unique=False, **kwargs_iterable): # Adapted from @wim: # https://stackoverflow.com/questions/16312257/flatten-an-iterable-of-iterables def _func_recursive(nested_iterable): for x in nested_iterable: if is_nonstring_iterable(x): for element in flatten(x): yield element else: yield x # Unpack data data_flattened = list(_func_recursive(nested_iterable)) if unique: data_flattened = sorted(set(data_flattened)) # Convert type return into(data_flattened, **kwargs_iterable) # Range like input data def range_like(data, start=0): return np.arange(len(data)) + start # Set Intersection def intersection(*iterables, **kwargs): sets = map(set, iterables) if "into" in kwargs: # Py2/3 Compatability into = kwargs.pop("into") else: into = set return into(set.intersection(*sets), **kwargs) # Set Union def union(*iterables, **kwargs): sets = map(set, iterables) if "into" in kwargs: # Py2/3 Compatability into = kwargs.pop("into") else: into = set return into(set.union(*sets), **kwargs) # ========= # I/O # ========= def read_from_clipboard(sep="\n", into=list): data = pd.io.clipboard.clipboard_get() if sep is not None: return into(filter(bool, map(lambda x:x.strip(), data.split(sep)))) else: return data # Read dataframe def read_dataframe(path, sep="infer", index_col=0, header=0, compression="infer", pickled="infer", func_index=None, func_columns=None, evaluate_columns=None, engine="c", verbose=False, excel="infer", infer_series=False, sheet_name=None, **kwargs): start_time= time.time() path = format_path(path, str) dir , ext = os.path.splitext(path) ext = ext.lower() if excel == "infer": if ext in {".xlsx", ".xls"}: excel = True else: excel = False if excel: if "sheetname" in kwargs: sheet_name = kwargs.pop("sheetname") warnings.warn("Use `sheet_name` instead of `sheetname`", warnings.DeprecationWarning) df = pd.read_excel(path, sheet_name=sheet_name, index_col=index_col, header=header, **kwargs) else: # Seperator if any(list(map(lambda x:ext.endswith(x),[".csv", "csv.gz", "csv.zip"]))): sep = "," else: sep = "\t" # Serialization if pickled == "infer": if ext in {".pkl", ".pgz", ".pbz2"}: pickled = True else: pickled = False # Compression if compression == "infer": if pickled: if ext == ".pkl": compression = None if ext == ".pgz": compression = "gzip" if ext == ".pbz2": compression = "bz2" else: if ext == ".gz": compression = "gzip" if ext == ".bz2": compression = "bz2" if ext == ".zip": compression = "zip" if pickled: df = pd.read_pickle(path, compression=compression, **kwargs) else: df = pd.read_csv(path, sep=sep, index_col=index_col, header=header, compression=compression, engine=engine, **kwargs) condition_A = any([(excel == False), (sheet_name is not None)]) condition_B = all([(excel == True), (sheet_name is None)]) if condition_A: # Map indices if func_index is not None: df.index = df.index.map(func_index) if func_columns is not None: df.columns = df.columns.map(func_columns) if evaluate_columns is not None: for field_column in evaluate_columns: try: df[field_column] = df[field_column].map(eval) except ValueError: if verbose: print("Could not use `eval` on column=`{}`".format(field_column), file=sys.stderr) if verbose: print("{} | Dimensions: {} | Time: {}".format( path.split('/')[-1], df.shape, format_duration(start_time), ), file=sys.stderr) if condition_B: if verbose: print("{} | Sheets: {} | Time: {}".format( path.split('/')[-1], len(df), format_duration(start_time), ), file=sys.stderr) if infer_series: if df.shape[1] == 1: df = df.iloc[:,0] return df # Write dataframe def write_dataframe(data, path, sep="\t", compression="infer", pickled="infer", excel="infer", **kwargs): start_time = time.time() path = format_path(path, str) _ , ext = os.path.splitext(path) dir, filename = os.path.split(path) if not os.path.exists(dir): dir = str(pathlib.Path(dir).absolute()) os.makedirs(dir, exist_ok=True) # Excel if excel == "infer": if ext in {".xlsx", ".xls"}: excel = True else: excel = False if excel: if not is_dict(data): data = {"Sheet1":data} writer = pd.ExcelWriter(path) for sheet_name, df in data.items(): df.to_excel(writer, sheet_name=str(sheet_name), **kwargs) writer.save() else: # Serialization if pickled == "infer": if ext in {".pkl", ".pgz", ".pbz2"}: pickled = True else: pickled = False # Compression if compression == "infer": if pickled: if ext == ".pkl": compression = None if ext == ".pgz": compression = "gzip" if ext == ".pbz2": compression = "bz2" else: compression = None if ext == ".gz": compression = "gzip" if ext == ".bz2": compression = "bz2" if pickled: data.to_pickle(path, compression=compression, **kwargs) else: data.to_csv(path, sep=sep, compression=compression, **kwargs) # Create file object def get_file_object(path, mode="infer", compression="infer", safe_mode="infer", verbose=True): """ with get_file_object("./test.txt.zip", mode="infer", verbose=False) as f_read: with get_file_object("./test_write.txt.bz2", mode="write", verbose=False) as f_write: for line in f_read.readlines(): line = str(line.strip()) print(line, file=f_write) """ # Init f = None file_will_be_written = False # Paths path = format_path(path) path_exists = os.path.exists(path) if compression == "infer": compression = infer_compression(path) if verbose: print("Inferring compression:", compression, file=sys.stderr) # Inferring mode if mode == "infer": # Create new function for this? infer_filemode? if path_exists: mode = "read" else: mode = "write" assert mode != "infer", "The mode should be inferred by this point. Please specify mode manually." assert compression != "infer", "The compression should be inferred by this point. Please specify compression manually." # Generic read write if mode in ["write", "read"]: if mode == "write": mode = "w" if mode == "read": mode = "r" if compression in ["gzip", "bz2"]: mode = mode + "b" if verbose: print("Inferring mode:", mode, file=sys.stderr) if verbose: if mode == "r": print("Reading file:",path, file=sys.stderr) if mode == "w": print("Writing file:",path, file=sys.stderr) # Will a file be written? if "w" in mode: file_will_be_written = True # Ensure zip is not being written if file_will_be_written: assert compression != "zip", "Currently cannot handle writing zip files. Please use gzip, bz2, or None." # Future do this: # https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile.open # Safe mode if safe_mode == "infer": if file_will_be_written: safe_mode = True else: safe_mode = False assert safe_mode in {True,False}, "Please choose either True or False for `safe_mode`" if safe_mode: if all([file_will_be_written, path_exists]): raise Exception("Safe Mode: Please explicitly provide a writeable mode ['w', 'wb', or 'write'] because `{}` already exists and will be rewritten.".format(path)) # GZIP compression if compression == "gzip": f = gzip.open(path, mode) f.read1 = f.read # Hack from https://github.com/kislyuk/eight/issues/1 # BZ2 compression if compression == "bz2": f = bz2.open(path, mode) if compression == "zip": filename, ext = os.path.splitext(os.path.split(path)[-1]) f = zipfile.ZipFile(path,mode).open(filename) # No compression if f is None: return open(path, mode) # Reading and writing compressed files else: return TextIOWrapper(f, encoding="utf-8") # Text reading wrapper def read_textfile(path, enum=False, generator=True, mode="read", compression="infer", into=pd.Series): """ 2018-May-29 Edits: 2018-December-27: Added `get_file_object` dependency """ assert mode not in ["w", "wb", "a"], "`mode` should not be in {w, wb, a} because it will overwrite" assert compression in ["infer", "gzip", "bz2", "zip", None], "Valid `compression` types are 'infer', 'gzip', 'bz2', 'zip'" # Format file path path = format_path(path, str) # Get file object handle = get_file_object(path=path, mode=mode, compression=compression, safe_mode=False, verbose=False) # Nested functions def run_return_list(handle): data = handle.read().split("\n") handle.close() if into == pd.Series: return pd.Series(data, name=path) else: if enum: return into(list(enumerate(data))) if not enum: return into(data) def run_return_iterable(handle): if enum: for i,line in enumerate(handle): yield i, line.strip() if not enum: for line in handle: yield line.strip() handle.close() # Controller if generator: return run_return_iterable(handle=handle) if not generator: return run_return_list(handle=handle) # Reading serial object def read_object(path, compression="infer", serialization_module=pickle): path = format_path(path, str) if compression == "infer": _ , ext = os.path.splitext(path) if (ext == ".pkl") or (ext == ".dill"): compression = None if ext in {".pgz", ".gz"}: compression = "gzip" if ext in {".pbz2", ".bz2"}: compression = "bz2" if compression is not None: if compression == "gzip": f = gzip.open(path, "rb") if compression == "bz2": f = bz2.open(path, "rb") else: f = open(path, "rb") obj = serialization_module.load(f) f.close() return obj # Writing serial object def write_object(obj, path, compression="infer", serialization_module=pickle, protocol=None, *args): """ Extensions: pickle ==> .pkl dill ==> .dill gzipped-pickle ==> .pgz bzip2-pickle ==> .pbz2 """ assert obj is not None, "Warning: `obj` is NoneType" path = format_path(path, str) # Use infer_compression here if compression == "infer": _ , ext = os.path.splitext(path) if ext in {".pkl", ".dill"}: # if ext in (ext == ".pkl") or (ext == ".dill"): compression = None if ext in {".pgz", ".gz"}: compression = "gzip" if ext in {".pbz2", ".bz2"}: compression = "bz2" if compression is not None: if compression == "bz2": f = bz2.BZ2File(path, "wb") if compression == "gzip": f = gzip.GzipFile(path, "wb") else: f = open(path, "wb") serialization_module.dump(obj, f, protocol=protocol, *args) f.close() # Reading html from website def read_url(url, params=None, **kwargs): """ Future: Make wrapper for dynamic html and phantom js """ dynamic = False if not dynamic: r = requests.get(url, params=params, **kwargs) return r.text else: print("Unavailable: Need to make wrapper for dynamic HTML using PhantomJS", file=sys.stderr) # Importing a functions from a module def read_script_as_module(name_module, path): # https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path path = format_path(path, str) if sys.version_info.major == 2: module = imp.load_source(name_module, path) else: spec = importlib.util.spec_from_file_location(name_module, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module # Read Fasta File @check_packages(["Bio"], import_into_backend=False) def read_fasta(path, description=True, case=None, func_header=None, into=pd.Series, compression="infer", name=None, verbose=False): """ Reads in a single fasta file or a directory of fasta files into a dictionary. """ from Bio.SeqIO.FastaIO import SimpleFastaParser # Get path path = format_path(path) # Assign pathname as name if there isn't one if name is None: name = path # Open file object f = get_file_object(path, mode="read", compression=compression, safe_mode=False, verbose=False) # Read in fasta d_id_seq = OrderedDict() if verbose: seq_records = pv(SimpleFastaParser(f), "Reading sequence file: {}".format(path)) else: seq_records = SimpleFastaParser(f) # Verbose but faster if description: if case == "lower": for header, seq in seq_records: seq = seq.lower() d_id_seq[header] = seq if case == "upper": for header, seq in seq_records: seq = seq.upper() d_id_seq[header] = seq if case is None: for header, seq in seq_records: d_id_seq[header] = seq if not description: if case == "lower": for header, seq in seq_records: seq = seq.lower() header = header.split(" ")[0] d_id_seq[header] = seq if case == "upper": for header, seq in seq_records: seq = seq.upper() header = header.split(" ")[0] d_id_seq[header] = seq if case is None: for header, seq in seq_records: header = header.split(" ")[0] d_id_seq[header] = seq # Close File f.close() # Transform header if func_header is not None: d_id_seq = OrderedDict( [(func_header(id),seq) for id, seq in d_id_seq.items()]) sequences = into(d_id_seq) if hasattr(sequences, "name"): sequences.name = name return sequences # Writing sequence files def write_fasta(sequences, path, compression="infer"): """ Sequence stats: count 29999.000000 mean 310.621754 std 1339.422833 min 56.000000 25% 75.000000 50% 111.000000 75% 219.000000 max 54446.000000 Benchmarks: No compression: 47.2 ms ± 616 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) Gzip: 9.85 s ± 261 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) Bzip2: 864 ms ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) """ # path = format_path(path) # if compression == "infer": # compression = infer_compression(path) if is_query_class(path, ["stdout", "stderr", "streamwrapper"]): path.writelines(">{}\n{}\n".format(id, seq) for id, seq in sequences.items()) else: with get_file_object(path, mode="write", compression=compression, safe_mode=False, verbose=False) as f: f.writelines(">{}\n{}\n".format(id, seq) for id, seq in sequences.items()) # Read blast output def read_blast(path, length_query=None, length_subject=None, sort_by="bitscore"): """ if 12: ['qseqid', 'sseqid', 'pident', 'length', 'mismatch', 'gapopen', 'qstart', 'qend', 'sstart', 'send', 'evalue', 'bitscore'] if 15 assumes: -outfmt '6 std qlen slen stitle': ["std", "qlen", "slen", "stitle"] #################################################### Column NCBI name Description 1 qseqid Query Seq-id (ID of your sequence) 2 sseqid Subject Seq-id (ID of the database hit) 3 pident Percentage of identical matches 4 length Alignment length 5 mismatch Number of mismatches 6 gapopen Number of gap openings 7 qstart Start of alignment in query 8 qend End of alignment in query 9 sstart Start of alignment in subject (database hit) 10 send End of alignment in subject (database hit) 11 evalue Expectation value (E-value) 12 bitscore Bit score 13 sallseqid All subject Seq-id(s), separated by a ';' 14 score Raw score 15 nident Number of identical matches 16 positive Number of positive-scoring matches 17 gaps Total number of gaps 18 ppos Percentage of positive-scoring matches 19 qframe Query frame 20 sframe Subject frame 21 qseq Aligned part of query sequence 22 sseq Aligned part of subject sequence 23 qlen Query sequence length 24 slen Subject sequence length 25 salltitles All subject title(s), separated by a '<>' Example inputs: * blat -prot Yeast/Saccharomyces_cerevisiae.R64-1-1.pep.all.processed.fa Phaeodactylum_tricornutum.ASM15095v2.pep.all.processed.fa -out=blast8 yeast-pt.blast8 * diamond blastp -d ../../../../reference_data/references/gracilibacteria/reference_proteins.nmnd -q ./prodigal_output/orfs.faa -f 6 -o ./diamond_output/output.blast6 """ path = format_path(path) idx_default_fields = ['qseqid', 'sseqid', 'pident', 'length', 'mismatch', 'gapopen', 'qstart', 'qend', 'sstart', 'send', 'evalue', 'bitscore'] # ["query_id", "subject_id", "identity", "alignment_length", "mismatches", "gap_openings", "query_start", "query_end", "subject_start", "subject_end", "e-value", "bit_score"] df_blast = pd.read_csv(path, header=None, sep="\t") if df_blast.shape[1] == 12: df_blast.columns = idx_default_fields if df_blast.shape[1] == 15: df_blast.columns = idx_default_fields + ["qlen", "slen", "stitle"] # Length of query if length_query is not None: if is_path_like(length_query): length_query = read_fasta(length_query, description=False, verbose=False) if isinstance(length_query[0], str): length_query = length_query.map(len) df_blast["qlength"] = df_blast["qseqid"].map(lambda id: length_query[id]) df_blast["qratio"] = (df_blast["qend"] - df_blast["qstart"])/df_blast["qlength"] # Length of subject if length_subject is not None: if is_path_like(length_subject): length_subject = read_fasta(length_subject, description=False, verbose=False) if isinstance(length_subject[0], str): length_subject = length_subject.map(len) df_blast["slength"] = df_blast["sseqid"].map(lambda id: length_subject[id]) df_blast["sratio"] = (df_blast["send"] - df_blast["sstart"])/df_blast["slength"] if sort_by is not None: df_blast = df_blast.sort_values(by=sort_by, ascending=False).reset_index(drop=True) return df_blast # Helper function for reading gtf and gff3 def read_gtf_gff_base(path, compression, record_type, verbose): # Read the gff3 file with get_file_object(path, mode="read", compression=compression, safe_mode=False, verbose=False) as f: if verbose: iterable_lines = pv(f.readlines(), "Processing lines") else: iterable_lines = f.readlines() data= list() if record_type is None: for line in iterable_lines: if not line.startswith("#"): line = line.strip("\n") if bool(line): base_fields = line.split("\t") data.append(base_fields) else: for line in iterable_lines: if not line.startswith("#"): if "{}_id".format(record_type) in line: line = line.strip("\n") base_fields = line.split("\t") data.append(base_fields) # Generate table df_base =
pd.DataFrame(data)
pandas.DataFrame
import pytest from gui.controller.MainController import MainController from unittest.mock import Mock from PyQt5.QtCore import QSettings, QDate from service.visualization.PlotConfiguration import PlotConfiguration import datetime import pandas as pd def test_maincontroller_constructor(qtbot, mocker): # Given model = Mock() model.max_threads = 12 model.auto_scraping = False mocker.patch('os.listdir', return_value=['2017-02-02', '2017/02/03', '2017-42-03']) # When try: MainController(model) # Then except Exception: pytest.fail("Could not create MainController") def test_maincontroller_get_analysis_method(qtbot): # Given model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) # When methods = controller.get_analysis_methods() # Then assert methods == ['nltk', 'textblob'] def test_main_controller_change_automatic_scrapper(qtbot): # Given model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) # When try: controller.change_automatic_scrapper() # Then except Exception: pytest.fail("Changing to automaic scrapper should not raise") def test_init_settings_on_not_previusly_loaded(mocker): # Given mocker.patch('PyQt5.QtCore.QSettings.value', side_effect=[BaseException(), 5]) mock_sync = mocker.patch('PyQt5.QtCore.QSettings.sync') model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) mock_sync.assert_called_once() def test_set_settings(mocker): settings = QSettings('Test', 'Test settings') mocker.patch('PyQt5.QtCore.QSettings.value', return_value=12) mock_sync = mocker.patch('PyQt5.QtCore.QSettings.sync') model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) controller.set_settings(settings) mock_sync.assert_called_once() def test_get_settings(mocker): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) result = controller.get_settings() assert result is not None def test_save_plot_config(mocker): mocker_patch = mocker.patch('pickle.dump') model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) controller.save_plot_config('test_dump.py') mocker_patch.assert_called_once() def test_open_configure(mocker): config = PlotConfiguration('name', 'ini', 'fin', 'map', 'var', 'ind', 'data') mocker.patch('gui.view.plot_config.PlotConfigure.show') mocker.patch('gui.view.plot_config.PlotConfigure.exec_') mocker.patch('gui.view.plot_config.PlotConfigure.is_saved', return_value=True) mock_p = mocker.patch('gui.view.plot_config.PlotConfigure.getPlotConfiguration', return_value=config) model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) a,b,c = controller.open_configure() assert a is not None and c is not None assert b != "" def test_open_configure_no_saved(mocker): config = PlotConfiguration('name', 'ini', 'fin', 'map', 'var', 'ind', 'data') mocker.patch('PyQt5.QtWidgets.QDialog.show') mocker.patch('PyQt5.QtWidgets.QDialog.exec_') mocker.patch('gui.view.plot_config.PlotConfigure.is_saved', return_value=False) mock_p = mocker.patch('gui.view.plot_config.PlotConfigure.getPlotConfiguration', return_value=config) model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) a,b,c = controller.open_configure() assert a is None and c is None assert b == "" def test_update_plots(mocker): mocker_patch = mocker.patch('service.visualization.PlotService.PlotService.updatePlots') model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) controller.update_plots('2012-02-02','nltk') mocker_patch.assert_called_once() def test_get_plots(mocker): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) result = controller.get_plots() assert result is not None def test_delete_plot(mocker): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) controller.plot_configurations = [{'id':1}, {'id':2}, {'id':3}] result = controller.delete_plot(2) assert len(controller.plot_configurations) == 2 def test_delete_plot_on_non_existent(mocker): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) controller.plot_configurations = [{'id':1}, {'id':2}, {'id':3}] result = controller.delete_plot(10) assert len(controller.plot_configurations) == 3 def test_start_auto_scrap(mocker): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) mocker.patch('PyQt5.QtCore.QThreadPool.activeThreadCount', side_effect=[1,2,4, 24]) mocker.patch('PyQt5.QtCore.QThreadPool.start') with pytest.raises(Exception): controller.startAutoScrapWorker() def test_start_scrap_worker(mocker): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) mocker.patch('PyQt5.QtCore.QThreadPool.start') try: controller.startScrapWorker() except Exception: pytest.fail("Should not fail") @pytest.mark.parametrize("order", [(True),(False)]) def test_start_message_sample(mocker, order): model = Mock() model.max_threads = 12 model.auto_scraping = False controller = MainController(model) now = QDate(2010, 5, 2) data =
pd.DataFrame({'Text':['Test', 'Tost'], 'NumLikes': [23, 25]})
pandas.DataFrame
#!/bin/env python3 # -*- coding: utf-8 -*- # Author: <NAME> # Contact: <EMAIL> import numpy as np import pandas as pd import subprocess from scipy import constants as spc np.set_printoptions(precision=5) def importXYZGeom(fileName): xyzGeom =
pd.DataFrame(columns=['atomName', 'x', 'y', 'z'])
pandas.DataFrame
############################################################################################### #### Initialization import pandas as pd import numpy as np df = pd.read_csv(filename, header=None, names=col_names, na_values={'col_name':['-1']}, \ parse_dates=[[0, 1, 2]], index_col='Date') # if the first 3 columns are 'year','month','day', then the dataframe would have a single col named # 'year_month_day' of datatype 'datatime64[ns]' # Can use df.index = df['year_month_day'] to reassign this col as the index of df ## EDA == Exploratory Data Analysis ############################################################################################### #### Basic data exploration df.shape # shape of dataframe df.head(7) # print the head part of dataset df.tail(5) # print the tail part of dataset df.info() # return data type of each column, and number of non-null values df.count() # count items for each column df.describe() # summary stat of numerical data # df.mean(), df.median(), df.std(), df.quantile([0.25, 0.75]), df.min(), df.max() df['one_col_name'].unique() # unique values in a column df['one_col_name'].value_counts(dropna=False) # return frequency counts of a column df['one_col_name'].value_counts(dropna=False).head() # note the result of prev line is a pandas Series df.idxmax(axis=0) # Or use axis='index' df.idxmin(axis=1) # Or use axis='columns' # indexes of max/min vals for each column/row ############################################################################################### #### Row & column index manipulation df.columns # names of all the columns, usually class of Index # can be assigned with a list of new names. df.index # can be assigned with list of new indexes. # row indexes, can be class of Index or DatatimeIndex df.index = df.index.map(str.lower) # use map to transform the index with a function # pandas Index objects are immutable. Must reset the whole indexes of df at once df = df.set_index(['col1', 'col2']) # change to multiple index (index being of class MultiIndex) df = df.sort_index() # change multiple index to hierarchical index # use tuple to slice multiple index # use slice(None) to indicate ":" in the tuple # more advanced manipulation of multiple indexes = stacking and unstacking # please refer to datacamp course "Manipulating DataFrames with pandas" df.reindex(ordered_index) # order rows by original index with the order in ordered_index # ordered_index = somehow ordered list of original df indices # if some item in ordered_index is not in orig_df_indices, there would be a row with that index but NA values df.sort_index() ############################################################################################### #### Data visualization for inspection # use Bar plots for discrete data counts # use Histograms for continuous data counts df['one_col_name'].plot('hist') import matplotlib.pyplot as plt plt.show() df.boxplot(column='one_numerical_col', by='one_categorical_col') # two columns are involved df.boxplot(column='population', by='continent') # example of above ############################################################################################### #### Data extraction & assignment (general) ## direct column access by column name df["country"] # This is 1D labeled array (class: pandas.core.series.Series) df[["country"]] # This is dataframe (class: pandas.core.frame.DataFrame) ## row/column access by (built-in) numerircal indexes df[1:2] # single row as a dataframe... # Note: row slicing cannot use a single number, which would be regarded as a col name df.iloc[1] # row as pandas Series df.iloc[[1, 2, 3]] df.iloc[[1,2,3], [0, 1]] df.iloc[:, [0,1]] ## row/column access by labels df.loc["RU"] # row as Pandas Series df.loc[["RU", "IN", "CH"]] # row as Pandas dataframe df.loc[["RU", "IN", "CH"], ["country", "capital"]] df.loc[:, ["country", "capital"]] ## filtering df[df["area"] > 8] df[np.logical_and(df["area"] > 8, df["area"] < 10)] # or use the next line df[(df["area"] > 8 & df["area"] < 10)] df[np.logical_or(df["area"] < 8, df["area"] > 10)] # or use the next line df[(df["area"] < 8 | df["area"] > 10)] ## extract df values as ndarrays data_array = df.values # extract the values as ndarray col_array = df['col_name'].values # extract column values as ndarray np.concatenate([arr1, arr2], axis=1) ## create new columns df['new_col'] = df['existing_col'].str[0] # extract 1st char of 'existing_col' and save as 'new_col' in df # note that 'str' here is an attribute name df['str_split'] = df['existing_col'].str.split('_') # split string with '_' and save as 'str_split' col df['new_col0'] = df['str_split'].str.get(0) df['new_col1'] = df['str_split'].str.get(1) df['new_col'] = df['col_name'].str.upper() df['new_mask_col'] = df['col_name'].str.contains('given_substring') # Boolean data for label, row in df.iterrows(): df.loc[label, "new_col"] = len(row["country"]) # added a new column "new_col" as function of existing data df["new_col"] = df["country"].apply(len) df['new_col'] = 0.0 # assign values with broadcasting ## create new copies of existing dataframes df2 = df.copy() sorted_df = df.sort_values('col_name') # sort rows (including index) by values in col 'col_name' ## modify existing entries df.iloc[::3, -1] = np.nan # assign values with broadcasting ## delete row/column del df['col_name'] df.drop(['col_name1', 'col_name2'], axis=1) df.drop([1, 2]) # delete rows by numerical indexes df.drop(index='row_ind') # delete rows by row index ## manage data types df['treatment b'] = df['treatment b'].astype(str) df['sex'] = df['sex'].astype('category') df['treatment a'] = pd.to_numeric(df['treatment a'], errors='coerce') # force conversion ## manage duplicate rows df = df.drop_duplicates() # drop duplicate rows ## manage missing data (NA/null/NaN) df_dropped = df.dropna(how='any') # drop rows with NaN values df['sex'] = df['sex'].fillna(obj_to_fill) # in 'sex' column, fill NaN with obj_to_fill (e.g. mean value) checker_df = df.notnull() # boolean for each entry of the dataframe checker_df_reverse = df.isnull() # boolean for each entry of the dataframe checker_each_col = df.notnull().all() # aggregated for each column checker_each_col_reverse = df.isnull().any() # aggregated for each column checker_col = df.one_col_name.notnull() # boolean for the col "one_col_name" ############################################################################################### #### tidy data # tidy data principle: rows contain observations, columns form variables # pd.melt(): solve the problem of columns (names) containing values, instead of variables # ... by turning columns into rows new_df = pd.melt(frame=df, id_vars=list_names_cols, value_vars=['treatment a', 'treatment b'], \ var_name='treatment', value_name='result') # the columns in list_names_cols remain unchanged # the 'treatment a' and 'treatment b' cols become values of a new col called 'treatment' # the original table values are collected as values of a new col called 'result' # pivot: opposite of melting # ... by taking unique values from a column and create new columns weather_tidy = weather.pivot(index='date', columns='element', values='value') # the levels in 'element' column become new col names # if the values are not specified or multiple, the new columns would become hierarchical index # if there is duplicate conflict, use aggregate function weather_tidy = weather.pivot(index='date', columns='element', values='value', aggfunc=np.mean) # more advanced manipulation of multiple indexes = stacking and unstacking # please refer to datacamp course "Manipulating DataFrames with pandas" ############################################################################################### #### Data (table) joining/concatenation (like in SQL) ## concatenate dataframes vertical_stacked = df1.append(df2) # indices are also stacked vertical_stacked.reset_index(drop=True) # result would be the same as the following line vertical_stacked = pd.concat([df1, df2], axis=0, ignore_index=True) # new indexes range from 0 to n_tot hori_cat = pd.concat([df1, df2], axis=1, join='outer') # rows with the same index would be merged to single row. cols are stacked hori_cat =
pd.concat([df1, df2], axis=1, join='inner')
pandas.concat
"""Plot statistis about missing values from given indicators.""" import matplotlib import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import numpy as np import matplotlib.ticker as ticker from mpl_toolkits.axes_grid1.parasite_axes import SubplotHost # Plot functions: each indicator has a different way of being plotted def plot_global(indicators, plot=False, show=True, ax=None): """Plot statistics on the full database.""" # Get required indicators df = indicators['global'] n_rows = df.at[0, 'n_rows'] n_cols = df.at[0, 'n_cols'] n_values = df.at[0, 'n_values'] n_mv = df.at[0, 'n_mv'] n_mv1 = df.at[0, 'n_mv1'] n_mv2 = df.at[0, 'n_mv2'] n_not_mv = df.at[0, 'n_not_mv'] f_mv = df.at[0, 'f_mv'] f_mv1 = df.at[0, 'f_mv1'] f_mv2 = df.at[0, 'f_mv2'] f_not_mv = df.at[0, 'f_not_mv'] # Print these statistics if show: print( f'\n' f'Statistics on the full data frame:\n' f'---------------------------------\n' f'[{n_rows} rows x {n_cols} columns]\n' f'{n_values} values\n' f'N NMV: {f_not_mv:.1f}% or {n_not_mv}\n' f'N MV: {f_mv:.1f}% or {n_mv}\n' f' N MV 1: {f_mv1:.1f}% or {n_mv1}\n' f' N MV 2: {f_mv2:.1f}% or {n_mv2}\n' ) # If asked, plot these statistics if plot: if ax is None: _, ax = plt.subplots(figsize=(10, 4)) df_show = pd.DataFrame({ 'MV1': [n_mv1], 'MV2': [n_mv2], 'MV': [n_mv], 'V': [n_values], 'type': ['Full data frame'] }) sns.set_color_codes('pastel') sns.barplot(x='V', y='type', data=df_show, color='lightgray', ax=ax, label=f'Not missing ({f_not_mv:.1f}%)') sns.set_color_codes('muted') sns.barplot(x='MV', y='type', data=df_show, color='b', ax=ax, label=f'Missing - Not applicable ({f_mv1:.1f}%)') sns.set_color_codes('dark') sns.barplot(x='MV2', y='type', data=df_show, color='b', ax=ax, label=f'Missing - Not available ({f_mv2:.1f}%)') box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.5, box.height*0.5]) ax.legend(ncol=1, loc='center left', frameon=True, title='Type of values', bbox_to_anchor=(1.05, 0.5)) ax.set(ylabel='', xlabel=f'Number of values (Total {n_values})') ax.set_title('Proportion of missing values') sns.despine(left=True, bottom=True, ax=ax) # Remove y labels ax.tick_params(axis='y', which='both', left=False, labelleft=False) def plot_features(indicators, plot=False, show=True, ax=None): """Plot the number of features with missing values.""" # Get required indicators df =
pd.concat([indicators['features'], indicators['global']], axis=1)
pandas.concat
"""Tests for the sdv.constraints.tabular module.""" import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( ColumnFormula, CustomConstraint, GreaterThan, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test__valid_separator_valid(self): """Test ``_valid_separator`` for a valid separator. If the separator and data are valid, result is ``True``. Input: - Table data (pandas.DataFrame) Output: - True (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert is_valid def test__valid_separator_non_valid_separator_contained(self): """Test ``_valid_separator`` passing a column that contains the separator. If any of the columns contains the separator string, result is ``False``. Input: - Table data (pandas.DataFrame) with a column that contains the separator string ('#') Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', '#', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test__valid_separator_non_valid_name_joined_exists(self): """Test ``_valid_separator`` passing a column whose name is obtained after joining the column names using the separator. If the column name obtained after joining the column names using the separator already exists, result is ``False``. Input: - Table data (pandas.DataFrame) with a column name that will be obtained by joining the column names and the separator. Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'b#c': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup transformed_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(transformed_data) # Run out = instance.reverse_transform(transformed_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False def test___init___strict_true(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' - strict = True Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True def test_fit_int(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'i' def test_fit_float(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_datetime(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'M' def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out =
pd.Series([True, False, False])
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import os,glob, pathlib,shutil import numpy as np import pandas as pd from argparse import (ArgumentParser, RawTextHelpFormatter) def get_parser(): parser = ArgumentParser( formatter_class=RawTextHelpFormatter, description='ingress cpc' ) parser.add_argument( '-i', '--img', action='store', required=True, help='[required]' '\nPath of img .') parser.add_argument( '-o', '--out', action='store', required=True, help='[required]' '\nOutput path.') return parser opts = get_parser().parse_args() pp = pathlib.Path(opts.img) outputdir= opts.out gendir=str(pp.parents[2]) #central directory scandid=pp.parts[-2] # particlular task id subjid=pp.parts[-1].split('_')[0] # subject id #extract functional and anatomical shutil.copyfile(glob.glob(gendir+'/anatomical_brain/'+'*nii.gz')[0],outputdir+'/'+subjid+'_T1wbrain.nii.gz') shutil.copyfile(glob.glob(gendir+'/anatomical_brain_mask/'+'*nii.gz')[0],outputdir+'/'+subjid+'_T1wmask.nii.gz') shutil.copyfile(glob.glob(gendir+'/seg_partial_volume_map/'+'*nii.gz')[0],outputdir+'/'+subjid+'_segmentation.nii.gz') shutil.copyfile(glob.glob(gendir+'/anatomical_to_mni_nonlinear_xfm/'+'*nii.gz')[0],outputdir+'/'+subjid+'_from-T1w_to-MNI_warp.nii.gz') shutil.copyfile(glob.glob(gendir+'/ants_affine_xfm/'+'*.mat')[0],outputdir+'/'+subjid+'_from-T1w_to-MNI_affine2.mat') shutil.copyfile(glob.glob(gendir+'/ants_rigid_xfm/'+'*.mat')[0],outputdir+'/'+subjid+'_from-T1w_to-MNI_rigid_affine1.mat') shutil.copyfile(glob.glob(gendir+'/ants_initial_xfm/'+'*.mat')[0],outputdir+'/'+subjid+'_from-T1w_to-MNI_initial_affine0.mat') shutil.copyfile(glob.glob(gendir+'/functional_brain_mask/'+scandid+'/*.nii.gz')[0],outputdir+'/'+subjid+scandid+'_brainmask.nii.gz') shutil.copyfile(glob.glob(gendir+'/mean_functional/'+scandid+'/*.nii.gz')[0],outputdir+'/'+subjid+scandid+'_referenceVolume.nii.gz') shutil.copyfile(glob.glob(gendir+'/functional_to_anat_linear_xfm/'+scandid+'/*.mat')[0],outputdir+'/'+subjid+scandid+'_from-func_to-T1w_affine.mat') #regressor regressor=pd.read_csv(glob.glob(gendir+'/functional_nuisance_regressors/'+scandid+'/'+'/*/*.1D')[0],skiprows=2,sep='\t') if 'X' in regressor.columns: regressor.rename(columns={'# RotY':'rot_y','RotX':'rot_x','RotZ':'rot_z', 'X': 'trans_x', 'Y':'trans_y', 'Z':'trans_z'},inplace=True) if 'GlobalSignalMean0' in regressor.columns: regressor.rename(columns={'GlobalSignalMean0':'global_signal'},inplace=True) if 'WhiteMatterMean0' in regressor.columns: regressor.rename(columns={'WhiteMatterMean0':'white_matter'},inplace=True) if 'CerebrospinalFluidMean0' in regressor.columns: regressor.rename(columns={'CerebrospinalFluidMean0':'csf'},inplace=True) if 'aCompCorDetrendPC0' in regressor.columns: regressor.rename(columns={'aCompCorDetrendPC0':'a_comp_cor_00','aCompCorDetrendPC1':'a_comp_cor_01','aCompCorDetrendPC2':'a_comp_cor_02', 'aCompCorDetrendPC3':'a_comp_cor_03','aCompCorDetrendPC4':'a_comp_cor_04'},inplace=True) if 'tCompCorDetrendPC0' in regressor.columns: regressor.rename(columns={'tCompCorDetrendPC0':'t_comp_cor_00','tCompCorDetrendPC1':'t_comp_cor_01','tCompCorDetrendPC2':'t_comp_cor_02', 'tCompCorDetrendPC3':'t_comp_cor_03','tCompCorDetrendPC4':'t_comp_cor_04'},inplace=True) # ask for aroma and ICA fd=pd.read_csv(glob.glob(gendir+'/frame_wise_displacement_power/'+scandid+'/*.1D')[0],header=None,names=['framewise_displacement']) regressors=
pd.concat([regressor, fd], axis=1)
pandas.concat
# python 2 try: from urllib.request import Request, urlopen # Python 3 except ImportError: from urllib2 import Request, urlopen import pandas as pd import time import datetime import numpy as np import re import json from bs4 import BeautifulSoup from pytrends.request import TrendReq class Cryptory(): def __init__(self, from_date, to_date=None, ascending=False, fillgaps=True, timeout=10.0): """Initialise cryptory class Parameters ---------- from_date : the starting date (as string) for the returned data; required format is %Y-%m-%d (e.g. "2017-06-21") to_date : the end date (as string) for the returned data; required format is %Y-%m-%d (e.g. "2017-06-21") Optional. If unspecified, it will default to the current day to_date : binary. Determines whether the returned dataframes are ordered by date in ascending or descending order (defaults to False i.e. most recent first) fillgaps : binary. When data does not exist (e.g. weekends for stocks) should the rows be filled in with the previous available data (defaults to True e.g. Saturday stock price will be same as Friday) fillgaps : float. The max time allowed (in seconds) to pull data from a website If exceeded, an timeout error is returned. Default is 10 seconds. """ self.from_date = from_date # if to_date provided, defaults to current date if to_date is None: self.to_date = datetime.date.today().strftime("%Y-%m-%d") else: self.to_date = to_date self.ascending = ascending self.fillgaps = fillgaps self.timeout = timeout self._df = pd.DataFrame({'date':pd.date_range(start=self.from_date, end=self.to_date)}) def extract_reddit_metrics(self, subreddit, metric, col_label="", sub_col=False): """Retrieve daily subscriber data for a specific subreddit scraped from redditmetrics.com Parameters ---------- subreddit : the name of subreddit (e.g. "python", "learnpython") metric : the particular subscriber information to be retrieved (options are limited to "subscriber-growth" (daily change), 'total-subscribers' (total subscribers on a given day) and 'rankData' (the position of the subreddit on reddit overall) 'subscriber-growth-perc' (daily percentage change in subscribers)) col_label : specify the title of the value column (it will default to the metric name with hyphens replacing underscores) sub_col : whether to include the subreddit name as a column (default is False i.e. the column is not included) Returns ------- pandas Dataframe """ if metric not in ['subscriber-growth', 'total-subscribers', 'rankData', 'subscriber-growth-perc']: raise ValueError( "Invalid metric: must be one of 'subscriber-growth', " + "'total-subscribers', 'subscriber-growth-perc', 'rankData'") url = "http://redditmetrics.com/r/" + subreddit if metric == 'subscriber-growth-perc': metric_name = 'total-subscribers' else: metric_name = metric try: parsed_page = urlopen(url, timeout=self.timeout).read() parsed_page = parsed_page.decode("utf8") except Exception as e: return pd.DataFrame({"error":e}, index=[0]) if metric == 'rankData': start_segment = parsed_page.find(metric) else: start_segment = parsed_page.find("element: '"+metric_name+"'") if start_segment != -1: start_list = parsed_page.find("[", start_segment) end_list = parsed_page.find("]", start_list) parsed_page = parsed_page[start_list:end_list + 1] else: return pd.DataFrame({"error":"Could not find that subreddit"}, index=[0]) parsed_page = parsed_page.replace("'", '"') parsed_page = parsed_page.replace('a', '\"subscriber_count\"') parsed_page = parsed_page.replace('y', '\"date\"') output = json.loads(parsed_page) output = pd.DataFrame(output) output['date'] = pd.to_datetime(output['date'], format="%Y-%m-%d") if metric == 'subscriber-growth-perc': output['subscriber_count'] = output['subscriber_count'].pct_change() output = output[(output['date']>=self.from_date) & (output['date']<=self.to_date)] output = output.sort_values(by='date', ascending=self.ascending).reset_index(drop=True) if sub_col: output['subreddit'] = subreddit if col_label != "": output = output.rename(columns={'subscriber_count': label}) else: output = output.rename(columns={'subscriber_count': metric.replace("-","_")}) return output def extract_coinmarketcap(self, coin, coin_col=False): """Retrieve basic historical information for a specific cryptocurrency from coinmarketcap.com Parameters ---------- coin : the name of the cryptocurrency (e.g. 'bitcoin', 'ethereum', 'dentacoin') coin_col : whether to include the coin name as a column (default is False i.e. the column is not included) Returns ------- pandas Dataframe """ try: output = pd.read_html("https://coinmarketcap.com/currencies/{}/historical-data/?start={}&end={}".format( coin, self.from_date.replace("-", ""), self.to_date.replace("-", "")))[0] except Exception as e: return pd.DataFrame({"error":e}, index=[0]) output = output.assign(Date=pd.to_datetime(output['Date'])) for col in output.columns: if output[col].dtype == np.dtype('O'): output.loc[output[col]=="-",col]=0 output[col] = output[col].astype('int64') output.columns = [col.lower() for col in output.columns] if coin_col: output['coin'] = coin return output def extract_bitinfocharts(self, coin, metric="price", coin_col=False, metric_col=False): """Retrieve historical data for a specific cyrptocurrency scraped from bitinfocharts.com Parameters ---------- coin : the code of the cryptocurrency (e.g. 'btc' for bitcoin) full range of available coins can be found on bitinfocharts.com metric : the particular coin information to be retrieved (options are limited to those listed on bitinfocharts.com including 'price', 'marketcap', 'transactions' and 'sentinusd' coin_col : whether to include the coin name as a column (default is False i.e. the column is not included) metric_col : whether to include the metric name as a column (default is False i.e. the column is not included) Returns ------- pandas Dataframe """ if coin not in ['btc', 'eth', 'xrp', 'bch', 'ltc', 'dash', 'xmr', 'btg', 'etc', 'zec', 'doge', 'rdd', 'vtc', 'ppc', 'ftc', 'nmc', 'blk', 'aur', 'nvc', 'qrk', 'nec']: raise ValueError("Not a valid coin") if metric not in ['transactions', 'size', 'sentbyaddress', 'difficulty', 'hashrate', 'price', 'mining_profitability', 'sentinusd', 'transactionfees', 'median_transaction_fee', 'confirmationtime', 'marketcap', 'transactionvalue', 'mediantransactionvalue', 'tweets', 'activeaddresses', 'top100cap']: raise ValueError("Not a valid bitinfocharts metric") new_col_name = "_".join([coin, metric]) parsed_page = Request("https://bitinfocharts.com/comparison/{}-{}.html".format(metric, coin), headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11'}) try: parsed_page = urlopen(parsed_page, timeout=self.timeout).read() parsed_page = parsed_page.decode("utf8") except Exception as e: return pd.DataFrame({"error":e}, index=[0]) start_segment = parsed_page.find("new Dygraph") if start_segment != -1: start_list = parsed_page.find('[[', start_segment) end_list = parsed_page.find(']]', start_list) parsed_page = parsed_page[start_list:end_list] else: return pd.DataFrame({"error":"Could not find the appropriate text tag"}, index=[0]) parsed_page = parsed_page.replace('new Date(', '') parsed_page = parsed_page.replace(')', '') parsed_page = parsed_page.replace('null', '0') parsed_page = parsed_page.replace('["', '{"date":"') parsed_page = parsed_page.replace('",', '","{}":'.format(new_col_name)) parsed_page = parsed_page.replace('],', '},') parsed_page = parsed_page + '}]' output = json.loads(parsed_page) output = pd.DataFrame(output) output['date'] = pd.to_datetime(output['date'], format="%Y-%m-%d") output = output[(output['date']>=self.from_date) & (output['date']<=self.to_date)] # for consistency, put date column first output = output[['date', new_col_name]] if coin_col: output['coin'] = coin if metric_col: output['metric'] = metric return output.sort_values(by='date', ascending=self.ascending).reset_index(drop=True) def extract_poloniex(self, coin1, coin2, coin1_col=False, coin2_col=False): """Retrieve the historical price of one coin relative to another (currency pair) from poloniex Parameters ---------- coin1 : the code of the denomination cryptocurrency (e.g. 'btc' for prices in bitcoin) coin2 : the code for the coin for which prices are retrieved (e.g. 'eth' for ethereum) coin1_col : whether to include the coin1 code as a column (default is False i.e. the column is not included) coin2_col : whether to include the coin2 code as a column (default is False i.e. the column is not included) Returns ------- pandas Dataframe """ from_date = int(time.mktime(time.strptime(self.from_date, "%Y-%m-%d"))) to_date = int(time.mktime(time.strptime(self.to_date, "%Y-%m-%d"))) url = "https://poloniex.com/public?command=returnChartData&currencyPair={}_{}&start={}&end={}&period=86400".format( coin1.upper(), coin2.upper(), from_date, to_date) try: parsed_page = urlopen(url, timeout=self.timeout).read() parsed_page = parsed_page.decode("utf8") except Exception as e: return pd.DataFrame({"error":e}, index=[0]) output = json.loads(parsed_page) if isinstance(output, dict): if 'error' in list(output.keys()): return pd.DataFrame(output, index=[0]) output = pd.DataFrame(output) # more intuitive column order output = output[['date', 'close', 'open', 'high', 'low', 'weightedAverage', 'quoteVolume', 'volume']] output['date'] = pd.to_datetime(output['date'], unit='s') output = output.sort_values(by='date', ascending=self.ascending).reset_index(drop=True) if coin1_col: output['coin1'] = coin1 if coin2_col: output['coin2'] = coin2 return output def get_exchange_rates(self, from_currency="USD", to_currency="EUR", from_col=False, to_col=False): """Retrieve the historical exchange rate between two (fiat) currencies Parameters ---------- from_currency : the from currency or the currency of denomination (e.g. 'USD') to_currency : the currency to which you wish to exchange (e.g. 'EUR') from_col : whether to include the from_currency code as a column (default is False i.e. the column is not included) to_col : whether to include the to_currency code as a column (default is False i.e. the column is not included) Returns ------- pandas Dataframe """ n_days = (datetime.date.today() - datetime.datetime.strptime(self.from_date, "%Y-%m-%d").date()).days + 1 url = "https://www.indexmundi.com/xrates/graph.aspx?c1={}&c2={}&days={}".format( from_currency, to_currency, n_days) try: parsed_page = urlopen(url, timeout=self.timeout).read() parsed_page = parsed_page.decode("utf8") except Exception as e: return pd.DataFrame({"error":e}, index=[0]) start_segment = parsed_page.find("chart xAxisName") if start_segment != -1: start_list = parsed_page.find("<", start_segment) end_list = parsed_page.find("/></chart>", start_list) parsed_page = parsed_page[start_list:end_list] else: return pd.DataFrame({"error":"Could not find the appropriate text tag"}, index=[0]) parsed_page = re.sub(r" showLabel='[0-9]'", "", parsed_page) parsed_page = parsed_page.replace("'", '"') parsed_page = parsed_page.replace("set ", '') parsed_page = parsed_page.replace("<", "{") parsed_page = parsed_page.replace("/>", "},") parsed_page = parsed_page.replace('label', '\"date\"') parsed_page = parsed_page.replace('value', '\"exch_rate\"') parsed_page = parsed_page.replace('=', ':') parsed_page = parsed_page.replace(' ', ',') output = json.loads('[' + parsed_page + '}]') output = pd.DataFrame(output) output['date'] = pd.to_datetime(output['date'], format="%m/%d/%Y") output['exch_rate'] = pd.to_numeric(output['exch_rate'], errors='coerce') if from_col: output['from_currency'] = from_currency if to_col: output['to_currency'] = to_currency output = self._merge_fill_filter(output) return output def get_stock_prices(self, market, market_name=None): """Retrieve the historical price (or value) of a publically listed stock or index Parameters ---------- market : the code of the stock or index (see yahoo finance for examples) ('%5EDJI' refers to the Dow Jones and '%5EIXIC' pulls the Nasdaq index) market_name : specify an appropriate market name or label (under the market_name column) the default is None (default is None i.e. the column is not included) Returns ------- pandas Dataframe Notes ----- This method scrapes data from yahoo finance, so it only works when the historical data is presented on the site (which is not the case for a large number of stocks/indices). """ from_date = int(time.mktime(time.strptime(self.from_date, "%Y-%m-%d"))) # we want the daily data # this site works off unix time (86400 seconds = 1 day) to_date = int(time.mktime(time.strptime(self.to_date, "%Y-%m-%d"))) + 86400 url = "https://finance.yahoo.com/quote/{}/history?period1={}&period2={}&interval=1d&filter=history&frequency=1d".format( market, from_date, to_date) try: parsed_page = urlopen(url, timeout=1).read() parsed_page = parsed_page.decode("utf8") except Exception as e: return
pd.DataFrame({"error":e}, index=[0])
pandas.DataFrame
import pandas as pd # import re def processFE_df(df): """Function to process Pandas dataframe from Funds Explorer site: 'https://www.fundsexplorer.com.br/ranking' After this function the DataFrame can be filtered to analysis Args: df ([type]): pandas.core.frame.DataFrame Returns: [type]: pandas.core.frame.DataFrame """ df.columns = ['codigo', 'setor', 'precoatualR$', 'liqdiariaNeg', 'dividR$', 'divyield%', 'dy3macum%', 'dy6macum%', 'dy12macum%', 'dy3mmedia%', 'dy6mmedia%', 'dy12mmedia%', 'dyano%', 'varpreco%', 'rentper%', 'rentacum%', 'patrliqR$', 'vpaR$', 'p/vpaN', 'dypatr%', 'varpatr%', 'rentpatrper%', 'rentpatracum%', 'vacfisica%', 'vacfinan%', 'qtdativosN'] df = df.applymap(lambda x: str(x).replace('R$', '')) df = df.applymap(lambda x: str(x).replace('%', '')) df['precoatualR$'] = df['precoatualR$'].apply(lambda x: str(x).replace('.', '')) df['patrliqR$'] = df['patrliqR$'].apply(lambda x: str(x).replace('.', '')) df['vpaR$'] = df['vpaR$'].apply(lambda x: str(x).replace('.', '')) df = df.applymap(lambda x: str(x).replace(',', '.')) df['setor'] = df['setor'].apply(lambda x: str(x).replace('Ã', 'i')) # df['setor'] = df['setor'].apply(lambda x: re.sub(r'Ã ', 'i', x)) df['codigo'] = df['codigo'].astype('string') df['setor'] = df['setor'].astype('string') df['precoatualR$'] = pd.to_numeric(df['precoatualR$'], errors='coerce') df['liqdiariaNeg'] = pd.to_numeric(df['liqdiariaNeg'], errors='coerce') df['dividR$'] = pd.to_numeric(df['dividR$'], errors='coerce') df['divyield%'] = pd.to_numeric(df['divyield%'], errors='coerce') df['dy3macum%'] = pd.to_numeric(df['dy3macum%'], errors='coerce') df['dy6macum%'] = pd.to_numeric(df['dy6macum%'], errors='coerce') df['dy12macum%'] = pd.to_numeric(df['dy12macum%'], errors='coerce') df['dy3mmedia%'] = pd.to_numeric(df['dy3mmedia%'], errors='coerce') df['dy6mmedia%'] =
pd.to_numeric(df['dy6mmedia%'], errors='coerce')
pandas.to_numeric
"""Script for generating data for the analysis.""" from typing import Dict import ast from pathlib import Path import numpy as np import pandas as pd import igraph as ig import joblib from tqdm import tqdm from pathcensus import PathCensus from pathcensus.nullmodels import UBCM from pathcensus.inference import Inference from pathcensus.utils import set_seed from src.utils import list_graphs, load_graph # Graph statistics function --------------------------------------------------- def statistics(graph: ig.Graph) -> pd.DataFrame: """Function for calculating graph statistics.""" paths = PathCensus(graph) coefs = paths.coefs("nodes") return pd.DataFrame({ "sim_g": paths.similarity("global"), "sim": coefs["sim"].mean(), "sim_e": paths.similarity("edges").mean(), "comp_g": paths.complementarity("global"), "comp": coefs["comp"].mean(), "comp_e": paths.complementarity("edges").mean(), "coefs": [coefs] }, index=[0]) def get_metadata(graph: ig.Graph) -> Dict: """Get graph metadata dictionary.""" degseq = np.array(graph.degree()) taxonomy = ast.literal_eval(graph["taxonomy"]) bio1 = taxonomy[1] bio2 = taxonomy[2] bio3 = taxonomy[3] if bio3 == "Metazoa": bio = "Animal" elif bio3 == "Fungi": bio = bio3 elif bio2 == "Viridiplantae": bio = bio2 else: bio = bio1 return { "dataset": "tree-of-life", "domain": graph["domain"], "relation": graph["relation"], "label": graph["label"], "name": graph["name"], "long_name": graph["long_name"], "taxonomy": [taxonomy], "taxonomy_l2": graph["taxonomy_level2"], "biodomain": bio, "evo_length": len(taxonomy), "evo_time": np.float64(graph["evo_time"]), "pub_count": int(graph["pub_count"]), "n_nodes": graph.vcount(), "density": graph.vcount(), "dbar": degseq.mean(), "dcv": degseq.std() / degseq.mean(), "dmin": degseq.min(), "dmax": degseq.max() } # Prepare data ---------------------------------------------------------------- HERE = Path(__file__).parent DATA = HERE/"data" DATA.mkdir(parents=True, exist_ok=True) # Number of null model samples N_SAMPLES = 100 # Seed for the random number generator # used for sampling from the null model set_seed(44) rawdata = [] nulltrend = [] calibrated = [] signif_01 = [] signif_05 = [] signif_10 = [] pbar = tqdm(list_graphs("proteins")) for network in pbar: pbar.set_description(network.split("__")[-1]) graph = load_graph("proteins", network, preprocess=True) meta = get_metadata(graph) model = UBCM(graph) model.fit() model.validate() infer = Inference(graph, model, statistics) data, null = infer.init_comparison(N_SAMPLES, null_kws=dict(progress=True)) # Estimate fractions of significant nodes odf = pd.concat(data.pop("coefs").tolist()) ndf = pd.concat(null.pop("coefs").tolist()) infer.add_stats_index(odf) infer.add_stats_index(ndf) odf = pd.concat([odf], keys=[0], names=["_"]) ndf = pd.concat([ndf], keys=[0], names=["_"]) pvals = infer.estimate_pvalues(odf, ndf, adjust=False) sigs = [] for alpha in (.01, .05, .1): pv = infer.adjust_pvalues(pvals, alpha=alpha, copy=True) sig = (pv <= alpha)[["sim", "comp"]] sig["both"] = sig.all(axis=1) sig["sim"] &= ~sig["both"] sig["comp"] &= ~sig["both"] sig["neither"] = 1 - sig[["sim", "comp", "both"]].sum(axis=1) sig = sig.mean().to_frame().T # Add graph metadata for k, v in reversed(meta.items()): sig.insert(0, k, v) # Append to data list sigs.append(sig) # Unpack significance data sig01, sig05, sig10 = sigs # Compute null model averages null_avg = null.mean().to_frame().T # Compute calibrated coefficients cdata = np.log(data / null).reset_index(drop=True) \ .replace([np.inf, -np.inf], np.nan) \ .dropna() \ .mean() \ .to_frame().T # Add graph metadata for k, v in reversed(meta.items()): cdata.insert(0, k, v) data.insert(0, k, v) null_avg.insert(0, k, v) rawdata.append(data) nulltrend.append(null_avg) calibrated.append(cdata) signif_01.append(sig01) signif_05.append(sig05) signif_10.append(sig10) # Prepare data frame ---------------------------------------------------------- proteins = { "raw": pd.concat(rawdata, axis=0, ignore_index=True), "null_trend": pd.concat(nulltrend, axis=0, ignore_index=True), "calibrated": pd.concat(calibrated, axis=0, ignore_index=True), "signif_01":
pd.concat(signif_01, axis=0, ignore_index=True)
pandas.concat
import os.path as osp import os import torch import numpy as np import pandas as pd import math from torch_geometric.data import Data from torch_geometric.data import InMemoryDataset import torch_geometric.transforms as T from ..bin.BaseDataset import BaseDataset, ElectroNegativityDiff, Complete from ..bin.Label2Idx import ArR_label_Idx_Insertion transform = T.Compose([Complete(), ElectroNegativityDiff(norm=False)]) class ReactionDataset(InMemoryDataset): def __init__(self, root, mode='dev', transform=None, pre_transform=None, pre_filter=None): self.root = root self.mode = mode self.mode_0 = mode.split('_')[0] assert self.mode_0 in ['dev', 'valid', 'test'], "mode_0 should be dev/valid/test" super(ReactionDataset, self).__init__( root, transform, pre_transform, pre_filter) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): if self.mode_0 == 'dev': return [self.mode, '%s/TrainSet_Labels.csv'%self.mode] elif self.mode_0 == 'valid': return [self.mode, '%s/ValidSet_Labels.csv'%self.mode] else: return [self.mode, '%s/TestSet_Labels.csv'%self.mode] @property def processed_file_names(self): return '%s/ReactionDataset_ArR_%s.pt' % (self.mode, self.mode) def download(self): return 0 #raise NotImplementedError('please download and unzip dataset from %s, and put it at %s' % ( # _urls[self.mode], self.raw_dir)) def base_data_index_collector(self): R_dataset = BaseDataset(root=self.root, mode='R', suffix=self.mode, pre_transform=transform) Ar_dataset = BaseDataset(root=self.root, mode='Ar', suffix=self.mode, pre_transform=transform) self.R_dataset, self.Ar_dataset = R_dataset, Ar_dataset ArR_label_Idx_Insertion(self.raw_paths[1]) target = pd.read_csv(self.raw_paths[1], index_col=0, usecols=['Reaction_idx', 'Radical_idx', 'Ar_idx', 'loc_idx', 'DG_TS']) origin_Ar_loc = Ar_dataset.data.keyAtom_list[:, 0]*10 + Ar_dataset.data.keyAtom_list[:, 1] tmp_Ar_loc = list(target['Ar_idx']*10 + target['loc_idx']) self.Ar_loc_index = (origin_Ar_loc == torch.LongTensor( tmp_Ar_loc).unsqueeze(0).transpose(1, 0)).nonzero()[:, 1] check_list = [x for x in tmp_Ar_loc if x not in origin_Ar_loc] if check_list: print(check_list) self.Ar_index = (Ar_dataset.data.alias == torch.LongTensor( list(target['Ar_idx'])).unsqueeze(0).transpose(1, 0)).nonzero()[:, 1] self.R_index = (R_dataset.data.alias == torch.LongTensor( list(target['Radical_idx'])).unsqueeze(0).transpose(1, 0)).nonzero()[:, 1] self.target = target[['DG_TS']] self.target_labels = ['DG_TS'] def reaction_reader(self, i, ArR_idx): ''' i : index of ArR_idx in ArR ReactionDataset ArR_idx: Reaction_idx in ArR ReactionDataset, form: 6 digit integer, [R_idx:2][Ar_idx:3][loc_idx:1] y: DG_TS in ArR ReactionDataset ''' local_f = ['ACSF_local', 'SOAP', 'PhyChem_local'] total_f = ['MACCSfp', 'Morganfp', 'mergefp', 'PhyChem_total', 'ACSF', 'pos', 'x', 'edge_attr', 'CM', 'BoB'] other_f = ['edge_index'] DG_TS = torch.FloatTensor(self.target.iloc[i].tolist()) data = Data(y=DG_TS) data.ArR_idx = torch.LongTensor([ArR_idx]) for f in local_f: Arl_i = self.Ar_loc_index[i] Arl_j = self.Ar_loc_index[i]+1 data['Ar_'+f] = self.Ar_dataset.data[f][Arl_i:Arl_j, :] R_i = self.R_dataset.slices[f][self.R_index[i]] R_j = self.R_dataset.slices[f][self.R_index[i]+1] data['R_'+f] = self.R_dataset.data[f][R_i:R_j, :] for f in total_f: Ar_i = self.Ar_dataset.slices[f][self.Ar_index[i]] Ar_j = self.Ar_dataset.slices[f][self.Ar_index[i]+1] data['Ar_'+f] = self.Ar_dataset.data[f][Ar_i:Ar_j, :] R_i = self.R_dataset.slices[f][self.R_index[i]] R_j = self.R_dataset.slices[f][self.R_index[i]+1] data['R_'+f] = self.R_dataset.data[f][R_i:R_j, :] for f in other_f: Ar_i = self.Ar_dataset.slices[f][self.Ar_index[i]] Ar_j = self.Ar_dataset.slices[f][self.Ar_index[i]+1] data['Ar_'+f] = self.Ar_dataset.data[f][:, Ar_i:Ar_j] R_i = self.R_dataset.slices[f][self.R_index[i]] R_j = self.R_dataset.slices[f][self.R_index[i]+1] data['R_'+f] = self.R_dataset.data[f][:, R_i:R_j] return data def process(self): self.base_data_index_collector() data_list = [] for i, ArR_idx in enumerate(self.target.index): ArR_data = self.reaction_reader(i, ArR_idx) if ArR_data is not None: data_list.append(ArR_data) if self.pre_filter is not None: data_list = [data for data in data_list if self.pre_filter(data)] if self.pre_transform is not None: data_list = [self.pre_transform(data) for data in data_list] data, slices = self.collate(data_list) processed_dir = os.path.dirname(self.processed_paths[0]) if not os.path.isdir(processed_dir): os.makedirs(processed_dir) torch.save((data, slices), self.processed_paths[0]) def Transform_DG_to_DDG(TrainSet, scale_ref=5, verbose=True): def Part_select(a, b, which_part): assert which_part in ['up', 'down'], "which_part should be up/down" if which_part == 'up': return a > b elif which_part == 'down': return a < b def get_Scale(DDG): # scale: @A vs @B scale = np.piecewise(DDG, [DDG >= 0, DDG < 0], [lambda x: math.exp(-x*4.184*1000/( 298.15*8.31451)), lambda x: -math.exp(x*4.184*1000/(298.15*8.31451))]) return scale def get_Type(scale, scale_ref=5): Type = np.piecewise(scale, [scale < -1/scale_ref, -1/scale_ref <= scale < -(1/scale_ref)**2, -(1/scale_ref)**2 <= scale < 0, 0 < scale <= (1/scale_ref)**2, (1/scale_ref)**2 < scale <= 1/scale_ref, 1/scale_ref < scale], [0, -1, -2, 2, 1, 0]) return Type Group_data = TrainSet.groupby(['Ar_idx', 'loc_idx', 'Radical_idx'])[ 'DG_TS'].mean().unstack() Ars = Group_data.index.levels[0] Radicals = Group_data.columns def get_DDG(which_part='up'): DDG_TS_ls = [] for Ar in Ars: for R in Radicals: loc = Group_data.loc[Ar, R].index for loc_A in loc: for loc_B in loc: if Part_select(loc_B, loc_A, which_part): DG_TS_A = Group_data.loc[Ar, loc_A][R] DG_TS_B = Group_data.loc[Ar, loc_B][R] if pd.notna(DG_TS_A) == True and
pd.notna(DG_TS_B)
pandas.notna
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle import seaborn as sns from scipy import stats # from scipy.optimize import root from pyapprox import generate_independent_random_samples import matplotlib as mpl from scipy import stats from scipy.stats import spearmanr mpl.rcParams['font.size'] = 16 mpl.rcParams['lines.linewidth'] = 3 mpl.rcParams['text.usetex'] = False # use latex for all text handling mpl.rcParams['savefig.bbox'] = 'tight' mpl.rcParams['savefig.format'] = 'png' # gives best resolution plots mpl.rcParams['axes.labelsize'] = 20 mpl.rcParams['axes.titlesize'] = 20 mpl.rcParams['xtick.labelsize'] = 20 mpl.rcParams['ytick.labelsize'] = 20 mpl.rcParams['legend.fontsize'] = 16 # mpl.rc('xtick', labelsize=20) # mpl.rc('ytick', labelsize=20) # print mpl.rcParams.keys() mpl.rcParams['text.latex.preamble'] = \ r'\usepackage{siunitx}\usepackage{amsmath}\usepackage{amssymb}' from funcs.read_data import file_settings, variables_prep from adaptive_gp_model import * # Calculate the ratio of samples in the subregion def ratio_subreg(gp): """ Function to calculate the ratio of samples in the subregion in the adaptive procedure. Parameters: =========== gp: Gaussian Process object Return: ======= ration_df: pd.DataFrame, dataframe of the ratios at each iteration. """ y_training = gp.y_train_ # num_new_samples = np.asarray([0]+[20]+[8]*10+[16]*20+[24]*16+[40]*14) num_new_samples = np.asarray([20]+[8]*10+[16]*20+[24]*20+[40]*18) num_samples = np.cumsum(num_new_samples) ratio_samples = np.zeros(shape=(num_new_samples.shape[0]-2, 2)) ratio_sum = 0 for ii in range(num_new_samples.shape[0] - 2): num_subreg = np.where(y_training[num_samples[ii]: num_samples[ii+1]]>0)[0].shape[0] ratio_sum = ratio_sum + num_subreg ratio_samples[ii, 0] = num_subreg / num_new_samples[ii+1] ratio_samples[ii, 1] = ratio_sum / num_samples[ii+1] ratio_df = pd.DataFrame(data=ratio_samples, index=np.arange(ratio_samples.shape[0]), columns=['Subregion', 'FullSpace']) ratio_df['num_samples'] = num_samples[1:-1] return ratio_df # END ratio_subreg() from funcs.utils import define_constants def choose_fixed_point(plot_range, dot_samples, samples_opt, dot_vals): """ Function used to set the nomial point for fixing parameters at. Parameters: =========== plot_range: str, decide which type of nomial values to use. dot_samples: np.ndarray, of shape D*N where D is the number of parameters, the initial parameter samples for calculation objective functions samples_opt: np.ndarray, of shape D*M where D is the number of parameters, parameter samples resulting in objective functions above the threshold dot_vals: np.ndarray, objective function values from dot_samples Return: =========== x_default: list, the nominal values for all D parameters fig_path: str, the dir defined by the type of nominal values for results to save """ if plot_range == 'full_mean': x_default = define_constants(dot_samples, 13, stats = np.mean) fig_path = 'fix_mean_full' elif plot_range == 'sub_median': samples_opt = dot_samples[:, np.where(dot_vals>0.382)[0]] x_default = define_constants(samples_opt, 13, stats = np.median) fig_path = 'fix_median_subreg' elif plot_range == 'sub_mean': samples_opt = dot_samples[:, np.where(dot_vals>0.382)[0]] x_default = define_constants(samples_opt, 13, stats = np.mean) fig_path = 'fix_mean_subreg' elif plot_range == 'sub_rand': x_default = dot_samples[:, np.where(dot_vals>0.382)[0]][:, 38] # 8 for analytic, 38 for sample fig_path = 'fix_rand_subreg' elif plot_range == 'full_rand': breakpoint() x_default = dot_samples[:, np.where(dot_vals>0.382)[0]][:, 8] # 8 for analytic, 38 for sample fig_path = 'fix_rand_subreg' elif (plot_range == 'sub_max')|(plot_range == 'full_max'): x_default = dot_samples[:, np.where(dot_vals>=dot_vals.max())[0]] fig_path = 'fix_max_subreg' else: AssertionError return x_default, fig_path def cal_stats(vals_opt, vals_dict, re_eval): """ Function used to calculate the statstics of the objective values VS parameter fixing. Parameters: =========== vals_dict: dict, containing the objective function values with parameters being fixed vals_opt: np.ndarray, objective function values used to calculate the statistics re_eval: Bool, re-evaluate the OBJ using the whole samples if True, else using the optimal set only for parameter fixing Return: =========== df_stats: pd.DataFrame, of statistics """ # PDF plot df_stats =
pd.DataFrame(columns=['mean', 'std', 'qlow','qup'])
pandas.DataFrame
import textwrap import requests import pandas as pd import numpy as np import warnings from json.decoder import JSONDecodeError from typing import Any NULL = np.nan class Client: def __init__( self, url: str, headers: dict = {}, field_separator: str = '.', **kwargs: Any ): self.url = url self.headers = headers self.field_separator = field_separator self.options = kwargs def query( self, query: str, variables: dict = None, operation_name: str = None, headers: dict = {}, flatten: bool = True, schema: dict = None, **kwargs: Any, ): if schema and self.validate_schema(schema) and not flatten: raise ValueError("Argument `flatten` must be `True` for schema to be applied.") body = {'query': query, 'variables': variables, 'operation_name': operation_name} body = {k:v for k, v in body.items() if v} with requests.Session() as s: r = s.post( self.url, json=body, headers={**self.headers, **headers}, **{**self.options, **kwargs}, ) try: data = r.json()['data'] assert r.status_code == 200 except (KeyError, AssertionError) as e: raise FailedRequest(self.url, query, r.status_code, r.json(), str(e)) except (TypeError, JSONDecodeError) as e: raise FailedRequest(self.url, query, r.status_code, None, str(e)) except Exception as e: raise FailedRequest(self.url, query, None, None, str(e)) if flatten: df = self.flatten(data) if schema: df = self.apply_schema(df, schema) return df else: return data def is_empty(self, data) -> bool: if isinstance(data, dict): return all( self.is_empty(data[k]) for k in data.keys() ) else: if data: return False else: return True def flatten(self, data: dict) -> pd.DataFrame: if self.is_empty(data): return pd.DataFrame() else: df =
pd.json_normalize(data, sep=self.field_separator)
pandas.json_normalize
''' This code will clean the OB datasets and combine all the cleaned data into one Dataset name: O-27-Da Yan semi-automate code, needs some hands work. LOL But God is so good to me. 1. 9 different buildings in this dataset, and each building has different rooms 3. each room has different window, door, ac, indoor, outdoor info 4. I processed building A to F by hand, then figured out that I can rename the files first, then use code to process 5. rename the file by type and number, such as window1, indoor1, ac1, door1, etc. 6. code automated G, H, I 7. the folder has multiple types of data, csv and xlsx, figure out the file type, then rean into pandas 8. concat the outdoor datetime and temperature with ac data, then judge if the ac is on or off ''' import os import glob import string import datetime import pandas as pd import matplotlib.pyplot as plt # specify the path data_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/2021-05-28-1130-raw-data/Annex 79 Data Collection/O-27-Da Yan/_yapan_processing/processed/' template_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/OB Database Consolidation/Templates/' save_path = 'D:/yapan_office_D/Data/Annex-79-OB-Database/2021-05-28-1130-raw-data/Annex 79 Data Collection/O-27-Da Yan/_yapan_processing/_sql/' # generate the name of different building folders alphabet_string = string.ascii_uppercase alphabet_list = list(alphabet_string) building_names = alphabet_list[:9] ''' 1. process data by folders ''' begin_time = datetime.datetime.now() # create dataframe to store the data combined_window = pd.DataFrame() combined_door = pd.DataFrame() combined_hvac = pd.DataFrame() combined_indoor = pd.DataFrame() combined_outdoor = pd.DataFrame() ''' process outdoor data ''' print(f'Process outdoor data') os.chdir(data_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path outdoor_files = list(filter(lambda name: 'outdoor_building' in name, root_files)) # filter out the door status files combined_outdoor = pd.concat([pd.read_csv(f) for f in outdoor_files]) ''' manual processed data ''' print(f'Process manually processed data') building_names_1 = building_names[:6] # unit test # i = 0 # folder_name = building_names_1[i] for index, bld_name in enumerate(building_names_1): print(f'Reading the data under building folder {bld_name}') building_path = data_path + bld_name + '/' os.chdir(building_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path # combine indoor_files = list(filter(lambda name: 'indoor' in name, root_files)) # filter out the indoor files window_files = list(filter(lambda name: 'window' in name, root_files)) # filter out the window files hvac_files = list(filter(lambda name: 'hvac' in name, root_files)) # filter out the ac files door_files = list(filter(lambda name: 'door_status' in name, root_files)) # filter out the door status files # read anc combine the files under this folder if indoor_files: # make sure it is not empty indoor_temp_df = pd.concat([pd.read_csv(f) for f in indoor_files]) combined_indoor = pd.concat([combined_indoor, indoor_temp_df], ignore_index=True) # concat the data else: pass if window_files: window_temp_df = pd.concat([pd.read_csv(f) for f in window_files]) combined_window = pd.concat([combined_window, window_temp_df], ignore_index=True) # concat the data else: pass if hvac_files: hvac_temp_df = pd.concat([pd.read_csv(f) for f in hvac_files]) combined_hvac = pd.concat([combined_hvac, hvac_temp_df], ignore_index=True) # concat the data # print(combined_hvac.isnull().sum()) # print(index) else: pass if door_files: door_temp_df = pd.concat([pd.read_csv(f) for f in door_files]) combined_door = pd.concat([combined_door, door_temp_df], ignore_index=True) # concat the data # print(combined_door.isnull().sum()) # print(index) else: pass ''' auto mated process by building level ''' building_names = ['G', 'H', 'I'] building_ids = [7, 8, 9] for index, bld_name in enumerate(building_names): print(f'Dealing with data under building folder {bld_name}') building_path = data_path + bld_name + '/' os.chdir(building_path) # pwd sub_folders = next(os.walk('.'))[1] # get the names of the child directories, different rooms root_files = next(os.walk('.'))[2] # get the files under root path '''' room level ''' for room_id in sub_folders: print(f'Dealing with data under room folder {room_id}') room_path = building_path + room_id + '/' os.chdir(room_path) # pwd file_names = os.listdir() # get all the file names window_files = list(filter(lambda name: 'window' in name, file_names)) # filter out the window files hvac_files = list(filter(lambda name: 'ac' in name, file_names)) # filter out the ac files door_files = list(filter(lambda name: 'door' in name, file_names)) # filter out the door files # read and combine files if window_files: for window_name in window_files: name, extension = os.path.splitext(window_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df = pd.read_csv(window_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Window_Status'] # rename the columns else: temp_df = pd.read_excel(window_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Window_Status'] temp_df['Window_ID'] = int(name.split('_')[0][6:]) temp_df['Room_ID'] = int(room_id) # assign Room_ID temp_df['Building_ID'] = building_ids[index] # assign Building_ID combined_window = pd.concat([combined_window, temp_df], ignore_index=True) # concat the data else: pass if door_files: for door_name in door_files: name, extension = os.path.splitext(door_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df = pd.read_csv(door_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Door_Status'] # rename the columns else: temp_df = pd.read_excel(door_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'Door_Status'] temp_df['Door_ID'] = int(name.split('_')[0][4:]) temp_df['Room_ID'] = int(room_id) # assign Room_ID temp_df['Building_ID'] = building_ids[index] # assign Building_ID combined_door = pd.concat([combined_door, temp_df], ignore_index=True) # concat the data else: pass if hvac_files: for hvac_name in hvac_files: name, extension = os.path.splitext(hvac_name) # get the path and extension of a file if extension == '.CSV': # if the file is csv file temp_df = pd.read_csv(hvac_name, usecols=[0, 1]) temp_df.columns = ['Date_Time', 'yapan_supply _t'] else: temp_df =
pd.read_excel(hvac_name, usecols=[0, 1])
pandas.read_excel
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ Load messages and categories datasets as dataframes; merge the messages and categories datasets using the common id. :param messages_filepath: file path of message dataset. :param categories_filepath: file path of categories dataset. :return: a dataframe that merge the two datasets. """ messages = pd.read_csv(messages_filepath) categories =
pd.read_csv(categories_filepath)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Jul 29 18:37:07 2021 @author: Jannik """ import urllib.request import glob from unidecode import unidecode import os import zipfile import pandas as pd import datetime import shutil import datetime # look up abbreviations of voivodships terit_to_abbr = {"t24": "PL83", "t14": "PL78", "t12": "PL77", "t30": "PL86", "t10": "PL74", "t02": "PL72", "t22": "PL82", "t18": "PL80", "t04": "PL73", "t06": "PL75", "t16": "PL79", "t26": "PL84", "t20": "PL81", "t32": "PL87", "t28": "PL85", "t08": "PL76", "t00": "PL"} # due to unknown encoding we have to map the names back to real names map_abbr_name = {"PL72": "Dolnoslaskie", "PL73": "Kujawsko-Pomorskie", "PL75": "Lubelskie", "PL76": "Lubuskie", "PL74": "Lodzkie", "PL77": "Malopolskie", "PL78": "Mazowieckie", "PL79": "Opolskie", "PL80": "Podkarpackie", "PL81": "Podlaskie", "PL82": "Pomorskie", "PL83": "Slaskie", "PL84": "Swietokrzyskie", "PL85": "Warminsko-Mazurskie", "PL86": "Wielkopolskie", "PL87": "Zachodniopomorskie", "PL": "Poland"} # download raw zip file urllib.request.urlretrieve("https://arcgis.com/sharing/rest/content/items/a8c562ead9c54e13a135b02e0d875ffb/data", "poland.zip") # extract file with open(os.path.abspath("poland.zip"), mode="rb") as file: zip_ref = zipfile.ZipFile(file) os.mkdir(os.path.join(os.getcwd(), "poland_unzip")) zip_ref.extractall("poland_unzip") curr_inc_case = pd.read_csv("../../data-truth/MZ/truth_MZ-Incident Cases_Poland.csv") curr_inc_deaths = pd.read_csv("../../data-truth/MZ/truth_MZ-Incident Deaths_Poland.csv") curr_cum_case = pd.read_csv("../../data-truth/MZ/truth_MZ-Cumulative Cases_Poland.csv") curr_cum_deaths = pd.read_csv("../../data-truth/MZ/truth_MZ-Cumulative Deaths_Poland.csv") inc_case_dfs = [] inc_death_dfs = [] # get csv files for file in os.listdir("./poland_unzip"): if file.endswith(".csv"): date_raw = file[0:8] date = datetime.datetime.strptime(date_raw[0:4] + "." + date_raw[4:6] + "." + date_raw[6:], "%Y.%m.%d") if date > datetime.datetime.strptime("2021.07.15", "%Y.%m.%d"): print("Processing date: {}".format(date)) df = pd.read_csv(os.path.join(os.path.join(os.getcwd(), "poland_unzip"), file), sep=";", encoding="cp1252") df.drop(columns=["wojewodztwo"], inplace=True) df["location"] = df["teryt"].apply(lambda x: terit_to_abbr[x]) df["location_name"] = df["location"].apply(lambda x: map_abbr_name[x]) #extract date from filename df["date"] = (date_raw[0:4] + "." + date_raw[4:6] + "." + date_raw[6:]) df["date"] = pd.to_datetime(df["date"], format="%Y.%m.%d") #shift to ecdc df["date"] = df["date"].apply(lambda x: x + datetime.timedelta(days=1)) inc_case_df = df[["date", "location_name", "location", "liczba_przypadkow"]].rename(columns={"liczba_przypadkow": "value"}) inc_case_dfs.append(inc_case_df) inc_death_df = df[["date", "location_name", "location", "zgony"]].rename(columns={"zgony": "value"}) inc_death_dfs.append(inc_death_df) inc_case_df = pd.concat(inc_case_dfs) inc_death_df = pd.concat(inc_death_dfs) # only use new data last_update = curr_inc_case["date"].max() # cut off dates inc_case_df = inc_case_df[inc_case_df["date"] > last_update] inc_death_df = inc_death_df[inc_death_df["date"] > last_update] inc_case_df["date"] = inc_case_df["date"].dt.date inc_death_df["date"] = inc_death_df["date"].dt.date # add new data to dataframe final_inc_case = pd.concat([curr_inc_case, inc_case_df]) final_inc_case = final_inc_case.set_index("date") final_inc_deaths = pd.concat([curr_inc_deaths, inc_death_df]) final_inc_deaths = final_inc_deaths.set_index("date") #create latest cumulatve data cum_case_df = inc_case_df.copy() cum_case_df["value"] = cum_case_df.groupby("location").cumsum() cum_death_df = inc_death_df.copy() cum_death_df["value"] = cum_death_df.groupby("location").cumsum() # add up cum data latest_death_sum = curr_cum_deaths[curr_cum_deaths["date"] == curr_cum_deaths["date"].max()][["location", "value"]] latest_death_sum = pd.Series(latest_death_sum.value.values, index=latest_death_sum.location).to_dict() latest_case_sum = curr_cum_case[curr_cum_case["date"] == curr_cum_case["date"].max()][["location", "value"]] latest_case_sum = pd.Series(latest_case_sum.value.values, index=latest_case_sum.location).to_dict() def update_cumulative(location, value, previous_cumulative): return value + previous_cumulative[location] cum_death_df["value"] = cum_death_df.apply(lambda row: update_cumulative(row["location"], row["value"], latest_death_sum), axis=1) cum_case_df["value"] = cum_case_df.apply(lambda row: update_cumulative(row["location"], row["value"], latest_case_sum), axis=1) final_cum_case =
pd.concat([curr_cum_case, cum_case_df])
pandas.concat
import datetime as dtm from functools import lru_cache from typing import Optional, Callable import pandas as pd from .base_classes import SingleFinancialSymbolSource, FinancialSymbolsSource from .._settings import data_url, change_column_name from ..common.enums import Currency, SecurityType, Period from ..common.financial_symbol import FinancialSymbol from ..common.financial_symbol_id import FinancialSymbolId from ..common.financial_symbol_info import FinancialSymbolInfo class CbrTopRatesSource(SingleFinancialSymbolSource): def _load_rates(self): df = pd.read_csv('{}cbr_deposit_rate/data.csv'.format(data_url), sep='\t') df.sort_values(by='decade', inplace=True) df.rename(columns={'close': change_column_name, 'decade': 'date'}, inplace=True) return df def _load_dates(self, kind): index = pd.read_csv('{}cbr_deposit_rate/__index.csv'.format(data_url), sep='\t') period_str = index[kind][0] return pd.Period(period_str, freq='M') def __init__(self): super().__init__( namespace='cbr', name='TOP_rates', values_fetcher=lambda: self._load_rates(), start_period=self._load_dates(kind='date_start'), end_period=self._load_dates(kind='date_end'), long_name='Динамика максимальной процентной ставки (по вкладам в российских рублях)', currency=Currency.RUB, security_type=SecurityType.RATES, period=Period.DECADE, adjusted_close=False, ) class CbrCurrenciesSource(FinancialSymbolsSource): def __init__(self): super().__init__(namespace='cbr') self.url_base = data_url + 'currency/' self.index = pd.read_csv(self.url_base + '__index.csv', sep='\t', index_col='name') self.__short_names = { Currency.RUB: 'Рубль РФ', Currency.USD: 'Доллар США', Currency.EUR: 'Евро', } self._currency_min_date = { Currency.RUB.name: pd.Period('1990', freq='D'), Currency.USD.name: pd.Period('1913', freq='D'), Currency.EUR.name: pd.Period('1996', freq='D'), } @lru_cache(maxsize=512) def __currency_values(self, name: str) -> Callable[[pd.Period, pd.Period], pd.DataFrame]: def func(start_period: pd.Period, end_period: pd.Period) -> pd.DataFrame: start_period = max(start_period,
pd.Period(self._currency_min_date[name], freq='M')
pandas.Period
#https://www.kaggle.com/niteshx2/top-50-beginners-stacking-lgb-xgb #https://www.kaggle.com/kernels/scriptcontent/11907006/download import numpy as np # linear algebra import pandas as pd # from datetime import datetime from scipy.stats import skew # for some statistics from scipy.special import boxcox1p from scipy.stats import boxcox_normmax from sklearn.linear_model import ElasticNetCV, LassoCV, RidgeCV from sklearn.ensemble import GradientBoostingRegressor from sklearn.svm import SVR from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import mean_squared_error from mlxtend.regressor import StackingCVRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor import litemort import os data_root = f"F:/Datasets/house" print(os.listdir(data_root)) # Based on https://www.kaggle.com/hemingwei/top-2-from-laurenstc-on-house-price-prediction train = pd.read_csv(f'{data_root}/train.csv') test = pd.read_csv(f'{data_root}/test.csv') print("Train set size:", train.shape) print("Test set size:", test.shape) print('START data processing', datetime.now(), ) train_ID = train['Id'] test_ID = test['Id'] # Now drop the 'Id' colum since it's unnecessary for the prediction process. train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) # Deleting outliers train = train[train.GrLivArea < 4500] train.reset_index(drop=True, inplace=True) # We use the numpy fuction log1p which applies log(1+x) to all elements of the column train["SalePrice"] = np.log1p(train["SalePrice"]) y = train.SalePrice.reset_index(drop=True) train_features = train.drop(['SalePrice'], axis=1) test_features = test features = pd.concat([train_features, test_features]).reset_index(drop=True) print(features.shape) # Some of the non-numeric predictors are stored as numbers; we convert them into strings features['MSSubClass'] = features['MSSubClass'].apply(str) features['YrSold'] = features['YrSold'].astype(str) features['MoSold'] = features['MoSold'].astype(str) features['Functional'] = features['Functional'].fillna('Typ') features['Electrical'] = features['Electrical'].fillna("SBrkr") features['KitchenQual'] = features['KitchenQual'].fillna("TA") features['Exterior1st'] = features['Exterior1st'].fillna(features['Exterior1st'].mode()[0]) features['Exterior2nd'] = features['Exterior2nd'].fillna(features['Exterior2nd'].mode()[0]) features['SaleType'] = features['SaleType'].fillna(features['SaleType'].mode()[0]) features["PoolQC"] = features["PoolQC"].fillna("None") for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'): features[col] = features[col].fillna(0) for col in ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond']: features[col] = features[col].fillna('None') for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'): features[col] = features[col].fillna('None') features['MSZoning'] = features.groupby('MSSubClass')['MSZoning'].transform(lambda x: x.fillna(x.mode()[0])) objects = [] for i in features.columns: if features[i].dtype == object: objects.append(i) features.update(features[objects].fillna('None')) features['LotFrontage'] = features.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) # Filling in the rest of the NA's numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numerics = [] for i in features.columns: if features[i].dtype in numeric_dtypes: numerics.append(i) features.update(features[numerics].fillna(0)) numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numerics2 = [] for i in features.columns: if features[i].dtype in numeric_dtypes: numerics2.append(i) skew_features = features[numerics2].apply(lambda x: skew(x)).sort_values(ascending=False) high_skew = skew_features[skew_features > 0.5] skew_index = high_skew.index for i in skew_index: features[i] = boxcox1p(features[i], boxcox_normmax(features[i] + 1)) features = features.drop(['Utilities', 'Street', 'PoolQC',], axis=1) features['YrBltAndRemod']=features['YearBuilt']+features['YearRemodAdd'] features['TotalSF']=features['TotalBsmtSF'] + features['1stFlrSF'] + features['2ndFlrSF'] features['Total_sqr_footage'] = (features['BsmtFinSF1'] + features['BsmtFinSF2'] + features['1stFlrSF'] + features['2ndFlrSF']) features['Total_Bathrooms'] = (features['FullBath'] + (0.5 * features['HalfBath']) + features['BsmtFullBath'] + (0.5 * features['BsmtHalfBath'])) features['Total_porch_sf'] = (features['OpenPorchSF'] + features['3SsnPorch'] + features['EnclosedPorch'] + features['ScreenPorch'] + features['WoodDeckSF']) # simplified features features['haspool'] = features['PoolArea'].apply(lambda x: 1 if x > 0 else 0) features['has2ndfloor'] = features['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0) features['hasgarage'] = features['GarageArea'].apply(lambda x: 1 if x > 0 else 0) features['hasbsmt'] = features['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0) features['hasfireplace'] = features['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) print(features.shape) final_features = pd.get_dummies(features).reset_index(drop=True) print(final_features.shape) X = final_features.iloc[:len(y), :] X_sub = final_features.iloc[len(X):, :] print('X', X.shape, 'y', y.shape, 'X_sub', X_sub.shape) outliers = [30, 88, 462, 631, 1322] X = X.drop(X.index[outliers]) y = y.drop(y.index[outliers]) overfit = [] for i in X.columns: counts = X[i].value_counts() zeros = counts.iloc[0] if zeros / len(X) * 100 > 99.94: overfit.append(i) overfit = list(overfit) #overfit.append('MSZoning_C (all)') X = X.drop(overfit, axis=1).copy() X_sub = X_sub.drop(overfit, axis=1).copy() print('X', X.shape, 'y', y.shape, 'X_sub', X_sub.shape) # ################## ML ######################################## print('START ML', datetime.now(), ) kfolds = KFold(n_splits=10, shuffle=True, random_state=42) # rmsle def rmsle(y, y_pred): return np.sqrt(mean_squared_error(y, y_pred)) # build our model scoring function def cv_rmse(model, X=X): rmse = np.sqrt(-cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=kfolds)) return (rmse) # setup models alphas_alt = [14.5, 14.6, 14.7, 14.8, 14.9, 15, 15.1, 15.2, 15.3, 15.4, 15.5] alphas2 = [5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008] e_alphas = [0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007] e_l1ratio = [0.8, 0.85, 0.9, 0.95, 0.99, 1] ridge = make_pipeline(RobustScaler(), RidgeCV(alphas=alphas_alt, cv=kfolds,)) lasso = make_pipeline(RobustScaler(), LassoCV(max_iter=1e7, alphas=alphas2, random_state=42, cv=kfolds)) elasticnet = make_pipeline(RobustScaler(), ElasticNetCV(max_iter=1e7, alphas=e_alphas, cv=kfolds, random_state=42, l1_ratio=e_l1ratio)) svr = make_pipeline(RobustScaler(), SVR(C= 20, epsilon= 0.008, gamma=0.0003,)) gbr = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05, max_depth=4, max_features='sqrt', min_samples_leaf=15, min_samples_split=10, loss='huber', random_state =42) lgb_params = {'objective':'regression','num_leaves':4,'learning_rate':0.01,'n_estimators':5000, 'max_bin':200,'bagging_fraction':0.75, 'bagging_freq':5,'bagging_seed':7,'feature_fraction':0.2, 'feature_fraction_seed':7,'verbose':-1,#min_data_in_leaf=2,#min_sum_hessian_in_leaf=11 } lightgbm = LGBMRegressor(**lgb_params) xgboost = XGBRegressor(learning_rate=0.01, n_estimators=3460, max_depth=3, min_child_weight=0, gamma=0, subsample=0.7, colsample_bytree=0.7, objective='reg:linear', nthread=-1, scale_pos_weight=1, seed=27, reg_alpha=0.00006, random_state=42) # stack stack_gen = StackingCVRegressor(regressors=(ridge, lasso, elasticnet, gbr, xgboost, lightgbm), meta_regressor=xgboost, use_features_in_secondary=True) print('TEST score on CV') score = cv_rmse(lightgbm) print("Lightgbm score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) if False: score = cv_rmse(ridge) print("Kernel Ridge score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(lasso) print("Lasso score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(elasticnet) print("ElasticNet score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(svr) print("SVR score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(gbr) print("GradientBoosting score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) score = cv_rmse(xgboost) print("Xgboost score: {:.4f} ({:.4f})\n".format(score.mean(), score.std()), datetime.now(), ) print('START Fit') print(datetime.now(), 'StackingCVRegressor') stack_gen_model = stack_gen.fit(np.array(X), np.array(y)) print(datetime.now(), 'elasticnet') elastic_model_full_data = elasticnet.fit(X, y) print(datetime.now(), 'lasso') lasso_model_full_data = lasso.fit(X, y) print(datetime.now(), 'ridge') ridge_model_full_data = ridge.fit(X, y) print(datetime.now(), 'svr') svr_model_full_data = svr.fit(X, y) print(datetime.now(), 'GradientBoosting') gbr_model_full_data = gbr.fit(X, y) print(datetime.now(), 'xgboost') xgb_model_full_data = xgboost.fit(X, y) print(datetime.now(), 'lightgbm') lgb_model_full_data = lightgbm.fit(X, y) input("Before blend_models_predict: ") def blend_models_predict(X): return ((0.1 * elastic_model_full_data.predict(X)) + \ (0.05 * lasso_model_full_data.predict(X)) + \ (0.1 * ridge_model_full_data.predict(X)) + \ (0.1 * svr_model_full_data.predict(X)) + \ (0.1 * gbr_model_full_data.predict(X)) + \ (0.15 * xgb_model_full_data.predict(X)) + \ (0.1 * lgb_model_full_data.predict(X)) + \ (0.3 * stack_gen_model.predict(np.array(X)))) print('RMSLE score on train data:') print(rmsle(y, blend_models_predict(X))) print('Predict submission', datetime.now(),) submission = pd.read_csv(f"{data_root}/sample_submission.csv") submission.iloc[:,1] = np.floor(np.expm1(blend_models_predict(X_sub))) # this kernel gave a score 0.114 # let's up it by mixing with the top kernels print('Blend with Top Kernals submissions', datetime.now(),) sub_1 = pd.read_csv(f'{data_root}/top-10-0-10943-stacking-mice-and-brutal-force/House_Prices_submit.csv') sub_2 = pd.read_csv(f'{data_root}/hybrid-svm-benchmark-approach-0-11180-lb-top-2/hybrid_solution.csv') sub_3 =
pd.read_csv(f'{data_root}/lasso-model-for-regression-problem/lasso_sol22_Median.csv')
pandas.read_csv
# This file contains the following function(s): find_duplicates, getnoneditable, countsCDSedits import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from check_CDS import remove_dup def find_duplicates(df_all): """finds the count of the “unique” number of nonsense, nonsense (stop), and missense edits for each CDS. “Not unique” is defined as the same type of edit at the same amino acid number within the CDS. This function returns a dataframe (df_CDS) with the CDSs as the row indexes and the unique edit types as the columns. """ Locusarray = df_all.Locus.unique() # can index into dictCDS = {} # The key is the CDS, and the values is the list of the row index dictCDScount = {} # The key is the CDS, [the number of unique Nonsense (same), Missense edits, Nonsense stop] for CDS in Locusarray: # get index (row id) of the rows with this CDS listCDS = df_all.index[df_all['Locus'] == CDS].tolist() dictCDS[CDS] = listCDS for cds in dictCDS.keys(): Templist = [] # [[AA number,[Change],[AA number, [Change]] countnonsense = 0 countstop = 0 countmissense = 0 for row in dictCDS[cds]: # for every row in the list of indexes #print(row) AAnum = df_all.loc[row, "AA Number"] OAA = df_all.loc[row, "Old AA Code"] NAA = df_all.loc[row, "New AA Code"] Term = df_all.loc[row, "Term"] tempcode = [AAnum,[OAA,NAA]] if tempcode not in Templist: Templist.append(tempcode) if Term == "Missense": countmissense+=1 elif Term == "Nonsense": countnonsense+=1 else: countstop+=1 #print(Templist) dictCDScount[cds] = [countnonsense,countmissense,countstop] countCDSunique_df = pd.DataFrame.from_dict(dictCDScount, orient='index') # countCDSunique_df.rename(columns={0: 'Unique Nonsense', 1: 'Unique Missense', 2: 'Unique Nonsense (stop)'}, inplace=True) countCDSunique_df.rename(columns={0: 'Unique Nonsense', 1: 'Unique Missense', 2: 'Unique Nonsense (stop)'}, inplace=True) return countCDSunique_df def getnoneditable(df_all, dictCDSinfo): """makes a dictionary of all the CDS that are not editable and the count based on top and bottom strand.""" TotalCDSlist = dictCDSinfo.keys() # list of all the genes EditedCDSlist = df_all.loc[:, "Locus"].to_list() EditedCDSlistnondup = remove_dup(EditedCDSlist) nonedit_dict = {} # key is the CDS, [number of editing, strand] count_T = 0 # counter for the non-editable on top strand count_B = 0 # counter for the non-editable on bottom strand for gene in TotalCDSlist: if gene not in EditedCDSlistnondup: nonedit_strand = dictCDSinfo[gene][1] nonedit_dict[gene] = [nonedit_strand, 0] if nonedit_strand == "+": count_T +=1 else: count_B +=1 return nonedit_dict, count_T, count_B def countsCDSedits(countCDSdf_all,df_all,dictCDSinfo): """Returns a dataframe (with all CDSs, their strand, the total number of editing sites, the unique nonsense, missense and nonsense (stop) edits), strand of the CDS, the number/count of prematurely stoppable CDSs in top strand, the number/count of prematurely stoppable CDSs in bottom strand, the number/count of non-editable CDSs on the top strand, the number/count of non-editable CDSs on the bottom strand. The function also prints the CDSs that are not stoppable and the total count. This function uses both find_duplicates and getnoneditable.""" # Find which strand the CDSs are on # Makes a new list with the order of the CDSs in the combined CDS dataframe (countCDSdf_all) # Then you add the "strand_list" to the dataframe strand_list = [] for i in countCDSdf_all.index: # i = the CDS/locus strand = dictCDSinfo[i][1] strand_list.append(strand) countCDSdf_all.insert(0, "Strand", strand_list, True) # gets a dictionary of non-editable genes and the number based on top/bottom strand noneditCDSdict, count_nonedit_T, count_nonedit_B = getnoneditable(df_all, dictCDSinfo) noneditCDS_df = pd.DataFrame.from_dict(noneditCDSdict, orient='index', columns=['Strand', "Total Number Editing Sites"]) allCDS_df =pd.concat([countCDSdf_all, noneditCDS_df], sort=False) #find the unique counts countCDSunique_df = find_duplicates(df_all) countCDS_df =
pd.concat([allCDS_df, countCDSunique_df], axis=1, sort=False)
pandas.concat
from .metrics import accuracy from .metrics import topk_acc from .metrics import generalized_distance_matrix from .metrics import generalized_distance_matrix_torch from .chemspace import get_drug_batch from typing import Optional, Sequence, Tuple, Union import scipy.io as sio import scipy.stats as st from scipy import sparse import numpy as np import pandas as pd import anndata as ad import seaborn as sns import networkx as nx import community import toolz as tz import tqdm import os import collections from sklearn import metrics from sklearn.utils import sparsefuncs from sklearn.neighbors import kneighbors_graph from sklearn.mixture import GaussianMixture as GMM from joblib import Parallel, delayed import torch import torch.nn as nn from torch.nn import functional as F from torch.utils.data import Dataset, IterableDataset, DataLoader import torch_geometric from torch_geometric.data import Batch from rdkit import Chem from rdkit.Chem import AllChem, Draw import matplotlib.pyplot as plt # TO-DO: Refactor trainers to work with Data objects, # for different models not to be hard coded only based # on their number of inputs (e.g. supervised {x,y}, # cond_generator {x,g}, etc...) class Data: """ Abstract data class to wrap data in ML models. """ def __init__( self, x, y=None, g=None): """ Params ------ x (np.array | torch.tensor): Input data to the model """ self.x = x self.y = y self.g = g def train_supervised_gcn( model:nn.Module, data:torch_geometric.data.Data, loss_fn, optimizer, multiclass = False, n_out = 1 )->Tuple[float, float]: """ Single fwd-bwd pass on GraphConvNet model. Returns loss and accuracy. """ y_true = torch.tensor(data.y, dtype = torch.long) optimizer.zero_grad() y_pred = model(data) if multiclass: loss = loss_fn(y_pred, y_true) y_hat = y_pred.argmax(dim = 1) acc = accuracy(y_hat, y_true) else: loss = loss_fn( y_pred.float(), y_true.reshape(-1, n_out).float() ) acc = accuracy(y_pred, y_true) loss.backward() optimizer.step() return loss, acc def val_supervised_gcn( model, data, loss_fn, multiclass = False, n_out = 1 )-> float: y_pred = model(data) #y_true = torch.from_numpy(np.array(data.y, dtype=np.int16)) #, device = device) y_true = torch.tensor(data.y, dtype = torch.long) if multiclass: loss = loss_fn(y_pred, y_true) y_hat = y_pred.argmax(dim = 1) acc = accuracy(y_hat, y_true) else: loss = loss = loss_fn( y_pred.float(), y_true.reshape(-1, n_out).float() ) acc = accuracy(y_pred, y_true) return loss.mean(), acc def supervised_trainer_gcn( n_epochs:int, train_loader, val_loader, model, criterion, optimizer, multiclass= False, n_classes = 1, logs_per_epoch = 5, model_dir:str = None, model_name:str = None, early_stopping_tol:float = 0.3, force_cpu=False )-> Tuple[list, np.ndarray, np.ndarray]: """ Wrapper function to train a GNN, returns train and val loss, and val accuracy. Currently designed for classification problems. Params ------ n_epochs (int) Number of forward-backward passes through all the training data. train_loader, val_loader torch_geometric.data.Dataloaders of training and validation set. The validation set is used for estimating model convergence. model (nn.Module) Supervised neural net model. criterion (torch.nn.modules.loss object) Loss function. optimizer (torch.optim object) Optimizer, e.g. Adam or RMSProp. multiclass (bool, default = False) Whether the model is a softmax classification model. n_classes (int, default = 1) Dimensionality of output dimension. model_dir (str, default = None) Path to store trained models. If set to None it will not store the model's weights. model_name (str, default = None) Filename of the model to be stored. If set to None and `model_dir` is specified, the model will be stored as `model.pt`. early_stopping_tol (float, default = 0.1) Tolerance to stop the training. It is used as the fractional increase in the validation loss in order to stop the training. I.e. in pseudocode: Stop if val_loss[i] > (1+early_stopping_tol)*val_loss[i-1] The higher the value the more tolerant to run for the number of epochs. If the value is small the traning loop can be too sensitive to small increases in the validation loss. """ batch_size = train_loader.batch_size print_every = np.floor(train_loader.dataset.__len__() / batch_size / logs_per_epoch) # minibatches train_loss_vector = [] # to store training loss val_loss_vector = np.empty(shape = n_epochs) val_acc_vector = np.empty(shape = n_epochs) cuda = False if force_cpu else torch.cuda.is_available() if cuda and not force_cpu: device = try_gpu() torch.cuda.set_device(device) model = model.to(device) for epoch in np.arange(n_epochs): running_loss = 0 # TRAINING LOOP for ix, data in tqdm.tqdm(enumerate(train_loader)): #input_tensor = data.view(batch_size, -1).float() if cuda: #data.edge_attr = data.edge_attr.cuda() data.edge_index = data.edge_index.cuda() data.x = data.x.cuda() data.y = torch.tensor(data.y, device = device) data.ptr = data.ptr.cuda() data.batch = data.batch.cuda() train_loss, train_acc = train_supervised_gcn( model, data, # graph and label in data object criterion, optimizer, multiclass=multiclass, n_out =n_classes ) running_loss += train_loss.item() # Print loss if ix % print_every == print_every -1 : # Print average loss print('[%d, %5d] loss: %.3f' % (epoch + 1, ix+1, running_loss / print_every)) train_loss_vector.append(running_loss / print_every) # Reinitialize loss running_loss = 0.0 # VALIDATION LOOP model.eval() with torch.no_grad(): validation_loss = [] val_accuracy = [] for i, data in enumerate(tqdm.tqdm(val_loader)): if cuda: data.edge_attr = data.edge_attr.cuda() data.edge_index = data.edge_index.cuda() data.x = data.x.cuda() data.y = torch.tensor(data.y, device = device) data.ptr = data.ptr.cuda() data.batch = data.batch.cuda() val_loss, val_acc = val_supervised_gcn( model, data, criterion, multiclass, n_classes ) validation_loss.append(val_loss) val_accuracy.append(val_acc) mean_val_loss = torch.tensor(validation_loss).mean() mean_accuracy = torch.tensor(val_accuracy).mean() val_loss_vector[epoch] = mean_val_loss val_acc_vector[epoch] = mean_accuracy print('Val. loss %.3f'% mean_val_loss) print('Val. acc %.3f'% (mean_accuracy*100)) # EARLY STOPPING LOOP if epoch > 0: if val_loss_vector[epoch] > (1+early_stopping_tol)*val_loss_vector[epoch-1]: print('Finished by early stopping at epoch %d'%(epoch)) return train_loss_vector, val_loss_vector, val_acc_vector # SAVE MODEL if model_dir is not None: if not os.path.exists(model_dir): os.mkdir(model_dir) if model_name is not None: torch.save( model.state_dict(), os.path.join(model_dir, model_name + '_' + str(epoch) + '.pt') ) else: torch.save( model.state_dict(), os.path.join(model_dir, 'model' + '_' + str(epoch) + '.pt') ) print('Finished training') return train_loss_vector, val_loss_vector, val_acc_vector def train_supervised( model, input_tensor, y_true, loss_fn, optimizer, multiclass =False, n_out = 1, ): """ Wrapper function to make forward and backward pass with minibatch using a supervised model (classification or regression). Params ------ n_out (int, default = 1) Dimensionality of output dimension. Leave as 1 for multiclass, i.e. the output is a probability distribution over classes (e.g. MNIST). """ # Zero out grads model.zero_grad() y_pred = model(input_tensor) #Note that if it's a multiclass classification (i.e. the output is a # probability distribution over classes) the loss_fn # nn.NLLLoss(y_pred, y_true) uses as input y_pred.size = (n_batch, n_classes) # and y_true.size = (n_batch), that's why it doesn't get reshaped. if multiclass: loss = loss_fn(y_pred, y_true) y_hat = y_pred.argmax(dim = 1) acc = accuracy(y_hat, y_true) else: # Backprop error loss = loss_fn(y_pred, y_true.view(-1, n_out).float()) try: acc = accuracy(y_pred, y_true.view(-1, n_out).float()) except: acc = None loss.backward() # Update weights optimizer.step() return loss, acc def validation_supervised(model, input_tensor, y_true, loss_fn, multiclass =False, n_classes= 1): """ Returns average loss for an input batch of data with a supervised model. If running on multiclass mode, it also returns the accuracy. """ y_pred = model(input_tensor.float()) if multiclass: loss = loss_fn(y_pred, y_true) y_hat = y_pred.argmax(dim = 1) acc = accuracy(y_hat, y_true) else: loss = loss_fn(y_pred, y_true.view(-1, n_classes).float()) try: acc = accuracy(y_pred, y_true.view(-1, n_out).float()) except: acc = None return loss.mean().item(), acc def supervised_trainer( n_epochs:int, train_loader:DataLoader, val_loader:DataLoader, model:nn.Module, criterion, optimizer, multiclass:bool = False, n_classes:int = 1, logs_per_epoch:int = 5, train_fn:callable = train_supervised, model_dir:str = None, model_name:str = None, early_stopping_tol:float = 0.2, **kwargs ): """ Wrapper function to train a supervised model for n_epochs. Currently designed for classification and regression. Returns train loss, validation loss and accuracy. Params ------ n_epochs (int) Number of forward-backward passes through all the training data. train_loader, val_loader Torch dataloaders of training and validation set. The validation set is used for estimating model convergence. model (nn.Module) Supervised neural net model. criterion (torch.nn.modules.loss object) Loss function. optimizer (torch.optim object) Optimizer, e.g. Adam or RMSProp. multiclass (bool, default = False) Whether the model is a softmax classification model. n_classes (int, default = 1) Dimensionality of output dimension. Leave as 1 for multiclass, i.e. the output is a probability distribution over classes (e.g. MNIST). model_dir (str, default = None) Path to store trained models. If set to None it will not store the model weights. model_name (str, default = None) Filename of the model to be stored. If set to None and `model_dir` is specified, the model will be stored as `model.pt` early_stopping_tol (float, default = 0.1) Tolerance to stop the training. It is used as the fractional increase in the validation loss in order to stop the training. I.e. in pseudocode: Stop if val_loss[i] > (1+early_stopping_tol)*val_loss[i-1] The higher the value the more tolerant to run for the number of epochs. If the value is small the traning loop can be too sensitive to small increases in the validation loss. **kwargs All kwargs go to the train_fn and val_fn functions. Returns ------- train_loss_vector(array-like) List with loss at every minibatch, of size (minibatch*n_epochs). val_loss_vector(array-like) Numpy array with validation loss for every epoch. """ batch_size = train_loader.batch_size print_every = np.floor(train_loader.dataset.__len__() / batch_size / logs_per_epoch) # minibatches train_loss_vector = [] # to store training loss val_loss_vector = np.empty(shape = n_epochs) val_acc_vector = np.empty(shape = n_epochs) cuda = torch.cuda.is_available() if cuda: device = try_gpu() torch.cuda.set_device(device) model = model.to(device) for epoch in np.arange(n_epochs): running_loss = 0 # TRAINING LOOP for ix, (data, y_true) in enumerate(tqdm.tqdm(train_loader)): if len(data.shape)<4: data = data.view(batch_size, -1).float() if cuda: data = data.cuda(device = device) y_true = y_true.cuda(device = device) train_loss, train_acc = train_fn( model, data, y_true, criterion, optimizer, multiclass=multiclass, n_out =n_classes, **kwargs ) running_loss += train_loss.item() # Print loss if ix % print_every == print_every -1 : # Print average loss print('[%d, %6d] loss: %.3f' % (epoch + 1, ix+1, running_loss / print_every)) train_loss_vector.append(running_loss / print_every) # Reinitialize loss running_loss = 0.0 # VALIDATION LOOP with torch.no_grad(): model.eval() validation_loss = [] validation_accuracy = [] for i, (data, y_true) in enumerate(tqdm.tqdm(val_loader)): if len(data.shape)<4: # if not images data = data.view(batch_size, -1).float() if cuda: data = data.cuda(device = device) y_true = y_true.cuda(device = device) val_loss, val_acc = validation_supervised( model, data, y_true, criterion, multiclass, n_classes ) validation_loss.append(val_loss) validation_accuracy.append(val_acc) mean_val_loss = torch.tensor(validation_loss).mean().item() mean_val_acc = torch.tensor(validation_accuracy).mean().item() val_loss_vector[epoch] = mean_val_loss val_acc_vector[epoch] = mean_val_acc print('Val. loss %.3f'% mean_val_loss) print('Val. accuracy %.3f'% (mean_val_acc*100)) # EARLY STOPPING LOOP if epoch > 0: if val_loss_vector[epoch] > (1+early_stopping_tol)*val_loss_vector[epoch-1]: print('Finished by early stopping at epoch %d'%(epoch)) return train_loss_vector, val_loss_vector # SAVE MODEL if model_dir is not None: if not os.path.exists(model_dir): os.mkdir(model_dir) if model_name is not None: torch.save( model.state_dict(), os.path.join(model_dir, model_name + '_' + str(epoch) + '.pt') ) else: torch.save( model.state_dict(), os.path.join(model_dir, 'model' + '_' + str(epoch) + '.pt') ) print('Finished training') return train_loss_vector, val_loss_vector, val_acc_vector def print_loss_in_loop(epoch, idx_batch, running_loss, print_every, message='loss'): print_msg = '[%d, %5d] ' + message + ' : %.3f' print(print_msg%\ (epodch + 1, idx_batch+1, running_loss / print_every)) def supervised_model_predict( model:nn.Module, data_loader, criterion, n_points = None, n_feats= None, multiclass=False, n_outputs =1, score = True ): """ Analog to model.predict_proba() from sklearn. Returns a prediction vector given a torch dataloder and model. It is designed for working with basic supervised models like binary or multilabel classification, and regression. Params ------ model (torch.nn.model) Trained supervised model. data_loader n_points (int) Number of instances (rows) in the dataset. If not provided, the function will try to extract it from the dataloader. n_feats (int) Input dimensions for the model / number of columns in the dataset. If not provided, the function will try to extract it from the dataloader. n_outputs (int, default = 1) Number of outputs of the model. Defaults to 1 dim output, for regression or binary classification. Returns ------- y_pred (np.array) Array with raw predictions from a forward pass of the model. """ if n_points == None and n_feats == None: try: n_points, n_feats = data_loader.dataset.data.shape except: print('Need to supply number of datapoints and features in input data.') batch_size = data_loader.batch_size cuda = torch.cuda.is_available() device = try_gpu() model = model.to(device) # Initialize predictions array y_pred = torch.zeros(n_points, n_outputs) if score: cum_sum_loss = 0 cum_sum_acc = 0 with torch.no_grad(): for ix, (x, y) in tqdm.tqdm(enumerate(data_loader)): if cuda: x= x.cuda() if cuda and score: y =y.cuda() # Reshape input for feeding to model x = x.view(-1, n_feats) outputs = model(x.float()) y_pred[ix * batch_size : ix * batch_size + batch_size, :] = outputs if score: if multiclass: if cuda: mean_loss = criterion(outputs, y).mean().cpu().detach().numpy() else: mean_loss = criterion(outputs, y).mean().detach().numpy() acc = accuracy(y, outputs.argmax(axis = 1))#.item() else: if cuda: mean_loss = criterion(outputs, y.view(-1, n_outputs).float()).mean().cpu().detach().numpy() else: mean_loss = criterion(outputs, y.view(-1, n_outputs).float()).mean().detach().numpy() acc = accuracy(y.view(-1, n_outputs), outputs.argmax(axis = 1))#.mean().item() cum_sum_loss+= mean_loss cum_sum_acc +=acc moving_avg_acc = cum_sum_acc / (ix+1) moving_avg_loss = cum_sum_loss / (ix + 1) if score: print("Mean accuracy: %.2f" %moving_avg_acc) print("Mean validation loss: %.2f"%moving_avg_loss) return y_pred.detach().numpy() def get_positive_negative_indices_batch( y_true:torch.Tensor, index_dict:dict, cuda:bool = None )->Tuple[np.array, np.array, np.array]: """ Returns indices for positive and negative anchors, to use in metric learning using hinge triplet loss, given labels (y_true) for multiclass classification. Params ------ y_true(torch.Tensor) Labels from sample codes. cuda (bool, default = None) Whether cuda is available for use. Returns ------- positive_anchor_ixs, negative_anchor_ixs, perm_labels """ max_index = max(index_dict.keys()) # Get cuda status if cuda is None: cuda = torch.cuda.is_available() # Send labels to cpu if cuda: y_true = y_true.cpu() # Make labels from torch.tensor -> numpy array labels = y_true.numpy() # Shuffle labels perm_labels= np.random.permutation(labels) # Check if any of shuffled labels didn't change ix_eq = (labels == perm_labels) # Get the indices where those unchanged labels reside ix_to_flip = np.nonzero(ix_eq)[0] # Enter loop if the permuted labels # and the original labels coincide in an entry if len(ix_to_flip) >= 1: # If any of the labels to flip is the last code # subtract as adding would result in error label_flip_max_code = np.any(perm_labels[ix_to_flip] == max_index) label_flip_min_code = np.any(perm_labels[ix_to_flip] == 0) # Unlikely case where the batch contains both # the first and last index # this will cause the hinge loss to be the margin if label_flip_max_code and label_flip_min_code: print('At least one label in the positive and negative are the same') pass elif label_flip_max_code and not label_flip_min_code: perm_labels[ix_to_flip] = perm_labels[ix_to_flip] - 1 # Fall back to add an index else : perm_labels[ix_to_flip] = perm_labels[ix_to_flip] + 1 # Check that all labels are different #assert np.all(labels != perm_labels) # Get anchor indices for samples positive_anchor_ixs = [np.random.choice(index_dict[l], size = 1)[0] for l in labels] negative_anchor_ixs = [np.random.choice(index_dict[l], size = 1)[0] for l in perm_labels] return positive_anchor_ixs, negative_anchor_ixs, perm_labels class JointEmbeddingTrainer: """ Class for training the joint embedding model. Notes ----- * Assumes both adata and df_drugs have coinciding names in the column `drug_name`. Also assumes that adata has a column called `sample_codes`, that are the numerical encoding of each drug name, i.e. that there's a mapping {'drug_1': 0, ..., 'drug_n': (n-1)}. * `indices` are needed when using a graph dataloader (no .data attribute in dataloader object). """ def __init__( self, model, adata, df_drugs, batch_size, train_loader, val_loader, #index_dict_train:dict, #index_dict_test:dict, #name_to_mol:dict, #ix_to_name:dict, lr:float = 1e-5, n_epochs:int = 20, metric_learning:bool = True, contrastive_learning:bool = True, p_norm_metric:int = 2, margin:float = 3., model_name:str = None, model_dir:str = None, extra_head= True, indices=None, force_cpu = False ): """ Params ------ adata(ad.AnnData) Base anndata, contains both train and validation sets. df_drugs(pd.DataFrame) Pandas df containing mols in train and val sets. regressor_loss (torch.nn.loss, default=None) A torch loss function, e.g. nn.MSELoss """ #device = try_gpu() #self.device = device self.model = model self.batch_size = batch_size self.adata = adata self.train_loader, self.val_loader = train_loader, val_loader self.cuda = False if force_cpu else torch.cuda.is_available() self.device = torch.device('cpu') if force_cpu == True else try_gpu() if self.cuda: self.model = self.model.to(self.device) self.n_epochs = n_epochs self.hinge_loss = nn.TripletMarginLoss(margin=margin, p=p_norm_metric) self.criterion = nn.NLLLoss() self.ordering_labels = torch.arange(batch_size).to(self.device) self.contrastive = contrastive_learning #bool self.metric = metric_learning #bool self.n_train_batches = len(train_loader.dataset) // batch_size self.n_test_batches = len(val_loader.dataset) // batch_size self.optimizer = torch.optim.Adam(self.model.parameters(), lr = lr) if self.contrastive == False and self.metric ==False: raise AssertionError( 'Either one or both of contrastive learning and metric learning have to be active.' ) self.model_name, self.model_dir = model_name, model_dir if indices is not None: self.index_dict_train = indices["train"] self.index_dict_test = indices["test"] else: # Groupby on train adata gb_train = train_loader.dataset.data.obs.groupby('sample_code') index_dict_train = {} for ix, data in gb_train: index_dict_train[ix] = data.index.values gb_test = val_loader.dataset.data.obs.groupby('sample_code') index_dict_test = {} for ix, data in gb_test: index_dict_test[ix] = data.index.values self.index_dict_train = index_dict_train self.index_dict_test = index_dict_test self.name_to_mol = dict(df_drugs[['drug_name', 'mol']].values) self.ix_to_name = dict(adata.obs[['sample_code', 'drug_name']].values) self.extra_head = extra_head #if self.extra_head: # self.regressor_loss = nn.MSELoss() def contrastive_learning_loop(self, mol_embedding, cell_embedding): """Returns contrastive learning loss and cross-retrieval accuracy for a minibatch.""" # Make batch of molecular graphs cell_embedding_norm = cell_embedding / cell_embedding.norm(dim= -1, keepdim = True) mol_embedding_norm = mol_embedding / mol_embedding.norm(dim= -1, keepdim = True) # Extract learnt scalar logit_scale = self.model.logit_scale.exp() # Get cosine similarities # returns tensor of shape (mols, cells) logits = logit_scale * mol_embedding_norm @ cell_embedding_norm.t() # Get classification predictions across axes y_pred_mols = F.log_softmax(logits, dim = 1) y_pred_cells = F.log_softmax(logits, dim = 0) # Calculate accuracies mol_acc = accuracy(y_pred_mols.argmax(axis =1), self.ordering_labels) cell_acc = accuracy(y_pred_cells.argmax(axis = 0), self.ordering_labels) acc = (cell_acc + mol_acc)/ 2 # Compute contrastive learning loss loss_mols = self.criterion(y_pred_mols, self.ordering_labels) loss_cells = self.criterion(y_pred_cells, self.ordering_labels) cl_loss = (loss_mols + loss_cells)/2 return cl_loss, acc def metric_learning_loop(self, y_true, cell_embedding, mol_embedding): """Returns average hinge loss from cells2mols and mols2cells for a minibatch.""" pos_cell_ixs, neg_cell_ixs, perm_y_labels = get_positive_negative_indices_batch( y_true, self.index_dict_train, cuda = self.cuda ) # Get positive and negative anchors for cells positive_anchors_cells = torch.from_numpy(self.adata[pos_cell_ixs].X.A) negative_anchors_cells = torch.from_numpy(self.adata[neg_cell_ixs].X.A) if self.cuda: positive_anchors_cells = positive_anchors_cells.cuda() negative_anchors_cells = negative_anchors_cells.cuda() # Get negative anchors for molecules permuted_molecule_batch = Batch.from_data_list( get_drug_batch( torch.from_numpy(perm_y_labels), self.name_to_mol, self.ix_to_name, cuda = self.cuda ) ) # Compute embeddings positive_cell_embeddings = self.model.encode_cell(positive_anchors_cells) negative_cell_embeddings = self.model.encode_cell(negative_anchors_cells) permuted_molecule_embeddings = self.model.encode_molecule(permuted_molecule_batch) # Compute metric learning loss # (anchor, positive, negative) hinge_cells_anchor = self.hinge_loss( cell_embedding, mol_embedding, permuted_molecule_embeddings ) hinge_mols_anchor = self.hinge_loss( mol_embedding, positive_cell_embeddings, negative_cell_embeddings ) metric_learning_loss = (hinge_cells_anchor + hinge_mols_anchor)/2 return metric_learning_loss def mol_regressor_loop(self, mol_embedding, y_regressor, lambda_reg=1): out = self.model.extra_head(mol_embedding) reg_loss = self.regressor_loss(out, y_regressor) return lambda_reg*reg_loss def train_step(self, input_tensor, y_true): "A single training step for a minibatch." self.model.zero_grad() if self.cuda: input_tensor = input_tensor.cuda() y_true = y_true.cuda() # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch( y_true, self.name_to_mol, self.ix_to_name, cuda = self.cuda ) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(input_tensor.view(self.batch_size, -1).float()) mol_embedding = self.model.encode_molecule(molecule_batch) if self.contrastive: cl_loss, train_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) if not self.metric: cl_loss.backward() self.optimizer.step() results_dict = { 'train_loss': { 'contrastive_loss': cl_loss.item(), 'metric_learning_loss': None }, 'train_acc': train_acc } return results_dict if self.metric: metric_learning_loss = self.metric_learning_loop(y_true, cell_embedding, mol_embedding) if not self.contrastive: metric_learning_loss.backward() self.optimizer.step() results_dict = { 'train_loss': {'contrastive_loss': None,'metric_learning_loss': met_loss.item()}, 'train_acc': None } return results_dict #if self.contrastive and self.metric: # both contrastive and metric learning active loss = cl_loss + metric_learning_loss loss.backward() self.optimizer.step() results_dict = { "train_loss": { "contrastive_loss": cl_loss.item(), "metric_learning_loss": metric_learning_loss.item(), }, "train_acc": train_acc, } return results_dict @torch.no_grad() def val_step(self, input_tensor, y_true): """ """ #self.model.eval() if self.cuda: input_tensor = input_tensor.cuda() y_true = y_true.cuda() # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch( y_true, self.name_to_mol, self.ix_to_name, cuda = self.cuda ) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(input_tensor.view(self.batch_size, -1).float()) mol_embedding = self.model.encode_molecule(molecule_batch) if self.contrastive: cl_loss, test_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) if not self.metric: results_dict = { 'test_loss': {'contrastive_loss': cl_loss.item(),'metric_learning_loss': None}, 'test_acc': test_acc } return results_dict if self.metric: metric_learning_loss = self.metric_learning_loop(y_true, cell_embedding, mol_embedding) if not self.contrastive: results_dict = { 'test_loss': {'contrastive_loss': None,'metric_learning_loss': met_loss.item()}, 'test_acc': None } return results_dict #if self.contrastive and self.metric: # else: both contrastive and metric learning active loss = cl_loss + metric_learning_loss results_dict = { "test_loss": { "contrastive_loss": cl_loss.item(), "metric_learning_loss": metric_learning_loss.item(), }, "test_acc": test_acc, } return results_dict def train(self)-> Tuple[pd.DataFrame, pd.DataFrame]: """ Trains the joint embedding model for n_epochs. Returns the train and validation loss and accuracy as dataframes. """ df_train_loss, df_train_acc = pd.DataFrame(), pd.DataFrame() df_test_loss, df_test_acc = pd.DataFrame(), pd.DataFrame() #df_train_logs, df_test_logs = pd.DataFrame(), pd.DataFrame() for epoch in np.arange(self.n_epochs): self.model.train() # Loop through minibatches from training dataloader for ix, (input_tensor, y_true) in tqdm.tqdm(enumerate(self.train_loader)): # Train step results_dict_train = self.train_step(input_tensor, y_true) df_train_loss = df_train_loss.append( results_dict_train['train_loss'], ignore_index = True ) df_train_acc = df_train_acc.append( {'train_acc': results_dict_train['train_acc']}, ignore_index = True ) #df_train_loss['epoch'] = epoch + 1 #df_train_acc['epoch'] = epoch +1 mean_cl = df_train_loss.contrastive_loss.mean() mean_ml = df_train_loss.metric_learning_loss.mean() mean_acc = df_train_acc.train_acc.mean() print('Epoch %d \n'%(epoch+1)) print('--------------------') print('Train contrastive loss: %.3f '%(mean_cl if mean_cl is not np.nan else 0.0)) print('Train metric learning loss: %.3f '%(mean_ml if mean_ml is not np.nan else 0.0)) print('Train accuracy: %.3f'%(mean_acc*100 if mean_acc is not np.nan else 0.0)) print('\n') # Loop through mb from validation dataloader self.model.eval() for ix, (input_tensor, y_true) in tqdm.tqdm(enumerate(self.val_loader)): # Val step results_dict_test = self.val_step(input_tensor, y_true) df_test_loss = df_test_loss.append(results_dict_test['test_loss'], ignore_index = True) df_test_acc = df_test_acc.append( {'test_acc': results_dict_test['test_acc']}, ignore_index = True ) #df_test_loss['epoch'] = epoch + 1 #df_test_acc['epoch'] = epoch + 1 mean_cl_ = df_test_loss.contrastive_loss.mean() mean_ml_ = df_test_loss.metric_learning_loss.mean() mean_acc_ = df_test_acc.test_acc.mean() print('Val contrastive loss: %.3f '%(mean_cl_ if mean_cl_ is not np.nan else 0.0)) print('Val metric learning loss: %.3f '%(mean_ml_ if mean_ml_ is not np.nan else 0.0)) print('Validation accuracy: %.3f'%(mean_acc_*100 if mean_acc_ is not np.nan else 0.0)) print('\n') # SAVE MODEL if self.model_dir is not None: if not os.path.exists(self.model_dir): os.mkdir(self.model_dir) if self.model_name is not None: torch.save( self.model.state_dict(), os.path.join(self.model_dir, self.model_name + '_' + str(epoch +1) + '.pt') ) else: torch.save( self.model.state_dict(), os.path.join(self.model_dir, 'model' + '_' + str(epoch +1) + '.pt') ) # Summarize results df_train_logs = pd.concat([df_train_loss, df_train_acc], axis = 1) df_test_logs = pd.concat([df_test_loss, df_test_acc], axis = 1) epoch_indicator_train = np.concatenate( [np.repeat(epoch, self.n_train_batches) for epoch in np.arange(1, self.n_epochs+1)] ) epoch_indicator_test = np.concatenate( [np.repeat(epoch, self.n_test_batches) for epoch in np.arange(1, self.n_epochs +1)] ) df_train_logs['epoch'] = epoch_indicator_train df_test_logs['epoch'] = epoch_indicator_test # Set logs as attributes self.train_logs = df_train_logs self.test_logs = df_test_logs df_train_agg = df_train_logs.groupby('epoch').mean().reset_index() df_test_agg = df_test_logs.groupby('epoch').mean().reset_index() self.best_model_ix = int(df_test_agg.test_acc.argmax()) return df_train_logs, df_test_logs #df_train_agg, df_test_agg class JointEmbeddingTrainerV3(JointEmbeddingTrainer): """ Class for training the joint embedding using an extra regressor to combine information from the molecule embedding and a profile of binding energies. Designed to work with an MLP cell encoder. TO-DO: Generalize and integrate all JointEmbeddinTrainer classes to a single general one. """ def __init__( self, model, adata, df_drugs, batch_size, train_loader, val_loader, lr:float = 1e-5, n_epochs:int = 20, metric_learning:bool = True, contrastive_learning:bool = True, p_norm_metric:int = 2, margin:float = 3., model_name:str = None, model_dir:str = None, extra_head= True, lambda_reg = 1, regressor_loss=None, indices=None, force_cpu=False ): super().__init__( model, adata, df_drugs, batch_size, train_loader, val_loader, lr = lr, n_epochs = n_epochs, metric_learning = metric_learning, contrastive_learning = contrastive_learning, p_norm_metric = p_norm_metric, margin = margin, model_name = model_name, model_dir = model_dir, extra_head = extra_head, indices = indices, force_cpu = force_cpu ) self.lambda_reg = lambda_reg self.regressor_loss = regressor_loss def train_step(self, input_tensor, y_true, y_regressor=None): loss=0 results_dict={ "train_loss": {} } self.model.zero_grad() # Place tensors in GPU if possible if self.cuda: input_tensor = input_tensor.cuda() y_true = y_true.cuda() y_regressor = y_regressor.cuda() # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(input_tensor.view(self.batch_size, -1).float()) mol_embedding = self.model.encode_molecule(molecule_batch) # This is the part that changes: h = torch.cat([mol_embedding, y_regressor], dim = -1) mol_embedding = self.model.extra_head(h) # Run through all modes of the model if self.contrastive: cl_loss, train_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) loss+=cl_loss results_dict["train_loss"]["contrastive_loss"]=cl_loss.item() results_dict["train_acc"]=train_acc else: results_dict["train_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) loss+=metric_learning_loss results_dict["train_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None else: results_dict["train_loss"]["metric_learning_loss"]=None if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None # We don't take into account regressor loss, # if self.extra_head: # reg_loss=self.mol_regressor_loop( # mol_embedding, y_regressor, lambda_reg=self.lambda_reg # ) # # loss+=reg_loss # # results_dict["train_loss"]["regressor_loss"]=reg_loss.item() # if "train_acc" not in results_dict.keys(): # results_dict["train_acc"]=None # else: # results_dict["train_loss"]["regressor_loss"]=None # if "train_acc" not in results_dict.keys(): # results_dict["train_acc"]=None #Backprop and update weights loss.backward() self.optimizer.step() return results_dict @torch.no_grad() def val_step(self, input_tensor, y_true, y_regressor=None): self.model.eval() results_dict={"test_loss": {}} # init results dictionary # Place tensors in GPU if possible if self.cuda: input_tensor = input_tensor.cuda() y_true = y_true.cuda() y_regressor = y_regressor.cuda() # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) cell_embedding = self.model.encode_cell(input_tensor.view(self.batch_size, -1).float()) mol_embedding = self.model.encode_molecule(molecule_batch) # Here's the part that changes h = torch.cat([mol_embedding, y_regressor], dim = -1) mol_embedding = self.model.extra_head(h) # Run through all modes of the model if self.contrastive: cl_loss, test_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) results_dict["test_loss"]["contrastive_loss"]=cl_loss.item() results_dict["test_acc"]=test_acc else: results_dict["test_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) results_dict["test_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None else: results_dict["test_loss"]["metric_learning_loss"]=None if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None ## No need to log regresor loss # if self.extra_head: # reg_loss=self.mol_regressor_loop( # mol_embedding, y_regressor, lambda_reg =self.lambda_reg # ) # # results_dict["test_loss"]["regressor_loss"]=reg_loss.item() # if "test_acc" not in results_dict.keys(): # results_dict["test_acc"]=None # else: # results_dict["regressor_loss"]=None # if "test_acc" not in results_dict.keys(): # results_dict["test_acc"]=None return results_dict def train(self)-> Tuple[pd.DataFrame, pd.DataFrame]: """ Trains the joint embedding model for n_epochs. Returns ------- train_logs (pd.dataframe) Train loss and accuracy. validation_logs (pd.dataframe) Val loss and accuracy. """ df_train_loss, df_train_acc = pd.DataFrame(), pd.DataFrame() df_test_loss, df_test_acc = pd.DataFrame(), pd.DataFrame() #df_train_logs, df_test_logs = pd.DataFrame(), pd.DataFrame() for epoch in np.arange(self.n_epochs): self.model.train() # Loop through minibatches from training dataloader for ix, (input_tensor, y_true, y_regressor) in tqdm.tqdm(enumerate(self.train_loader)): # Train step results_dict_train = self.train_step(input_tensor, y_true, y_regressor) df_train_loss = df_train_loss.append( results_dict_train['train_loss'], ignore_index = True ) df_train_acc = df_train_acc.append( {'train_acc': results_dict_train['train_acc']}, ignore_index = True ) mean_cl = df_train_loss.contrastive_loss.mean() mean_ml = df_train_loss.metric_learning_loss.mean() #mean_mse = df_train_loss.regressor_loss.mean() mean_acc = df_train_acc.train_acc.mean() print('Epoch %d'%(epoch+1)) print('--------------------') print('Train contrastive loss: %.3f '%(mean_cl if mean_cl is not np.nan else 0.0)) print('Train metric learning loss: %.3f '%(mean_ml if mean_ml is not np.nan else 0.0)) #print('Train regression loss: %.3f '%(mean_mse if mean_mse is not np.nan else 0.0)) print('Train accuracy: %.3f'%(mean_acc*100 if mean_acc is not np.nan else 0.0)) print('\n') # Loop through mb from validation dataloader self.model.eval() for ix, (input_tensor, y_true, y_regressor) in tqdm.tqdm(enumerate(self.val_loader)): # Val step results_dict_test = self.val_step(input_tensor, y_true, y_regressor) df_test_loss = df_test_loss.append(results_dict_test['test_loss'], ignore_index = True) df_test_acc = df_test_acc.append( {'test_acc': results_dict_test['test_acc']}, ignore_index = True ) mean_cl_ = df_test_loss.contrastive_loss.mean() mean_ml_ = df_test_loss.metric_learning_loss.mean() #mean_val_mse = df_test_loss.regressor_loss.mean() mean_acc_ = df_test_acc.test_acc.mean() print('Val contrastive loss: %.3f '%(mean_cl_ if mean_cl_ is not np.nan else 0.0)) print('Val metric learning loss: %.3f '%(mean_ml_ if mean_ml_ is not np.nan else 0.0)) #print('Val regression loss: %.3f '%(mean_val_mse if mean_val_mse is not np.nan else 0.0)) print('Validation accuracy: %.3f'%(mean_acc_*100 if mean_acc_ is not np.nan else 0.0)) print('\n') # SAVE MODEL if self.model_dir is not None: if not os.path.exists(self.model_dir): os.mkdir(self.model_dir) if self.model_name is not None: torch.save( self.model.state_dict(), os.path.join(self.model_dir, self.model_name + '_' + str(epoch +1) + '.pt') ) else: torch.save( self.model.state_dict(), os.path.join(self.model_dir, 'model' + '_' + str(epoch +1) + '.pt') ) # Summarize results df_train_logs = pd.concat([df_train_loss, df_train_acc], axis = 1) df_test_logs = pd.concat([df_test_loss, df_test_acc], axis = 1) epoch_indicator_train = np.concatenate( [np.repeat(epoch, self.n_train_batches) for epoch in np.arange(1, self.n_epochs+1)] ) epoch_indicator_test = np.concatenate( [np.repeat(epoch, self.n_test_batches) for epoch in np.arange(1, self.n_epochs +1)] ) df_train_logs['epoch'] = epoch_indicator_train df_test_logs['epoch'] = epoch_indicator_test # Set logs as attributes self.train_logs = df_train_logs self.test_logs = df_test_logs df_train_agg = df_train_logs.groupby('epoch').mean().reset_index() df_test_agg = df_test_logs.groupby('epoch').mean().reset_index() self.best_model_ix = int(df_test_agg.test_acc.argmax()) return df_train_logs, df_test_logs class JointEmbeddingTrainerV2(JointEmbeddingTrainer): """ Class for training the joint embedding model using an auxiliary regressor task. Notes ----- Assumes both adata and df_drugs have coinciding names in the column `drug_name`. Also assumes that adata has a column called `sample_codes`, that are the numerical encoding of each drug name, i.e. that there's a mapping {'drug_1': 0, ..., 'drug_n': (n-1)}. """ def __init__( self, model, adata, df_drugs, batch_size, train_loader, val_loader, lr:float = 1e-5, n_epochs:int = 20, metric_learning:bool = True, contrastive_learning:bool = True, p_norm_metric:int = 2, margin:float = 3., model_name:str = None, model_dir:str = None, extra_head= True, lambda_reg = 1, regressor_loss=None, indices=None, force_cpu=False ): super().__init__( model, adata, df_drugs, batch_size, train_loader, val_loader, lr = lr, n_epochs = n_epochs, metric_learning = metric_learning, contrastive_learning = contrastive_learning, p_norm_metric = p_norm_metric, margin = margin, model_name = model_name, model_dir = model_dir, extra_head= extra_head, indices=indices, force_cpu=force_cpu ) self.lambda_reg = lambda_reg self.regressor_loss = regressor_loss def train_step(self, input_tensor, y_true, y_regressor=None): loss=0 results_dict={ "train_loss": {} } self.model.zero_grad() # Place tensors in GPU if possible if self.cuda: input_tensor = input_tensor.cuda() y_true = y_true.cuda() y_regressor = y_regressor.cuda() # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(input_tensor.view(self.batch_size, -1).float()) mol_embedding = self.model.encode_molecule(molecule_batch) # Run through all modes of the model if self.contrastive: cl_loss, train_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) loss+=cl_loss results_dict["train_loss"]["contrastive_loss"]=cl_loss.item() results_dict["train_acc"]=train_acc else: results_dict["train_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) loss+=metric_learning_loss results_dict["train_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None else: results_dict["train_loss"]["metric_learning_loss"]=None if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None if self.extra_head: reg_loss=self.mol_regressor_loop( mol_embedding, y_regressor, lambda_reg=self.lambda_reg ) loss+=reg_loss results_dict["train_loss"]["regressor_loss"]=reg_loss.item() if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None else: results_dict["train_loss"]["regressor_loss"]=None if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None #Backprop and update weights loss.backward() self.optimizer.step() return results_dict @torch.no_grad() def val_step(self, input_tensor, y_true, y_regressor=None): self.model.eval() results_dict={"test_loss": {}} # init results dictionary # Place tensors in GPU if possible if self.cuda: input_tensor = input_tensor.cuda() y_true = y_true.cuda() y_regressor = y_regressor.cuda() # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(input_tensor.view(self.batch_size, -1).float()) mol_embedding = self.model.encode_molecule(molecule_batch) # Run through all modes of the model if self.contrastive: cl_loss, test_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) results_dict["test_loss"]["contrastive_loss"]=cl_loss.item() results_dict["test_acc"]=test_acc else: results_dict["test_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) results_dict["test_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None else: results_dict["test_loss"]["metric_learning_loss"]=None if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None if self.extra_head: reg_loss=self.mol_regressor_loop( mol_embedding, y_regressor, lambda_reg =self.lambda_reg ) results_dict["test_loss"]["regressor_loss"]=reg_loss.item() if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None else: results_dict["regressor_loss"]=None if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None #No backprop #loss.backward() #self.optimizer.step() return results_dict def train(self)-> Tuple[pd.DataFrame, pd.DataFrame]: """ Trains the joint embedding model for n_epochs. Returns ------- train_logs (pd.dataframe) Train loss and accuracy. validation_logs (pd.dataframe) Val loss and accuracy. """ df_train_loss, df_train_acc = pd.DataFrame(), pd.DataFrame() df_test_loss, df_test_acc = pd.DataFrame(), pd.DataFrame() #df_train_logs, df_test_logs = pd.DataFrame(), pd.DataFrame() for epoch in np.arange(self.n_epochs): self.model.train() # Loop through minibatches from training dataloader for ix, (input_tensor, y_true, y_regressor) in tqdm.tqdm(enumerate(self.train_loader)): # Train step results_dict_train = self.train_step(input_tensor, y_true, y_regressor) df_train_loss = df_train_loss.append( results_dict_train['train_loss'], ignore_index = True ) df_train_acc = df_train_acc.append( {'train_acc': results_dict_train['train_acc']}, ignore_index = True ) mean_cl = df_train_loss.contrastive_loss.mean() mean_ml = df_train_loss.metric_learning_loss.mean() mean_mse = df_train_loss.regressor_loss.mean() mean_acc = df_train_acc.train_acc.mean() print('Epoch %d'%(epoch+1)) print('--------------------') print('Train contrastive loss: %.3f '%(mean_cl if mean_cl is not np.nan else 0.0)) print('Train metric learning loss: %.3f '%(mean_ml if mean_ml is not np.nan else 0.0)) print('Train regression loss: %.3f '%(mean_mse if mean_mse is not np.nan else 0.0)) print('Train accuracy: %.3f'%(mean_acc*100 if mean_acc is not np.nan else 0.0)) print('\n') # Loop through mb from validation dataloader self.model.eval() for ix, (input_tensor, y_true, y_regressor) in tqdm.tqdm(enumerate(self.val_loader)): # Val step results_dict_test = self.val_step(input_tensor, y_true, y_regressor) df_test_loss = df_test_loss.append(results_dict_test['test_loss'], ignore_index = True) df_test_acc = df_test_acc.append( {'test_acc': results_dict_test['test_acc']}, ignore_index = True ) mean_cl_ = df_test_loss.contrastive_loss.mean() mean_ml_ = df_test_loss.metric_learning_loss.mean() mean_val_mse = df_test_loss.regressor_loss.mean() mean_acc_ = df_test_acc.test_acc.mean() print('Val contrastive loss: %.3f '%(mean_cl_ if mean_cl_ is not np.nan else 0.0)) print('Val metric learning loss: %.3f '%(mean_ml_ if mean_ml_ is not np.nan else 0.0)) print('Val regression loss: %.3f '%(mean_val_mse if mean_val_mse is not np.nan else 0.0)) print('Validation accuracy: %.3f'%(mean_acc_*100 if mean_acc_ is not np.nan else 0.0)) print('\n') # SAVE MODEL if self.model_dir is not None: if not os.path.exists(self.model_dir): os.mkdir(self.model_dir) if self.model_name is not None: torch.save( self.model.state_dict(), os.path.join(self.model_dir, self.model_name + '_' + str(epoch +1) + '.pt') ) else: torch.save( self.model.state_dict(), os.path.join(self.model_dir, 'model' + '_' + str(epoch +1) + '.pt') ) # Summarize results df_train_logs = pd.concat([df_train_loss, df_train_acc], axis = 1) df_test_logs = pd.concat([df_test_loss, df_test_acc], axis = 1) epoch_indicator_train = np.concatenate( [np.repeat(epoch, self.n_train_batches) for epoch in np.arange(1, self.n_epochs+1)] ) epoch_indicator_test = np.concatenate( [np.repeat(epoch, self.n_test_batches) for epoch in np.arange(1, self.n_epochs +1)] ) df_train_logs['epoch'] = epoch_indicator_train df_test_logs['epoch'] = epoch_indicator_test # Set logs as attributes self.train_logs = df_train_logs self.test_logs = df_test_logs df_train_agg = df_train_logs.groupby('epoch').mean().reset_index() df_test_agg = df_test_logs.groupby('epoch').mean().reset_index() self.best_model_ix = int(df_test_agg.test_acc.argmax()) return df_train_logs, df_test_logs class JointEmbeddingTrainerG3(JointEmbeddingTrainerV2): """ Trainer for GNN cell encoder using concat regressor. """ def __init__( self, model, adata, df_drugs, batch_size, train_loader, val_loader, lr:float = 1e-5, n_epochs:int = 20, metric_learning:bool = True, contrastive_learning:bool = True, p_norm_metric:int = 2, margin:float = 3., model_name:str = None, model_dir:str = None, extra_head= True, lambda_reg = 1, regressor_loss=None, indices=None, force_cpu=False, g_dims = None ): super().__init__( model, adata, df_drugs, batch_size, train_loader, val_loader, lr = lr, n_epochs = n_epochs, metric_learning = metric_learning, contrastive_learning = contrastive_learning, p_norm_metric = p_norm_metric, margin = margin, model_name = model_name, model_dir = model_dir, extra_head= extra_head, lambda_reg = lambda_reg, regressor_loss=regressor_loss, indices=indices, force_cpu=force_cpu ) self.g_dims = g_dims def train_step(self, data): """ A single training step for a minibatch using graph data Params ------ data(torch_geometric.Data.data) Data object containing cell transcriptome in 'x' attribute, label in 'y', and extra columns in 'g'. Returns ------- results_dict (dict) Dictionary with loss and accuracy logs. """ loss=0 results_dict={ "train_loss": {} } self.model.zero_grad() # Extract data for minimizing errors in var name change y_true = torch.tensor(data.y, dtype = torch.long) if self.extra_head: y_regressor = data.g.reshape(-1, self.g_dims) # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(data) # this is the thing that changes in GNN mol_embedding = self.model.encode_molecule(molecule_batch) # ------ THIS CHANGES IN V3------- h = torch.cat([mol_embedding, y_regresor], dim=-1) mol_embedding = self.model.extra_head(h) # ------------------------------------- # Run through all modes of the model if self.contrastive: cl_loss, train_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) loss+=cl_loss results_dict["train_loss"]["contrastive_loss"]=cl_loss.item() results_dict["train_acc"]=train_acc else: results_dict["train_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) loss+=metric_learning_loss results_dict["train_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None else: results_dict["train_loss"]["metric_learning_loss"]=None if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None # if self.extra_head: # reg_loss=self.mol_regressor_loop( # mol_embedding, y_regressor, lambda_reg=self.lambda_reg # ) # loss+=reg_loss # # results_dict["train_loss"]["regressor_loss"]=reg_loss.item() # if "train_acc" not in results_dict.keys(): # results_dict["train_acc"]=None # else: # results_dict["train_loss"]["regressor_loss"]=None # if "train_acc" not in results_dict.keys(): # results_dict["train_acc"]=None #Backprop and update weights loss.backward() self.optimizer.step() return results_dict @torch.no_grad() def val_step(self, data): """ A validation forward pass using graph data. Params ------ data(torch_geometric.Data.data) Data object containing graph node features in '.x' attribute, label in '.y', and extra columns in '.g'. Returns ------- results_dict (dict) Dictionary with loss and accuracy logs. """ self.model.eval() results_dict={"test_loss": {}} # init results dictionary # Extract data y_true = torch.tensor(data.y, dtype = torch.long) if self.extra_head: y_regressor = data.g.reshape(-1, self.g_dims) # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(data) # this is the thing that changes in GNN mol_embedding = self.model.encode_molecule(molecule_batch) # --------THIS CHANGES IN V3 ----------- h = torch.cat([mol_embedding, y_regressor], dim = -1) mol_embedding = self.model.extra_head(h) # --------------------------------------- # Run through all modes of the model if self.contrastive: cl_loss, test_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) results_dict["test_loss"]["contrastive_loss"]=cl_loss.item() results_dict["test_acc"]=test_acc else: results_dict["test_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) results_dict["test_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None else: results_dict["test_loss"]["metric_learning_loss"]=None if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None # if self.extra_head: # reg_loss=self.mol_regressor_loop( # mol_embedding, y_regressor, lambda_reg =self.lambda_reg # ) # # results_dict["test_loss"]["regressor_loss"]=reg_loss.item() # if "test_acc" not in results_dict.keys(): # results_dict["test_acc"]=None # else: # results_dict["regressor_loss"]=None # if "test_acc" not in results_dict.keys(): # results_dict["test_acc"]=None return results_dict def train(self)-> Tuple[pd.DataFrame, pd.DataFrame]: """ Trains the joint embedding model for n_epochs. Returns the train and validation loss and accuracy as dataframes. """ df_train_loss, df_train_acc = pd.DataFrame(), pd.DataFrame() df_test_loss, df_test_acc = pd.DataFrame(), pd.DataFrame() #df_train_logs, df_test_logs = pd.DataFrame(), pd.DataFrame() for epoch in np.arange(self.n_epochs): self.model.train() # Loop through minibatches from training dataloader for ix, data in tqdm.tqdm(enumerate(self.train_loader)): if self.cuda: data.edge_index = data.edge_index.cuda() data.x = data.x.cuda() data.y = torch.tensor(data.y, device = device) data.ptr = data.ptr.cuda() data.batch = data.batch.cuda() if self.extra_head: data.g = data.g.cuda() # Train step results_dict_train = self.train_step(data) df_train_loss = df_train_loss.append( results_dict_train['train_loss'], ignore_index = True ) df_train_acc = df_train_acc.append( {'train_acc': results_dict_train['train_acc']}, ignore_index = True ) mean_cl = df_train_loss.contrastive_loss.mean() mean_ml = df_train_loss.metric_learning_loss.mean() if self.extra_head: mean_mse = df_train_loss.regressor_loss.mean() mean_acc = df_train_acc.train_acc.mean() print('Epoch %d'%(epoch+1)) print('--------------------') print('Train contrastive loss: %.3f '%(mean_cl if mean_cl is not np.nan else 0.0)) print('Train metric learning loss: %.3f '%(mean_ml if mean_ml is not np.nan else 0.0)) # No loss logging # if self.extra_head: # print('Train regression loss: %.3f '%(mean_mse if mean_mse is not np.nan else 0.0)) print('Train accuracy: %.3f'%(mean_acc*100 if mean_acc is not np.nan else 0.0)) print('\n') # Loop through mb from validation dataloader self.model.eval() # no_grad declared in the val_step() func for ix, data in tqdm.tqdm(enumerate(self.val_loader)): if self.cuda: data.edge_index = data.edge_index.cuda() data.x = data.x.cuda() data.y = torch.tensor(data.y, device = device) data.ptr = data.ptr.cuda() data.batch = data.batch.cuda() # Val step results_dict_test = self.val_step(data) df_test_loss = df_test_loss.append(results_dict_test['test_loss'], ignore_index = True) df_test_acc = df_test_acc.append( {'test_acc': results_dict_test['test_acc']}, ignore_index = True ) mean_cl_ = df_test_loss.contrastive_loss.mean() mean_ml_ = df_test_loss.metric_learning_loss.mean() # if self.extra_head: # mean_val_mse = df_test_loss.regressor_loss.mean() mean_acc_ = df_test_acc.test_acc.mean() print('Val contrastive loss: %.3f '%(mean_cl_ if mean_cl_ is not np.nan else 0.0)) print('Val metric learning loss: %.3f '%(mean_ml_ if mean_ml_ is not np.nan else 0.0)) # if self.extra_head: # print('Val regression loss: %.3f '%(mean_val_mse if mean_val_mse is not np.nan else 0.0)) print('Validation accuracy: %.3f'%(mean_acc_*100 if mean_acc_ is not np.nan else 0.0)) print('\n') # SAVE MODEL if self.model_dir is not None: if not os.path.exists(self.model_dir): os.mkdir(self.model_dir) if self.model_name is not None: torch.save( self.model.state_dict(), os.path.join(self.model_dir, self.model_name + '_' + str(epoch +1) + '.pt') ) else: torch.save( self.model.state_dict(), os.path.join(self.model_dir, 'model' + '_' + str(epoch +1) + '.pt') ) # Summarize results df_train_logs = pd.concat([df_train_loss, df_train_acc], axis = 1) df_test_logs = pd.concat([df_test_loss, df_test_acc], axis = 1) epoch_indicator_train = np.concatenate( [np.repeat(epoch, self.n_train_batches) for epoch in np.arange(1, self.n_epochs+1)] ) epoch_indicator_test = np.concatenate( [np.repeat(epoch, self.n_test_batches) for epoch in np.arange(1, self.n_epochs +1)] ) df_train_logs['epoch'] = epoch_indicator_train df_test_logs['epoch'] = epoch_indicator_test # Set logs as attributes self.train_logs = df_train_logs self.test_logs = df_test_logs df_train_agg = df_train_logs.groupby('epoch').mean().reset_index() df_test_agg = df_test_logs.groupby('epoch').mean().reset_index() self.best_model_ix = int(df_test_agg.test_acc.argmax()) return df_train_logs, df_test_logs class JointEmbeddingTrainerG(JointEmbeddingTrainerV2): """ Trainer allowing for GNN in the cell encoder + extra head regressor. """ def __init__( self, model, adata, df_drugs, batch_size, train_loader, val_loader, lr:float = 1e-5, n_epochs:int = 20, metric_learning:bool = True, contrastive_learning:bool = True, p_norm_metric:int = 2, margin:float = 3., model_name:str = None, model_dir:str = None, extra_head= True, lambda_reg = 1, regressor_loss=None, indices=None, force_cpu=False, g_dims = None ): super().__init__( model, adata, df_drugs, batch_size, train_loader, val_loader, lr = lr, n_epochs = n_epochs, metric_learning = metric_learning, contrastive_learning = contrastive_learning, p_norm_metric = p_norm_metric, margin = margin, model_name = model_name, model_dir = model_dir, extra_head= extra_head, lambda_reg = lambda_reg, regressor_loss=regressor_loss, indices=indices, force_cpu=force_cpu ) self.g_dims = g_dims def train_step(self, data): """ A single training step for a minibatch using graph data Params ------ data(torch_geometric.Data.data) Data object containing cell transcriptome in 'x' attribute, label in 'y', and extra columns in 'g'. Returns ------- results_dict (dict) Dictionary with loss and accuracy logs. """ loss=0 results_dict={ "train_loss": {} } self.model.zero_grad() # Extract data for minimizing errors in var name change y_true = torch.tensor(data.y, dtype = torch.long) if self.extra_head: y_regressor = data.g.reshape(-1, self.g_dims) # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(data) # this is the thing that changes in GNN mol_embedding = self.model.encode_molecule(molecule_batch) # Run through all modes of the model if self.contrastive: cl_loss, train_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) loss+=cl_loss results_dict["train_loss"]["contrastive_loss"]=cl_loss.item() results_dict["train_acc"]=train_acc else: results_dict["train_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) loss+=metric_learning_loss results_dict["train_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None else: results_dict["train_loss"]["metric_learning_loss"]=None if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None if self.extra_head: reg_loss=self.mol_regressor_loop( mol_embedding, y_regressor, lambda_reg=self.lambda_reg ) loss+=reg_loss results_dict["train_loss"]["regressor_loss"]=reg_loss.item() if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None else: results_dict["train_loss"]["regressor_loss"]=None if "train_acc" not in results_dict.keys(): results_dict["train_acc"]=None #Backprop and update weights loss.backward() self.optimizer.step() return results_dict @torch.no_grad() def val_step(self, data): """ A validation forward pass using graph data. Params ------ data(torch_geometric.Data.data) Data object containing graph node features in '.x' attribute, label in '.y', and extra columns in '.g'. Returns ------- results_dict (dict) Dictionary with loss and accuracy logs. """ self.model.eval() results_dict={"test_loss": {}} # init results dictionary # Extract data y_true = torch.tensor(data.y, dtype = torch.long) if self.extra_head: y_regressor = data.g.reshape(-1, self.g_dims) # Make batch of molecular graphs molecule_batch = Batch.from_data_list( get_drug_batch(y_true,self.name_to_mol,self.ix_to_name,cuda = self.cuda) ) # Compute cell and molecule embeddings cell_embedding = self.model.encode_cell(data) # this is the thing that changes in GNN mol_embedding = self.model.encode_molecule(molecule_batch) # Run through all modes of the model if self.contrastive: cl_loss, test_acc = self.contrastive_learning_loop(mol_embedding, cell_embedding) results_dict["test_loss"]["contrastive_loss"]=cl_loss.item() results_dict["test_acc"]=test_acc else: results_dict["test_loss"]["constastive_loss"]=None if self.metric: metric_learning_loss = self.metric_learning_loop( y_true, cell_embedding, mol_embedding ) results_dict["test_loss"]["metric_learning_loss"]=metric_learning_loss.item() if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None else: results_dict["test_loss"]["metric_learning_loss"]=None if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None if self.extra_head: reg_loss=self.mol_regressor_loop( mol_embedding, y_regressor, lambda_reg =self.lambda_reg ) results_dict["test_loss"]["regressor_loss"]=reg_loss.item() if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None else: results_dict["regressor_loss"]=None if "test_acc" not in results_dict.keys(): results_dict["test_acc"]=None #No backprop #loss.backward() #self.optimizer.step() return results_dict def train(self)-> Tuple[pd.DataFrame, pd.DataFrame]: """ Trains the joint embedding model for n_epochs. Returns the train and validation loss and accuracy as dataframes. """ df_train_loss, df_train_acc = pd.DataFrame(), pd.DataFrame() df_test_loss, df_test_acc = pd.DataFrame(), pd.DataFrame() #df_train_logs, df_test_logs = pd.DataFrame(), pd.DataFrame() for epoch in np.arange(self.n_epochs): self.model.train() # Loop through minibatches from training dataloader for ix, data in tqdm.tqdm(enumerate(self.train_loader)): if self.cuda: data.edge_index = data.edge_index.cuda() data.x = data.x.cuda() data.y = torch.tensor(data.y, device = device) data.ptr = data.ptr.cuda() data.batch = data.batch.cuda() # Train step results_dict_train = self.train_step(data) df_train_loss = df_train_loss.append( results_dict_train['train_loss'], ignore_index = True ) df_train_acc = df_train_acc.append( {'train_acc': results_dict_train['train_acc']}, ignore_index = True ) mean_cl = df_train_loss.contrastive_loss.mean() mean_ml = df_train_loss.metric_learning_loss.mean() if self.extra_head: mean_mse = df_train_loss.regressor_loss.mean() mean_acc = df_train_acc.train_acc.mean() print('Epoch %d'%(epoch+1)) print('--------------------') print('Train contrastive loss: %.3f '%(mean_cl if mean_cl is not np.nan else 0.0)) print('Train metric learning loss: %.3f '%(mean_ml if mean_ml is not np.nan else 0.0)) if self.extra_head: print('Train regression loss: %.3f '%(mean_mse if mean_mse is not np.nan else 0.0)) print('Train accuracy: %.3f'%(mean_acc*100 if mean_acc is not np.nan else 0.0)) print('\n') # Loop through mb from validation dataloader self.model.eval() # no_grad declared in the val_step() func for ix, data in tqdm.tqdm(enumerate(self.val_loader)): if self.cuda: data.edge_index = data.edge_index.cuda() data.x = data.x.cuda() data.y = torch.tensor(data.y, device = device) data.ptr = data.ptr.cuda() data.batch = data.batch.cuda() # Val step results_dict_test = self.val_step(data) df_test_loss = df_test_loss.append(results_dict_test['test_loss'], ignore_index = True) df_test_acc = df_test_acc.append( {'test_acc': results_dict_test['test_acc']}, ignore_index = True ) mean_cl_ = df_test_loss.contrastive_loss.mean() mean_ml_ = df_test_loss.metric_learning_loss.mean() if self.extra_head: mean_val_mse = df_test_loss.regressor_loss.mean() mean_acc_ = df_test_acc.test_acc.mean() print('Val contrastive loss: %.3f '%(mean_cl_ if mean_cl_ is not np.nan else 0.0)) print('Val metric learning loss: %.3f '%(mean_ml_ if mean_ml_ is not np.nan else 0.0)) if self.extra_head: print('Val regression loss: %.3f '%(mean_val_mse if mean_val_mse is not np.nan else 0.0)) print('Validation accuracy: %.3f'%(mean_acc_*100 if mean_acc_ is not np.nan else 0.0)) print('\n') # SAVE MODEL if self.model_dir is not None: if not os.path.exists(self.model_dir): os.mkdir(self.model_dir) if self.model_name is not None: torch.save( self.model.state_dict(), os.path.join(self.model_dir, self.model_name + '_' + str(epoch +1) + '.pt') ) else: torch.save( self.model.state_dict(), os.path.join(self.model_dir, 'model' + '_' + str(epoch +1) + '.pt') ) # Summarize results df_train_logs = pd.concat([df_train_loss, df_train_acc], axis = 1) df_test_logs = pd.concat([df_test_loss, df_test_acc], axis = 1) epoch_indicator_train = np.concatenate( [np.repeat(epoch, self.n_train_batches) for epoch in np.arange(1, self.n_epochs+1)] ) epoch_indicator_test = np.concatenate( [np.repeat(epoch, self.n_test_batches) for epoch in np.arange(1, self.n_epochs +1)] ) df_train_logs['epoch'] = epoch_indicator_train df_test_logs['epoch'] = epoch_indicator_test # Set logs as attributes self.train_logs = df_train_logs self.test_logs = df_test_logs df_train_agg = df_train_logs.groupby('epoch').mean().reset_index() df_test_agg = df_test_logs.groupby('epoch').mean().reset_index() self.best_model_ix = int(df_test_agg.test_acc.argmax()) return df_train_logs, df_test_logs def train_vae( model:nn.Module, input_tensor, optimizer)->torch.tensor: """ Forward-backward pass of a VAE model. """ model.zero_grad() reconstructed, mu, log_var = model(input_tensor) loss = model.loss(reconstructed, input_tensor, mu, log_var) # Backprop error loss.backward() # Update weights optimizer.step() return loss def validate_vae( model:nn.Module, input_tensor, optimizer )->torch.tensor: reconstructed, mu, log_var = model(input_tensor) loss = model.loss(reconstructed, input_tensor, mu, log_var) return loss.mean() def vae_trainer( n_epochs:int, train_loader, val_loader, model:nn.Module, optimizer, conditional_gen = False, logs_per_epoch = 5): """ Wrapper function to train a VAE model for n_epochs. Params ------ n_epochs(int) Number of epochs to run the model. train_loader() Dataloader for training set. val_loader() Dataloader for validation set. model(nn.Module) VAE model. Returns ------- train_loss_vector val_loss_vector """ batch_size = train_loader.batch_size print_every = np.floor( train_loader.dataset.__len__() / batch_size / logs_per_epoch ) train_loss_vector = [] val_loss_vector = np.empty(shape = n_epochs) cuda = torch.cuda.is_available() if cuda: device = try_gpu() torch.cuda.set_device(device) model = model.to(device) for epoch in np.arange(n_epochs): running_loss = 0.0 # TRAINING LOOP for ix, data in enumerate(tqdm.tqdm(train_loader)): # Reshape minibatch input_tensor = data.view(batch_size, -1).float() if cuda: input_tensor = input_tensor.cuda(device = device) train_loss = train_vae(model, input_tensor, optimizer) running_loss +=train_loss.item() # Print loss if ix % print_every == print_every -1 : # ix starts at 0 print('[%d, %5d] VAE loss : %.3f' % (epoch + 1, ix +1, running_loss / print_every) ) train_loss_vector.append(running_loss / print_every) # Restart loss running_loss = 0.0 # VALIDATION LOOP for ix, data in enumerate(tqdm.tqdm(val_loader)): validation_loss = [] # Reshape minibatch input_tensor = data.view(batch_size, -1).float() if cuda: input_tensor = input_tensor.cuda(device = device) val_loss = validate_vae(model, input_tensor, optimizer) validation_loss.append(val_loss) mean_val_loss = torch.tensor(validation_loss).mean() val_loss_vector[epoch] = mean_val_loss print('Val. loss %.3f'% mean_val_loss) print('Finished training.') return train_loss_vector, val_loss_vector def try_gpu(i=0): """ Return gpu(i) if exists, otherwise return cpu(). Extracted from https://github.com/d2l-ai/d2l-en/blob/master/d2l/torch.py """ if torch.cuda.device_count() >= i + 1: return torch.device(f'cuda:{i}') return torch.device('cpu') def initialize_network_weights( net:nn.Module, method = 'kaiming', seed = 4 )-> nn.Module: """ Initialize fully connected and convolutional layers' weights using the Kaiming (He) or Xavier method. This method is recommended for ReLU / SELU based activations. """ torch.manual_seed(seed) if method == 'kaiming': for module in net.modules(): if isinstance(module, (nn.Linear, nn.Conv2d)): nn.init.kaiming_uniform_(module.weight) try: nn.init.uniform_(module.bias) except: pass elif isinstance(module, (nn.GRU, nn.LSTM)): for name, param in module.named_parameters(): if 'bias' in name : nn.init.uniform_(param) elif 'weight' in name: nn.init.kaiming_uniform_(param) else: pass else: pass elif method == 'xavier': for module in net.modules(): if isinstance(module, (nn.Linear, nn.Conv2d)): nn.init.xavier_uniform_(module.weight) try: nn.init.uniform_(module.bias) except: pass elif isinstance(module, (nn.GRU, nn.LSTM)): for name, param in module.named_parameters(): if 'bias' in name : nn.init.uniform_(param) elif 'weight' in name: nn.init.xavier_uniform_(param) else: pass else: pass elif method == 'xavier_normal': for module in net.modules(): if isinstance(module, (nn.Linear, nn.Conv2d)): nn.init.xavier_normal_(module.weight) try: nn.init.uniform_(module.bias) except: pass elif isinstance(module, (nn.GRU, nn.LSTM)): for name, param in module.named_parameters(): if 'bias' in name : nn.init.uniform_(param) elif 'weight' in name: nn.init.xavier_normal_(param) else: pass else: pass else: raiseNameError('Method not found. Only valid for `kaiming` or `xavier` initialization.') return net class adata_torch_dataset(Dataset): "Convert an adata to a torch.Dataset" def __init__( self, data= None, transform = None, supervised = False, target_col = None, g_cols = None, multilabel = False)->torch.tensor: """ Base class for a single cell dataset in .h5ad, i.e. AnnData format This object enables building models in pytorch. It currently supports unsupervised (matrix factorization / autoencoder) and general supervised (classification/regression) models. Note: the ToTensor() transform can end up normalizing count matrices. See more on: https://pytorch.org/docs/0.2.0/_modules/torchvision/transforms.html#ToTensor Params ------ data (ad.AnnData) AnnDataset containing the count matrix in the data.X object. transform (torchvision.transforms, default= None) A torchvision.transforms-type transformation, e.g. ToTensor() supervised (bool, default = False) Indicator variable for supervised models. target_col (string/array-like, default = None) If running a supervised model, target_col should be a column or set of columns in the adata.obs dataframe. When running a binary or multiclass classifier, the labels should be in a single column in a int64 format. I repeat, even if running a multiclass classifier, do not specify the columns as one-hot encoded. The one-hot encoded vector will be specified in the classifier model. The reason is that, nn.CrossEntropyLoss() and the more numerically stable nn.NLLLoss() takes the true labels as input in integer form (e.g. 1,2,3), not in one-hot encoded version (e.g. [1, 0, 0], [0, 1, 0], [0, 0, 1]). When running a multilabel classifier (multiple categorical columns, e.g ´cell_type´ and `behavior`), specify the columns as a **list**. In this case, we will use the nn.BCELoss() using the one-hot encoded labels. This is akin to a multi-output classification. g_cols(list, default = None) List of columns in an auxiliary variable for conditional generation. multilabel (bool, default = False) Indicator variable to specify a multilabel classifier dataset. Returns ------- data_point(torch.tensor) A single datapoint (row) of the dataset in torch.tensor format. target(torch.tensor) If running supervised model, the "y" or target label to be predicted. """ self.data = data # This is the h5ad / AnnData self.supervised = supervised self.target_col = target_col self.transform = transform from scipy import sparse # Indicator of data being in sparse matrix format. self.sparse = sparse.isspmatrix(data.X) self.multilabel = multilabel self.g_cols = g_cols if self.multilabel: from sklearn.preprocessing import OneHotEncoder # Initialize one hot encoder enc = OneHotEncoder(sparse = False) self.one_hot_encoder = enc n_categories = len(self.target_col) # Extract target data y_data = self.data.obs[self.target_col].values.astype(str).reshape(-1, n_categories) # Build one hot encoder self.one_hot_encoder.fit(y_data) # Get one-hot matrix and save as attribute self.multilabel_codes = self.one_hot_encoder.transform(y_data) def __len__(self): return self.data.n_obs def __getitem__(self, ix): if type(ix) == torch.Tensor: ix = ix.tolist() # Get a single row of dataset and convert to numpy array if needed if self.sparse: data_point = self.data[ix, :].X.A.astype(np.float64) else: data_point = self.data[ix, :].X.astype(np.float64) # if self.conv: # image = image.reshape(1, self.res, self.res) if self.transform is not None: data_point = self.transform(data_point) # Get all columns for multilabel classification codes if self.supervised and self.multilabel: target = self.multilabel_codes[ix, :] #target = self.transform(target) return data_point, target # Softmax-classification plus conditional generator elif self.supervised and self.g_cols is not None: target = self.data.obs.iloc[ix][self.target_col] # Extract vector of for conditional generation g_vars = self.data.obs.iloc[ix][self.g_cols].values.astype(np.float32) return data_point, target, torch.from_numpy(g_vars)#.view(1,1,-1) # Get categorical labels for multiclass or binary classification # or single column for regression (haven't implemented multioutput reg.) elif self.supervised: target = self.data.obs.iloc[ix][self.target_col] #target = self.transform(target) return data_point, target # Fallback to unsupervised case. else: return data_point def codes_to_cat_labels(self, one_hot_labels): """ Returns categorical classes from labels in one-hot format. Params ------ one_hot_labels (array-like) Labels of (a potentially new or predicted) dataset in one-hot-encoded format. Returns ------- cat_labels(array-like, or list of array-like) Categorical labels of the one-hot encoded input. """ cat_labels = self.one_hot_encoder.inverse_transform(one_hot_labels) return cat_labels # Make curried to allow kwarg calls on tz.def eval_pipeline() @tz.curry def get_count_stats( adata, mt_prefix = None, ribo_prefix = None )-> ad.AnnData: """ Returns an AnnData with extra columns in its `obs` object for the number of counts per cell `n_counts` (and log10 (counts) ), abd the number of expressed genes in each cell `n_genes`. Additionally it can get the fraction of mitochondrial and ribosomal genes if prefixes are provided. TODO: Add filtering functionality Params ------ adata (ad.AnnData) Input dataset in AnnData format. It should contain a count matrix (cells x genes) as the `.X` object in the AnnData. mt_prefix (str, default = 'MT-'): Prefix to match mitochondrial genes. For human the prefix is `MT-` and for the mouse is `mt-`. ribo_prefix(default=None) For human the prefixes are ('RPS', 'RPL'). Returns ------- adata (ad.AnnData) AnnData with columns in the `.obs` dataframe corresponding to count stats. """ if not sparse.isspmatrix_csr(adata.X): adata.X = sparse.csr_matrix(adata.X) # Number of transcripts per cell adata.obs['n_counts'] = np.asarray(adata.X.sum(axis = 1)) adata.obs['log_counts'] = np.log10(adata.obs.n_counts) # Number of genes with more than one count adata.obs['n_genes'] = (adata.X > 0).sum(axis = 1) # Get mitochondrial and ribosomal genes if mt_prefix is not None: # Use string methods from pandas to make bool array mito_genes = adata.var.gene_name.str.startswith(mt_prefix) if mito_genes.sum()> 1: # Compute the fraction of mitochondrial genes adata.obs["frac_mito"] = adata[:, mito_genes].X.A.sum(axis =1) / adata.obs.n_counts if ribo_prefix is not None: if isinstance(ribo_prefix, (list, tuple)): # Initialize bool array ribo_genes = np.zeros(adata.n_vars, dtype = bool) # Loop through each prefix and flip to True # where we get a match. for prefix in ribo_prefix: ribo_genes_tmp = adata.var.gene_name.str.startswith(prefix) ribo_genes +=ribo_genes_tmp if ribo_genes.sum()> 1: adata.obs["frac_ribo"] = adata[:, ribo_genes].X.A.sum(axis =1) / adata.obs.n_counts return adata # Curry to be able to add arguments in a tz.def eval_pipeline @tz.curry def lognorm_cells( adata_, scaling_factor = 1e4, log = True)-> ad.AnnData: """ Cell count normalization as in scanpy.pp.normalize_total. Expects count matrix in sparse.csr_matrix format. Each gene's expression value in a given cell is given by : g_i = \mathrm{ln} ( \frac{g_i \times \beta }{\sum g_i} + 1 ) where β is the scaling factor. Params ------ adata_ (ad.AnnData): Count matrix with cell and gene annotations. scaling_factor(float, default = 1e4) Factor to scale gene counts to represent the counts in the cell. If scaling_factor =1e6, the values will represent counts per million. log (bool, default = True) Optional argument to allow for returning the scaled cells without normalizing. Returns ------- adata (ad.AnnData): Anndata with normalized and log transformed count matrix. """ # Make a copy because normalization is done in-place adata = adata_.copy() if not sparse.isspmatrix_csr(adata.X): adata.X = sparse.csr_matrix(adata.X) # Get total counts per cell from `obs` df if 'n_counts' in adata.obs.columns: counts = adata.obs.n_counts.values else: counts = adata.X.sum(axis = 1).flatten() # Convert to numpy matrix to array to be able to flatten scaled_counts = np.array(counts).flatten() / scaling_factor # Efficient normalization in-place for sparse matrix sparsefuncs.inplace_csr_row_scale(adata.X, 1/scaled_counts) # Call the log1p() method on the csr_matrix if log: adata.X = adata.X.log1p() return adata # Curry to enable adding arguments in a tz.pipe() @tz.curry def cv_filter( adata, min_mean = 0.025, min_cv= 1, return_highly_variable = False)-> ad.AnnData: """ Performs the Coefficient of Variation filtering according to the Poisson / Binomial counting statistics. The model assumes the coefficient of variation per gene is given by : \mathrm{log} (CV) \approx - \frac{1}{2}\mathrm{log} (\mu) + \epsilon The values will be computed assuming a normalized and log-scaled count matrix. Params ------ min_mean (float, default = 0.025). Lower bound cutoff for the mean of the gene feature. min_cv (float, default = None) Lower bound for the coefficient of variation of the gene feature. Recommended value 1. return_highly_variable(bool, default = True) Whether to return an AnnData with the columns corresponding to only the highly variable genes. Note: even when running with `return_highly_variable=False` the function will return genes only with nonzero mean and nonzero variance, i.e. it will discard those genes. Returns ------- adata_filt (ad.AnnData) AnnData with coeffifient of variation stats on the `var` dataframe. """ # Calculate mean and variance across cells mean, var = sparsefuncs.mean_variance_axis(adata.X, axis = 0) # Check if there are nonzero values for the mean or variance ix_nonzero = list(set(np.nonzero(mean)[0]).intersection(set(np.nonzero(var)[0]))) if len(ix_nonzero) > 0: # Use numpy-like filtering to select only genes with nonzero entries adata = adata[:, ix_nonzero].copy() # Recompute mean and variance of genes across cells mean, var = sparsefuncs.mean_variance_axis(adata.X, axis = 0) # Get nonzero mean indices nz = np.nonzero(mean) # Check that there are only nonzero mean values assert adata.n_vars == nz[0].shape[0] else: print ('Only zero mean or variance values for the genes in the count matrix.') return None std_dev = np.sqrt(var) # Element-wise coefficient of variation cv = std_dev / mean log_cv = np.log(cv) log_mean = np.log(mean) df_gene_stats = pd.DataFrame( np.vstack([mean, log_mean, var, cv, log_cv]).T, columns=["mean", "log_mean", "var", "cv", "log_cv"], index = adata.var.index ) new_adata_var = pd.concat( [adata.var, df_gene_stats], axis = 1 ) adata.var = new_adata_var slope, intercept, r, pval, stderr = st.linregress(log_mean, log_cv) poisson_prediction_cv = slope*log_mean + intercept # Binary array of highly variable genes gene_sel = log_cv > poisson_prediction_cv adata.var['highly_variable'] = gene_sel.astype(int) if min_mean and min_cv is not None: adata_filt = adata[:,((adata.var.highly_variable == True)&\ (adata.var['mean'] > min_mean)&\ (adata.var['cv'] > min_cv))].copy() else: adata_filt = adata[:, adata.var.highly_variable == True].copy() if return_highly_variable: return adata_filt else: return adata @tz.curry def sample_to_name(sample_id, eliminate_parens = True, eliminate_hcl = False): """ Returns processed version of sample id. Note:The best way to match is to try to match annotations in lowercase. """ if 'ethylisothiourea sulfate' in sample_id: return 'Methylisothiourea sulfate' # Eliminate "_CD3" overhang s = sample_id.split('_CD3')[0] # Trim spaces s = s.strip() if eliminate_parens: s = s.split('(')[0] # Trim spaces s = s.strip() # Remove HCl overhang if eliminate_hcl: s = s.split(' HCl')[0] s = s.strip() return s def get_ix_nondup(labels): """ Returns a binary array given a set of categorical labels. Used for filtering out duplicated labels in a minibatch when using the n-way cross entropy ranking loss (online ranking). Example ------- x = np.random.randint(0, 10, 10) x >>> array([4, 8, 8, 7, 9, 8, 8, 3, 8, 9]) maskr = get_ix_nondup(x) maskr >>> array([ True, True, False, True, True, False, False, True, False, False]) x[maskr] >>> array([4, 8, 7, 9, 3]) """ if isinstance(labels, torch.Tensor): is_tensor = True dev = labels.device if labels.device.type == 'cuda': labels = labels.cpu() if labels.requires_grad: labels = labels.detach() labels = labels.numpy() else: is_tensor =False # Gen binary array of non-duplicated labels mask = ~pd.Series(labels).duplicated().values # Check that no duplicated values remain assert len(np.nonzero(pd.Series(labels[mask]).duplicated().values)[0]) == 0 if is_tensor: mask = (torch.from_numpy(mask)).to(dev) return mask def get_acc_df_cell2mol(df_cells, name_to_target, name_to_class, k=1): """ Returns a top-k accuracy dataframe per sample. Params ------ df_cells (pd.DataFrame) Cell dataframe (from adata or df_embedding) that contains the top-k accuracy. Returns ------- accuracy_df (pd.DataFrame) """ pred_df = ( df_cells.groupby(["drug_name", "top" + str(k) + "_accuracy"]).size().unstack().fillna(0) ) pred_arr = pred_df.values / pred_df.values.sum(axis=1).reshape(-1, 1) * 100 perc_pred_df = pd.DataFrame(pred_arr, index=pred_df.index, columns=pred_df.columns) accuracy_df = ( perc_pred_df.sort_values(by=0, ascending=True)[1].to_frame().reset_index() ) accuracy_df.rename(columns = {1:'top@'+ str(k) + '_accuracy'}, inplace = True) accuracy_df['target'] = accuracy_df['drug_name'].map(name_to_target) accuracy_df['drug_class'] = accuracy_df['drug_name'].map(name_to_class) accuracy_df['sample_class'] = accuracy_df['drug_name'] + '_' + accuracy_df['drug_class'].str.lower() return accuracy_df def freedman_diaconis_rule(arr): """ Calculates the number of bins for a histogram using the Freedman-Diaconis Rule. Modified from https://github.com/justinbois/bebi103/blob/master/bebi103/viz.py """ h = 2* (np.percentile(arr, q=75) - np.percentile(arr, q = 25))/ np.cbrt(len(arr)) if h == 0.0: n_bins = 3 else: n_bins = int(np.ceil(arr.max() - arr.min()) / h) return n_bins def l1_norm(arr1, arr2): ''' Compute the L1-norm between two histograms. It uses the Freedman-Diaconis criterion to determine the number of bins. It will be positive if the mean(arr2) > mean(arr1) following the convention from PopAlign. Modified from https://github.com/thomsonlab/popalign/blob/master/popalign/popalign.py Parameters ---------- arr1 (array-like) Distribution of gene for population 1. arr2 (array-like) Distribution of gene for population 2. Returns ------- l1_score(float) L1 norm between normalized histograms of gene distributions. Example ------- import numpy as np from sc_utils import sc x = np.random.normal(loc = 0, size = 100) y = np.random.normal(loc = 3, size = 100) sc.l1_norm(x, y) >>>1.46 ''' if len(arr1) == len(arr2): nbins = freedman_diaconis_rule(arr1) else: nbins_1 = freedman_diaconis_rule(arr1) nbins_2 = freedman_diaconis_rule(arr2) nbins = int((nbins_1 + nbins_2)/2) max1, max2 = np.max(arr1), np.max(arr2) # get max values from the two subpopulations max_ = max(max1,max2) # get max value to define histogram range if max_ == 0: return 0 else: b1, be1 = np.histogram(arr1, bins=nbins, range=(0,max_)) # compute histogram bars b2, be2 = np.histogram(arr2, bins=nbins, range=(0,max_)) # compute histogram bars b1 = b1/len(arr1) # scale bin values b2 = b2/len(arr2) # scale bin values if arr1.mean()>=arr2.mean(): # sign l1-norm value based on mean difference l1_score = -np.linalg.norm(b1-b2, ord=1) return l1_score else: l1_score = np.linalg.norm(b1-b2, ord=1) return l1_score def ecdf(x)->(np.array, np.array): ''' Returns ECDF of a 1-D array. Params ------ x(array or list) Input array, distribution of a random variable. Returns ------- x_sorted : sorted x array. ecdf : array containing the ECDF of x. ''' n = len (x) x_sorted = np.sort(x) ecdf = np.linspace(0, 1, len(x_sorted)) return x_sorted, ecdf def get_stats(distro_x, distro_y): """ Returns statistics from testing that `distro_x` takes larger values that `distro_y`. Returns ------- ks, pval_ks, l1_score """ # For a given value of the data, ECDF of sample 1 takes values less than sample 2 ks, pval_ks = st.ks_2samp(distro_x, distro_y, alternative="less") # Positive if mean(distro_x) > mean(distro_y) l1_score = l1_norm(distro_y, distro_x) return ks, pval_ks, l1_score # def get_ix_drug(drugbank, drug_name, verbose = False)->np.ndarray: # """Returns index of molecule in drugbank.""" # try: # ix_ = drugbank[drugbank['drug_name'] ==drug_name].index.values[0] # # except : # ix_ = drugbank[drugbank['drug_name'].str.contains(drug_name)].index.values[0] # if verbose: # print('Getting drugbank index for :%s'%drugbank.iloc[ix_]['drug_name'] ) # return ix_ # # def get_ix_cells(adata, drug_name, verbose = False)->np.ndarray: # """Returns index of cells perturbed by `drug_name` in adata""" # try: # ix_cells = adata[adata.obs['drug_name']==drug_name].obs.index.values # except: # ix_cells = adata[adata.obs['drug_name'].str.contains(drug_name)].obs.index.values # if verbose : # print('Getting adata cell indices for :%s'%adata[ix_cells[0]].obs['drug_name'].values[0] ) # return ix_cells # # # def get_cosine_distribution_drug(drugbank, adata, query_drug_name, perturb_drug_name, cosine_arr, verbose = False): # """ # Returns the cosine similarity distribution for the cells perturbed with # `perturb_drug_name` (indexed in adata), and a molecule `query_drug_name` (indexed in drugbank). # If `query_drug_name` and `perturb_drug_name` are the same, it returns the # cosine similarity of the given molecule against the cells perturbed by it. # # Note: Expects cosine_arr to be of shape (n_mols, n_cells) # # Params # ------ # query_drug_name (str) # Name of the drug to query against. # # perturb_drug_name (str) # Name of the drug that perturbed the cells to retrieve. # # Returns # ------- # cosine_similarity_distribution # # Note:Expects cosine_arr to be shape (mols, cells) # """ # ix_drug = get_ix_drug(drugbank, query_drug_name, verbose) # ix_cells = get_ix_cells(adata, perturb_drug_name, verbose) # cosine_similarity_distribution = cosine_arr[ix_drug, ix_cells] # # return cosine_similarity_distribution # # # def get_similarity_drug_one_vs_all( # drugbank, # adata, # drug_name, # cosine_arr, # verbose = False # ): # """ # Returns the cosine similarity distribution of a molecule with cells perturbed by it, # and the cos. sim. dist. of the molecule with cells coming from other samples. # # Expects cosine_arr to be of shape (n_mols, n_cells) # """ # n_mols, n_cells = cosine_arr.shape # ix_drug, ix_cells = get_ix_drug(drugbank, drug_name), get_ix_cells(adata, drug_name) # # # Get cosine similarity distribution of a drug with itself # cosine_cells_drug = cosine_arr[ix_drug, ix_cells] # # # Get the indices of all perturbed with other molecules but `drug_name` # other_cells_ix = np.array(list(set(np.arange(n_cells)) - set(ix_cells))) # cosine_others = cosine_arr[ix_drug, other_cells_ix] # return cosine_cells_drug, cosine_others # # # def get_cosine_distribution_df( # drug_name, # drugbank, # adata, # cosine_arr, # drugbank_to_selleck, # n_top = 10000, # cols_viz = ['sample_class', 'target', 'drug_class', 'pn', 'drug_name'], # filter_by = 'sample_class', # n_cells_filter = 5, # anti = False, # return_acc_only = False # )->pd.DataFrame: # """ # Returns an annotated dataframe of the cells with highest cosine similarity to # a query molecule `drug_name`. # # Notes: Assumes an adata and drugbank (dataframe) exist and that their indices # have been reset. # # Params # ------ # drug_name (str) # n_top (int, default= 10000,) # Number of cells with highest similarity to retrieve. # # cols_viz (list, default= ['sample_class', 'target', 'drug_class', 'pn'], ) # Which columns to use for visualization. Cols have to be in adata. # # filter_by (str, default= 'sample_class') # Column to filter noise cells. # # n_cells_filter (int, default = 5,) # Lower bound threshold above to which filter noise cells, i.e. # if a sample has less than `n_cells_filter` in the top cells, # that sample won't be in the final visualization. # # anti (bool = False) # Whether to reverse order, get cells with lowest cosine similarity. # # Returns # ------- # df_viz # """ # ix_ = get_ix_drug(drugbank, drug_name, verbose = False) # # name_of_drug = drugbank.iloc[ix_]['drug_name'] # name_of_drug = drugbank_to_selleck[name_of_drug] # print('Returning predictions for %s'%name_of_drug) # # # Reverse order : get cells with lowest cosine sim # if anti: # ix_top_cells = np.argsort(cosine_arr[ix_])[:n_top] # else: # ix_top_cells = np.argsort(cosine_arr[ix_])[::-1][:n_top] # # # Make a dataframe containing the cosine similarities and cols_viz # df_viz = adata[ix_top_cells].obs[cols_viz] # # #try: # sample_val_counts = df_viz.drug_name.value_counts() # if name_of_drug in sample_val_counts.index.values: # n_correct = sample_val_counts[name_of_drug] # # acc = n_correct / sample_val_counts.sum() * 100 # print('Accuracy: %.3f'%acc) # if return_acc_only: # return acc # else: # pass # else: # print('Accuracy: 0') # if return_acc_only: # return 0 # #except: # # pass # # df_viz['cosine_similarity'] = cosine_arr[ix_][ix_top_cells] # val_counts = df_viz[filter_by].value_counts() # samples_in = val_counts[val_counts > n_cells_filter].index.values # # return df_viz[df_viz[filter_by].isin(samples_in)] # class EvaluateCrossRetrieval: """ Base class to evaluate cross modality-retrieval a joint embedding of cells and molecules. It is designed for evaluation in a test set, comprised of a tuple (test molecules, test cells). Nevertheless, one can pass the full datasets (i.e. train+val+test) and still leverage the functionalities. TO-DO: currently deisgned with cosine vs distance mode. Another design that could make code easier to read is by defining cosine dist = 1-cos_theta """ def __init__( self, df_drugs, adata, model, model_type = 'nn', dataset = 'thomsonlab', drugs_col_name = 'name', precomputed_mol_embeddings = False, embedding_dim = 64 ): """ Params ------ df_drugs (pd.DataFrame) Annotated version of the drugs in the test set. It must ideally have the following in its columns: ['drug_class', 'target', 'drug_name'] adata(pd.DataFrame) Test adata containing count matrix as .X and projected cells in its `obs.` dataframe. model (nn.Module) Joint embedding model. to-do: extend functionality for CCA or other models. model_type(str, default = 'nn') Running neural net or CCA model. dataset(str, default = 'thomsonlab') Sets the formmatting options for a specific dataset. drugs_col_name(str, default = 'sample_id') If there's a specific column name for the name of drugs in the df_drugs dataset. Notes ----- Assumptions: - the `df_drugs` and the `adata` have the same annotation for the drug names. - the cell data has the same columns (input features) for which both the cell encoder and the joint embedding model were trained on. Attributes ---------- name_to_target(dict): drug_name (key) -> drug target (value) name_to_target(dict): drug_name (key) -> drug class (value) sample_counts(dict): Number of cells for each perturbation / drug / sample. drug_name -> # of cells perturbed by drug sample_counts_ix (dict): drug_index -> # of cells perturbed by drug ix_samples_cell (np.array): Perturbation's index of each cell. """ self.cuda = torch.cuda.is_available() self.embedding_dim = embedding_dim # Format column names if 'drug_name' not in adata.obs.columns: if dataset == 'thomsonlab': adata.obs['drug_name'] = adata.obs['sample_id'].apply( lambda x: sample_to_name(str(x), eliminate_parens = True, eliminate_hcl = False) ).str.lower() elif dataset == 'sciplex': adata.obs['drug_name'] = adata.obs['product_name'].apply( lambda x: sample_to_name(str(x), eliminate_parens = True, eliminate_hcl = False) ).str.lower() if 'drug_name' not in df_drugs: df_drugs['drug_name'] = df_drugs[drugs_col_name].apply( lambda x: sample_to_name(str(x), eliminate_parens = True, eliminate_hcl = False) ).str.lower() df_drugs_test = df_drugs[df_drugs.drug_name.isin(adata.obs.drug_name.unique())] if dataset == 'sciplex': df_drugs_test.drop_duplicates(subset = ['drug_name'], inplace = True) # Check drugs in both datasets coincide #assert len(set(adata.obs.drug_name.unique()) - set(df_drugs_test.drug_name.unique())) == 0, 'Drugs in both datasets do not coincide' # We will use numpy-indexing so reset them adata.obs.reset_index(drop = True, inplace = True) df_drugs_test.reset_index(drop = True, inplace = True) # Assign an index to each drug. codes, unique_drugs = np.arange(len(df_drugs_test)), df_drugs_test.drug_name.values #pd.factorize(df_drugs_test['drug_name']) # Make sure we only have unique drugs assert len(unique_drugs) == df_drugs_test.drug_name.unique().shape[0] df_drugs_test['sample_code'] = codes self.drugbank = df_drugs_test self.adata = adata self.model = model self.ix_to_name = dict(zip(codes, unique_drugs)) #dict(df_drugs_test[['sample_code', 'drug_name']].values) self.name_to_ix = dict(zip(unique_drugs, codes)) #{val:key for key,val in self.ix_to_name.items()} self.sample_counts = adata.obs.drug_name.value_counts() self.sample_counts_idx = { self.name_to_ix[sample]: self.sample_counts[sample] \ for sample in self.sample_counts.keys() } self.test_drugs = self.drugbank.drug_name.values # Make drug target and drug class annotation dictionaries if dataset == 'sciplex': self.name_to_target = dict(adata.obs[['drug_name', 'target']].values) self.adata.obs['target'] = self.adata.obs.drug_name.apply( lambda x: self.name_to_target[x] if x in self.name_to_target.keys() else 'undefined' ) else:# thomsonlab self.drugbank.rename(columns = {'Target': 'target'}, inplace = True) self.name_to_target = dict(df_drugs_test[['drug_name', 'target']].values) self.name_to_class = dict(df_drugs_test[['drug_name','drug_class']].values) self.adata.obs['drug_class'] = self.adata.obs.drug_name.apply( lambda x: self.name_to_class[x] if x in self.name_to_class.keys() else 'undefined' ) self.adata.obs['target'] = self.adata.obs.drug_name.apply( lambda x: self.name_to_target[x] if x in self.name_to_target.keys() else 'undefined' ) self.drugbank['name_class'] = self.drugbank['drug_name'] + ['_'] + self.drugbank['drug_class'] self.test_drugs_ixs = [self.name_to_ix[drug] for drug in self.test_drugs] # For each cell, get its perturbation's index self.ix_samples_cell = np.array( [self.name_to_ix[drug] for drug in self.adata.obs['drug_name'].values] ) self.drugbank['n_cells'] = self.drugbank.drug_name.map(self.sample_counts) #self.adata = self.adata.copy() # Assign some colormaps for plotting self.colormaps = { 'drug_class': 'Blues_r', 'within_class_acc': 'Blues_r', 'Target': 'Oranges_r', 'target': 'Oranges_r', 'pn': 'Greens_r', 'pathway': 'Purples_r' } if precomputed_mol_embeddings: self.mol_embedding = self.drugbank[['dim_' + str(i) for i in range(1,embedding_dim +1)]].values self.precomputed_mol_embeddings = precomputed_mol_embeddings else: self.precomputed_mol_embeddings = None def eval_pipeline( self, plot = False, mode = 'cosine', n_cores = 2 ): """ Runs all evaluation metrics. """ print('Computing mol2cell & cell2mol accuracy from %s matrix.'%mode) if self.precomputed_mol_embeddings is None: self.project_molecules() if mode == 'cosine': self.compute_cosine_arr(return_ = False) elif mode == 'l2': self.compute_dist_matrix() else: raise NameError('Mode to be one of [`cosine`, `l2`]. Input : %s'%mode) # Saves mol2cell accuracies in self.m2c_acc and in self.drugbank self.eval_mol2cell_accuracy(mode= mode, return_ = False) print('Finised computing mol2cell accuracies.') # Saves results in self.df_c2m for top5 accuracy self.eval_cell2mol_accuracy(mode = mode) self.get_acc_df_cell2mol() print('Finished computing cell2mol accuracies.') # Run KS tests print('Running KS test...') self.run_ks_one_vs_all(n_cores,mode=mode) print('Finished KS test.') # Run mol2cell above mean self.eval_m2c_above_mean_all(mode=mode) # Aggregate metrics self.eval_summary() print('Finished pipeline.') # Plot results ! if plot: pass def eval_summary(self, ks_pval_thresh = 1e-8, above_mean_thresh = 95, return_= False): "Assumes eval_pipeline() has been executed to calculate all metrics." # Average top5 cell2mol accuracy cell2mol_top5_avg = np.mean(self.c2m_acc_df.top5_accuracy) # Average mol2cell accuracy mol2cell_avg = np.mean(self.m2c_acc) # Percentage of molecules with corresponding cells having significantly # learn relationships, by using KS test of own cells vs all other cells percentage_ks_low = len( self.drugbank[self.drugbank.ks_pval < ks_pval_thresh] ) / len(self.test_drugs) * 100 # Percentage of cells above the mean of mol2cell distribution percentage_above_mean = len( self.drugbank[self.drugbank.acc_above_mean > above_mean_thresh] ) / len(self.test_drugs) * 100 metrics_dict = { 'cell2mol_top5_acc': cell2mol_top5_avg, 'mol2cell_acc': mol2cell_avg, 'perc_ks_significant': percentage_ks_low, 'perc_above_mean': percentage_above_mean } self.summary_stats = metrics_dict if return_: return metrics_dict def get_ix_drug(self, drug_name): return self.name_to_ix.get(drug_name, 'None') def get_ix_cells(self, drug_name, verbose = False): try: ix_cells = self.adata[self.adata.obs['drug_name']==drug_name].obs.index.values except: ix_cells = self.adata[self.adata.obs['drug_name'].str.contains(drug_name)].obs.index.values if verbose : print('Getting adata cell indices for :%s'%adata[ix_cells[0]].obs['drug_name'].values[0] ) return ix_cells.astype(int) def compute_rdkit_mol_from_smiles(self): self.drugbank['mol'] = self.drugbank.SMILES.apply( Chem.MolFromSmiles ) self.name_to_mol = dict(self.drugbank[['drug_name', 'mol']].values) @torch.no_grad() def project_molecules(self, _return = False): """ Computes molecule embeddings in self.drugbank df. """ #Get Rdkit mols in place self.compute_rdkit_mol_from_smiles() labels_tensor = torch.arange(len(self.drugbank)) drugs_tensor = get_drug_batch( labels_tensor, self.name_to_mol, self.ix_to_name, cuda = self.cuda ) self.model.eval() mol_embedding = self.model.molecule_encoder.project( Batch.from_data_list(drugs_tensor) ) if self.cuda: # bring to CPU mol_embedding=mol_embedding.cpu().numpy() else: mol_embedding = mol_embedding.numpy() self.mol_embedding = mol_embedding if _return: return mol_embedding # refactoring # def compute_cosine_arr(self, return_ = False, project_mols = False, n_dims = 64): # """ # Computes cosine array. It stores an output array # """ # if project_mols: # mol_embedding = self.project_molecules() # else: # mol_embedding = self.drugbank[['dim_' + str(i) for i in range(1,n_dims +1)]].values # # cell_embedding = self.adata.obs[['dim_' + str(i) for i in range(1, n_dims+1)]].values # # #self.mol_embedding = mol_embedding # mol_embedding = self.mol_embedding # # self.cell_embedding = cell_embedding # # # Normalize to make row vectors # mol_embedding_norm = mol_embedding / np.linalg.norm(mol_embedding, axis = 1).reshape(-1,1) # cell_embedding_norm = cell_embedding / np.linalg.norm(cell_embedding, axis = 1).reshape(-1,1) # # # Compute cosine similarity, shape (molecules, cells) # cosine_arr = np.matmul(mol_embedding_norm, cell_embedding_norm.T) # # #print('Shape of cosine similarity array: {0}'.format(cosine_arr.shape)) # self.cosine_arr = cosine_arr # # if return_: # return cosine_arr def compute_cosine_arr(self, return_ = False): """ Computes cosine array. It stores an output array """ # Extracts the molecule embeddings if already in the object try : mol_embedding = self.mol_embedding except AttributeError: print('Projecting molecules using model.') mol_embedding = self.project_molecules() cell_embedding = self.adata.obs[['dim_' + str(i) for i in range(1, self.embedding_dim+1)]].values #self.mol_embedding = mol_embedding mol_embedding = self.mol_embedding self.cell_embedding = cell_embedding # Normalize to make row vectors mol_embedding_norm = mol_embedding / np.linalg.norm(mol_embedding, axis = 1).reshape(-1,1) cell_embedding_norm = cell_embedding / np.linalg.norm(cell_embedding, axis = 1).reshape(-1,1) # Compute cosine similarity, shape (molecules, cells) cosine_arr = np.matmul(mol_embedding_norm, cell_embedding_norm.T) #print('Shape of cosine similarity array: {0}'.format(cosine_arr.shape)) self.cosine_arr = cosine_arr if return_: return cosine_arr def compute_dist_matrix(self, run_with_torch = False, return_=False): """ Computes the euclidean distances between cells and molecules, and saves it as an attribute. It assumes compute_cosine_arr() has already been run. """ try : mol_embedding = self.mol_embedding except NameError: print('Projecting molecules using model.') mol_embedding = self.project_molecules() try: self.cell_embedding = self.adata.obs[['dim_' + str(i) for i in range(1, self.embedding_dim+1)]].values except: raise ValueError('Could not retrieve cell embeddings from adata, check adata or n_dims arg.') if run_with_torch: self.D = generalized_distance_matrix_torch( torch.from_numpy(mol_embedding), torch.from_numpy(self.cell_embedding) ) else: self.D = generalized_distance_matrix( mol_embedding, self.cell_embedding ) if return_: return self.D def get_top_ixs(self, data_type = 'mols', mode = 'cosine', top_k = 15): "Returns the top indices from a cosine similarity or L2 distance matrix." axis = 1 if data_type == 'mols' else 0 #print(axis) largest = True if mode == 'cosine' else False #largest = mode == 'cosine' if data_type == 'mols': top_k = self.sample_counts.max() if mode == 'cosine': top_ixs = ( torch.from_numpy(self.cosine_arr) .topk(k=top_k, largest=largest, dim=axis) .indices.numpy() ) elif mode == 'l2': # distance matrix top_ixs = ( torch.from_numpy(self.D) .topk(k=top_k, largest=largest, dim=axis) .indices.numpy() ) else: raise NameError('Mode %s is not implemented. Choose one of [`cosine`, `l2`.]'%mode) return top_ixs def get_similarity_drug_one_vs_all(self, drug_name, mode = 'cosine')->Tuple[np.ndarray, np.ndarray]: """ Returns the cosine similarity distributions of a drug with cells perturbed by it, and all other cells coming from other samples. """ ix_drug, ix_cells = self.get_ix_drug(drug_name), self.get_ix_cells(drug_name) if mode == 'cosine': n_mols, n_cells = self.cosine_arr.shape # Get the indices of all perturbed with other molecules but `drug_name`'s other_cells_ix = np.array(list(set(np.arange(n_cells)) - set(ix_cells))) #similarity_matrix = self.cosine_arr # Get cosine similarity/ l2 distance distribution of a drug with itself similarities_cells_drug = self.cosine_arr[ix_drug, ix_cells] similarities_others = self.cosine_arr[ix_drug, other_cells_ix] elif mode == 'l2': n_mols, n_cells = self.D.shape # Get the indices of all perturbed with other molecules but `drug_name`'s other_cells_ix = np.array(list(set(np.arange(n_cells)) - set(ix_cells))) #similarity_matrix = self.D similarities_cells_drug = self.D[ix_drug, ix_cells] similarities_others = self.D[ix_drug, other_cells_ix] else: raise NameError('Mode %s not implemented.'%mode) # Get cosine similarity/ l2 distance distribution of a drug with itself # similarities_cells_drug = similarity_matrix[ix_drug, ix_cells] # # # Get the indices of all perturbed with other molecules but `drug_name`'s # other_cells_ix = np.array(list(set(np.arange(n_cells)) - set(ix_cells))) # similarities_others = similarity_matrix[ix_drug, other_cells_ix] return similarities_cells_drug, similarities_others def eval_mol2cell_accuracy(self, mode= 'cosine', return_ = False, k = 15): top_ixs_mols = self.get_top_ixs(data_type = 'mols', mode = mode, top_k = k) # Initialize molecule accuracies list accs = [] for i, drug_ix in enumerate(self.test_drugs_ixs): # Get the drug indices for each of the top cells given molecule query top_ix_mol = self.ix_samples_cell[top_ixs_mols[i]] # Get only the top n indices, for n the number of cells sampled in experiment top_ix_mol_normalized = top_ix_mol[: int(self.sample_counts_idx[drug_ix])] # Acc : fraction of correct cells acc = np.sum(top_ix_mol_normalized == drug_ix) / (self.sample_counts_idx[drug_ix]) * 100 accs.append(acc) self.m2c_acc = accs self.drugbank['m2c_accuracy'] = accs if return_: return accs def eval_cell2mol_accuracy(self, mode = 'cosine', k = 15): top_ixs_cells = self.get_top_ixs(data_type = 'cells', mode = mode, top_k=k).T acc_indicator = np.zeros((self.adata.n_obs, 5)) if isinstance(self.test_drugs_ixs, list): self.test_drugs_ixs = np.array(self.test_drugs_ixs) for i, sample_ix in tqdm.tqdm(enumerate(self.ix_samples_cell)): # Get top 1, top3, top5, 10, and 15 accuracy acc_indicator[i, 0] = 1 if sample_ix == self.test_drugs_ixs[top_ixs_cells[i, 0]] else 0 acc_indicator[i, 1] = 1 if sample_ix in self.test_drugs_ixs[top_ixs_cells[i, :3]] else 0 acc_indicator[i, 2] = 1 if sample_ix in self.test_drugs_ixs[top_ixs_cells[i, :5]] else 0 acc_indicator[i, 3] = 1 if sample_ix in self.test_drugs_ixs[top_ixs_cells[i, :10]] else 0 acc_indicator[i, 4] = 1 if sample_ix in self.test_drugs_ixs[top_ixs_cells[i, :15]] else 0 self.c2m_global_acc = acc_indicator.sum(axis = 0)/ self.adata.n_obs *100 ks = [1, 3, 5, 10, 15] df_acc = pd.DataFrame(acc_indicator, columns = ['top' + str(i) + '_accuracy' for i in ks]) self.adata.obs = pd.concat([self.adata.obs, df_acc.set_index(self.adata.obs.index)], axis = 1) def eval_m2c_mean(self, drug_name, centrality_measure = 'mean', mode = 'cosine'): """ Computes the fraction of cells that have cosine similarity w.r.t. to its own molecule higher than the mean of the distribution across all cells. """ drug_ix = self.get_ix_drug(drug_name) # Get cosine distribution for drug and all others sim_distro_drug, sim_distro_others = self.get_similarity_drug_one_vs_all( drug_name, mode=mode ) if centrality_measure=='mean': central_measure = np.concatenate([sim_distro_drug, sim_distro_others]).mean() elif centrality_measure=='median': central_measure = np.median(np.concatenate([sim_distro_drug, sim_distro_others])) else: raise NotImplementedError('%s is not implemented'%mode) if mode == 'cosine': n_significant = (sim_distro_drug > central_measure).sum() # Distance of correct molecule lower than mean of whole distribution elif mode == 'l2': n_significant = (sim_distro_drug < central_measure).sum() percent_significant = n_significant / len(sim_distro_drug) * 100 return percent_significant def eval_m2c_above_mean_all(self, centrality_measure = 'mean', mode = 'cosine', n_cores = 4, return_ = False): "Evaluate above-mean accuracy for all drugs." acc_arr = Parallel(n_jobs = n_cores)( delayed(self.eval_m2c_mean)(drug, centrality_measure, mode) for drug in tqdm.tqdm( self.test_drugs, position = 0, leave = True ) ) self.drugbank['acc_above_mean'] = acc_arr if return_: return acc_arr def run_ks_test(self, drug_name, mode = 'cosine'): "Returns statistics of running one vs all test for a given drug." own, others = self.get_similarity_drug_one_vs_all(drug_name, mode= mode) if mode == 'cosine': # Test for true distro of cosine sim having higher values ks, pval_ks, l1_score = get_stats(own, others) elif mode == 'l2': # Test for true distro of l2 distances having lower values ks, pval_ks, l1_score = get_stats(others, own) return ks, pval_ks, l1_score def run_ks_one_vs_all( self, n_cores = 4, mode = 'cosine', stat_metric = 'ks_pval', thresh_stat = 1e-4, return_ = False ): """ Returns results from testing the mol2cell cosine similarity distributions of a drug with cells perturbed by it, and other cells. Params ------ n_cores (int, default = 4) Number of processors to use for the parallellization. stat_metric (str, default = 'ks_pval') cols (list) Notes ----- The rationale is that the cosine similarity between a given drug and cells pertrubed by it should be higher than to all other cells if the model has learnt a meaningful relationship. Runs on parallel using joblib. """ results = Parallel(n_jobs = n_cores)( delayed(self.run_ks_test)(drug,mode) for drug in tqdm.tqdm( self.test_drugs, position = 0, leave = True ) ) self.df_stat_tests = pd.DataFrame( results, columns = ['ks_score', 'ks_pval', 'l1_score'] ) self.drugbank = pd.concat([self.drugbank, self.df_stat_tests], axis = 1) if "pval" in stat_metric: top_drug_df = self.drugbank[self.drugbank[stat_metric] < thresh_stat].sort_values( by=stat_metric, ascending=True ) # use score elif "score" in stat_metric: top_drug_df = df_drugs_test_[df_drugs_test_[stat_metric] > thresh_stat].sort_values( by=stat_metric, ascending=False ) else: raise AssertionError('metric should be either pvalue or score.') self.top_drugs_ks = top_drug_df if return_: return top_drug_df def get_cosine_distribution_df( self, drug_name, n_top = None, cols_viz = ['drug_name', 'target', 'drug_class'], return_acc_only = False, filter_by = 'drug_name', n_cells_filter = 10, anti = False ): """ Returns a dataframe of the cells closest to a molecule, grouped by sample. Params ------ filter_by (str, default = 'drug_name') Column to filter out spurious high similarity. """ if n_top is None: n_top = self.adata[self.adata.obs.drug_name == drug_name].n_obs ix_ = self.get_ix_drug(drug_name) #name_of_drug = self.name_to_ix[ix_] #drugbank.iloc[ix_]['drug_name'] #name_of_drug = drugbank_to_selleck[name_of_drug] #print('Returning predictions for %s'%name_of_drug) # Reverse order : get cells with lowest cosine sim if anti: ix_top_cells = np.argsort(self.cosine_arr[ix_])[:n_top] else: ix_top_cells = np.argsort(self.cosine_arr[ix_])[::-1][:n_top] # Make a dataframe containing the cosine similarities and cols_viz df_viz = self.adata[ix_top_cells].obs[cols_viz] df_viz['drug_name'] = df_viz['drug_name'].astype(str) #try: sample_val_counts = df_viz.drug_name.value_counts() if drug_name in sample_val_counts.index.values: n_correct = sample_val_counts[drug_name] acc = n_correct / sample_val_counts.sum() * 100 print('Accuracy: %.3f'%acc) if return_acc_only: return acc else: pass else: print('Accuracy: 0') if return_acc_only: return 0 #except: # pass df_viz['cosine_similarity'] = self.cosine_arr[ix_][ix_top_cells] val_counts = df_viz[filter_by].value_counts() samples_in = val_counts[val_counts > n_cells_filter].index.values return df_viz[df_viz[filter_by].isin(samples_in)] def plot_boxplot_m2c(self, plot = 'accuracy', cat = 'drug_class', filt_by = 0): #plot = "accuracy" #by = "drug_class" fig = plt.figure(figsize=(3, 4)) sns.boxplot( data=self.drugbank[self.drugbank[plot] > filt_by].sort_values( by=[plot, cat], ascending=False ), x=plot, y=cat, color="lightgrey", # alpha = 0.4 ) sns.stripplot( data=self.drugbank[self.drugbank[plot] > filt_by].sort_values( by=[plot, cat], ascending=False ), x=plot, y=cat, palette=self.colormaps[cat], ) return fig def plot_ks(self, drug_name, export = None, mode = 'cosine', path_figs= None, model_name= ''): "To run after executing `run_ks_one_vs_all`" data = self.drugbank[self.drugbank.drug_name == drug_name] #drug_ = data['drug_name'] #print(drug_) drug = drug_name.split()[0] #print(drug) #acc = data['accuracy'] #within_class_acc = data['within_class_acc'] ks, pval, l1_score, acc,perc_above_mean = data[['ks_score', 'ks_pval', 'l1_score', 'm2c_accuracy', 'acc_above_mean']].squeeze() try: pval = np.log10(pval) except: pval = 0 own, others = self.get_similarity_drug_one_vs_all(drug_name, mode = mode) sorted_drug, ecdf_drug = ecdf(own) sorted_other, ecdf_other = ecdf(others) #plt.figure(figsize = (3.5, 1.7)) plt.plot(sorted_drug, ecdf_drug, label = drug + ' cells', color = 'dodgerblue') plt.plot(sorted_other, ecdf_other, label = 'cells from other samples', color = 'lightgrey') plt.legend( #title = 'KS: %.2f, pval: %.3f, l1: %.2f'%(ks, pval, l1_score), bbox_to_anchor = (1.04, 0), loc = 'lower left' ) plt.title('One-vs-rest test KS: %.2f \n KS pval: 1x10^ %.1f, l1: %.2f \n acc mol2cell: %.1f, perc above mean: %.1f'%( ks, pval, l1_score, acc, perc_above_mean ),) plt.xlabel(r'%s to %s mol.'%(mode,drug)) plt.ylabel('ECDF') if export: plt.savefig( os.path.join(path_figs, drug + '_ks_test_%s.png'%model_name), bbox_inches = 'tight', dpi = 230 ); def plot_ks_bokeh(self): raise NotImplementedError def plot_ks_bokeh_catplot(self): raise NotImplementedError # df_cos_viz = evaluator.get_cosine_distribution_df( # 'cerdulatinib',n_top = adata.n_obs, n_cells_filter = 0 # ) # df_cos_viz['is_drug'] = df_cos_viz.drug_name.apply( # lambda x: 'cerdulatinib' if x == 'cerdulatinib' else 'other' # ) # pal = np.array(["dodgerblue", "lightgrey"]) # drug_name = 'cerdulatinib' # ix_sort = np.argsort([drug_name, 'other']) # ix_sort # show( # bokeh_catplot.ecdf( # data=df_cos_viz.sort_values(by = 'is_drug'), # val="cosine_similarity", # cats="is_drug", # marker_kwargs={"alpha": 0.3}, # tooltips=[ # ("drug_name", "@drug_name"), # ("drug_class", "@drug_class"), # ("cosine_similarity", "@cosine_similarity"), # ], # palette=list(pal[ix_sort]), # ) # ) def plot_ks_all(self, export = True, path_figs= '../figs', model_name = ''): """ Plots ECDFs of cosine similarity distributions of correct drug vs all others. Considers only top drugs. Assumes `run_ks()` has been called already. """ # Assert if self.top_drug_ks exists. for i, drug in self.test_drugs: plot_ks(drug, export, path_figs, model_name) def get_acc_df_cell2mol(self, k=5, return_ = True): """ Returns a top-k accuracy dataframe per sample. Params ------ df_cells (pd.DataFrame) Cell dataframe (from adata or df_embedding) that contains the top-k accuracy. """ df_cells = self.adata.obs #name_to_target = None, name_to_class= None, pred_df = ( df_cells.groupby(["drug_name", "top" + str(k) + "_accuracy"]).size().unstack().fillna(0) ) pred_arr = pred_df.values / pred_df.values.sum(axis=1).reshape(-1, 1) * 100 perc_pred_df = pd.DataFrame(pred_arr, index=pred_df.index, columns=pred_df.columns) accuracy_df = ( perc_pred_df.sort_values(by=0, ascending=True)[1].to_frame().reset_index() ) accuracy_df.rename(columns = {1:'top'+ str(k) + '_accuracy'}, inplace = True) try: if self.name_to_target is not None: accuracy_df['target'] = accuracy_df['drug_name'].map(name_to_target) #accuracy_df['name_target'] = accuracy_df['drug_name'] + '_' + accuracy_df['target'].str.lower() except: pass try: if self.name_to_class is not None: accuracy_df['drug_class'] = accuracy_df['drug_name'].map(name_to_class) accuracy_df['sample_class'] = accuracy_df['drug_name'] + '_' + accuracy_df['drug_class'].str.lower() except: pass self.c2m_acc_df = accuracy_df if return_: return accuracy_df def plot_report(self, drug_name, cols_viz = ['drug_name', 'drug_class']): plt.figure(figsize = (3, 2)) self.plot_ks(drug_name) n_cells = self.adata[self.adata.obs.drug_name == drug_name].n_obs print('Number of cells : %d for drug %s'%(n_cells, drug_name)) df_cos_viz = self.get_cosine_distribution_df( drug_name, cols_viz = cols_viz ,n_top= n_cells ) df_cos_viz['name_class'] = df_cos_viz['drug_name'] + '_' + df_cos_viz['drug_class'] plt.figure(figsize = (4, 2)) sns.boxplot( data = df_cos_viz.sort_values( by = 'cosine_similarity', ascending = False ), x = 'cosine_similarity', y = 'name_class', palette = 'Blues_r' ) df_mol_viz = self.drugbank[self.drugbank.drug_name.isin(df_cos_viz.drug_name.unique())] im = Draw.MolsToGridImage( df_mol_viz.mol.to_list(), legends = df_mol_viz.drug_name.to_list(), molsPerRow=4 ) return im def _ensure_sparse_csr_matrix(x): """ Returns a scipy.csr_matrix given a numpy array or sparse matrix. """ if sparse.issparse(x): if sparse.isspmatrix_csr(x): return x else: return x.tocsr() else: if isinstance(x, np.ndarray): return sparse.csr_matrix(x) else: raise ValueError('Adj mat should be sparse matrix or numpy array') def csr_to_tensor(csr_mat): """Returns a torch.sparse array from a scipy.csr_matrix.""" coo = csr_mat.tocoo() values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape torch_tensor = torch.sparse.FloatTensor(i, v, torch.Size(shape))#.to_dense() return torch_tensor class CellGraph: def __init__( self, gene_reg_net:nx.Graph, adj_mat:sparse.csr_matrix, gene_names:list, supervised:bool = False, force_cpu = False ): self.supervised = supervised self.cuda = False if force_cpu else torch.cuda.is_available() self.device = torch.device('cpu') if force_cpu else try_gpu() # Adjacency matrix self.A = _ensure_sparse_csr_matrix(adj_mat) # Edge_indices edge_indices = csr_to_tensor(self.A).coalesce().indices() self.edge_indices = edge_indices def get_cell_graph(self, x, y=None, g = None): """ Returns a torch_geometric.data.Data given a vector of counts "x" and a label "y". Params ------ x (torch.Tensor) Counts for each gene. y (int, default = None) Label for supervised models. g (torch.Tensor) "g_cols", extra columns for conditional generators. """ cell_graph = torch_geometric.data.Data( x = torch.from_numpy(x).to(self.device), y = y, g = g, edge_index = self.edge_indices.to(self.device) ) return cell_graph def get_dims_linear(weight_mat_layers, weight_dict): """ Returns a list of dimensions of layers of an mlp in decreasing order. """ dims = [] for ix, layer in enumerate(weight_mat_layers): dim_out, dim_in = weight_dict[layer].shape if ix == 0: dims.extend([dim_in, dim_out]) else: dims.append(dim_out) return dims def get_dims_conv(weight_mat_layers, weight_dict): """ Returns a list of dimensions of layers of an GraphConvNet in decreasing order. """ dims = [] for ix, layer in enumerate(weight_mat_layers): dim_in, dim_out = weight_dict[layer].shape if ix == 0: dims.extend([dim_in, dim_out]) else: dims.append(dim_out) return dims def infer_dims_from_state_dict( weight_dict,#:collections.OrderedDict, model_type = 'mlp' )->list: """ Returns a list of dimensions for an mlp. Params ------ type (str, default = 'mlp') One of mlp and gnn """ layer_names = list(weight_dict.keys()) if model_type == 'mlp': weight_mat_layers = [layer for layer in layer_names if 'linear.weight' in layer] dims = get_dims_linear(weight_mat_layers, weight_dict) return dims elif model_type == 'gnn': conv_weight_layers = [ layer for layer in layer_names if 'graph' in layer and 'weight' in layer ] dims_conv = get_dims_conv(conv_weight_layers, weight_dict) linear_layers = [ layer for layer in layer_names if 'linear.weight' in layer ] dims_lin = get_dims_linear(linear_layers, weight_dict) return dims_conv, dims_lin def get_top_genes(top_ixs, return_scores = False): """ Params ------ top_ixs (list of torch.tensor) Indices for the top genes in every (SAG) pooling layer. Notes ----- top_ixs is a nested list, so all lists refer to the first one. """ assert len(top_ixs)>=2, "You already have top indices !" # Use 0th index as second is attention weights top_ixs_np = [x[0].numpy() for x in top_ixs] n_layers = len(top_ixs) if n_layers >2: for i in np.arange(1, n_layers-1): tmp_ixs = top_ixs_np[i][top_ixs_np[i+1]] else: tmp_ixs = top_ixs_np[1] top_gene_ixs = top_ixs_np[0][tmp_ixs] if return_scores: att_wts = top_ixs[n_layers-1][1].detach().numpy() #top_att_wts = att_wts[tmp_ixs] return top_gene_ixs, att_wts return top_gene_ixs def make_knn_graph_eps(data, epsilon = 1, return_adjacency_only = False): """ Returns an ϵ-neighborhood graph in NetworkX format. The graph is constructed by connecting points whose distance is smaller than ϵ. Params ------ data (np.ndarray) Dataset to make ϵ-graph from. epsilon(float, default = 1) Minimum distance to deem a connection between two points. return_adjacency(bool, default = False) Only return the adjacency matrix of the graph, instead of the NetworkX graph. Returns ------- G (nx.Graph) Epsilon graph in nx fmt. A (optional) Adjacency matrix. Notes ----- By default uses euclidean distance but could be generalized to use any other distance metric. """ # Get distance matrix #D = generalized_distance_matrix(data, data) from sklearn import metrics D = metrics.pairwise_distances(data) # Keep only distances below epsilon mask = D <= epsilon D_thresh = D*mask # Make weighted adjacency matrix, # weight is prop to inverse of distance # and safe divide by zero A = np.divide(1, D_thresh, out = np.zeros_like(D_thresh), where=D_thresh!=0) if return_adjacency_only: return A G = nx.from_numpy_matrix(A) return G def get_louvain_clus_epsilon_graph(data, eps = 1, _plot = False, res = 1): """ Returns a dictionary containing the clusters for a knn graph G. Params ------ data (np.ndarray) Data to construct the kNN graph from. eps (float) Minimum distance to make an edge between two points. res (float, default = 1) Resolution for Louvain algorithm. Returns ------- clus (dict) Dictionary of cluster membership for each datapoint. Keys are the standard indices of the numpy array. """ G = make_knn_graph_eps(data, eps=eps) clus = community.best_partition(g, resolution = res) if _plot: # Visualize graph - TO-DO: color by clusters plt.figure(figsize = (3,3)) nx.draw(G, with_labels = True, node_size = 3, node_color = 'lightblue') return clus def choose_clus_laplacian_epsilon_graph( data, eps = 1, tol = 1e-6, return_eigvecs = False ): A = make_knn_graph_eps(data, epsilon = eps, return_adjacency_only = True) D = np.diag(A.sum(axis = 0)) L = D - A eigvals, eigvecs = np.linalg.eig(L) n_clus = np.sum(eigvals < tol) if return_eigvecs: return n_clus, eigvecs return n_clus def choose_clus_laplacian_knn( data, k_neighbors = 10, tol = 1e-6, return_all = False ): """ Returns the optimal number of clusters to use using spectral clustering. It uses a kNN graph as an approximation of the data manifold. By definition, the number of disjoint vertex sets will be equal to the number of zero eigenvalues, i.e. the dimension of the eigenspace corresponding to the zero eigenvalue of the graph Laplacian. Params ------ data (np.ndarray) Data to construct the kNN graph from. k_neighbors (int, default = 10) Number of neighbors to build the kNN graph. tol (float, default = 1e-6) Upper bound to deem an eigenvalue as a zero eigenvalue. I.e. any eigval λ < tol, will be set to zero. Returns ------- n_clus (int) Number of eigenvalues below tol. A, eigvecs (optional) Adjacency matrix and eigenvectors of graph laplacian. """ A = kneighbors_graph( data, k_neighbors, mode = 'connectivity', p = 2, include_self = True, n_jobs = -1 ).toarray() D = np.diag(A.sum(axis = 1)) L = D - A eigvals, eigvecs = np.linalg.eig(L) n_clus = np.sum(eigvals < tol) if return_all: return n_clus, eigvecs, return n_clus def get_knn_graph_louvain(data, k = 4, verbose =True): """ Returns a knn graph in nx format and louvain cluster for each datapoint. Params ------ k(int) Number of k neighbors to build the graph with. """ if verbose: print('Starting kNN graph') A = kneighbors_graph( data, k, mode='connectivity', p = 2, include_self=True ) if verbose: print('Finished kNN graph.') n_edges = A.data.size print('The data had %d edges using k= %d'%(n_edges, k)) G = nx.from_scipy_sparse_matrix(A) if verbose: print('Starting Louvain clustering algorithm.') clus = community.best_partition(G) n_clus = max(clus.values()) if verbose: print('Found using %d clusters with k = %d \n'%(n_clus, k)) print('Finished Louvain.') clus_labels = clus.values() return G, clus_labels def get_bayesian_information_criterion(data, max_clusters, min_clusters = 2): """ Returns the bayesian information criterion for a number of Gaussian Mixture models. This is aimed to choose the number of clusters for a given dataset. The number of clusters that minimizes the Bayesian information criterion, maximizes the likelihood of the model best explaining the dataset. Params -------- max_clusters(int) Maximum number of clusters to run against. data (array-like or pd.DataFrame) Dataset (n_samples, n_variables) to be clustered Returns -------- bic(list) Bayesian information criterion score for each model. """ # Initialize array for the number of clusters n_components = np.arange(min_clusters, max_clusters) # Run a GMM model for each of the number of components models = [GMM(n, covariance_type='full', random_state=0).fit(data) for n in n_components] # Extract the Schwarz (bayesian) information criterion for each model bic = [m.bic(data) for m in models] return bic, models def run_gmm(data, n_clus = 5): """ Returns the results from a Gaussian Mixture model with n_clus. """ seed = 47 clus_object = GMM(n_components = n_clus, verbose = True, random_state = seed) clus_object.fit(data) labels = clus_object.predict(data) bic = clus_object.bic(data) return labels, clus_object, bic def load_nsaid_names(): classification = { "salicylates": ["aspirin", "diflunisal", "salsalate"], "propionic acid derivatives": [ #2-arylpropionic acid scaffold "ibuprofen", "dexibuprofen", "naproxen", "fenoprofen", "ketoprofen", "dexketoprofen", "flurbiprofen", "oxaprozin", "loxoprofen", "pelubiprofen", "zaltoprofen", "pranoprofen", "suprofen" ], "acetic acid derivatives":[ "indomethacin", "tolmetin", "sulindac", "etodolac", "ketorolac", "diclofenac", "aceclofenac", "bromfenac", "nabumetone", ], "oxicams": # enolic acid derivatives [ "piroxicam", "meloxicam", "tenoxicam", "droxicam", "lornoxicam", "isoxicam", "phenylbutazone" # bute ], "fenamates": #anthranilic acid derivatives, # anthranlic acid is an nitrogen isostere of salycilate [ "mefenamic acid", "meclofenamic acid", "flufenamic acid", "tolfenamic acid" ], "selective cox-2 inhibitors": # coxibs # have lower risk of gastro bleeding [ "celecoxib", "rofecoxib", "valdecoxib", # withdrawn from market "parecoxib", # FDA withdrawn "lumiracoxib", "etoricoxib", # not FDA approved "firoxocib" # used in dogs /horses ], "sulfonanilides": ["nimesulide"], "others":["clonixin", "licofelone", "harpagide"] } # Need class MO_trainer: """ Multiomics trainer. """ def __init__( self, model, atac_adata, split_dict, batch_size, train_loader, val_loader, rna_adata=None, lr=3e-6, n_epochs=20, model_name=None, model_dir=None ): self.model = model self.batch_size = batch_size self.atac_adata = atac_adata self.rna_adata = atac_adata self.train_loader, self.val_loader = train_loader, val_loader self.n_epochs = n_epochs self.criterion = nn.NLLLoss() self.n_train_batches = len(train_loader.dataset) // batch_size self.n_test_batches = len(val_loader.dataset) // batch_size self.cuda = torch.cuda.is_available() self.device= try_gpu() self.ordering_labels=torch.arange(batch_size).to(self.device) # if self.cuda: # if self.model.logit_scale.device() != self.device: # self.model = self.model.to(self.device) self.optimizer = torch.optim.Adam(self.model.parameters(), lr = lr) self.model_name, self.model_dir = model_name, model_dir def train_step( self, cell_batch, ix_labels ): results_dict={ "train_loss": {} } self.model.zero_grad() atac_batch=torch.from_numpy( self.atac_adata[self.atac_adata.obs.barcodes.isin(ix_labels)].X.A ) if self.cuda: cell_batch = cell_batch.cuda() atac_batch = atac_batch.cuda() logits = self.model(atac_batch.float(),cell_batch.float()) y_atac=F.log_softmax(logits, dim = 1) y_rna=F.log_softmax(logits, dim = 0) # Compute error and average loss_atac = self.criterion(y_atac, self.ordering_labels) loss_rna = self.criterion(y_rna, self.ordering_labels) loss = (loss_atac + loss_rna)/2 atac_acc = accuracy(y_atac.argmax(axis =1), self.ordering_labels) rna_acc = accuracy(y_rna.argmax(axis = 0), self.ordering_labels) acc = (atac_acc + rna_acc)/2 # Backprop and update weights loss.backward() self.optimizer.step() results_dict["train_loss"]["contrastive_loss"] = loss.item() results_dict["train_acc"] = acc return results_dict @torch.no_grad() def val_step(self, cell_batch, ix_labels): results_dict = {"test_loss": {}} atac_batch=torch.from_numpy( self.atac_adata[self.atac_adata.obs.barcodes.isin(ix_labels)].X.A ) if self.cuda: cell_batch = cell_batch.cuda() atac_batch = atac_batch.cuda() logits = self.model(atac_batch.float(),cell_batch.float()) y_atac=F.log_softmax(logits, dim = 1) y_rna=F.log_softmax(logits, dim = 0) # Compute error and average loss_atac = self.criterion(y_atac, self.ordering_labels) loss_rna = self.criterion(y_rna, self.ordering_labels) loss = (loss_atac + loss_rna)/2 atac_acc = accuracy(y_atac.argmax(axis =1), self.ordering_labels) rna_acc = accuracy(y_rna.argmax(axis = 0), self.ordering_labels) acc = (atac_acc + rna_acc)/2 results_dict["test_loss"]["contrastive_loss"] = loss.item() results_dict["test_acc"] = acc return results_dict def train(self)-> pd.DataFrame: df_train_loss, df_train_acc = pd.DataFrame(), pd.DataFrame() df_test_loss, df_test_acc = pd.DataFrame(),
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # pylint: disable=E1101 # pylint: disable=E0611 # pylint: disable=E0401 """Gathers data from dynamodb database and plots it to a Folium Map for display. This is the main component of the visualization tool. It first gathers data on all of the segment stored in the dynamodb, then constructs a Folium map which contains both the route segments and census tract-level socioeconomic data taken from the American Community Survey. The map is saved as an html file to open in a web browser. """ import os import json import boto3 import branca.colormap as cm import folium from folium.plugins import FloatImage import matplotlib.pyplot as plt import numpy as np import pandas as pd from transit_vis.src import config as cfg def connect_to_dynamo_table(table_name): """Connects to the dynamodb table specified using details from config.py. Uses the AWS login information stored in config.py to attempt a connection to dynamodb using the boto3 library, then creates a connection to the specified table. Args: table_name: The name of the table on the dynamodb resource to connect. Returns: A boto3 Table object pointing to the dynamodb table specified. """ dynamodb = boto3.resource( 'dynamodb', region_name=cfg.REGION, aws_access_key_id=cfg.ACCESS_ID, aws_secret_access_key=cfg.ACCESS_KEY) table = dynamodb.Table(table_name) return table def dump_table(dynamodb_table): """Downloads the contents of a dynamodb table and returns them as a list. Iterates through the contents of a dynamodb scan() call, which returns a LastEvaluatedKey until there are no results left in the scan. Appends each chunk of data returned by scan to an array for further use. Args: dynamodb_table: A boto3 Table object from which all data will be read into memory and returned. Returns: A list of items downloaded from the dynamodb table. In this case, each item is a bus route as generated in initialize_db.py. """ result = [] response = dynamodb_table.scan() result.extend(response['Items']) while 'LastEvaluatedKey' in response.keys(): response = dynamodb_table.scan(ExclusiveStartKey=response['LastEvaluatedKey']) result.extend(response['Items']) return result def table_to_lookup(table): """Converts the contents of a dynamodb table to a dictionary for reference. Uses dump_table to download the contents of a specified table, then creates a route lookup dictionary where each key is (route id, express code) and contains elements for avg_speed, and historic_speeds. Args: table: A boto3 Table object from which all data will be read into memory and returned. Returns: A dictionary with (route id, segment id) keys and average speed (num), historic speeds (list), and local express code (str) data. """ # Put the data in a dictionary to reference when adding speeds to geojson items = dump_table(table) route_lookup = {} for item in items: if 'avg_speed_m_s' in item.keys(): route_id = int(item['route_id']) local_express_code = item['local_express_code'] hist_speeds = [float(i) for i in item['historic_speeds']] route_lookup[(route_id, local_express_code)] = { 'avg_speed_m_s': float(item['avg_speed_m_s']), 'historic_speeds': hist_speeds } return route_lookup def write_census_data_to_csv(s0801_path, s1902_path, tract_shapes_path): """Writes the data downloaded directly from ACS to TIGER shapefiles. Reads in data from .csv format as downloaded from the American Community Survey (ACS) website, then filters to variables of interest and saves. In this case the two tables are s0801 and s1902, which contain basic socioeconomic and commute-related variables. Data was downloaded at the census tract level for the state of Washington. The data is saved in .csv format to be used in the Folium map. Args: s0801_path: A string path to the location of the raw s0801 data, not including file type ending (.csv). s1902_path: A string path to the location of the raw s1902 data, not including file type ending (.csv). tract_shapes_path: A string path to the geojson TIGER shapefile as downloaded from the ACS, containing polygon data for census tracts in the state of Washington. Returns: 1 after writing the combined datasets to a *_tmp file in the same folder as the TIGER shapefiles. """ # Read in the two tables that were taken from the ACS data portal website s0801_df = pd.read_csv(f"{s0801_path}.csv") s1902_df = pd.read_csv(f"{s1902_path}.csv") # Filter each table to only variables of interest, make more descriptive commuters_df = s0801_df[[ 'GEO_ID', 'NAME', 'S0801_C01_001E', 'S0801_C01_009E']] commuters_df.columns = [ 'GEO_ID', 'NAME', 'total_workers', 'workers_using_transit'] commuters_df = commuters_df.loc[1:len(commuters_df), :] commuters_df['GEO_ID'] = commuters_df['GEO_ID'].str[-11:] # Repeat for s1902 households_df = s1902_df[[ 'GEO_ID', 'NAME', 'S1902_C01_001E', 'S1902_C03_001E', 'S1902_C02_008E', 'S1902_C02_020E', 'S1902_C02_021E']] households_df.columns = [ 'GEO_ID', 'NAME', 'total_households', 'mean_income', 'percent_w_assistance', 'percent_white', 'percent_black_or_african_american'] households_df = households_df.loc[1:len(households_df), :] households_df['GEO_ID'] = households_df['GEO_ID'].str[-11:] # Combine datasets on their census tract ID and write to .csv file final_df = pd.merge(commuters_df, households_df, on='GEO_ID').drop(columns=['NAME_x', 'NAME_y']) final_df.to_csv(f"{tract_shapes_path}_tmp.csv", index=False) return 1 def write_speeds_to_map_segments(speed_lookup, segment_path): """Creates a _tmp geojson file with speed data downloaded from dynamodb. Loads the segments generated from initialize_db.py and adds speeds to them based on the specified dictionary. Writes a new *_tmp geojson file that will be loaded by the Folium map and color coded based on segment average speed. Args: speed_lookup: A Dictionary object with (route id, local_express_code) keys and average speed data to be plotted by Folium. segment_path: A string path to the geojson file generated by initialize_db.py that contains route coordinate data. Returns: A list containing the average speed of each segment that was successfully paired to a route (and will be plotted on the map). """ if isinstance(speed_lookup, dict): pass else: raise TypeError('Speed lookup must be a dictionary') # Read route geojson, add property for avg speed, keep track of all speeds speeds = np.ones(0) with open(f"{segment_path}.geojson", 'r') as shapefile: kcm_routes = json.load(shapefile) # Check if each geojson feature has a speed in the database for feature in kcm_routes['features']: route_id = feature['properties']['ROUTE_ID'] local_express_code = feature['properties']['LOCAL_EXPR'] if (route_id, local_express_code) in speed_lookup.keys(): speed = speed_lookup[(route_id, local_express_code)]['avg_speed_m_s'] feature['properties']['AVG_SPEED_M_S'] = speed feature['properties']['HISTORIC_SPEEDS'] = \ speed_lookup[(route_id, local_express_code)]['historic_speeds'] speeds = np.append(speeds, speed) else: feature['properties']['AVG_SPEED_M_S'] = 0 feature['properties']['HISTORIC_SPEEDS'] = [0] # Plot and save the distribution of speeds to be plotted with Folium plt.figure(figsize=(4, 2.5)) plt.style.use('seaborn') plt.hist(speeds[np.nonzero(speeds)], bins=15) plt.xlim((0, 30)) plt.title('Network Speeds') plt.xlabel('Average Speed (m/s)') plt.ylabel('Count of Routes') plt.savefig(f"{segment_path}_histogram.png", bbox_inches='tight') # Write the downloaded speeds to temp file to be plotted with Folium with open(f"{segment_path}_w_speeds_tmp.geojson", 'w+') as new_shapefile: json.dump(kcm_routes, new_shapefile) return speeds def generate_folium_map(segment_file, census_file, colormap): """Draws together speed/socioeconomic data to create a Folium map. Loads segments with speed data, combined census data, and the colormap generated from the list of speeds to be plotted. Plots all data sources on a new Folium Map object centered on Seattle, and returns the map. Args: segment_file: A string path to the geojson file generated by write_speeds_to_map_segments that should contain geometry as well as speed data. census_file: A string path to the geojson file generated by write_census_data_to_csv that should contain the combined s0801 and s1902 tables. colormap: A Colormap object that describes what speeds should be mapped to what colors. Returns: A Folium Map object containing the most up-to-date speed data from the dynamodb. """ # Read in route shapefile and give it styles kcm_routes = folium.GeoJson( name='King Country Metro Speed Data', data=f"{segment_file}_w_speeds_tmp.geojson", style_function=lambda feature: { 'color': 'gray' if feature['properties']['AVG_SPEED_M_S'] == 0 \ else colormap(feature['properties']['AVG_SPEED_M_S']), 'weight': 1 if feature['properties']['AVG_SPEED_M_S'] == 0 \ else 3}, highlight_function=lambda feature: { 'fillColor': '#ffaf00', 'color': 'blue', 'weight': 6}, tooltip=folium.features.GeoJsonTooltip( fields=['ROUTE_NUM', 'AVG_SPEED_M_S', 'ROUTE_ID', 'LOCAL_EXPR', 'HISTORIC_SPEEDS'], aliases=['Route Number', 'Most Recent Speed (m/s)', 'Route ID', 'Local (L) or Express (E)', 'Previous Speeds'])) # Read in the census data/shapefile and create a choropleth based on income seattle_tracts_df =
pd.read_csv(f"{census_file}_tmp.csv")
pandas.read_csv
import argparse import pandas as pd import itertools import os from ast import literal_eval from helper_functions import comorbidity_indicator # Computes basic stats for a data segment; takes in a Pandas Dataframe with # appropriate fields (sum_costs and num_comorbidities). def segment_stats(data): row_dict = {} row_dict['avg_cost'] = data.sum_costs.mean() row_dict['std_cost'] = data.sum_costs.std() row_dict['num_person_years'] = data.shape[0] row_dict['avg_num_com'] = data.no_comorbidities.mean() row_dict['std_num_com'] = data.no_comorbidities.std() return row_dict def main(args): df_merged = pd.read_csv(args.input_file) df_merged.classes = df_merged.classes.apply(lambda x: literal_eval(x)) df_merged.agg_indices = \ df_merged.agg_indices.fillna('None').apply(lambda x: literal_eval(x)) df_merged.sex.fillna('Not provided') pop_N = df_merged.shape[0] # grab total number of person-years # IMPORT DESCRIPTION INDEX desc_dict = pd.read_excel(args.disease_dict).long.to_dict() # We will be grouping by pairs of comorbid diseases. disease_dyads = [i for i in itertools.combinations(range(len(desc_dict)), 2)] # Ancillary function to convert pairs of disease indices to pairs of # disease descriptions. def map_dyad(d_dyad): return [desc_dict[d_dyad[0]], desc_dict[d_dyad[1]]] bins = [0,18,35,50,65,150] age_labels = ['0-18','18-35','35-50','50-65','65+'] df_merged['age_bin'] = pd.cut(df_merged.age, bins=bins, labels=age_labels) sexes = ['F','M'] # convert comorbidity list to boolean columns ## comorbidity_indicator() for i in range(len(desc_dict)): df_merged[desc_dict[i]] = comorbidity_indicator(df_merged,[str(i)]) # disease stats diseases_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Now adds smoothing to the series. Smoothing parameters are added to our models hyperparameters. """ # ============================================================================= # IMPORTS # ============================================================================= import pandas as pd import numpy as np import datetime as dt import matplotlib.pyplot as plt import time import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, LSTM, GRU, Dense, Dropout, LayerNormalization, Bidirectional #BatchNormalization - NO from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator from scipy.ndimage import gaussian_filter1d # ============================================================================= # CLASSES & FUNCTIONS # ============================================================================= class BuildModel(): """ Build a model. Arguments allow one to customise the hyper parameters ATTRIBUTES :- length - number of steps in time sequence to feed the rnn layers_num - number of rnn layers in model (capped at 3) layers_type - select "LSTM" or "GRU" units - number of units in rnn layers num_step_preds - number of steps/days in time to predict dropout - dropout % to be applied to rnn units g_filt - gaussian filter for smoothing. Default: no smoothing batch_size - number of samples to feed model at a time. patience - how many epochs to wait before stopping model after finding good score. model_name - file name of model we save. must end in ".h5" eg 'temp_model.h5' """ def __init__(self, model_name, length=10, layers_num=1, layers_type='LSTM',\ units=50, dropout=0.0, g_filt=00.1, num_step_preds=1,\ epochs=8, batch_size=1, patience=5): #assertions for input assert 0 < layers_num < 4, "1 <= layers_num <= 3" assert layers_type in ['LSTM', 'GRU'], "layers_type is LSTM or GRU" assert 0 <= dropout < 1, "dropout must be float < 1" assert model_name[-3:] == '.h5', "End model_name with '.h5'" #initialise self.model_name = model_name self.length = length self.layers_num = layers_num self.layers_type = layers_type self.units = units self.num_step_preds = num_step_preds self.dropout = dropout self.g_filt = g_filt self.epochs = epochs self.batch_size = batch_size self.n_features = 1 #callbacks self.callbacks =[EarlyStopping(monitor='val_loss', patience=patience),\ ModelCheckpoint(self.model_name, monitor='val_loss',\ save_best_only=True)] #BUILD MODEL ##inputs self.model = Sequential() self.model.add(InputLayer(input_shape=(self.length, self.n_features))) ##add extra layers as required (or not if layers_num = 1) for i in range(layers_num - 1): self.model.add(eval('{}(units={}, dropout={}, return_sequences=True)'\ .format(self.layers_type, self.units, self.dropout))) ##closing rnn layer (do not return squences) self.model.add(eval('{}(units={}, dropout={})'\ .format(self.layers_type, self.units, self.dropout))) ##Dense output self.model.add(Dense(units=self.num_step_preds)) #compile model self.model.compile(optimizer='adam', loss='mse', metrics=['mae']) def setupData(self, series, val_days=450): """ splits data, scales data, creates generators for the model """ assert val_days > self.length , "val_days must exceed lenght" #split data into train and validation self.train = series.iloc[:-val_days] self.validation = series.iloc[-val_days:] #Apply smoothing filters self.train_smooth = \ gaussian_filter1d(self.train, self.g_filt)\ .reshape(-1,1) self.validation_smooth = \ gaussian_filter1d(self.validation, self.g_filt)\ .reshape(-1,1) #create time series generators self.generator = \ TimeseriesGenerator(data=self.train_smooth,\ targets=self.train_smooth,\ length=self.length,\ batch_size=self.batch_size) self.val_generator = \ TimeseriesGenerator(data=self.validation_smooth,\ targets=self.validation_smooth,\ length=self.length,\ batch_size=self.batch_size) def fitModel(self): """ Fits the model on your generators for training and validation sets. EarlyStopping call back ends training if val_loss doesnt improve. Record epoch metrics in a DataFrame. """ self.model.fit(self.generator, validation_data=self.val_generator,\ epochs=self.epochs, callbacks=self.callbacks) self.history =
pd.DataFrame(self.model.history.history)
pandas.DataFrame
import copy import itertools import os import numpy as np import pandas as pd from pathlib import Path from sklearn.preprocessing import PowerTransformer from scipy.stats import yeojohnson from tqdm import tqdm import tensorflow as tf import warnings warnings.simplefilter("ignore") n_wavelengths = 55 n_timesteps = 300 class read_Ariel_dataset(): def __init__(self, noisy_path_train, noisy_path_test, params_path, start_read): """ For reading Ariel Dataset. :param noisy_path_train: (str) The *relative path's parent directory* from the current working directory to all noisy training files. For local files start with "./", for colab files alternatively start with "/content/" (and "./" works fine). :param noisy_path_train: (str) The *relative path's parent directory* from the current working directory to all noisy test files. For local files start with "./", for colab files alternatively start with "/content/" (and "./" works fine). :param params_path: (str) The *relative path's parent directory* from the current working directory to all params files. For local files start with "./", for colab files alternatively start with "/content/" (and "./" works fine). :param start_read: (int) How many data points to replace at the beginning of the file. Used for preprocessing of files by replacing values before start_read with 1.0 to minimize impact of the drop valley. """ super().__init__() self.noisy_path = noisy_path_train self.noisy_path_test = noisy_path_test self.params_path = params_path self.start_read = start_read # list all files in path(s). self.noisy_list= os.listdir(self.noisy_path) self.noisy_list_test = os.listdir(self.noisy_path_test) self.params_list = os.listdir(self.params_path) # Grouped by AAAA: self.group_noisy_list = self._group_list(self.noisy_list) self.group_noisy_list_test = self._group_list(self.noisy_list_test) self.group_params_list = self._group_list(self.params_list) def _group_list_return(self): """ Only used for unit test purposes. Return self.group_noisy_list and assert it is true. """ return self.group_noisy_list def _choose_train_or_test(self, folder="noisy_train", batch_size=1): """Private function to choose train or test. :param batch_size (int): The batch size to take. NotImplemented yet. """ if folder == "noisy_train": path = self.noisy_path files = self.noisy_list elif folder == "noisy_test": path = self.noisy_path_test files = self.noisy_list_test else: raise FileNotFoundError("Not in the list (noisy_train, noisy_test). " "Please input the choices in the list stated and try again.") return path, files def _len_noisy_list(self): return len(self.noisy_list) def unoptimized_read_noisy(self, folder="noisy_train", **kwargs): """ Read noisy files greedily, stacking them on the first axis. First axis is the time series axis. So a file with 300x55, read 3 files would be 900x55. :param folder (str): Which folder to do baseline transition. Choices: "noisy_train" (default), "noisy_test". """ path, files = self._choose_train_or_test(folder=folder, **kwargs) predefined = pd.DataFrame() for item in files: # Concatenate filename and their parent folder. relative_file_path = path + "/" + item # Renaming the columns names = [item[-14:-4] + f"_{i}" for i in range(n_timesteps)] curr = pd.read_csv(relative_file_path, delimiter="\t", skiprows=6, header=None) curr.rename(columns={x: y for x, y in zip(curr.columns, names)}, inplace=True) # Concatenating the pandas. predefined = pd.concat([predefined, curr], axis=1) return predefined def unoptimized_read_params(self): """ Read params files greedily, stacking them on the first axis. """ predefined = pd.DataFrame() for item in self.params_list: # Relative file path: relative_file_path = self.params_path + "/" + item names = [item[-14:-4]] # Have to be a list to take effect curr = pd.read_csv(relative_file_path, delimiter="\t", skiprows=2, header=None).T curr.rename(columns = {x: y for x, y in zip(curr.columns, names)}, inplace=True) predefined = pd.concat([predefined, curr], axis=1) return predefined def _group_list(self, mylist): """ Group list together. Here the function is specific to group AAAA together into a sublist to not cramp the memory and dataframe I/O. """ return [list(v) for i, v in itertools.groupby(mylist, lambda x: x[:4])] def read_noisy_extra_param(self, folder="train", saveto="./feature_store/noisy_train"): """ Read the extra 6 stellar and planet parameters in noisy files. :param folder (str): "train" or "test" choice. Default "train" for noisy train set. :param saveto (str): The directory to save to. Will make the directory if not already exists. """ header = ["star_temp", "star_logg", "star_rad", "star_mass", "star_k_mag", "period"] predefined = pd.DataFrame() if saveto[-1] != "/": saveto += "/" try: os.makedirs(saveto) except OSError as e: pass if folder == "train": path = self.noisy_path mylist = self.group_noisy_list elif folder == "test": path = self.noisy_path_test mylist = self.group_noisy_list_test else: raise ValueError("Invalid 'folder' entry. Please choose between 'train' or 'test'.") # To ensure small enough, read them into groups of csv first. for grouped_item in tqdm(mylist): for item in grouped_item: temp_storage_float = [] relative_file_path = path + "/" + item with open(relative_file_path, "r") as f: temp_storage_str = list(itertools.islice(f, 6)) # Preprocess for numbers only for string in temp_storage_str: # Separate the digits and the non-digits. new_str = ["".join(x) for _, x in itertools.groupby(string, key=str.isdigit)] # Only new_str[0] is the one we want to omit. # We want to join back into a single string because "." previously is classifed # as non-digit. new_str = "".join(new_str[1:]) # Convert to float. temp_storage_float.append(float(new_str)) # Convert to pandas DataFrame. temp_storage_float = pd.DataFrame(temp_storage_float) # Define file name names = [item[-14:-4]] # Change the column name temp_storage_float.rename(columns = {x: y for x, y in zip(temp_storage_float.columns, names)}, inplace=True ) # Change the row names for predefined (optional for readability) temp_storage_float.rename(index = {x: y for x, y in zip(range(6), header)}, inplace=True) predefined = pd.concat([predefined, temp_storage_float], axis=1) predefined.to_csv(saveto + item[:4] + ".csv") # Reset predefined predefined = pd.DataFrame() # Then concatenate the csv files. saved_list = os.listdir(saveto) predefined = pd.DataFrame() for item in saved_list: relative_file_path = saveto + item name = [item[:-4]] # ignore the .csv at the end. temp_df = pd.read_csv(relative_file_path, index_col=0) predefined = pd.concat([predefined, temp_df], axis=1) return predefined def read_params_extra_param(self, saveto="./feature_store/params_train"): """ Read the extra 2 intermediate target params in the params files. """ header = ["sma", "incl"] predefined = pd.DataFrame() if saveto[-1] != "/": saveto += "/" try: os.makedirs(saveto) except OSError as e: pass mylist = self.group_params_list # Since we only have one folder, so hardcoded here. for grouped_item in tqdm(mylist): for item in grouped_item: temp_storage_float = [] relative_file_path = self.params_path + "/" + item with open(relative_file_path, "r") as f: temp_storage_str = list(itertools.islice(f, 2)) # Preprocess for numbers only for string in temp_storage_str: # Separate the digits and the non-digits. new_str = ["".join(x) for _, x in itertools.groupby(string, key=str.isdigit)] # Only new_str[0] is the one we want to omit. # We want to join back into a single string because "." previously is classifed # as non-digit. new_str = "".join(new_str[1:]) # Convert to float. temp_storage_float.append(float(new_str)) # Convert to pandas DataFrame. temp_storage_float = pd.DataFrame(temp_storage_float) # Define file name names = [item[-14:-4]] # Change the column name temp_storage_float.rename(columns = {x: y for x, y in zip(temp_storage_float.columns, names)}, inplace=True ) # Change the row names for predefined (optional for readability) temp_storage_float.rename(index = {x: y for x, y in zip(range(6), header)}, inplace=True) predefined = pd.concat([predefined, temp_storage_float], axis=1) predefined.to_csv(saveto + item[:4] + ".csv") # Reset predefined predefined = pd.DataFrame() # Then concatenate the csv files. saved_list = os.listdir(saveto) predefined = pd.DataFrame() print(saved_list) for item in saved_list: relative_file_path = saveto + item name = [item[:-4]] # ignore the .csv at the end. temp_df = pd.read_csv(relative_file_path, index_col=0) predefined = pd.concat([predefined, temp_df], axis=1) return predefined def data_augmentation_baseline(self, folder="noisy_train", extra_transform=None, **kwargs): """ Data augmentation: What is being done to the data by the Baseline model done by the organizer. :param folder (str): Which folder to do baseline transition. Choices: "noisy_train" (default), "noisy_test". :param extra_transform (str): Are there any other transformation you would like to make before going into final transform? Note: only restricted support. Choose from "log", "sqrt" and "square". """ # Read file df = self.unoptimized_read_noisy(folder=folder, **kwargs) path, files = self._choose_train_or_test(folder=folder, **kwargs) # Transformation 1: First 30 points of each light curve are replaced # by 1 to reduce the impact from the ramps. # Get all files according to how column names are defined. label_names = [x[-14:-4] for x in files] for label_name in label_names: for i in range(self.start_read): for j in range(n_wavelengths): df[str(label_name) + "_" + str(i)][j] = 1 # Extra transformation outside of what is being done in baseline. # Tests yet to be implemented. for i in range(n_wavelengths): if extra_transform == "log": df.iloc[i] = np.log(df.iloc[i]) elif extra_transform == "sqrt": df.iloc[i] = np.sqrt(df.iloc[i]) elif extra_transform == "square": df.iloc[i] = np.square(df.iloc[i]) # Transformation 2: -1 to all data points in the file. df = df - 1 # Transformation 3: Values rescaled by dividing by 0.06 for standard deviation # closer to unity. df /= 0.04 return df def read_noisy_vstacked(self, from_baseline=True, dataframe=None, **kwargs): """ Read file vstacked on each other instead of concatenating along the column. So for example, our file with timestep of 300 for 3 files, instead of returning for one single wavelength shape of (1, 900) will return (3, 300) instead. This way we aggregate all one single wavelength onto one block and continue vstacking downwards, keeping the rows = 300 constant. :param from_baseline (bool): get data from data_augmentation_baseline directly or insert data yourself? Default to True. :param dataframe (pandas.DataFrame): the data to be passed in. Only to be used if from_baseline = False, otherwise default to None. """ if from_baseline == True: df = self.unoptimized_read_noisy(**kwargs) else: df = dataframe new_df = pd.DataFrame() for key, value in df.iterrows(): start_count_sectors = 0 end_count_sectors = n_timesteps # To iterate for every 300 timesteps since this is from a single file. while end_count_sectors <= len(value): data = np.array(value[start_count_sectors: end_count_sectors]) new_df = new_df.append(pd.DataFrame(data).T, ignore_index = True) start_count_sectors = end_count_sectors end_count_sectors += n_timesteps return new_df def yeo_johnson_transform(self, from_baseline=True, dataframe=None, original_shape=True, **kwargs): """ The Yeo-Johnson Transform: https://www.stat.umn.edu/arc/yjpower.pdf To "normalize" a non-normal distribution (i.e. transform from non-Gaussian to Gaussian distribution), for a mix of positive and negative numbers, (or strictly positive or strictly negative). :param from_baseline (bool): get data from data_augmentation_baseline directly or insert data yourself? Default to True. :param dataframe (pandas.DataFrame): the data to be passed in. Only to be used if from_baseline = False, otherwise default to None. :param original_shape (bool): Whether to concatenate back to original shape of (x, 55). If not True, it will choose a shape of (300, y) instead for easy reading. Defaults to True. """ if from_baseline == True: df = self.data_augmentation_baseline(**kwargs) else: df = dataframe # pt = PowerTransformer(method="yeo-johnson") try: new_df =
pd.DataFrame()
pandas.DataFrame
import pylab as plt; import numpy as np; import pandas as pd import math; import json; from numpy.random import random, normal, uniform, randint from scipy.interpolate import interp1d; from astropy_healpix import HEALPix; from astropy.coordinates import ICRS, SkyCoord; from astropy import units as u; from timeit import default_timer as timer start = timer() N = 1000 ##Change to alter the number of loops the code runs for placement = np.zeros(N) placement2 = np.zeros(N) placement3 = np.zeros(N) placement4 = np.zeros(N) placement5 = np.zeros(N) placement6 = np.zeros(N) placement7 = np.zeros(N) placement8 = np.zeros(N) placement9 = np.zeros(N) placement10 = np.zeros(N) placement11 = np.zeros(N) placement12 = np.zeros(N) placement13 = np.zeros(N) placement14 = np.zeros(N) placement15 = np.zeros(N) placement16 = np.zeros(N) placement17 = np.zeros(N) placement18 = np.zeros(N) placement19 = np.zeros(N) placement20 = np.zeros(N) placement21 = np.zeros(N) placement22 = np.zeros(N) placement23 = np.zeros(N) percentages = np.zeros(N) percentages2 = np.zeros(N) percentages3 = np.zeros(N) percentages4 = np.zeros(N) percentages5 = np.zeros(N) percentages6 = np.zeros(N) percentages7 = np.zeros(N) percentages8 = np.zeros(N) percentages9 = np.zeros(N) percentages10 = np.zeros(N) percentages11 = np.zeros(N) percentages12 = np.zeros(N) percentages13 = np.zeros(N) percentages14 = np.zeros(N) percentages15 = np.zeros(N) percentages16 = np.zeros(N) percentages17 = np.zeros(N) percentages18 = np.zeros(N) percentages19 = np.zeros(N) percentages20 = np.zeros(N) percentages21 = np.zeros(N) percentages22 = np.zeros(N) percentages23 = np.zeros(N) no_se_func = [] ras_dex = np.zeros(shape = (N, 2)) test_case = np.zeros(shape = (N, 2)) def Ang_Dist(ra1, ra2, dec1, dec2):## Calculates the angular distance between apparent position and galaxy ra1 *= (np.pi/180); ra2 *= (np.pi/180) dec1 *= (np.pi/180); dec2 *= (np.pi/180) return (180/np.pi) * np.arccos(np.sin(dec1) * np.sin(dec2) + np.cos(dec1) * np.cos(dec2) * np.cos(ra1 - ra2)) ################################################################# """ def rank(theta, sigma, d_lum, luminosity, luminosity_probability): ## Normal ## Implements a ranking statistic defined in report return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability #* Colour_factor def rank2(theta, sigma, d_lum, luminosity, luminosity_probability): ## Luminosity return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability def rank3(theta, sigma, d_lum, luminosity, luminosity_probability): ## Luminosity Distance return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability def rank4(theta, sigma, d_lum, luminosity, luminosity_probability): ## Lum_prob return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability**2 def rank5(theta, sigma, d_lum, luminosity, luminosity_probability): ## Lum_prob, Lum return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability**2 def rank6(theta, sigma, d_lum, luminosity, luminosity_probability): ## D_Lum, Lum_prob return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability**2 def rank7(theta, sigma, d_lum, luminosity, luminosity_probability): ## D_lum, Lum return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability def rank8(theta, sigma, d_lum, luminosity, luminosity_probability): ## All return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability**2 def rank9(theta, sigma, d_lum, luminosity, luminosity_probability): ## Angular Distance return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability def rank10(theta, sigma, d_lum, luminosity, luminosity_probability): ## Ang_Dist, D_Lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability def rank11(theta, sigma, d_lum, luminosity, luminosity_probability): ## Ang_Dist, Lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability def rank12(theta, sigma, d_lum, luminosity, luminosity_probability): ## Ang_Dist, Lum_Prob return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability**2 def rank13(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except Ang_Dist return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability**2 def rank14(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except Lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability**2 def rank15(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except d_lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability**2 def rank16(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except Lum_prob return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability def rank17(theta, sigma, d_lum, luminosity, luminosity_probability): ## No angular Distance return np.exp(0 * -(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability def rank18(theta, sigma, d_lum, luminosity, luminosity_probability): ## No Luminosity Distance return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum**0 * luminosity)[:, 0] * luminosity_probability def rank19(theta, sigma, d_lum, luminosity, luminosity_probability): ## No Luminosity return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum * luminosity**0)[:, 0] * luminosity_probability**2 def rank20(theta, sigma, d_lum, luminosity, luminosity_probability): ## No Luminosity Probability return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability**0 def rank21(theta, sigma, d_lum, luminosity, luminosity_probability): ## Optimise 1 return np.exp(-(2 * theta**2/((sigma)**2))) * (1/d_lum**8 * luminosity)[:, 0] * luminosity_probability**2 def rank22(theta, sigma, d_lum, luminosity, luminosity_probability): ## Optimise 2 return np.exp(-((theta**2) * (sigma**2))/(2)) * (1/d_lum**8 * luminosity)[:, 0] * luminosity_probability**2 def rank23(theta, sigma, d_lum, luminosity, luminosity_probability): ## Optimise 2 return np.exp(-((theta**2)**100/(2 * (sigma)**2))) * (1/d_lum**8 * luminosity)[:, 0] * luminosity_probability**2 """ ################################################################# #Daves old functions before I fixed them def rank(theta, sigma, d_lum, luminosity, luminosity_probability): ## Normal ## Implements a ranking statistic defined in report return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability #* Colour_factor def rank2(theta, sigma, d_lum, luminosity, luminosity_probability): ## Luminosity return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability def rank3(theta, sigma, d_lum, luminosity, luminosity_probability): ## Luminosity Distance return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability def rank4(theta, sigma, d_lum, luminosity, luminosity_probability): ## Lum_prob return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability**2 def rank5(theta, sigma, d_lum, luminosity, luminosity_probability): ## Lum_prob, Lum return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability**2 def rank6(theta, sigma, d_lum, luminosity, luminosity_probability): ## D_Lum, Lum_prob return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability**2 def rank7(theta, sigma, d_lum, luminosity, luminosity_probability): ## D_lum, Lum return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability def rank8(theta, sigma, d_lum, luminosity, luminosity_probability): ## All return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability**2 def rank9(theta, sigma, d_lum, luminosity, luminosity_probability): ## Angular Distance return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability def rank10(theta, sigma, d_lum, luminosity, luminosity_probability): ## Ang_Dist, D_Lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability def rank11(theta, sigma, d_lum, luminosity, luminosity_probability): ## Ang_Dist, Lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability def rank12(theta, sigma, d_lum, luminosity, luminosity_probability): ## Ang_Dist, Lum_Prob return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability**2 def rank13(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except Ang_Dist return np.exp(-(theta**2/(2 *(sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability**2 def rank14(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except Lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity)[:, 0] * luminosity_probability**2 def rank15(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except d_lum return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum * luminosity**2)[:, 0] * luminosity_probability**2 def rank16(theta, sigma, d_lum, luminosity, luminosity_probability): ## All except Lum_prob return np.exp(-(theta**2/((sigma)**2))) * (1/d_lum**2 * luminosity**2)[:, 0] * luminosity_probability def rank17(theta, sigma, d_lum, luminosity, luminosity_probability): ## No angular Distance return np.exp(0 * -(theta**2/(2 *(sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability def rank18(theta, sigma, d_lum, luminosity, luminosity_probability): ## No Luminosity Distance return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum**0 * luminosity)[:, 0] * luminosity_probability def rank19(theta, sigma, d_lum, luminosity, luminosity_probability): ## No Luminosity return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum * luminosity**0)[:, 0] * luminosity_probability**2 def rank20(theta, sigma, d_lum, luminosity, luminosity_probability): ## No Luminosity Probability return np.exp(-(theta**2/(2 * (sigma)**2))) * (1/d_lum * luminosity)[:, 0] * luminosity_probability**0 def rank21(theta, sigma, d_lum, luminosity, luminosity_probability): ## Optimise 1 return np.exp(-(theta**2/(2 * (sigma)**2)))**(4) * (1/d_lum**0 * luminosity)[:, 0] * luminosity_probability**2 def rank22(theta, sigma, d_lum, luminosity, luminosity_probability): ## Optimise 2 return np.exp(-(theta**2/(2 * (sigma)**2)))**(sigma**4) * (1/d_lum**0 * luminosity)[:, 0] * luminosity_probability**2 def rank23(theta, sigma, d_lum, luminosity, luminosity_probability): ## Optimise 2 return np.exp(-((theta**2)**100/(2 * (sigma)**2))) * (1/d_lum**0 * luminosity)[:, 0] * luminosity_probability**2 ################################################################# def convert(h, m, s): #Hours minutes seconds to degrees (More for applied code than here) return h + (m/60) + (s/3600) ################################################################# def Luminosity_Handling(magnitude): ##Converts Absolute B Magnitude to Luminosity solar_b = 4.74 solar_l = 1 #3.846e26 W return solar_l * 10**(0.4 * (solar_b - magnitude)) ## Gives an array in terms of solar luminosity ########################################################### def spherical_convert(ra, dec): ##Test ##Converts ra and dec to an xyz array r = 1 #ra = phi #dec = theta ##Convert to radians ra = ra * np.pi/180 dec = dec * np.pi/180 x = np.cos(ra) * np.cos(dec) y = np.sin(ra) * np.cos(dec) z = np.sin(dec) return np.array([x, y, z]) ############################################################ def rotation(x, angle):##Test #Rotation about the z axis #need angle in radians rotation = np.array([[np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) return x * rotation ############################################################ def back_convert(axyz): ##Test ## Converts xyz coordinates to ra and dec x = axyz[0] y = axyz[1] z = axyz[2] r = modulus(axyz) arg1 = float(y/x) arg2 = float(z/r) phi = np.arctan(arg1) theta = np.arccos(arg2) return (180/np.pi) * phi, (90 - theta * (180/np.pi))## Returns ra, dec in that order in degrees ################################################################# def modulus(array): ##Test ##Finds the modulus of a matrix/array return np.sqrt(array[0]**2 + array[1]**2 + array[2]**2) ################################################################# def find_nearest(array, value): #Kind of a hash and not exactly interpolation, but for this point, should be okay array = np.asarray(array) - value truey = [i for i, val in enumerate(array) if val >= 0] idx = truey[0]#(np.abs(array - value)).argmin() return idx ################################################################# def reduction(RA_dec, Dec_dec, df_master): ##Reduces the df_master by considering angular distance #host = df_master.iloc[current_i] #RA_dec = ra_prime[0]#host[["RA"]].values.tolist()[0] #Dec_dec = dec_prime[0]#host[["dec"]].values.tolist()[0] ## Testing purposes only (hashed out lines) RA = df_master[["RA"]].values.tolist() ra_arry = np.isclose(RA, RA_dec, atol = error_radius) res_ra = [i for i, val in enumerate(ra_arry) if val == False] ##Something up here - removing too many items DEC = df_master[["dec"]].values.tolist() dec_arry = np.isclose(DEC, Dec_dec, atol = error_radius) res_dec = [i for i, val in enumerate(dec_arry) if val == False] indices_to_keep = set(range(df_master.shape[0])) - set(res_ra) - set(res_dec) df_sliced = pd.DataFrame.take(df_master, list(indices_to_keep), axis = 0) ra = df_sliced[["RA"]].values dec = df_sliced[["dec"]].values return np.array(ra[:, 0]), np.array(dec[:, 0]), df_sliced ################################################################# def Luminosity_back_convert(L_given, d_L): # ##Converts luminosity to luminosity at source #L = L0/4 *np.pi * d_l**2 return (L_given) * (4 * np.pi * (3.086e22 * d_L)**2) def Luminosity_for_convert(L_given, d_L): # ##Converts luminosity at source to apparent luminosity return(L_given)/(4 * np.pi * (3.086e22 * d_L)**2) ################################################################# def L_func(L_test, c, d_L): ## ##Takes an input and returns a probability based on the broken power law L_star = np.log10(4.61e51 * 1e7) ##All from Guetta/Piran 2005 del_1 = 30 del_2 = 10 alpha = 0.5 beta = 1.5 L = np.zeros(len(d_L)) SGR_test = np.zeros(len(d_L)) for j in range(len(d_L)): ## Slightly inefficient, but on the scales of reduced catalog, not too drastic L[j] = np.log10(Luminosity_back_convert(L_test, d_L[j])) L_prob = np.zeros(len(L)) for i in range(len(L)): if L[i] < L_star and (L_star/del_1) < L[i]: L_prob[i] = c * (L[i]/L_star)**-alpha elif L[i] > L_star and L[i] < del_2 * L_star: L_prob[i] = c * (L[i]/L_star)**-beta elif L[i] < (L_star/del_1): L_prob[i] = 0 ## What to do when the values fall outside the range that defines the power law? SGR_test[i] = 1 ##Creates a flag for if the luminosity at source would be low enough to be considered an SGR else: L_prob[i] = 0 return L_prob, SGR_test ################################################################# def L_func1(L): ## ##Builds the broken power law based on a log scale from 52 to 59 L_star = np.log10(4.61e51 * 1e7) del_1 = 30 del_2 = 10 alpha = 0.5 beta = 1.5 N = len(L) L2 = np.zeros(N) summ = 0 sum1 = np.zeros(N) for i in range(N): if L[i] < L_star and (L_star/del_1) < L[i]: L2[i] = (L[i]/L_star)**-alpha elif L[i] > L_star and L[i] < del_2 * L_star: L2[i] = (L[i]/L_star)**-beta else: L2[i] = L_star summ += L2[i] c = 1/(summ) sum1[i] = summ L2 *= c return L2, c ################################################################# def cumulative(array): ### #Builds cumulative distributions N = array.shape[0] summing = np.zeros(N + 1) #array = L2 for i in range(1, N + 1): df = pd.DataFrame(array[:i]) summing[i] = df.sum().values.tolist()[0] return summing# /= summing[-1] ##If you have N galaxies ########################################################################################## def axis_rotation(axis, point, angle): ## Rotation about an axis function init_matrix = np.array([[0, -1 * axis[2], axis[1]], [axis[2], 0, -1 * axis[0]], [-1 * axis[1], axis[0], 0]]) matrix_2 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) term_2 = np.sin(angle) * init_matrix rot_matrix = (1 - np.cos(angle)) * np.dot(init_matrix, init_matrix) + term_2 + matrix_2 rotated_point = np.dot(rot_matrix, point) return rotated_point def Sector_find(RA_grb, Dec_grb, err_radius): ''' Give coordinates of the grb location and an error in the position, this function will use cone_search to find all sky sectors that the cone intersects and will read the corresponding csv files and compile them into one dataframe ''' #corrects for if the rotations of the galaxy coords puts the GRB in an invalid position if abs(Dec_grb) > 90: x = RA_grb parity = Dec_grb/abs(Dec_grb) Dec_grb = (180 - abs(Dec_grb))*parity RA_grb = RA_grb + 180 if RA_grb > 360: RA_grb = x - 180 elif RA_grb < 0: RA_grb = 360 + RA_grb #making the sky coordinates coords = SkyCoord(RA_grb, Dec_grb, unit = "deg") #finding intersecting sectors sectors = hp.cone_search_skycoord(coords, radius = err_radius*u.degree) #making the empty dataframe df_container = pd.DataFrame() for i in sectors: ''' loop over the intersecting sectors to read the files and append to the df_container ''' name = name = str("Sector_{}".format(i)) holder = pd.read_csv("Data Files/GLADE_Sectioned/{}.csv".format(name),\ delimiter = ",", index_col = 0) df_container = df_container.append(holder) return df_container ######################################################################################### ######################################################################################### df_master = pd.read_csv("Data Files/GLADE_Master.csv", delimiter = ",", low_memory = False) ##GLADE_Master.csv previously defined L1 = np.linspace(56, 59, 101) #In J now L2, c = L_func1(L1) # ##Builds broken power law cumuL = cumulative(L2) ##Luminosity Distribution df_cumLum = pd.read_csv("Data Files/Cumulative Luminosity.csv") df_cumLum.columns = ["NaN", "Cumulative Luminosity"] normal_c = df_cumLum[["Cumulative Luminosity"]].values[-1][0] L_rank = df_cumLum[["Cumulative Luminosity"]].values * 1/normal_c df_cumLum = df_cumLum[["Cumulative Luminosity"]].values# ## This is all to do with building a usable and callable power law lum_N = np.linspace(0, df_cumLum.shape[0], df_cumLum.shape[0]) df_dL = df_master[["Luminosity Distance"]] #using HEALPix to split the sky into equal area sectors hp = HEALPix(nside=16, order='ring', frame=ICRS()) tests = randint(0, 2, size = N) ## If tests[i] = 0, use test galaxy, or if = 1, choose random point beyond the catalog dummies = random(N) RandL = random(N) gals = np.zeros(N) ## Picks out a luminosity gal_index = np.zeros(N) """ aa = np.zeros(shape = (N, 5)) # Storing Angular distance ab = np.zeros(shape = (N, 5)) # Storing Luminosity Distance ac = np.zeros(shape = (N, 5)) # Storing B Luminosity ad = np.zeros(shape = (N, 5)) # Storing Luminosity Probability """ lum_atsource = np.zeros(N) received_luminosity = np.zeros(N) cumul_N = np.zeros(N) lum_list = list(L_rank) df_dL = df_dL.values.tolist() ## Luminosity distance values for use a = np.zeros(N) ## For storing temporary and unimportant values b = np.zeros(N) ## For storing temporary and unimportant values test_ra = df_master[["RA"]] test_dec = df_master[["dec"]] indices = list(np.arange(df_master.shape[0])) error_radius = 2 * (2.62) ## Change as necessary - this is an example value from HEARSCH percentages = np.zeros(N) distances = np.zeros(N) luminosity_i = np.zeros(N) rank_host = np.zeros(N) faulty = np.zeros(shape = (N, 5)) ## All of this used to store values phi = 2 * np.pi * random(N) * (180/np.pi) ## Random positions for rotations theta = np.arccos(2 * random(N) - 1) * (180/np.pi) thph = spherical_convert(theta, phi) mod = np.zeros(N) for i in range(N): mod[i] = modulus(thph[:, i]) thph[:, i] /= mod[i] xyz = np.zeros(shape = (N, 3)) m = np.zeros(shape = (N, 3)) ra_prime = np.zeros(N); dec_prime = np.zeros(N) rotation_angle = error_radius * normal(size = N) * (np.pi/180) """ placement18 = np.zeros(N) percentages18 = np.zeros(N) for i in range(N): current_i = indices.index(gals[i]) testr = np.array(test_ra.iloc[[current_i]].values.tolist()) testd = np.array(test_dec.iloc[[current_i]].values.tolist()) ident = np.zeros(df_master.shape[0]) print(str(i + 1), "out of " + str(N)) print("Test galaxy: ", str(gals[i])) ident[current_i] = 1 df_master["Identifier"] = ident ## Creates a mask for identifying the host galaxy q, t, df_sliced = reduction(abs(ra_prime[i]), dec_prime[i], df_master) ## Reduces the catalog by RA and dec ra = np.array(df_sliced[["RA"]].values.tolist())[:, 0] dec = np.array(df_sliced[["dec"]].values.tolist())[:, 0] Luminosity = np.array(df_sliced[["B Luminosity"]].values.tolist()) #Luminosity_Handling(np.array(df_sliced[["Absolute B Magnitude"]].values.tolist())) ## Converts A dl = np.array(df_sliced[["Luminosity Distance"]].values.tolist()) lum_prob, SGR_test = L_func(received_luminosity[i], c, dl) ##Uses the luminosity function to calculate probabilities df_sliced["Luminosity Probability"] = lum_prob df_sliced["SGR flag"] = SGR_test angular_distaance = np.zeros(df_sliced.shape[0]) for k in range(df_sliced.shape[0]): angular_distaance[k] = Ang_Dist(ra[k], testr[0][0], dec[k], testd[0][0]) df_sliced["Angular Distance"] = angular_distaance ranking23 = rank23(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank23"] = ranking23 df_sliced18 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank23"], ascending = False)) id18 = df_sliced18[["Identifier"]].values.tolist() mask_check18 = [i for i, val in enumerate(id18) if val == [1]] Luminosity = np.asarray(Luminosity) if len(mask_check18) == 0: print("Did not place\n\n\n") next else: length = len(id18) + 1 placement18[i] = mask_check18[0] + 1 #display(Markdown("The keplerian orbit appears to be happening at r ={0:.2f} km" .format(float(kepler(M_kep, w))/1000))) #print("Galaxy data: \nDistance is {0:.2f} Mpc\nLuminosity is {1:.3e}\nra and dec [{2:.2f}, {3:.2f}] compared to reported ra and dec [{4:.2f}, {5:.2f}] \nTrue luminosity {6:.3e} W" .format(dl[int(placement18[i] - 1)][0], Luminosity[int(placement18[i] - 1)][0], fin_ra[int(placement18[i] - 1)][0], fin_dec[int(placement18[i] - 1)][0], testr[0][0], testd[0][0], b[i])) print("Galaxy placed", int(placement18[i]), "out of", str(length), "with statistic 18\n\n\n") percentages18[i] = placement18[i]/length """ for i in range(N): gals[i] = find_nearest(L_rank, dummies[i]) ## Picks out galaxies from the cumulative luminosity distribution a[i] = (find_nearest(cumuL, (RandL[i]))) if a[i] == len(L1): a[i] = len(L1) - 1 b[i] = 10**(L1[int(a[i])]) received_luminosity[i] = Luminosity_for_convert((b[i]), df_dL[int(gals[i])][0]) ## Takes dummy luminosity and converts it to luminosity at source by using the luminosity distance of ## the host galaxy current_i = indices.index(gals[i]) testr = np.array(test_ra.iloc[[current_i]].values.tolist()) testd = np.array(test_dec.iloc[[current_i]].values.tolist()) ## Extracting data about the host ##Rotation of test ra and dec #################################################################################################### xyz[i, :] = spherical_convert((50), (10)) m[i, :] = np.cross(xyz[i, :], thph[:, i])#Defines an orthogonal axis m_mod = modulus(m[i, :]) m[i, :] /= m_mod #Normalises orthoganal axis x_prime = axis_rotation(m[i, :], xyz[i, :], rotation_angle[i]) ##Rotates about an axis xmod = modulus(x_prime) x_prime /= xmod ra_prime[i], dec_prime[i] = back_convert(x_prime) ra_prime[i] = testr[0][0] + (ra_prime[i] - 50) dec_prime[i] = testd[0][0] + (dec_prime[i] - 10) ################################################################################################### #ident = np.zeros(df_master.shape[0]) print(str(i + 1), "out of " + str(N)) print("Test galaxy: ", str(gals[i])) #ident[current_i] = 1 #df_master["Identifier"] = ident ## Creates a mask for identifying the host galaxy #q, t, df_sliced = reduction(abs(ra_prime[i]), dec_prime[i], df_master) ## Reduces the catalog by RA and dec ''''My new function''' #selects the corresponding sectors to look through df_sliced = Sector_find(ra_prime[i], dec_prime[i], error_radius) df_sliced = df_sliced.rename(columns = {"Unnamed: 0.1": "Unnamed: 0"}) #creates a mask to identify the host galaxy, the host having an identifier of 1 ident = np.zeros(df_sliced.shape[0]) df_sliced["Identifier"] = ident df_sliced.at[current_i, "Identifier"] = 1 #if statement resolves an issue where sometimes the host galaxy has its info corrupted if math.isnan(df_sliced.loc[current_i][ "RA"]) == True: ''' checks if the position data is corrupted, if so then it retrives the information from the master file. The only thing that isn't recovered is the sector but that won't really matter, plus I can grab that if it is needed ''' common = df_sliced.columns & df_master.columns x = df_master.loc[current_i] df_sliced.at[current_i, common] = list(x) ra = np.array(df_sliced[["RA"]].values.tolist())[:, 0] dec = np.array(df_sliced[["dec"]].values.tolist())[:, 0] Luminosity = np.array(df_sliced[["B Luminosity"]].values.tolist()) #Luminosity_Handling(np.array(df_sliced[["Absolute B Magnitude"]].values.tolist())) ## Converts A dl = np.array(df_sliced[["Luminosity Distance"]].values.tolist()) lum_prob, SGR_test = L_func(received_luminosity[i], c, dl) ##Uses the luminosity function to calculate probabilities df_sliced["Luminosity Probability"] = lum_prob df_sliced["SGR flag"] = SGR_test angular_distaance = np.zeros(df_sliced.shape[0]) for k in range(df_sliced.shape[0]): angular_distaance[k] = Ang_Dist(ra[k], ra_prime[i], dec[k], dec_prime[i]) id_check = [i for i, val in enumerate(angular_distaance) if math.isnan(val) == True] for k in range(len(id_check)): angular_distaance[int(id_check[k])] = Ang_Dist(ra_prime[i], testr, dec_prime[i], testd) angular_distance = Ang_Dist(ra, testr[0][0], dec, testd[0][0]) # Spit out comparison ra and dec # Sky position and true luminosity # We might find that knowing the details might help better interpret the results # Test revisions df_sliced["Angular Distance"] = angular_distaance ranking = rank(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank"] = ranking ranking2 = rank2(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank2"] = ranking2 ranking3 = rank3(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank3"] = ranking3 ranking4 = rank4(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank4"] = ranking4 ranking5 = rank5(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank5"] = ranking5 ranking6 = rank6(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank6"] = ranking6 ranking7 = rank7(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank7"] = ranking7 ranking8 = rank8(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank8"] = ranking8 ranking9 = rank9(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank9"] = ranking9 ranking10 = rank10(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank10"] = ranking10 ranking11 = rank11(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank11"] = ranking11 ranking12 = rank12(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank12"] = ranking12 ranking13 = rank13(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank13"] = ranking13 ranking14 = rank14(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank14"] = ranking14 ranking15 = rank15(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank15"] = ranking15 ranking16 = rank16(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank16"] = ranking16 ranking17 = rank17(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank17"] = ranking17 ranking18 = rank18(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank18"] = ranking18 ranking19 = rank19(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank19"] = ranking19 ranking20 = rank20(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank20"] = ranking20 ranking21 = rank21(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank21"] = ranking21 ranking22 = rank22(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank22"] = ranking22 ranking23 = rank23(angular_distaance, error_radius, dl, Luminosity, lum_prob) ## Uses defined ranking statistic df_sliced["Rank23"] = ranking23 fin_ra = np.asarray(df_sliced[["RA"]].values.tolist()); fin_dec = np.asarray(df_sliced[["dec"]].values.tolist()) ## Storing values and extending the reduced catalog df_sliced = (pd.DataFrame.sort_values(df_sliced, by = ["Rank"], ascending = False)) ## Orders resultant sliced array df_sliced2 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank2"], ascending = False)) df_sliced3 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank3"], ascending = False)) df_sliced4 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank4"], ascending = False)) df_sliced5 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank5"], ascending = False)) df_sliced6 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank6"], ascending = False)) df_sliced7 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank7"], ascending = False)) df_sliced8 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank8"], ascending = False)) ## Orders resultant sliced array df_sliced9 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank9"], ascending = False)) df_sliced10 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank10"], ascending = False)) df_sliced11 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank11"], ascending = False)) df_sliced12 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank12"], ascending = False)) df_sliced13 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank13"], ascending = False)) df_sliced14 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank14"], ascending = False)) df_sliced15 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank15"], ascending = False)) df_sliced16 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank16"], ascending = False)) df_sliced17 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank17"], ascending = False)) df_sliced18 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank18"], ascending = False)) df_sliced19 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank19"], ascending = False)) df_sliced20 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank20"], ascending = False)) df_sliced21 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank21"], ascending = False)) df_sliced22 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank22"], ascending = False)) df_sliced23 = (pd.DataFrame.sort_values(df_sliced, by = ["Rank23"], ascending = False)) idi = df_sliced[["Identifier"]].values.tolist() ##Mask handling to check for values id2 = df_sliced2[["Identifier"]].values.tolist() id3 = df_sliced3[["Identifier"]].values.tolist() id4 = df_sliced4[["Identifier"]].values.tolist() id5 = df_sliced5[["Identifier"]].values.tolist() id6 = df_sliced6[["Identifier"]].values.tolist() id7 = df_sliced7[["Identifier"]].values.tolist() id8 = df_sliced8[["Identifier"]].values.tolist() ##Mask handling to check for values id9 = df_sliced9[["Identifier"]].values.tolist() id10 = df_sliced10[["Identifier"]].values.tolist() id11 = df_sliced11[["Identifier"]].values.tolist() id12 = df_sliced12[["Identifier"]].values.tolist() id13 = df_sliced13[["Identifier"]].values.tolist() id14 = df_sliced14[["Identifier"]].values.tolist() id15 = df_sliced15[["Identifier"]].values.tolist() id16 = df_sliced16[["Identifier"]].values.tolist() id17 = df_sliced17[["Identifier"]].values.tolist() id18 = df_sliced18[["Identifier"]].values.tolist() id19 = df_sliced19[["Identifier"]].values.tolist() id20 = df_sliced20[["Identifier"]].values.tolist() id21 = df_sliced21[["Identifier"]].values.tolist() id22 = df_sliced22[["Identifier"]].values.tolist() id23 = df_sliced23[["Identifier"]].values.tolist() mask_check = [i for i, val in enumerate(idi) if val == [1]] mask_check2 = [i for i, val in enumerate(id2) if val == [1]] mask_check3 = [i for i, val in enumerate(id3) if val == [1]] mask_check4 = [i for i, val in enumerate(id4) if val == [1]] mask_check5 = [i for i, val in enumerate(id5) if val == [1]] mask_check6 = [i for i, val in enumerate(id6) if val == [1]] mask_check7 = [i for i, val in enumerate(id7) if val == [1]] mask_check8 = [i for i, val in enumerate(id8) if val == [1]] mask_check9 = [i for i, val in enumerate(id9) if val == [1]] mask_check10 = [i for i, val in enumerate(id10) if val == [1]] mask_check11 = [i for i, val in enumerate(id11) if val == [1]] mask_check12 = [i for i, val in enumerate(id12) if val == [1]] mask_check13 = [i for i, val in enumerate(id13) if val == [1]] mask_check14 = [i for i, val in enumerate(id14) if val == [1]] mask_check15 = [i for i, val in enumerate(id15) if val == [1]] mask_check16 = [i for i, val in enumerate(id16) if val == [1]] mask_check17 = [i for i, val in enumerate(id17) if val == [1]] mask_check18 = [i for i, val in enumerate(id18) if val == [1]] mask_check19 = [i for i, val in enumerate(id19) if val == [1]] mask_check20 = [i for i, val in enumerate(id20) if val == [1]] mask_check21 = [i for i, val in enumerate(id21) if val == [1]] mask_check22 = [i for i, val in enumerate(id22) if val == [1]] mask_check23 = [i for i, val in enumerate(id23) if val == [1]] Luminosity = np.asarray(Luminosity) if len(mask_check20) == 0: print("Did not place\n\n\n") next else: length = len(id20) + 1 placement[i] = mask_check[0] + 1; length = len(idi) + 1 placement2[i] = mask_check2[0] + 1 placement3[i] = mask_check3[0] + 1 placement4[i] = mask_check4[0] + 1 placement5[i] = mask_check5[0] + 1 placement6[i] = mask_check6[0] + 1 placement7[i] = mask_check7[0] + 1 placement8[i] = mask_check8[0] + 1 placement9[i] = mask_check9[0] + 1 placement10[i] = mask_check10[0] + 1 placement11[i] = mask_check11[0] + 1 placement12[i] = mask_check12[0] + 1 placement13[i] = mask_check13[0] + 1 placement14[i] = mask_check14[0] + 1 placement15[i] = mask_check15[0] + 1 placement16[i] = mask_check16[0] + 1 placement17[i] = mask_check17[0] + 1 placement18[i] = mask_check18[0] + 1 placement19[i] = mask_check19[0] + 1 placement20[i] = mask_check20[0] + 1 placement21[i] = mask_check21[0] + 1 placement22[i] = mask_check22[0] + 1 placement23[i] = mask_check23[0] + 1 #display(Markdown("The keplerian orbit appears to be happening at r ={0:.2f} km" .format(float(kepler(M_kep, w))/1000))) print("Galaxy data: \nDistance is {0:.2f} Mpc\nLuminosity is {1:.3e}\nra and dec [{2:.2f}, {3:.2f}] compared to reported ra and dec [{4:.2f}, {5:.2f}] \nTrue luminosity {6:.3e} W" .format(dl[int(placement[i] - 1)][0], Luminosity[int(placement[i] - 1)][0], fin_ra[int(placement[i] - 1)][0], fin_dec[int(placement[i] - 1)][0], testr[0][0], testd[0][0], b[i])) print("Galaxy placed", int(placement[i]), "out of", str(length), "with statistic 1\n\n\n") print("Galaxy placed", int(placement2[i]), "out of", str(length), "with statistic 2\n\n\n") print("Galaxy placed", int(placement3[i]), "out of", str(length), "with statistic 3\n\n\n") print("Galaxy placed", int(placement4[i]), "out of", str(length), "with statistic 4\n\n\n") print("Galaxy placed", int(placement5[i]), "out of", str(length), "with statistic 5\n\n\n") print("Galaxy placed", int(placement6[i]), "out of", str(length), "with statistic 6\n\n\n") print("Galaxy placed", int(placement7[i]), "out of", str(length), "with statistic 7\n\n\n") print("Galaxy placed", int(placement8[i]), "out of", str(length), "with statistic 8\n\n\n") print("Galaxy placed", int(placement9[i]), "out of", str(length), "with statistic 9\n\n\n") print("Galaxy placed", int(placement10[i]), "out of", str(length), "with statistic 10\n\n\n") print("Galaxy placed", int(placement11[i]), "out of", str(length), "with statistic 11\n\n\n") print("Galaxy placed", int(placement12[i]), "out of", str(length), "with statistic 12\n\n\n") print("Galaxy placed", int(placement13[i]), "out of", str(length), "with statistic 13\n\n\n") print("Galaxy placed", int(placement14[i]), "out of", str(length), "with statistic 14\n\n\n") print("Galaxy placed", int(placement15[i]), "out of", str(length), "with statistic 15\n\n\n") print("Galaxy placed", int(placement16[i]), "out of", str(length), "with statistic 16\n\n\n") print("Galaxy placed", int(placement17[i]), "out of", str(length), "with statistic 17\n\n\n") print("Galaxy placed", int(placement18[i]), "out of", str(length), "with statistic 18\n\n\n") print("Galaxy placed", int(placement19[i]), "out of", str(length), "with statistic 19\n\n\n") print("Galaxy placed", int(placement20[i]), "out of", str(length), "with statistic 20\n\n\n") print("Galaxy placed", int(placement21[i]), "out of", str(length), "with statistic 21\n\n\n") print("Galaxy placed", int(placement22[i]), "out of", str(length), "with statistic 22\n\n\n") print("Galaxy placed", int(placement23[i]), "out of", str(length), "with statistic 23\n\n\n") percentages[i] = placement[i]/length percentages2[i] = placement2[i]/length percentages3[i] = placement3[i]/length percentages4[i] = placement4[i]/length percentages5[i] = placement5[i]/length percentages6[i] = placement6[i]/length percentages7[i] = placement7[i]/length percentages8[i] = placement8[i]/length percentages9[i] = placement9[i]/length percentages10[i] = placement10[i]/length percentages11[i] = placement11[i]/length percentages12[i] = placement12[i]/length percentages13[i] = placement13[i]/length percentages14[i] = placement14[i]/length percentages15[i] = placement15[i]/length percentages16[i] = placement16[i]/length percentages17[i] = placement17[i]/length percentages18[i] = placement18[i]/length percentages19[i] = placement19[i]/length percentages20[i] = placement20[i]/length percentages21[i] = placement21[i]/length percentages22[i] = placement22[i]/length percentages23[i] = placement23[i]/length distances[i] = int(dl[int(placement[i]) - 1][0]); luminosity_i[i] = int(Luminosity[int(placement[i]) - 1][0]) ras_dex[i, 0] = fin_ra[int(placement[i] - 1)]; ras_dex[i, 1] = fin_dec[int(placement[i] - 1)]; test_case[i, 0] = testr[0][0]; test_case[i, 1] = testd[0][0] #rank_host[i] = df_sliced20[["Rank20"]].values.tolist()[id20.index(max(id20))][0] faulty[i, 0] = df_master[["RA"]].values.tolist()[current_i][0] #ra of galaxy faulty[i, 1] = ra_prime[i] #ra of grb faulty[i, 2] = df_master[["dec"]].values.tolist()[current_i][0] #dec of galaxy faulty[i, 3] = dec_prime[i] #dec of grb if math.isnan(rank_host[i]) == True: faulty[i, 4] = 1 #Mask no_se_func.append(i) #break else: faulty[i, 4] = 0 #Mask next """ for k in range(5): aa[i][k] = np.exp(-(df_sliced[["Angular Distance"]].head(5).values.tolist()[k][0])/error_radius) ab[i][k] = df_sliced[["Luminosity Distance"]].head(5).values.tolist()[k][0] ac[i][k] = df_sliced[["B Luminosity"]].head(5).values.tolist()[k][0] ad[i][k] = df_sliced[["Luminosity Probability"]].head(5).values.tolist()[k][0] """ """ plt.figure(0) plt.plot(percentages19, np.log10(distances), "kx") #plt.title("Distance vs. percentage performance") plt.ylabel("Log$_{10}$ Distance /Mpc"); plt.xlabel("Percentage placement"); plt.grid() #plt.xlim(1e-27, 1) plt.savefig("Distances vs. percentage.png") plt.figure(1) plt.plot(percentages19, np.log10(b), "kx") #plt.title("Intrinsic Luminosity vs. percentage performance") plt.ylabel("Log$_{10}$ Luminosity /W"); plt.xlabel("Percentage placement"); plt.grid() #plt.xlim(1e-27, 1) plt.savefig("Luminosity vs. percentage.png") plt.figure(2) plt.plot(percentages19, rotation_angle, "kx") plt.ylabel("Angular offset /$^o$"); plt.xlabel("Percentage performance") plt.grid() plt.savefig("Angular offset vs. percentage.png") ### The following can be used to investigate any values that flag up as false """ f_v = [i for i, val in enumerate(faulty[:, 4]) if val == 0] f_1v = [i for i, val in enumerate(faulty[:, 4]) if val == 1] sets = set(np.arange(0, len(faulty), 1)) - set(f_v) ft =
pd.DataFrame(faulty)
pandas.DataFrame
from matplotlib import pyplot as plt import numpy as np import pandas as pd df = pd.read_csv("./data1402.csv", encoding='utf-8', dtype=str) df = pd.DataFrame(df, columns=['score'], dtype=np.float) section = np.array(range(0, 105, 5)) result =
pd.cut(df['score'], section)
pandas.cut
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt import logging import time from enum import Enum from itertools import chain from typing import Iterable, List, Optional, Tuple, Union, Dict from urllib.parse import urlencode import cachetools import numpy import pandas as pd from cachetools import TTLCache from gs_quant.api.data import DataApi from gs_quant.base import Base from gs_quant.data.core import DataContext, DataFrequency from gs_quant.data.log import log_debug from gs_quant.errors import MqValueError from gs_quant.markets import MarketDataCoordinate from gs_quant.session import GsSession from gs_quant.target.common import MarketDataVendor, PricingLocation from gs_quant.target.coordinates import MDAPIDataBatchResponse, MDAPIDataQuery, MDAPIDataQueryResponse, MDAPIQueryField from gs_quant.target.data import DataQuery, DataQueryResponse from gs_quant.target.data import DataSetEntity, DataSetFieldEntity from .assets import GsIdType from ...target.assets import EntityQuery, FieldFilterMap _logger = logging.getLogger(__name__) class QueryType(Enum): IMPLIED_VOLATILITY = "Implied Volatility" IMPLIED_VOLATILITY_BY_EXPIRATION = "Implied Volatility By Expiration" IMPLIED_CORRELATION = "Implied Correlation" REALIZED_CORRELATION = "Realized Correlation" AVERAGE_IMPLIED_VOLATILITY = "Average Implied Volatility" AVERAGE_IMPLIED_VARIANCE = "Average Implied Variance" AVERAGE_REALIZED_VOLATILITY = "Average Realized Volatility" SWAP_RATE = "Swap Rate" SWAP_ANNUITY = "Swap Annuity" SWAPTION_PREMIUM = "Swaption Premium" SWAPTION_ANNUITY = "Swaption Annuity" BASIS_SWAP_RATE = "Basis Swap Rate" XCCY_SWAP_SPREAD = "Xccy Swap Spread" SWAPTION_VOL = "Swaption Vol" MIDCURVE_VOL = "Midcurve Vol" CAP_FLOOR_VOL = "Cap Floor Vol" SPREAD_OPTION_VOL = "Spread Option Vol" INFLATION_SWAP_RATE = "Inflation Swap Rate" FORWARD = "Forward" PRICE = "Price" ATM_FWD_RATE = "Atm Fwd Rate" BASIS = "Basis" VAR_SWAP = "Var Swap" MIDCURVE_PREMIUM = "Midcurve Premium" MIDCURVE_ANNUITY = "Midcurve Annuity" MIDCURVE_ATM_FWD_RATE = "Midcurve Atm Fwd Rate" CAP_FLOOR_ATM_FWD_RATE = "Cap Floor Atm Fwd Rate" SPREAD_OPTION_ATM_FWD_RATE = "Spread Option Atm Fwd Rate" FORECAST = "Forecast" IMPLIED_VOLATILITY_BY_DELTA_STRIKE = "Implied Volatility By Delta Strike" FUNDAMENTAL_METRIC = "Fundamental Metric" POLICY_RATE_EXPECTATION = "Policy Rate Expectation" CENTRAL_BANK_SWAP_RATE = "Central Bank Swap Rate" FORWARD_PRICE = "Forward Price" FAIR_PRICE = "Fair Price" PNL = "Pnl" SPOT = "Spot" ES_NUMERIC_SCORE = "Es Numeric Score" ES_NUMERIC_PERCENTILE = "Es Numeric Percentile" ES_POLICY_SCORE = "Es Policy Score" ES_POLICY_PERCENTILE = "Es Policy Percentile" ES_SCORE = "Es Score" ES_PERCENTILE = "Es Percentile" ES_PRODUCT_IMPACT_SCORE = "Es Product Impact Score" ES_PRODUCT_IMPACT_PERCENTILE = "Es Product Impact Percentile" G_SCORE = "G Score" G_PERCENTILE = "G Percentile" ES_MOMENTUM_SCORE = "Es Momentum Score" ES_MOMENTUM_PERCENTILE = "Es Momentum Percentile" G_REGIONAL_SCORE = "G Regional Score" G_REGIONAL_PERCENTILE = "G Regional Percentile" ES_DISCLOSURE_PERCENTAGE = "Es Disclosure Percentage" CONTROVERSY_SCORE = "Controversy Score" CONTROVERSY_PERCENTILE = "Controversy Percentile" RATING = "Rating" CONVICTION_LIST = "Conviction List" FAIR_VALUE = "Fair Value" FX_FORECAST = "Fx Forecast" GROWTH_SCORE = "Growth Score" FINANCIAL_RETURNS_SCORE = "Financial Returns Score" MULTIPLE_SCORE = "Multiple Score" INTEGRATED_SCORE = "Integrated Score" COMMODITY_FORECAST = "Commodity Forecast" FORECAST_VALUE = "Forecast Value" FORWARD_POINT = "Forward Point" FCI = "Fci" LONG_RATES_CONTRIBUTION = "Long Rates Contribution" SHORT_RATES_CONTRIBUTION = "Short Rates Contribution" CORPORATE_SPREAD_CONTRIBUTION = "Corporate Spread Contribution" SOVEREIGN_SPREAD_CONTRIBUTION = "Sovereign Spread Contribution" EQUITIES_CONTRIBUTION = "Equities Contribution" REAL_LONG_RATES_CONTRIBUTION = "Real Long Rates Contribution" REAL_SHORT_RATES_CONTRIBUTION = "Real Short Rates Contribution" REAL_FCI = "Real Fci" DWI_CONTRIBUTION = "Dwi Contribution" REAL_TWI_CONTRIBUTION = "Real Twi Contribution" TWI_CONTRIBUTION = "Twi Contribution" COVARIANCE = "Covariance" FACTOR_EXPOSURE = "Factor Exposure" FACTOR_RETURN = "Factor Return" FACTOR_PNL = "Factor Pnl" FACTOR_PROPORTION_OF_RISK = "Factor Proportion Of Risk" DAILY_RISK = "Daily Risk" ANNUAL_RISK = "Annual Risk" VOLATILITY = "Volatility" CORRELATION = "Correlation" OIS_XCCY = "Ois Xccy" OIS_XCCY_EX_SPIKE = "Ois Xccy Ex Spike" USD_OIS = "Usd Ois" NON_USD_OIS = "Non Usd Ois" class GsDataApi(DataApi): __definitions = {} __asset_coordinates_cache = TTLCache(10000, 86400) DEFAULT_SCROLL = '30s' # DataApi interface @classmethod def query_data(cls, query: Union[DataQuery, MDAPIDataQuery], dataset_id: str = None, asset_id_type: Union[GsIdType, str] = None) \ -> Union[MDAPIDataBatchResponse, DataQueryResponse, tuple, list]: if isinstance(query, MDAPIDataQuery) and query.market_data_coordinates: # Don't use MDAPIDataBatchResponse for now - it doesn't handle quoting style correctly results: Union[MDAPIDataBatchResponse, dict] = cls.execute_query('coordinates', query) if isinstance(results, dict): return results.get('responses', ()) else: return results.responses if results.responses is not None else () response: Union[DataQueryResponse, dict] = cls.execute_query(dataset_id, query) return cls.get_results(dataset_id, response, query) @staticmethod def execute_query(dataset_id: str, query: Union[DataQuery, MDAPIDataQuery]): return GsSession.current._post('/data/{}/query'.format(dataset_id), payload=query) @staticmethod def get_results(dataset_id: str, response: Union[DataQueryResponse, dict], query: DataQuery) -> list: if isinstance(response, dict): total_pages = response.get('totalPages') results = response.get('data', ()) else: total_pages = response.total_pages if response.total_pages is not None else 0 results = response.data if response.data is not None else () if total_pages: if query.page is None: query.page = total_pages - 1 results = results + GsDataApi.get_results(dataset_id, GsDataApi.execute_query(dataset_id, query), query) elif query.page - 1 > 0: query.page -= 1 results = results + GsDataApi.get_results(dataset_id, GsDataApi.execute_query(dataset_id, query), query) else: return results return results @classmethod def last_data(cls, query: Union[DataQuery, MDAPIDataQuery], dataset_id: str = None, timeout: int = None) \ -> Union[list, tuple]: kwargs = {} if timeout is not None: kwargs['timeout'] = timeout if getattr(query, 'marketDataCoordinates', None): result = GsSession.current._post('/data/coordinates/query/last', payload=query, **kwargs) return result.get('responses', ()) else: result = GsSession.current._post('/data/{}/last/query'.format(dataset_id), payload=query, **kwargs) return result.get('data', ()) @classmethod def symbol_dimensions(cls, dataset_id: str) -> tuple: definition = cls.get_definition(dataset_id) return definition.dimensions.symbolDimensions @classmethod def time_field(cls, dataset_id: str) -> str: definition = cls.get_definition(dataset_id) return definition.dimensions.timeField # GS-specific functionality @classmethod def get_coverage( cls, dataset_id: str, scroll: str = DEFAULT_SCROLL, scroll_id: Optional[str] = None, limit: int = None, offset: int = None, fields: List[str] = None, include_history: bool = False ) -> List[dict]: params = { 'limit': limit or 4000, 'scroll': scroll } if scroll_id: params['scrollId'] = scroll_id if offset: params['offset'] = offset if fields: params['fields'] = fields if include_history: params['includeHistory'] = 'true' body = GsSession.current._get(f'/data/{dataset_id}/coverage', payload=params) results = scroll_results = body['results'] total_results = body['totalResults'] while len(scroll_results) and len(results) < total_results: params['scrollId'] = body['scrollId'] body = GsSession.current._get(f'/data/{dataset_id}/coverage', payload=params) scroll_results = body['results'] results += scroll_results return results @classmethod def create(cls, definition: Union[DataSetEntity, dict]) -> DataSetEntity: result = GsSession.current._post('/data/datasets', payload=definition) return result @classmethod def update_definition(cls, dataset_id: str, definition: Union[DataSetEntity, dict]) -> DataSetEntity: result = GsSession.current._put('/data/datasets/{}'.format(dataset_id), payload=definition, cls=DataSetEntity) return result @classmethod def upload_data(cls, dataset_id: str, data: Union[pd.DataFrame, list, tuple]) -> dict: if isinstance(data, pd.DataFrame): # We require the Dataframe to return a list in the 'records' format: # https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html data = data.to_json(orient='records') result = GsSession.current._post('/data/{}'.format(dataset_id), payload=data) return result @classmethod def get_definition(cls, dataset_id: str) -> DataSetEntity: definition = cls.__definitions.get(dataset_id) if not definition: definition = GsSession.current._get('/data/datasets/{}'.format(dataset_id), cls=DataSetEntity) if not definition: raise MqValueError('Unknown dataset {}'.format(dataset_id)) cls.__definitions[dataset_id] = definition return definition @classmethod def get_many_definitions(cls, limit: int = 100, dataset_id: str = None, owner_id: str = None, name: str = None, mq_symbol: str = None) -> Tuple[DataSetEntity, ...]: query_string = urlencode(dict(filter(lambda item: item[1] is not None, dict(id=dataset_id, ownerId=owner_id, name=name, mqSymbol=mq_symbol, limit=limit).items()))) res = GsSession.current._get('/data/datasets?{query}'.format(query=query_string), cls=DataSetEntity)['results'] return res @classmethod @cachetools.cached(__asset_coordinates_cache) def get_many_coordinates( cls, mkt_type: str = None, mkt_asset: str = None, mkt_class: str = None, mkt_point: Tuple[str, ...] = (), *, limit: int = 100, return_type: type = str, ) -> Union[Tuple[str, ...], Tuple[MarketDataCoordinate, ...]]: where = FieldFilterMap( mkt_type=mkt_type.upper() if mkt_type is not None else None, mkt_asset=mkt_asset.upper() if mkt_asset is not None else None, mkt_class=mkt_class.upper() if mkt_class is not None else None, ) for index, point in enumerate(mkt_point): setattr(where, 'mkt_point' + str(index + 1), point.upper()) query = EntityQuery( where=where, limit=limit ) results = GsSession.current._post('/data/mdapi/query', query)['results'] if return_type is str: return tuple(coordinate['name'] for coordinate in results) elif return_type is MarketDataCoordinate: return tuple( MarketDataCoordinate( mkt_type=coordinate['dimensions']['mktType'], mkt_asset=coordinate['dimensions']['mktAsset'], mkt_class=coordinate['dimensions']['mktClass'], mkt_point=tuple(coordinate['dimensions']['mktPoint'].values()), mkt_quoting_style=coordinate['dimensions']['mktQuotingStyle'] ) for coordinate in results) else: raise NotImplementedError('Unsupported return type') @staticmethod def build_market_data_query(asset_ids: List[str], query_type: QueryType, where: Union[FieldFilterMap, Dict] = None, source: Union[str] = None, real_time: bool = False, measure='Curve'): inner = { 'entityIds': asset_ids, 'queryType': query_type.value, 'where': where or {}, 'source': source or 'any', 'frequency': 'Real Time' if real_time else 'End Of Day', 'measures': [ measure ] } if DataContext.current.interval is not None: inner['interval'] = DataContext.current.interval if real_time: inner['startTime'] = DataContext.current.start_time inner['endTime'] = DataContext.current.end_time else: inner['startDate'] = DataContext.current.start_date inner['endDate'] = DataContext.current.end_date return { 'queries': [inner] } @classmethod def get_data_providers(cls, entity_id: str, availability: Optional[Dict] = None) -> Dict: """Return daily and real-time data providers :param entity_id: identifier of entity i.e. asset, country, subdivision :param availability: Optional Measures Availability response for the entity :return: dictionary of available data providers ** Usage ** Return a dictionary containing a set of dataset providers for each available data field. For each field will return a dict of daily and real-time dataset providers where available. """ response = availability if availability else GsSession.current._get(f'/data/measures/{entity_id}/availability') if 'errorMessages' in response: raise MqValueError(f"Data availability request {response['requestId']} " f"failed: {response.get('errorMessages', '')}") if 'data' not in response: return {} providers = {} all_data_mappings = sorted(response['data'], key=lambda x: x['rank'], reverse=True) for source in all_data_mappings: freq = source.get('frequency', 'End Of Day') dataset_field = source.get('datasetField', '') rank = source.get('rank') providers.setdefault(dataset_field, {}) if rank: if freq == 'End Of Day': providers[dataset_field][DataFrequency.DAILY] = source['datasetId'] elif freq == 'Real Time': providers[dataset_field][DataFrequency.REAL_TIME] = source['datasetId'] return providers @classmethod def get_market_data(cls, query, request_id=None) -> pd.DataFrame: GsSession.current: GsSession start = time.perf_counter() body = GsSession.current._post('/data/measures', payload=query) log_debug(request_id, _logger, 'market data query (%s) ran in %.3f ms', body.get('requestId'), (time.perf_counter() - start) * 1000) ids = [] parts = [] for e in body['responses']: container = e['queryResponse'][0] ids.extend(container.get('dataSetIds', ())) if 'errorMessages' in container: raise MqValueError(f"measure service request {body['requestId']} failed: {container['errorMessages']}") if 'response' in container: df = MarketDataResponseFrame(container['response']['data']) df.set_index('date' if 'date' in df.columns else 'time', inplace=True) df.index = pd.to_datetime(df.index) parts.append(df) df = pd.concat(parts) if len(parts) > 0 else MarketDataResponseFrame() df.dataset_ids = tuple(ids) return df @classmethod def __normalise_coordinate_data( cls, data: Iterable[Union[MDAPIDataQueryResponse, Dict]], fields: Optional[Tuple[MDAPIQueryField, ...]] = None ) -> Iterable[Iterable[Dict]]: ret = [] for response in data: coord_data = [] rows = ( r.as_dict() for r in response.data) if isinstance( response, MDAPIDataQueryResponse) else response.get( 'data', ()) for pt in rows: if not pt: continue if not fields and 'value' not in pt: value_field = pt['mktQuotingStyle'] pt['value'] = pt.pop(value_field) coord_data.append(pt) ret.append(coord_data) return ret @classmethod def __df_from_coordinate_data( cls, data: Iterable[Dict], *, use_datetime_index: Optional[bool] = True ) -> pd.DataFrame: df = cls._sort_coordinate_data(pd.DataFrame.from_records(data)) index_field = next((f for f in ('time', 'date') if f in df.columns), None) if index_field and use_datetime_index: df = df.set_index(pd.DatetimeIndex(df.loc[:, index_field].values)) return df @classmethod def _sort_coordinate_data( cls, df: pd.DataFrame, by: Tuple[str] = ('date', 'time', 'mktType', 'mktAsset', 'mktClass', 'mktPoint', 'mktQuotingStyle', 'value') ) -> pd.DataFrame: columns = df.columns field_order = [f for f in by if f in columns] field_order.extend(f for f in columns if f not in field_order) return df[field_order] @classmethod def _coordinate_from_str(cls, coordinate_str: str) -> MarketDataCoordinate: tmp = coordinate_str.rsplit(".", 1) dimensions = tmp[0].split("_") if len(dimensions) < 2: raise MqValueError('invalid coordinate ' + coordinate_str) kwargs = { 'mkt_type': dimensions[0], 'mkt_asset': dimensions[1] or None, 'mkt_quoting_style': tmp[-1] if len(tmp) > 1 else None} if len(dimensions) > 2: kwargs['mkt_class'] = dimensions[2] or None if len(dimensions) > 3: kwargs['mkt_point'] = tuple(dimensions[3:]) or None return MarketDataCoordinate(**kwargs) @classmethod def coordinates_last( cls, coordinates: Union[Iterable[str], Iterable[MarketDataCoordinate]], as_of: Union[dt.datetime, dt.date] = None, vendor: MarketDataVendor = MarketDataVendor.Goldman_Sachs, as_dataframe: bool = False, pricing_location: Optional[PricingLocation] = None, timeout: int = None ) -> Union[Dict, pd.DataFrame]: """ Get last value of coordinates data :param coordinates: market data coordinate(s) :param as_of: snapshot date or time :param vendor: data vendor :param as_dataframe: whether to return the result as Dataframe :param pricing_location: the location where close data has been recorded (not used for real-time query) :param timeout: data query timeout; if timeout is not set then the default timeout is used :return: Dataframe or dictionary of the returned data **Examples** >>> coordinate = ("FX Fwd_USD/EUR_Fwd Pt_2y",) >>> data = GsDataApi.coordinates_last(coordinate, dt.datetime(2019, 11, 19)) """ market_data_coordinates = tuple(cls._coordinate_from_str(coord) if isinstance(coord, str) else coord for coord in coordinates) query = cls.build_query( end=as_of, market_data_coordinates=market_data_coordinates, vendor=vendor, pricing_location=pricing_location ) kwargs = {} if timeout is not None: kwargs['timeout'] = timeout data = cls.last_data(query, **kwargs) if not as_dataframe: ret = {coordinate: None for coordinate in market_data_coordinates} for idx, row in enumerate(cls.__normalise_coordinate_data(data)): try: ret[market_data_coordinates[idx]] = row[0]['value'] except IndexError: ret[market_data_coordinates[idx]] = None return ret ret = [] datetime_field = 'time' if isinstance(as_of, dt.datetime) else 'date' for idx, row in enumerate(cls.__normalise_coordinate_data(data)): coordinate_as_dict = market_data_coordinates[idx].as_dict(as_camel_case=True) try: ret.append(dict(chain(coordinate_as_dict.items(), (('value', row[0]['value']), (datetime_field, row[0][datetime_field]))))) except IndexError: ret.append(dict(chain(coordinate_as_dict.items(), (('value', None), (datetime_field, None))))) return cls.__df_from_coordinate_data(ret, use_datetime_index=False) @classmethod def coordinates_data( cls, coordinates: Union[str, MarketDataCoordinate, Iterable[str], Iterable[MarketDataCoordinate]], start: Union[dt.datetime, dt.date] = None, end: Union[dt.datetime, dt.date] = None, vendor: MarketDataVendor = MarketDataVendor.Goldman_Sachs, as_multiple_dataframes: bool = False, pricing_location: Optional[PricingLocation] = None, fields: Optional[Tuple[MDAPIQueryField, ...]] = None, **kwargs ) -> Union[pd.DataFrame, Tuple[pd.DataFrame]]: """ Get coordinates data :param coordinates: market data coordinate(s) :param start: start date or time :param end: end date or time :param vendor: data vendor :param as_multiple_dataframes: whether to return the result as one or multiple Dataframe(s) :param pricing_location: the location where close data has been recorded (not used for real-time query) :param fields: value fields to return :param kwargs: Extra query arguments :return: Dataframe(s) of the returned data **Examples** >>> coordinate = ("FX Fwd_USD/EUR_Fwd Pt_2y",) >>> data = GsDataApi.coordinates_data(coordinate, dt.datetime(2019, 11, 18), dt.datetime(2019, 11, 19)) """ coordinates_iterable = (coordinates,) if isinstance(coordinates, (MarketDataCoordinate, str)) else coordinates query = cls.build_query( market_data_coordinates=tuple(cls._coordinate_from_str(coord) if isinstance(coord, str) else coord for coord in coordinates_iterable), vendor=vendor, start=start, end=end, pricing_location=pricing_location, fields=fields, **kwargs ) results = cls.__normalise_coordinate_data(cls.query_data(query), fields=fields) if as_multiple_dataframes: return tuple(GsDataApi.__df_from_coordinate_data(r) for r in results) else: return cls.__df_from_coordinate_data(chain.from_iterable(results)) @classmethod def coordinates_data_series( cls, coordinates: Union[str, MarketDataCoordinate, Iterable[str], Iterable[MarketDataCoordinate]], start: Union[dt.datetime, dt.date] = None, end: Union[dt.datetime, dt.date] = None, vendor: MarketDataVendor = MarketDataVendor.Goldman_Sachs, pricing_location: Optional[PricingLocation] = None, **kwargs ) -> Union[pd.Series, Tuple[pd.Series]]: """ Get coordinates data series :param coordinates: market data coordinate(s) :param start: start date or time :param end: end date or time :param vendor: data vendor :param pricing_location: the location where close data has been recorded (not used for real-time query) :param kwargs: Extra query arguments :return: Series of the returned data **Examples** >>> coordinate = ("FX Fwd_USD/EUR_Fwd Pt_2y",) >>> data = GsDataApi.coordinates_data_series(coordinate, dt.datetime(2019, 11, 18), dt.datetime(2019, 11, 19)) """ dfs = cls.coordinates_data( coordinates, start=start, end=end, pricing_location=pricing_location, vendor=vendor, as_multiple_dataframes=True, **kwargs ) ret = tuple(pd.Series() if df.empty else pd.Series(index=df.index, data=df.value.values) for df in dfs) if isinstance(coordinates, (MarketDataCoordinate, str)): return ret[0] else: return ret @staticmethod @cachetools.cached(TTLCache(ttl=3600, maxsize=128)) def get_types(dataset_id: str): results = GsSession.current._get(f'/data/catalog/{dataset_id}') fields = results.get("fields") if fields: field_types = {} for key, value in fields.items(): field_type = value.get('type') field_format = value.get('format') field_types[key] = field_format or field_type return field_types raise RuntimeError(f"Unable to get Dataset schema for {dataset_id}") @classmethod def construct_dataframe_with_types(cls, dataset_id: str, data: Union[Base, List, Tuple]) -> pd.DataFrame: """ Constructs a dataframe with correct date types. :param dataset_id: id of the dataset :param data: data to convert with correct types :return: dataframe with correct types """ if len(data): dataset_types = cls.get_types(dataset_id) # Use first row to infer fields from data incoming_data_data_types = pd.DataFrame([data[0]]).dtypes.to_dict() df = pd.DataFrame(data, columns={**dataset_types, **incoming_data_data_types}) for field_name, type_name in dataset_types.items(): if df.get(field_name) is not None and type_name in ('date', 'date-time') and \ len(df.get(field_name).value_counts()) > 0: df = df.astype({field_name: numpy.datetime64}) field_names = dataset_types.keys() if 'date' in field_names: df = df.set_index('date') elif 'time' in field_names: df = df.set_index('time') return df else: return
pd.DataFrame({})
pandas.DataFrame
import const import settings import pandas as pd import numpy as np import random from src.preprocess import reform, times from src.feature_generators.lstm_fg import LSTMFG from src import util import time import math class HybridFG(LSTMFG): def __init__(self, cfg): """ :param cfg: :param time_steps: number of values to be considered as input (for hour_x = 1) step_x = hour count """ super(HybridFG, self).__init__(cfg, -1) # Basic parameters # Long features are more coarse grained and long range self.meo_steps = cfg[const.MEO_STEPS] # time steps backward self.meo_group = cfg[const.MEO_GROUP] # hours of each step self.meo_long_steps = cfg[const.MEO_LONG_STEPS] self.meo_long_group = 24 self.future_steps = cfg[const.FUTURE_STEPS] self.future_group = cfg[const.FUTURE_GROUP] self.air_steps = cfg[const.AIR_STEPS] self.air_group = cfg[const.AIR_GROUP] self.air_long_steps = cfg[const.AIR_LONG_STEPS] self.air_long_group = 24 self.time_is_one_hot = True self.meo_keys = [const.TEMP, const.HUM, const.WSPD] # [const.TEMP, const.HUM, const.WSPD] self.future_keys = [const.TEMP, const.HUM, const.WSPD] if cfg[const.CITY] == const.BJ: self.air_keys = [const.PM25, const.PM10, const.O3] elif cfg[const.CITY] == const.LD: self.air_keys = [const.PM25, const.PM10] # no O3 for london self.param_indicator = '%s_%s_%s_%s_%s_%s_%s_%s_%s_%s' % (self.meo_steps, self.meo_group, self.meo_long_steps, self.meo_long_group, self.future_steps, self.future_group, self.air_steps, self.air_group, self.air_long_steps, self.air_long_group) self.features_path = self.config.get(const.FEATURE_DIR, "") + \ self.feature_indicator + '_' + self.param_indicator + '_hybrid_' self.test_path = self.features_path + 'tests.csv' # number of file chunks to put features into self.chunk_count = self.config.get(const.CHUNK_COUNT, 1) # train / test / validation data holders self._exploded = {const.TRAIN: dict(), const.VALID: dict(), const.TEST: dict()} # station data for context features like station location self._stations = pd.DataFrame() self._current_chunk = -1 # current feature file chunk def generate(self, ts=None, stations=None, verbose=True, save=True): """ Create a basic feature set from pollutant time series, per hour x: (time, longitude, latitude, pollutant values of t:t+n) y: (pollutant values of t+n:t+n+m) :return: """ # load_model data if ts is None: ts = pd.read_csv(self.config[const.OBSERVED], sep=";", low_memory=False) if stations is None: self._stations = pd.read_csv(self.config[const.STATIONS], sep=";", low_memory=False) else: self._stations = stations self.data = reform.group_by_station(ts=ts, stations=self._stations) features = list() start_time = time.time() stations = self._stations.to_dict(orient='index') chunk_index = np.linspace(start=0, stop=len(stations) - 1, num=self.chunk_count + 1) station_count = self._stations[const.PREDICT].sum() processed_stations = 0 next_chunk = 1 total_data_points = 0 for s_index, s_info in stations.items(): if s_info[const.PREDICT] != 1: continue station_id = s_info[const.ID] if verbose: print(' Features of {sid} ({index} of {len})..'. format(sid=station_id, index=s_index + 1, len=len(stations))) s_data = self.data[station_id] s_time = pd.to_datetime(s_data[const.TIME], format=const.T_FORMAT).tolist() first_x = self.air_group * self.air_steps - 1 station_features = self.generate_per_station(station_id, s_data, s_time, first_x) # aggregate all features per row features.extend(station_features) processed_stations += 1 # save current chunk and go to next if save and (s_index >= chunk_index[next_chunk] or processed_stations == station_count): # set and save the chunk of features self.features = pd.DataFrame(data=features, columns=self.get_all_columns()) before_drop = len(self.features) self.dropna() after_drop = len(self.features) print(' %d feature vectors dropped having NaN' % (before_drop - after_drop)) self.features = self.features.sample(frac=self.config[const.FRACTION]) self.save_features(chunk_id=next_chunk) total_data_points += len(self.features) # go to next chunk features = list() self.features = pd.DataFrame() next_chunk += 1 if not save: self.features = pd.DataFrame(data=features, columns=self.get_all_columns()) total_data_points = len(self.features) print(total_data_points, 'feature vectors generated in', time.time() - start_time, 'secs') return self def generate_per_station(self, station_id, s_data, s_time, first_x): # time of each data point (row) t = s_time[first_x:] # first data point is started at 'first_x' region = (first_x, -1) # region of values to be extracted as features # Each data point (row): (measure1, measure2, ..) @ t0, (..) @ t1, .., (..) @ tN def reshape(list, row_size): return np.moveaxis(np.array(list), source=0, destination=2) \ .reshape((-1, row_size)).tolist() # weather time series of last 'meo_steps' every 'meo_group' hours meo_all = list() for meo_key in self.meo_keys: ts = times.split(time=s_time, value=s_data[meo_key].tolist(), group_hours=self.meo_group, step=-self.meo_steps, region=region) meo_all.append(ts) meo = reshape(meo_all, row_size=self.meo_steps * len(meo_all)) # long range weather time series meo_long_all = list() for meo_key in self.meo_keys: ts = times.split(time=s_time, value=s_data[meo_key].tolist(), group_hours=self.meo_long_group, step=-self.meo_long_steps, region=region) meo_long_all.append(ts) meo_long = reshape(meo_long_all, row_size=self.meo_long_steps * len(meo_long_all)) # future weather time series of next 'future_steps' every 'future_group' hours future_all = list() for future_key in self.future_keys: ts = times.split(time=s_time, value=s_data[future_key].tolist(), group_hours=self.future_group, step=self.future_steps, region=region, whole_group=True) future_all.append(ts) future = reshape(future_all, row_size=self.future_steps * len(future_all)) # air quality time series of last 'air_steps' every 'air_group' hours air_all = list() for air_key in self.air_keys: ts = times.split(time=s_time, value=s_data[air_key].tolist(), group_hours=self.air_group, step=-self.air_steps, region=region) air_all.append(ts) air = reshape(air_all, row_size=self.air_steps * len(air_all)) # long range air quality time series air_long_all = list() for air_key in self.air_keys: ts = times.split(time=s_time, value=s_data[air_key].tolist(), group_hours=self.air_long_group, step=-self.air_long_steps, region=region) air_long_all.append(ts) air_long = reshape(air_long_all, row_size=self.air_long_steps * len(air_long_all)) # next 48 pollutant values to be predicted pollutant = self.config[const.POLLUTANT] label = times.split(time=s_time, value=s_data[pollutant].tolist(), group_hours=1, step=48, region=(first_x + 1, -1)) # station id per row sid = [station_id] * (len(s_time) - first_x) # aggregate all features per row feature_set = [[s] + [t] + m + ml + f + al + a + l for s, t, m, ml, f, al, a, l in zip(sid, t, meo, meo_long, future, air_long, air, label)] return feature_set def next(self, batch_size, progress=0, rotate=1): """ Next batch for training :param batch_size: :param progress: progress ratio to be used to move to next feature file chunks :param rotate: number of times to rotate over all chunks until progress = 1 :return: tuple (context, meo_ts, future_ts, air_ts, label) :rtype: (list, list, list, list, list) """ chunk_id = 1 + math.floor(rotate * progress * self.chunk_count) % self.chunk_count if self._current_chunk != chunk_id: self.load(chunk_id=chunk_id) self._current_chunk = chunk_id index = const.TRAIN exploded = self._exploded[index] sample_idx = np.random.randint(len(exploded['c']), size=batch_size) context = exploded['c'][sample_idx, :] meo = exploded['m'][sample_idx, :] meo_long = exploded['ml'][sample_idx, :] future = exploded['f'][sample_idx, :] air = exploded['a'][sample_idx, :] air_long = exploded['al'][sample_idx, :] label = exploded['l'][sample_idx, :] return { 'c': context, 'm': meo, 'ml': meo_long, 'f': future, 'a': air, 'al': air_long, 'l': label } def holdout(self, key=const.TEST): """ Return test data :param key: key for TEST or VALID data :return: tuple (context, meo_ts, future_ts, air_ts, label) :rtype: (list, list, list, list, list) """ if len(self._exploded[key]) == 0: self.load_holdout() return self._exploded[key] def load(self, chunk_id=1): """ Load a chunk of training data, separated into different inputs :param chunk_id: :return: """ train_from = self.config[const.TRAIN_FROM] train_to = self.config[const.TRAIN_TO] print(' Load train set from %s to %s' % (train_from, train_to)) features = pd.read_csv(self.features_path + str(chunk_id) + '.csv', sep=";", low_memory=False) train_features = times.select(df=features, time_key=const.TIME, from_time=train_from, to_time=train_to) self._exploded[const.TRAIN] = self.explode(train_features) print('Feature chunk {c} is prepared.'.format(c=chunk_id)) return self def load_holdout(self): valid_from = self.config.get(const.VALID_FROM, '00-00-00 00') valid_to = self.config.get(const.VALID_TO, '00-00-00 00') test_from = self.config[const.TEST_FROM] test_to = self.config[const.TEST_TO] print(' Load validation set from %s to %s' % (valid_from, valid_to)) print(' Load test set from %s to %s' % (test_from, test_to)) for chunk_id in range(1, self.chunk_count + 1): input_features = pd.read_csv(self.features_path + str(chunk_id) + '.csv', sep=";", low_memory=False) # extract test and validation data features = dict() features[const.VALID] = times.select(df=input_features, time_key=const.TIME, from_time=valid_from, to_time=valid_to) features[const.TEST] = times.select(df=input_features, time_key=const.TIME, from_time=test_from, to_time=test_to) # add feature to global test data if len(self._test.index) == 0: self._test = features[const.TEST] else: self._test = self._test.append(other=features[const.TEST], ignore_index=True) # explode features into parts (context, weather time series, etc.) for key in features: exploded = self.explode(features[key]) if len(exploded) == 0: continue for part, value in exploded.items(): self._exploded[key][part] = value if part not in self._exploded[key] \ else np.concatenate((self._exploded[key][part], value), axis=0) print(' Hold-out feature is prepared (valid: %d, test: %d).' % ( len(self._exploded[const.VALID]['c']), len(self._exploded[const.TEST]['c']))) return self def explode(self, features: pd.DataFrame): """ Explode features to context, time series, and label :param features: :return: exploded feature parts :rtype: (dict) """ if len(self._stations.index) == 0: self._stations =
pd.read_csv(self.config[const.STATIONS], sep=";", low_memory=False)
pandas.read_csv
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import warnings from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import numpy as np # type: ignore import pandas as pd # type: ignore from elasticsearch import Elasticsearch # Default number of rows displayed (different to pandas where ALL could be displayed) DEFAULT_NUM_ROWS_DISPLAYED = 60 DEFAULT_CHUNK_SIZE = 10000 DEFAULT_CSV_BATCH_OUTPUT_SIZE = 10000 DEFAULT_PROGRESS_REPORTING_NUM_ROWS = 10000 DEFAULT_ES_MAX_RESULT_WINDOW = 10000 # index.max_result_window DEFAULT_PAGINATION_SIZE = 5000 # for composite aggregations PANDAS_VERSION: Tuple[int, ...] = tuple( int(part) for part in pd.__version__.split(".") if part.isdigit() )[:2] with warnings.catch_warnings(): warnings.simplefilter("ignore") EMPTY_SERIES_DTYPE = pd.Series().dtype def build_pd_series( data: Dict[str, Any], dtype: Optional[np.dtype] = None, **kwargs: Any ) -> pd.Series: """Builds a pd.Series while squelching the warning for unspecified dtype on empty series """ dtype = dtype or (EMPTY_SERIES_DTYPE if not data else dtype) if dtype is not None: kwargs["dtype"] = dtype return pd.Series(data, **kwargs) def docstring_parameter(*sub: Any) -> Callable[[Any], Any]: def dec(obj: Any) -> Any: obj.__doc__ = obj.__doc__.format(*sub) return obj return dec class SortOrder(Enum): ASC = 0 DESC = 1 @staticmethod def reverse(order: "SortOrder") -> "SortOrder": if order == SortOrder.ASC: return SortOrder.DESC return SortOrder.ASC @staticmethod def to_string(order: "SortOrder") -> str: if order == SortOrder.ASC: return "asc" return "desc" @staticmethod def from_string(order: str) -> "SortOrder": if order == "asc": return SortOrder.ASC return SortOrder.DESC def elasticsearch_date_to_pandas_date( value: Union[int, str], date_format: Optional[str] ) -> pd.Timestamp: """ Given a specific Elasticsearch format for a date datatype, returns the 'partial' `to_datetime` function to parse a given value in that format **Date Formats: https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-format.html#built-in-date-formats Parameters ---------- value: Union[int, str] The date value. date_format: str The Elasticsearch date format (ex. 'epoch_millis', 'epoch_second', etc.) Returns ------- datetime: pd.Timestamp From https://www.elastic.co/guide/en/elasticsearch/reference/current/date.html Date formats can be customised, but if no format is specified then it uses the default: "strict_date_optional_time||epoch_millis" Therefore if no format is specified we assume either strict_date_optional_time or epoch_millis. """ if date_format is None or isinstance(value, (int, float)): try: return pd.to_datetime( value, unit="s" if date_format == "epoch_second" else "ms" ) except ValueError: return pd.to_datetime(value) elif date_format == "epoch_millis": return pd.to_datetime(value, unit="ms") elif date_format == "epoch_second": return pd.to_datetime(value, unit="s") elif date_format == "strict_date_optional_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "basic_date": return pd.to_datetime(value, format="%Y%m%d") elif date_format == "basic_date_time": return pd.to_datetime(value, format="%Y%m%dT%H%M%S.%f", exact=False) elif date_format == "basic_date_time_no_millis": return pd.to_datetime(value, format="%Y%m%dT%H%M%S%z") elif date_format == "basic_ordinal_date": return pd.to_datetime(value, format="%Y%j") elif date_format == "basic_ordinal_date_time": return pd.to_datetime(value, format="%Y%jT%H%M%S.%f%z", exact=False) elif date_format == "basic_ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y%jT%H%M%S%z") elif date_format == "basic_time": return pd.to_datetime(value, format="%H%M%S.%f%z", exact=False) elif date_format == "basic_time_no_millis": return pd.to_datetime(value, format="%H%M%S%z") elif date_format == "basic_t_time": return pd.to_datetime(value, format="T%H%M%S.%f%z", exact=False) elif date_format == "basic_t_time_no_millis": return pd.to_datetime(value, format="T%H%M%S%z") elif date_format == "basic_week_date": return pd.to_datetime(value, format="%GW%V%u") elif date_format == "basic_week_date_time": return pd.to_datetime(value, format="%GW%V%uT%H%M%S.%f%z", exact=False) elif date_format == "basic_week_date_time_no_millis": return pd.to_datetime(value, format="%GW%V%uT%H%M%S%z") elif date_format == "strict_date": return pd.to_datetime(value, format="%Y-%m-%d") elif date_format == "date": return pd.to_datetime(value, format="%Y-%m-%d") elif date_format == "strict_date_hour": return pd.to_datetime(value, format="%Y-%m-%dT%H") elif date_format == "date_hour": return pd.to_datetime(value, format="%Y-%m-%dT%H") elif date_format == "strict_date_hour_minute": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M") elif date_format == "date_hour_minute": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M") elif date_format == "strict_date_hour_minute_second": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S") elif date_format == "date_hour_minute_second": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S") elif date_format == "strict_date_hour_minute_second_fraction": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "date_hour_minute_second_fraction": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "strict_date_hour_minute_second_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "date_hour_minute_second_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "strict_date_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "date_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_date_time_no_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S%z") elif date_format == "date_time_no_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S%z") elif date_format == "strict_hour": return pd.to_datetime(value, format="%H") elif date_format == "hour": return pd.to_datetime(value, format="%H") elif date_format == "strict_hour_minute": return pd.to_datetime(value, format="%H:%M") elif date_format == "hour_minute": return pd.to_datetime(value, format="%H:%M") elif date_format == "strict_hour_minute_second": return pd.to_datetime(value, format="%H:%M:%S") elif date_format == "hour_minute_second": return pd.to_datetime(value, format="%H:%M:%S") elif date_format == "strict_hour_minute_second_fraction": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "hour_minute_second_fraction": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "strict_hour_minute_second_millis": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "hour_minute_second_millis": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "strict_ordinal_date": return pd.to_datetime(value, format="%Y-%j") elif date_format == "ordinal_date": return pd.to_datetime(value, format="%Y-%j") elif date_format == "strict_ordinal_date_time": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S.%f%z", exact=False) elif date_format == "ordinal_date_time": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S%z") elif date_format == "ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S%z") elif date_format == "strict_time": return pd.to_datetime(value, format="%H:%M:%S.%f%z", exact=False) elif date_format == "time": return pd.to_datetime(value, format="%H:%M:%S.%f%z", exact=False) elif date_format == "strict_time_no_millis": return pd.to_datetime(value, format="%H:%M:%S%z") elif date_format == "time_no_millis": return pd.to_datetime(value, format="%H:%M:%S%z") elif date_format == "strict_t_time": return pd.to_datetime(value, format="T%H:%M:%S.%f%z", exact=False) elif date_format == "t_time": return pd.to_datetime(value, format="T%H:%M:%S.%f%z", exact=False) elif date_format == "strict_t_time_no_millis": return pd.to_datetime(value, format="T%H:%M:%S%z") elif date_format == "t_time_no_millis": return pd.to_datetime(value, format="T%H:%M:%S%z") elif date_format == "strict_week_date": return pd.to_datetime(value, format="%G-W%V-%u") elif date_format == "week_date": return pd.to_datetime(value, format="%G-W%V-%u") elif date_format == "strict_week_date_time": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S.%f%z", exact=False) elif date_format == "week_date_time": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_week_date_time_no_millis": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S%z") elif date_format == "week_date_time_no_millis": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S%z") elif date_format == "strict_weekyear" or date_format == "weekyear": # TODO investigate if there is a way of converting this raise NotImplementedError( "strict_weekyear is not implemented due to support in pandas" ) return pd.to_datetime(value, format="%G") # Not supported in pandas # ValueError: ISO year directive '%G' must be used with the ISO week directive '%V' # and a weekday directive '%A', '%a', '%w', or '%u'. elif date_format == "strict_weekyear_week" or date_format == "weekyear_week": # TODO investigate if there is a way of converting this raise NotImplementedError( "strict_weekyear_week is not implemented due to support in pandas" ) return pd.to_datetime(value, format="%G-W%V") # Not supported in pandas # ValueError: ISO year directive '%G' must be used with the ISO week directive '%V' # and a weekday directive '%A', '%a', '%w', or '%u'. elif date_format == "strict_weekyear_week_day": return
pd.to_datetime(value, format="%G-W%V-%u")
pandas.to_datetime
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([
Timestamp("2017-01-01", tz=tz)
pandas.Timestamp
# -*- coding: utf-8 -*- import operator import warnings from collections import Counter from os import environ, makedirs from os import system, popen from os.path import join, exists import re import keras.backend as K import matplotlib as mpl import numpy as np import pandas as pd from scipy.io import mmread import shutil from .logging import get_logger from .model import build_dense_model as build_model from .utils import get_data, exists_or_mkdir mpl.use('Agg') import matplotlib.pyplot as plt import seaborn as sns from adjustText import adjust_text from matplotlib.transforms import Bbox warnings.filterwarnings("ignore") mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams["font.sans-serif"] = "Arial" environ["TF_CPP_MIN_LOG_LEVEL"] = "3" logger = get_logger(__name__) def vcf_to_sparse(outDir, inFeaID, inFeaBed, inVcf, featureID): """ convert the vcf to a feature matrix, `matrix.mtx` :param outDir: output directory :param inFeaID: `13885fea_exon_cut_100bp_2sample.txt` in dependency_data :param inFeaBed: `tcga_13885fea_exon_cut_100bp.bed` in dependency_data :param inVcf: the input vcf file path :param featureID: `featureID.bed` in dependency_data :return: """ logger.info('start converting Vcf to feature matrix') exists_or_mkdir(outDir) sample_name = inVcf.split('/')[-1].split('.')[0] # -------------------------------------------------- vcf_list = [] with open(inVcf) as f: for line in f: if re.match('#', line): pass else: data = line.strip().split('\t') chrom = data[0] if re.match('chr', data[0]) else 'chr' + data[0] start = int(data[1]) end = start + 1 qual = data[5] alt = data[3] + ',' + data[4] vcf_list.append([chrom, start, end, 1, qual, alt]) vcf_df = pd.DataFrame(vcf_list, columns=['chrom', 'start', 'end', 'sample_name', 'qual', 'alt']) vcf_df.sort_values(by=['chrom', 'start'], ascending=True, inplace=True) outSnpBedFile = join(outDir, 'snp_sampleID.bed') vcf_df.to_csv(outSnpBedFile, sep='\t', header=None, index=None) # -------------------------------------------------- feature_ls = list(pd.read_table(inFeaID, names=['fea'])['fea']) nb_fea = len(feature_ls) sparDir = join(outDir, 'DataSparse') if not exists(sparDir): makedirs(sparDir) with open(join(sparDir, 'sample.tsv'), 'w') as output_sample: output_sample.write('%s\n' % sample_name) shutil.copyfile(inFeaID, join(sparDir, 'feature.tsv')) outFeaId = join(sparDir, 'featureID.bed') shutil.copyfile(featureID, outFeaId) # -------------------------------------------------------------------------------- outSNVCoverWindow = join(outDir, 'window.snvCover.txt') tmpMtxCountFile = join(sparDir, 'tmpMtx.count.txt') out_testPat_mtx = join(sparDir, 'matrix.mtx') system("bedtools intersect -a {0} -b {1} -wo > {2}".format(inFeaBed, outSnpBedFile, outSNVCoverWindow)) system( " bedtools intersect -a %s -b %s -wo | awk \'{print $4\"\t\"$8\"\t\"\'1\'}\' | sort -u | sort -k1,1n -k2,2n > %s " % ( outFeaId, outSnpBedFile, tmpMtxCountFile)) nb_lines = int(popen('wc -l {0}'.format(tmpMtxCountFile)).read().strip().split(' ')[0]) with open(out_testPat_mtx, 'a') as f: f.write('%%MatrixMarket matrix coordinate integer general\n%\n') f.write('{0}\t{1}\t{2}\n'.format(nb_fea, 1, nb_lines)) system('cat {0} >> {1}'.format(tmpMtxCountFile, out_testPat_mtx)) # -------------------------------------------------------------------------------- def prediction(outDir, model_weight): """ predict single sample breast cancer risk :param outDir: output directory :param model_weight: the MiScan model weight file path :return: (risk_to_be_patient, probability_to_be_normal) """ logger.info('start model evaluation') model = build_model() model.load_weights(model_weight) test_array = mmread('{0}/DataSparse/matrix.mtx'.format(outDir)).todense().T y_pred_ay = model.predict(test_array) y_pred_pat = y_pred_ay[0][1] y_pred_norm = y_pred_ay[0][0] K.clear_session() return y_pred_pat, y_pred_norm def generate_report(inDir, outDir, y_pred_pat): """ generate report for single sample, including Cancer Risk Prediction | Top Gene Mutation Sites :param inDir: for historical reason, actually, it's the path of `MISCAN.norm.trainPred.txt` and 'MISCAN.pat.trainPred.txt' in dependency_data :param outDir: output directory :param y_pred_pat: risk_to_be_patient from func `prediction` :return: """ logger.info('start generating report') fig, axes = plt.subplots(6, 1, figsize=(8, 8)) axes[0].set_position(Bbox([[0.02, 0.4], [0.98, 0.93]])) # axes[0].set_title(r'$\underline{sin(x)}$', fontsize=30) axes[0].text(0.5, 1, 'Feedback Report', fontsize=30, ha='center', style='italic') # axes[0].text(0.5, 1, title, fontsize=30, ha='center', weight='bold') axes[0].axis('off') axes[5].set_position(Bbox([[0.02, 0.9], [0.98, 0.93]])) axes[5].set_xlim([0, 1]) axes[5].plot([0.28, 0.72], [3, 3], color='black') axes[5].axis('off') axes[1].set_position(Bbox([[0.01, 0.8], [0.99, 0.88]])) axes[1].text(0.01, 0.72, '1. Breast cancer risk predicted by MiScan', fontsize=20) axes[1].axis('off') axes[2].set_position(Bbox([[0.09, 0.57], [0.95, 0.83]])) train_pat = pd.read_csv(inDir[0], header=None).values train_norm =
pd.read_csv(inDir[1], header=None)
pandas.read_csv
"""Provides backend functions for the model of MVC design. """ import os import arrow import pandas as pd def get_coin_files(exc, save_path): """Provides all coin file paths in a given exchange's folder. Args: exc (obj): target exchange save_path (str): main save path in OS Returns: (list): filtered coin file paths from all files existed in the exchange folder """ exc_path = os.path.join(save_path, exc.name) if not os.path.isdir(exc_path): return [] all_files = os.listdir(exc_path) coin_files = list(filter(lambda x: x.count('_') == 5 and x.count('-') == 2 and x.find('.csv'), all_files)) return [os.path.join(exc_path, file) for file in coin_files] def create_exc_folder(exc, save_path): """Creates a directory of exchange in the OS. Args: exc (str): target exchange save_path (str): main save path in OS """ exc_path = os.path.join(save_path, exc.name) if not os.path.isdir(exc_path): os.mkdir(exc_path) def read_last_update_from_file(file_path): """Reads the last date of data downloaded from coin file. Args: file_path (str): path of coin file Returns: (obj): last date of coin data """ with open(file_path) as f: data = f.readlines() if len(data) > 4: return arrow.get(data[-1].split(';')[0]) def form_new_coin_data(comment, last_update): """Forms a coin data dictionary from existing file. Args: comment (str): info comment written in coin CSV file last_update (list) : latest date and hour received from downloaded coin data Raises: ValueError: occurs if info comment read from coin file is in different format than expected Returns: coin_data (dict): coin data for object creation """ data = comment.split(' ') if not len(data) == 8: raise ValueError( f'Csv file of {data[0]} found in the exchanage folder.\n' 'However the file name was not in correct format!\n\n') return {'Name': data[0], 'Quote': data[1], 'Base': data[2], 'StartDate': data[3], 'StartHour': data[4], 'EndDate': data[5], 'EndHour': data[6], 'Frequency': data[7], 'LastUpdate': last_update} def read_file_comment(file_path): """Reads info comment in a coin CSV file. Args: file_path (str): given coin file path Raises: ValueError: occurs if no comment exist at the top of coin file Returns: comment (str): info comment in the coin file """ with open(file_path, 'r') as f: line = f.readline() if not line.startswith('#'): file_name = file_path.split('\\')[2] raise ValueError( f"{file_name} does not include coin info comment!\n\n") return line.replace('#', '') def create_coin_file(exc, coin, save_path): """Creates a CSV file for a given coin. Args: exc (obj): exchange which coin belongs coin (obj): target coin save_path (str): main save path in OS """ headers = [i['Column Name'] for i in exc.db_columns] exc_path = os.path.join(save_path, exc.name) file_path = os.path.join(exc_path, coin.file_name) if not os.path.isfile(file_path): write_initial_comment(coin, file_path) df = pd.DataFrame(columns=headers) df.to_csv(file_path, index=False, sep=';', mode='a') else: raise FileExistsError( f'{coin.name.upper()} already exists in the system:' f'\n{file_path}') def write_initial_comment(coin, file_path): """Creates an info comment for given coin and writes it in coin CSV file. Args: coin (obj): target coin file_path (str): coin file path in OS """ comment = '#{} {} {} {} {} {}'.format( coin.name, coin.quote, coin.base, coin.start_date.format('DD-MM-YYYY HH:mm:ss'), coin.end_date.format('DD-MM-YYYY HH:mm:ss'), coin.frequency) line = '\n#-----------------------------------------------------------' with open(file_path, 'w') as f: f.write(comment+line) def delete_exc_folder(exc, save_path): """Deletes given exchange's folder from OS. Args: exc (obj): target exchange save_path (str): main save path in OS """ exc_path = os.path.join(save_path, exc.name) os.rmdir(exc_path) def delete_coin_file(exc, coin, save_path): """Deletes given coin's csv file from OS. Args: exc (obj): exchange possessing coin coin (obj) : target coin save_path (str): main save path in OS """ exc_path = os.path.join(save_path, exc.name) file_path = os.path.join(exc_path, coin.file_name) os.remove(file_path) def save_data(exc, coin, data, save_path): """Saves downloaded date information to the coin CSV file. Args: exc (obj): exchange possessing coin coin (obj) : target coin data (list): downloaded coin data save_path (str): main save path """ exc_path = os.path.join(save_path, exc.name) file_path = os.path.join(exc_path, coin.file_name) df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """Race-car Data Creation Class. This script contains all utilities to create proper dataset. Revision History: 2020-05-10 (Animesh): Baseline Software. 2020-08-22 (Animesh): Updated Docstring. Example: from _data_handler import DataHandler """ #___Import Modules: import os import random import pandas as pd import matplotlib.pyplot as plt from rc_nn_utility import ParseData #___Global Variables: SEED = 717 #__Classes: class DataHandler: """Data Creation Utility Class. This class contains all methods to complete create datasets such as random data set, or 5 fold cross validation dataset. """ def __init__(self): """Constructor. """ pass def merge_all(self, idir, output): """File Merger. This method merges contents from multiple csv files. Args: idir (directory path): Directory path containing all csv files. output (csv file): File containing all contents. Returns: (float): Accuracy percentage. """ # read all files from provided folder files = os.listdir(idir) content = [] for ifile in files: # collect contents from files in provided folder if ifile[-4:] == ".csv": content.extend(pd.read_csv(os.path.join(idir, \ ifile))['image'].to_list()) # write merged contents to output file pd.DataFrame(content, columns =['image']).to_csv(output, index=False) return None def list_merge(self, lists): """List Merger. This method merges contents from multiple lists. Args: lists (list): List of multiple lists to merge. Returns: data (list): Merged list. """ # loop over lists and put them all in one list data = [] for list in lists: data.extend(list) return data def refine_running(self, input, output, speed = 15): """Refine Running. This method removes data with provided motor value from a list. Args: input (csv file): File containing contents to refine. output (csv file): File containing refined contents. speed (int): Motor value to be removed. """ parsedata = ParseData() # read file contents data = pd.read_csv(input) file = [] for index in range(len(data)): # parse motor data to varify speed _,_,mot = parsedata.parse_data(data["image"][index]) # append data if car is runneing if mot != speed: file.append(data["image"][index]) # write merged contents to output file pd.DataFrame(file, columns=["image"]).to_csv(output, index=False) return None def histogram(self, ilist, odir): """Plot Histogram. This method plots histogram from servo and motor value parsed from a list of images. Args: ilist (csv file): File containing list of images. odir (directory path): Output directory. """ parsedata = ParseData() # read file contents data = pd.read_csv(ilist) servo = [] motor = [] for index in range(len(data)): # parse servo and motor data _,ser,mot = parsedata.parse_data(data["image"][index]) servo.append(ser) motor.append(mot) # plot histogram of servo data plt.figure() plt.hist(servo, bins=11) plt.title("Servo Data Histogram") plt.savefig(os.path.join(odir,"Servo Data Histogram.png")) # plot histogram of motor data plt.figure() plt.hist(motor, bins=11) plt.title("Motor Data Histogram") plt.savefig(os.path.join(odir,"Motor Data Histogram.png")) return None def devide_data(self, ilist, odir): """Dataset Devider. This method devides dataset according to servo value. Args: ilist (csv file): File containing list of images. odir (directory path): Output directory. """ parsedata = ParseData() # read file contents data = pd.read_csv(ilist) data_10 = [] data_11 = [] data_12 = [] data_13 = [] data_14 = [] data_15 = [] data_16 = [] data_17 = [] data_18 = [] data_19 = [] data_20 = [] for index in range(len(data)): # parse servo and motor data _,servo,_ = parsedata.parse_data(data["image"][index]) # devide dataset if servo == 10: data_10.append(data["image"][index]) elif servo == 11: data_11.append(data["image"][index]) elif servo == 12: data_12.append(data["image"][index]) elif servo == 13: data_13.append(data["image"][index]) elif servo == 14: data_14.append(data["image"][index]) elif servo == 15: data_15.append(data["image"][index]) elif servo == 16: data_16.append(data["image"][index]) elif servo == 17: data_17.append(data["image"][index]) elif servo == 18: data_18.append(data["image"][index]) elif servo == 19: data_19.append(data["image"][index]) elif servo == 20: data_20.append(data["image"][index]) # write data pd.DataFrame(data_10, columns=["image"]).to_csv(os.path.join(odir, \ "servo_10.csv"), index=False) pd.DataFrame(data_11, columns=["image"]).to_csv(os.path.join(odir, \ "servo_11.csv"), index=False) pd.DataFrame(data_12, columns=["image"]).to_csv(os.path.join(odir, \ "servo_12.csv"), index=False) pd.DataFrame(data_13, columns=["image"]).to_csv(os.path.join(odir, \ "servo_13.csv"), index=False) pd.DataFrame(data_14, columns=["image"]).to_csv(os.path.join(odir, \ "servo_14.csv"), index=False) pd.DataFrame(data_15, columns=["image"]).to_csv(os.path.join(odir, \ "servo_15.csv"), index=False) pd.DataFrame(data_16, columns=["image"]).to_csv(os.path.join(odir, \ "servo_16.csv"), index=False) pd.DataFrame(data_17, columns=["image"]).to_csv(os.path.join(odir, \ "servo_17.csv"), index=False) pd.DataFrame(data_18, columns=["image"]).to_csv(os.path.join(odir, \ "servo_18.csv"), index=False) pd.DataFrame(data_19, columns=["image"]).to_csv(os.path.join(odir, \ "servo_19.csv"), index=False) pd.DataFrame(data_20, columns=["image"]).to_csv(os.path.join(odir, \ "servo_20.csv"), index=False) return None def train_test_dev(self, type, idir, odir, ratio=None, total=None): """Final Dataset Creator. This method creates train, test and dev dataset. Args: type (string): Determines the type of input dataset idir (directory path): Directory containing input CSV files. odir (directory path): Output directory. ratio (list): List containing ratio of train, test and dev dataset. total (list): List containing the number of total data to be parsed from each CSV file. """ if type == "random": self.random(idir, odir, ratio) elif type == "folded": self.folded(idir, odir) elif type == "controlled": self.controlled(idir, odir, ratio, total) return None def random(self, idir, odir, ratio): """Randomly Shuffled Dataset Creator. This method creates a randomly shuffled train, test and dev dataset. Args: idir (directory path): Directory containing input CSV files. odir (directory path): Output directory. ratio (list): List containing ratio of train, test and dev dataset. """ # read all files from provided folder files = os.listdir(idir) content = [] for ifile in files: # collect contents from files in provided folder if ifile[-4:] == ".csv": content.extend(pd.read_csv(os.path.join(idir, \ ifile))['image'].to_list()) # randomly shuffle dataset random.shuffle(content) # devide dataset into train, test, dev set according to given ratio train = content[0:int(ratio[0]*len(content))] test = content[int(ratio[0]*len(content)): int((ratio[0]+ratio[1])*len(content))] dev = content[int((ratio[0]+ratio[1])*len(content)):] # write data
pd.DataFrame(train, columns=["image"])
pandas.DataFrame
import pandas as pd import numpy as np import talib def get_label(revenue, period_length): if period_length == 1: if revenue <= 0.1: lab = 0 elif 0.1 < revenue <= 1: lab = 1 elif 1 < revenue <= 3: lab = 2 else: lab = 3 elif period_length == 2: if revenue <= 0.1: lab = 0 elif 0.1 < revenue <= 2: lab = 1 elif 2 < revenue <= 5: lab = 2 else: lab = 3 elif period_length == 4: if revenue <= 0.2: lab = 0 elif 0.2 < revenue <= 3: lab = 1 elif 3 < revenue <= 8: lab = 2 else: lab = 3 else: if revenue <= 0.3: lab = 0 elif 0.3 < revenue <= 4: lab = 1 elif 4 < revenue <= 12: lab = 2 else: lab = 3 return lab def get_info(dataset, info_name): info_array = np.array([float(x) for x in dataset[info_name]]) return info_array # stockCode = '002371' # stockCode = '600036' stockCode = '600048' kMultiples = [0.5, 1, 3, 6, 12, 24, 48, 96] dayPeriods = [1, 2, 4, 8] startDate = '2017-08-01' endDate = '2018-08-01' rootPath = '.././' inputFile = rootPath + stockCode + '**.csv' data =
pd.read_csv(inputFile, engine='python', skipfooter=1)
pandas.read_csv
import pytest from pysqlgui import core_database from pysqlgui.core_table import Table import pandas as pd def test_init_no_parameters(): db = core_database.Database() assert hasattr(db, "connection") assert hasattr(db, "cursor") assert hasattr(db, "name") assert hasattr(db, "tables") assert db.name is None assert db.tables == [] def test_init_with_name_parameter_only(): db = core_database.Database(None, None, "name_of_db") assert db.name == "name_of_db" assert isinstance(db.name, str) assert db.tables == [] def test_get_table_check_table_type(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert isinstance(db.get_table('example_table'), Table) def test_get_table_on_non_existent_table(): db = core_database.Database() with pytest.raises(ValueError): db.get_table('some_table_name_that_doesnt_exist') def test_remove_on_non_existent_table(): db = core_database.Database() with pytest.raises(ValueError): db.remove(Table(pd.DataFrame(), 'some_table_name_that_doesnt_exist')) def test_remove_on_existent_table(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) t = db.get_table('example_table') assert isinstance(t, Table) assert db.remove(t) is None assert len(db.tables) == 0 def test_summary_on_existent_table(): example_df = [pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])] db = core_database.Database(example_df, ['example_table']) df = db.summary() assert isinstance(df, pd.DataFrame) assert not df.empty assert list(df.columns.values) == ['Table Name', 'Rows', 'Columns'] assert any(df['Table Name'] == 'example_table') assert df[df['Table Name'] == 'example_table']['Rows'].values[0] == 3 assert df[df['Table Name'] == 'example_table']['Columns'].values[0] == 2 def test_info_on_existent_table_but_called_with_wrong_name(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) t = db.get_table('example_table') assert isinstance(t, Table) with pytest.raises(ValueError): db.info('table_does_not_exist') def test_info_on_existent_table(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) t = db.get_table('example_table') assert isinstance(t, Table) df = db.info('example_table') assert isinstance(df, pd.DataFrame) assert set(list(df.columns.values)) == {'Column ID', 'Column Name', 'Type', 'Not NULL?', 'Default Value', 'Primary Key?'} assert all(df[df['Column Name'] == 'Primary Key?']) assert any(df[df['Column Name'] == 'age']) def test_run_query_simple_select(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert isinstance(db.run_query('SELECT * FROM example_table'), pd.DataFrame) assert not db.run_query('SELECT * FROM example_table').empty def test_run_query_with_pragma(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert isinstance(db.run_query('''PRAGMA TABLE_INFO('example_table')'''), pd.DataFrame) assert not db.run_query('''PRAGMA TABLE_INFO('example_table')''').empty def test_run_query_wrong_syntax(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) with pytest.raises(ValueError): db.run_query('SELECT * FROMMMMM example_table') def test_select_simple_query(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert not db.select('''SELECT * FROM example_table''').empty def test_select_wrong_syntax(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) with pytest.raises(ValueError): db.select('SELECT * FROMMMMM example_table') def test_add_table_valid_data_in_list_but_no_table_name(): df =
pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])
pandas.DataFrame
#!/usr/bin/env python import json import numpy as np import pandas as pd import os import sys import atomsci.ddm.pipeline.model_pipeline as mp import atomsci.ddm.pipeline.parameter_parser as parse import atomsci.ddm.utils.curate_data as curate_data import atomsci.ddm.utils.struct_utils as struct_utils sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import integrative_utilities def clean(): """ Clean test files """ for f in ['delaney-processed_curated.csv', 'delaney-processed_curated_fit.csv', 'delaney-processed_curated_external.csv', 'delaney-processed_curated_predict.csv']: if os.path.isfile(f): os.remove(f) def curate(): """ Curate dataset for model fitting """ if (not os.path.isfile('delaney-processed_curated.csv') and not os.path.isfile('delaney-processed_curated_fit.csv') and not os.path.isfile('delaney-processed_curated_external.csv')): raw_df = pd.read_csv('delaney-processed.csv') # Generate smiles, inchi raw_df['rdkit_smiles'] = raw_df['smiles'].apply(curate_data.base_smiles_from_smiles) raw_df['inchi_key'] = raw_df['smiles'].apply(struct_utils.smiles_to_inchi_key) # Check for duplicate compounds based on SMILES string # Average the response value for duplicates # Remove compounds where response value variation is above the threshold # tolerance=% of individual respsonse value is allowed to different from the average to be included in averaging. # max_std = maximum allowed standard deviation for computed average response value tolerance = 10 # percentage column = 'measured log solubility in mols per litre' list_bad_duplicates = 'Yes' data = raw_df max_std = 100000 # esentially turned off in this example data['compound_id'] = data['inchi_key'] curated_df = curate_data.average_and_remove_duplicates( column, tolerance, list_bad_duplicates, data, max_std, compound_id='compound_id', smiles_col='rdkit_smiles') # Check distribution of response values assert (curated_df.shape[0] == 1117), 'Error: Incorrect number of compounds' curated_df.to_csv('delaney-processed_curated.csv') # Create second test set by reproducible index for prediction curated_df.tail(1000).to_csv('delaney-processed_curated_fit.csv') curated_df.head(117).to_csv('delaney-processed_curated_external.csv') assert (os.path.isfile('delaney-processed_curated.csv')) assert (os.path.isfile('delaney-processed_curated_fit.csv')) assert (os.path.isfile('delaney-processed_curated_external.csv')) def download(): """ Separate download function so that download can be run separately if there is no internet. """ if (not os.path.isfile('delaney-processed.csv')): integrative_utilities.download_save( 'https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv', 'delaney-processed.csv') assert (os.path.isfile('delaney-processed.csv')) def test(): """ Test full model pipeline: Curate data, fit model, and predict property for new compounds """ # Clean # ----- integrative_utilities.clean_fit_predict() clean() # Download # -------- download() # Curate # ------ curate() # Train model # ----------- # Read parameter JSON file with open('config_delaney_fit_RF.json') as f: config = json.loads(f.read()) # Parse parameters params = parse.wrapper(config) # Create model pipeline model = mp.ModelPipeline(params) # Train model model.train_model() # Get uuid and reload directory # ----------------------------- model_dir = 'result/delaney-processed_curated_fit/RF_computed_descriptors_scaffold_regression' uuid = integrative_utilities.get_subdirectory(model_dir) reload_dir = model_dir+'/'+uuid # Check training statistics # ------------------------- integrative_utilities.training_statistics_file(reload_dir, 'test', 0.6) # Make prediction parameters # -------------------------- # Read prediction parameter JSON file with open('config_delaney_predict_RF.json', 'r') as f: predict_parameters_dict = json.loads(f.read()) # Set transformer key here because model uuid is not known before fit predict_parameters_dict['transformer_key'] = reload_dir+'transformers.pkl' # Set output directory for random forest (RF) model predict_parameters_dict['result_dir'] = reload_dir predict_parameters = parse.wrapper(predict_parameters_dict) # Load second test set # -------------------- data =
pd.read_csv('delaney-processed_curated_external.csv')
pandas.read_csv
import calendar import datetime import warnings import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal from numpy.testing import assert_allclose import pytest from pvlib._deprecation import pvlibDeprecationWarning from pvlib.location import Location from pvlib import solarposition, spa from conftest import (fail_on_pvlib_version, requires_ephem, needs_pandas_0_17, requires_spa_c, requires_numba) # setup times and locations to be tested. times = pd.date_range(start=datetime.datetime(2014, 6, 24), end=datetime.datetime(2014, 6, 26), freq='15Min') tus = Location(32.2, -111, 'US/Arizona', 700) # no DST issues possible times_localized = times.tz_localize(tus.tz) tol = 5 @pytest.fixture() def golden(): return Location(39.742476, -105.1786, 'America/Denver', 1830.14) @pytest.fixture() def golden_mst(): return Location(39.742476, -105.1786, 'MST', 1830.14) @pytest.fixture() def expected_solpos(): return _expected_solpos_df() # hack to make tests work without too much modification while avoiding # pytest 4.0 inability to call features directly def _expected_solpos_df(): return pd.DataFrame({'elevation': 39.872046, 'apparent_zenith': 50.111622, 'azimuth': 194.340241, 'apparent_elevation': 39.888378}, index=['2003-10-17T12:30:30Z']) @pytest.fixture() def expected_solpos_multi(): return pd.DataFrame({'elevation': [39.872046, 39.505196], 'apparent_zenith': [50.111622, 50.478260], 'azimuth': [194.340241, 194.311132], 'apparent_elevation': [39.888378, 39.521740]}, index=['2003-10-17T12:30:30Z', '2003-10-18T12:30:30Z']) @pytest.fixture() def expected_rise_set_spa(): # for Golden, CO, from NREL SPA website times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2), datetime.datetime(2015, 8, 2), ]).tz_localize('MST') sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 7, 21, 55), datetime.datetime(2015, 8, 2, 5, 0, 27) ]).tz_localize('MST').tolist() sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 16, 47, 43), datetime.datetime(2015, 8, 2, 19, 13, 58) ]).tz_localize('MST').tolist() transit = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 12, 4, 45), datetime.datetime(2015, 8, 2, 12, 6, 58) ]).tz_localize('MST').tolist() return pd.DataFrame({'sunrise': sunrise, 'sunset': sunset, 'transit': transit}, index=times) @pytest.fixture() def expected_rise_set_ephem(): # for Golden, CO, from USNO websites times = pd.DatetimeIndex([datetime.datetime(2015, 1, 1), datetime.datetime(2015, 1, 2), datetime.datetime(2015, 1, 3), datetime.datetime(2015, 8, 2), ]).tz_localize('MST') sunrise = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 7, 22, 0), datetime.datetime(2015, 1, 2, 7, 22, 0), datetime.datetime(2015, 1, 3, 7, 22, 0), datetime.datetime(2015, 8, 2, 5, 0, 0) ]).tz_localize('MST').tolist() sunset = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 16, 47, 0), datetime.datetime(2015, 1, 2, 16, 48, 0), datetime.datetime(2015, 1, 3, 16, 49, 0), datetime.datetime(2015, 8, 2, 19, 13, 0) ]).tz_localize('MST').tolist() transit = pd.DatetimeIndex([datetime.datetime(2015, 1, 1, 12, 4, 0), datetime.datetime(2015, 1, 2, 12, 5, 0), datetime.datetime(2015, 1, 3, 12, 5, 0), datetime.datetime(2015, 8, 2, 12, 7, 0) ]).tz_localize('MST').tolist() return pd.DataFrame({'sunrise': sunrise, 'sunset': sunset, 'transit': transit}, index=times) @fail_on_pvlib_version('0.7') def test_deprecated_07(): tt = pd.DatetimeIndex(['2015-01-01 00:00:00']).tz_localize('MST') with pytest.warns(pvlibDeprecationWarning): solarposition.get_sun_rise_set_transit(tt, 39.7, -105.2) # the physical tests are run at the same time as the NREL SPA test. # pyephem reproduces the NREL result to 2 decimal places. # this doesn't mean that one code is better than the other. @requires_spa_c def test_spa_c_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_c(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @requires_spa_c def test_spa_c_physical_dst(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_c(times, golden.latitude, golden.longitude, pressure=82000, temperature=11) expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_spa_python_numpy_physical(expected_solpos, golden_mst): times = pd.date_range(datetime.datetime(2003, 10, 17, 12, 30, 30), periods=1, freq='D', tz=golden_mst.tz) ephem_data = solarposition.spa_python(times, golden_mst.latitude, golden_mst.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy') expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) def test_spa_python_numpy_physical_dst(expected_solpos, golden): times = pd.date_range(datetime.datetime(2003, 10, 17, 13, 30, 30), periods=1, freq='D', tz=golden.tz) ephem_data = solarposition.spa_python(times, golden.latitude, golden.longitude, pressure=82000, temperature=11, delta_t=67, atmos_refract=0.5667, how='numpy') expected_solpos.index = times assert_frame_equal(expected_solpos, ephem_data[expected_solpos.columns]) @needs_pandas_0_17 def test_sun_rise_set_transit_spa(expected_rise_set_spa, golden): # solution from NREL SAP web calculator south = Location(-35.0, 0.0, tz='UTC') times = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 0), datetime.datetime(2004, 12, 4, 0)] ).tz_localize('UTC') sunrise = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 7, 8, 15), datetime.datetime(2004, 12, 4, 4, 38, 57)] ).tz_localize('UTC').tolist() sunset = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 17, 1, 4), datetime.datetime(2004, 12, 4, 19, 2, 3)] ).tz_localize('UTC').tolist() transit = pd.DatetimeIndex([datetime.datetime(1996, 7, 5, 12, 4, 36), datetime.datetime(2004, 12, 4, 11, 50, 22)] ).tz_localize('UTC').tolist() frame = pd.DataFrame({'sunrise': sunrise, 'sunset': sunset, 'transit': transit}, index=times) result = solarposition.sun_rise_set_transit_spa(times, south.latitude, south.longitude, delta_t=65.0) result_rounded = pd.DataFrame(index=result.index) # need to iterate because to_datetime does not accept 2D data # the rounding fails on pandas < 0.17 for col, data in result.iteritems(): result_rounded[col] = data.dt.round('1s') assert_frame_equal(frame, result_rounded) # test for Golden, CO compare to NREL SPA result = solarposition.sun_rise_set_transit_spa( expected_rise_set_spa.index, golden.latitude, golden.longitude, delta_t=65.0) # round to nearest minute result_rounded = pd.DataFrame(index=result.index) # need to iterate because to_datetime does not accept 2D data for col, data in result.iteritems(): result_rounded[col] = data.dt.round('s').tz_convert('MST') assert_frame_equal(expected_rise_set_spa, result_rounded) @requires_ephem def test_sun_rise_set_transit_ephem(expected_rise_set_ephem, golden): # test for Golden, CO compare to USNO, using local midnight result = solarposition.sun_rise_set_transit_ephem( expected_rise_set_ephem.index, golden.latitude, golden.longitude, next_or_previous='next', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert('MST') assert_frame_equal(expected_rise_set_ephem, result_rounded) # test next sunrise/sunset with times times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0), datetime.datetime(2015, 1, 2, 10, 15, 0), datetime.datetime(2015, 1, 2, 15, 3, 0), datetime.datetime(2015, 1, 2, 21, 6, 7) ]).tz_localize('MST') expected = pd.DataFrame(index=times, columns=['sunrise', 'sunset'], dtype='datetime64[ns]') expected['sunrise'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise']]) expected['sunset'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunset']]) expected['transit'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'transit']]) result = solarposition.sun_rise_set_transit_ephem(times, golden.latitude, golden.longitude, next_or_previous='next', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert('MST') assert_frame_equal(expected, result_rounded) # test previous sunrise/sunset with times times = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0), datetime.datetime(2015, 1, 2, 10, 15, 0), datetime.datetime(2015, 1, 3, 3, 0, 0), datetime.datetime(2015, 1, 3, 13, 6, 7) ]).tz_localize('MST') expected = pd.DataFrame(index=times, columns=['sunrise', 'sunset'], dtype='datetime64[ns]') expected['sunrise'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunrise'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'sunrise']]) expected['sunset'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'sunset']]) expected['transit'] = pd.Series(index=times, data=[ expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 1), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 2), 'transit'], expected_rise_set_ephem.loc[datetime.datetime(2015, 1, 3), 'transit']]) result = solarposition.sun_rise_set_transit_ephem( times, golden.latitude, golden.longitude, next_or_previous='previous', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert('MST') assert_frame_equal(expected, result_rounded) # test with different timezone times = times.tz_convert('UTC') expected = expected.tz_convert('UTC') # resuse result from previous for col, data in expected.iteritems(): expected[col] = data.dt.tz_convert('UTC') result = solarposition.sun_rise_set_transit_ephem( times, golden.latitude, golden.longitude, next_or_previous='previous', altitude=golden.altitude, pressure=0, temperature=11, horizon='-0:34') # round to nearest minute result_rounded = pd.DataFrame(index=result.index) for col, data in result.iteritems(): result_rounded[col] = data.dt.round('min').tz_convert(times.tz) assert_frame_equal(expected, result_rounded) @requires_ephem def test_sun_rise_set_transit_ephem_error(expected_rise_set_ephem, golden): with pytest.raises(ValueError): solarposition.sun_rise_set_transit_ephem(expected_rise_set_ephem.index, golden.latitude, golden.longitude, next_or_previous='other') tz_naive = pd.DatetimeIndex([datetime.datetime(2015, 1, 2, 3, 0, 0)]) with pytest.raises(ValueError): solarposition.sun_rise_set_transit_ephem(tz_naive, golden.latitude, golden.longitude, next_or_previous='next') @requires_ephem def test_sun_rise_set_transit_ephem_horizon(golden): times = pd.DatetimeIndex([datetime.datetime(2016, 1, 3, 0, 0, 0) ]).tz_localize('MST') # center of sun disk center = solarposition.sun_rise_set_transit_ephem( times, latitude=golden.latitude, longitude=golden.longitude) edge = solarposition.sun_rise_set_transit_ephem( times, latitude=golden.latitude, longitude=golden.longitude, horizon='-0:34') result_rounded = (edge['sunrise'] - center['sunrise']).dt.round('min') sunrise_delta = datetime.datetime(2016, 1, 3, 7, 17, 11) - \ datetime.datetime(2016, 1, 3, 7, 21, 33) expected = pd.Series(index=times, data=sunrise_delta, name='sunrise').dt.round('min')
assert_series_equal(expected, result_rounded)
pandas.util.testing.assert_series_equal
import sys import logging import argparse import pandas as pd def compute_score(predictions, actual): """Look at 5% of most highly predicted movies for each user. Return the average actual rating of those movies. """ df = pd.merge(predictions, actual, on=['user','movie']).fillna(1.0) #df = pd.concat([predictions.fillna(1.0), actual.actualrating], axis=1) # for each user g = df.groupby('user') # detect the top_5 movies as predicted by your algorithm top_5 = g.rating.transform( lambda x: x >= x.quantile(.95) ) # return the mean of the actual score on those return df.actualrating[top_5==1].mean() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--silent', action='store_true', help="deactivate debug output") parser.add_argument('--testing', help="testing set") parser.add_argument("predfile", nargs=1, help="prediction file to submit") args = parser.parse_args() if args.silent: logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO) else: logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG) logger = logging.getLogger('reco-cs') path_testing_ = args.testing if args.testing else "data/testing.csv" logger.debug("using groundtruth from {}".format(path_testing_)) logger.debug("using predictions from {}".format(args.predfile[0])) prediction_data =
pd.read_csv(args.predfile[0])
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 2 15:41:04 2021 Run MLR hedonic with run_MLR_on_all_years(features=best1) use plot_price_rooms_new_from_new_ds for time_series new rooms MLR for standertized betas use plot_regular_feats_comparison_from_new_ds For RF, HP tuning : run_CV_on_all_years(df,savepath=ml_path,model_name='RF', feats=best_rf2+['SEI']) Multifunction for RF results: loop_over_RF_models_years(df, path=work_david/'ML', mode='score', pgrid='normal' use mode = 'score' to calculate the R^2 for training and test use mode = 'time-series' to get the predictions. use mode = 'shap' to calculate the SHAP values for the test sets.(warning this takes longest) use mode = 'X_test' to get the test sets. use mode = 'FI' to get feature importances. then there are plot functions for RF and MLR: 1) plot_RF_time_series(time-series) 2) plot_RF_FI_results(fi) 3) First, produce MLR SHAPS: svs=produce_shap_MLR_all_years(df) then, produce_RF_abs_SHAP_all_years(path=ml_path/'RF_rooms_345',mlr_shap=svs) 4) how to produce weighted mean distance to ECs for all Israeli settelments: first load israeli settelment mid-points: gdf=geo_location_settelments_israel() (from cbs_procedures) then run calculate_distance_from_gdf_to_employment_centers: dis = calculate_distance_from_gdf_to_employment_centers(gdf,n=18, x_coord_name='X', y_coord_name='Y') finally save to csv: dis.to_csv(work_david/'Israel_settlments_with_mean_weighted_distance_to_ECs.csv', na_rep='NA',sep=',', index=False) @author: shlomi """ from MA_paths import work_david from MA_paths import savefig_path import numpy as np ml_path = work_david / 'ML' features = ['Floor_number', 'SEI', 'New', 'Periph_value', 'Sale_year', 'Rooms_345', 'distance_to_nearest_kindergarten', 'distance_to_nearest_school', 'Total_ends'] features1 = ['FLOORNO', 'DEALNATURE', 'NEWPROJECTTEXT', 'BUILDINGYEAR', 'SEI_value', 'Ground', 'P2015_value', 'year', 'Building_Growth_Rate'] features2 = ['FLOORNO', 'DEALNATURE', 'NEWPROJECTTEXT', 'SEI_value', 'Ground', 'year', 'Building_Growth_Rate'] features3 = ['Floor_number', 'SEI', 'New', 'Periph_value', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_4_mokdim'] best = ['SEI', 'New', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_28_mokdim', 'Netflow'] best1 = ['SEI', 'New', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_28_mokdim'] best_years = best + ['year_{}'.format(x) for x in np.arange(2001, 2020)] best_for_bs = best + ['city_code', 'Price'] next_best = ['Floor_number', 'New', 'Sale_year', 'Rooms', 'Total_ends'] best_rf = ['SEI_value_2015', 'SEI_value_2017', 'New', 'Sale_year', 'Rooms','Netflow', 'Total_ends', 'mean_distance_to_28_mokdim'] best_rf1 = ['SEI_value_2015', 'SEI_value_2017', 'New', 'Sale_year', 'Rooms', 'Total_ends', 'mean_distance_to_28_mokdim'] best_rf2 = ['SEI_value_2015', 'SEI_value_2017', 'New', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_28_mokdim'] dummies = ['New', 'Rooms_4', 'Rooms_5'] year_dummies = ['year_{}'.format(x) for x in np.arange(2001,2020)] room_dummies = ['Rooms_4', 'Rooms_5'] best_regular = ['SEI', 'Total_ends', 'mean_distance_to_28_mokdim', 'Netflow'] best_regular1 = ['SEI', 'Total_ends', 'mean_distance_to_28_mokdim'] general_features = ['Price', 'Rooms', 'Area_m2', 'New', 'Floor_number', 'Floors_In_Building', 'Age', 'Total_ends', 'SEI', 'mean_distance_to_28_mokdim'] apts = ['דירה', 'דירה בבית קומות'] apts_more = apts + ["קוטג' דו משפחתי", "קוטג' חד משפחתי", "דירת גן", "בית בודד", "דירת גג", "דירת גג (פנטהאוז)"] plot_names = {'Floor_number': 'Floor', # 'New': 'New Apartment', 'Periph_value': 'Peripheriality', 'distance_to_nearest_kindergarten': 'Nearest kindergarten', 'distance_to_nearest_school': 'Nearest school', 'Total_ends': 'Building rate', 'mean_distance_to_28_mokdim': 'Distance to ECs', 'SEI': 'Socio-Economic Index', 'SEI_value_2015': 'Social-Economic Index', 'SEI_value_2017': 'Social-Economic Index', 'Rooms': 'Rooms', 'Rooms_3': '3 Rooms', 'Rooms_5': '5 Rooms', 'Netflow': 'Net migration', 'MISH': 'AHP', 'New': 'Used/New' } short_plot_names = {'Total_ends': 'BR', 'mean_distance_to_28_mokdim': 'Distance', 'SEI': 'SEI', 'New': 'Used/New'} vars_plot_names = {'Total_ends': 'BR', 'mean_distance_to_28_mokdim': 'DI', 'SEI': 'SE', 'New': 'NE', 'Rooms': 'RM'} vars_explained_plot_names = {'Total_ends': 'BR (Building Rate)', 'mean_distance_to_28_mokdim': 'DI (Distance to ECs)', 'SEI': 'SE (Socio-Economic Index)', 'New': 'NE (Used/New)', 'Rooms': 'RM (# of Rooms)'} add_units_dict = {'Distance': 'Distance [km]', 'BR': r'BR [Apts$\cdot$yr$^{-1}$]', 'Netflow': r'Netflow [people$\cdot$yr$^{-1}$]'} add_units_dict_short = {'DI': 'DI [km]', 'BR': r'BR [Apts$\cdot$yr$^{-1}$]'} # AHP : Afforable Housing Program def pct_change(x): import numpy as np return (np.exp(x)-1)*100 def plot_single_tree(rf_model, X_train, y_train, est_index=100, samples=25, max_depth=2): from sklearn import tree import matplotlib.pyplot as plt import seaborn as sns import numpy as np # rf = RandomForestRegressor(max_depth=15,n_estimators=250) # feats = ['Status', 'Rooms', 'BR', 'Distance', 'SEI'] X_train = X_train.rename(vars_plot_names, axis=1) feats = ['NE', 'RM', 'BR', 'DI', 'SE'] # sns.set_theme(font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) inds = X_train.sample(n=samples).index y_train = np.log(np.exp(y_train)/4) rf_model.fit(X_train.loc[inds], y_train.loc[inds]) _ = tree.plot_tree(rf_model[est_index],precision=2, fontsize=18, rounded=True, feature_names=feats, filled=True, ax=ax, max_depth=max_depth, proportion=False) filename = 'Nadlan_tree_example.png' plt.savefig(savefig_path / filename, bbox_inches='tight', pad_inches=0.1) return fig def compare_r2_RF_MLR(sc, ds, mode='diagram'): """compare R2 score from dataset (sc=loop_over with mode=score) and ds=run_MLR_on_all_years""" import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.6) fig, ax = plt.subplots(figsize=(17, 10)) df = ds['R-squared'].to_dataframe() df = pd.concat([df, sc], axis=1) df.columns = ['Hedonic', 'RF train', 'RF test'] df['year'] = df.index df = df.melt(id_vars=['year'], var_name='Model', value_name=r'R$^2$') # df['year'] = pd.to_datetime(df['year'], format='%Y') if mode == 'diagram': ax = sns.barplot(data=df, x='year', ax=ax, hue='Model', y=r'R$^2$') # ax.set_ylabel('Apartment area [{}]'.format(unit_label)) h, l =ax.get_legend_handles_labels() ax.legend_.remove() ax.legend(h, l, ncol=3, title='Model') ax.set_xlabel('') ax.grid(True) sns.despine(fig) fig.tight_layout() # for wide dataframe: # df = df.pivot_table(columns=['Model'],values='R$^2$',index='year') return df def remove_outlier_area_per_room(df, col='Area_m2', k=1.5): from Migration_main import remove_outlier import pandas as pd dfs = [] for room in df['Rooms'].dropna().unique(): df1 = remove_outlier(df[df['Rooms'] == room], col_name=col, k=k) dfs.append(df1) df = pd.concat(dfs, axis=0) return df def plot_rooms_area_distribution(df, units='m2'): import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) if units == 'ft2': df['Area_ft2'] = df['Area_m2'] * 10.764 col = 'Area_ft2' unit_label = 'ft$^2$' elif units == 'm2': col = 'Area_m2' unit_label = 'm$^2$' sns.violinplot(data=df, x='Rooms', y=col, ax=ax, palette='inferno') ax.set_ylabel('Apartment area [{}]'.format(unit_label)) ax.set_xlabel('Number of rooms') ax.grid(True) sns.despine(fig) fig.tight_layout() return fig def plot_general_features_corr_heatmap(df, feats=general_features, year=None): import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.5) fig, ax = plt.subplots(figsize=(17, 10)) if year is not None: df = df[df['Sale_year']==year] title = 'year = {}'.format(year) else: title = '2000 to 2019' dff = df[feats] dff = dff.rename(short_plot_names, axis=1) g = sns.heatmap(dff.corr(),annot=True,cmap='coolwarm', ax=ax, center=0) g.set_xticklabels(g.get_xticklabels(), rotation=45, ha='right') fig.tight_layout() fig.suptitle(title) fig.subplots_adjust(top=0.945) return fig def plot_RF_time_series(X_ts, units='nis'): """plot rooms new time series from RF model""" import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from cbs_procedures import read_mean_salary sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) X_ts = X_ts[X_ts['Rooms'].isin([3, 4, 5])] X_ts['Rooms'] = X_ts['Rooms'].astype(int) X_ts = X_ts.rename({'New': 'Used/New'}, axis=1) X_ts['Used/New'][X_ts['Used/New']==0] = 'Used' X_ts['Used/New'][X_ts['Used/New']==1] = 'New' if units == 'dollar': X_ts['Price'] /= 4 * 1000 ylabel = 'Apartment Price [Thousands $]' elif units == 'nis': X_ts['Price'] /= 1e6 ylabel = 'Apartment Price [millions NIS]' elif units == 'salary': sal = read_mean_salary().rename({'year': 'Year'}, axis=1) X_ts = pd.merge(X_ts, sal, on='Year', how='inner') X_ts['Price'] /= X_ts['mean_salary'] ylabel = 'Mean salary' X_ts['Year'] = pd.to_datetime(X_ts['Year'], format='%Y') X_ts = X_ts.reset_index(drop=True) sns.lineplot(data=X_ts, x='Year', y='Price', hue='Rooms', style='Used/New', ax=ax, palette='tab10', markers=True, markersize=10) ax.set_ylabel(ylabel) ax.set_xlabel('') ax.grid(True) sns.despine(fig) fig.tight_layout() return fig def produce_shap_MLR_all_years(df, feats=best1, abs_val=True): from sklearn.linear_model import LinearRegression import shap import numpy as np years = np.arange(2000, 2020, 1) svs = [] for year in years: print(year) X, y = prepare_new_X_y_with_year(df, features=feats, year=year, y_name='Price') lr = LinearRegression() lr.fit(X, y) ex = shap.LinearExplainer(lr, X) shap_values = ex.shap_values(X) SV = convert_shap_values_to_pandas(shap_values, X) if abs_val: print('producing ABS SHAP.') SV = produce_abs_SHAP_from_df(SV, X, plot=False) svs.append(SV) return svs def loop_over_RF_models_years(df, path=work_david/'ML', mode='score', pgrid='normal', feats=best_rf2+['SEI']): import numpy as np import pandas as pd import shap import xarray as xr years = np.arange(2000, 2020, 1) train_scores = [] test_scores = [] x_tests = [] fis = [] # shaps = [] for year in years: print(year) _, gr = load_HP_params_from_optimized_model(path, pgrid=pgrid, year=year) rf = gr.best_estimator_ X_train, X_test, y_train, y_test = produce_X_y_RF_per_year(df, year=year, verbose=0, feats=feats) rf.fit(X_train, y_train) if mode == 'score': train_scores.append(rf.score(X_train, y_train)) test_scores.append(rf.score(X_test, y_test)) elif mode == 'time-series': y_pred = rf.predict(X_test) y_pred = np.exp(y_pred) X_test['Price'] = y_pred X_test['Year'] = year X_test = X_test.reset_index(drop=True) x_tests.append(X_test) elif mode == 'shap': # rf.fit(X_train, y_train) explainer = shap.TreeExplainer(rf) shap_values = explainer.shap_values(X_test.values) SV = convert_shap_values_to_pandas(shap_values, X_test) filename = 'Nadlan_SHAP_RF_{}.csv'.format(year) SV.to_csv(path/filename, index=False) # SV = SV.to_xarray().to_array('feature') # return SV, X_test # shaps.append(SV) elif mode == 'X_test': X_test.index.name = 'sample' filename = 'Nadlan_X_test_RF_{}.csv'.format(year) X_test.to_csv(path/filename, index=False) # x_tests.append(X_test.to_xarray().to_array('feature')) elif mode == 'FI': fi = pd.DataFrame(rf.feature_importances_).T fi.columns = X_train.columns fi['year'] = year fis.append(fi) if mode == 'score': sc = pd.DataFrame(train_scores) sc.columns = ['train_r2'] sc['test_r2'] = test_scores sc.index = years return sc elif mode == 'time-series': X_ts = pd.concat(x_tests, axis=0) return X_ts elif mode == 'FI': FI = pd.concat(fis, axis=0) return FI # elif mode == 'shap': # sv_da = xr.concat(shaps, 'year') # sv_da['year'] = years # sv_da.attrs['long_name'] = 'Shapley values via SHAP Python package.' # sv_da.to_netcdf(path/'Nadlan_SHAP_RF_{}-{}.nc'.format(years[0], years[-1])) # return sv_da # elif mode == 'X_test': # X_ts = xr.concat(x_tests, 'year') # X_ts['year'] = years # X_ts.attrs['long_name'] = 'X_tests per year to use with the SHAP' # X_ts.to_netcdf(path/'Nadlan_X_test_RF_{}-{}.nc'.format(years[0], years[-1])) # return X_ts def load_all_yearly_shap_values(path=work_david/'ML'): import numpy as np years = np.arange(2000, 2020, 1) svs = [] X_tests = [] for year in years: sv, X_test = load_yearly_shap_values(path, year) svs.append(sv) X_tests.append(X_test) return svs, X_tests def load_yearly_shap_values(path=work_david/'ML', year=2000): import pandas as pd X_test = pd.read_csv(path/'Nadlan_X_test_RF_{}.csv'.format(year)) shap_values = pd.read_csv(path/'Nadlan_SHAP_RF_{}.csv'.format(year)) assert len(X_test)==len(shap_values) return shap_values, X_test def load_shap_values(path=work_david/'ML', samples=10000, interaction_too=True, rename=True): import pandas as pd import xarray as xr print('loading {} samples.'.format(samples)) X_test = pd.read_csv(path/'X_test_RF_{}.csv'.format(samples)) shap_values = pd.read_csv(path/'SHAP_values_RF_{}.csv'.format(samples)) if rename: X_test = X_test.rename(short_plot_names, axis=1) shap_values = shap_values.rename(short_plot_names, axis=1) if interaction_too: print('loading interaction values too.') shap_interaction_values = xr.load_dataarray(path/'SHAP_interaction_values_RF_{}.nc'.format(samples)) shap_interaction_values['feature1'] = X_test.columns shap_interaction_values['feature2'] = X_test.columns return X_test, shap_values, shap_interaction_values else: return X_test, shap_values def plot_dependence(shap_values, X_test, x_feature='RM', y_features=['DI', 'SE', 'BR'], alpha=0.2, cmap=None, units='pct_change', plot_size=1.5, fontsize=16, x_jitter=0.75): import shap import matplotlib.pyplot as plt import seaborn as sns import matplotlib.ticker as tck sns.set_theme(style='ticks', font_scale=1.2) fig, axes = plt.subplots(len(y_features), 1, sharex=True, figsize=(8, 10)) X = X_test.copy() X = X.rename(vars_plot_names, axis=1) shap_values = shap_values.rename(vars_plot_names, axis=1) X = X.rename(add_units_dict_short, axis=1) # X['Old/New'] = X['Old/New'].astype(int) # new_dict = {0: 'Old', 1: 'New'} # X['Old/New'] = X['Old/New'].map(new_dict) if units == 'pct_change': shap_values = shap_values.apply(pct_change) for i, y in enumerate(y_features): y_new = add_units_dict_short.get(y, y) shap.dependence_plot(x_feature, shap_values.values, X, x_jitter=x_jitter, dot_size=4, alpha=alpha, interaction_index=y_new, ax=axes[i]) if 'DI' in x_feature: axes[i].set_xlim(25, 150) if 'RM' in x_feature: axes[i].set_xlabel('RM [# of rooms]') cb = fig.axes[-1] mapp = cb.collections[1] fig.canvas.draw() cbar = fig.colorbar(mapp, ax=axes[i],aspect=50, pad=0.05, label=y_new) cbar.set_alpha(0.85) cbar.draw_all() cb.remove() # cbar.ax.set_yticklabels(['Low', 'High'], fontsize=fontsize) # cbar.set_label('Predictor value') cbar.outline.set_visible(False) # axes[i].set_ylabel(axes[i].get_ylabel(), fontsize=fontsize) # axes[i].set_xlabel(axes[i].get_xlabel(), fontsize=fontsize) # axes[i].tick_params(labelsize=fontsize) axes[i].grid(True) if units == 'pct_change': la = 'Price change\nfor {} [%]'.format(x_feature) axes[i].set_ylabel(la) [ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) for ax in fig.axes] [ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) for ax in fig.axes] [ax.tick_params(labelsize=fontsize) for ax in fig.axes] [ax.yaxis.set_major_locator(tck.MaxNLocator(5)) for ax in fig.axes] fig.tight_layout() return fig def plot_summary_shap_values(shap_values, X_test, alpha=0.7, cmap=None, plot_size=1.5, fontsize=16, units='pct_change'): import shap import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.8) X_test = X_test.rename(vars_plot_names, axis=1) shap_values = shap_values.rename(vars_plot_names, axis=1) if units == 'pct_change': shap_values = shap_values.apply(pct_change) if cmap is None: shap.summary_plot(shap_values.values, X_test, alpha=alpha, plot_size=plot_size) else: if not isinstance(cmap, str): cm = cmap.get_mpl_colormap() else: cm = sns.color_palette(cmap, as_cmap=True) shap.summary_plot(shap_values.values, X_test, alpha=alpha, cmap=cm, plot_size=plot_size) if len(shap_values.shape) > 2: fig = plt.gcf() [ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) for ax in fig.axes] [ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) for ax in fig.axes] [ax.set_title(ax.get_title(), fontsize=fontsize) for ax in fig.axes] [ax.tick_params(labelsize=fontsize) for ax in fig.axes] else: fig, ax = plt.gcf(), plt.gca() if units == 'pct_change': ax.set_xlabel('Price change [%]', fontsize=fontsize) else: ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) ax.tick_params(labelsize=fontsize) cb = fig.axes[-1] cbar = fig.colorbar(cb.collections[1], ticks=[0, 1], aspect=50, pad=0.05) cb.remove() cbar.ax.set_yticklabels(['Low', 'High'], fontsize=fontsize) cbar.set_label('Predictor value') cbar.ax.tick_params(size=0) cbar.outline.set_visible(False) # cb.set_ylabel(cb.get_ylabel(), fontsize=fontsize) # cb.tick_params(labelsize=fontsize) fig.tight_layout() return fig def select_years_interaction_term(ds, regressor='SEI'): regs = ['{}_{}'.format(x, regressor) for x in year_dummies] ds = ds.sel(regressor=regs) return ds def produce_RF_abs_SHAP_all_years(path=ml_path, plot=True, mlr_shap=None, units=None): import xarray as xr import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt SVs, X_tests = load_all_yearly_shap_values(path) k2s = [] for i, year in enumerate(np.arange(2000, 2020, 1)): shap_df = SVs[i] # shap_df.drop('year', axis=1, inplace=True) X_test = X_tests[i] # X_test.drop('year', axis=1, inplace=True) k2 = produce_abs_SHAP_from_df(shap_df, X_test, plot=False) k2['year'] = year if mlr_shap is not None: k2['Model'] = 'RF' k2_mlr = mlr_shap[i] k2_mlr['year'] = year k2_mlr['Model'] = 'Hedonic' k2_mlr = k2_mlr[k2_mlr['Predictor'].isin(best_regular1)] k2 = pd.concat([k2, k2_mlr], axis=0) k2s.append(k2) abs_shap = pd.concat(k2s, axis=0) abs_shap = abs_shap.reset_index(drop=True) if plot: sns.set_theme(style='ticks', font_scale=1.6) fig, ax = plt.subplots(figsize=(17, 10)) abs_shap['year'] = pd.to_datetime(abs_shap['year'], format='%Y') abs_shap = abs_shap[abs_shap['Predictor']!='New'] abs_shap = abs_shap[abs_shap['Predictor']!='Rooms'] # order: order = ['SE (Socio-Economic Index)', 'BR (Building Rate)', 'DI (Distance to ECs)'] abs_shap['Predictor'] = abs_shap['Predictor'].map(vars_explained_plot_names) abs_shap['SHAP_abs'] *= np.sign(abs_shap['Corr']) if units == 'pct_change': abs_shap['SHAP_abs'] = abs_shap['SHAP_abs'].apply(pct_change) # order = ['Socio-Economic Index', 'Building rate', 'Distance to ECs'] if mlr_shap is not None: sns.lineplot(data=abs_shap, x='year', y='SHAP_abs', hue='Predictor', ax=ax, palette='Dark2', ci='sd', markers=True, linewidth=2, hue_order=order, style='Model', markersize=10) else: sns.lineplot(data=abs_shap, x='year', y='SHAP_abs', hue='Predictor', ax=ax, palette='Dark2', ci='sd', markers=True, linewidth=2, hue_order=order, markersize=10) if units == 'pct_change': ax.set_ylabel('Price change [%]') else: ax.set_ylabel("mean |SHAP values|") ax.set_xlabel('') ax.grid(True) h, la = ax.get_legend_handles_labels() ax.legend_.remove() ax.legend(h, la, ncol=2, loc='center') sns.despine(fig) fig.tight_layout() return abs_shap def produce_abs_SHAP_from_df(shap_df, X_test, plot=False): import pandas as pd shap_v = pd.DataFrame(shap_df) feature_list = X_test.columns shap_v.columns = feature_list df_v = X_test.copy().reset_index()#.drop('time', axis=1) # Determine the correlation in order to plot with different colors corr_list = list() for i in feature_list: b = np.corrcoef(shap_v[i], df_v[i])[1][0] corr_list.append(b) corr_df = pd.concat( [pd.Series(feature_list), pd.Series(corr_list)], axis=1).fillna(0) # Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient corr_df.columns = ['Predictor', 'Corr'] corr_df['Sign'] = np.where(corr_df['Corr'] > 0, 'red', 'blue') # Plot it shap_abs = np.abs(shap_v) k = pd.DataFrame(shap_abs.mean()).reset_index() k.columns = ['Predictor', 'SHAP_abs'] k2 = k.merge(corr_df, left_on='Predictor', right_on='Predictor', how='inner') k2 = k2.sort_values(by='SHAP_abs', ascending=True) if plot: colorlist = k2['Sign'] ax = k2.plot.barh(x='Predictor', y='SHAP_abs', color=colorlist, figsize=(5, 6), legend=False) ax.set_xlabel("SHAP Value (Red = Positive Impact)") return k2 def ABS_SHAP(df_shap, df): import numpy as np import pandas as pd import seaborn as sns sns.set_theme(style='ticks', font_scale=1.2) #import matplotlib as plt # Make a copy of the input data shap_v = pd.DataFrame(df_shap) feature_list = df.columns shap_v.columns = feature_list df_v = df.copy().reset_index()#.drop('time', axis=1) # Determine the correlation in order to plot with different colors corr_list = list() for i in feature_list: b = np.corrcoef(shap_v[i], df_v[i])[1][0] corr_list.append(b) corr_df = pd.concat( [pd.Series(feature_list), pd.Series(corr_list)], axis=1).fillna(0) # Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient corr_df.columns = ['Predictor', 'Corr'] corr_df['Sign'] = np.where(corr_df['Corr'] > 0, 'red', 'blue') # Plot it shap_abs = np.abs(shap_v) k = pd.DataFrame(shap_abs.mean()).reset_index() k.columns = ['Predictor', 'SHAP_abs'] k2 = k.merge(corr_df, left_on='Predictor', right_on='Predictor', how='inner') k2 = k2.sort_values(by='SHAP_abs', ascending=True) colorlist = k2['Sign'] ax = k2.plot.barh(x='Predictor', y='SHAP_abs', color=colorlist, figsize=(5, 6), legend=False) ax.set_xlabel("SHAP Value (Red = Positive Impact)") return def plot_simplified_shap_tree_explainer(rf_model): import shap rf_model.fit(X, y) dfX = X.to_dataset('regressor').to_dataframe() dfX = dfX.rename( {'qbo_cdas': 'QBO', 'anom_nino3p4': 'ENSO', 'co2': r'CO$_2$'}, axis=1) ex_rf = shap.Explainer(rf_model) shap_values_rf = ex_rf.shap_values(dfX) ABS_SHAP(shap_values_rf, dfX) return def convert_shap_values_to_pandas(shap_values, X_test): import pandas as pd SV = pd.DataFrame(shap_values) SV.columns = X_test.columns SV.index.name = 'sample' return SV def plot_Tree_explainer_shap(rf_model, X_train, y_train, X_test, samples=1000): import shap from shap.utils import sample print('fitting...') rf_model.fit(X_train, y_train) # explain all the predictions in the test set print('explaining...') explainer = shap.TreeExplainer(rf_model) # rename features: X_test = X_test.rename(plot_names, axis=1) if samples is not None: print('using just {} samples out of {}.'.format(samples, len(X_test))) shap_values = explainer.shap_values(sample(X_test, samples).values) shap.summary_plot(shap_values, sample(X_test, samples)) SV = convert_shap_values_to_pandas(shap_values, sample(X_test, samples)) else: shap_values = explainer.shap_values(X_test.values) shap.summary_plot(shap_values, X_test) SV = convert_shap_values_to_pandas(shap_values, X_test) # shap.summary_plot(shap_values_rf, dfX, plot_size=1.1) return SV # def get_mean_std_from_df_feats(df, feats=best, ignore=['New', 'Rooms_345', 'Sale_year'], # log=['Total_ends']): # import numpy as np # f = [x for x in best if x not in ignore] # df1 = df.copy() # if log is not None: # df1[log] = (df1[log]+1).apply(np.log) # mean = df1[f].mean() # std = df1[f].std() # return mean, std def produce_rooms_new_years_from_ds_var(ds, dsvar='beta_coef', new_cat='Used/New', new='New', old='Used'): import numpy as np import pandas as pd df = ds[dsvar].to_dataset('year').to_dataframe().T dfs = [] # 3 rooms old: dff = df['const'].apply(np.exp).to_frame('Price') dff['Rooms'] = 3 dff[new_cat] = old dfs.append(dff) # 3 rooms new: dff = (df['const']+df['New']).apply(np.exp).to_frame('Price') dff['Rooms'] = 3 dff[new_cat] = new dfs.append(dff) # 4 rooms old: dff = (df['const']+df['Rooms_4']).apply(np.exp).to_frame('Price') dff['Rooms'] = 4 dff[new_cat] = old dfs.append(dff) # 4 rooms new: dff = (df['const']+df['New']+df['Rooms_4']+df['Rooms_4_New']).apply(np.exp).to_frame('Price') dff['Rooms'] = 4 dff[new_cat] = new dfs.append(dff) # 5 rooms old: dff = (df['const']+df['Rooms_5']).apply(np.exp).to_frame('Price') dff['Rooms'] = 5 dff[new_cat] = old dfs.append(dff) # 5 rooms new: dff = (df['const']+df['New']+df['Rooms_5']+df['Rooms_5_New']).apply(np.exp).to_frame('Price') dff['Rooms'] = 5 dff[new_cat] = new dfs.append(dff) dff = pd.concat(dfs, axis=0) dff['year'] = dff.index return dff def calculate_pct_change_for_long_ds_var(ds_var_long, year=2000): d = ds_var_long.pivot(index='year', columns=[ 'Rooms', 'Old/New'], values='Price') d_ref = d.loc[year] d /= d_ref d -= 1 d *= 100 d['year']=d.index df = d.melt(id_vars=['year'],value_name='Price') return df def calculate_period_pct_change_from_ds(ds, syear=2008, eyear=2019): beta=produce_rooms_new_years_from_ds_var(ds,'beta_coef') beta = beta.pivot(index='year', columns=['Rooms', 'Used/New'], values='Price') beta.columns = ['{}-{}'.format(rooms, new) for rooms, new in beta.columns] pct = 100 * (beta.loc[eyear] - beta.loc[syear]) / beta.loc[syear] return pct def plot_price_rooms_new_from_new_ds(ds, add_cbs_index=False, units='nis'): import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from cbs_procedures import read_apt_price_index from cbs_procedures import read_mean_salary sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) beta = produce_rooms_new_years_from_ds_var(ds, 'beta_coef') # calculate pct change between 2008 and 2019: pct = (beta.loc[2019,'Price'].values-beta.loc[2008,'Price'].values)/beta.loc[2008,'Price'].values pct *= 100 beta1 = beta.copy() beta1.loc[2019, 'pct_change_2019_2008'] = pct print(beta1.loc[2019]) # calculate pct change Old/New in 2008: pct=(beta[beta['Used/New']=='New'].loc[2008,'Price']-beta[beta['Used/New']=='Used'].loc[2008,'Price'])/beta[beta['Used/New']=='Used'].loc[2008,'Price'] pct *= 100 print(pct) # calculate pct change Old/New in 2019: pct=(beta[beta['Used/New']=='New'].loc[2019,'Price']-beta[beta['Used/New']=='Used'].loc[2019,'Price'])/beta[beta['Used/New']=='Used'].loc[2019,'Price'] pct *= 100 print(pct) upper = produce_rooms_new_years_from_ds_var(ds, 'CI_95_upper') lower = produce_rooms_new_years_from_ds_var(ds, 'CI_95_lower') if units == 'pct_change': beta = calculate_pct_change_for_long_ds_var(beta, 2000) upper = calculate_pct_change_for_long_ds_var(upper, 2000) lower = calculate_pct_change_for_long_ds_var(lower, 2000) df = pd.concat([lower, beta, upper], axis=0) if units == 'dollar': # approx 4 NIS to 1 $ in whole 2000-2019 df['Price'] /= 4 * 1000 # price in thousands of $ ylabel = 'Apartment Price [Thousands $]' elif units == 'nis': ylabel = 'Apartment Price [millions NIS]' df['Price'] /= 1e6 elif units == 'salary': sal = read_mean_salary() df = pd.merge(df, sal, on='year', how='inner') df['Price'] /= df['mean_salary'] ylabel = 'Mean salary' elif units == 'pct_change': ylabel = 'Apartment price change from 2000 [%]' df['year'] = pd.to_datetime(df['year'], format='%Y') df = df.reset_index(drop=True) sns.lineplot(data=df, x='year', y='Price', hue='Rooms', style='Used/New', ax=ax, palette='tab10', ci='sd', markers=True, markersize=10) ax.set_ylabel(ylabel) ax.set_xlabel('') if add_cbs_index: cbs = read_apt_price_index(path=work_david, resample='AS', normalize_year=2000) cbs = cbs.loc['2000':'2019'] if units == 'pct_change': cbs /= cbs.iloc[0] cbs -= 1 cbs *= 100 cbs_label = 'Dwellings price index change from 2000 [%]' cbs.columns = ['Apartment Price Index'] cbs['year'] = pd.to_datetime(cbs.index, format='%Y') if units != 'pct_change': twin = ax.twinx() else: twin = ax sns.lineplot(data=cbs, x='year', y='Apartment Price Index', ax=twin, color='k', linewidth=2) twin.set_ylabel('Dwellings Price Index') twin.set_xlabel('') twin.set_ylim(50, 300) ax.grid(True) sns.despine(fig) fig.tight_layout() return fig def plot_regular_feats_comparison_from_new_ds(ds,reg_name='Predictor', feats=best_regular1, units='pct_change'): import seaborn as sns import matplotlib.pyplot as plt import pandas as pd sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) dfs = [] df = ds['beta_coef'].to_dataset('year').to_dataframe().T dff = df[feats].melt(ignore_index=False) dff['year'] = dff.index dfs.append(dff) df = ds['CI_95_upper'].to_dataset('year').to_dataframe().T dff = df[feats].melt(ignore_index=False) dff['year'] = dff.index dfs.append(dff) df = ds['CI_95_lower'].to_dataset('year').to_dataframe().T dff = df[feats].melt(ignore_index=False) dff['year'] = dff.index dfs.append(dff) dff = pd.concat(dfs, axis=0) dff['regressor'] = dff['regressor'].map(vars_explained_plot_names) dff = dff.rename({'regressor': reg_name}, axis=1) dff['year'] = pd.to_datetime(dff['year'], format='%Y') dff = dff.reset_index(drop=True) if units == 'pct_change': dff['value'] = dff['value'].apply(pct_change) sns.lineplot(data=dff, x='year', y='value', hue=reg_name, ax=ax, ci='sd', markers=True, palette='Dark2') if units == 'pct_change': ylabel = 'Price change [%]' else: ylabel = r'Standardized $\beta$s' ax.set_ylabel(ylabel) ax.set_xlabel('') h, l = ax.get_legend_handles_labels() ax.legend_.remove() ax.legend(h, l, ncol=1, title='Predictor', loc='center') ax.grid(True) sns.despine(fig) fig.tight_layout() return dff def prepare_new_X_y_with_year(df, year=2000, y_name='Price', features=best1): import pandas as pd def return_X_with_interaction(X, dummy_list, var_list): Xs = [] for num_var in var_list: X1 = get_design_with_pair_interaction( X, dummy_list+[num_var]) Xs.append(X1) X1 = pd.concat(Xs, axis=1) X1 = X1.loc[:, ~X1.columns.duplicated()] return X1 # m, s = get_mean_std_from_df_feats(df) X, y, scaler = produce_X_y( df, y_name=y_name, year=year, feats=features, dummy='Rooms_345', plot_Xcorr=True, scale_X=True) # X[best_regular] -= m # X[best_regular] /= s # regular vars vs. time (years): # X1 = return_X_with_interaction(X, ['trend'], best_regular) # rooms dummies and new: X2 = return_X_with_interaction(X, room_dummies, ['New']) # rooms dummies and years: # X3 = return_X_with_interaction(X, ['trend'], room_dummies) # New and years: # X4 = return_X_with_interaction(X, year_dummies, ['New']) X = pd.concat([X, X2],axis=1) #, X3, X4], axis=1) X = X.loc[:, ~X.columns.duplicated()] return X, y def prepare_new_X_y(df, y_name='Price'): import pandas as pd def return_X_with_interaction(X, dummy_list, var_list): Xs = [] for num_var in var_list: X1 = get_design_with_pair_interaction( X, dummy_list+[num_var]) Xs.append(X1) X1 = pd.concat(Xs, axis=1) X1 = X1.loc[:, ~X1.columns.duplicated()] return X1 X, y, scaler = produce_X_y( df, y_name=y_name, year=None, feats=best_years, dummy='Rooms_345', plot_Xcorr=True, scale_X=True) # regular vars vs. time (years): X1 = return_X_with_interaction(X, year_dummies, best_regular) # rooms dummies and new: X2 = return_X_with_interaction(X, room_dummies, ['New']) # rooms dummies and years: # X3 = return_X_with_interaction(X, year_dummies, room_dummies) # New and years: # X4 = return_X_with_interaction(X, year_dummies, ['New']) X = pd.concat([X1, X2],axis=1) #, X3, X4], axis=1) X = X.loc[:, ~X.columns.duplicated()] return X, y def prepare_new_X_y_with_trend(df, y_name='Price'): import pandas as pd def return_X_with_interaction(X, dummy_list, var_list): Xs = [] for num_var in var_list: X1 = get_design_with_pair_interaction( X, dummy_list+[num_var]) Xs.append(X1) X1 = pd.concat(Xs, axis=1) X1 = X1.loc[:, ~X1.columns.duplicated()] return X1 X, y, scaler = produce_X_y( df, y_name=y_name, year='trend', feats=best, dummy='Rooms_345', plot_Xcorr=True, scale_X=True) # regular vars vs. time (years): X1 = return_X_with_interaction(X, ['trend'], best_regular) # rooms dummies and new: X2 = return_X_with_interaction(X, room_dummies, ['New']) # rooms dummies and years: X3 = return_X_with_interaction(X, ['trend'], room_dummies) # New and years: # X4 = return_X_with_interaction(X, year_dummies, ['New']) X = pd.concat([X1, X2, X3],axis=1) #, X3, X4], axis=1) X = X.loc[:, ~X.columns.duplicated()] return X, y def get_design_with_pair_interaction(data, group_pair): """ Get the design matrix with the pairwise interactions Parameters ---------- data (pandas.DataFrame): Pandas data frame with the two variables to build the design matrix of their two main effects and their interaction group_pair (iterator): List with the name of the two variables (name of the columns) to build the design matrix of their two main effects and their interaction Returns ------- x_new (pandas.DataFrame): Pandas data frame with the design matrix of their two main effects and their interaction """ import pandas as pd import itertools x = pd.get_dummies(data[group_pair]) interactions_lst = list( itertools.combinations( x.columns.tolist(), 2, ), ) x_new = x.copy() for level_1, level_2 in interactions_lst: if level_1.split('_')[0] == level_2.split('_')[0]: continue x_new = pd.concat( [ x_new, x[level_1] * x[level_2] ], axis=1, ) x_new = x_new.rename( columns = { 0: (level_1 + '_' + level_2) } ) return x_new def calculate_distance_from_gdf_to_employment_centers(gdf, path=work_david, n=4, weights='Pop2020', inverse=None, x_coord_name='ITM-E', y_coord_name='ITM-N'): from cbs_procedures import read_emploment_centers_2008 import numpy as np gdf = gdf[~gdf[x_coord_name].isnull()] gdf = gdf[~gdf[y_coord_name].isnull()] def mean_distance_to_n_mokdim(x, weights=None): # x = gdf['geometry'] dists = points.distance(x).to_frame('distance') dists['Pop2020'] = points['Pop2020'] / 1000 dists = dists.sort_values('distance') if inverse is not None: dists['distance'] = dists['distance']**inverse # return dists['distance'].mean() if weights is None: mean_dist = dists.iloc[0:n].mean() else: mean_dist = np.average( dists.iloc[0:n]['distance'], weights=dists.iloc[0:n][weights]) return mean_dist.item() points = read_emploment_centers_2008(path, shape=True) if n is not None: gdf['mean_distance_to_{}_mokdim'.format(n)] = gdf['geometry'].apply( mean_distance_to_n_mokdim, weights=weights) else: for i, row in points.iterrows(): print('calculating distance to {}.'.format(row['NameHE'])) name = 'kms_to_{}'.format(i) gdf[name] = gdf.distance(row['geometry']) / 1000.0 return gdf def create_total_inout_timeseries_from_migration_network_and_cbs(): from cbs_procedures import read_yearly_inner_migration from Migration_main import read_all_multi_year_gpickles from Migration_main import produce_nodes_time_series Gs = read_all_multi_year_gpickles() da = produce_nodes_time_series(Gs) df_in = da.sel(parameter='total_in').reset_coords( drop=True).to_dataset('node').to_dataframe() df_out = da.sel(parameter='total_out').reset_coords( drop=True).to_dataset('node').to_dataframe() df = read_yearly_inner_migration() inflow = df[df['year'] == 2018][[ 'city_code', 'inflow']].set_index('city_code').T inflow = inflow.append( df[df['year'] == 2019][['city_code', 'inflow']].set_index('city_code').T) inflow.index = [2018, 2019] inflow.index.name = 'time' inflow.columns.name = '' inflow.columns = [str(x) for x in inflow.columns] outflow = df[df['year'] == 2018][[ 'city_code', 'outflow']].set_index('city_code').T outflow = outflow.append( df[df['year'] == 2019][['city_code', 'outflow']].set_index('city_code').T) outflow.index = [2018, 2019] outflow.index.name = 'time' outflow.columns.name = '' outflow.columns = [str(x) for x in outflow.columns] df_in = df_in.append(inflow) df_out = df_out.append(outflow) return df_in, df_out def prepare_features_and_save(path=work_david, savepath=None): from nadlan_EDA import load_nadlan_combined_deal from cbs_procedures import read_school_coords from cbs_procedures import read_kindergarten_coords from cbs_procedures import read_historic_SEI from cbs_procedures import read_building_starts_ends from cbs_procedures import calculate_building_rates from Migration_main import path_glob from cbs_procedures import calculate_minimum_distance_between_two_gdfs import numpy as np import pandas as pd def add_bgr_func(grp, bgr, name='3Rooms_starts'): # import numpy as np year = grp['Sale_year'].unique()[0] cc = grp['city_code'].unique()[0] try: if bgr.columns.dtype == 'object': gr = bgr.loc[year, str(cc)] elif bgr.columns.dtype == 'int': gr = bgr.loc[year, cc] except KeyError: gr = np.nan grp[name] = gr return grp df = load_nadlan_combined_deal( add_bgr=None, add_geo_layers=False, return_XY=True) # add distances to kindergarden, schools, building rates for each room type etc. print('Adding Building Growth rate.') bdf = read_building_starts_ends() for room in ['3rooms', '4rooms', '5rooms', 'Total']: room_begins = calculate_building_rates( bdf, phase='Begin', rooms=room, fillna=False) room_ends = calculate_building_rates( bdf, phase='End', rooms=room, fillna=False) df = df.groupby(['Sale_year', 'city_code']).apply( add_bgr_func, room_begins, name='{}_starts'.format(room)) df = df.groupby(['Sale_year', 'city_code']).apply( add_bgr_func, room_ends, name='{}_ends'.format(room)) # df.loc[df['{}_starts'.format(room)] == 0] = np.nan # df.loc[df['{}_ends'.format(room)] == 0] = np.nan print('Adding minimum distance to kindergartens.') kinder = read_kindergarten_coords() df = df.groupby('Sale_year').apply( calculate_minimum_distance_between_two_gdfs, kinder, 'kindergarten') df.index = df.index.droplevel(0) df = df.reset_index(drop=True) print('Adding minimum distance to schools.') school = read_school_coords() df = df.groupby('Sale_year').apply( calculate_minimum_distance_between_two_gdfs, school, 'school') df.index = df.index.droplevel(0) df = df.reset_index(drop=True) print('Adding historic city-level SEI.') sei = read_historic_SEI() sei.loc[2018] = sei.loc[2017] sei.loc[2019] = sei.loc[2017] df = df.groupby(['Sale_year', 'city_code']).apply( add_bgr_func, sei, name='SEI') # add inflow and outflow: print('Adding Inflow and Outflow') dfi, dfo = create_total_inout_timeseries_from_migration_network_and_cbs() df = df.groupby(['Sale_year', 'city_code']).apply( add_bgr_func, dfi, name='Inflow') df = df.groupby(['Sale_year', 'city_code']).apply( add_bgr_func, dfo, name='Outflow') # finally drop some cols so saving will not take a lot of space: df = df.drop(['P2015_cluster2', 'Parcel_Lot', 'Sale_Y_Q', 'Sale_quarter', 'Sale_month', 'District_HE', 'm2_per_room', 'StatArea_ID', 'Building', 'street_code', 'Street', 'ObjectID', 'TREND_FORMAT', 'TREND_IS_NEGATIVE', 'POLYGON_ID'], axis=1) if savepath is not None: filename = 'Nadaln_with_features.csv' df.to_csv(savepath/filename, na_rep='None', index=False) print('{} was saved to {}.'.format(filename, savepath)) return df def calc_vif(X, dropna=True, asfloat=True, remove_mean=True): import pandas as pd from statsmodels.stats.outliers_influence import variance_inflation_factor if dropna: print('dropping na.') X = X.dropna() if asfloat: print('considering as float.') X = X.astype(float) if remove_mean: X = X - X.mean() # Calculating VIF vif = pd.DataFrame() vif["variables"] = X.columns vif["VIF"] = [variance_inflation_factor( X.values, i) for i in range(X.shape[1])] return(vif) def interpert_beta_coefs(ds, name='beta_coef', dummies=dummies): import numpy as np import xarray as xr ds1 = ds[name].to_dataset('regressor') if len(ds1.dims) == 0: df = ds1.expand_dims('dumm').to_dataframe() else: df = ds1.to_dataframe() betas = [] # interpet dummy variables: for dummy in dummies: print('interperting {} variable.'.format(dummy)) ser = 100*(np.exp(df[dummy])-1) da = ser.to_xarray() betas.append(da) # interpet regular log variables: # for every 10% change in var, the predicted log var is changed...: regulars = [x for x in ds['regressor'].values if x not in dummies] if 'const' in regulars: regulars.remove('const') if 'dumm' in regulars: regulars.remove('dumm') for regular in regulars: print('interperting {} variable.'.format(regular)) ser = 100*(1.1**df[regular]-1) da = ser.to_xarray() betas.append(da) # now, the constant is the geometric mean of the Price: da = np.exp(df['const']).to_xarray() betas.append(da) beta = xr.merge(betas) try: beta = beta.to_array('regressor').drop('dumm') except ValueError: beta = beta.to_array('regressor') # beta = beta.sortby(ds['regressor']) ds['{}_inter'.format(name)] = beta.transpose().squeeze() return ds def scale_log(df, cols=None, plus1_cols=None): import numpy as np import pandas as pd if cols is None: df_scaled = df.copy() for col in df.columns: if plus1_cols is None: df_scaled[col] = df[col].apply(np.log) else: print('{} is scaled using log(x+1)!'.format(col)) df_scaled[col] = (df[col]+1).apply(np.log) else: print('scaling only {} cols.'.format(cols)) df_sliced = df[cols] df_scaled = df_sliced.copy() for col in df_sliced.columns: if plus1_cols is None: df_scaled[col] = df_sliced[col].apply(np.log) else: print('{} is scaled using log(x+1)!'.format(col)) df_scaled[col] = (df[col]+1).apply(np.log) df_rest = df[[x for x in df.columns if x not in cols]] df_scaled = pd.concat([df_scaled, df_rest], axis=1) df_scaled = df_scaled[[x for x in df.columns]] return df_scaled def scale_df(df, scaler, cols=None): import pandas as pd print('using {} scaler.'.format(scaler.__repr__())) if cols is None: scaled_vals = scaler.fit_transform(df) df_scaled = pd.DataFrame(scaled_vals) df_scaled.columns = df.columns else: print('scaling only {} cols.'.format(cols)) df_sliced = df[cols] scaled_vals = scaler.fit_transform(df_sliced) df_scaled = pd.DataFrame(scaled_vals) df_scaled.columns = cols df_rest = df[[x for x in df.columns if x not in cols]] df_scaled = pd.concat([df_scaled, df_rest], axis=1) df_scaled = df_scaled[[x for x in df.columns]] return df_scaled, scaler def load_nadlan_with_features(path=work_david, years=[2000, 2019], asset_type=apts, mokdim_version=False): import pandas as pd from cbs_procedures import read_price_index from nadlan_procedures import remove_outlier_by_value_counts def add_inflation_func(grp, pi,name='Price_inflation_fixed'): year = grp['Sale_year'].unique()[0] weight = pi.loc[str(year)].item() grp[name] = weight*grp['Price'] return grp if mokdim_version: df = pd.read_csv( path/'Nadaln_with_features_and_distance_to_employment_centers.csv', na_values='None') else: df = pd.read_csv(path/'Nadaln_with_features.csv', na_values='None') print('sclicing to {} - {}.'.format(years[0], years[1])) df = df.loc[(df['Sale_year'] >= years[0]) & (df['Sale_year'] <= years[1])] print('choosing {} only.'.format(asset_type)) df = df[df['Type_of_asset'].isin(asset_type)] print('adding to floor number.') floor1 = df.loc[(~df['Another_floor_1'].isnull())]['Another_floor_1'] df.loc[floor1.index, 'Floor_number'] = floor1.values print('adding Netflow') df['Netflow'] = df['Inflow']-df['Outflow'] # shift the 0 of netflow to +10000 so that i could # use np.log afterwards in features preproccesing # also shift the SEI +3 for the log: # df['SEI'] += 3 # now use price inflation fixing: # pi = read_price_index()['price_index_without_housing'] # pi = 100 / pi # df = df.groupby('Sale_year').apply(add_inflation_func, pi) #create linear trend from dt: df = df.set_index(pd.to_datetime(df['Date'])).sort_index() df['trend'] = df.index.to_julian_date() df['trend'] -= df['trend'].iloc[0] df['trend'] /= df['trend'].iloc[-1] # remove number of rooms that are rare: df = remove_outlier_by_value_counts(df, 'Rooms', thresh=900) # remove outliers in rooms: df = remove_outlier_area_per_room(df, col='Area_m2', k=1.5) # remove 1 rooms with area > 50 m^2: d = df[df['Rooms']==1]['Area_m2'].dropna() inds = d[d>50].index df = df.drop(inds, axis=0) df = df.reset_index(drop=True) return df def create_bootstrapped_samples_for_each_city_code_and_year(df, cols=best_for_bs, min_deals=500, min_years=20, n_items=400, n_samples=5): import pandas as pd df2 = df[cols].dropna() df2 = df2.reset_index(drop=True) df1 = filter_df_by_minimum_deals_per_year( df2, min_deals=min_deals, min_years=min_years, col='Price') years = [x for x in df1.columns] cities = [x for x in df1.index] dfs = [] cnt = 0 for year in years: for city in cities: for i in range(n_samples): df3 = df2[(df2['city_code'] == city) & (df2['Sale_year'] == year)].sample(n=n_items, replace=False, random_state=cnt) cnt += 1 dfs.append(df3) dff = pd.concat(dfs, axis=0) dff = dff.reset_index(drop=True) return dff def filter_df_by_minimum_deals_per_year(df, min_deals=200, min_years=20, col='Price'): df1 = df.groupby(['city_code', 'Sale_year'])[col].count().unstack() n_total_cities = len(df1) print('original number of cities: ', n_total_cities) df1 = df1[df1.count(axis=1) == min_years] n_years_cities = len(df1) print('number of cities with {} years total: '.format( min_years), n_years_cities) df1 = df1[df1 >= min_deals].dropna() n_deals_cities = len(df1) print('number of cities with minimum {} deals: '.format( min_deals), n_deals_cities) # sort: df1 = df1.sort_values(by=[x for x in df1.columns], axis=0, ascending=False) return df1 def convert_statsmodels_object_results_to_xarray(est): import pandas as pd import xarray as xr # get main regression results per predictor: t1 = est.summary().tables[1].as_html() t1 = pd.read_html(t1, header=0, index_col=0)[0] t1.columns = ['beta_coef', 'std_err', 't', 'P>|t|', 'CI_95_lower', 'CI_95_upper'] t1.index.name = 'regressor' # get general results per all the data: t0 = est.summary().tables[0].as_html() t0 = pd.read_html(t0, header=None)[0] t0_ser1 = t0.loc[:, [0, 1]].set_index(0)[1] t0_ser1.index.name = '' t0_ser2 = t0.loc[:, [2, 3]].set_index(2)[3].dropna() t0_ser2.index.name = '' t0 = pd.concat([t0_ser1, t0_ser2]) t0.index = t0.index.str.replace(':', '') t2 = est.summary().tables[2].as_html() t2 =
pd.read_html(t2, header=None)
pandas.read_html
# Author: <NAME> # Github: Data-is-Life # Date: 10/01/2018 import re import pandas as pd def rename_columns(strs_to_replace): '''Keeping Dataframe heading formating consistant by converting all values to standardized format that is easy to trace back. If left unformatted, there could be duplicate columns with the same values and it would make it far more challenging to search for homes.''' modified_list = [] for num in strs_to_replace: modified_list.append(num.replace('Redfin Estimate', 'redfin_est' ).replace( 'Beds', 'num_bdrs').replace('beds', 'num_bts').replace( 'Baths', 'num_bts').replace('$', 'price').replace( 'Built: ', 'yr_blt').lower().replace('__', '_').replace( ' ', '_').replace(':_', '').replace(':', '').replace( '.', '').replace('sqft', 'sq_ft').replace('_(', '_').replace( '(', '_').replace(')', '').replace(',', '').replace( 'minimum', 'min').replace('maximum', 'max').replace( 'bedrooms', 'beds').replace('bathrooms', 'baths').replace( '#_of_', 'num_').replace('sq. ft.', 'sqft')) return modified_list def top_info_parser(soup): '''Starting with getting the information at the very top of the page. This takes information from the top of the page that highlights the main attributes of the home, including latitude and longitude.''' all_top = soup.findAll('div', {'class': 'HomeInfo inline-block'}) top_info_dict = {} values_ = [] cats_ = [] sqft = [] lat_lon = [] for num in all_top: # Getting the address address_ = num.findAll('span', {'class': 'street-address'}) top_info_dict['address'] = [num.text for num in address_][0] # Getting the city city_ = num.findAll('span', {'class': 'locality'}) top_info_dict['city'] = [num.text for num in city_][0] # Getting the state (maybe not needed?) state_ = num.findAll('span', {'class': 'region'}) top_info_dict['state'] = [num.text for num in state_][0] # Getting the zip-code zip_code_ = num.findAll('span', {'class': 'postal-code'}) top_info_dict['zip_code'] = [num.text for num in zip_code_][0] '''Getting the Redfin Estimate. This is important, since if the home was sold a few months ago, the search should focus on the homes current value and not for what it sold for. This make the results far more efficiant.''' red_est = num.findAll('div', {'class': 'info-block avm'}) for i in red_est: values_.append(i.div.text) cats_.append(i.span.text) # If the Redfin estimate is not available, this is the fall back option. price_ = num.findAll('div', {'class': 'info-block price'}) for i in price_: values_.append(i.div.text) cats_.append(i.span.text) # Getting number of bedrooms bdrs_ = num.findAll('div', {'data-rf-test-id': 'abp-beds'}) for i in bdrs_: values_.append(i.div.text) cats_.append(i.span.text) # Getting number of bathrooms bths_ = num.findAll('div', {'data-rf-test-id': 'abp-baths'}) for i in bths_: values_.append(i.div.text) cats_.append(i.span.text) # Getting size of the home sqft_ = num.findAll('div', {'data-rf-test-id': 'abp-sqFt'}) for i in sqft_: top_info_dict['sqft'] = i.span.text[:6] # Getting the year the home was built in yrblt_ = num.findAll('div', {'class': 'HomeBottomStats'}) for i in yrblt_: lbls_ = i.findAll('span', {'class': 'label'}) vals_ = i.findAll('span', {'class': 'value'}) for j in lbls_: cats_.append(j.text) for k in vals_: values_.append(k.text) # Getting latitude and longitude of the home lat_lon_ = num.findAll('span', {'itemprop': 'geo'}) for i in lat_lon_: ll_ = i.findAll('meta') for num in ll_: lat_lon.append(num['content']) if len(lat_lon) >= 2: top_info_dict['latitude'] = lat_lon[0] top_info_dict['longitude'] = lat_lon[1] # Checking to make sure the values are present for the fields # If they are not avaialble, get rid of them. values_ = [num for num in values_ if num != '—'] cats_ = [num for num in cats_ if num != '—'] # Putting everything in a dictionary, since it removes redundant columns info_dict = dict(zip(cats_, values_)) # Merging the two dictionaries all_info_dict = {**top_info_dict, **info_dict} # Getting the home description home_description = soup.find('p', {'class': 'font-b1'}) if home_description is not None: all_info_dict['description'] = home_description.span.text else: all_info_dict['description'] = 'N/A' return all_info_dict def public_info_parser(soup): '''Getting information from tax sources to ensure all the home information matches from Zillow, Agent, and Tax records.''' all_info = soup.findAll('div', {'data-rf-test-id': 'publicRecords'}) label_list = [] values_list = [] for num in all_info: cats = num.findAll('span', {'class': 'table-label'}) for i in cats: label_list.append(i.text) for num in all_info: vals = num.findAll('div', {'class': 'table-value'}) for i in vals: values_list.append(i.text) public_info_dict = dict(zip(label_list, values_list)) return public_info_dict def school_parser(soup): ''' Getting schools and the grades they attend with their score from GreatSchools this will be added as a feature for homes bigger than three bedrooms and all single family homes.''' school_dict = {} school_info = soup.findAll('div', {'class': "name-and-info"}) school_names = [] school_grades = [] school_ratings = [] for num in school_info: s_name = num.findAll('div', {'data-rf-test-name': 'school-name'}) s_grade = num.findAll('div', {'class': re.compile('^sub-info')}) s_rating = num.findAll('div', {'class': 'gs-rating-row'}) for i in s_name: school_names.append(i.text) for j in s_grade: school_grades.append(j.text.replace( ' • Serves this home', '').replace(' • ', ' - ')) for k in s_rating: school_ratings.append( k.text[-5:].replace(' ', '').replace('/10', '')) w = 0 while w < len(school_names): if ('Public' in school_grades[w] and (( ('k' in school_grades[w] or 'Pre' in school_grades) or '5' in school_grades[w]) or 'Elementary' in school_names[w])): school_dict['elem_school_name'] = school_names[w] school_dict['elem_school_grades'] = school_grades[ w].split(' - ', 1)[1] school_dict['elem_school_rating'] = school_ratings[w] w += 1 else: w += 1 w = 0 while w < len(school_names): if ('Public' in school_grades[w] and (( ('7' in school_grades[w] or '8' in school_grades) or 'Middle' in school_names[w]) or 'Junior' in school_names[w])): school_dict['middle_school_name'] = school_names[w].title() school_dict['middle_school_grades'] = school_grades[ w].split(' - ', 1)[1].title() school_dict['middle_school_rating'] = school_ratings[w].title() w += 1 else: w += 1 w = 0 while w < len(school_names): if ('Public' in school_grades[w] and ( ('12' in school_grades or 'High' in school_names[w]))): school_dict['high_school_name'] = school_names[w].title() school_dict['high_school_grades'] = school_grades[ w].split(' - ', 1)[1].title() school_dict['high_school_rating'] = school_ratings[w].title() w += 1 else: w += 1 if 'elem_school_name' not in school_dict.keys(): school_dict['elem_school_name'] = 'N/A' school_dict['elem_school_grades'] = 'N/A' school_dict['elem_school_rating'] = 'N/A' if 'middle_school_name' not in school_dict.keys(): school_dict['middle_school_name'] = 'N/A' school_dict['middle_school_grades'] = 'N/A' school_dict['middle_school_rating'] = 'N/A' if 'high_school_name' not in school_dict.keys(): school_dict['high_school_name'] = 'N/A' school_dict['high_school_grades'] = 'N/A' school_dict['high_school_rating'] = 'N/A' return school_dict def feats_parser(soup): '''All the listed features by the agent/broker inputting the listing on the MLS.''' all_home_feats = soup.findAll('span', {'class': "entryItemContent"}) feat_cats = [] feat_vals = [] for num in all_home_feats: feat_cats.append(num.contents[0]) for num in all_home_feats: feat_vals.append(num.span.text) cats_set = set(feat_cats) vals_set = set(feat_vals) redundant = cats_set & vals_set for num in redundant: feat_cats.remove(num) feat_vals.remove(num) feat_cats = [str(num) for num in feat_cats] feat_vals = [str(num) for num in feat_vals] feats_dict = dict(zip(feat_cats, feat_vals)) extra_feats = [] for k, v in feats_dict.items(): if 'span>' in k: extra_feats.append(k) for num in extra_feats: if num in feats_dict.keys(): feats_dict.pop(num) # This is to replace all the HTML tags extra_feats = [num.replace('<span>', '').replace('</span>', '').replace( '<a href=', '').replace('"', '').replace(' rel=nofollow', '').replace( ' target=_blank>', '').replace('Virtual Tour (External Link)', '').replace( '</a', '').replace('>', '').replace('&amp;', '&').replace('(s)', '') for num in extra_feats] x_feat_string = ', '.join([num for num in extra_feats]) x_feat_string = x_feat_string.split(sep=', ') x_feat_list = list(set(x_feat_string)) feats_dict['extra_feats'] = ', '.join([num for num in x_feat_list]) return feats_dict def additional_info(soup): '''Need to get additional information, so we don't miss anything that could prove to be critical later.''' cats_ = soup.findAll('span', {'class': re.compile('^header ')}) cats_ = [num.text for num in cats_] vals_ = soup.findAll('span', {'class': re.compile('^content ')}) vals_ = [num.text for num in vals_] cats_ = [str(num).replace('Property Type', 'prop_type').replace( 'HOA Dues', 'hoa_fees').replace('Type', 'prop_type') for num in cats_] vals_ = [str(num).replace('$', '').replace('/month', '').replace( 'Hi-Rise', 'Condo').replace('Residential', 'Single Family Residence') for num in vals_] return dict(zip(cats_, vals_)) def info_from_property(soup): ''' Putting all the information together in a Dataframe and removing any duplicate columns.''' top_info_dict = top_info_parser(soup) public_info_dict = public_info_parser(soup) school_dict = school_parser(soup) all_home_feats = feats_parser(soup) mid_info_feats = additional_info(soup) df1 = pd.DataFrame(top_info_dict, index=[1]) df2 = pd.DataFrame(public_info_dict, index=[1]) df3 = pd.DataFrame(school_dict, index=[1]) df4 = pd.DataFrame(all_home_feats, index=[1]) df5 = pd.DataFrame(mid_info_feats, index=[1]) df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from itertools import product import numpy as np import pytest import pandas.util.testing as tm from pandas import DatetimeIndex, MultiIndex from pandas._libs import hashtable from pandas.compat import range, u @pytest.mark.parametrize('names', [None, ['first', 'second']]) def test_unique(names): mi = MultiIndex.from_arrays([[1, 2, 1, 2], [1, 1, 1, 2]], names=names) res = mi.unique() exp = MultiIndex.from_arrays([[1, 2, 2], [1, 1, 2]], names=mi.names) tm.assert_index_equal(res, exp) mi = MultiIndex.from_arrays([list('aaaa'), list('abab')], names=names) res = mi.unique() exp = MultiIndex.from_arrays([list('aa'), list('ab')], names=mi.names) tm.assert_index_equal(res, exp) mi = MultiIndex.from_arrays([list('aaaa'), list('aaaa')], names=names) res = mi.unique() exp = MultiIndex.from_arrays([['a'], ['a']], names=mi.names) tm.assert_index_equal(res, exp) # GH #20568 - empty MI mi = MultiIndex.from_arrays([[], []], names=names) res = mi.unique() tm.assert_index_equal(mi, res) def test_unique_datetimelike(): idx1 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-01', '2015-01-01', 'NaT', 'NaT']) idx2 = DatetimeIndex(['2015-01-01', '2015-01-01', '2015-01-02', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') result = MultiIndex.from_arrays([idx1, idx2]).unique() eidx1 = DatetimeIndex(['2015-01-01', '2015-01-01', 'NaT', 'NaT']) eidx2 = DatetimeIndex(['2015-01-01', '2015-01-02', 'NaT', '2015-01-01'], tz='Asia/Tokyo') exp = MultiIndex.from_arrays([eidx1, eidx2]) tm.assert_index_equal(result, exp) @pytest.mark.parametrize('level', [0, 'first', 1, 'second']) def test_unique_level(idx, level): # GH #17896 - with level= argument result = idx.unique(level=level) expected = idx.get_level_values(level).unique() tm.assert_index_equal(result, expected) # With already unique level mi = MultiIndex.from_arrays([[1, 3, 2, 4], [1, 3, 2, 5]], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) tm.assert_index_equal(result, expected) # With empty MI mi = MultiIndex.from_arrays([[], []], names=['first', 'second']) result = mi.unique(level=level) expected = mi.get_level_values(level) @pytest.mark.parametrize('dropna', [True, False]) def test_get_unique_index(idx, dropna): mi = idx[[0, 1, 0, 1, 1, 0, 0]] expected = mi._shallow_copy(mi[[0, 1]]) result = mi._get_unique_index(dropna=dropna) assert result.unique tm.assert_index_equal(result, expected) def test_duplicate_multiindex_labels(): # GH 17464 # Make sure that a MultiIndex with duplicate levels throws a ValueError with pytest.raises(ValueError): mi = MultiIndex([['A'] * 10, range(10)], [[0] * 10, range(10)]) # And that using set_levels with duplicate levels fails mi = MultiIndex.from_arrays([['A', 'A', 'B', 'B', 'B'], [1, 2, 1, 2, 3]]) with pytest.raises(ValueError): mi.set_levels([['A', 'B', 'A', 'A', 'B'], [2, 1, 3, -2, 5]], inplace=True) @pytest.mark.parametrize('names', [['a', 'b', 'a'], [1, 1, 2], [1, 'a', 1]]) def test_duplicate_level_names(names): # GH18872, GH19029 mi = MultiIndex.from_product([[0, 1]] * 3, names=names) assert mi.names == names # With .rename() mi = MultiIndex.from_product([[0, 1]] * 3) mi = mi.rename(names) assert mi.names == names # With .rename(., level=) mi.rename(names[1], level=1, inplace=True) mi = mi.rename([names[0], names[2]], level=[0, 2]) assert mi.names == names def test_duplicate_meta_data(): # GH 10115 mi = MultiIndex( levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) for idx in [mi, mi.set_names([None, None]), mi.set_names([None, 'Num']), mi.set_names(['Upper', 'Num']), ]: assert idx.has_duplicates assert idx.drop_duplicates().names == idx.names def test_has_duplicates(idx, idx_dup): # see fixtures assert idx.is_unique is True assert idx.has_duplicates is False assert idx_dup.is_unique is False assert idx_dup.has_duplicates is True mi = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[[0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert mi.is_unique is False assert mi.has_duplicates is True def test_has_duplicates_from_tuples(): # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'), u('z'), 122), (u('x'), u('out'), u('z'), 17, u('y'), u('in'), u('z'), 160), (u('x'), u('out'), u('z'), 18, u('y'), u('in'), u('z'), 180), (u('x'), u('out'), u('z'), 20, u('y'), u('in'), u('z'), 143), (u('x'), u('out'), u('z'), 21, u('y'), u('in'), u('z'), 128), (u('x'), u('out'), u('z'), 22, u('y'), u('in'), u('z'), 129), (u('x'), u('out'), u('z'), 25, u('y'), u('in'), u('z'), 111), (u('x'), u('out'), u('z'), 28, u('y'), u('in'), u('z'), 114), (u('x'), u('out'), u('z'), 29, u('y'), u('in'), u('z'), 121), (u('x'), u('out'), u('z'), 31, u('y'), u('in'), u('z'), 126), (u('x'), u('out'), u('z'), 32, u('y'), u('in'), u('z'), 155), (u('x'), u('out'), u('z'), 33, u('y'), u('in'), u('z'), 123), (u('x'), u('out'), u('z'), 12, u('y'), u('in'), u('z'), 144)] mi = MultiIndex.from_tuples(t) assert not mi.has_duplicates def test_has_duplicates_overflow(): # handle int64 overflow if possible def check(nlevels, with_nulls): labels = np.tile(np.arange(500), 2) level = np.arange(500) if with_nulls: # inject some null values labels[500] = -1 # common nan value labels = [labels.copy() for i in range(nlevels)] for i in range(nlevels): labels[i][500 + i - nlevels // 2] = -1 labels += [np.array([-1, 1]).repeat(500)] else: labels = [labels] * nlevels + [np.arange(2).repeat(500)] levels = [level] * nlevels + [[0, 1]] # no dups mi = MultiIndex(levels=levels, labels=labels) assert not mi.has_duplicates # with a dup if with_nulls: def f(a): return np.insert(a, 1000, a[0]) labels = list(map(f, labels)) mi = MultiIndex(levels=levels, labels=labels) else: values = mi.values.tolist() mi = MultiIndex.from_tuples(values + [values[0]]) assert mi.has_duplicates # no overflow check(4, False) check(4, True) # overflow possible check(8, False) check(8, True) @pytest.mark.parametrize('keep, expected', [ ('first', np.array([False, False, False, True, True, False])), ('last', np.array([False, True, True, False, False, False])), (False, np.array([False, True, True, True, True, False])) ]) def test_duplicated(idx_dup, keep, expected): result = idx_dup.duplicated(keep=keep) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('keep', ['first', 'last', False]) def test_duplicated_large(keep): # GH 9125 n, k = 200, 5000 levels = [np.arange(n), tm.makeStringIndex(n), 1000 + np.arange(n)] labels = [np.random.choice(n, k * n) for lev in levels] mi = MultiIndex(levels=levels, labels=labels) result = mi.duplicated(keep=keep) expected = hashtable.duplicated_object(mi.values, keep=keep)
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
import requests import json import pandas as pd import datetime as dt def get_binance_bars(symbol, interval, startTime, endTime): url = "https://api.binance.com/api/v3/klines" #where are you getting the data from (read docs) startTime = str(int(startTime.timestamp() * 1000)) endTime = str(int(endTime.timestamp() * 1000)) limit = '1000' req_params = {"symbol": symbol, 'interval': interval, 'startTime': startTime, 'endTime': endTime, 'limit': limit} df = pd.DataFrame(json.loads(requests.get(url, params=req_params).text)) if (len(df.index) == 0): return None df = df.iloc[:, 0:6] df.columns = ['datetime', 'open', 'high', 'low', 'close', 'volume'] df.open = df.open.astype("float") df.high = df.high.astype("float") df.low = df.low.astype("float") df.close = df.close.astype("float") df.volume = df.volume.astype("float") df['adj_close'] = df['close'] df.index = [dt.datetime.fromtimestamp(x / 1000.0) for x in df.datetime] return df months = [dt.datetime(2020, i, 1) for i in range(1, 13)] months.append(dt.datetime(2021, 1, 1)) # Change ticker(BTCUSDT) and interval(1m) to whichever you want df_list = [get_binance_bars('BTCUSDT', '1m', months[i], months[i+1] - dt.timedelta(0, 1)) for i in range(0, len(months) - 1)] # Concatenate list of dfs in 1 df df = pd.concat(df_list) df_list = [] last_datetime = dt.datetime(2017, 9, 1) while True: print(last_datetime) # Change ticker(BTCUSDT) and interval(1m) to whatever you want new_df = get_binance_bars('BTCUSDT', '1m', last_datetime, dt.datetime.now()) if new_df is None: break df_list.append(new_df) last_datetime = max(new_df.index) + dt.timedelta(0, 1) df =
pd.concat(df_list)
pandas.concat
#!/usr/bin/env python # coding=utf-8 """ A highly optimized class for bill of materials consolidation and costing """ from __future__ import absolute_import from pandas import DataFrame from six import iteritems import os import sys DOCKER = os.environ.get('DOCKER') in ('transform', 'ipython') if DOCKER: sys.path.append('/var/vol/code') __author__ = "<NAME>" __copyright__ = "© Copyright 2015, Tartan Solutions, Inc" __credits__ = ["<NAME>"] __license__ = "Proprietary" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class Node(object): """A BOM hierarchy node object""" def __init__(self, parent_obj, child_id, makeup_volume=1): """Initializes node object :param parent_obj: parent object :type parent_obj: object :param child_id: child node key :type child_id: str or unicode :param consolidation: consolidation type +, -, or ~ :type consolidation: str or unicode :returns: None :rtype: None """ self.id = child_id self.parents = [] self.children = {} self.cost = None self.override_cost = None # Set the reference to an assembly if parent_obj is not None: parent_obj.add_child(self, makeup_volume) # Create a reference so each child know who uses it if parent_obj not in self.parents: self.parents.append(parent_obj) def __repr__(self): return "<(Node ID: {} ({})>".format(self.id, self.get_cost()) def get_cost(self): if self.cost is None: # Need to calculate the cost self.calculate_cost() return self.cost def set_cost(self, value): self.cost = value def set_override_cost(self, value): self.override_cost = value def add_child(self, child_obj, makeup_volume): """Add a child to the node :param child_obj: node object to add :type child_obj: object :param h: hierarchy - main or name of alt hierarchy :type h: str or unicode :returns: None :rtype: None """ # Add the child to this parent's list of children # Also handles a makeup volume change self.children[child_obj] = makeup_volume def remove_child(self, child_id): """Removes child from node :param child_id: child node key to remove :type child_id: str or unicode :returns: None :rtype: None """ current_children = self.get_children() temp_children = {} for c in current_children: if c.id != child_id: temp_children[c] = current_children[c] # The new list should be missing the child. self.children = temp_children def get_parents(self): """Returns parent object of node :returns: Parent object :rtype: object """ return self.parents def get_siblings(self, parent_id): """Finds siblings of the node :returns: list of siblings node objects including current node :rtype: list """ for p in self.parents: if p.id == parent_id: return p.get_children() def get_children(self): """Returns list of children node objects :returns: list of child node objects :rtype: list """ return self.children def is_child_of(self, parent_id): """Checks if the node is a child of the specified parent :param parent_id: parent node key :type parent_id: str or unicode :returns: True if node descends from the parent :rtype: bool """ for p in self.parents: if p.id == parent_id: return True return False def is_parent_of(self, child_id): """Checks if the node is a parent of the specified child :param child_id: child node key :type child_id: str or unicode :returns: True if child descends from the node :rtype: bool """ for c in self.get_children(): if c.id == child_id: return True return False def calculate_cost(self): """Calculates the roll-up cost of this node based on the costs of sub-components :returns: None :rtype: None """ if self.override_cost is None: # Ask all children for their costs and multiply by makeup volume # This will invoke a recursive request for costs down to the # lowest level component cost = 0 for c in self.children: makeup_volume = self.children[c] if makeup_volume != 0: child_cost = c.get_cost() makeup_cost = child_cost * self.children[c] cost += makeup_cost self.cost = cost else: # An Override cost has been supplied # DO NOT calculate the cost, just use the override self.cost = self.override_cost def reset_cost(self): self.cost = None class BOM(object): """BOM Hierarchy Class for fast BOM hierarchy operations""" def __init__(self, load_path=None): """Class init function sets up basic structure :param load_path: optional path to saved hierarchy load file to load initially :type load_path: str or unicode :returns: None :rtype: None """ self.h_direct = {} self.h_children = {} self.clear() if load_path is not None: self.load(load_path) def add_node(self, parent_id, child_id, makeup_volume=1): """Adds a node to the main hierarchy :param parent_id: parent node key :type parent_id: str or unicode :param child_id: child node key :type child_id: str or unicode :param consolidation: consolidation type +, -, or ~ :type consolidation: str or unicode :returns: None :rtype: None """ try: parent_obj = self.get_node(parent_id) except: # Parent does not exist yet. Handle out of sequence data gracefully. root_parent = self.get_node('root') parent_obj = Node(root_parent, parent_id) self.h_direct[parent_id] = parent_obj if child_id in self.h_direct: # This already exists. node = self.h_direct[child_id] parent_obj.add_child(node, makeup_volume) else: # Doesn't exist. Simple add. node = Node(parent_obj, child_id, makeup_volume) self.h_direct[child_id] = node def delete_node(self, node_id): """Deletes the node and removes all aliases and properties :param node_id: node key :type node_id: str or unicode :returns: None :rtype: None """ # Delete the node and index reference try: parents = self.get_parents(node_id) except: # Not present. No need to do anything pass else: # Remove from main hierarchy del self.h_direct[node_id] for p in parents: p.remove_child(node_id) def get_node(self, node_id): """Gets the node object :param node_id: node key :type node_id: str or unicode :returns: Node object :rtype: object """ try: return self.h_direct[node_id] except: raise Exception('No node found with the name %s' % node_id) def reset_costs(self): """Resets all costs to uncalculated value :returns: None :rtype: None """ for node_id in self.h_direct: self.h_direct[node_id].reset_cost() def set_cost(self, node_id, value): self.h_direct[node_id].set_cost(value) def set_override_cost(self, node_id, value): self.h_direct[node_id].set_override_cost(value) def get_all_costs(self): """Gets the cost of all nodes :returns: node cost :rtype: pandas.DataFrame """ final = [] for node_id in self.h_direct: temp = (node_id, self.h_direct[node_id].get_cost()) final.append(temp) headers = ['node', 'cost'] df = DataFrame(final, columns=headers) return df def get_parents(self, node_id): """Finds parent of node :param node_id: node key :type node_id: str or unicode :returns: node object of parent :rtype: object """ return self.get_node(node_id).get_parents() def get_parent_ids(self, node_id): """Finds parent of node :param node_id: node key :type node_id: str or unicode :returns: node key of parent :rtype: str or unicode """ try: parents = self.get_parents(node_id) return [p.id for p in parents] except: return None def get_siblings(self, node_id, parent_id): """Finds sibling nodes of specified node :param node_id: node key :type node_id: str or unicode :returns: node objects of all siblings including the current node :rtype: list """ return self.get_node(node_id).get_siblings(parent_id) def get_sibling_ids(self, node_id, parent_id): """Finds sibling nodes of specified node :param node_id: node key :type node_id: str or unicode :returns: node keys of all siblings including the current node :rtype: list """ objs = self.get_siblings(node_id, parent_id) return [o.id for o in objs] def get_children(self, node_id): """Finds children of node :param node_id: node key :type node_id: str or unicode :returns: list of children node objects :rtype: list """ return self.get_node(node_id).get_children() def get_children_ids(self, node_id): """Finds children of node :param node_id: node key :type node_id: str or unicode :returns: list of children node keys :rtype: list """ objs = self.get_children(node_id) return [o.id for o in objs] def is_child_of(self, node_id, parent_id): """Check if node is a child of the parent node :param node_id: child node key :type node_id: str or unicode :param parent_id: parent node key :type parent_id: str or unicode :returns: True if the child descends from the parent :rtype: bool """ return self.get_node(node_id).is_child_of(parent_id) def is_parent_of(self, node_id, child_id): """Checks if node is a parent of the child node :param node_id: parent node key :type node_id: str or unicode :param child_id: child node key :type child_id: str or unicode :returns: True if the child descends from parent :rtype: bool """ return self.get_node(node_id).is_parent_of(child_id) def _get_main_list_format(self, node_id): """Generates the parent child list recursively for saving :param node_id: current node to process :type node_id: str or unicode :returns: List of lists with parent child information :rtype: list """ final = [] children = self.get_children(node_id) for c in children: temp = [str(node_id), str(c.id), children[c]] final.append(temp) sub_children = self._get_main_list_format(c.id) if len(sub_children) > 0: final += sub_children return final def save(self, path): """Saves the hierarchy, alias, and property info in one file :param path: File path to save out put :type path: str or unicode :returns: None :rtype: None """ self.save_hierarchy(path, 'root') def load(self, path): """Loads hierarchy, alias, and propeperty :param path: File path to load :type path: str or unicode :returns: None :rtype: None """ self.load_hierarchy(path) def get_bom(self, top_node='root'): """Created dataframe of BOM makeup structure :param top_node: :type top_node: str or unicode :returns: Parent Child Dataframe :rtype: pandas.DataFrame """ headers = ['parent', 'child', 'makeup_volume'] pc_list = self._get_main_list_format(top_node) df = DataFrame(pc_list, columns=headers) return df def load_dataframe(self, df): """Loads a well formed dataframe into the hierarchy object Columns expected: - parent - child - makeup_volume :param df: The dataframe containing at least parent and child columns :type df: dataframe :returns: None :rtype: None """ if df is not None: column_info = [] for column_name, data_type in iteritems(df.dtypes): column_info.append(column_name) # Check to make sure all required columns are present if 'parent' not in column_info: raise Exception('Missing parent column. Found the following columns: {0}'.format(str(column_info))) if 'child' not in column_info: raise Exception('Missing child column. Found the following columns: {0}'.format(str(column_info))) if 'makeup_volume' not in column_info: raise Exception( 'Missing makeup_volume column. Found the following columns: {0}'.format(str(column_info))) # order the df columns (hierarchy, parent, child, consolidation_type) # this enables using itertuples instead of iterrows df = df[['parent', 'child', 'makeup_volume']] # Iterate over the data and build the hierachy using the add method for r in df.itertuples(): # Tuple is formed as (index, hierarchy, parent, child, consolidation type) self.add_node(r[1], r[2], r[3]) def clear(self): self.clear_hierarchy() def clear_hierarchy(self): """Clears the main and alternate hierarchies :returns: None :rtype: None """ self.h_direct = {} self.h_children = {} node = Node(None, 'root') self.h_direct['root'] = node def _get_preprocessed_main_format(self, node_id, left=0, volume_multiplier=1, indent=0): """Generates a highly optimized reporting format for export of main hierarchy :param node_id: current node key :type node_id: str or unicode :param left: current left counter :type left: int :param consolidation_list: list of consolidation multipliers as json string :type consolidation_list: str :returns: list of parent child records :rtype: list """ final = [] # If this recursed event doesn't have any records return the same value for left and right right = left children = self.get_children(node_id) for c in children: makeup_volume = children[c] effective_volume = makeup_volume * volume_multiplier # Get the child records recursively sub_right, sub_children = self._get_preprocessed_main_format(c.id, left + 1, effective_volume, indent + 1) # Now figure out the right side number based on how many elements are below right = sub_right + 1 if len(sub_children) > 0: is_leaf = False else: is_leaf = True temp = [str(node_id), str(c.id), makeup_volume, effective_volume, is_leaf, left, right, indent] final.append(temp) if is_leaf is False: final += sub_children return (right, final) def get_frame(self, table, top_node='root'): """Generates a highly optimized reporting format for export :param path: Absolute path to export location :type path: str or unicode :param top_node: node key to start export at :type top_node: str or unicode :returns: None :rtype: None """ headers = ['parent', 'child', 'makeup_volume', 'effective_makeup_volume', 'leaf', 'left', 'right', 'indent'] right, pc_list = self._get_preprocessed_main_format(top_node) df = DataFrame(pc_list, columns=headers) return df def get_pretty_frame(self, table, top_node='root'): indent = ' ' template = '{0}{1} x {2} ({3})' right, pc_list = self._get_preprocessed_main_format(top_node) final = [] for p in pc_list: temp = [] parent = p[0] child = p[1] makeup_volume = p[2] effective_makeup_volume = p[3] #leaf = p[4] #left = p[5] #right = p[6] indent_mult = p[7] indent_txt = indent * indent_mult txt = template.format(indent_txt, makeup_volume, child, effective_makeup_volume) temp.append(txt) temp.append(parent) temp.append(child) temp.append(makeup_volume) temp.append(effective_makeup_volume) final.append(temp) headers = ['friendly', 'parent', 'child', 'makeup_volume', 'effective_makeup_volume'] df =
DataFrame(final, columns=headers)
pandas.DataFrame
#!/usr/bin/env python import tweepy import pandas as pd import re from keys import Keys ''' Regex sourced from StackOverflow. https://stackoverflow.com/a/11332580 ''' def clean(text): no_url = re.sub(r'http\S+', '', text) no_lines = no_url.replace('\n', ' ').replace('\r', '').replace('\"', '').replace('\'', '').replace(' ', '') no_hash = re.sub('@[^\s]+', '', no_lines) return no_hash.strip() ''' This requires some manual monitoring as it's not always clear when the Twitter API will kick you off because of rate requests. Current solution is to save after every handle, and then load the file if it already exists (to continue appending to it). This was prior to discovering `wait_on_rate_limit`. ''' def download_tweets(handles, recover=False): keys = Keys() auth = tweepy.OAuthHandler(keys.consumer_token, keys.consumer_secret) auth.set_access_token(keys.access_token, keys.access_token_secret) api = tweepy.API(auth, wait_on_rate_limit=True) text = [] if recover: text = pd.read_csv('tweets.csv', header=None, squeeze=True).values.tolist() for handle in handles: print(f'Downloading tweets for {handle}...') try: tweets = tweepy.Cursor(api.user_timeline, id=handle, tweet_mode='extended').items() except TweepError as e: print(e) for tweet in tweets: if hasattr(tweet, 'retweeted_status'): try: text.append(clean(tweet.retweeted_status.extended_tweet['full_text'])) except AttributeError: text.append(clean(tweet.retweeted_status.full_text)) else: try: text.append(clean(tweet.extended_tweet['full_text'])) except AttributeError: text.append(clean(tweet.full_text)) print(f'Saving tweets for {handle}...')
pd.DataFrame(text)
pandas.DataFrame
from pcpca import CPCA, PCPCA import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.decomposition import PCA import sys from scipy.stats import ttest_ind sys.path.append("../../../clvm") from clvm import CLVM DATA_PATH = "../../../data/mouse_protein_expression/clean/Data_Cortex_Nuclear.csv" N_COMPONENTS = 2 if __name__ == "__main__": # Read in data data = pd.read_csv(DATA_PATH) data = data.fillna(0) # Get names of proteins protein_names = data.columns.values[1:78] data.Genotype[data.Genotype == "Control"] = "Non-DS" data.Genotype[data.Genotype == "Ts65Dn"] = "DS" # Background Y_df = data[ (data.Behavior == "C/S") & (data.Genotype == "Non-DS") & (data.Treatment == "Saline") ] Y = Y_df[protein_names].values Y -= Y.mean(0) Y /= Y.std(0) Y = Y.T # Foreground X_df = data[(data.Behavior == "S/C") & (data.Treatment == "Saline")] # X_df = pd.concat([X_df.iloc[:177, :], X_df.iloc[180:, :]], axis=0) X = X_df[protein_names].values X -= X.mean(0) X /= X.std(0) X = X.T n, m = X.shape[1], Y.shape[1] import matplotlib font = {"size": 30} matplotlib.rc("font", **font) matplotlib.rcParams["text.usetex"] = True gamma_range_cpca = list(np.linspace(0, 400, 40)) gamma_range_pcpca = list(np.linspace(0, 0.99, 40)) # gamma_range_pcpca = [0, 0.5, 0.9] # print(X[:5, :]) # import ipdb; ipdb.set_trace() cluster_scores_cpca = [] cpca_gamma_plot_list = [] for ii, gamma in enumerate(gamma_range_cpca): cpca = CPCA(gamma=n / m * gamma, n_components=N_COMPONENTS) X_reduced, Y_reduced = cpca.fit_transform(X, Y) X_reduced = (X_reduced.T / X_reduced.T.std(0)).T try: kmeans = KMeans(n_clusters=2, random_state=0).fit(X_reduced.T) except: cpca_fail_gamma = gamma break cpca_gamma_plot_list.append(gamma) true_labels = pd.factorize(X_df.Genotype)[0] cluster_score = silhouette_score(X=X_reduced.T, labels=true_labels) print("gamma'={}, cluster score={}".format(gamma, cluster_score)) cluster_scores_cpca.append(cluster_score) cluster_scores_pcpca = [] pcpca_gamma_plot_list = [] for ii, gamma in enumerate(gamma_range_pcpca): # if gamma == 0.9: # import ipdb; ipdb.set_trace() pcpca = PCPCA(gamma=n / m * gamma, n_components=N_COMPONENTS) X_reduced, Y_reduced = pcpca.fit_transform(X, Y) if pcpca.sigma2_mle <= 0: pcpca_fail_gamma = gamma break X_reduced = (X_reduced.T / X_reduced.T.std(0)).T kmeans = KMeans(n_clusters=2, random_state=0).fit(X_reduced.T) pcpca_gamma_plot_list.append(gamma) true_labels = pd.factorize(X_df.Genotype)[0] cluster_score = silhouette_score(X=X_reduced.T, labels=true_labels) print("gamma'=*{}, cluster score={}".format(gamma, cluster_score)) cluster_scores_pcpca.append(cluster_score) ## Fit CLVM # clvm = CLVM( # data_dim=X.shape[0], # n_bg=m, # n_fg=n, # latent_dim_shared=N_COMPONENTS, # latent_dim_fg=N_COMPONENTS, # ) # clvm.init_model() # clvm.fit_model(Y, X, n_iters=10000) # zy = clvm.qzy_mean.numpy().T # zx = clvm.qzx_mean.numpy().T # tx = clvm.qtx_mean.numpy().T # clvm_cluster_score = silhouette_score(X=tx, labels=true_labels) plt.figure(figsize=(38, 7)) plt.subplot(151) plt.plot(cpca_gamma_plot_list, cluster_scores_cpca, "-o", linewidth=2) plt.title("CPCA") plt.ylim([0, 1]) plt.xlim([0, cpca_gamma_plot_list[-1] + 40]) plt.axvline(cpca_fail_gamma, color="black", linestyle="--") plt.axhline(np.max(cluster_scores_cpca), color="red", linestyle="--") # plt.axhline(clvm_cluster_score, color="blue", linestyle="--", label="CLVM") plt.xlabel(r"$\gamma^\prime$") plt.ylabel("Silhouette score") plt.legend() plt.subplot(152) plt.plot(pcpca_gamma_plot_list, cluster_scores_pcpca, "-o", linewidth=2) plt.title("PCPCA") plt.ylim([0, 1]) plt.xlim([0, pcpca_gamma_plot_list[-1] + 0.1]) plt.axvline(pcpca_fail_gamma, color="black", linestyle="--") plt.axhline(np.max(cluster_scores_pcpca), color="red", linestyle="--") # plt.axhline(clvm_cluster_score, color="blue", linestyle="--", label="CLVM") plt.xlabel(r"$\gamma^\prime$") plt.ylabel("Silhouette score") plt.legend() plt.subplot(153) cpca = CPCA(gamma=n / m * cpca_gamma_plot_list[-1], n_components=N_COMPONENTS) X_reduced, Y_reduced = cpca.fit_transform(X, Y) plt.title(r"CPCA, $\gamma^\prime$={}".format(round(cpca_gamma_plot_list[-1], 2))) X_reduced_df = pd.DataFrame(X_reduced.T, columns=["PCPC1", "PCPC2"]) # [str(x) for x in kmeans.labels_] X_reduced_df["Genotype"] = X_df.Genotype.values Y_reduced_df = pd.DataFrame(Y_reduced.T, columns=["PCPC1", "PCPC2"]) Y_reduced_df["Genotype"] = ["Background" for _ in range(Y_reduced_df.shape[0])] results_df = pd.concat([X_reduced_df, Y_reduced_df], axis=0) results_df[["PCPC1", "PCPC2"]] = results_df[["PCPC1", "PCPC2"]] / results_df[ ["PCPC1", "PCPC2"] ].std(0) g = sns.scatterplot( data=results_df, x="PCPC1", y="PCPC2", hue="Genotype", palette=["green", "orange", "gray"], ) g.legend_.remove() plt.xlabel("CPC1") plt.ylabel("CPC2") ax = plt.gca() handles, labels = ax.get_legend_handles_labels() # ax.legend(handles=handles[1:], labels=labels[1:]) plt.subplot(154) pcpca = PCPCA(gamma=n / m * pcpca_gamma_plot_list[-1], n_components=N_COMPONENTS) X_reduced, Y_reduced = pcpca.fit_transform(X, Y) plt.title(r"PCPCA, $\gamma^\prime$={}".format(round(pcpca_gamma_plot_list[-1], 2))) X_reduced_df = pd.DataFrame(X_reduced.T, columns=["PCPC1", "PCPC2"]) X_reduced_df["Genotype"] = X_df.Genotype.values Y_reduced_df =
pd.DataFrame(Y_reduced.T, columns=["PCPC1", "PCPC2"])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import scipy.io as sio import pandas as pd import os def mat2df(mat_file, var=None, filepath=None): var_in = var if isinstance(var, str): var = [var] elif var is None: if isinstance(mat_file, dict): var = mat_file.keys() v_names = [] # mat_file is a file path and var_list is a list of strings corresponding to structure field names if isinstance(mat_file, str): if os.path.isfile(mat_file): return mat2df(sio.loadmat(mat_file, simplify_cells=True), var, filepath=mat_file) elif os.path.isdir(mat_file): df_list = [] for file in os.listdir(mat_file): df_list.append(mat2df(file, var)) return pd.concat(df_list, axis=1).squeeze() else: print(mat_file + "is not a valid file path") return elif isinstance(mat_file, dict): mat = mat_file if any("__" in i for i in list(mat)) or any("readme" in i for i in list(mat)): for i in list(mat): if "__" not in i and "readme" not in i: return mat2df(mat[i], var_in, filepath) raise ValueError("no variable stored in {file}".format(file=filepath)) elif any(i in mat.keys() for i in var) or any("." in i for i in var): df_list = [] for i in var: if "." in i: (left, right) = i.split(".", 1) if left in mat.keys(): df_list.append(mat2df(mat[left], right, filepath)) elif i in mat.keys(): for v_name in list(set(var).intersection(mat.keys())): v_names.append(v_name) try: df_list.append(pd.DataFrame(mat).filter(v_names).reset_index(drop=True)) # end except ValueError as e: print("warning:", e) for cols in [mat[v_name] for v_name in v_names]: if isinstance(cols, dict): # if all values of dict are scalar, then an index must be provided if all(np.isscalar(i) for i in cols.values()): df_list.append(pd.DataFrame(cols, index=[0])) else: df_list.append(pd.DataFrame(cols).reset_index(drop=True)) else: df_list.append(pd.DataFrame(cols).reset_index(drop=True)) return
pd.concat(df_list, axis=1)
pandas.concat
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A')
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
from model import resnet from model import densenet_BC from model import vgg import losses import time import data as dataset import crl_utils import metrics import utils import train import data import argparse import os import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn from torch.optim.lr_scheduler import MultiStepLR import numpy as np import pandas as pd import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description='Confidence Aware Learning') parser.add_argument('--epochs', default=300, type=int, help='Total number of epochs to run') parser.add_argument('--batch_size', default=128, type=int, help='original : 128 Batch size for training') parser.add_argument('--data', default='cifar10', type=str, help='Dataset name to use [cifar10, cifar100, svhn]') parser.add_argument('--model', default='res', type=str, help='Models name to use [res, dense, vgg]') parser.add_argument('--loss', default='CE', type=str, help='Loss to use [CE, CRL, Focal, MS, Contrastive, Triplet, NPair, Avg]') parser.add_argument('--cal', default='Default', type=str, help='Calculate Correctness, Confidence') parser.add_argument('--rank_target', default='softmax', type=str, help='Rank_target name to use [softmax, margin, entropy]') parser.add_argument('--rank_weight', default=0.0, type=float, help='Rank loss weight') parser.add_argument('--lr', default = 1e-4, type =float,help = 'Learning rate setting') parser.add_argument('--weight-decay', default = 1e-4, type =float, help = 'Weight decay setting') parser.add_argument('--lr-decay-step', default = 10, type =int, help = 'Learning decay step setting') parser.add_argument('--lr-decay-gamma', default = 0.5, type =float, help = 'Learning decay gamma setting') parser.add_argument('--data_path', default='/mnt/hdd0/jiizero/', type=str, help='Dataset directory') parser.add_argument('--save_path', default='./test/', type=str, help='Savefiles directory') parser.add_argument('--gpu', default='0', type=str, help='GPU id to use') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--sort', action='store_true', help='sample sort-> hard sample and easy sample') parser.add_argument('--sort_mode', type=float, default=0, help='sample sort-> 0: acc/conf 1: conf') parser.add_argument('--valid', action='store_true', help='is_use_validset') parser.add_argument('--calibrate', action='store_true', help='is_use_validset') parser.add_argument('--b', type=float, default=None, help='Flood level') parser.add_argument('--ts', type=float, default=None, help='Temperature Scaling') parser.add_argument('--mixup', type=float, default=None, help='Mixup with alpha') parser.add_argument('--rot', action='store_true', help='RotNet') parser.add_argument('--ji_conf', action='store_true', help='b*(1.5-conf)') parser.add_argument('--minus_1_conf', action='store_true', help='b*(1/conf)') parser.add_argument('--ji_acc_conf', action='store_true', help='b*(acc/conf)') parser.add_argument('--ji_wj', type=float, default=0, help='ce + |soft-acc|') parser.add_argument('--mode', type=float, default=0, help='batch : 0 (default), sample : 1') args = parser.parse_args() def main(): file_name = "./flood_graph/150_250/128/500/ji_sort/1_conf/sample-wised/default/{}/".format(args.b) start = time.time() # set GPU ID os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu cudnn.benchmark = True # check save path save_path = file_name # save_path = args.save_path if not os.path.exists(save_path): os.makedirs(save_path) # make dataloader if args.valid == True: train_loader, valid_loader, test_loader, test_onehot, test_label = dataset.get_valid_loader(args.data, args.data_path, args.batch_size) else: train_loader, train_onehot, train_label, test_loader, test_onehot, test_label = dataset.get_loader(args.data, args.data_path, args.batch_size) # set num_class if args.data == 'cifar100': num_class = 100 else: num_class = 10 # set num_classes model_dict = { "num_classes": num_class, } # set model if args.model == 'res': model = resnet.resnet110(**model_dict).cuda() elif args.model == 'dense': model = densenet_BC.DenseNet3(depth=100, num_classes=num_class, growth_rate=12, reduction=0.5, bottleneck=True, dropRate=0.0).cuda() elif args.model == 'vgg': model = vgg.vgg16(**model_dict).cuda() # set criterion if args.loss == 'MS': cls_criterion = losses.MultiSimilarityLoss().cuda() elif args.loss == 'Contrastive': cls_criterion = losses.ContrastiveLoss().cuda() elif args.loss == 'Triplet': cls_criterion = losses.TripletLoss().cuda() elif args.loss == 'NPair': cls_criterion = losses.NPairLoss().cuda() elif args.loss == 'Focal': cls_criterion = losses.FocalLoss(gamma=3.0).cuda() else: if args.mode == 0: cls_criterion = nn.CrossEntropyLoss().cuda() else: cls_criterion = nn.CrossEntropyLoss(reduction="none").cuda() ranking_criterion = nn.MarginRankingLoss(margin=0.0).cuda() # set optimizer (default:sgd) optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4, # weight_decay=0.0001, nesterov=False) # optimizer = optim.SGD(model.parameters(), # lr=float(args.lr), # momentum=0.9, # weight_decay=args.weight_decay, # nesterov=False) # set scheduler # scheduler = MultiStepLR(optimizer, # milestones=[500, 750], # gamma=0.1) scheduler = MultiStepLR(optimizer, milestones=[150, 250], gamma=0.1) # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_step, gamma=args.lr_decay_gamma) # make logger train_logger = utils.Logger(os.path.join(save_path, 'train.log')) result_logger = utils.Logger(os.path.join(save_path, 'result.log')) # make History Class correctness_history = crl_utils.History(len(train_loader.dataset)) ## define matrix if args.data == 'cifar': matrix_idx_confidence = [[_] for _ in range(50000)] matrix_idx_iscorrect = [[_] for _ in range(50000)] else: matrix_idx_confidence = [[_] for _ in range(73257)] matrix_idx_iscorrect = [[_] for _ in range(73257)] # write csv #''' import csv f = open('{}/logs_{}_{}.txt'.format(file_name, args.b, args.epochs),'w', newline='') f.write("location = {}\n\n".format(file_name)+str(args)) f0 = open('{}/Test_confidence_{}_{}.csv'.format(file_name, args.b, args.epochs), 'w', newline='') # f0 = open('./baseline_graph/150_250/128/500/Test_confidence_{}_{}.csv'.format(args.b, args.epochs), 'w', newline='') # f0 = open('./CRL_graph/150_250/Test_confidence_{}_{}.csv'.format(args.b, args.epochs), 'w', newline='') wr_conf_test = csv.writer(f0) header = [_ for _ in range(args.epochs + 1)] header[0] = 'Epoch' wr_conf_test.writerows([header]) f1 = open('{}/Train_confidence_{}_{}.csv'.format(file_name, args.b, args.epochs), 'w', newline='') # f1 = open('./baseline_graph/150_250/128/500/Train_confidence_{}_{}.csv'.format(args.b, args.epochs), 'w', newline='') # f1 = open('./CRL_graph/150_250/Train_confidence_{}_{}.csv'.format(args.b, args.epochs), 'w', newline='') wr = csv.writer(f1) header = [_ for _ in range(args.epochs + 1)] header[0] = 'Epoch' wr.writerows([header]) f2 = open('{}/Train_Flood_{}_{}_{}.csv'.format(file_name, args.data, args.b, args.epochs), 'w', newline='') # f2 = open('./baseline_graph/150_250/128/500/Train_Base_{}_{}_{}.csv'.format(args.data, args.b, args.epochs), 'w', newline='') # f2 = open('./CRL_graph/150_250/Train_Flood_{}_{}_{}.csv'.format(args.data, args.b, args.epochs), 'w', newline='') wr_train = csv.writer(f2) header = [_ for _ in range(args.epochs+1)] header[0] = 'Epoch' wr_train.writerows([header]) f3 = open('{}/Test_Flood_{}_{}_{}.csv'.format(file_name, args.data, args.b, args.epochs), 'w', newline='') # f3 = open('./baseline_graph/150_250/128/500/Test_Base_{}_{}_{}.csv'.format(args.data, args.b, args.epochs), 'w', newline='') # f3 = open('./CRL_graph/150_250/Test_Flood_{}_{}_{}.csv'.format(args.data, args.b, args.epochs), 'w', newline='') wr_test = csv.writer(f3) header = [_ for _ in range(args.epochs+1)] header[0] = 'Epoch' wr_test.writerows([header]) #''' # start Train best_valid_acc = 0 test_ece_report = [] test_acc_report = [] test_nll_report = [] test_over_con99_report = [] test_e99_report = [] test_cls_loss_report = [] train_ece_report = [] train_acc_report = [] train_nll_report = [] train_over_con99_report = [] train_e99_report = [] train_cls_loss_report = [] train_rank_loss_report = [] train_total_loss_report = [] for epoch in range(1, args.epochs + 1): scheduler.step() matrix_idx_confidence, matrix_idx_iscorrect, idx, iscorrect, confidence, target, cls_loss_tr, rank_loss_tr, batch_correctness, total_confidence, total_correctness = \ train.train(matrix_idx_confidence, matrix_idx_iscorrect, train_loader, model, wr, cls_criterion, ranking_criterion, optimizer, epoch, correctness_history, train_logger, args) if args.rank_weight != 0.0: print("RANK ", rank_loss_tr) total_loss_tr = cls_loss_tr + rank_loss_tr if args.valid == True: idx, iscorrect, confidence, target, cls_loss_val, acc = train.valid(valid_loader, model, cls_criterion, ranking_criterion, optimizer, epoch, correctness_history, train_logger, args) if acc > best_valid_acc: best_valid_acc = acc print("*** Update Best Acc ***") # save model if epoch == args.epochs: torch.save(model.state_dict(), os.path.join(save_path, 'model.pth')) print("########### Train ###########") acc_tr, aurc_tr, eaurc_tr, aupr_tr, fpr_tr, ece_tr, nll_tr, brier_tr, E99_tr, over_99_tr, cls_loss_tr = metrics.calc_metrics(train_loader, train_label, train_onehot, model, cls_criterion, args) if args.sort == True and epoch == 260: #if args.sort == True: train_loader = dataset.sort_get_loader(args.data, args.data_path, args.batch_size, idx, np.array(target), iscorrect, batch_correctness, total_confidence, total_correctness, np.array(confidence), epoch, args) train_acc_report.append(acc_tr) train_nll_report.append(nll_tr*10) train_ece_report.append(ece_tr) train_over_con99_report.append(over_99_tr) train_e99_report.append(E99_tr) train_cls_loss_report.append(cls_loss_tr) if args.rank_weight != 0.0: train_total_loss_report.append(total_loss_tr) train_rank_loss_report.append(rank_loss_tr) print("CLS ", cls_loss_tr) # finish train print("########### Test ###########") # calc measure acc_te, aurc_te, eaurc_te, aupr_te, fpr_te, ece_te, nll_te, brier_te, E99_te, over_99_te, cls_loss_te = metrics.calc_metrics(test_loader, test_label, test_onehot, model, cls_criterion, args) test_ece_report.append(ece_te) test_acc_report.append(acc_te) test_nll_report.append(nll_te*10) test_over_con99_report.append(over_99_te) test_e99_report.append(E99_te) test_cls_loss_report.append(cls_loss_te) print("CLS ", cls_loss_te) print("############################") # for idx in matrix_idx_confidence: # wr.writerow(idx) #''' # draw graph df = pd.DataFrame() df['epoch'] = [i for i in range(1, args.epochs + 1)] df['test_ece'] = test_ece_report df['train_ece'] = train_ece_report fig_loss = plt.figure(figsize=(35, 35)) fig_loss.set_facecolor('white') ax = fig_loss.add_subplot() ax.plot(df['epoch'], df['test_ece'], df['epoch'], df['train_ece'], linewidth=10) ax.legend(['Test', 'Train'], loc = 2, prop={'size': 60}) plt.title('[FL] ECE per epoch', fontsize=80) # plt.title('[BASE] ECE per epoch', fontsize=80) # plt.title('[CRL] ECE per epoch', fontsize=80) plt.xlabel('Epoch', fontsize=70) plt.ylabel('ECE', fontsize=70) plt.ylim([0, 1]) plt.setp(ax.get_xticklabels(), fontsize=30) plt.setp(ax.get_yticklabels(), fontsize=30) plt.savefig('{}/{}_{}_ECE_lr_{}.png'.format(file_name, args.model, args.b, args.epochs)) # plt.savefig('./baseline_graph/150_250/128/500/{}_{}_ECE_lr_{}.png'.format(args.model, args.b, args.epochs)) # plt.savefig('./CRL_graph/150_250/{}_{}_ECE_lr_{}.png'.format(args.model, args.b, args.epochs)) df2 = pd.DataFrame() df2['epoch'] = [i for i in range(1, args.epochs + 1)] df2['test_acc'] = test_acc_report df2['train_acc'] = train_acc_report fig_acc = plt.figure(figsize=(35, 35)) fig_acc.set_facecolor('white') ax = fig_acc.add_subplot() ax.plot(df2['epoch'], df2['test_acc'], df2['epoch'], df2['train_acc'], linewidth=10) ax.legend(['Test', 'Train'], loc = 2, prop={'size': 60}) plt.title('[FL] Accuracy per epoch', fontsize=80) # plt.title('[BASE] Accuracy per epoch', fontsize=80) # plt.title('[CRL] Accuracy per epoch', fontsize=80) plt.xlabel('Epoch', fontsize=70) plt.ylabel('Accuracy', fontsize=70) plt.ylim([0, 100]) plt.setp(ax.get_xticklabels(), fontsize=30) plt.setp(ax.get_yticklabels(), fontsize=30) plt.savefig('{}/{}_{}_acc_lr_{}.png'.format(file_name, args.model, args.b, args.epochs)) # plt.savefig('./baseline_graph/150_250/128/500/{}_{}_acc_lr_{}.png'.format(args.model, args.b, args.epochs)) # plt.savefig('./CRL_graph/150_250/{}_{}_acc_lr_{}.png'.format(args.model, args.b, args.epochs)) df3 = pd.DataFrame() df3['epoch'] = [i for i in range(1, args.epochs + 1)] df3['test_nll'] = test_nll_report df3['train_nll'] = train_nll_report fig_acc = plt.figure(figsize=(35, 35)) fig_acc.set_facecolor('white') ax = fig_acc.add_subplot() ax.plot(df3['epoch'], df3['test_nll'], df3['epoch'], df3['train_nll'], linewidth=10) ax.legend(['Test', 'Train'], loc = 2, prop={'size': 60}) plt.title('[FL] NLL per epoch', fontsize=80) # plt.title('[BASE] NLL per epoch', fontsize=80) # plt.title('[CRL] NLL per epoch', fontsize=80) plt.xlabel('Epoch', fontsize=70) plt.ylabel('NLL', fontsize=70) plt.ylim([0, 45]) plt.setp(ax.get_xticklabels(), fontsize=30) plt.setp(ax.get_yticklabels(), fontsize=30) plt.savefig('{}/{}_{}_nll_lr_{}.png'.format(file_name, args.model, args.b, args.epochs)) # plt.savefig('./baseline_graph/150_250/128/500/{}_{}_nll_lr_{}.png'.format(args.model, args.b, args.epochs)) # plt.savefig('./CRL_graph/150_250/{}_{}_nll_lr_{}.png'.format(args.model, args.b, args.epochs)) df4 = pd.DataFrame() df4['epoch'] = [i for i in range(1, args.epochs + 1)] df4['test_over_con99'] = test_over_con99_report df4['train_over_con99'] = train_over_con99_report fig_acc = plt.figure(figsize=(35, 35)) fig_acc.set_facecolor('white') ax = fig_acc.add_subplot() ax.plot(df4['epoch'], df4['test_over_con99'], df4['epoch'], df4['train_over_con99'], linewidth=10) ax.legend(['Test', 'Train'], loc=2, prop={'size': 60}) plt.title('[FL] Over conf99 per epoch', fontsize=80) # plt.title('[BASE] Over conf99 per epoch', fontsize=80) # plt.title('[CRL] Over conf99 per epoch', fontsize=80) plt.xlabel('Epoch', fontsize=70) plt.ylabel('Over con99', fontsize=70) if args.data == 'cifar10' or args.data == 'cifar100': plt.ylim([0, 50000]) else: plt.ylim([0, 73257]) plt.setp(ax.get_xticklabels(), fontsize=30) plt.setp(ax.get_yticklabels(), fontsize=30) plt.savefig('{}/{}_{}_over_conf99_lr_{}.png'.format(file_name, args.model, args.b, args.epochs)) # plt.savefig('./baseline_graph/150_250/128/500/{}_{}_over_conf99_lr_{}.png'.format(args.model, args.b, args.epochs)) # plt.savefig('./CRL_graph/150_250/{}_{}_over_conf99_lr_{}.png'.format(args.model, args.b, args.epochs)) df5 = pd.DataFrame() df5['epoch'] = [i for i in range(1, args.epochs + 1)] df5['test_e99'] = test_e99_report df5['train_e99'] = train_e99_report fig_acc = plt.figure(figsize=(35, 35)) fig_acc.set_facecolor('white') ax = fig_acc.add_subplot() ax.plot(df5['epoch'], df5['test_e99'], df5['epoch'], df5['train_e99'], linewidth=10) ax.legend(['Test', 'Train'], loc=2, prop={'size': 60}) plt.title('[FL] E99 per epoch', fontsize=80) # plt.title('[BASE] E99 per epoch', fontsize=80) # plt.title('[CRL] E99 per epoch', fontsize=80) plt.xlabel('Epoch', fontsize=70) plt.ylabel('E99', fontsize=70) plt.ylim([0, 0.2]) plt.setp(ax.get_xticklabels(), fontsize=30) plt.setp(ax.get_yticklabels(), fontsize=30) plt.savefig('{}/{}_{}_E99_flood_lr_{}.png'.format(file_name,args.model, args.b, args.epochs)) # plt.savefig('./baseline_graph/150_250/128/500/{}_{}_E99_flood_lr_{}.png'.format(args.model, args.b, args.epochs)) # plt.savefig('./CRL_graph/150_250/{}_{}_E99_flood_lr_{}.png'.format(args.model, args.b, args.epochs)) df5 =
pd.DataFrame()
pandas.DataFrame
import re import numpy as np import pandas as pd import pytest import cudf from cudf import melt as cudf_melt from cudf.core import DataFrame from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, ) @pytest.mark.parametrize("num_id_vars", [0, 1, 2, 10]) @pytest.mark.parametrize("num_value_vars", [0, 1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 1000]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + DATETIME_TYPES) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_melt(nulls, num_id_vars, num_value_vars, num_rows, dtype): if dtype not in ["float32", "float64"] and nulls in ["some", "all"]: pytest.skip(msg="nulls not supported in dtype: " + dtype) pdf = pd.DataFrame() id_vars = [] for i in range(num_id_vars): colname = "id" + str(i) data = np.random.randint(0, 26, num_rows).astype(dtype) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = np.nan elif nulls == "all": data[:] = np.nan pdf[colname] = data id_vars.append(colname) value_vars = [] for i in range(num_value_vars): colname = "val" + str(i) data = np.random.randint(0, 26, num_rows).astype(dtype) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = np.nan elif nulls == "all": data[:] = np.nan pdf[colname] = data value_vars.append(colname) gdf = DataFrame.from_pandas(pdf) got = cudf_melt(frame=gdf, id_vars=id_vars, value_vars=value_vars) got_from_melt_method = gdf.melt(id_vars=id_vars, value_vars=value_vars) expect = pd.melt(frame=pdf, id_vars=id_vars, value_vars=value_vars) # pandas' melt makes the 'variable' column of 'object' type (string) # cuDF's melt makes it Categorical because it doesn't support strings expect["variable"] = expect["variable"].astype("category") assert_eq(expect, got) assert_eq(expect, got_from_melt_method) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 1000]) @pytest.mark.parametrize( "dtype", list(NUMERIC_TYPES + DATETIME_TYPES) + [pytest.param("str", marks=pytest.mark.xfail())], ) @pytest.mark.parametrize("nulls", ["none", "some"]) def test_df_stack(nulls, num_cols, num_rows, dtype): if dtype not in ["float32", "float64"] and nulls in ["some"]: pytest.skip(msg="nulls not supported in dtype: " + dtype) pdf = pd.DataFrame() for i in range(num_cols): colname = str(i) data = np.random.randint(0, 26, num_rows).astype(dtype) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = np.nan pdf[colname] = data gdf = DataFrame.from_pandas(pdf) got = gdf.stack() expect = pdf.stack() if {None} == set(expect.index.names): expect.rename_axis( list(range(0, len(expect.index.names))), inplace=True ) assert_eq(expect, got) pass @pytest.mark.parametrize("num_rows", [1, 2, 10, 1000]) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize( "dtype", NUMERIC_TYPES + DATETIME_TYPES + ["category"] ) @pytest.mark.parametrize("nulls", ["none", "some"]) def test_interleave_columns(nulls, num_cols, num_rows, dtype): if dtype not in ["float32", "float64"] and nulls in ["some"]: pytest.skip(msg="nulls not supported in dtype: " + dtype) pdf = pd.DataFrame(dtype=dtype) for i in range(num_cols): colname = str(i) data = pd.Series(np.random.randint(0, 26, num_rows)).astype(dtype) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = np.nan pdf[colname] = data gdf = DataFrame.from_pandas(pdf) if dtype == "category": with pytest.raises(ValueError): assert gdf.interleave_columns() else: got = gdf.interleave_columns() expect = pd.Series(np.vstack(pdf.to_numpy()).reshape((-1,))).astype( dtype ) assert_eq(expect, got) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 1000]) @pytest.mark.parametrize("count", [1, 2, 10]) @pytest.mark.parametrize("dtype", ALL_TYPES) @pytest.mark.parametrize("nulls", ["none", "some"]) def test_tile(nulls, num_cols, num_rows, dtype, count): if dtype not in ["float32", "float64"] and nulls in ["some"]: pytest.skip(msg="nulls not supported in dtype: " + dtype) pdf = pd.DataFrame(dtype=dtype) for i in range(num_cols): colname = str(i) data = pd.Series(np.random.randint(num_cols, 26, num_rows)).astype( dtype ) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = np.nan pdf[colname] = data gdf = DataFrame.from_pandas(pdf) got = gdf.tile(count) expect = pd.DataFrame(pd.concat([pdf] * count)) assert_eq(expect, got) def _prepare_merge_sorted_test( size, nparts, keys, add_null=False, na_position="last", ascending=True, series=False, index=False, ): if index: df = ( cudf.datasets.timeseries()[:size] .reset_index(drop=False) .set_index(keys, drop=True) ) else: df = cudf.datasets.timeseries()[:size].reset_index(drop=False) if add_null: df.iloc[1, df.columns.get_loc(keys[0])] = None chunk = int(size / nparts) indices = [i * chunk for i in range(0, nparts)] + [size] if index: dfs = [ df.iloc[indices[i] : indices[i + 1]] .copy() .sort_index(ascending=ascending) for i in range(nparts) ] elif series: df = df[keys[0]] dfs = [ df.iloc[indices[i] : indices[i + 1]] .copy() .sort_values(na_position=na_position, ascending=ascending) for i in range(nparts) ] else: dfs = [ df.iloc[indices[i] : indices[i + 1]] .copy() .sort_values(keys, na_position=na_position, ascending=ascending) for i in range(nparts) ] return df, dfs @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) @pytest.mark.parametrize("keys", [None, ["id"], ["name", "timestamp"]]) @pytest.mark.parametrize("nparts", [2, 10]) def test_df_merge_sorted(nparts, keys, na_position, ascending): size = 100 keys_1 = keys or ["timestamp"] # Null values NOT currently supported with Categorical data # or when `ascending=False` add_null = keys_1[0] not in ("name") df, dfs = _prepare_merge_sorted_test( size, nparts, keys_1, add_null=add_null, na_position=na_position, ascending=ascending, ) expect = df.sort_values( keys_1, na_position=na_position, ascending=ascending ) result = cudf.merge_sorted( dfs, keys=keys, na_position=na_position, ascending=ascending ) if keys: expect = expect[keys] result = result[keys] assert expect.index.dtype == result.index.dtype assert_eq(expect.reset_index(drop=True), result.reset_index(drop=True)) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("index", ["id", "x"]) @pytest.mark.parametrize("nparts", [2, 10]) def test_df_merge_sorted_index(nparts, index, ascending): size = 100 df, dfs = _prepare_merge_sorted_test( size, nparts, index, ascending=ascending, index=True ) expect = df.sort_index(ascending=ascending) result = cudf.merge_sorted(dfs, by_index=True, ascending=ascending) assert_eq(expect.index, result.index) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) @pytest.mark.parametrize("keys", [None, ["name", "timestamp"]]) def test_df_merge_sorted_ignore_index(keys, na_position, ascending): size = 100 nparts = 3 keys_1 = keys or ["timestamp"] # Null values NOT currently supported with Categorical data # or when `ascending=False` add_null = keys_1[0] not in ("name") df, dfs = _prepare_merge_sorted_test( size, nparts, keys_1, add_null=add_null, na_position=na_position, ascending=ascending, ) expect = df.sort_values( keys_1, na_position=na_position, ascending=ascending ) result = cudf.merge_sorted( dfs, keys=keys, na_position=na_position, ascending=ascending, ignore_index=True, ) if keys: expect = expect[keys] result = result[keys] assert_eq(expect.reset_index(drop=True), result) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) @pytest.mark.parametrize("key", ["id", "name", "timestamp"]) @pytest.mark.parametrize("nparts", [2, 10]) def test_series_merge_sorted(nparts, key, na_position, ascending): size = 100 df, dfs = _prepare_merge_sorted_test( size, nparts, [key], na_position=na_position, ascending=ascending, series=True, ) expect = df.sort_values(na_position=na_position, ascending=ascending) result = cudf.merge_sorted( dfs, na_position=na_position, ascending=ascending ) assert_eq(expect.reset_index(drop=True), result.reset_index(drop=True)) @pytest.mark.parametrize( "index, column, data", [ ([], [], []), ([0], [0], [0]), ([0, 0], [0, 1], [1, 2.0]), ([0, 1], [0, 0], [1, 2.0]), ([0, 1], [0, 1], [1, 2.0]), (["a", "a", "b", "b"], ["c", "d", "c", "d"], [1, 2, 3, 4]), ( ["a", "a", "b", "b", "a"], ["c", "d", "c", "d", "e"], [1, 2, 3, 4, 5], ), ], ) def test_pivot_simple(index, column, data): pdf =
pd.DataFrame({"index": index, "column": column, "data": data})
pandas.DataFrame
import os import pandas as pd import matplotlib.pyplot as plt os.chdir(os.path.dirname(os.path.abspath(__file__))) df =
pd.read_csv('./test.csv', header=0, encoding='utf-8')
pandas.read_csv
import os import operator import unittest import numpy as np from pandas.core.api import DataFrame, Index, notnull from pandas.core.datetools import bday from pandas.core.panel import (WidePanel, LongPanelIndex, LongPanel, group_agg, pivot) from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal) import pandas.core.panel as panelm import pandas.util.testing as common class PanelTests(object): def test_iter(self): common.equalContents(list(self.panel), self.panel.items) def test_pickle(self): import cPickle pickled = cPickle.dumps(self.panel) unpickled = cPickle.loads(pickled) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_repr(self): foo = repr(self.panel) def test_set_values(self): self.panel.values = np.array(self.panel.values, order='F') assert(self.panel.values.flags.contiguous) def _check_statistic(self, frame, name, alternative): f = getattr(frame, name) for i, ax in enumerate(['items', 'major', 'minor']): result = f(axis=i) assert_frame_equal(result, frame.apply(alternative, axis=ax)) def test_count(self): f = lambda s: notnull(s).sum() self._check_statistic(self.panel, 'count', f) def test_sum(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return nona.sum() self._check_statistic(self.panel, 'sum', f) def test_prod(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return np.prod(nona) self._check_statistic(self.panel, 'prod', f) def test_mean(self): def f(x): x = np.asarray(x) return x[notnull(x)].mean() self._check_statistic(self.panel, 'mean', f) def test_median(self): def f(x): x = np.asarray(x) return np.median(x[notnull(x)]) self._check_statistic(self.panel, 'median', f) def test_min(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return nona.min() self._check_statistic(self.panel, 'min', f) def test_max(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) == 0: return np.NaN else: return nona.max() self._check_statistic(self.panel, 'max', f) def test_var(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) < 2: return np.NaN else: return nona.var(ddof=1) self._check_statistic(self.panel, 'var', f) def test_std(self): def f(x): x = np.asarray(x) nona = x[notnull(x)] if len(nona) < 2: return np.NaN else: return nona.std(ddof=1) self._check_statistic(self.panel, 'std', f) def test_skew(self): return try: from scipy.stats import skew except ImportError: return def f(x): x = np.asarray(x) return skew(x[notnull(x)], bias=False) self._check_statistic(self.panel, 'skew', f) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) class TestWidePanel(unittest.TestCase, PanelTests): def setUp(self): self.panel = common.makeWidePanel() common.add_nans(self.panel) def test_get_axis(self): assert(self.panel._get_axis(0) is self.panel.items) assert(self.panel._get_axis(1) is self.panel.major_axis) assert(self.panel._get_axis(2) is self.panel.minor_axis) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major') self.assertEqual(self.panel._get_axis_name(2), 'minor') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major') index, columns = self.panel._get_plane_axes('minor') index, columns = self.panel._get_plane_axes(0) def test_arith(self): def test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) test_op(self.panel, operator.add) test_op(self.panel, operator.sub) test_op(self.panel, operator.mul) test_op(self.panel, operator.div) test_op(self.panel, operator.pow) test_op(self.panel, lambda x, y: y + x) test_op(self.panel, lambda x, y: y - x) test_op(self.panel, lambda x, y: y * x) test_op(self.panel, lambda x, y: y / x) test_op(self.panel, lambda x, y: y ** x) self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) def test_fromDict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A' : itema, 'B' : itemb[5:]} wp = WidePanel.fromDict(d) self.assert_(wp.major_axis.equals(self.panel.major_axis)) # intersect wp = WidePanel.fromDict(d, intersect=True) self.assert_(wp.major_axis.equals(itemb.index[5:])) def test_keys(self): common.equalContents(self.panel.keys(), self.panel.items) def test_iteritems(self): # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) def test_values(self): self.assertRaises(Exception, WidePanel, np.random.randn(5, 5, 5), range(5), range(5), range(4)) def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assert_('ItemA' not in self.panel.items) del self.panel['ItemB'] self.assert_('ItemB' not in self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = WidePanel(values, range(3), range(3), range(3)) # did we delete the right row? panelc = panel.copy() del panelc[0]
assert_frame_equal(panelc[1], panel[1])
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # In[ ]: import re import os import json import pandas as pd import numpy as np import sys # In[ ]: def txt_to_dataframe(algoritmo, parametro): csv = [] for file_name in sorted(os.listdir()): if file_name.startswith(algoritmo+"_"+parametro) and file_name.endswith(".txt"): with open(file_name) as file: linhas = file.readlines() metricas = dict([re.findall("([^ ]*) *([0-9]*[.]?[0-9]*).*#",linha)[0] for linha in linhas[2:-2]]) variavel = file_name[len(algoritmo+"_"+parametro+"_"):-4] try: metricas[parametro] = int(variavel) except: metricas[parametro] = variavel csv.append(metricas) df =
pd.DataFrame(csv)
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import dataclasses import json import logging import re from collections import defaultdict, OrderedDict from contextlib import closing from dataclasses import dataclass, field # pylint: disable=wrong-import-order from datetime import datetime, timedelta from typing import ( Any, cast, Dict, Hashable, List, NamedTuple, Optional, Tuple, Type, Union, ) import pandas as pd import sqlalchemy as sa import sqlparse from flask import escape, Markup from flask_appbuilder import Model from flask_babel import lazy_gettext as _ from jinja2.exceptions import TemplateError from sqlalchemy import ( and_, asc, Boolean, Column, DateTime, desc, Enum, ForeignKey, Integer, or_, select, String, Table, Text, update, ) from sqlalchemy.engine.base import Connection from sqlalchemy.orm import backref, Query, relationship, RelationshipProperty, Session from sqlalchemy.orm.mapper import Mapper from sqlalchemy.schema import UniqueConstraint from sqlalchemy.sql import column, ColumnElement, literal_column, table, text from sqlalchemy.sql.elements import ColumnClause from sqlalchemy.sql.expression import Label, Select, TextAsFrom, TextClause from sqlalchemy.sql.selectable import Alias, TableClause from sqlalchemy.types import TypeEngine from superset import app, db, is_feature_enabled, security_manager from superset.connectors.base.models import BaseColumn, BaseDatasource, BaseMetric from superset.db_engine_specs.base import BaseEngineSpec, TimestampExpression from superset.errors import ErrorLevel, SupersetError, SupersetErrorType from superset.exceptions import ( QueryObjectValidationError, SupersetGenericDBErrorException, SupersetSecurityException, ) from superset.jinja_context import ( BaseTemplateProcessor, ExtraCache, get_template_processor, ) from superset.models.annotations import Annotation from superset.models.core import Database from superset.models.helpers import AuditMixinNullable, QueryResult from superset.result_set import SupersetResultSet from superset.sql_parse import ParsedQuery from superset.typing import AdhocMetric, Metric, OrderBy, QueryObjectDict from superset.utils import core as utils from superset.utils.core import GenericDataType, remove_duplicates config = app.config metadata = Model.metadata # pylint: disable=no-member logger = logging.getLogger(__name__) VIRTUAL_TABLE_ALIAS = "virtual_table" class SqlaQuery(NamedTuple): extra_cache_keys: List[Any] labels_expected: List[str] prequeries: List[str] sqla_query: Select class QueryStringExtended(NamedTuple): labels_expected: List[str] prequeries: List[str] sql: str @dataclass class MetadataResult: added: List[str] = field(default_factory=list) removed: List[str] = field(default_factory=list) modified: List[str] = field(default_factory=list) class AnnotationDatasource(BaseDatasource): """Dummy object so we can query annotations using 'Viz' objects just like regular datasources. """ cache_timeout = 0 changed_on = None type = "annotation" column_names = [ "created_on", "changed_on", "id", "start_dttm", "end_dttm", "layer_id", "short_descr", "long_descr", "json_metadata", "created_by_fk", "changed_by_fk", ] def query(self, query_obj: QueryObjectDict) -> QueryResult: error_message = None qry = db.session.query(Annotation) qry = qry.filter(Annotation.layer_id == query_obj["filter"][0]["val"]) if query_obj["from_dttm"]: qry = qry.filter(Annotation.start_dttm >= query_obj["from_dttm"]) if query_obj["to_dttm"]: qry = qry.filter(Annotation.end_dttm <= query_obj["to_dttm"]) status = utils.QueryStatus.SUCCESS try: df = pd.read_sql_query(qry.statement, db.engine) except Exception as ex: # pylint: disable=broad-except df =
pd.DataFrame()
pandas.DataFrame
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt lakes =
pd.read_table('Feb2015GoranList.csv', sep=',')
pandas.read_table
import glob import os import pandas as pd from datetime import datetime from datetime import timedelta file_pattern = ':dir/*:year_:month.csv' proc_dir = 'processed/' station_file = proc_dir + 'lcd_station_usa_west_coast.csv' years = ['2015'] months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'] if not os.path.isfile(station_file): print('Please run process_noaa_stations.py first!') exit() stations = pd.read_csv(station_file) if not os.path.isdir(proc_dir): os.mkdir(proc_dir) for year in years: for month in months: pattern = file_pattern.replace(':dir', '.') \ .replace(':year', year) \ .replace(':month', month) files = glob.glob(pattern) for file in files: print('Processing file', file) proc_file = file.replace('./', proc_dir) df =
pd.read_csv(file)
pandas.read_csv
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 231, pd.Timestamp("2015-01-20")), (40, 240.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 250.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 150.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 130 * 1 / 10, cls.window_test_start_date), (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-09"), ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-12"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 5, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 0.7, cls.window_test_start_date), (20, 121 * 0.7,
pd.Timestamp("2015-01-07")
pandas.Timestamp
import numpy as np import random import pandas as pd from itertools import combinations items_set = ['beer','burger','milk','onion','potato'] max_trn = 20 data=np.random.randint(2, size=(random.randint(1,max_trn),len(items_set))) df =
pd.DataFrame(data)
pandas.DataFrame
# vector operations on series with indexes. import pandas as pd # Change False to True for each block of code to see what it does # Addition when indexes are the same if True: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 = pd.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) print (s1 + s2) # Indexes have same elements in a different order if True: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 = pd.Series([10, 20, 30, 40], index=['b', 'd', 'a', 'c']) print (s1 + s2) # Indexes overlap, but do not have exactly the same elements if True: s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) s2 =
pd.Series([10, 20, 30, 40], index=['c', 'd', 'e', 'f'])
pandas.Series
import pandas as pd import numpy as np #seriler gk = pd.Series([0.33, 4.87, 5.97, 0.643], index=['merkur', 'venus', 'dunya', 'mars'], name='Kutle') # pandas serisi ps = pd.Series(np.random.randn(5)*7) # indexsiz seri ds = pd.Series(({'merkur':0.33,'venus':4.87})) # dict ds2 = pd.Series(({'merkur':0.33,'venus':4.87}), index=['venus', 'merkur']) # farklı sıralamalı sözlük # serilerde işlemler #print(gk[:2]);print() #print(gk[::2]);print() #print(gk > gk['merkur']);print() #print(gk[gk > gk['merkur']]);print() #print(gk[:-1]);print() # sondan bir eksik #print(gk.median());print() # dizinin orta değeri #print('Betelgeuse' in gk) #print(gk.mean(), gk.std(), gk.mean()-gk.std()) # ortalama ve standart sapma #print(gk**2) # dizideki tüm değerlerin karesi #print(gk/3.14159**3) a = pd.Series(np.random.randn(10)*3.14159) b = pd.Series(np.random.randn(10)*3.14159) ab = pd.Series((a*b)) #print(ab,ab.name) # serilere veri ekleme ex =
pd.Series(({'alpha':1, 'beta':2}))
pandas.Series
# -*- coding: utf-8 -*- # HA - Tool version 2.1 # <NAME> # MIT License # 2021 import os import re from shutil import move as move from sys import exit as sys_exit import threading from time import sleep as sleep from datetime import datetime import pandas as pd import sqlalchemy from dotenv import load_dotenv, dotenv_values class HaTool: _fred = threading.Thread() # thread management _lock = threading.Lock() # thread lock _engine = None # Database connection _config = dotenv_values(".env") # Env vars _raw_data_table = _config["table_raw"] # table raw uploaded _overview_table = _config["table_overview"] # summary table _log_table = _config["created_trips_table"] # log filename in db _path = _config["PathToTripData"] # path to the target path for txt data _threads = _config["process"] # number of processes def __init__(self): """check if System is ready configure""" load_dotenv() self._config = dotenv_values(".env") if not (os.path.isdir(self._path)): os.makedirs(self._path) self._login_value() self._todo_trips = [] self._task_list = None def _login_value(self): """Connection to the Database and log """ db_user = self._config["DB_USERNAME"] db_passwd = self._config["<PASSWORD>"] db_ip = self._config["DB_HOST"] db_schema = self._config["DB_SCHEMA"] # [driver]://[username][password]@[IP]/[Schema in DB] db_uri = f'mysql+pymysql://{db_user}:{db_passwd}@{db_ip}:3306/{db_schema}' self._engine = sqlalchemy.create_engine(db_uri) # connect to Database try: now = datetime.now() data = {'username': [db_user], "time": [now.strftime("%d/%m/%Y, %H:%M:%S")], "Remote": [db_ip], "OS": ["RPI"]} pd.DataFrame(data).to_sql("python_log", con=self._engine, if_exists='append') except Exception: print("----------------\n\n Error while logging in Database\n\n----------------") sys_exit() def _get_last_trip(self, table, trip_id="trip_counter"): """return last trip on the Database""" try: return pd.read_sql_query(f'SELECT {trip_id} FROM {table} ORDER BY {trip_id} DESC limit 1;', con=self._engine) except Exception: print(f'last trip Error \n{table} \n{trip_id}\n--------------------') return pd.DataFrame({trip_id: [0]}) def _get_last_trip_number(self): """return the number of the last recorded Trip""" try: start_trip_number = int(self._get_last_trip(self._overview_table, "trip_number").at[0, 'trip_number']) target_trip_number = self._get_last_trip(self._raw_data_table).at[0, 'trip_counter'] if target_trip_number == start_trip_number: print("all uploaded") return -1 else: return start_trip_number except Exception: print("Error") return 0 def _getMissiongSummaryTrips(self): ids = [] try: values = pd.read_sql_query(f'''SELECT trip_counter FROM {self._raw_data_table} WHERE {self._raw_data_table}.trip_counter NOT IN (SELECT {self._overview_table}.trip_number FROM {self._overview_table}) group by trip_counter''', con=self._engine) for index, row in values.iterrows(): ids.append(row['trip_counter']) except Exception: print("Summary not founded") values = pd.read_sql_query(f'''SELECT trip_counter FROM rawData order by trip_counter desc limit 1''', con=self._engine) for i in range(values['trip_counter'][0], 0, -1): ids.append(i) finally: return ids def _trip_handler(self, number_of_processes): """manage the Summary Calculator""" tasks = self._task_list # value = self._get_last_trip_number() for i in range(number_of_processes): self._todo_trips.append(tasks.pop()) run = True while run: for i in range(number_of_processes): if self._todo_trips[i] == "next": self._todo_trips[i] = tasks.pop() if len(tasks) == 0: run = False print("everything started") sys_exit() def _duplicate_check(self, filename): """check if file exist in Database""" try: trip_list = pd.read_sql_query(f'SELECT filename FROM {self._log_table};', con=self._engine) # Check if filename is registered in database for index, row in trip_list.iterrows(): if row['filename'] == str(filename): print("found duplicate") return True return False except Exception: print("duplicate error") return False def _upload_trips_raw(self): """upload all txt files to DB""" path = self._path try: # normal self._get_last_trip_number() counter = pd.read_sql_query( f"SELECT trip_counter FROM {self._raw_data_table} ORDER BY trip_counter DESC limit 1;", con=self._engine) # get last trip number from Database finished = int(counter.at[0, 'trip_counter']) # last trip number from Database except Exception: finished = 0 regex = re.compile("Trip_20[1-3][0-9]-[0-2][0-9]-[0-3][0-9]_[0-3][0-9]-[0-9][0-9]-[0-9][0-9].txt") for file in os.listdir(path): if regex.match(file): values_of_file = pd.read_csv(path + file, sep='\t') if not self._duplicate_check(file): finished = finished + 1 else: continue values_of_file['trip_counter'] = pd.DataFrame( {'trip_counter': [finished for _ in range(len(values_of_file.index))]}) values_of_file.to_sql(self._raw_data_table, con=self._engine, if_exists='append', index='counter') if not (os.path.isdir(path + "archive/")): os.makedirs(path + "archive/") move(path + file, path + 'archive/') # move finished file to archive trip_log = {'filename': [str(file)], 'Datum': [datetime.now().strftime("%d/%m/%Y, %H:%M:%S")] } pd.DataFrame(trip_log).to_sql(self._log_table, con=self._engine, if_exists='append') del values_of_file sys_exit() @staticmethod def _dataframe_difference(df1, df2): """Find rows which are different between two DataFrames.""" comparison_df = df1.merge(df2, indicator=True, how='outer') return comparison_df[comparison_df['_merge'] != 'both'] def _calc_summary(self, process_id): """gen _calc_summary trip by trip""" try: if self._todo_trips[process_id] == "finished": sys_exit() timeout = 0 while self._todo_trips[process_id] == "next": sleep(1) if timeout >= 12: sys_exit() timeout += 1 query = f""" SELECT * FROM {self._raw_data_table} WHERE trip_counter = {self._todo_trips[process_id]} ORDER BY time asc; """ trip_values_database =
pd.read_sql_query(query, self._engine)
pandas.read_sql_query
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_location_stress_error [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_location_stress_error&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=ExerStressErr). # + import numpy as np import scipy.stats as stats import pandas as pd import matplotlib.pyplot as plt from arpym.statistics import simulate_unif_in_ellips from arpym.tools.logo import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_location_stress_error-parameters) k_ = 400 # cardinality of stress-test set t_ = 15 # len of the time series j_ = 5*10 ** 2 # number of simulations # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_location_stress_error-implementation-step01): Set the stress test set for the true parameters # + # generate uniform on unit circle unif, _, _ = simulate_unif_in_ellips(np.array([2, 2]), np.identity(2), int(k_/2)) mu = unif[:, 0] sigma2 = unif[:, 1] # ensemble error m = 2*np.log(mu) - 0.5*np.log(sigma2 + mu ** 2) s2 = 1.2*np.log((sigma2 / mu ** 2) + 1) location = np.r_[mu, m] dispersion = np.r_[sigma2, s2] # vector of true expectations expectation = np.r_[mu, mu] # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_location_stress_error-implementation-step02): Generate scenarios and compute the error for each estimator # + m_hat = np.zeros((j_, k_)) pi_hat = np.zeros((j_, k_)) k_hat = np.zeros((j_, k_)) er_m = np.zeros(k_) er_pi = np.zeros(k_) er_k = np.zeros(k_) for k in range(k_): # generate scenarios if k <= int(k_ / 2)-1: # normal simulations i_thetak = stats.norm.rvs(location[k], np.sqrt(dispersion[k]), size=[j_, t_]) else: # lognormal simulations i_thetak = stats.lognorm.rvs(np.sqrt(dispersion[k]), scale=np.exp(location[k]), size=[j_, t_]) # sample mean estimator m_hat[:, k] = np.mean(i_thetak, axis=1) # simulations l_m = (m_hat[:, k]-expectation[k]) ** 2 # loss er_m[k] = np.mean(l_m) # error # product estimator pi_hat[:, k] = i_thetak[:, 0] * i_thetak[:, -1] # simulations l_pi = (pi_hat[:, k]-expectation[k]) ** 2 # loss er_pi[k] = np.mean(l_pi) # error # constant estimator k_hat[:, k] = 3*np.ones(j_) # simulations l_k = (k_hat[:, k]-expectation[k]) ** 2 # loss er_k[k] = np.mean(l_k) # error # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_location_stress_error-implementation-step03): Compute robust and ensemble error for each estimator # + # robust errors er_rob_m, i_m = np.max(er_m), np.argmax(er_m) er_rob_pi, i_pi = np.max(er_pi), np.argmax(er_pi) er_rob_k, i_k = np.max(er_k), np.argmax(er_k) # ensemble errors er_ens_m = np.mean(er_m) er_ens_pi = np.mean(er_pi) er_ens_k = np.mean(er_k) # - # ## Save database # + output = {'j_': pd.Series(k_), 'k_': pd.Series(k_), 'm_hat': pd.Series(m_hat.reshape((j_*k_,))), 'expectation': pd.Series(expectation), 'er_rob_m': pd.Series(er_rob_m), 'er_ens_m': pd.Series(er_ens_m)} df =
pd.DataFrame(output)
pandas.DataFrame
from typing import List, Tuple, Dict import pandas as pd import numpy as np import os import fasttext import json from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from src.data.utils import emoji2text_tweet np.random.seed(42) def remove_quotes_from_saved_file(txt_path: str): text = "" with open(txt_path, "r", encoding="utf-8") as f: for line in f: if line[0] == "\"" and line[-2] == "\"": line = line[1:] line = line[:-2] + "\n" text += line os.remove(txt_path) with open(txt_path, "w", encoding="utf-8") as f: f.write(text) def process_dataframe_to_fasttext_format(dataframe: pd.DataFrame, emoji_mapping_items: Dict[str, str]) -> pd.DataFrame: dataframe = dataframe[['label', 'text']] dataframe['label'] = "__label__" + dataframe['label'] dataframe = dataframe.astype(str) dataframe['text'] = dataframe['text'].apply(lambda string: str(emoji2text_tweet(str(string), emoji_mapping_items))) dataframe['text'] = dataframe['text'].apply(lambda string: str(string).lower()) dataframe['text'] = dataframe['text'].apply(lambda string: str(string).replace("#", "")) dataframe['row'] = dataframe['label'] + " " + dataframe['text'] return dataframe def get_train_val_test_dataframes(texts: List, labels: List, train_size: float, val_size: float, test_size: float) -> \ Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: assert train_size + val_size + test_size == 1.0 texts_train_val, texts_test, labels_train_val, labels_test = train_test_split( texts, labels, test_size=test_size, random_state=42, stratify=labels) texts_train, texts_val, labels_train, labels_val = train_test_split( texts_train_val, labels_train_val, test_size=val_size / (1 - test_size), random_state=42, stratify=labels_train_val) train_df = pd.DataFrame(data={"text": texts_train, "label": labels_train}) val_df = pd.DataFrame(data={"text": texts_val, "label": labels_val}) test_df = pd.DataFrame(data={"text": texts_test, "label": labels_test}) return train_df, val_df, test_df def get_dataframes_for_all_files(files_dict: dict, path_to_dataset_folder: str, emoji_mapping_items: Dict[str, str]) -> dict: data_for_fasttext = {} for dataset, file_path in files_dict.items(): df =
pd.read_csv(file_path)
pandas.read_csv